WO2018185824A1 - Heat exchanger and refrigeration cycle device - Google Patents
Heat exchanger and refrigeration cycle device Download PDFInfo
- Publication number
- WO2018185824A1 WO2018185824A1 PCT/JP2017/014031 JP2017014031W WO2018185824A1 WO 2018185824 A1 WO2018185824 A1 WO 2018185824A1 JP 2017014031 W JP2017014031 W JP 2017014031W WO 2018185824 A1 WO2018185824 A1 WO 2018185824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- fin
- heat exchanger
- transfer tube
- tube portion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/22—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
Definitions
- the present invention relates to a heat exchanger and a refrigeration cycle apparatus.
- a heat exchanger used in an air conditioner as an example of a refrigeration cycle apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-84078 (Patent Document 1).
- the heat exchanger described in this publication is a small-diameter multi-tube heat exchanger having a plurality of small-diameter heat transfer tube units.
- Each of the plurality of small-diameter heat transfer tube units is configured by laminating two symmetrical fin plates each having a groove portion for forming a tube body portion.
- the present invention has been made in view of the above problems, and an object thereof is to provide a heat exchanger that can be easily manufactured and a refrigeration cycle apparatus including the heat exchanger.
- the heat exchanger of the present invention includes a first heat transfer tube portion, a second heat transfer tube portion arranged so as to run parallel to the first heat transfer tube portion, and a corrugated fin having a valley portion and a peak portion.
- the fin includes a first surface and a second surface opposite to the first surface.
- the trough is configured such that the fin protrudes in a direction from the first surface toward the second surface.
- the mountain portion is configured such that the fin protrudes in a direction from the second surface toward the first surface.
- the 1st heat exchanger tube part is connected to the trough part in the 1st surface of a fin.
- the 2nd heat exchanger tube part is connected to the peak part in the 2nd surface of a fin.
- the valley and the mountain are arranged side by side along the wind direction of the wind flowing into the fin.
- the first heat transfer tube portion is connected to the fin valley portion, and the second heat transfer tube portion is connected to the fin peak portion. For this reason, the assembly to the fin of the 1st heat exchanger tube part and the 2nd heat exchanger tube part is easy. Therefore, it is easy to manufacture the heat exchanger.
- FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a side view which shows roughly the structure of the heat exchanger in the modification 1 of one embodiment of this invention.
- FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. It is a front view which shows roughly the structure of the heat exchanger in the modification 2 of one embodiment of this invention. It is a front view which shows roughly the structure of the heat exchanger in the modification 3 of one embodiment of this invention.
- FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8. It is sectional drawing in the cross-sectional position corresponding to FIG. 2 which shows schematically the structure of the heat exchanger in the modification 4 of one embodiment of this invention. It is a figure which shows the refrigerant circuit of the refrigerating-cycle apparatus in one embodiment of this invention.
- FIG. 1 is a perspective view of a heat exchanger 1 in the present embodiment.
- FIG. 2 is a front view of the heat exchanger 1 in the present embodiment.
- FIG. 3 is a side view of the heat exchanger 1 in the present embodiment.
- FIG. 4 is a cross-sectional view of the heat exchanger 1 in the present embodiment.
- the heat exchanger 1 in the present embodiment is a finned tube heat exchanger.
- the heat exchanger 1 in this Embodiment is used for an air conditioner, an air-conditioning freezer, etc., for example.
- the heat exchanger 1 in the present embodiment includes a first heat transfer tube portion 10, a second heat transfer tube portion 20, fins 30, an inlet header 40, an outlet header 50, an inlet pipe 60, and an outlet pipe 70. It has.
- the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 are disposed between the inlet header 40 and the outlet header 50.
- the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are connected to the inlet header 40 and the outlet header 50 so that the refrigerant flows from the inlet header 40 to the outlet header 50, respectively.
- the inlet header 40 is disposed so as to face the outlet header 50.
- the inlet header 40 is disposed below the outlet header 50 in the gravity direction D2.
- Each of the inlet header 40 and the outlet header 50 has a refrigerant passage through which a refrigerant flows.
- An inlet pipe 60 is connected to the inlet header 40.
- An outlet pipe 70 is connected to the outlet header 50.
- the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are integrally configured by being connected to the fins 30.
- the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 that are integrally configured constitute one heat transfer unit 100.
- a plurality of heat transfer units 100 are arranged side by side in the step direction D1.
- the first heat transfer tube portion 10 extends in the gravity direction D2.
- the first heat transfer tube portion 10 is a cylindrical tube.
- the 1st heat exchanger tube part 10 is comprised so that a refrigerant
- the 1st heat exchanger tube part 10 is comprised by the linear form.
- the first heat transfer tube section 10 has a plurality of first heat transfer tubes 11.
- the plurality of first heat transfer tubes 11 are arranged in parallel to each other.
- the first heat transfer tube portion 10 has two first heat transfer tubes 11.
- the second heat transfer tube portion 20 is arranged so as to run in parallel with the first heat transfer tube portion 10.
- the second heat transfer tube portion 20 is disposed in parallel with the first heat transfer tube portion 10.
- the second heat transfer tube portion 20 is disposed so as to be adjacent to the first heat transfer tube portion 10 in the column direction D3.
- the second heat transfer tube portion 20 extends in the gravity direction D2.
- the second heat transfer tube 21 is a cylindrical tube.
- the 2nd heat exchanger tube part 20 is comprised so that a refrigerant
- the 2nd heat exchanger tube part 20 is constituted in the shape of a straight line.
- the second heat transfer tube section 20 has a plurality of second heat transfer tubes 21.
- the plurality of second heat transfer tubes 21 are arranged in parallel to each other.
- Each of the plurality of second heat transfer tubes 21 is arranged alternately with each of the plurality of first heat transfer tubes 11.
- the second heat transfer tube section 20 has two first heat transfer tubes 11.
- the fin 30 is configured to meander in a wave shape.
- the fins 30 extend in the direction of gravity.
- the fin 30 is formed of an integral plate. That is, the fin 30 has a plane extending in the direction of gravity.
- the corrugated fin 30 has a valley 30a, a mountain 30b, an upwind extending portion 30c, and an upwind extending portion 30d.
- the valley part 30a and the peak part 30b are arranged so as to be adjacent to each other. That is, the valleys 30a and the peaks 30b are alternately arranged.
- the valley portion 30 a and the mountain portion 30 b are arranged side by side along the wind direction A of the wind flowing into the fins 30.
- the fin 30 has a first surface 31 and a second surface 32.
- the second surface 32 is located on the opposite side to the first surface 31.
- the trough 30a is configured such that the fins 30 protrude in a direction from the first surface 31 toward the second surface 32.
- the peak portion 30 b is configured such that the fins 30 protrude in the direction from the second surface 32 toward the first surface 31. That is, the valley part 30a and the peak part 30b are configured to protrude in opposite directions.
- the first heat transfer tube portion 10 is connected to the valley portion 30 a on the first surface 31 of the fin 30.
- the 1st heat exchanger tube part 10 is arrange
- the second heat transfer tube portion 20 is connected to the peak portion 30 b on the second surface 32 of the fin 30.
- the 2nd heat exchanger tube part 20 is arrange
- the valley portion 30a has a plurality of valleys 30a1
- the mountain portion 30b has a plurality of peaks 30b1.
- the valley part 30a has two valleys 30a1, and the peak part 30b has two peaks 30b1.
- Each of the two first heat transfer tubes 11 is connected to each of the two valleys 30a1.
- Each of the two second heat transfer tubes 21 is connected to each of the two peaks 30b1. That is, four heat transfer tube groups including the first heat transfer tube 11 and the second heat transfer tube 21 are connected to one fin 30.
- the windward extending portion 30c is configured to extend straight from the valley portion 30a or the mountain portion 30b arranged on the most windward side toward the windward side. Extending straight toward the windward means extending along the wind direction toward the windward. That is, the windward extending portion 30c may be inclined or curved as long as it extends in the wind direction toward the windward.
- the windward extending portion 30c extends along the column direction D3.
- the windward extending part 30c is arranged at the center C in the direction in which the valley part 30a and the peak part 30b protrude.
- the windward extending portion 30c has a dimension larger than the diameter of each of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the column direction D3.
- the windward extending portion 30c has a dimension smaller than the distance (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3.
- the leeward extending part 30d is configured to extend straight from the valley part 30a and the mountain part 30b arranged most leeward of the wind toward the leeward side.
- To extend straight toward the lee means to extend along the wind direction toward the lee. That is, the leeward extending portion 30d may be inclined or curved as long as it extends in the wind direction toward the leeward.
- the leeward extending part 30d extends along the column direction D3.
- the leeward extending part 30d is arranged at the center C in the direction in which the valley part 30a and the peak part 30b protrude.
- the leeward extending part 30d has a dimension larger than the diameter of each of the first heat transfer tube part 10 and the second heat transfer tube part 20 in the column direction D3.
- the leeward extending portion 30d has a dimension smaller than the distance (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3.
- the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 are made of the same material.
- Each material of the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 is copper, for example.
- Each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20, and the fin 30 are connected by brazing. In this case, copper brazing may be used.
- the refrigerant flows into the inlet header 40 from the inlet pipe 60 connected to the inlet header 40 in a gas-liquid two-phase state.
- the gas-liquid two-phase refrigerant is distributed from the inlet header 40 to each tube group of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 and rises toward the outlet header 50.
- the gas-liquid two-phase refrigerant flows through the first heat transfer tube portion 10 and the second heat transfer tube portion 20, the air and heat around the first heat transfer tube portion, the second heat transfer tube portion 20, and the fins 30 are heated. It becomes a gas state by exchanging.
- the gaseous refrigerant merges at the outlet header 50 and flows out from the outlet pipe 70 connected to the outlet header 50.
- the effect of the heat exchanger 1 in this Embodiment is demonstrated.
- the first heat transfer tube portion 10 is connected to the valley portion 30 a of the fin 30, and the second heat transfer tube portion 20 is connected to the peak portion 30 b of the fin 30. .
- the assembly to the fin 30 of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 is easy. Therefore, manufacture of the heat exchanger 1 is easy.
- the valley portion 30a and the mountain portion 30b are arranged side by side along the wind direction A of the wind flowing into the fins 30, the draft resistance of the wind flowing along the fins 30 can be reduced. Therefore, the heat exchange efficiency can be improved.
- the fin 30 has a corrugated shape
- the fin 30 and the air come into contact between the fin 30 on the leeward side and the leeward side of the fin 30 compared to the case where the fin 30 has a linear shape.
- the area increases. For this reason, the heat transfer area of the fin 30 can be expanded.
- the fin 30 has a corrugated shape
- the flow of air flowing along the fin 30 meanders. For this reason, the distance which the fin 30 and air contact increases. Therefore, heat exchange efficiency can be improved.
- the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 extend in the direction of gravity.
- condensed water adheres to the first heat transfer tube unit 10, the second heat transfer tube unit 20, and the fins 30. Since the first heat transfer tube portion 10, the second heat transfer tube portion 20 and the fin 30 extend in the gravity direction D2, the condensed water is transferred to the first heat transfer tube portion 10, the second heat transfer tube portion 20 and the fin 30 and discharged downward. can do. Thereby, condensed water is drained without delay. Therefore, the drainage performance during normal operation and defrost operation after frosting is improved, and heat exchanger performance can be maintained high.
- the fin 30 has the windward extending portion 30c that extends straight from the valley portion 30a and the mountain portion 30b that are disposed most upwind toward the windward side. Is included. For this reason, when the heat exchanger 1 is used as an evaporator, generation
- the fin 30 includes the leeward extending portion 30d that extends straight from the valley portion 30a and the ridge portion 30b arranged most leeward toward the leeward side. Yes. For this reason, the air flowing downstream from the leeward extending portion 30d can be rectified. Further, the heat transfer area of the fins 30 can be increased by the leeward extending portion 30d.
- the fin 30 in the present embodiment is formed of an integral plate, the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fin 30 can be integrated. Therefore, the fin 30 to which the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are connected can be handled as a single heat transfer tube. For this reason, it becomes easy to handle the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 at the time of manufacture of heat exchanger 1. Therefore, the manufacturability of the heat exchanger 1 is increased.
- each of the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 is made of the same material. For this reason, the heat transfer resistance between each of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 and the fins 30 can be minimized. Thereby, heat exchange efficiency can be improved.
- the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20, and the fin 30 can be brazed with the same material. For this reason, each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 compared with the case where each of the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 is comprised with a different material. The contact resistance between each and the fin 30 can be reduced. Thereby, heat exchange efficiency can be improved.
- the heat exchanger 1 of each modified example has the same configuration as that of the heat exchanger 1 of the present embodiment, and thus the same configuration is denoted by the same reference numeral. Do not repeat the explanation.
- FIG. 5 is a side view of the heat exchanger 1 in Modification 1 of the present embodiment.
- FIG. 6 is a cross-sectional view of the heat exchanger 1 in Modification 1 of the present embodiment.
- a plurality of heat transfer units 100 are arranged in two rows.
- the plurality of heat transfer units 100 include a heat transfer unit 101 in a row (windward row) arranged on the windward side and a heat transfer unit 102 in a row (leeward row) arranged on the windward side.
- Each of the heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row are connected to the row-crossing header 80, and are connected to each other via the row-header header 80.
- the heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row are arranged so as to be shifted from each other in the step direction D1.
- the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 101 in the windward row, and the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 102 in the leeward row. Is arranged by shifting the distance of half the pitch (stage pitch) of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the step direction D1.
- the refrigerant flows into the inlet header 40 in a gas-liquid two-phase state from an inlet pipe 60 connected to the inlet header 40 of the heat transfer unit 101 in the windward row.
- the refrigerant in the gas-liquid two-phase state is distributed from the inlet header 40 to each tube group of the first heat transfer tube portion 10 and the second heat transfer tube portion 20, rises toward the outlet header 50, and then passes through the row header 80. It moves to the heat transfer unit 102 in the leeward row and is distributed to the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 101 in the leeward row.
- the refrigerant in the gas-liquid two-phase state flows through the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 102 in the leeward row, and thus the first heat transfer tube portion 10 and the second heat transfer tube portion 20. And it will be in a gas state by exchanging heat with the air around the fin 30.
- the gaseous refrigerant merges at the outlet header 50 and flows out from the outlet pipe 70 connected to the outlet header 50.
- the heat exchanger 1 in the first modification of the present embodiment in the heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row, from the first heat transfer tube portion 10 and the second heat transfer tube portion 20. Are arranged in a state shifted by a half (half pitch) of the step pitch in the step direction D1. For this reason, a temperature boundary layer is newly constructed at the front edge of the fin 30 of the leeward heat transfer unit 102. Thereby, a heat transfer rate improves.
- FIG. 7 is a side view of the heat exchanger 1 in Modification 2 of the present embodiment.
- the heat exchanger 1 includes the first heat transfer tube portion 10 and the second heat transfer tube portion near the inlet header 40. 20 is bent. Specifically, the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are bent inward in the column direction D3. The first heat transfer tube portion 10 and the second heat transfer tube portion 20 are bent between the fin 30 and the inlet header 40. The dimension of the inlet header 40 in the column direction D3 is smaller than the dimension of the outlet header 50 in the column direction.
- the volume of the inlet header 40 is reduced, so that the inlet header 40 can be reduced in size.
- the refrigerant is distributed to the tube group. It is possible to reduce variations in the refrigerant flow rate. Therefore, when the heat exchanger 1 is used as an evaporator, it is possible to prevent the superheat region from being varied due to the liquid refrigerant being biased in the heat exchanger 1. Thereby, it can suppress that heat exchange efficiency falls.
- FIG. 8 is a side view of the heat exchanger 1 in Modification 3 of the present embodiment.
- FIG. 9 is a cross-sectional view of the heat exchanger 1 in Modification 3 of the present embodiment.
- fin 30 includes a first fin portion 301 and a second fin portion 302.
- the 2nd fin part 302 is arrange
- the 1st fin part 301 and the 2nd fin part 302 contain the trough part 30a and the peak part 30b, respectively.
- Valley portions 30a and peak portions 30b of first fin portion 301 are opposite to valley portions 30a and peak portions 30b of second fin portion 302 with respect to first heat transfer tube portion 10 and second heat transfer tube portion 20, respectively.
- the 1st fin part 301 and the 2nd fin part 302 are joined to the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 by turns in the reverse direction.
- arrangement positioning of each 1st surface 31 and the 2nd surface 32 becomes reverse.
- the trough part 30a and the peak part 30b of the 1st fin part 301 are with respect to each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20.
- the second fin portion is disposed on the opposite side to the valley portion 30a and the peak portion 30b.
- the 1st fin part 301 and the 2nd fin part 302 are mutually arrange
- the manufacturing method of the heat exchanger 1 in the modification 3 of this Embodiment is demonstrated.
- the manufacturing method of the heat exchanger 1 in the modification 3 of this Embodiment is provided with the following structure.
- the tube group consisting of the fins 30, the first heat transfer tube portion 10, and the second heat transfer tube portion 20 is combined.
- the fins 30 are pulled from both sides in the row direction D3 (width direction).
- the fins 30 are pulled in the column direction D3 (width direction).
- the tube group which consists of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 is inserted in the inlet header 40, the outlet header 50, and the row crossing header 80, respectively.
- a brazing material is disposed at the joint between each tube group and each header, and brazing in the furnace is performed.
- FIG. 10 is a cross-sectional view of the heat exchanger 1 in Modification 4 of the present embodiment.
- the heat transfer units 100 adjacent to each other in the step direction D1 are shifted in the column direction D3.
- the heat transfer units 100 adjacent to each other in the step direction D1 have a dimension (half pitch) that is half the pitch (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3. It's off.
- the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 100 adjacent to each other in the step direction D1 are shifted in the column direction D3.
- 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 of the heat transfer unit 100 adjacent to the stage direction D1 have not shifted
- FIG. 6 is a refrigerant circuit diagram of an air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 in the present embodiment.
- the air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 of the present embodiment includes a compressor 33, a condensation heat exchanger 34, an expansion device 35, an evaporating heat exchanger 36, A first blower 37 and a second blower 38 are provided.
- the refrigerant circuit is configured by the compressor 33, the condensing heat exchanger 34, the expansion device 35, and the evaporating heat exchanger 36 being connected via a pipe.
- the refrigerant circulates through the refrigerant circuit in the order of the compressor 33, the condensation heat exchanger 34, the expansion device 35, and the evaporating heat exchanger 36 as indicated by arrows in the figure.
- the compressor 33 is configured to compress the refrigerant.
- the compressor 33 is configured to circulate a refrigerant with the heat exchanger.
- the condensation heat exchanger 34 functions as a condenser and is configured to condense the refrigerant compressed by the compressor 33.
- the condensing heat exchanger 34 is provided with a first blower 37.
- the first blower 37 is configured to adjust the amount of heat exchange between the refrigerant and the air in the condensing heat exchanger 34.
- the expansion device 35 is configured to depressurize the refrigerant condensed by the condensation heat exchanger 34.
- the evaporating heat exchanger 36 functions as an evaporator and is configured to evaporate the refrigerant decompressed by the expansion device 35.
- the evaporative heat exchanger 36 is provided with a second blower 38.
- the second blower 38 is configured to adjust the amount of heat exchange between the refrigerant and the air in the evaporative heat exchanger 36.
- the heat exchanger 1 in the present embodiment described above can be used for either or both of the condensation heat exchanger 34 and the evaporation heat exchanger 36.
- the air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 with high energy efficiency can be realized.
- energy efficiency is constituted by the following equation.
- Heating energy efficiency indoor heat exchanger (condenser) capacity / total input
- Cooling energy efficiency indoor heat exchanger (evaporator) capacity / total input
- coolants such as R410A, R32, HFO1234yf.
- the heat exchanger 1 in this Embodiment mentioned above is used suitably with an outdoor unit, even when the heat exchanger 1 in this Embodiment mentioned above is used with an indoor unit, there can exist the same effect. it can.
- the refrigeration cycle apparatus 300 in the present embodiment at least one of the condensation heat exchanger 34 and the evaporation heat exchanger 36 as the heat exchanger 1 and the condensation heat exchanger 34 and the evaporation as the heat exchanger 1 are used. And a compressor 33 that circulates refrigerant between at least one of the heat exchangers 36. For this reason, the refrigerating-cycle apparatus 300 with which manufacture of the heat exchanger 1 is easy can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger (1) is provided with a first heat transfer pipe unit (10), a second heat transfer pipe unit (20), and wave-shaped fins (30) having valley portions and crest portions. Each fin (30) includes a first surface and a second surface. The first heat transfer pipe unit (10) is connected to valley portions on the first surface of the fin (30). The second heat transfer pipe unit (20) is connected to crest portions on the second surface of the fin (30). The valley portions and crest portions are disposed in a parallel arrangement so as to follow the airstream direction in which air flows on the fins (30).
Description
本発明は、熱交換器および冷凍サイクル装置に関するものである。
The present invention relates to a heat exchanger and a refrigeration cycle apparatus.
冷凍サイクル装置の一例としての空気調和機に用いられる熱交換器は、たとえば特開2006-84078号公報(特許文献1)に開示されている。この公報に記載された熱交換器は、複数の細径伝熱管ユニットを備えた細径多管式熱交換器である。複数の細径伝熱管ユニットの各々は管体部形成用の凹溝部を有する左右対称の2枚のフィンプレートを貼り合せることにより構成されている。
A heat exchanger used in an air conditioner as an example of a refrigeration cycle apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-84078 (Patent Document 1). The heat exchanger described in this publication is a small-diameter multi-tube heat exchanger having a plurality of small-diameter heat transfer tube units. Each of the plurality of small-diameter heat transfer tube units is configured by laminating two symmetrical fin plates each having a groove portion for forming a tube body portion.
上記の公報に記載された熱交換器では、2枚のフィンプレートの各々の凹溝部同士を左右対称に合わせるように2枚のフィンプレートが互いに貼り合わされないと、凹溝部からなる流路に貼り合せのためのろう材が侵入する。このため、フィンプレート同士の組立ての難易度が高い。したがって、熱交換器を製造し難いという問題がある。
In the heat exchanger described in the above publication, if the two fin plates are not bonded to each other so that the respective concave grooves of the two fin plates are aligned symmetrically, they are attached to the flow path formed by the concave grooves. The brazing material for matching enters. For this reason, the difficulty of assembling the fin plates is high. Therefore, there is a problem that it is difficult to manufacture the heat exchanger.
本発明は、上記課題に鑑みてなされたものであり、その目的は、製造が容易となる熱交換器およびそれを備えた冷凍サイクル装置を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide a heat exchanger that can be easily manufactured and a refrigeration cycle apparatus including the heat exchanger.
本発明の熱交換器は、第1伝熱管部と、第1伝熱管部に並走するように配置された第2伝熱管部と、谷部および山部を有する波形形状のフィンとを備えている。フィンは、第1面と、第1面と反対側の第2面とを含む。谷部は、第1面から第2面に向かう方向にフィンが突出するように構成されている。山部は、第2面から第1面に向かう方向にフィンが突出するように構成されている。第1伝熱管部は、フィンの第1面において谷部に接続されている。第2伝熱管部は、フィンの第2面において山部に接続されている。谷部および山部は、フィンに流れ込む風の風向に沿うように並んで配置されている。
The heat exchanger of the present invention includes a first heat transfer tube portion, a second heat transfer tube portion arranged so as to run parallel to the first heat transfer tube portion, and a corrugated fin having a valley portion and a peak portion. ing. The fin includes a first surface and a second surface opposite to the first surface. The trough is configured such that the fin protrudes in a direction from the first surface toward the second surface. The mountain portion is configured such that the fin protrudes in a direction from the second surface toward the first surface. The 1st heat exchanger tube part is connected to the trough part in the 1st surface of a fin. The 2nd heat exchanger tube part is connected to the peak part in the 2nd surface of a fin. The valley and the mountain are arranged side by side along the wind direction of the wind flowing into the fin.
本発明の熱交換器によれば、第1伝熱管部はフィンの谷部に接続されており、第2伝熱管部はフィンの山部に接続されている。このため、第1伝熱管部および第2伝熱管部のフィンへの組立てが容易である。したがって、熱交換器の製造が容易である。
According to the heat exchanger of the present invention, the first heat transfer tube portion is connected to the fin valley portion, and the second heat transfer tube portion is connected to the fin peak portion. For this reason, the assembly to the fin of the 1st heat exchanger tube part and the 2nd heat exchanger tube part is easy. Therefore, it is easy to manufacture the heat exchanger.
以下、本発明の実施の形態について図に基づいて説明する。
図1~図4を参照して、本発明の一実施の形態における熱交換器1の構成について説明する。図1は本実施の形態における熱交換器1の斜視図である。図2は本実施の形態における熱交換器1の正面図である。図3は本実施の形態における熱交換器1の側面図である。図4は本実施の形態における熱交換器1の断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
With reference to FIGS. 1 to 4, the configuration of theheat exchanger 1 in one embodiment of the present invention will be described. FIG. 1 is a perspective view of a heat exchanger 1 in the present embodiment. FIG. 2 is a front view of the heat exchanger 1 in the present embodiment. FIG. 3 is a side view of the heat exchanger 1 in the present embodiment. FIG. 4 is a cross-sectional view of the heat exchanger 1 in the present embodiment.
図1~図4を参照して、本発明の一実施の形態における熱交換器1の構成について説明する。図1は本実施の形態における熱交換器1の斜視図である。図2は本実施の形態における熱交換器1の正面図である。図3は本実施の形態における熱交換器1の側面図である。図4は本実施の形態における熱交換器1の断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
With reference to FIGS. 1 to 4, the configuration of the
図1および図2に示されるように、本実施の形態における熱交換器1は、フィンチューブ型熱交換器である。本実施の形態における熱交換器1は、たとえば空気調和機、空調冷凍装置などに用いられる。本実施の形態における熱交換器1は、第1伝熱管部10と、第2伝熱管部20と、フィン30と、入口ヘッダ40と、出口ヘッダ50と、入口管60と、出口管70とを備えている。
As shown in FIG. 1 and FIG. 2, the heat exchanger 1 in the present embodiment is a finned tube heat exchanger. The heat exchanger 1 in this Embodiment is used for an air conditioner, an air-conditioning freezer, etc., for example. The heat exchanger 1 in the present embodiment includes a first heat transfer tube portion 10, a second heat transfer tube portion 20, fins 30, an inlet header 40, an outlet header 50, an inlet pipe 60, and an outlet pipe 70. It has.
第1伝熱管部10、第2伝熱管部20およびフィン30は、入口ヘッダ40と出口ヘッダ50との間に配置されている。第1伝熱管部10および第2伝熱管部20はそれぞれ入口ヘッダ40から出口ヘッダ50に冷媒を流すように入口ヘッダ40および出口ヘッダ50に接続されている。入口ヘッダ40は出口ヘッダ50と互いに向かい合うように配置されている。入口ヘッダ40は重力方向D2に出口ヘッダ50の下方に配置されている。入口ヘッダ40および出口ヘッダ50はそれぞれ内部に冷媒が流れる冷媒通路を有している。入口ヘッダ40に入口管60が接続されている。出口ヘッダ50に出口管70が接続されている。
The first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 are disposed between the inlet header 40 and the outlet header 50. The first heat transfer tube portion 10 and the second heat transfer tube portion 20 are connected to the inlet header 40 and the outlet header 50 so that the refrigerant flows from the inlet header 40 to the outlet header 50, respectively. The inlet header 40 is disposed so as to face the outlet header 50. The inlet header 40 is disposed below the outlet header 50 in the gravity direction D2. Each of the inlet header 40 and the outlet header 50 has a refrigerant passage through which a refrigerant flows. An inlet pipe 60 is connected to the inlet header 40. An outlet pipe 70 is connected to the outlet header 50.
第1伝熱管部10および第2伝熱管部20はフィン30に接続されることにより一体的に構成されている。一体的に構成された第1伝熱管部10、第2伝熱管部20およびフィン30は、1つの伝熱ユニット100を構成している。本実施の形態では、複数の伝熱ユニット100が段方向D1に並んで配置されている。
The first heat transfer tube portion 10 and the second heat transfer tube portion 20 are integrally configured by being connected to the fins 30. The first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 that are integrally configured constitute one heat transfer unit 100. In the present embodiment, a plurality of heat transfer units 100 are arranged side by side in the step direction D1.
図2および図3に示されるように、第1伝熱管部10は重力方向D2に延びている。第1伝熱管部10は円筒形状の管である。第1伝熱管部10は内部に冷媒が流れるように構成されている。第1伝熱管部10は直線状に構成されている。本実施の形態では、第1伝熱管部10は複数の第1伝熱管11を有している。複数の第1伝熱管11は互いに平行に配置されている。具体的には、第1伝熱管部10は2本の第1伝熱管11を有している。
2 and 3, the first heat transfer tube portion 10 extends in the gravity direction D2. The first heat transfer tube portion 10 is a cylindrical tube. The 1st heat exchanger tube part 10 is comprised so that a refrigerant | coolant may flow inside. The 1st heat exchanger tube part 10 is comprised by the linear form. In the present embodiment, the first heat transfer tube section 10 has a plurality of first heat transfer tubes 11. The plurality of first heat transfer tubes 11 are arranged in parallel to each other. Specifically, the first heat transfer tube portion 10 has two first heat transfer tubes 11.
第2伝熱管部20は第1伝熱管部10に並走するように配置されている。第2伝熱管部20は第1伝熱管部10と平行に配置されている。第2伝熱管部20は、列方向D3に第1伝熱管部10に隣り合うように配置されている。第2伝熱管部20は重力方向D2に延びている。第2伝熱管21は円筒形状の管である。第2伝熱管部20は内部に冷媒が流れるように構成されている。第2伝熱管部20は直線状に構成されている。本実施の形態では、第2伝熱管部20は複数の第2伝熱管21を有している。複数の第2伝熱管21は互いに平行に配置されている。複数の第2伝熱管21の各々は複数の第1伝熱管11の各々と交互に並んで配置されている。具体的には、第2伝熱管部20は2本の第1伝熱管11を有している。
The second heat transfer tube portion 20 is arranged so as to run in parallel with the first heat transfer tube portion 10. The second heat transfer tube portion 20 is disposed in parallel with the first heat transfer tube portion 10. The second heat transfer tube portion 20 is disposed so as to be adjacent to the first heat transfer tube portion 10 in the column direction D3. The second heat transfer tube portion 20 extends in the gravity direction D2. The second heat transfer tube 21 is a cylindrical tube. The 2nd heat exchanger tube part 20 is comprised so that a refrigerant | coolant may flow inside. The 2nd heat exchanger tube part 20 is constituted in the shape of a straight line. In the present embodiment, the second heat transfer tube section 20 has a plurality of second heat transfer tubes 21. The plurality of second heat transfer tubes 21 are arranged in parallel to each other. Each of the plurality of second heat transfer tubes 21 is arranged alternately with each of the plurality of first heat transfer tubes 11. Specifically, the second heat transfer tube section 20 has two first heat transfer tubes 11.
図3および図4に示されるように、フィン30は波形形状に蛇行するように構成されている。フィン30は重力方向に延びている。フィン30は一体の板で構成されている。つまり、フィン30は、重力方向に延びる平面を有している。
3 and 4, the fin 30 is configured to meander in a wave shape. The fins 30 extend in the direction of gravity. The fin 30 is formed of an integral plate. That is, the fin 30 has a plane extending in the direction of gravity.
波形形状のフィン30は、谷部30aと、山部30bと、風上延在部30cと、風下延在部30dとを有している。谷部30aと山部30bとは互いに隣り合うように配置されている。つまり、谷部30aと山部30bとは交互に並んで配置されている。谷部30aおよび山部30bは、フィン30に流れ込む風の風向Aに沿うように並んで配置されている。
The corrugated fin 30 has a valley 30a, a mountain 30b, an upwind extending portion 30c, and an upwind extending portion 30d. The valley part 30a and the peak part 30b are arranged so as to be adjacent to each other. That is, the valleys 30a and the peaks 30b are alternately arranged. The valley portion 30 a and the mountain portion 30 b are arranged side by side along the wind direction A of the wind flowing into the fins 30.
フィン30は、第1面31と、第2面32とを有している。第2面32は第1面31と反対側に位置している。谷部30aは、第1面31から第2面32に向かう方向にフィン30が突出するように構成されている。山部30bは、第2面32から第1面31に向かう方向にフィン30が突出するように構成されている。つまり、谷部30aと山部30bとは互いに反対方向に突出するように構成されている。
The fin 30 has a first surface 31 and a second surface 32. The second surface 32 is located on the opposite side to the first surface 31. The trough 30a is configured such that the fins 30 protrude in a direction from the first surface 31 toward the second surface 32. The peak portion 30 b is configured such that the fins 30 protrude in the direction from the second surface 32 toward the first surface 31. That is, the valley part 30a and the peak part 30b are configured to protrude in opposite directions.
第1伝熱管部10は、フィン30の第1面31において谷部30aに接続されている。第1伝熱管部10は、谷部30aの底に配置されている。第2伝熱管部20は、フィン30の第2面32において山部30bに接続されている。第2伝熱管部20は、山部30bの頂に配置されている。本実施の形態では、谷部30aは複数の谷30a1を有しており、山部30bは複数の山30b1を有している。具体的には、谷部30aは2つの谷30a1を有しており、山部30bは2つの山30b1を有している。2つの谷30a1の各々に2本の第1伝熱管11の各々がそれぞれ接続されている。2つの山30b1の各々に2本の第2伝熱管21の各々がそれぞれ接続されている。つまり、1枚のフィン30に第1伝熱管11および第2伝熱管21からなる4本の伝熱管群が接続されている。
The first heat transfer tube portion 10 is connected to the valley portion 30 a on the first surface 31 of the fin 30. The 1st heat exchanger tube part 10 is arrange | positioned at the bottom of the trough part 30a. The second heat transfer tube portion 20 is connected to the peak portion 30 b on the second surface 32 of the fin 30. The 2nd heat exchanger tube part 20 is arrange | positioned at the top of the peak part 30b. In the present embodiment, the valley portion 30a has a plurality of valleys 30a1, and the mountain portion 30b has a plurality of peaks 30b1. Specifically, the valley part 30a has two valleys 30a1, and the peak part 30b has two peaks 30b1. Each of the two first heat transfer tubes 11 is connected to each of the two valleys 30a1. Each of the two second heat transfer tubes 21 is connected to each of the two peaks 30b1. That is, four heat transfer tube groups including the first heat transfer tube 11 and the second heat transfer tube 21 are connected to one fin 30.
風上延在部30cは、風の最も風上に配置された谷部30aおよび山部30bのいずれかから風上に向かって直っすぐに延びるように構成されている。風上に向かってまっすぐに延びるとは、風上に向かって風向きに沿って延びることと意味している。つまり、風上延在部30cは風上に向かって風向きに沿って延びる範囲であれば、傾斜または湾曲していてもよい。風上延在部30cは列方向D3に沿って延在している。風上延在部30cは谷部30aと山部30bとが突出する方向の中心Cに配置されている。風上延在部30cは、列方向D3において、第1伝熱管部10および第2伝熱管部20の各々の直径よりも大きい寸法を有している。また、風上延在部30cは、列方向D3において、第1伝熱管部10と第2伝熱管部20との距離(列ピッチ)よりも小さい寸法を有している。
The windward extending portion 30c is configured to extend straight from the valley portion 30a or the mountain portion 30b arranged on the most windward side toward the windward side. Extending straight toward the windward means extending along the wind direction toward the windward. That is, the windward extending portion 30c may be inclined or curved as long as it extends in the wind direction toward the windward. The windward extending portion 30c extends along the column direction D3. The windward extending part 30c is arranged at the center C in the direction in which the valley part 30a and the peak part 30b protrude. The windward extending portion 30c has a dimension larger than the diameter of each of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the column direction D3. The windward extending portion 30c has a dimension smaller than the distance (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3.
風下延在部30dは、風の最も風下に配置された谷部30aおよび山部30bのいずれかから風下に向かって直っすぐに延びるように構成されている。風下に向かってまっすぐに延びるとは、風下に向かって風向きに沿って延びることと意味している。つまり、風下延在部30dは風下に向かって風向きに沿って延びる範囲であれば、傾斜または湾曲していてもよい。風下延在部30dは列方向D3に沿って延在している。風下延在部30dは谷部30aと山部30bとが突出する方向の中心Cに配置されている。風下延在部30dは、列方向D3において、第1伝熱管部10および第2伝熱管部20の各々の直径よりも大きい寸法を有している。また、風下延在部30dは、列方向D3において、第1伝熱管部10と第2伝熱管部20との距離(列ピッチ)よりも小さい寸法を有している。
The leeward extending part 30d is configured to extend straight from the valley part 30a and the mountain part 30b arranged most leeward of the wind toward the leeward side. To extend straight toward the lee means to extend along the wind direction toward the lee. That is, the leeward extending portion 30d may be inclined or curved as long as it extends in the wind direction toward the leeward. The leeward extending part 30d extends along the column direction D3. The leeward extending part 30d is arranged at the center C in the direction in which the valley part 30a and the peak part 30b protrude. The leeward extending part 30d has a dimension larger than the diameter of each of the first heat transfer tube part 10 and the second heat transfer tube part 20 in the column direction D3. The leeward extending portion 30d has a dimension smaller than the distance (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3.
第1伝熱管部10、第2伝熱管部20およびフィン30のそれぞれは同じ材料で構成されている。第1伝熱管部10、第2伝熱管部20およびフィン30のそれぞれの材料は、たとえば銅である。第1伝熱管部10および第2伝熱管部20のそれぞれとフィン30とはろう付けで接続されている。この場合、銅ろう付けが用いられてもよい。
The first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 are made of the same material. Each material of the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 is copper, for example. Each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20, and the fin 30 are connected by brazing. In this case, copper brazing may be used.
続いて、本実施の形態の熱交換器1の動作を説明する。ここでは、一例として熱交換器1が蒸発器として用いられる場合について説明する。
Subsequently, the operation of the heat exchanger 1 of the present embodiment will be described. Here, a case where the heat exchanger 1 is used as an evaporator will be described as an example.
熱交換器1が蒸発器として用いられる場合、冷媒は入口ヘッダ40に接続された入口管60より入口ヘッダ40に気液2相状態で流入する。この気液2相状態の冷媒は、入口ヘッダ40から第1伝熱管部10および第2伝熱管部20の各管群に分配され、出口ヘッダ50に向かって上昇する。この気液2相状態の冷媒は、第1伝熱管部10および第2伝熱管部20内を流れる際に、第1伝熱管部、第2伝熱管部20およびフィン30の周囲の空気と熱交換することによりガス状態となる。このガス状態の冷媒は出口ヘッダ50で合流し、出口ヘッダ50に接続された出口管70より流出する。
When the heat exchanger 1 is used as an evaporator, the refrigerant flows into the inlet header 40 from the inlet pipe 60 connected to the inlet header 40 in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is distributed from the inlet header 40 to each tube group of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 and rises toward the outlet header 50. When the gas-liquid two-phase refrigerant flows through the first heat transfer tube portion 10 and the second heat transfer tube portion 20, the air and heat around the first heat transfer tube portion, the second heat transfer tube portion 20, and the fins 30 are heated. It becomes a gas state by exchanging. The gaseous refrigerant merges at the outlet header 50 and flows out from the outlet pipe 70 connected to the outlet header 50.
次に、本実施の形態における熱交換器1の作用効果について説明する。
本実施の形態における熱交換器1によれば、第1伝熱管部10はフィン30の谷部30aに接続されており、第2伝熱管部20はフィン30の山部30bに接続されている。このため、第1伝熱管部10および第2伝熱管部20のフィン30への組立てが容易である。したがって、熱交換器1の製造が容易である。 Next, the effect of theheat exchanger 1 in this Embodiment is demonstrated.
According to theheat exchanger 1 in the present embodiment, the first heat transfer tube portion 10 is connected to the valley portion 30 a of the fin 30, and the second heat transfer tube portion 20 is connected to the peak portion 30 b of the fin 30. . For this reason, the assembly to the fin 30 of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 is easy. Therefore, manufacture of the heat exchanger 1 is easy.
本実施の形態における熱交換器1によれば、第1伝熱管部10はフィン30の谷部30aに接続されており、第2伝熱管部20はフィン30の山部30bに接続されている。このため、第1伝熱管部10および第2伝熱管部20のフィン30への組立てが容易である。したがって、熱交換器1の製造が容易である。 Next, the effect of the
According to the
また、第1伝熱管部10および第2伝熱管部20をフィン30に接続するためのろう材が第1伝熱管部10および第2伝熱管部20のそれぞれの中に侵入することを防ぐことができる。したがって、この点からも熱交換器1の製造が容易である。
Further, it is possible to prevent the brazing material for connecting the first heat transfer tube portion 10 and the second heat transfer tube portion 20 to the fins 30 from entering each of the first heat transfer tube portion 10 and the second heat transfer tube portion 20. Can do. Therefore, the manufacture of the heat exchanger 1 is easy also from this point.
また、谷部30aと山部30bとはフィン30に流れ込む風の風向Aに沿うように並んで配置されているため、フィン30に沿って流れる風の通風抵抗を低減させることができる。したがって、熱交換効率を向上させることができる。
In addition, since the valley portion 30a and the mountain portion 30b are arranged side by side along the wind direction A of the wind flowing into the fins 30, the draft resistance of the wind flowing along the fins 30 can be reduced. Therefore, the heat exchange efficiency can be improved.
また、フィン30は波形形状であるため、フィン30が直線形状である場合に比べて、フィン30の風上側の端部から風下側の端部までの間で、フィン30と空気とが接触する面積が増える。このため、フィン30の伝熱面積を拡大することができる。また、フィン30は波形形状であるため、フィン30に沿って流れる空気の流れが蛇行する。このため、フィン30と空気とが接触する距離が増える。よって、熱交換効率を向上させることができる。
Further, since the fin 30 has a corrugated shape, the fin 30 and the air come into contact between the fin 30 on the leeward side and the leeward side of the fin 30 compared to the case where the fin 30 has a linear shape. The area increases. For this reason, the heat transfer area of the fin 30 can be expanded. In addition, since the fin 30 has a corrugated shape, the flow of air flowing along the fin 30 meanders. For this reason, the distance which the fin 30 and air contact increases. Therefore, heat exchange efficiency can be improved.
本実施の形態における熱交換器1によれば、第1伝熱管部10、第2伝熱管部20およびフィン30が重力方向に延びている。熱交換器1が室外機において蒸発器として用いられる場合、第1伝熱管部10、第2伝熱管部20およびフィン30に凝縮水が付着する。第1伝熱管部10、第2伝熱管部20およびフィン30が重力方向D2に延びるため、凝縮水を第1伝熱管部10、第2伝熱管部20およびフィン30を伝わらせて下方に排出することができる。これにより、凝縮水が滞りなく排水される。したがって、通常の運転時および着霜後のデフロスト運転時の排水性が良好となるため、熱交換器性能を高く維持することができる。
According to the heat exchanger 1 in the present embodiment, the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 extend in the direction of gravity. When the heat exchanger 1 is used as an evaporator in an outdoor unit, condensed water adheres to the first heat transfer tube unit 10, the second heat transfer tube unit 20, and the fins 30. Since the first heat transfer tube portion 10, the second heat transfer tube portion 20 and the fin 30 extend in the gravity direction D2, the condensed water is transferred to the first heat transfer tube portion 10, the second heat transfer tube portion 20 and the fin 30 and discharged downward. can do. Thereby, condensed water is drained without delay. Therefore, the drainage performance during normal operation and defrost operation after frosting is improved, and heat exchanger performance can be maintained high.
本実施の形態における熱交換器1によれば、フィン30は、最も風上に配置された谷部30aおよび山部30bのいずれかから風上に向かって直っすぐに延びる風上延在部30cを含んでいる。このため、熱交換器1が蒸発器として使用される場合に、フィン30に付着する霜の発生を抑制することができる。また、風上延在部30cによりフィン30の伝熱面積を増やすことができる。
According to the heat exchanger 1 in the present embodiment, the fin 30 has the windward extending portion 30c that extends straight from the valley portion 30a and the mountain portion 30b that are disposed most upwind toward the windward side. Is included. For this reason, when the heat exchanger 1 is used as an evaporator, generation | occurrence | production of the frost adhering to the fin 30 can be suppressed. Further, the heat transfer area of the fin 30 can be increased by the windward extending portion 30c.
本実施の形態における熱交換器1によれば、フィン30は、最も風下に配置された谷部30aおよび山部30bのいずれかから風下に向かって直っすぐに延びる風下延在部30dを含んでいる。このため、風下延在部30dから下流に流れる空気を整流することができる。また、風下延在部30dによりフィン30の伝熱面積を増やすことができる。
According to the heat exchanger 1 in the present embodiment, the fin 30 includes the leeward extending portion 30d that extends straight from the valley portion 30a and the ridge portion 30b arranged most leeward toward the leeward side. Yes. For this reason, the air flowing downstream from the leeward extending portion 30d can be rectified. Further, the heat transfer area of the fins 30 can be increased by the leeward extending portion 30d.
本実施の形態におけるフィン30は、一体の板で構成されているため、第1伝熱管部10と第2伝熱管部20とフィン30とを一体化することができる。したがって、第1伝熱管部10および第2伝熱管部20が接続されたフィン30を1本の伝熱管のように一体的に取り扱うことができる。このため、熱交換器1の製造時に第1伝熱管部10、第2伝熱管部20およびフィン30を取り扱い易くなる。したがって、熱交換器1の製造性が高くなる。
Since the fin 30 in the present embodiment is formed of an integral plate, the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fin 30 can be integrated. Therefore, the fin 30 to which the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are connected can be handled as a single heat transfer tube. For this reason, it becomes easy to handle the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 at the time of manufacture of heat exchanger 1. Therefore, the manufacturability of the heat exchanger 1 is increased.
本実施の形態における熱交換器1によれば、第1伝熱管部10、第2伝熱管部20およびフィン30のそれぞれは同じ材料で構成されている。このため、第1伝熱管部10および第2伝熱管部20のぞれぞれとフィン30との間の伝熱抵抗を最小化することができる。これにより、熱交換効率を向上させることができる。また、第1伝熱管部10および第2伝熱管部20とフィン30とを同じ材料でろう付けすることができる。このため、第1伝熱管部10、第2伝熱管部20およびフィン30のそれぞれが異なる材料で構成されている場合に比べて、第1伝熱管部10および第2伝熱管部20のぞれぞれとフィン30との接触抵抗を低減させることができる。これにより、熱交換効率を向上させることができる。
According to the heat exchanger 1 in the present embodiment, each of the first heat transfer tube portion 10, the second heat transfer tube portion 20, and the fins 30 is made of the same material. For this reason, the heat transfer resistance between each of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 and the fins 30 can be minimized. Thereby, heat exchange efficiency can be improved. Moreover, the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20, and the fin 30 can be brazed with the same material. For this reason, each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 compared with the case where each of the 1st heat exchanger tube part 10, the 2nd heat exchanger tube part 20, and the fin 30 is comprised with a different material. The contact resistance between each and the fin 30 can be reduced. Thereby, heat exchange efficiency can be improved.
次に、本実施の形態の熱交換器1の各変形例について説明する。なお、特に言及しない限り、各変形例の熱交換器1は上記の本実施の形態の熱交換器1と同様の構成を備えているため、同一の構成には同一の符号を付し、その説明を繰り返さない。
Next, each modification of the heat exchanger 1 of the present embodiment will be described. Unless otherwise specified, the heat exchanger 1 of each modified example has the same configuration as that of the heat exchanger 1 of the present embodiment, and thus the same configuration is denoted by the same reference numeral. Do not repeat the explanation.
まず、図5および図6を参照して、本実施の形態の変形例1における熱交換器1について説明する。図5は本実施の形態の変形例1における熱交換器1の側面図である。図6は本実施の形態の変形例1における熱交換器1の断面図である。
First, with reference to FIG. 5 and FIG. 6, the heat exchanger 1 in the modification 1 of this Embodiment is demonstrated. FIG. 5 is a side view of the heat exchanger 1 in Modification 1 of the present embodiment. FIG. 6 is a cross-sectional view of the heat exchanger 1 in Modification 1 of the present embodiment.
図5および図6に示されるように、本実施の形態の変形例1における熱交換器1では、複数の伝熱ユニット100が2列に配置されている。複数の伝熱ユニット100は、風上に配置された列(風上列)の伝熱ユニット101と、風下に配置された列(風下列)の伝熱ユニット102とを有している。風上列の伝熱ユニット101と風下列の伝熱ユニット102の各々は列跨ぎヘッダ80に接続されており、列跨ぎヘッダ80を介して互いに接続されている。
As shown in FIG. 5 and FIG. 6, in the heat exchanger 1 in the first modification of the present embodiment, a plurality of heat transfer units 100 are arranged in two rows. The plurality of heat transfer units 100 include a heat transfer unit 101 in a row (windward row) arranged on the windward side and a heat transfer unit 102 in a row (leeward row) arranged on the windward side. Each of the heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row are connected to the row-crossing header 80, and are connected to each other via the row-header header 80.
風上列の伝熱ユニット101と、風下列の伝熱ユニット102とは互いに段方向D1にずれて配置されている。具体的には、風上列の伝熱ユニット101の第1伝熱管部10および第2伝熱管部20と、風下列の伝熱ユニット102の第1伝熱管部10および第2伝熱管部20とは、段方向D1の第1伝熱管部10および第2伝熱管部20のピッチ(段ピッチ)の半分の距離をずらして配置されている。
The heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row are arranged so as to be shifted from each other in the step direction D1. Specifically, the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 101 in the windward row, and the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 102 in the leeward row. Is arranged by shifting the distance of half the pitch (stage pitch) of the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the step direction D1.
熱交換器1が室外機の蒸発器として用いられる場合、冷媒は風上列の伝熱ユニット101の入口ヘッダ40に接続された入口管60より入口ヘッダ40に気液2相状態で流入する。この気液2相状態の冷媒は、入口ヘッダ40から第1伝熱管部10および第2伝熱管部20の各管群に分配され、出口ヘッダ50に向かって上昇した後、列跨ぎヘッダ80で風下列の伝熱ユニット102へ移動し、風下列の伝熱ユニット101の第1伝熱管部10および第2伝熱管部20に分配される。この気液2相状態の冷媒は、風下列の伝熱ユニット102の第1伝熱管部10および第2伝熱管部20内を流れる際に、第1伝熱管部10、第2伝熱管部20およびフィン30の周囲の空気と熱交換することによりガス状態となる。このガス状態の冷媒は出口ヘッダ50で合流し、出口ヘッダ50に接続された出口管70より流出する。
When the heat exchanger 1 is used as an evaporator of an outdoor unit, the refrigerant flows into the inlet header 40 in a gas-liquid two-phase state from an inlet pipe 60 connected to the inlet header 40 of the heat transfer unit 101 in the windward row. The refrigerant in the gas-liquid two-phase state is distributed from the inlet header 40 to each tube group of the first heat transfer tube portion 10 and the second heat transfer tube portion 20, rises toward the outlet header 50, and then passes through the row header 80. It moves to the heat transfer unit 102 in the leeward row and is distributed to the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 101 in the leeward row. The refrigerant in the gas-liquid two-phase state flows through the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 102 in the leeward row, and thus the first heat transfer tube portion 10 and the second heat transfer tube portion 20. And it will be in a gas state by exchanging heat with the air around the fin 30. The gaseous refrigerant merges at the outlet header 50 and flows out from the outlet pipe 70 connected to the outlet header 50.
本実施の形態の変形例1における熱交換器1によれば、風上列の伝熱ユニット101と風下列の伝熱ユニット102とにおいて、第1伝熱管部10および第2伝熱管部20からなる管群が段方向D1に段ピッチの半分(半ピッチ)だけずらした状態で配置されている。このため、風下列の伝熱ユニット102のフィン30の前縁部で新規に温度境界層が構築される。これにより、熱伝達率が向上する。また、本実施の形態の変形例1における熱交換器1では、段方向D1には第1伝熱管部10および第2伝熱管部20同士が拘束されていないため、段方向D1の段ピッチ調整が容易となる。
According to the heat exchanger 1 in the first modification of the present embodiment, in the heat transfer unit 101 in the windward row and the heat transfer unit 102 in the leeward row, from the first heat transfer tube portion 10 and the second heat transfer tube portion 20. Are arranged in a state shifted by a half (half pitch) of the step pitch in the step direction D1. For this reason, a temperature boundary layer is newly constructed at the front edge of the fin 30 of the leeward heat transfer unit 102. Thereby, a heat transfer rate improves. Moreover, in the heat exchanger 1 in the modification 1 of this Embodiment, since the 1st heat-transfer tube part 10 and the 2nd heat-transfer tube part 20 are not restrained in the step direction D1, the step pitch adjustment of the step direction D1 Becomes easy.
続いて、図7を参照して、本実施の形態の変形例2における熱交換器1について説明する。図7は、本実施の形態の変形例2における熱交換器1の側面図である。
Subsequently, with reference to FIG. 7, the heat exchanger 1 in Modification 2 of the present embodiment will be described. FIG. 7 is a side view of the heat exchanger 1 in Modification 2 of the present embodiment.
図7に示されるように、本実施の形態の変形例2における風上列の伝熱ユニット101では、熱交換器1は、入口ヘッダ40付近の第1伝熱管部10および第2伝熱管部20が屈曲されている。具体的には、第1伝熱管部10および第2伝熱管部20が列方向D3において内側に屈曲されている。第1伝熱管部10および第2伝熱管部20は、フィン30と、入口ヘッダ40との間で屈曲されている。入口ヘッダ40の列方向D3の寸法は、出口ヘッダ50の列方向の寸法よりも小さい。
As shown in FIG. 7, in the heat transfer unit 101 in the windward row according to Modification 2 of the present embodiment, the heat exchanger 1 includes the first heat transfer tube portion 10 and the second heat transfer tube portion near the inlet header 40. 20 is bent. Specifically, the first heat transfer tube portion 10 and the second heat transfer tube portion 20 are bent inward in the column direction D3. The first heat transfer tube portion 10 and the second heat transfer tube portion 20 are bent between the fin 30 and the inlet header 40. The dimension of the inlet header 40 in the column direction D3 is smaller than the dimension of the outlet header 50 in the column direction.
本実施の形態の変形例2における熱交換器1によれば、入口ヘッダ40の容積が小さくなるため、入口ヘッダ40の小型化が可能となる。また、入口ヘッダ40に挿入される部分における第1伝熱管部10および第2伝熱管部20からなる管群の互いの管の間の距離が小さくなるので、冷媒が管群に分配されるときの冷媒流量のばらつきを低減することが可能となる。したがって、熱交換器1が蒸発器として用いられるときに、熱交換器1内において液冷媒が偏ることによってスーパーヒートの領域がばらつくことを抑制することができる。これにより、熱交換効率が低下することを抑制することができる。
According to the heat exchanger 1 in the second modification of the present embodiment, the volume of the inlet header 40 is reduced, so that the inlet header 40 can be reduced in size. In addition, since the distance between the tubes of the tube group composed of the first heat transfer tube unit 10 and the second heat transfer tube unit 20 in the portion inserted into the inlet header 40 is reduced, the refrigerant is distributed to the tube group. It is possible to reduce variations in the refrigerant flow rate. Therefore, when the heat exchanger 1 is used as an evaporator, it is possible to prevent the superheat region from being varied due to the liquid refrigerant being biased in the heat exchanger 1. Thereby, it can suppress that heat exchange efficiency falls.
続いて、図8および図9を参照して、本実施の形態の変形例3における熱交換器1について説明する。図8は本実施の形態の変形例3における熱交換器1の側面図である。図9は本実施の形態の変形例3における熱交換器1の断面図である。
Subsequently, with reference to FIG. 8 and FIG. 9, the heat exchanger 1 in Modification 3 of the present embodiment will be described. FIG. 8 is a side view of the heat exchanger 1 in Modification 3 of the present embodiment. FIG. 9 is a cross-sectional view of the heat exchanger 1 in Modification 3 of the present embodiment.
図8および図9に示されるように、本発明の実施の形態の変形例3における熱交換器1では、フィン30は、第1フィン部301と、第2フィン部302とを含んでいる。第2フィン部302は、第1伝熱管部10および第2伝熱管部20が延びる方向に第1フィン部301と並んで配置されている。つまり、重力方向D2に第1フィン部301および第2フィン部302の順に並んで配置されている。第1フィン部301および第2フィン部302はそれぞれ谷部30aおよび山部30bを含んでいる。第1フィン部301の谷部30aおよび山部30bは、第1伝熱管部10および第2伝熱管部20のそれぞれに対して、第2フィン部302の谷部30aおよび山部30bと反対側に配置されている。つまり、第1フィン部301および第2フィン部302は、第1伝熱管部10および第2伝熱管部20に対して、逆方向に交互に接合されている。第1フィン部301と第2フィン部302とでは、各々の第1面31と第2面32との配置が逆になる。
As shown in FIGS. 8 and 9, in heat exchanger 1 in Modification 3 of the embodiment of the present invention, fin 30 includes a first fin portion 301 and a second fin portion 302. The 2nd fin part 302 is arrange | positioned along with the 1st fin part 301 in the direction where the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 are extended. That is, the first fin portion 301 and the second fin portion 302 are arranged side by side in the gravity direction D2. The 1st fin part 301 and the 2nd fin part 302 contain the trough part 30a and the peak part 30b, respectively. Valley portions 30a and peak portions 30b of first fin portion 301 are opposite to valley portions 30a and peak portions 30b of second fin portion 302 with respect to first heat transfer tube portion 10 and second heat transfer tube portion 20, respectively. Is arranged. That is, the 1st fin part 301 and the 2nd fin part 302 are joined to the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 by turns in the reverse direction. In the 1st fin part 301 and the 2nd fin part 302, arrangement | positioning of each 1st surface 31 and the 2nd surface 32 becomes reverse.
本実施の形態の変形例3における熱交換器1によれば、第1フィン部301の谷部30aおよび山部30bは、第1伝熱管部10および第2伝熱管部20のそれぞれに対して、第2フィン部の谷部30aおよび山部30bと反対側に配置されている。このため、第1伝熱管部10および第2伝熱管部20に対して、第1フィン部301および第2フィン部302が互いに逆方向に配置されている。したがって、第1伝熱管部10および第2伝熱管部20に作用する力が一方向に偏ることを抑制することができる。これにより、第1伝熱管部10および第2伝熱管部20をそれぞれ垂直に設置することが容易となる。
According to the heat exchanger 1 in the modification 3 of this Embodiment, the trough part 30a and the peak part 30b of the 1st fin part 301 are with respect to each of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20. The second fin portion is disposed on the opposite side to the valley portion 30a and the peak portion 30b. For this reason, the 1st fin part 301 and the 2nd fin part 302 are mutually arrange | positioned with respect to the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20. As shown in FIG. Therefore, it can suppress that the force which acts on the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 is biased to one direction. Thereby, it becomes easy to install the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 vertically, respectively.
続いて、本実施の形態の変形例3における熱交換器1の製造方法について説明する。本実施の形態の変形例3における熱交換器1の製造方法は次の構成を備えている。
Then, the manufacturing method of the heat exchanger 1 in the modification 3 of this Embodiment is demonstrated. The manufacturing method of the heat exchanger 1 in the modification 3 of this Embodiment is provided with the following structure.
まず、フィン30と第1伝熱管部10および第2伝熱管部20からなる管群が組み合わせられる。次に、フィン30が列方向D3(幅方向)の両側から引かれる。これにより、フィン30が列方向D3(幅方向)に引っ張られた状態にされる。続いて、第1伝熱管部10および第2伝熱管部20からなる管群が入口ヘッダ40、出口ヘッダ50および列跨ぎヘッダ80にそれぞれに挿入される。その後、各管群と各ヘッダとの接合部分にろう材が配置され、炉中ろう付けが実施される。このようにすることで、製造が容易で、フィンと管との接合性が高い熱交換器1を提供することができる。
First, the tube group consisting of the fins 30, the first heat transfer tube portion 10, and the second heat transfer tube portion 20 is combined. Next, the fins 30 are pulled from both sides in the row direction D3 (width direction). As a result, the fins 30 are pulled in the column direction D3 (width direction). Then, the tube group which consists of the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 is inserted in the inlet header 40, the outlet header 50, and the row crossing header 80, respectively. Thereafter, a brazing material is disposed at the joint between each tube group and each header, and brazing in the furnace is performed. By doing in this way, manufacture is easy and the heat exchanger 1 with high joining property of a fin and a pipe | tube can be provided.
続いて、図10を参照して、本実施の形態の変形例4における熱交換器1について説明する。図10は本実施の形態の変形例4における熱交換器1の断面図である。
Then, with reference to FIG. 10, the heat exchanger 1 in the modification 4 of this Embodiment is demonstrated. FIG. 10 is a cross-sectional view of the heat exchanger 1 in Modification 4 of the present embodiment.
図10に示されるように、本発明の実施の形態の変形例4における熱交換器1では、段方向D1に隣り合う伝熱ユニット100同士が列方向D3にずれている。具体的には、段方向D1に隣り合う伝熱ユニット100は、列方向D3に第1伝熱管部10と第2伝熱管部20とのピッチ(列ピッチ)の半分の寸法(半ピッチ)だけずれている。
As shown in FIG. 10, in the heat exchanger 1 according to the fourth modification of the embodiment of the present invention, the heat transfer units 100 adjacent to each other in the step direction D1 are shifted in the column direction D3. Specifically, the heat transfer units 100 adjacent to each other in the step direction D1 have a dimension (half pitch) that is half the pitch (row pitch) between the first heat transfer tube portion 10 and the second heat transfer tube portion 20 in the row direction D3. It's off.
本実施の形態の変形例4における熱交換器1によれば、段方向D1に隣り合う伝熱ユニット100の第1伝熱管部10および第2伝熱管部20が列方向D3にずれている。このため、段方向D1に隣り合う伝熱ユニット100の第1伝熱管部10および第2伝熱管部20が列方向D3にずれていない場合に比べて、第1伝熱管部10同士および第2伝熱管部20同士の間の間隔を大きくすることができるため、通風抵抗を低減することができる。このため、熱交換効率を向上させることができる。また、段方向D1に伝熱ユニット100同士の距離を小さくすることができる。
According to the heat exchanger 1 in Modification 4 of the present embodiment, the first heat transfer tube portion 10 and the second heat transfer tube portion 20 of the heat transfer unit 100 adjacent to each other in the step direction D1 are shifted in the column direction D3. For this reason, compared with the case where the 1st heat exchanger tube part 10 and the 2nd heat exchanger tube part 20 of the heat transfer unit 100 adjacent to the stage direction D1 have not shifted | deviated to the row direction D3, 1st heat exchanger tube parts 10 and 2nd. Since the space | interval between heat exchanger tube parts 20 can be enlarged, ventilation resistance can be reduced. For this reason, heat exchange efficiency can be improved. Further, the distance between the heat transfer units 100 in the step direction D1 can be reduced.
次に、図6を参照して、本実施の形態における冷凍サイクル装置300の冷媒回路について説明する。図6は、本実施の形態における冷凍サイクル装置300の一例としての空調冷凍装置の冷媒回路図である。
Next, the refrigerant circuit of the refrigeration cycle apparatus 300 in the present embodiment will be described with reference to FIG. FIG. 6 is a refrigerant circuit diagram of an air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 in the present embodiment.
図6に示されるように、本実施の形態の冷凍サイクル装置300の一例としての空調冷凍装置は、圧縮機33と、凝縮熱交換器34と、絞り装置35と、蒸発熱交換器36と、第1の送風機37と、第2の送風機38とを備えている。圧縮機33と、凝縮熱交換器34と、絞り装置35と、蒸発熱交換器36とが配管を介して連通されることにより冷媒回路は構成されている。冷媒は、図中矢印で示すように、冷媒回路を圧縮機33、凝縮熱交換器34、絞り装置35、蒸発熱交換器36の順に循環する。
As shown in FIG. 6, the air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 of the present embodiment includes a compressor 33, a condensation heat exchanger 34, an expansion device 35, an evaporating heat exchanger 36, A first blower 37 and a second blower 38 are provided. The refrigerant circuit is configured by the compressor 33, the condensing heat exchanger 34, the expansion device 35, and the evaporating heat exchanger 36 being connected via a pipe. The refrigerant circulates through the refrigerant circuit in the order of the compressor 33, the condensation heat exchanger 34, the expansion device 35, and the evaporating heat exchanger 36 as indicated by arrows in the figure.
圧縮機33は、冷媒を圧縮するように構成されている。圧縮機33は熱交換器との間で冷媒を循環させるように構成されている。凝縮熱交換器34は、凝縮器として機能し、圧縮機33により圧縮された冷媒を凝縮するように構成されている。凝縮熱交換器34には第1の送風機37が併設されている。第1の送風機37は、凝縮熱交換器34における冷媒と空気との熱交換量を調整するように構成されている。
The compressor 33 is configured to compress the refrigerant. The compressor 33 is configured to circulate a refrigerant with the heat exchanger. The condensation heat exchanger 34 functions as a condenser and is configured to condense the refrigerant compressed by the compressor 33. The condensing heat exchanger 34 is provided with a first blower 37. The first blower 37 is configured to adjust the amount of heat exchange between the refrigerant and the air in the condensing heat exchanger 34.
絞り装置35は凝縮熱交換器34により凝縮された冷媒を減圧するように構成されている。蒸発熱交換器36は、蒸発器として機能し、絞り装置35により減圧された冷媒を蒸発させるように構成されている。蒸発熱交換器36には第2の送風機38が併設されている。第2の送風機38は、蒸発熱交換器36における冷媒と空気との熱交換量を調整するように構成されている。
The expansion device 35 is configured to depressurize the refrigerant condensed by the condensation heat exchanger 34. The evaporating heat exchanger 36 functions as an evaporator and is configured to evaporate the refrigerant decompressed by the expansion device 35. The evaporative heat exchanger 36 is provided with a second blower 38. The second blower 38 is configured to adjust the amount of heat exchange between the refrigerant and the air in the evaporative heat exchanger 36.
上述の本実施の形態における熱交換器1を凝縮熱交換器34および蒸発熱交換器36のいずれか、もしくは両方に用いることができる。これにより、エネルギ効率の高い冷凍サイクル装置300の一例としての空調冷凍装置を実現することができる。ここで、エネルギ効率は、次式で構成されるものである。
The heat exchanger 1 in the present embodiment described above can be used for either or both of the condensation heat exchanger 34 and the evaporation heat exchanger 36. Thereby, the air-conditioning refrigeration apparatus as an example of the refrigeration cycle apparatus 300 with high energy efficiency can be realized. Here, energy efficiency is constituted by the following equation.
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
なお、上述の本実施の形態の熱交換器1およびそれを用いた冷凍サイクル装置の一例としての空調冷凍装置については、R410A、R32、HFO1234yf等の冷媒を用いて、その効果を達成することができる。 Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input About the air-conditioning refrigerating apparatus as an example of a refrigerating cycle apparatus, the effect can be achieved using refrigerant | coolants, such as R410A, R32, HFO1234yf.
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
なお、上述の本実施の形態の熱交換器1およびそれを用いた冷凍サイクル装置の一例としての空調冷凍装置については、R410A、R32、HFO1234yf等の冷媒を用いて、その効果を達成することができる。 Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input About the air-conditioning refrigerating apparatus as an example of a refrigerating cycle apparatus, the effect can be achieved using refrigerant | coolants, such as R410A, R32, HFO1234yf.
また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏することができる。
Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, the same effect can be show | played even if it uses other gas, liquid, and gas-liquid mixed fluid.
また、上述の本実施の形態における熱交換器1は室外機で好適に用いられるが、上述の本実施の形態における熱交換器1を室内機で用いた場合においても同様の効果を奏することができる。
Moreover, although the heat exchanger 1 in this Embodiment mentioned above is used suitably with an outdoor unit, even when the heat exchanger 1 in this Embodiment mentioned above is used with an indoor unit, there can exist the same effect. it can.
なお、上述の本実施の形態の熱交換器1およびそれを用いた冷凍サイクル装置300の一例としての空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける、溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。
In addition, about the heat exchanger 1 of the above-mentioned this Embodiment and the air-conditioning refrigerating device as an example of the refrigerating cycle apparatus 300 using the same, mineral oil type, alkylbenzene oil type, ester oil type, ether oil type, fluorine oil type The effect can be achieved for any refrigeration oil regardless of whether the refrigerant and oil melt or not.
本実施の形態における冷凍サイクル装置300によれば、上記の熱交換器1としての凝縮熱交換器34および蒸発熱交換器36の少なくともいずれかと、熱交換器1としての凝縮熱交換器34および蒸発熱交換器36の少なくともいずれかとの間で冷媒を循環させる圧縮機33とを備えている。このため、熱交換器1の製造が容易である冷凍サイクル装置300を提供することができる。
According to the refrigeration cycle apparatus 300 in the present embodiment, at least one of the condensation heat exchanger 34 and the evaporation heat exchanger 36 as the heat exchanger 1 and the condensation heat exchanger 34 and the evaporation as the heat exchanger 1 are used. And a compressor 33 that circulates refrigerant between at least one of the heat exchangers 36. For this reason, the refrigerating-cycle apparatus 300 with which manufacture of the heat exchanger 1 is easy can be provided.
今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
The embodiment disclosed this time is an example, and the present invention is not limited to this. The present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 熱交換器、10 第1伝熱管部、11 第1伝熱管、20 第2伝熱管部、21 第2伝熱管、30 フィン、30a 谷部、30a1 谷、30b 山部、30b1 山、30c 風上延在部、30d 風下延在部、31 第1面、32 第2面、33 圧縮機、34 凝縮熱交換器、35 絞り装置、36 蒸発熱交換器、37 第1の送風機、38 第2の送風機、40 入口ヘッダ、50 出口ヘッダ、60 入口管、70 出口管、80 ヘッダ、100,101,102 伝熱ユニット、300 冷凍サイクル装置、301 第1フィン部、302 第2フィン部、D1 段方向、D2 重力方向、D3 列方向。
1 heat exchanger, 10 first heat transfer tube, 11 first heat transfer tube, 20 second heat transfer tube, 21 second heat transfer tube, 30 fin, 30a valley, 30a1 valley, 30b mountain, 30b1 mountain, 30c wind Upper extension part, 30d leeward extension part, 31 1st surface, 32 2nd surface, 33 compressor, 34 condensing heat exchanger, 35 throttling device, 36 evaporating heat exchanger, 37 1st blower, 38 2nd Blower, 40 inlet header, 50 outlet header, 60 inlet pipe, 70 outlet pipe, 80 header, 100, 101, 102 heat transfer unit, 300 refrigeration cycle device, 301 first fin section, 302 second fin section, D1 stage Direction, D2 gravity direction, D3 row direction.
Claims (8)
- 第1伝熱管部と、
前記第1伝熱管部に並走するように配置された第2伝熱管部と、
谷部および山部を有する波形形状のフィンとを備え、
前記フィンは、第1面と、前記第1面と反対側の第2面とを含み、
前記谷部は、前記第1面から前記第2面に向かう方向に前記フィンが突出するように構成されており、
前記山部は、前記第2面から前記第1面に向かう方向に前記フィンが突出するように構成されており、
前記第1伝熱管部は、前記フィンの前記第1面において前記谷部に接続されており、
前記第2伝熱管部は、前記フィンの前記第2面において前記山部に接続されており、
前記谷部および前記山部は、前記フィンに流れ込む風の風向に沿うように並んで配置されている、熱交換器。 A first heat transfer tube section;
A second heat transfer tube portion arranged to run parallel to the first heat transfer tube portion;
With corrugated fins having valleys and peaks,
The fin includes a first surface and a second surface opposite to the first surface;
The trough is configured such that the fin protrudes in a direction from the first surface toward the second surface,
The peak portion is configured such that the fin protrudes in a direction from the second surface toward the first surface,
The first heat transfer tube portion is connected to the valley portion on the first surface of the fin,
The second heat transfer tube portion is connected to the peak portion on the second surface of the fin,
The said valley part and the said peak part are the heat exchangers arrange | positioned along with the wind direction of the wind which flows in into the said fin. - 前記第1伝熱管部、前記第2伝熱管部および前記フィンはそれぞれ重力方向に延びている、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein each of the first heat transfer tube portion, the second heat transfer tube portion, and the fin extends in a gravitational direction.
- 前記フィンは、前記風の最も風上に配置された前記谷部および前記山部のいずれかから風上に向かって直っすぐに延びる風上延在部を含む、請求項1または2に記載の熱交換器。 The said fin contains the windward extension part extended immediately toward windward from either the said trough part arrange | positioned most windward of the said wind, and the said peak part of Claim 1 or 2 Heat exchanger.
- 前記フィンは、前記風の最も風下に配置された前記谷部および前記山部のいずれかから風下に向かって直っすぐに延びる風下延在部を含む、請求項1~3のいずれか1項に記載の熱交換器。 4. The fin according to any one of claims 1 to 3, wherein the fin includes a leeward extending portion that extends straightly from either one of the valley portion and the mountain portion arranged at the most leeward side of the wind toward the leeward side. The described heat exchanger.
- 前記フィンは、一体の板で構成されている、請求項1~4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the fin is formed of an integral plate.
- 前記第1伝熱管部、前記第2伝熱管部および前記フィンのそれぞれは同じ材料で構成されている、請求項1~5のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein each of the first heat transfer tube portion, the second heat transfer tube portion, and the fin is made of the same material.
- 前記フィンは、第1フィン部と、前記第1伝熱管部および前記第2伝熱管部が延びる方向に前記第1フィン部と並んで配置された第2フィン部と含み、
前記第1フィン部の前記谷部および前記山部は、前記第1伝熱管部および前記第2伝熱管部のそれぞれに対して、前記第2フィン部の前記谷部および前記山部と反対側に配置されている、請求項1~6のいずれか1項に記載の熱交換器。 The fin includes a first fin portion, and a second fin portion arranged side by side with the first fin portion in a direction in which the first heat transfer tube portion and the second heat transfer tube portion extend.
The trough and the crest of the first fin portion are opposite to the trough and the crest of the second fin portion with respect to the first heat transfer tube and the second heat transfer tube, respectively. The heat exchanger according to any one of claims 1 to 6, wherein - 請求項1~7のいずれか1項に記載の熱交換器と、
前記熱交換器との間で冷媒を循環させる圧縮機とを備えた、冷凍サイクル装置。 The heat exchanger according to any one of claims 1 to 7,
A refrigeration cycle apparatus comprising: a compressor that circulates refrigerant between the heat exchanger.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/014031 WO2018185824A1 (en) | 2017-04-04 | 2017-04-04 | Heat exchanger and refrigeration cycle device |
JP2019510523A JP6719657B2 (en) | 2017-04-04 | 2017-04-04 | Heat exchanger and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/014031 WO2018185824A1 (en) | 2017-04-04 | 2017-04-04 | Heat exchanger and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185824A1 true WO2018185824A1 (en) | 2018-10-11 |
Family
ID=63713052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014031 WO2018185824A1 (en) | 2017-04-04 | 2017-04-04 | Heat exchanger and refrigeration cycle device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6719657B2 (en) |
WO (1) | WO2018185824A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021014522A1 (en) * | 2019-07-22 | 2021-01-28 | 三菱電機株式会社 | Heat exchanger, method of producing same, and air conditioning device |
JPWO2020044391A1 (en) * | 2018-08-27 | 2021-05-13 | 三菱電機株式会社 | Heat exchanger, heat exchanger unit, and refrigeration cycle equipment |
US11656011B2 (en) * | 2019-01-22 | 2023-05-23 | Hitachi Energy Switzerland Ag | Condenser |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618869U (en) * | 1979-07-20 | 1981-02-19 | ||
JPH07218172A (en) * | 1993-12-09 | 1995-08-18 | Sanden Corp | Heat exchanger and manufacture thereof |
JP2004263881A (en) * | 2003-01-23 | 2004-09-24 | Showa Denko Kk | Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner |
JP2006084078A (en) * | 2004-09-15 | 2006-03-30 | Daikin Ind Ltd | Thin heat transfer tube unit of thin multitubular heat exchanger |
JP2006162141A (en) * | 2004-12-06 | 2006-06-22 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2011190966A (en) * | 2010-03-12 | 2011-09-29 | Denso Corp | Heat exchanger |
JP2015017776A (en) * | 2013-07-12 | 2015-01-29 | 株式会社デンソー | Fin for heat exchanger |
-
2017
- 2017-04-04 WO PCT/JP2017/014031 patent/WO2018185824A1/en active Application Filing
- 2017-04-04 JP JP2019510523A patent/JP6719657B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618869U (en) * | 1979-07-20 | 1981-02-19 | ||
JPH07218172A (en) * | 1993-12-09 | 1995-08-18 | Sanden Corp | Heat exchanger and manufacture thereof |
JP2004263881A (en) * | 2003-01-23 | 2004-09-24 | Showa Denko Kk | Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner |
JP2006084078A (en) * | 2004-09-15 | 2006-03-30 | Daikin Ind Ltd | Thin heat transfer tube unit of thin multitubular heat exchanger |
JP2006162141A (en) * | 2004-12-06 | 2006-06-22 | Matsushita Electric Ind Co Ltd | Heat exchanger |
JP2011190966A (en) * | 2010-03-12 | 2011-09-29 | Denso Corp | Heat exchanger |
JP2015017776A (en) * | 2013-07-12 | 2015-01-29 | 株式会社デンソー | Fin for heat exchanger |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020044391A1 (en) * | 2018-08-27 | 2021-05-13 | 三菱電機株式会社 | Heat exchanger, heat exchanger unit, and refrigeration cycle equipment |
US11656011B2 (en) * | 2019-01-22 | 2023-05-23 | Hitachi Energy Switzerland Ag | Condenser |
WO2021014522A1 (en) * | 2019-07-22 | 2021-01-28 | 三菱電機株式会社 | Heat exchanger, method of producing same, and air conditioning device |
JPWO2021014522A1 (en) * | 2019-07-22 | 2021-11-25 | 三菱電機株式会社 | Heat exchanger, its manufacturing method and air conditioner |
CN114174757A (en) * | 2019-07-22 | 2022-03-11 | 三菱电机株式会社 | Heat exchanger, method for manufacturing the same, and air conditioner |
JP7118279B2 (en) | 2019-07-22 | 2022-08-15 | 三菱電機株式会社 | HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER |
CN114174757B (en) * | 2019-07-22 | 2023-10-27 | 三菱电机株式会社 | Heat exchanger, method for manufacturing the same, and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018185824A1 (en) | 2019-11-07 |
JP6719657B2 (en) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9651317B2 (en) | Heat exchanger and air conditioner | |
WO2019239446A1 (en) | Air conditioner outdoor unit and air conditioner | |
JP4679542B2 (en) | Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner | |
US20110030932A1 (en) | Multichannel heat exchanger fins | |
CN109154460B (en) | Laminated header, heat exchanger, and air conditioner | |
JP6388670B2 (en) | Refrigeration cycle equipment | |
EP3156752B1 (en) | Heat exchanger | |
WO2016013100A1 (en) | Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger | |
JP6847229B2 (en) | Heat exchanger and refrigeration cycle equipment | |
WO2015004720A1 (en) | Heat exchanger, and air conditioner | |
JP6734002B1 (en) | Heat exchanger and refrigeration cycle device | |
WO2018185824A1 (en) | Heat exchanger and refrigeration cycle device | |
JP6980117B2 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device | |
WO2017158795A1 (en) | Heat exchanger and air conditioner | |
WO2017068723A1 (en) | Heat exchanger and refrigeration cycle apparatus | |
WO2020012549A1 (en) | Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system | |
JP2011112315A (en) | Fin tube type heat exchanger and air conditioner using the same | |
US11573056B2 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus | |
JP6198976B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
JP6621928B2 (en) | Heat exchanger and air conditioner | |
JP4983878B2 (en) | Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner | |
WO2016031032A1 (en) | Heat exchanger and air conditioner | |
JP6548824B2 (en) | Heat exchanger and refrigeration cycle device | |
CN107923675B (en) | Outdoor unit of air conditioner | |
WO2020178966A1 (en) | Gas header, heat exchanger, and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904929 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019510523 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904929 Country of ref document: EP Kind code of ref document: A1 |