[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018186179A1 - 車載機器冷却装置 - Google Patents

車載機器冷却装置 Download PDF

Info

Publication number
WO2018186179A1
WO2018186179A1 PCT/JP2018/011264 JP2018011264W WO2018186179A1 WO 2018186179 A1 WO2018186179 A1 WO 2018186179A1 JP 2018011264 W JP2018011264 W JP 2018011264W WO 2018186179 A1 WO2018186179 A1 WO 2018186179A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
refrigerant
battery
evaporator
condenser
Prior art date
Application number
PCT/JP2018/011264
Other languages
English (en)
French (fr)
Inventor
功嗣 三浦
康光 大見
義則 毅
竹内 雅之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018029756A external-priority patent/JP6773064B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880023390.0A priority Critical patent/CN110494710A/zh
Publication of WO2018186179A1 publication Critical patent/WO2018186179A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This disclosure relates to an in-vehicle device cooling apparatus that cools in-vehicle devices.
  • Patent Document 1 describes a battery temperature adjusting device that can adjust the temperature of a battery efficiently.
  • This prior art is a loop-type thermosiphon heat pipe, and includes a temperature control unit, a gas phase channel, a heat medium cooling unit, and a liquid phase channel.
  • the temperature controller adjusts the temperature of the battery by the phase change between the liquid phase and the gas phase of the heat medium.
  • a gas phase heat medium flowing out from the temperature control unit flows through the gas phase flow path.
  • the heat medium cooling unit condenses the gas phase heat medium flowing in from the gas phase flow path.
  • a liquid phase heat medium flows from the heat medium cooling section to the temperature adjusting section in the liquid phase flow path.
  • the arrangement relationship between the temperature control unit and the heat medium cooling unit is such that the liquid surface of the liquid heat medium in the heat medium cooling unit is positioned above the liquid surface of the liquid heat medium in the temperature control unit. ing.
  • an electric vehicle such as an electric vehicle or a hybrid vehicle
  • electric energy stored in a power storage device such as a secondary battery is supplied to a motor via an inverter or the like to run.
  • the power storage device self-heats when the vehicle is used, such as during travel, and not only does not have a sufficient function at high temperatures, but also causes deterioration and breakage. Therefore, it is necessary to cool the power storage device and maintain it at a certain temperature or lower.
  • a power storage device is composed of a plurality of battery cells.
  • the deterioration of the cells is biased and the performance of the power storage device is degraded.
  • the input / output characteristics of the power storage device are determined in accordance with the characteristics of the most deteriorated battery cell. For this reason, in order for the power storage device to exhibit desired performance for a long period of time, it is important to equalize the temperature so as to reduce the temperature variation between the battery cells.
  • a blowing method using a blower or a cooling method using a refrigeration cycle is generally used as a method for cooling a power storage device mounted on a vehicle.
  • the cooling system using the refrigeration cycle is, for example, an air cooling system, a water cooling system, or a refrigerant direct cooling system.
  • the blower since the blower only blows air in the passenger compartment, the cooling performance is low. Moreover, since the air blown by the blower is cooled by the sensible heat of the air, the temperature difference between the upstream and downstream of the air flow becomes large, resulting in a temperature distribution between the battery cells.
  • the cooling method using the refrigeration cycle has high cooling performance, but the heat exchange part with the battery cell is sensible heat cooling for both air cooling and water cooling, so that a temperature distribution between the battery cells occurs. Therefore, a refrigerant direct cooling method may be used.
  • thermosiphon system that cools by natural circulation of refrigerant without using a compressor, as a cooling system for a power storage device mounted on a vehicle.
  • the present inventor studied mounting the battery temperature adjusting device according to the above prior art on a vehicle to cool the power storage device of the vehicle.
  • thermosiphon system in order to ensure the cooling capacity in the thermosiphon system, it is necessary to quickly move the gas refrigerant evaporated in the temperature adjustment unit to the heat medium cooling unit and to secure a higher head. I found it important.
  • the present disclosure aims to ensure cooling capacity at the time of acceleration or climbing in an in-vehicle device cooling apparatus that cools an in-vehicle device by circulating a refrigerant using phase change.
  • the in-vehicle device cooling device includes a refrigerant circuit in which the refrigerant circulates, an evaporation unit that absorbs heat from the in-vehicle device and evaporates the refrigerant, a supply unit that guides the refrigerant to the evaporation unit, and evaporation
  • An evaporator having a discharge part through which refrigerant discharged from the part flows, a condenser for condensing the refrigerant evaporated in the evaporator, a gas refrigerant pipe for guiding the refrigerant from the discharge part to the condenser, and from the condenser to the supply part
  • a liquid refrigerant pipe for guiding the refrigerant.
  • the gas refrigerant pipe has a front flow portion in which the refrigerant flows from the rear of the vehicle toward the front of the vehicle, and a flow direction of the refrigerant from the discharge portion to the front flow portion is directed from the rear of the vehicle toward the front of the vehicle. It is comprised so that it may become at least 1 direction among the direction which goes to a vehicle upper side from a downward side, and a vehicle left-right direction.
  • inertial force acts on the in-vehicle equipment cooling device in addition to gravity. Therefore, since gravity and inertia force act simultaneously on the gas refrigerant surrounded by the liquid refrigerant in the evaporator, a force in an obliquely upward direction on the front side of the vehicle acts on the gas refrigerant.
  • the gas refrigerant of the evaporator is easily removed from the gas refrigerant pipe, and the refrigerant flow rate is increased, so that the cooling capacity can be improved.
  • the gravity acting on the in-vehicle equipment cooling device is tilted obliquely downward in the rear of the vehicle, so that the force acting on the gas refrigerant in the evaporator is the same as that during acceleration.
  • the direction is obliquely upward, that is, the direction generally along the flow direction of the refrigerant from the discharge part to the forward flow part.
  • the on-vehicle equipment cooling device includes a refrigerant circuit in which the refrigerant circulates, at least one evaporator that absorbs heat from at least one on-vehicle equipment and evaporates the refrigerant, and has evaporated in the evaporator.
  • At least one condenser for condensing the refrigerant a gas refrigerant pipe for guiding the refrigerant evaporated by the evaporator to the condenser, and a liquid refrigerant pipe for guiding the refrigerant condensed by the condenser to the evaporator.
  • the inlet side connection part connected with liquid refrigerant piping among evaporators is located in the vehicle back rather than the outlet side connection part connected with gas refrigerant piping among evaporators.
  • inertial force acts on the in-vehicle equipment cooling device in addition to gravity.
  • gravity and inertia force act simultaneously on the gas refrigerant surrounded by the liquid refrigerant in the evaporator, so that a force in an obliquely upward direction toward the front of the vehicle, that is, a direction toward the outlet side connection portion, acts on the gas refrigerant.
  • the gas refrigerant in the evaporator easily escapes to the gas refrigerant pipe, so that backflow of the gas refrigerant in the liquid refrigerant pipe can be suppressed.
  • the gravity acting on the in-vehicle equipment cooling device is tilted obliquely downward in the rear of the vehicle, so that the force acting on the gas refrigerant in the evaporator is the same as that during acceleration.
  • the direction is obliquely upward, that is, the direction toward the outlet side connecting portion.
  • the in-vehicle device cooling device 10 of the present embodiment illustrated in FIG. 1 is an in-vehicle device cooling device that cools the assembled battery 11.
  • the assembled battery 11 is an example of an in-vehicle device mounted on the vehicle 1.
  • front and rear and up and down arrows indicate the front and rear and up and down directions in the vehicle 1.
  • the assembled battery 11 has a plurality of battery cells.
  • the plurality of battery cells are arranged in the front-rear direction of the vehicle 1.
  • the assembled battery 11 supplies electricity to the traveling motor via an inverter or the like.
  • the assembled battery 11 is a storage battery that stores regenerative power.
  • the battery cell of the assembled battery 11 self-heats when charging / discharging is used during traveling.
  • the assembled battery 11 becomes high temperature, not only a sufficient function cannot be obtained, but the assembled battery 11 is deteriorated or broken. Therefore, it is necessary to cool the assembled battery 11 and maintain it below a certain temperature.
  • the discharge amount of the assembled battery 11 increases and the amount of heat generation increases, so it is necessary to cool the assembled battery 11 with a high cooling capacity.
  • the temperature of the assembled battery 11 rises not only during driving but also during parking in summer. If the battery cell of the assembled battery 11 is left in a high temperature state, the life is greatly reduced. Therefore, it is necessary to maintain the battery temperature at a low temperature, for example, by cooling the battery cell while it is parked.
  • the in-vehicle device whose temperature is adjusted by the in-vehicle device cooling device 10 may be a traveling inverter, a traveling motor, an intercooler, or the like in addition to the assembled battery 11.
  • a traveling inverter, a traveling motor, and an intercooler are in-vehicle devices that increase heat dissipation during acceleration or climbing (in other words, when the traveling load is high).
  • the on-vehicle equipment cooling device 10 includes a refrigerant circuit 12, a battery evaporator 13, a condenser 14, a gas refrigerant pipe 15, and a liquid refrigerant pipe 16.
  • the refrigerant circuit 12 is a heat medium circuit in which a refrigerant as a heat medium circulates.
  • a fluorocarbon refrigerant is used as the refrigerant.
  • Water may be used as the refrigerant.
  • the battery evaporator 13, the condenser 14, the gas refrigerant pipe 15 and the liquid refrigerant pipe 16 are arranged in the refrigerant circuit 12.
  • the battery evaporator 13 is an equipment heat exchanger that cools the assembled battery 11 by evaporation of the refrigerant.
  • the battery evaporator 13 can conduct heat with the assembled battery 11, and cools the assembled battery 11 and evaporates the refrigerant by absorbing the heat of the assembled battery 11 into the refrigerant.
  • the assembled battery 11 is placed on the battery evaporator 13, and the lower surface of the assembled battery 11 is in contact with the upper surface of the battery evaporator 13 so as to conduct heat.
  • the assembled battery 11 and the battery evaporator 13 are disposed under the floor at a substantially central portion in the front-rear direction of the vehicle 1.
  • the assembled battery 11 is disposed between the front end and the rear end of the battery evaporator 13 in the vehicle longitudinal direction.
  • the battery cell 11 a arranged closest to the vehicle rear side is located in front of the vehicle from the end portion of the battery evaporator 13 closest to the vehicle rear side.
  • the battery cell 11 b arranged closest to the vehicle front side is positioned further to the vehicle rear side than the end of the battery evaporator 13 closest to the vehicle front side.
  • the condenser 14 is a heat exchanger that cools and condenses the refrigerant evaporated in the battery evaporator 13 by heat exchange with the outside air.
  • the condenser 14 is disposed in the engine room of the vehicle 1.
  • the condenser 14 is disposed at the rearmost part of the engine room.
  • the condenser 14 is disposed on the front side and the upper side of the vehicle 1 with respect to the battery evaporator 13.
  • outside air is blown to the condenser 14 by an outdoor blower 17.
  • the outdoor blower 17 is disposed in the engine room of the vehicle 1.
  • the gas refrigerant pipe 15 and the liquid refrigerant pipe 16 are refrigerant pipes connecting the battery evaporator 13 and the condenser 14.
  • the gas refrigerant pipe 15 is a refrigerant pipe that guides the refrigerant evaporated in the battery evaporator 13 to the condenser 14.
  • the liquid refrigerant pipe 16 is a refrigerant pipe that guides the refrigerant condensed by the condenser 14 to the battery evaporator 13.
  • the gas refrigerant pipe 15 and the liquid refrigerant pipe 16 are connected to the battery evaporator 13 from above the vehicle 1.
  • the inlet side connecting portion 13 a of the battery evaporator 13 is located on the rear side of the vehicle 1 with respect to the outlet side connecting portion 13 b of the battery evaporator 13.
  • the inlet side connection portion 13a is a portion of the battery evaporator 13 to which the liquid refrigerant pipe 16 is connected.
  • the outlet side connecting portion 13b is a portion of the battery evaporator 13 to which the gas refrigerant pipe 15 is connected.
  • the entrance side connection part 13a is located in the vehicle back side rather than the battery cell 11a located in the vehicle back most among several battery cells.
  • Outlet side connection part 13b is located in the vehicle front side rather than battery cell 11b located in the vehicle front most among a plurality of battery cells.
  • the condenser 14 is located in front of the vehicle with respect to the inlet side connecting portion 13a.
  • the condenser 14 is disposed in front of the vehicle with respect to the battery evaporator 13.
  • the inlet side connecting portion 13a and the outlet side connecting portion 13b are arranged at the same height in the vertical direction of the vehicle 1.
  • thermosiphon phenomenon in other words, phase change
  • the liquid refrigerant absorbs heat from the assembled battery 11 and evaporates to become a gas refrigerant.
  • the gas refrigerant evaporated in the battery evaporator 13 flows into the gas refrigerant pipe 15 through the outlet side connection portion 13b, rises in the gas refrigerant pipe 15, and flows into the condenser.
  • the gas refrigerant flowing from the gas refrigerant pipe 15 dissipates heat to the outside air and condenses to become liquid refrigerant.
  • the liquid refrigerant condensed in the condenser 14 flows down the liquid refrigerant pipe 16 due to gravity and flows into the battery evaporator 13 via the inlet side connection portion 13a.
  • the assembled battery 11 can be cooled by the battery evaporator 13 by circulating the refrigerant through the refrigerant circuit 12. Since the refrigerant can be circulated through the refrigerant circuit 12 without using power, the power can be saved and the assembled battery 11 can be cooled even when parked.
  • FIG. 1 shows an enlargement amount ⁇ Hd of the head Hd during acceleration compared to non-acceleration.
  • the head Hd, the in-circuit pressure loss ⁇ P, and the flow velocity v have the following relationship.
  • the flow rate of the gas refrigerant increases during acceleration to increase the flow rate of the refrigerant circulating in the on-vehicle equipment cooling device 10, the backflow of the gas refrigerant in the liquid refrigerant pipe 16 can be suppressed.
  • the amount of heat exchange between the battery evaporator 13 and the condenser 14 also increases.
  • the cooling performance of the assembled battery 11 by the battery evaporator 13 can be improved during acceleration, the assembled battery 11 can be satisfactorily cooled even if the amount of heat generated by the assembled battery 11 increases during acceleration.
  • the on-vehicle equipment cooling device 10 is inclined with respect to the direction of gravity Fg, and the gas refrigerant pipe 15 is positioned above the battery evaporator 13, so that the battery as shown by the thick line arrow in FIG. 4. It becomes easy for the gas refrigerant of the evaporator 13 to escape to the gas refrigerant pipe 15.
  • the force direction Fh of the head is the same as the direction of gravity Fg. Therefore, when climbing at a constant speed, the head Hd is enlarged as compared to when descending at a constant speed, so that the flow rate of the refrigerant increases.
  • the flow rate of the refrigerant increases, the flow rate of the refrigerant circulating in the in-vehicle device cooling apparatus 10 increases. Therefore, the back flow of the gas refrigerant in the liquid refrigerant pipe 16 can be suppressed.
  • the amount of heat exchange between the battery evaporator 13 and the condenser 14 also increases.
  • the cooling performance of the assembled battery 11 by the battery evaporator 13 can be improved when climbing up, as in acceleration, the assembled battery 11 can be cooled well even when the amount of heat generated by the assembled battery 11 increases during climbing.
  • the amount of heat generated by the rechargeable battery 11 can be reduced by reducing the amount of charge generated by regeneration. Absent.
  • Regenerative charging refers to charging by converting kinetic energy into regenerative power during deceleration or downhill.
  • the inlet side connection part 13a of the battery evaporator 13 is located on the vehicle rear side with respect to the battery cell 11a located most on the vehicle rear side among the plurality of battery cells of the assembled battery 11,
  • the liquid refrigerant can be satisfactorily supplied to all the battery cells during climbing. Therefore, even if the amount of heat generated by each battery cell increases during acceleration or climbing, all the battery cells can be cooled as evenly as possible.
  • the condenser 14 Since the condenser 14 is located on the vehicle front side of the inlet side connection portion 13a of the battery evaporator 13, the gas refrigerant in the battery evaporator 13 easily flows into the condenser 14 during acceleration or climbing. . Therefore, the assembled battery 11 can be satisfactorily cooled even when the heat generation amount of the assembled battery 11 increases during acceleration or climbing.
  • the outlet side connection part 13b of the battery evaporator 13 is located on the vehicle front side with respect to the battery cell 11b located on the most vehicle front side among the plurality of battery cells of the assembled battery 11, It is easy for the gas refrigerant to escape from the battery evaporator 13 during climbing. Therefore, the gas refrigerant in the battery evaporator 13 is suppressed from staying in the vicinity of the battery cells, so that even if the amount of heat generated by each battery cell increases during acceleration or climbing, all the battery cells are evenly distributed as much as possible. Can be cooled.
  • the outlet-side connection portion 13 b of the battery evaporator 13 is located on the most vehicle front side among the plurality of battery cells of the assembled battery 11. It becomes easier to position the battery cell 11b on the vehicle front side than the battery cell 11b.
  • the inlet side connection portion 13a of the battery evaporator 13 is located behind the vehicle from the outlet side connection portion 13b of the battery evaporator 13.
  • the direction of the force Fr acting on the gas refrigerant 19 in the liquid refrigerant in the battery evaporator 13 is an obliquely upward front direction of the vehicle. Therefore, the gas refrigerant 19 of the battery evaporator 13 can easily escape to the gas refrigerant pipe 15, so that the backflow of the gas refrigerant in the liquid refrigerant pipe 16 can be suppressed.
  • the gas refrigerant 19 of the battery evaporator 13 when climbing up, the gas refrigerant 19 of the battery evaporator 13 easily escapes to the gas refrigerant pipe 15 as during acceleration, so that the backflow of the gas refrigerant in the liquid refrigerant pipe 16 can be suppressed.
  • the mounting property on the vehicle can be improved as compared with the case where the backflow of the refrigerant is suppressed by using a backflow prevention structure such as a U-shaped tube.
  • the condenser 14 is located in front of the vehicle with respect to the inlet side connection portion 13a of the battery evaporator 13.
  • the head Hd is expanded by the acceleration inertial force Fi, so that the flow rate of the refrigerant circulating in the in-vehicle device cooling device 10 increases.
  • the head 1 Hd is enlarged by tilting the vehicle 1, so that the flow rate of the refrigerant circulating in the in-vehicle device cooling device 10 increases. Therefore, the back flow of the gas refrigerant in the liquid refrigerant pipe 16 can be further suppressed during acceleration or climbing.
  • the amount of heat exchange between the battery evaporator 13 and the condenser 14 also increases.
  • the inlet side connecting portion 13a of the battery evaporator 13 is located behind the assembled battery 11 in the vehicle.
  • the liquid refrigerant can be satisfactorily supplied to the entire portion of the battery evaporator 13 where the assembled battery 11 is cooled, the entire assembled battery 11 can be cooled as evenly as possible.
  • the condenser 14 is located in front of the vehicle with respect to the outlet side connection portion 13b of the battery evaporator 13.
  • the gas refrigerant in the battery evaporator 13 easily flows into the condenser 14 during acceleration or climbing. Therefore, the assembled battery 11 can be satisfactorily cooled even when the amount of heat generated by the assembled battery 11 increases during acceleration or climbing.
  • the outlet side connection portion 13b of the battery evaporator 13 is positioned in front of the vehicle with respect to the assembled battery 11.
  • the assembled battery 11 has a plurality of chargeable / dischargeable battery cells as in the present embodiment, the plurality of battery cells can be cooled as evenly as possible, so that the deterioration of the plurality of battery cells is biased.
  • production can be suppressed and by extension, the performance fall of the assembled battery 11 can be suppressed.
  • the inlet side connection portion 13a of the battery evaporator 13 is located behind the battery cell 11a located most behind the vehicle among the plurality of battery cells. According to this, since the liquid refrigerant can be satisfactorily supplied in the vicinity of all the battery cells in the battery evaporator 13, the cooling of the plurality of battery cells can be further equalized.
  • the outlet side connection portion 13b of the battery evaporator 13 is located in front of the vehicle with respect to the battery cell 11b located in front of the vehicle among the plurality of battery cells.
  • the condenser 14 is disposed on the front side of the vehicle with respect to the battery evaporator 13.
  • the condenser 14 is a battery evaporator. Located just above the vessel 13. FIG. 5 shows when the vehicle 1 is accelerating, and FIG. 6 shows when the vehicle 1 is climbing up.
  • the condenser 14 is located on the vehicle front side with respect to the inlet side connection portion 13a. Therefore, since the head Hd is enlarged at the time of acceleration and uphill as in the above embodiment, the flow rate of the refrigerant circulating in the in-vehicle device cooling apparatus 10 is increased. Therefore, the back flow of the gas refrigerant in the liquid refrigerant pipe 16 can be suppressed. As the refrigerant flow rate increases, the amount of heat exchange between the battery evaporator 13 and the condenser 14 also increases.
  • the condenser 14 is a heat exchanger that exchanges heat between the refrigerant and air, but the condenser 14 may be a heat exchanger that exchanges heat between the refrigerant and various cooling media.
  • the condenser 14 may be a heat exchanger that exchanges heat between the refrigerant and the cooling water in the cooling water circuit 20.
  • the cooling water circuit 20 is a circuit through which cooling water circulates.
  • a condenser 14 and a pump 21 are arranged in the cooling water circuit 20. The pump 21 sucks and discharges the cooling water from the cooling water circuit 20.
  • the condenser 14 may be a heat exchanger that exchanges heat between the refrigerant of the refrigerant circuit 12 and the refrigerant of the refrigeration cycle 30.
  • the refrigeration cycle 30 includes a compressor 31, a radiator 32, and an expansion valve 33.
  • Compressor 31 draws in refrigerant of refrigeration cycle 30, compresses it, and discharges it.
  • the radiator 32 is a heat exchanger that radiates and condenses the refrigerant discharged from the compressor 31.
  • the expansion valve 33 is a decompression unit that decompresses and expands the refrigerant condensed by the radiator 32.
  • the condenser 14 exchanges heat between the refrigerant of the refrigeration cycle 30 decompressed and expanded by the expansion valve 33 and the refrigerant of the refrigerant circuit 12 evaporated by the evaporator 13 to evaporate the refrigerant of the refrigeration cycle 30 and also the refrigerant circuit 12. Condensate the refrigerant.
  • the refrigeration cycle 30 may include an air conditioning expansion valve 34 and an air conditioning evaporator 35.
  • the air conditioning expansion valve 34 is a decompression unit that decompresses and expands the refrigerant condensed by the radiator 32.
  • the air-conditioning evaporator 35 is a cooling heat exchanger that cools air to be blown into the passenger compartment by exchanging heat between the refrigerant of the refrigeration cycle 30 and the air to be blown into the passenger compartment.
  • the air conditioning expansion valve 34 and the air conditioning evaporator 35 are arranged in parallel with the radiator 32 in the refrigerant flow of the refrigeration cycle 30.
  • the condenser 14 is arrange
  • the in-vehicle device cooling apparatus 10 may include a plurality of condensers 14.
  • all the condensers 14 are arranged on the vehicle front side with respect to the battery evaporator 13.
  • a part of the condensers 14 among the plurality of condensers 14 may be disposed on the vehicle front side with respect to the battery evaporator 13.
  • the plurality of condensers 14 are all located in front of the vehicle with respect to the inlet side connecting portion 13a and the outlet side connecting portion 13b.
  • the gas refrigerant in the battery evaporator 13 easily flows into all the condensers 14 during acceleration or climbing. Therefore, since the refrigerant can be uniformly condensed in the plurality of condensers 14, the assembled battery 11 can be satisfactorily cooled even when the amount of heat generated by the assembled battery 11 increases during acceleration or climbing.
  • the gas refrigerant pipe 15 and the liquid refrigerant pipe 16 are connected to the battery evaporator 13 from the upper side of the vehicle, but as shown in FIGS. 13 to 15, the gas refrigerant pipe 15 and the liquid refrigerant pipe. 16 may be connected to the battery evaporator 13 from the vehicle horizontal direction side.
  • the inlet side connecting portion 13a and the outlet side connecting portion 13b are located at the same position in the height direction of the vehicle 1.
  • the position of the inlet side connecting portion 13 a and the outlet side connecting portion 13 b in the height direction of the vehicle 1 may be shifted from each other.
  • the inlet side connection part 13a may be located in the vehicle upper side rather than the outlet side connection part 13b.
  • the assembled battery 11 is arranged in a horizontal direction with respect to the battery evaporator 13, and the side surface of the assembled battery 11 abuts on the side surface of the battery evaporator 13 so as to conduct heat. ing.
  • the assembled battery 11 is placed on the battery evaporator 13, and the lower surface of the assembled battery 11 is in contact with the upper surface of the battery evaporator 13 so as to allow heat conduction.
  • the portion of the battery evaporator 13 where the outlet side connection portion 13 b is formed is the portion of the battery evaporator 13 where the inlet side connection portion 13 a is formed. Rather than the vehicle upper side. This makes it easier for the gas refrigerant to escape from the battery evaporator 13.
  • the in-vehicle device cooling apparatus 10 may include a plurality of assembled batteries 11 and a plurality of battery evaporators 13.
  • the condenser 14 is disposed on the vehicle front side with respect to all the battery evaporators 13.
  • coolant can be circulated favorably to all the battery evaporators 13
  • all the assembled batteries 11 can be cooled favorably. Therefore, since the temperature of all the assembled batteries 11 can be equalized, deterioration of the assembled batteries 11 can be suppressed.
  • the condenser 14 may be disposed on the vehicle front side with respect to some of the battery evaporators 13 among the plurality of battery evaporators 13.
  • the condenser 14 is positioned in front of the vehicle with respect to the inlet side connection portions 13a in all the battery evaporators 13, and the inlet side connection portions in all the battery evaporators 13 are used.
  • 13a is located in the rear of the vehicle relative to the assembled battery 11
  • the condenser 14 is located in the front of the vehicle relative to the outlet side connection portion 13b in all the battery evaporators 13, so that all the battery evaporators are included.
  • 13 is located in front of the vehicle with respect to the assembled battery 11.
  • the in-vehicle device cooling apparatus 10 may include a plurality of sets of a refrigerant circuit 12, a battery evaporator 13, a condenser 14, a gas refrigerant pipe 15, and a liquid refrigerant pipe 16.
  • the condenser 14 is disposed on the vehicle front side with respect to the battery evaporator 13.
  • the condenser 14 in one refrigerant circuit 12 (left refrigerant circuit 12 in FIG. 20) among the plurality of refrigerant circuits 12, the condenser 14 is more vehicle than the battery evaporator 13. In the other refrigerant circuit (the right refrigerant circuit 12 in FIG. 20), the condenser 14 may be arranged immediately above the battery evaporator 13.
  • the condenser 14 in each of the equipment cooling refrigerant circuits 12, the condenser 14 is located in front of the vehicle with respect to the inlet side connecting portion 13a and the outlet side connecting portion 13b, and the inlet side connecting portion 13a. Is located on the vehicle rear side with respect to the assembled battery 11, and the outlet side connection portion 13 b is located on the vehicle front side with respect to the assembled battery 11.
  • the battery evaporator 13 includes an evaporation unit 131, a supply unit 132, and a discharge unit 133.
  • the evaporator 131 absorbs heat from the assembled battery 11 and evaporates the refrigerant.
  • the evaporating unit 131 has a plurality of parallel refrigerant flow paths.
  • the supply unit 132 is a distribution tank that distributes the refrigerant to the plurality of refrigerant channels of the evaporation unit 131. The refrigerant supplied to the evaporation unit 131 flows through the supply unit 132.
  • the discharge unit 133 is a collection tank in which the refrigerant that has flowed through the plurality of refrigerant channels of the evaporation unit 131 collects.
  • the refrigerant discharged from the evaporation unit 131 flows through the discharge unit 133.
  • the evaporator 131 is located on the vehicle rear side and the vehicle lower side than the condenser 14.
  • the evaporation part 131 has a shape extending in the vehicle front-rear direction.
  • the side surface of the evaporating part 131 is flat.
  • the assembled battery 11 is disposed on the side surface of the evaporation unit 131.
  • the plurality of battery cells of the assembled battery 11 are arranged in the vehicle front-rear direction.
  • the terminal 111 of each battery cell of the assembled battery 11 is disposed on the side surface of the battery cell opposite to the evaporation unit 131.
  • the electrically insulating heat conductive sheet 18 is interposed between the evaporation unit 131 and the assembled battery 11.
  • the electrically insulating heat conductive sheet 18 is a thin film member having electrical insulating properties and thermal conductivity.
  • a plate-like heat conducting member may be interposed between the evaporation unit 131 and the assembled battery 11.
  • the supply unit 132 is disposed below the evaporation unit 131.
  • the evaporator 131 is disposed above the evaporator 131.
  • the supply unit 132 and the discharge unit 133 have a shape that extends long in the vehicle front-rear direction.
  • the entrance side connection part 13a is provided in the edge part of the vehicle rear side among the supply parts 132.
  • FIG. the inlet side connection portion 13 a is provided in a portion of the supply portion 132 that is on the vehicle rear side with respect to the assembled battery 11.
  • the outlet side connection portion 13b is provided at an end portion of the discharge portion 133 on the vehicle front side.
  • the outlet side connection portion 13b is provided in a portion of the supply portion 132 on the front side of the vehicle with respect to the assembled battery 11.
  • the gas refrigerant pipe 15 has a forward flow portion 15a.
  • the front flow portion 15a is a portion where the refrigerant flows from the rear of the vehicle toward the front of the vehicle.
  • the front flow portion 15a extends in the vehicle front-rear direction.
  • the front flow part 15 a is directly connected to the discharge part 133 of the battery evaporator 13.
  • the flow direction of the refrigerant from the discharge portion 133 of the battery evaporator 13 to the front flow portion 15a is a direction from the rear of the vehicle toward the front of the vehicle.
  • an inertial force Fi due to the acceleration acts.
  • the direction of the force Fr acting on the gas refrigerant 19 in the liquid refrigerant acts on the vehicle front obliquely upward direction.
  • the discharge part 133 has a shape that extends long in the vehicle front-rear direction, and the outlet side connection part 13b is provided at the end of the discharge part 133 on the front side of the vehicle, the battery evaporation is performed when the vehicle 1 is accelerated. It becomes easy for the gas refrigerant in the vessel 13 to escape to the gas refrigerant pipe 15 through the discharge part 133 and the outlet side connection part 13b.
  • the gas refrigerant pushes up the liquid refrigerant, and the liquid refrigerant accumulates in the discharge unit 133 and the gas refrigerant pipe 15.
  • the liquid refrigerant accumulated in the discharge part 133 and the gas refrigerant pipe 15 causes the gas refrigerant to be discharged.
  • the front flow portion 15a of the gas refrigerant pipe 15 is directly connected to the outlet side connection portion 13b of the battery evaporator 13, and the refrigerant reaches from the discharge portion 133 of the battery evaporator 13 to the front flow portion 15a. Since the flow direction is from the rear of the vehicle to the front of the vehicle, the gas refrigerant that has flowed into the gas refrigerant pipe 15 from the discharge portion 133 of the battery evaporator 13 is easily removed from the gas refrigerant pipe 15.
  • the force direction Fh of the head is the direction of the resultant force of the gravity Fg and the inertial force Fi due to acceleration. Since the evaporator 131 is located on the rear side of the vehicle with respect to the condenser 14, the head Hd is enlarged when accelerating compared to when traveling at a constant speed.
  • FIG. 23 shows an enlargement amount ⁇ Hd of the head Hd during acceleration compared to when traveling at a constant speed.
  • the in-vehicle device cooling device 10 is inclined with respect to the direction of the gravity Fg, and the gas refrigerant pipe 15 is positioned above the battery evaporator 13.
  • the discharge part 133 has a shape extending long in the vehicle front-rear direction, and the outlet side connection part 13b is provided at the end of the discharge part 133 on the vehicle front side, As shown by the thick line arrow, the gas refrigerant of the battery evaporator 13 can easily escape to the gas refrigerant pipe 15. Therefore, the battery cooling performance is improved as in acceleration.
  • the forward flow portion 15a of the gas refrigerant pipe 15 is directly connected to the discharge portion 133 of the battery evaporator 13, and the refrigerant flows from the discharge portion 133 of the battery evaporator 13 to the forward flow portion 15a. Since the direction is from the rear of the vehicle toward the front of the vehicle, the gas refrigerant that has flowed into the gas refrigerant pipe 15 from the discharge portion 133 of the battery evaporator 13 is easily removed from the gas refrigerant pipe 15.
  • FIG. 24 shows an enlargement amount ⁇ Hd of the head Hd at the time of acceleration compared to when traveling on a horizontal road surface at a constant speed. Therefore, the battery cooling performance is improved as in acceleration.
  • the required cooling amount of the battery pack 11 during deceleration is smaller than the required cooling amount during acceleration.
  • the required cooling amount of the battery pack 11 when descending is smaller than the required cooling amount when climbing.
  • the amount of heat generated by the assembled battery 11 can be reduced by reducing the amount of charge due to regeneration. Therefore, there is no problem even if the battery cooling performance at the time of deceleration or downhill is smaller than that at the time of acceleration or uphill.
  • the flow direction of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a is a direction from the rear of the vehicle to the front of the vehicle.
  • coolant which reaches the front flow part 15a may become a direction except the direction which goes to a vehicle lower side from a vehicle upper side, and the direction which goes to a vehicle rear side from a vehicle front side.
  • the flow direction of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a is a direction from the upper side of the vehicle to the lower side of the vehicle, the light gas refrigerant flows downward, so that the gas is discharged. It is because sex deteriorates. Further, when the flow direction of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a is a direction from the vehicle front side to the vehicle rear side, the battery evaporator 13 can be accelerated or climbed up. This is because the gas discharge performance deteriorates between the discharge part 133 and the front flow part 15a.
  • the in-vehicle device cooling apparatus 10 is configured so that the refrigerant flow direction from the discharge portion 133 of the battery evaporator 13 to the front flow portion 15a of the gas refrigerant pipe 15 is from the vehicle rear side to the vehicle front side, from the vehicle lower side. If it is configured to be in at least one of the direction toward the upper side of the vehicle and the left-right direction of the vehicle, even when liquid refrigerant is accumulated in the discharge part 133 or the gas refrigerant pipe 15, the gas is accelerated or climbed. Since the refrigerant is easily removed, the refrigerant flow rate increases and the cooling capacity can be improved.
  • the discharge portion 133 of the battery evaporator 13 has a shape extending in the vehicle front-rear direction.
  • the evaporator 131 of the battery evaporator 13 is located on the vehicle rear side of the condenser 14.
  • the discharge unit 133 is located on the vehicle upper side with respect to the supply unit 132. Therefore, since the gas refrigerant evaporated in the evaporation part 131 of the battery evaporator 13 becomes easy to escape to the discharge part 133, the refrigerant flow rate increases and the cooling capacity can be improved.
  • a portion of the supply unit 132 of the battery evaporator 13 to which the liquid refrigerant pipe 16 is connected is located on the vehicle rear side with respect to the assembled battery 11.
  • the inlet side connecting portion 13a is provided at the end of the supply portion 132 on the vehicle rear side.
  • the inlet side connecting portion 13a is as shown in FIG.
  • the supply unit 132 is provided at an end portion on the vehicle front side.
  • the inlet side connection portion 13 a is provided at a site on the vehicle front side with respect to the assembled battery 11.
  • the inlet side connection portion 13a is provided in a portion of the supply portion 132 on the vehicle rear side of the assembled battery 11, and in the tenth embodiment, the inlet side connection portion 13a is supplied.
  • the inlet-side connecting portion 13a is provided in the vehicle front-rear direction of the supply portion 132, as shown in FIG. It is provided in the center.
  • the evaporator 131 is located on the vehicle rear side with respect to the condenser 14, and the inlet side connection portion 13 a is located on the vehicle rear side with respect to the condenser 14. ing. Accordingly, as in the ninth embodiment, the head Hd is enlarged when the vehicle is accelerated or climbed.
  • the outlet side connection portion 13b is provided in a substantially central portion in the vehicle front-rear direction of the discharge portion 133 of the battery evaporator 13. Therefore, in the present embodiment, when the vehicle 1 is accelerated or climbed, the gas refrigerant in the rear portion of the vehicle from the outlet side connection portion 13b in the discharge portion 133 is more likely to escape to the gas refrigerant pipe 15.
  • the front flow portion 15a of the gas refrigerant pipe 15 is connected to the outlet side connection portion 13b of the battery evaporator 13 via the upper flow portion 15b.
  • the upper flow portion 15b is a portion where the refrigerant flows from the lower side of the vehicle toward the upper side of the vehicle.
  • the upper flow portion 15b extends in the vehicle vertical direction.
  • the flow direction of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a is a direction from the rear of the vehicle to the front of the vehicle after flowing from the lower part of the vehicle to the upper part of the vehicle. Therefore, the gas refrigerant that has flowed into the gas refrigerant pipe 15 from the discharge portion 133 of the battery evaporator 13 is easily removed from the gas refrigerant pipe 15.
  • the configuration of the plurality of battery evaporators 13 is the same as the configuration of the battery evaporator 13 in the ninth embodiment.
  • both the supply unit 132 and the discharge unit 133 of the plurality of battery evaporators 13 have a shape that extends long in the vehicle front-rear direction.
  • all the evaporators 131 of the plurality of battery evaporators 13 are located on the vehicle rear side and the vehicle lower side than the condenser 14.
  • the front flow portion 15a of the gas refrigerant pipe 15 is connected to the outlet side connection portion 13b of the battery evaporator 13 via the side flow portion 15c and the upper flow portion 15b.
  • the side flow part 15c is a part where the refrigerant flows in the vehicle left-right direction.
  • the lateral flow portion 15c extends in the vehicle left-right direction.
  • the side flow portion 15 c is a connecting pipe that connects the outlet side connection portions 13 b of the plurality of battery evaporators 13.
  • the flow of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a flows from the lower side of the vehicle toward the upper side of the vehicle after flowing in the left-right direction of the vehicle, and further from the rear of the vehicle toward the front of the vehicle. Flowing. Therefore, the gas refrigerant that has flowed into the gas refrigerant pipe 15 from the discharge portion 133 of the battery evaporator 13 is easily removed from the gas refrigerant pipe 15.
  • the evaporation units 131, the supply units 132, and the discharge units 133 of the plurality of battery evaporators 13 have shapes extending in the vehicle front-rear direction, and the plurality of battery cells of the assembled battery 11 are
  • the evaporator 131, the supply part 132, and the discharge part 133 of the plurality of battery evaporators 13 are all left and right in the vehicle.
  • the plurality of battery cells of the assembled battery 11 are arranged in the vehicle left-right direction.
  • the evaporators 131 of the plurality of battery evaporators 13 are all located on the vehicle rear side and the vehicle lower side with respect to the condenser 14.
  • the front flow portion 15 a of the gas refrigerant pipe 15 is directly connected to the outlet side connection portions 13 b of the plurality of battery evaporators 13.
  • the flow of the refrigerant from the discharge part 133 of the battery evaporator 13 to the front flow part 15a flows in the left-right direction of the vehicle in the discharge part 133, and also in the left-right direction of the vehicle when flowing from the discharge part 133 into the front flow part 15a.
  • the vehicle flows from the rear of the vehicle toward the front of the vehicle. Therefore, the gas refrigerant that has flowed into the gas refrigerant pipe 15 from the discharge portion 133 of the battery evaporator 13 is easily removed from the gas refrigerant pipe 15.
  • the front flow portion 15a of the gas refrigerant pipe 15 connects the plurality of evaporators 13 to each other. Therefore, since it becomes easy for a gas refrigerant to escape from the part which connected between a plurality of evaporators 13 among gas refrigerant piping 15, refrigerant flow rate increases and cooling capacity can be improved.
  • the evaporators 131 of all the battery evaporators 13 are located on the vehicle rear side with respect to all the condensers 14. As a result, as in the thirteenth embodiment, the gas refrigerant easily escapes to the condenser 14 for all the battery evaporators 13.
  • the evaporation section 131 is located on the vehicle rear side with respect to the condenser 14. Specifically, among the plurality of battery evaporators 13 and the plurality of condensers 14, the evaporator 131 of the left battery evaporator 13 in FIG. 31 is behind the vehicle than the left condenser 14 in FIG. 31. 31, the evaporator 131 of the right battery evaporator 13 in FIG. 31 is located on the vehicle rear side of the right condenser 14 in FIG.
  • the gas refrigerant easily escapes to the condenser 14.
  • the condenser 14 is disposed above the battery evaporator 13, but in this embodiment, the condenser 14 is substantially the same as the battery evaporator 13 as shown in FIG. Arranged at height. Also in this embodiment, the same effect as the ninth embodiment can be obtained.
  • the gas refrigerant pipe 15 and the liquid refrigerant pipe 16 may be arranged so as to bypass other parts and members of the vehicle 1 for the convenience of vehicle mounting.
  • the assembled battery 11 and the battery evaporator 13 are arranged below the floor in the center in the front-rear direction of the vehicle 1, but the assembled battery 11 and the battery evaporator 13 are located behind the vehicle 1.
  • it may be arranged under a trunk room or a rear seat.
  • the assembled battery 11 and the battery evaporator 13 may be disposed in front of the vehicle 1, for example, in an engine room.
  • the gas refrigerant pipe for improving the gas refrigerant discharge performance for the vertical evaporator (extending vertically and the battery is arranged on the side), the gas refrigerant pipe for improving the gas refrigerant discharge performance, the discharge part, the evaporation
  • the configuration of the unit has been described, the configuration of the gas refrigerant pipe, the discharge unit, and the evaporation unit for improving the discharge performance of the gas refrigerant is the same as that of the horizontal evaporator as in the first embodiment (the battery extends to the side and is It is also possible to apply to the above.
  • the flow direction of the refrigerant from the discharge portion 133 of the battery evaporator 13 to the front flow portion 15a of the gas refrigerant pipe 15 is directed from the vehicle rear side to the vehicle front side.
  • it is configured to be one of the direction from the vehicle lower side to the vehicle upper side and the vehicle left-right direction, it may be configured to be two or more of the above directions.
  • the direction from the vehicle rear side to the vehicle front side and the direction from the vehicle lower side to the vehicle upper side may be used. Further, it may be a direction from the vehicle rear side toward the vehicle front side and the vehicle left-right direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)

Abstract

車載機器冷却装置は、冷媒回路(12)と、蒸発部(131)と供給部(132)と排出部(133)とを有する蒸発器(13)と、凝縮器(14)と、ガス冷媒配管(15)と、液冷媒配管(16)とを備える。ガス冷媒配管は、冷媒が車両後方から車両前方へ向かって流れる前方流れ部(15a)を有している。排出部から前方流れ部に至る冷媒の流れ方向が、車両後方側から車両前方側に向かう方向、車両下方側から車両上方側に向かう方向、および車両左右方向のうち少なくとも1つの方向になるように構成されている。相変化を利用して冷媒を循環させることによって車載機器を冷却する車載機器冷却装置において、加速時や登坂時における冷却能力を確保できる。

Description

車載機器冷却装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年4月3日に出願された日本特許出願2017-073562号および、2018年2月22日に出願された日本特許出願2018-029756号を基にしている。
 本開示は、車載機器を冷却する車載機器冷却装置に関する。
 従来、特許文献1には、効率よく電池の温度を調節できる電池温度調節装置が記載されている。この従来技術は、ループ型のサーモサイフォン式ヒートパイプであり、温度調節部と気相流路と熱媒体冷却部と液相流路とを備えている。
 温度調節部は、熱媒体の液相と気相との相変化により電池の温度を調節する。気相流路には、温度調節部から流出する気相の熱媒体が流れる。熱媒体冷却部は、気相流路から流入する気相の熱媒体を凝縮する。液相流路には、熱媒体冷却部から温度調節部へ向かう液相の熱媒体が流れる。
 温度調節部と熱媒体冷却部の配置関係は、温度調節部内の液相の熱媒体の液面よりも熱媒体冷却部内の液相の熱媒体の液面の方が上方に位置するようになっている。
特開2015-41418号公報
 電気自動車やハイブリッド車などの電動車両では、二次電池などの蓄電装置に蓄えた電気エネルギーをインバータなどを介してモータに供給し走行する。蓄電装置は、走行中など車両使用時に自己発熱し、高温になると十分な機能を得られないだけでなく劣化や破損を招く。そのため、蓄電装置を冷却して一定温度以下に維持する必要がある。
 一般的に蓄電装置は複数の電池セルで構成されているが、各電池セルの温度にばらつきがあるとセルの劣化に偏りが生じ、蓄電装置の性能が低下してしまう。これは、最も劣化した電池セルの特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、蓄電装置を長期間、所望の性能を発揮させるためには、電池セル間の温度ばらつきを低減させる均温化が重要となる。
 従来、車両に搭載された蓄電装置を冷却する手法としては、ブロワによる送風や、冷凍サイクルを用いた冷却方式が一般的である。冷凍サイクルを用いた冷却方式は、例えば空冷方式、水冷方式または冷媒直接冷却方式である。
 しかしながら、ブロワは車室内の空気を送風するだけなので冷却性能は低い。また、ブロワによる送風では空気の顕熱で冷却するため、空気流れの上流と下流とで温度差が大きくなり、電池セル間の温度分布が生じてしまう。
 冷凍サイクルを用いた冷却方式では、冷却性能は高いが、電池セルとの熱交換部は空冷、水冷ともに顕熱冷却のため、電池セル間の温度分布が生じてしまう。そのため、冷媒直接冷却方式でもよい。
 また、駐車放置中にはブロワの冷却ファンや冷凍サイクルの圧縮機を駆動させる必要があるので、電力消費の増大や騒音などの問題が生じてしまい好ましくない。
 これらの背景から、本発明者は、車両に搭載された蓄電装置の冷却方式として、コンプレッサを用いず冷媒の自然循環で冷却するサーモサイフォン方式を検討した。
 具体的には、本発明者は、上記従来技術における電池温度調節装置を車両に搭載して、車両の蓄電装置を冷却することを検討した。
 本発明者の検討によると、サーモサイフォン方式における冷却能力確保のためには、温度調節部にて蒸発したガス冷媒をすばやく熱媒体冷却部まで移動させることと、ヘッドをより高く確保することとが重要であることがわかった。
 しかしながら、上記従来技術における電池温度調節装置を車両に搭載した場合、車両の加減速や登降坂の影響があるため全ての走行状況において蓄電装置を冷却することが難しいことがわかった。特に、加速時や登坂時には走行負荷が高くなって蓄電装置の発熱量が増加するので、冷却能力不足になりやすくなることがわかった。
 本開示は上記点に鑑みて、相変化を利用して冷媒を循環させることによって車載機器を冷却する車載機器冷却装置において、加速時や登坂時における冷却能力を確保することを目的とする。
 本開示の少なくとも一つの実施形態によると、車載機器冷却装置は、冷媒が循環する冷媒回路と、車載機器から吸熱して冷媒を蒸発させる蒸発部と、蒸発部へ冷媒を導く供給部と、蒸発部から排出された冷媒が流れる排出部とを有する蒸発器と、蒸発器で蒸発した冷媒を凝縮させる凝縮器と、排出部から凝縮器に冷媒を導くガス冷媒配管と、凝縮器から供給部に冷媒を導く液冷媒配管とを備える。ガス冷媒配管は、冷媒が車両後方から車両前方へ向かって流れる前方流れ部を有しており、排出部から前方流れ部に至る冷媒の流れ方向が車両後方側から車両前方側に向かう方向、車両下方側から車両上方側に向かう方向、および車両左右方向のうち少なくとも1つの方向になるように構成されている。
 これによると、加速時には、車載機器冷却装置に、重力に加えて慣性力が作用する。そのため、蒸発器内において周囲を液冷媒に囲われたガス冷媒には重力と慣性力が同時に作用するので、ガス冷媒に車両前方斜め上方向の力が作用することとなる。
 すなわち、加速時には、排出部から前方流れ部に至る冷媒の流れ方向に概ね沿う方向の力が作用することとなる。
 その結果、蒸発器のガス冷媒がガス冷媒配管から抜けやすくなって冷媒流速が増加するので、冷却能力を向上させることできる。
 登坂時においては車両が傾いていることにより、車載機器冷却装置に作用する重力が、車両後方斜め下方向に傾いているため、加速時と同様に蒸発器のガス冷媒に作用する力が車両前方斜め上方向、すなわち排出部から前方流れ部に至る冷媒の流れ方向に概ね沿う方向になる。
 その結果、ガス冷媒がガス冷媒配管から抜けやすくなって冷媒流速が増加するので、冷却能力を向上させることできる。
 したがって、加速時や登坂時における冷却能力を確保することできる。
 本開示の少なくとも一つの実施形態によると、車載機器冷却装置は、冷媒が循環する冷媒回路と、少なくとも1つの車載機器から吸熱して冷媒を蒸発させる少なくとも1つの蒸発器と、蒸発器で蒸発した冷媒を凝縮させる少なくとも1つの凝縮器と、蒸発器で蒸発した冷媒を凝縮器に導くガス冷媒配管と、凝縮器で凝縮した冷媒を蒸発器に導く液冷媒配管とを備える。蒸発器のうち液冷媒配管と接続されている入口側接続部は、蒸発器のうちガス冷媒配管と接続されている出口側接続部よりも車両後方に位置している。
 これによると、加速時には、車載機器冷却装置に、重力に加えて慣性力が作用する。そのため、蒸発器内において周囲を液冷媒に囲われたガス冷媒には重力と慣性力が同時に作用するので、ガス冷媒に車両前方斜め上方向、すなわち出口側接続部に向かう方向の力が作用することとなる。その結果、蒸発器のガス冷媒がガス冷媒配管に抜けやすくなるので、液冷媒配管におけるガス冷媒の逆流を抑制できる。
 登坂時においては車両が傾いていることにより、車載機器冷却装置に作用する重力が、車両後方斜め下方向に傾いているため、加速時と同様に蒸発器のガス冷媒に作用する力が車両前方斜め上方向、すなわち出口側接続部に向かう方向になる。その結果、ガス冷媒がガス冷媒配管に抜けやすくなるので、液冷媒配管におけるガス冷媒の逆流を抑制できる。
 したがって、加速時や登坂時に冷媒流速が増加して冷却能力が向上するので、加速時や登坂時における冷却能力を確保することできる。
少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の加速時を示す模式図である。 少なくとも一つの実施形態における車載機器冷却装置を示す図である。 図1における電池用蒸発器内のガス冷媒に作用する力を説明する説明図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の登坂時を示す模式図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の加速時を示す模式図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の登坂時を示す模式図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両を示す模式図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 図15の電池用蒸発器のXVI矢視図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置の電池用蒸発器を示す斜視図である。 図21における電池用蒸発器の断面図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の加速時を示す模式図である。 少なくとも一つの実施形態における車載機器冷却装置を搭載した車両の登坂時を示す模式図である。 少なくとも一つの実施形態における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置の一部を示す斜視図である。 少なくとも一つの実施形態における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置の一部を示す斜視図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態の一実施例における車載機器冷却装置を示す図である。 少なくとも一つの実施形態における車載機器冷却装置を示す図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1に示す本実施形態の車載機器冷却装置10は、組電池11を冷却する車載機器冷却装置である。組電池11は、車両1に搭載された車載機器の一例である。図1中、前後上下の矢印は、車両1における前後上下の各方向を示している。
 組電池11は、複数の電池セルを有している。複数の電池セルは、車両1の前後方向に配列されている。
 組電池11は、インバータなどを介して走行用モータに電気を供給する。組電池11は、回生電力を蓄える蓄電池である。組電池11の電池セルは、走行中など充放電使用時に自己発熱する。組電池11が高温になると十分な機能を得られないだけでなく組電池11の劣化や破損を招く。そのため、組電池11を冷却して一定温度以下に維持する必要がある。
 特に加速時や登坂時(換言すれば走行負荷が高い時)には組電池11の放電量が多くなって発熱量が増加するので、組電池11を高い冷却能力で冷却する必要がある。
 組電池11の温度は、走行中だけでなく夏期の駐車放置中などにも上昇する。組電池11の電池セルを高温状態で放置すると寿命が大幅に低下するため、駐車放置中も冷却するなど電池温度を低温に維持する必要がある。
 車載機器冷却装置10によって温度調整される車載機器は、組電池11の他、走行用インバータ、走行用モータおよびインタークーラ等あってもよい。走行用インバータ、走行用モータおよびインタークーラは、加速時や登坂時(換言すれば走行負荷が高い時)に放熱量が多くなる車載機器である。
 車載機器冷却装置10は 冷媒回路12、電池用蒸発器13、凝縮器14、ガス冷媒配管15および液冷媒配管16を備える。
 冷媒回路12は、熱媒体としての冷媒が循環する熱媒体回路である。本実施形態では、冷媒としてフロン系冷媒が用いられている。冷媒として水が用いられていてもよい。
 電池用蒸発器13、凝縮器14、ガス冷媒配管15および液冷媒配管16は、冷媒回路12に配置されている。
 電池用蒸発器13は、組電池11を冷媒の蒸発により冷却する機器用熱交換器である。電池用蒸発器13は、組電池11と熱伝導可能になっており、組電池11の熱を冷媒に吸熱させることによって組電池11を冷却するとともに冷媒を蒸発させる。
 組電池11は、電池用蒸発器13の上に載っており、組電池11の下面が電池用蒸発器13の上面に熱伝導可能に当接している。組電池11および電池用蒸発器13は、車両1の前後方向略中央部における床下に配置されている。
 組電池11は、車両前後方向において、電池用蒸発器13の前端部と後端部との間に配置されている。組電池11の複数の電池セルのうち最も車両後方側に配置されている電池セル11aは、電池用蒸発器13のうち最も車両後方側の端部よりも車両前方に位置している。組電池11の複数の電池セルのうち最も車両前方側に配置されている電池セル11bは、電池用蒸発器13のうち最も車両前方側の端部よりも車両後方に位置している。
 凝縮器14は、電池用蒸発器13で蒸発した冷媒を、外気と熱交換させて冷却凝縮させる熱交換器である。凝縮器14は、車両1のエンジンルームに配置されている。凝縮器14は、エンジンルームの最後部に配置されている。凝縮器14は、電池用蒸発器13よりも車両1の前方側かつ上方側に配置されている。
 図2に示すように、凝縮器14には、室外送風機17によって外気が送風される。室外送風機17は、車両1のエンジンルームに配置されている。
 ガス冷媒配管15および液冷媒配管16は、電池用蒸発器13と凝縮器14とを接続する冷媒配管である。ガス冷媒配管15は、電池用蒸発器13で蒸発した冷媒を凝縮器14に導く冷媒配管である。液冷媒配管16は、凝縮器14で凝縮した冷媒を電池用蒸発器13に導く冷媒配管である。
 ガス冷媒配管15および液冷媒配管16は、電池用蒸発器13に車両1の上方側から接続されている。
 電池用蒸発器13の入口側接続部13aは、電池用蒸発器13の出口側接続部13bよりも車両1の後方側に位置している。入口側接続部13aは、電池用蒸発器13のうち液冷媒配管16が接続される部位である。出口側接続部13bは、電池用蒸発器13のうちガス冷媒配管15が接続される部位である。
 入口側接続部13aは、複数の電池セルのうち最も車両後方に位置している電池セル11aよりも車両後方側に位置している。出口側接続部13bは、複数の電池セルのうち最も車両前方に位置している電池セル11bよりも車両前方側に位置している。
 凝縮器14は、入口側接続部13aよりも車両前方に位置している。凝縮器14は、電池用蒸発器13よりも車両前方に配置されている。
 入口側接続部13aおよび出口側接続部13bは、車両1の上下方向において、互いに同じ高さに配置されている。
 次に、上記構成における作動を説明する。組電池11の温度が外気温度よりも高い場合、車載機器冷却装置10の冷媒回路12では、サーモサイフォン現象(換言すれば相変化)によって冷媒が循環する。
 具体的には、電池用蒸発器13内において、液冷媒は組電池11からの熱を吸熱して蒸発してガス冷媒となる。電池用蒸発器13内で蒸発したガス冷媒は、出口側接続部13bを介してガス冷媒配管15に流入し、ガス冷媒配管15を上昇して凝縮器14に流入する。
 凝縮器14では、ガス冷媒配管15から流入したガス冷媒が外気に放熱して凝縮し、液冷媒となる。凝縮器14で凝縮した液冷媒は、重力により液冷媒配管16を流下して入口側接続部13aを介して電池用蒸発器13に流入する。
 このように冷媒回路12を冷媒が循環することによって、電池用蒸発器13で組電池11を冷却できる。動力を利用することなく冷媒回路12に冷媒を循環させることができるので、省動力化を図ることができるとともに、駐車放置時にも組電池11を冷却できる。
 図1に示すように、車載機器冷却装置10が搭載された車両1の加速時には、加速による慣性力Fiが作用する。図3に示すように、電池用蒸発器13内において液冷媒に慣性力Fiが作用するため、液冷媒中のガス冷媒19に作用する力Frの方向は、車両前方斜め上方向、すなわち出口側接続部13bに向かう方向に作用することなる。そのため、電池用蒸発器13のガス冷媒19がガス冷媒配管15に抜けやすくなる。
 これにより、液冷媒配管16におけるガス冷媒の逆流を抑制できる。また、電池用蒸発器13のうち組電池11と熱伝導が行われる部位の近傍に液冷媒が供給されやすくなるので、液冷媒の沸騰が促進される。
 図1に示すように、加速時には、ヘッドの力方向Fhは、重力Fgと加速による慣性力Fiとの合力の方向になる。そのため、加速時には、非加速時と比較してヘッドHdが拡大される。理解を容易にするために、図1に、非加速時と比較した加速時のヘッドHdの拡大量ΔHdを示している。
 ヘッドHd、回路内圧損ΔP、流速vには次式のような関係がある。
 ρgHd=ΔP+(1/2)ρv
 上記数式において、ρは密度であり、gは重力加速度である。また、流速vが上昇すると回路内圧損ΔPも上昇する関係を持つ。この関係および上述の数式より、ヘッドHdが拡大されると冷媒の流速が上昇することは明らかである。
 したがって、加速時にはガス冷媒の流速が上昇することにより、車載機器冷却装置10内を循環する冷媒流量が上昇するので、液冷媒配管16におけるガス冷媒の逆流を抑制できる。冷媒流量が上昇することによって、電池用蒸発器13および凝縮器14の熱交換量も上昇する。
 よって、加速時には、電池用蒸発器13による組電池11の冷却性能を向上できるので、加速時に組電池11の発熱量が多くなっても組電池11を良好に冷却できる。
 図4に示すように、車載機器冷却装置10が搭載された車両1の登坂時には、車両の前部が後部よりも上方に位置することになる。そのため、車載機器冷却装置10が重力Fgの方向に対して斜めになり、ガス冷媒配管15が電池用蒸発器13の上方に位置することになるので、図4中の太線矢印で示すように電池用蒸発器13のガス冷媒がガス冷媒配管15に抜けやすくなる。
 これにより、加速時と同様に、液冷媒配管16におけるガス冷媒の逆流を抑制できる。また、電池用蒸発器13のうち組電池11と熱伝導が行われる部位の近傍に液冷媒が供給されやすくなるので、液冷媒の沸騰が促進される。
 一定速度で登坂している場合、ヘッドの力方向Fhは重力Fgの方向と同じである。そのため、一定速度での登坂時には、一定速度での降坂時と比較してヘッドHdが拡大されるので、冷媒の流速が上昇する。冷媒の流速が上昇することによって、車載機器冷却装置10内を循環する冷媒流量が上昇する。したがって、液冷媒配管16におけるガス冷媒の逆流を抑制できる。冷媒流量が上昇することによって、電池用蒸発器13および凝縮器14の熱交換量も上昇する。
 よって、登坂時には、加速時と同様に、電池用蒸発器13による組電池11の冷却性能を向上できるので、登坂時に組電池11の発熱量が多くなっても組電池11を良好に冷却できる。
 減速時や降坂時には、回生による充電量を小さく抑えれば組電池11の発熱量を小さく抑えることができるので、組電池11の冷却性能が加速時や登坂時よりも小さくなっても支障はない。
 回生による充電とは、減速時や降坂時に運動エネルギーを回生電力に変換して充電することを言う。
 電池用蒸発器13の入口側接続部13aは、組電池11の複数の電池セルのうち最も車両後方側に位置している電池セル11aよりも車両後方側に位置しているので、加速時や登坂時に全ての電池セルに液冷媒を良好に供給することができる。そのため、加速時や登坂時に各電池セルの発熱量が多くなっても全ての電池セルを極力均等に冷却できる。
 凝縮器14は、電池用蒸発器13の入口側接続部13aよりも車両前方側に位置しているので、加速時や登坂時に電池用蒸発器13内のガス冷媒が凝縮器14に流れ込みやすくなる。そのため、加速時や登坂時に組電池11の発熱量が多くなっても組電池11を良好に冷却できる。
 電池用蒸発器13の出口側接続部13bは、組電池11の複数の電池セルのうち最も車両前方側に位置している電池セル11bよりも車両前方側に位置しているので、加速時や登坂時に電池用蒸発器13内からガス冷媒が抜けやすくなる。そのため、電池用蒸発器13内のガス冷媒が電池セルの近傍で滞留することが抑制されるので、加速時や登坂時に各電池セルの発熱量が多くなっても全ての電池セルを極力均等に冷却することができる。
 凝縮器14は、電池用蒸発器13よりも車両前方側に配置されているので、電池用蒸発器13の出口側接続部13bを、組電池11の複数の電池セルのうち最も車両前方側に位置している電池セル11bよりも車両前方側に位置させることが容易になる。
 本実施形態では、電池用蒸発器13の入口側接続部13aは、電池用蒸発器13の出口側接続部13bよりも車両後方に位置している。
 これによると、上述のように、加速時には、電池用蒸発器13内において液冷媒中のガス冷媒19に作用する力Frの方向が車両前方斜め上方向になる。そのため、電池用蒸発器13のガス冷媒19がガス冷媒配管15に抜けやすくなるので、液冷媒配管16におけるガス冷媒の逆流を抑制できる。図4からわかるように、登坂時には、加速時と同様に、電池用蒸発器13のガス冷媒19がガス冷媒配管15に抜けやすくなるので、液冷媒配管16におけるガス冷媒の逆流を抑制できる。
 したがって、U字管のような逆流防止構造を用いて冷媒の逆流を抑制する場合と比較して、車両への搭載性を向上できる。
 本実施形態では、凝縮器14は、電池用蒸発器13の入口側接続部13aよりも車両前方に位置している。
 これによると、図1からわかるように、加速時には、加速の慣性力FiによりヘッドHdが拡大されるので、車載機器冷却装置10内を循環する冷媒流量が上昇する。図4からわかるように、登坂時には、車両1が傾くことによってヘッドHdが拡大されるので、車載機器冷却装置10内を循環する冷媒流量が上昇する。そのため、加速時や登坂時に液冷媒配管16におけるガス冷媒の逆流を一層抑制できる。冷媒流量が上昇することによって、電池用蒸発器13および凝縮器14の熱交換量も上昇する。
 本実施形態では、電池用蒸発器13の入口側接続部13aは、組電池11よりも車両後方に位置している。
 これによると、電池用蒸発器13のうち組電池11を冷却する部位の全体に液冷媒を良好に供給することができるので、組電池11全体を極力均等に冷却することができる。
 本実施形態では、凝縮器14は、電池用蒸発器13の出口側接続部13bよりも車両前方に位置している。
 これによると、加速時や登坂時に電池用蒸発器13内のガス冷媒が凝縮器14に流れ込みやすくなる。そのため、加速時や登坂時に組電池11の発熱量が多くなっても組電池11を良好に冷却することができる。
 本実施形態では、電池用蒸発器13の出口側接続部13bは、組電池11よりも車両前方に位置している。
 これによると、加速時や登坂時に電池用蒸発器13内からガス冷媒が抜けやすくなる。そのため、電池用蒸発器13内のガス冷媒が組電池11の近傍で滞留することを抑制できるので、加速時や登坂時に組電池11の発熱量が多くなっても組電池11全体を極力均等に冷却することができる。
 特に本実施形態のように組電池11が充放電可能な複数の電池セルを有している場合、複数の電池セルを極力均等に冷却することができるので、複数の電池セルの劣化に偏りが生じることを抑制でき、ひいては組電池11の性能低下を抑制できる。
 本実施形態では、電池用蒸発器13の入口側接続部13aは、複数の電池セルのうち最も車両後方に位置する電池セル11aよりも車両後方に位置している。これによると、電池用蒸発器13内おいて全ての電池セルの近傍に液冷媒を良好に供給することができるので、複数の電池セルの冷却を一層均等化できる。
 本実施形態では、電池用蒸発器13の出口側接続部13bは、複数の電池セルのうち最も車両前方に位置する電池セル11bよりも車両前方に位置している。
 これによると、電池用蒸発器13内に全ての電池セルの近傍においてガス冷媒が滞留することを抑制できるので、加速時や登坂時に電池セルの発熱量が多くなっても全ての電池セルを極力均等に冷却することができる。
 (第2実施形態)
 上記実施形態では、凝縮器14は、電池用蒸発器13よりも車両前方側に配置されているが、本実施形態では、図5、図6に示すように、凝縮器14は、電池用蒸発器13の真上に配置されている。図5は車両1の加速時を示し、図6は車両1の登坂時を示している。
 本実施形態においても、凝縮器14は、入口側接続部13aよりも車両前方側に位置している。これにより、上記実施形態と同様に、加速時および登坂時にヘッドHdが拡大されるので、車載機器冷却装置10内を循環する冷媒流量が上昇する。そのため、液冷媒配管16におけるガス冷媒の逆流を抑制できる。冷媒流量が上昇することによって、電池用蒸発器13および凝縮器14の熱交換量も上昇する。
 (第3実施形態)
 上記実施形態では、凝縮器14は冷媒と空気とを熱交換させる熱交換器であるが、凝縮器14は冷媒と種々の冷却用媒体とを熱交換させる熱交換器であってもよい。
 図7に示す第1実施例のように、凝縮器14は冷媒と冷却水回路20の冷却水とを熱交換させる熱交換器であってもよい。冷却水回路20は、冷却水が循環する回路である。冷却水回路20には、凝縮器14とポンプ21とが配置されている。ポンプ21は、冷却水回路20の冷却水を吸入して吐出する。
 図8に示す第2実施例のように、凝縮器14は、冷媒回路12の冷媒と冷凍サイクル30の冷媒とを熱交換させる熱交換器であってもよい。冷凍サイクル30は、圧縮機31と放熱器32と膨張弁33とを備える。
 圧縮機31は、冷凍サイクル30の冷媒を吸入して圧縮し吐出する。放熱器32は、圧縮機31から吐出された冷媒を放熱させて凝縮させる熱交換器である。膨張弁33は、放熱器32で凝縮された冷媒を減圧膨張させる減圧部である。
 凝縮器14は、膨張弁33で減圧膨張された冷凍サイクル30の冷媒と、蒸発器13で蒸発した冷媒回路12の冷媒とを熱交換させて、冷凍サイクル30の冷媒を蒸発させるとともに冷媒回路12の冷媒を凝縮させる。
 図9に示す第3実施例のように、冷凍サイクル30は、空調用膨張弁34および空調用蒸発器35を備えていてもよい。
 空調用膨張弁34は、放熱器32で凝縮された冷媒を減圧膨張させる減圧部である。空調用蒸発器35は、冷凍サイクル30の冷媒と車室内へ送風させる空気とを熱交換させて車室内へ送風させる空気を冷却する冷却用熱交換器である。
 空調用膨張弁34および空調用蒸発器35は、冷凍サイクル30の冷媒流れにおいて放熱器32と並列に配置されている。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第4実施形態)
 上記実施形態では、凝縮器14はエンジンルームの最後部に配置されているが、図10に示すように、凝縮器14は、エンジンルームの最前部に配置されていてもよい。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第5実施形態)
 図11、図12に示すように、車載機器冷却装置10は、凝縮器14を複数個備えていてもよい。
 図11に示す第1実施例では、全ての凝縮器14が電池用蒸発器13よりも車両前方側に配置されている。
 図12に示す第2実施例のように、複数個の凝縮器14のうち一部の凝縮器14が電池用蒸発器13よりも車両前方側に配置されていてもよい。
 本実施形態の第1実施例では、複数個の凝縮器14はいずれも、入口側接続部13aおよび出口側接続部13bよりも車両前方に位置している。
 これによると、加速時や登坂時に電池用蒸発器13内のガス冷媒が全ての凝縮器14に流れ込みやすくなる。そのため、複数個の凝縮器14において冷媒の凝縮を均等化できるので、加速時や登坂時に組電池11の発熱量が多くなっても組電池11を良好に冷却することができる。
 (第6実施形態)
 上記実施形態では、ガス冷媒配管15および液冷媒配管16は、電池用蒸発器13に車両上方側から接続されているが、図13~図15に示すように、ガス冷媒配管15および液冷媒配管16は、電池用蒸発器13に車両水平方向側から接続されていてもよい。
 図13に示す第1実施例では、入口側接続部13aおよび出口側接続部13bは、車両1の高さ方向における位置が互いに同じになっている。
 図14、図15に示すように、入口側接続部13aおよび出口側接続部13bは、車両1の高さ方向における位置が互いにずれていてもよい。入口側接続部13aは、出口側接続部13bよりも車両上方側に位置してもよい。
 図14に示す第2実施例では、組電池11は、電池用蒸発器13に対して水平方向に並んでおり、組電池11の側面が電池用蒸発器13の側面に熱伝導可能に当接している。
 図15に示す第3実施例では、組電池11は、電池用蒸発器13の上に載っており、組電池11の下面が電池用蒸発器13の上面に熱伝導可能に当接している。この実施例では、図16に示すように、電池用蒸発器13のうち出口側接続部13bが形成されている部位が、電池用蒸発器13のうち入口側接続部13aが形成されている部位よりも、車両上方側に位置する形状になっている。これにより、電池用蒸発器13内からガス冷媒が抜けやすくなる。
 本実施形態においても、上記実施形態と同様の作用効果を奏することができる。
 (第7実施形態)
 図17、図18に示すように、車載機器冷却装置10は、組電池11および電池用蒸発器13を複数個ずつ備えていてもよい。
 図17に示す第1実施例では、凝縮器14は、全ての電池用蒸発器13よりも車両前方側に配置されている。これにより、全ての電池用蒸発器13に冷媒を良好に循環させることができるので、全ての組電池11を良好に冷却できる。そのため、全ての組電池11の温度を均等化できるので、組電池11の劣化を抑制できる。
 図18に示す第2実施例のように、凝縮器14は、複数の電池用蒸発器13のうち一部の電池用蒸発器13よりも車両前方側に配置されていてもよい。
 本実施形態の第1実施例では、凝縮器14は、全ての電池用蒸発器13における入口側接続部13aよりも車両前方に位置しており、全ての電池用蒸発器13における入口側接続部13aは、組電池11よりも車両後方に位置しており、凝縮器14は、全ての電池用蒸発器13における出口側接続部13bよりも車両前方に位置しており、全ての電池用蒸発器13における出口側接続部13bは、組電池11よりも車両前方に位置している。
 これにより、全ての電池用蒸発器13に冷媒を良好に循環させることができるので、全ての組電池11を良好に冷却できる。そのため、全ての組電池11の温度を均等化できるので、全ての組電池11の劣化を抑制できる。
 (第8実施形態)
 図19、図20に示すように、車載機器冷却装置10は、冷媒回路12、電池用蒸発器13、凝縮器14、ガス冷媒配管15および液冷媒配管16を複数組備えていてもよい。
 図19に示す第1実施例では、複数個の冷媒回路12のいずれにおいても、凝縮器14は、電池用蒸発器13よりも車両前方側に配置されている。
 図20に示す第2実施例のように、複数の冷媒回路12のうち一方の冷媒回路12(図20では左方の冷媒回路12)では、凝縮器14は、電池用蒸発器13よりも車両前方側に配置されており、他方の冷媒回路(図20では右方の冷媒回路12)では、凝縮器14は、電池用蒸発器13の直上に配置されていてもよい。
 本実施形態の第1実施例では、それぞれの機器冷却冷媒回路12において、凝縮器14は、入口側接続部13aおよび出口側接続部13bよりも車両前方に位置しており、入口側接続部13aは、組電池11よりも車両後方に位置しており、出口側接続部13bは、組電池11よりも車両前方に位置している。
 これにより、全ての電池用蒸発器13に冷媒を良好に循環させることができるので、全ての組電池11を良好に冷却できる。そのため、全ての組電池11の温度を均等化できるので、全ての組電池11の劣化を抑制できる。
 (第9実施形態)
 本実施形態は、第6実施形態の第2実施例を、より具体化したものである。図21および図22に示すように、電池用蒸発器13は、蒸発部131と供給部132と排出部133とを有している。蒸発部131は、組電池11から吸熱して冷媒を蒸発させる。蒸発部131は、複数の互いに並列な冷媒流路を有している。供給部132は、蒸発部131の複数の冷媒流路に冷媒を分配する分配タンクである。供給部132には、蒸発部131に供給される冷媒が流れる。排出部133は、蒸発部131の複数の冷媒流路を流れた冷媒が集合する集合タンクである。排出部133には、蒸発部131から排出された冷媒が流れる。
 蒸発部131は、凝縮器14よりも車両後方側かつ車両下方側に位置している。蒸発部131は、車両前後方向に延びる形状を有している。
 蒸発部131の側面は平面状になっている。蒸発部131の側面には、組電池11が配置されている。組電池11の複数の電池セルは、車両前後方向に並べられている。組電池11の各電池セルの端子111は、電池セルのうち蒸発部131とは反対側の側面に配置されている。
 蒸発部131と組電池11との間に、電気絶縁熱伝導シート18が介在している。電気絶縁熱伝導シート18は、電気絶縁性と熱伝導性とを有する薄膜状の部材である。蒸発部131と組電池11との間に、板状の熱伝導部材が介在していてもよい。
 供給部132は、蒸発部131の下方側に配置されている。蒸発部131は、蒸発部131の上方側に配置されている。供給部132および排出部133は、車両前後方向に長く延びる形状を有している。
 入口側接続部13aは、供給部132のうち車両後方側の端部に設けられている。換言すれば、入口側接続部13aは、供給部132のうち組電池11よりも車両後方側の部位に設けられている。出口側接続部13bは、排出部133のうち車両前方側の端部に設けられている。換言すれば、出口側接続部13bは、供給部132のうち組電池11よりも車両前方側の部位に設けられている。
 ガス冷媒配管15は前方流れ部15aを有している。前方流れ部15aは、冷媒が車両後方から車両前方へ向かって流れる部位である。前方流れ部15aは、車両前後方向に延びている。
 前方流れ部15aは、電池用蒸発器13の排出部133に直接接続されている。電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向は、車両後方から車両前方へ向かう方向になっている。
 車載機器冷却装置10が搭載された車両1の加速時には、加速による慣性力Fiが作用する。このとき、上記第1実施形態において図3を用いて説明したように、液冷媒中のガス冷媒19に作用する力Frの方向は、車両前方斜め上方向に作用することなる。
 排出部133が車両前後方向に長く延びる形状を有していて、出口側接続部13bが排出部133のうち車両前方側の端部に設けられているので、車両1の加速時に、電池用蒸発器13のガス冷媒が排出部133および出口側接続部13bを通じてガス冷媒配管15に抜けやすくなる。
 蒸発部131で液冷媒が沸騰してガス化すると、ガス冷媒が液冷媒を押し上げてしまい、液冷媒が排出部133やガス冷媒配管15に溜まってしまう。排出部133やガス冷媒配管15に溜まった液冷媒は、ガス冷媒の排出性を悪化させる原因となる。
 本実施例では、ガス冷媒配管15の前方流れ部15aが電池用蒸発器13の出口側接続部13bに直接接続されていて、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両後方から車両前方へ向かう方向になっているので、電池用蒸発器13の排出部133からガス冷媒配管15に流入したガス冷媒がガス冷媒配管15から抜けやすくなる。
 電池用蒸発器13およびガス冷媒配管15のガス冷媒が抜けやすくなると冷媒の流速が上昇するので、電池冷却性能が向上する。
 図23に示すように、加速時には、ヘッドの力方向Fhは、重力Fgと加速による慣性力Fiとの合力の方向になる。蒸発部131が凝縮器14よりも車両後方側に位置しているので、加速時には、一定速度で走行している時と比較してヘッドHdが拡大される。理解を容易にするために、図23に、一定速度で走行している時と比較した加速時のヘッドHdの拡大量ΔHdを示している。
 上記第1実施形態で説明したように、ヘッドHdが拡大されると冷媒の流速が上昇するので、電池冷却性能が向上する。
 以上のことから、組電池11の発熱量が多くなる加速時に、必要な電池冷却性能を確保できる。
 図24に示すように、車両1の登坂時には、車両の前部が後部よりも上方に位置することになる。そのため、車載機器冷却装置10が重力Fgの方向に対して斜めになり、ガス冷媒配管15が電池用蒸発器13の上方に位置することになる。
 排出部133が車両前後方向に長く延びる形状を有していて、出口側接続部13bが排出部133のうち車両前方側の端部に設けられているので、車両1の登坂時に、図24中の太線矢印で示すように電池用蒸発器13のガス冷媒がガス冷媒配管15に抜けやすくなる。したがって、加速時と同様に、電池冷却性能が向上する。
 本実施例では、ガス冷媒配管15の前方流れ部15aが電池用蒸発器13の排出部133に直接接続されていて、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両後方から車両前方へ向かう方向になっているので、電池用蒸発器13の排出部133からガス冷媒配管15に流入したガス冷媒がガス冷媒配管15から抜けやすくなる。
 一定速度で登坂している場合、ヘッドの力方向Fhは重力Fgの方向と同じである。蒸発部131が凝縮器14よりも車両後方側に位置しているので、一定速度での登坂時には、一定速度で水平な路面を走行している時と比較してヘッドHdが拡大される。理解を容易にするために、図24に、一定速度で水平な路面を走行している時と比較した加速時のヘッドHdの拡大量ΔHdを示している。したがって、加速時と同様に、電池冷却性能が向上する。
 以上のことから、組電池11の発熱量が多くなる登坂時に、必要な電池冷却性能を確保できる。
 減速時の組電池11の必要冷却量は加速時の必要冷却量よりも小さい。降坂時の組電池11の必要冷却量は登坂時の必要冷却量よりも小さい。減速時や降坂時には、回生による充電量を小さく抑えれば組電池11の発熱量を小さく抑えることができる。したがって、減速時や降坂時における電池冷却性能が加速時や登坂時よりも小さくなっても支障はない。
 本実施例では、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両後方から車両前方へ向かう方向になっているが、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両上方側から車両下方側に向かう方向、および車両前方側から車両後方側に向かう方向を除く方向になるように構成されていればよい。
 電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両上方側から車両下方側に向かう方向になっていると、軽いガス冷媒が下方に流れる構成となるためガス排出性が悪化するからである。また、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向が車両前方側から車両後方側に向かう方向になっていると、加速時や登坂時に電池用蒸発器13の排出部133と前方流れ部15aとの間でガス排出性が悪化するからである。
 すなわち、車載機器冷却装置10は、電池用蒸発器13の排出部133からガス冷媒配管15の前方流れ部15aに至る冷媒の流れ方向が車両後方側から車両前方側に向かう方向、車両下方側から車両上方側に向かう方向、および車両左右方向のうち少なくとも1つの方向になるように構成されていれば、液冷媒が排出部133やガス冷媒配管15に溜まっていても、加速時や登坂時にガス冷媒が抜けやすくなるので、冷媒流速が増加して冷却能力を向上できる。
 本実施形態では、電池用蒸発器13の排出部133は、車両前後方向に延びる形状を有している。これにより、加速時や登坂時に排出部133からガス冷媒が抜けやすくなるので、冷媒流速が増加して冷却能力を向上できる。
 本実施形態では、電池用蒸発器13の蒸発部131は、凝縮器14よりも車両後方側に位置している。これにより、加速時や登坂時にヘッドHdが拡大されるので、冷媒流速が増加して冷却能力を向上できる。
 本実施形態では、電池用蒸発器13において、排出部133は、供給部132よりも車両上方側に位置している。これにより、電池用蒸発器13の蒸発部131で蒸発したガス冷媒が排出部133に抜けやすくなるので、冷媒流速が増加して冷却能力を向上できる。
 本実施形態では、電池用蒸発器13の供給部132のうち液冷媒配管16が接続される部位は、組電池11よりも車両後方側に位置している。これにより、加速時や登坂時におけるヘッドHdの拡大量が大きくなるので、冷媒流速が顕著に増加して冷却能力を顕著に向上できる。
 (第10実施形態)
 上記第9実施形態では、入口側接続部13aは、供給部132のうち車両後方側の端部に設けられているが、本実施形態では、図25に示すように、入口側接続部13aは、供給部132のうち車両前方側の端部に設けられている。
 換言すれば、入口側接続部13aは、組電池11よりも車両前方側の部位に設けられている。
 (第11実施形態)
 上記第9実施形態では、入口側接続部13aは、供給部132のうち組電池11よりも車両後方側の部位に設けられており、上記第10実施形態では、入口側接続部13aは、供給部132のうち組電池11よりも車両前方側の部位に設けられているが、本実施形態では、図26に示すように、入口側接続部13aは、供給部132のうち車両前後方向の略中央部に設けられている。
 本実施形態においても、上記第9実施形態と同様に、蒸発部131が凝縮器14よりも車両後方側に位置していて、入口側接続部13aが凝縮器14よりも車両後方側に位置している。したがって、上記第9実施形態と同様に、車両の加速時や登坂時にヘッドHdが拡大される。
 本実施形態では、出口側接続部13bは、電池用蒸発器13の排出部133のうち車両前後方向の略中央部に設けられている。したがって、本実施形態では、車両1の加速時や登坂時に、排出部133のうち出口側接続部13bよりも車両後方側部位のガス冷媒がガス冷媒配管15に抜けやすくなる。
 本実施形態では、ガス冷媒配管15の前方流れ部15aは、上方流れ部15bを介して電池用蒸発器13の出口側接続部13bに接続されている。上方流れ部15bは、冷媒が車両下方から車両上方へ向かって流れる部位である。上方流れ部15bは、車両上下方向に延びている。
 これにより、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れ方向は、車両下方から車両上方へ向かって流れた後に車両後方から車両前方へ向かう方向になる。したがって、電池用蒸発器13の排出部133からガス冷媒配管15に流入したガス冷媒は、ガス冷媒配管15から抜けやすくなる。
 (第12実施形態)
 上記第9実施形態では、電池用蒸発器13は1つであるが、本実施形態では、図27に示すように、電池用蒸発器13は複数である。複数の電池用蒸発器13は、車両の左右方向に並べられている。
 複数の電池用蒸発器13の構成は、上記第9実施形態における電池用蒸発器13の構成と同様である。
 例えば、複数の電池用蒸発器13の供給部132および排出部133はいずれも、車両前後方向に長く延びる形状を有している。例えば、複数の電池用蒸発器13の蒸発部131はいずれも、凝縮器14よりも車両後方側かつ車両下方側に位置している。
 本実施形態では、ガス冷媒配管15の前方流れ部15aは、側方流れ部15cおよび上方流れ部15bを介して電池用蒸発器13の出口側接続部13bに接続されている。
 側方流れ部15cは、冷媒が車両左右方向に流れる部位である。側方流れ部15cは、車両左右方向に延びている。側方流れ部15cは、複数の電池用蒸発器13の出口側接続部13b同士を連結する連結配管である。
 これにより、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れは、車両左右方向に流れた後に車両下方から車両上方へ向かって流れ、さらに車両後方から車両前方へ向かって流れる。したがって、電池用蒸発器13の排出部133からガス冷媒配管15に流入したガス冷媒は、ガス冷媒配管15から抜けやすくなる。
 (第13実施形態)
 上記第12実施形態では、複数の電池用蒸発器13の蒸発部131、供給部132および排出部133はいずれも車両前後方向に延びる形状を有していて、組電池11の複数の電池セルは、車両前後方向に並べられているが、本実施形態では、図28および図29に示すように、複数の電池用蒸発器13の蒸発部131、供給部132および排出部133はいずれも車両左右方向に延びる形状を有していて、組電池11の複数の電池セルは、車両左右方向に並べられている。
 本実施形態においても、複数の電池用蒸発器13の蒸発部131はいずれも、凝縮器14よりも車両後方側かつ車両下方側に位置している。
 本実施形態では、ガス冷媒配管15の前方流れ部15aは、複数の電池用蒸発器13の出口側接続部13bに直接接続されている。
 これにより、電池用蒸発器13の排出部133から前方流れ部15aに至る冷媒の流れは、排出部133では車両左右方向に流れ、排出部133から前方流れ部15aに流入する際も車両左右方向に流れ、前方流れ部15aでは車両後方から車両前方へ向かって流れる。したがって、電池用蒸発器13の排出部133からガス冷媒配管15に流入したガス冷媒は、ガス冷媒配管15から抜けやすくなる。
 本実施形態では、ガス冷媒配管15の前方流れ部15aは、複数個の蒸発器13同士を連結している。これにより、ガス冷媒配管15のうち複数個の蒸発器13間を連結している部位からガス冷媒が抜けやすくなるので、冷媒流速が増加して冷却能力を向上できる。
 (第14実施形態)
 上記第13実施形態では、電池用蒸発器13が複数であるのに対しておよび凝縮器14は1つであるが、本実施形態では、図30および図31に示すように、電池用蒸発器13および凝縮器14がいずれも複数である。
 図30に示す第1実施例では、全ての電池用蒸発器13の蒸発部131は、全ての凝縮器14よりも車両後方側に位置している。これにより、上記第13実施形態と同様に、全ての電池用蒸発器13について、ガス冷媒が凝縮器14へ抜けやすくなる。
 図31に示す第2実施例では、一対の電池用蒸発器13および凝縮器14において、蒸発部131が凝縮器14よりも車両後方側に位置している。具体的には、複数の電池用蒸発器13および複数の凝縮器14のうち、図31中の左側の電池用蒸発器13の蒸発部131が図31中の左側の凝縮器14よりも車両後方側に位置していて、図31中の右側の電池用蒸発器13の蒸発部131が図31中の右側の凝縮器14よりも車両後方側に位置している。
 本実施例では、一対の電池用蒸発器13および凝縮器14において、ガス冷媒が凝縮器14へ抜けやすくなる。
 (第15実施形態)
 上記第9実施形態では、凝縮器14は電池用蒸発器13よりも上方に配置されているが、本実施形態では、図32に示すように、凝縮器14は電池用蒸発器13とほぼ同じ高さに配置されている。本実施形態においても、上記第9実施形態と同様の作用効果を奏することができる。
 (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 (1)ガス冷媒配管15および液冷媒配管16は、車両搭載の都合上、車両1の他の部品や部材を迂回するように配置されていてもよい。
 (2)上記実施形態では、組電池11および電池用蒸発器13は、車両1の前後方向中央部における床下に配置されているが、組電池11および電池用蒸発器13は、車両1の後方の、例えばトランクルームやリアシート下などに配置されていてもよい。
 組電池11および電池用蒸発器13は、車両1の前方の、例えばエンジンルームなどに配置されていてもよい。
 (3)第9実施形態~第15実施形態では縦型蒸発器(縦に延びて電池が側面に配置される)について、ガス冷媒の排出性を向上させるためのガス冷媒配管、排出部、蒸発部の構成を説明したが、ガス冷媒の排出性を向上させるためのガス冷媒配管、排出部、蒸発部の構成は、上記第1実施形態のような横型蒸発器(横に延びて電池が上面に配置される)にも適用が可能である。
 (4)第9実施形態~第15実施形態では、電池用蒸発器13の排出部133からガス冷媒配管15の前方流れ部15aに至る冷媒の流れ方向が車両後方側から車両前方側に向かう方向、車両下方側から車両上方側に向かう方向、および車両左右方向のうち1つの方向になるように構成されているが、上記方向のうち2つ以上の方向になるように構成されてもよい。
 例えば、車両後方側から車両前方側に向かう方向かつ車両下方側から車両上方側に向かう方向であってもよい。また、車両後方側から車両前方側に向かう方向かつ車両左右方向であってもよい。
 本開示は実施例を参照して記載されているが、本開示は開示された上記実施例や構造に限定されるものではないと理解される。寧ろ、本開示は、様々な変形例や均等範囲内の変形を包含する。加えて、本開示の様々な要素が、様々な組み合わせや形態によって示されているが、それら要素よりも多くの要素、あるいは少ない要素、またはそのうちの1つだけの要素を含む他の組み合わせや形態も、本開示の範疇や思想範囲に入るものである。

Claims (18)

  1.  冷媒が循環する冷媒回路(12)と、
     車載機器(11)から吸熱して前記冷媒を蒸発させる蒸発部(131)と、前記蒸発部へ前記冷媒を導く供給部(132)と、前記蒸発部から排出された前記冷媒が流れる排出部(133)とを有する蒸発器(13)と、
     前記蒸発器で蒸発した前記冷媒を凝縮させる凝縮器(14)と、
     前記排出部から前記凝縮器に前記冷媒を導くガス冷媒配管(15)と、
     前記凝縮器から前記供給部に前記冷媒を導く液冷媒配管(16)とを備え、
     前記ガス冷媒配管は、前記冷媒が車両後方から車両前方へ向かって流れる前方流れ部(15a)を有しており、前記排出部から前記前方流れ部に至る前記冷媒の流れ方向が車両後方側から車両前方側に向かう方向、車両下方側から車両上方側に向かう方向、および車両左右方向のうち少なくとも1つの方向になるように構成されている車載機器冷却装置。
  2.  前記排出部は、車両前後方向に延びる形状を有している請求項1に記載の車載機器冷却装置。
  3.  前記蒸発部は、前記凝縮器よりも車両後方側に位置している請求項1または2に記載の車載機器冷却装置。
  4.  前記蒸発器を複数個備え、
     前記前方流れ部は、前記複数個の蒸発器同士を連結している請求項1ないし3のいずれか1つに記載の車載機器冷却装置。
  5.  前記排出部は、前記供給部よりも車両上方側に位置している請求項1ないし4のいずれか1つに記載の車載機器冷却装置。
  6.  前記供給部のうち前記液冷媒配管が接続される部位は、前記車載機器(11)よりも車両後方側に位置している請求項1ないし5のいずれか1つに記載の車載機器冷却装置。
  7.  前記車載機器は、充放電可能な複数の電池セル(11a、11b)を有している請求項1ないし6のいずれか1つに記載の車載機器冷却装置。
  8.  冷媒が循環する冷媒回路(12)と、
     少なくとも1つの車載機器(11)から吸熱して前記冷媒を蒸発させる少なくとも1つの蒸発器(13)と、
     前記蒸発器で蒸発した前記冷媒を凝縮させる少なくとも1つの凝縮器(14)と、
     前記蒸発器で蒸発した前記冷媒を前記凝縮器に導くガス冷媒配管(15)と、
     前記凝縮器で凝縮した前記冷媒を前記蒸発器に導く液冷媒配管(16)とを備え、
     前記蒸発器のうち前記液冷媒配管と接続されている入口側接続部(13a)は、前記蒸発器のうち前記ガス冷媒配管と接続されている出口側接続部(13b)よりも車両後方に位置している車載機器冷却装置。
  9.  前記凝縮器は、前記入口側接続部よりも車両前方に位置している請求項8に記載の車載機器冷却装置。
  10.  前記入口側接続部は、前記車載機器よりも車両後方に位置している請求項8または9に記載の車載機器冷却装置。
  11.  前記凝縮器は、前記出口側接続部よりも車両前方に位置している請求項8ないし10のいずれか1つに記載の車載機器冷却装置。
  12.  前記出口側接続部は、前記車載機器よりも車両前方に位置している請求項8ないし11のいずれか1つに記載の車載機器冷却装置。
  13.  前記蒸発器を複数個備え、
     前記凝縮器は、全ての前記蒸発器における前記入口側接続部よりも車両前方に位置しており、
     全ての前記蒸発器における前記入口側接続部は、前記車載機器よりも車両後方に位置しており、
     前記凝縮器は、全ての前記蒸発器における前記出口側接続部よりも車両前方に位置しており、
     全ての前記蒸発器における前記出口側接続部は、前記車載機器よりも車両前方に位置している請求項8ないし12のいずれか1つに記載の車載機器冷却装置。
  14.  前記凝縮器を複数個備え、
     前記複数個の凝縮器はいずれも、前記入口側接続部および前記出口側接続部よりも車両前方に位置している請求項8ないし13のいずれか1つに記載の車載機器冷却装置。
  15.  前記冷媒回路、前記蒸発器、前記凝縮器、前記ガス冷媒配管および前記液冷媒配管を複数組備え、
     それぞれの前記冷媒回路において、前記凝縮器は、前記入口側接続部および前記出口側接続部よりも車両前方に位置しており、前記入口側接続部は、前記車載機器よりも車両後方に位置しており、前記出口側接続部は、前記車載機器よりも車両前方に位置している請求項8ないし14のいずれか1つに記載の車載機器冷却装置。
  16.  前記車載機器は、充放電可能な複数の電池セル(11a、11b)を有している請求項8ないし15のいずれか1つに記載の車載機器冷却装置。
  17.  前記入口側接続部は、前記複数の電池セルのうち最も車両後方に位置する電池セル(11a)よりも車両後方に位置している請求項16に記載の車載機器冷却装置。
  18.  前記出口側接続部は、前記複数の電池セルのうち最も車両前方に位置する電池セル(11b)よりも車両前方に位置している請求項16または17に記載の車載機器冷却装置。
PCT/JP2018/011264 2017-04-03 2018-03-22 車載機器冷却装置 WO2018186179A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023390.0A CN110494710A (zh) 2017-04-03 2018-03-22 车载设备冷却装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-073562 2017-04-03
JP2017073562 2017-04-03
JP2018-029756 2018-02-22
JP2018029756A JP6773064B2 (ja) 2017-04-03 2018-02-22 車載機器冷却装置

Publications (1)

Publication Number Publication Date
WO2018186179A1 true WO2018186179A1 (ja) 2018-10-11

Family

ID=63713437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011264 WO2018186179A1 (ja) 2017-04-03 2018-03-22 車載機器冷却装置

Country Status (1)

Country Link
WO (1) WO2018186179A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087574A1 (ja) * 2017-11-02 2019-05-09 株式会社デンソー サーモサイフォン式温調装置
WO2020084956A1 (ja) * 2018-10-24 2020-04-30 株式会社デンソー 温度調整装置
JP2020098041A (ja) * 2018-12-17 2020-06-25 株式会社デンソー 機器温調装置
DE102019216052A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Kühlvorrichtung für eine Traktionsbatterie eines Fahrzeugs

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023983A (ja) * 1973-07-02 1975-03-14
JP2008062875A (ja) * 2006-09-11 2008-03-21 Calsonic Kansei Corp 車両用バッテリ冷却システム
US20120003516A1 (en) * 2010-06-30 2012-01-05 Nissan Technical Center North America, Inc. Vehicle battery temperature control system and method
JP2012015112A (ja) * 2010-07-02 2012-01-19 Sb Limotive Co Ltd バッテリパック
DE102010041276A1 (de) * 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Fahrzeug mit elektrischem Energiespeicher und Vorrichtung sowie Verfahren zu dessen Kühlung
JP2012172940A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp 熱輸送装置、及びエンジン
JP2013083399A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 冷却装置およびこれを搭載した電子機器、および電気自動車
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2014053338A (ja) * 2012-09-05 2014-03-20 Panasonic Corp 冷却装置およびこれを搭載した電気自動車および電子機器
DE102013225582A1 (de) * 2013-12-11 2015-06-11 Robert Bosch Gmbh Batteriesystem mit auslösbarem Wärmespeicher

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023983A (ja) * 1973-07-02 1975-03-14
JP2008062875A (ja) * 2006-09-11 2008-03-21 Calsonic Kansei Corp 車両用バッテリ冷却システム
US20120003516A1 (en) * 2010-06-30 2012-01-05 Nissan Technical Center North America, Inc. Vehicle battery temperature control system and method
JP2012015112A (ja) * 2010-07-02 2012-01-19 Sb Limotive Co Ltd バッテリパック
DE102010041276A1 (de) * 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Fahrzeug mit elektrischem Energiespeicher und Vorrichtung sowie Verfahren zu dessen Kühlung
JP2012172940A (ja) * 2011-02-23 2012-09-10 Toyota Motor Corp 熱輸送装置、及びエンジン
JP2013083399A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 冷却装置およびこれを搭載した電子機器、および電気自動車
JP2014029232A (ja) * 2012-07-31 2014-02-13 Nippon Soken Inc 冷却装置
JP2014053338A (ja) * 2012-09-05 2014-03-20 Panasonic Corp 冷却装置およびこれを搭載した電気自動車および電子機器
DE102013225582A1 (de) * 2013-12-11 2015-06-11 Robert Bosch Gmbh Batteriesystem mit auslösbarem Wärmespeicher

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087574A1 (ja) * 2017-11-02 2019-05-09 株式会社デンソー サーモサイフォン式温調装置
JP2019086177A (ja) * 2017-11-02 2019-06-06 株式会社デンソー サーモサイフォン式温調装置
WO2020084956A1 (ja) * 2018-10-24 2020-04-30 株式会社デンソー 温度調整装置
JP2020098041A (ja) * 2018-12-17 2020-06-25 株式会社デンソー 機器温調装置
WO2020129645A1 (ja) * 2018-12-17 2020-06-25 株式会社デンソー 機器温調装置
DE102019216052A1 (de) * 2019-10-17 2021-04-22 Kautex Textron Gmbh & Co. Kg Kühlvorrichtung für eine Traktionsbatterie eines Fahrzeugs

Similar Documents

Publication Publication Date Title
KR102277723B1 (ko) 높은 냉각 용량 및 수동 배터리 냉각을 갖는 에어컨 및 배터리 냉각 장치와 에어컨 및 배터리 냉각 장치의 작동 방법
RU2708148C1 (ru) Аккумуляторный блок
WO2018186179A1 (ja) 車載機器冷却装置
JP6593544B2 (ja) 機器温調装置
US11355796B2 (en) Thermal management system for battery module
JP6610800B2 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
WO2018047533A1 (ja) 機器温調装置
JP2019052837A (ja) 機器温調装置
WO2018047538A1 (ja) 機器温調システム
JP6773064B2 (ja) 車載機器冷却装置
WO2019093230A1 (ja) 機器温調装置
JPWO2018047528A1 (ja) 機器温調装置
WO2013084472A1 (ja) 熱利用システム
WO2020213535A1 (ja) 車両用サーモサイフォン式冷却装置
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
WO2019123881A1 (ja) 機器温調装置
US20240227582A9 (en) Cooling device for a traction battery of a vehicle
JP7159771B2 (ja) 機器温調装置
WO2019054076A1 (ja) 機器温調装置
WO2020246248A1 (ja) 沸騰冷却装置
JP6919505B2 (ja) サーモサイフォン式温調装置
WO2018070182A1 (ja) 機器温調装置
WO2019221237A1 (ja) 機器温調装置
WO2019146262A1 (ja) 車両用サーモサイフォン式冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781110

Country of ref document: EP

Kind code of ref document: A1