WO2018184326A1 - 储能单元的主动冷却功率标定方法及系统 - Google Patents
储能单元的主动冷却功率标定方法及系统 Download PDFInfo
- Publication number
- WO2018184326A1 WO2018184326A1 PCT/CN2017/095215 CN2017095215W WO2018184326A1 WO 2018184326 A1 WO2018184326 A1 WO 2018184326A1 CN 2017095215 W CN2017095215 W CN 2017095215W WO 2018184326 A1 WO2018184326 A1 WO 2018184326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- storage unit
- cooling
- target
- cooling power
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/005—Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/25—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/26—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/386—Arrangements for measuring battery or accumulator variables using test-loads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/3865—Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/651—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
- H01M10/6572—Peltier elements or thermoelectric devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the invention relates to the field of thermal management control of a new energy vehicle, and in particular to an active cooling power calibration method and system for an energy storage unit.
- the thermal management system is an indispensable part of the new energy vehicle.
- the system can monitor the new energy vehicles from a holistic perspective, so that the key components work at the right temperature to ensure the smooth operation of the new energy vehicles, thus providing the driver with Good driving experience.
- a request for cooling power is usually sent from the vehicle controller (VCU) to the air conditioner controller (CCU), and the CCU adjusts the air conditioner according to the received request.
- the rotation speed of the compressor in the cooling system is matched with the cooling power request, so that the refrigerant in the air conditioning cooling system actively cools the coolant in the power battery cooling system, and then the cooling liquid cools the power battery.
- the CCU can accurately match the cooling power request from the VCU by adjusting the compressor speed. This is a difficult problem in the cooling process of the power battery.
- the solution to this problem is generally to do a large number of calibration tests in the wind tunnel environment to determine Under different VCU cooling power requests, the CCU controls the speed control of the compressor in the air conditioning cooling system, thereby achieving the purpose of the CCU accurately responding to the cooling power request issued by the VCU.
- the calibration test of VCU and CCU cooling power in the wind tunnel environment cabin is usually to simulate the battery heating under real working conditions by letting the electric vehicle run on the drum test bench, and then pass more The second parameter adjustment and data acquisition to calibrate the CCU's adjustment strategy for the compressor under different request conditions.
- the cooling power calibration test in the wind tunnel environment cabin brings the following problems: First, the electric vehicle needs to take a long time to reach the set heat balance process, resulting in the power consumption of the electric vehicle's power battery is too high for each test. Fast, not enough to support multiple tests, directly affecting the test efficiency, and indirectly extending the vehicle development cycle. Secondly, because the calibration process requires a large number of calibration tests, it takes a lot of trial costs, which is not conducive to the cost control of vehicle development.
- the present invention provides an active energy storage unit.
- a cooling power calibration method comprising the following steps:
- the heating device causes the inlet temperature of the energy storage unit to reach the target temperature
- the parameters of the cooling system are calibrated in the event that the inlet temperature is stable to the target temperature.
- the cooling system is an air conditioning cooling system of a test vehicle, the parameters including a cooling power of the cooler and a duty ratio of the compressor.
- the cooling power calibration method further includes:
- the heating device, the energy storage unit and the cooler are placed in the same cooling circuit.
- the “heating device causes the inlet temperature of the energy storage unit to reach the target temperature” further includes:
- the heating device causes the inlet temperature of the energy storage unit to reach the target temperature by operating at the target power.
- the “cooling system cools the energy storage unit in such a manner that the inlet temperature is maintained at the target temperature” further includes:
- the inlet temperature of the energy storage unit is maintained at the target temperature by adjusting the actual rotational speed of the compressor.
- the cooling power calibration method further includes:
- the duty cycle of the compressor derived based on the target rotational speed and the actual rotational speed is calibrated.
- the test vehicle is a new energy vehicle
- the heating device is a high pressure heater of a new energy vehicle.
- the invention also provides an active cooling power calibration system for an energy storage unit, the cooling power calibration system comprising:
- a heating module for bringing the inlet temperature of the energy storage unit to a target temperature
- a cooling module for cooling the energy storage unit in a manner of "maintaining the inlet temperature at the target temperature"
- a calibration module is configured to calibrate parameters of the cooling system if the inlet temperature is stable to the target temperature.
- the cooling module is an air conditioning cooling system of a test vehicle, the parameters including a cooling power of the cooler and a duty ratio of the compressor.
- the cooling power calibration system further includes a switching module, wherein the switching module is configured to place the heating device, the energy storage unit, and the cooler In the same cooling circuit.
- the system further includes a control module configured to operate the heating module at a set target power
- the heating module causes the inlet temperature of the energy storage unit to reach the target temperature by operating at the target power.
- the specific manner of "cooling the energy storage unit in such a manner that the inlet temperature is maintained at the target temperature" is:
- the inlet temperature of the energy storage unit is maintained at the target temperature by adjusting the actual rotational speed of the compressor.
- the system further includes a parameter determination module, the parameter determination module is configured to:
- the duty cycle of the compressor derived based on the target rotational speed and the actual rotational speed is calibrated.
- the test vehicle is a new energy vehicle
- the heating module is a high pressure heater of a new energy vehicle.
- the main steps of the active cooling power calibration method of the energy storage unit include: the heating device makes the inlet temperature of the energy storage unit reach the target temperature; and the cooling system makes the inlet temperature The energy storage unit is cooled while maintaining the target temperature; the parameters of the cooling system are calibrated in the case where the inlet temperature is stabilized at the target temperature.
- the heating device is preferably a high pressure heater of the test vehicle
- the cooling system is preferably an air conditioning cooling system of the test vehicle.
- the air-conditioning cooling system maintains the inlet temperature at the target temperature, and the method of calibrating the air-conditioning cooling system parameters when the inlet temperature is stable at the target temperature. It roughly simulates or even replaces the active cooling power calibration test of the energy storage unit in the wind tunnel environment chamber, effectively reducing development costs and improving development efficiency.
- FIG. 1 is a schematic flow chart of an active cooling power calibration method of an energy storage unit of the present invention
- FIG. 2 is a schematic structural view of a thermal management system of a conventional new energy vehicle
- FIG. 3 is a schematic structural diagram of a thermal management system for an active cooling power calibration method of an energy storage unit of the present invention
- FIG. 4 is a schematic flow chart of calibrating a compressor duty cycle in an embodiment of an active cooling power calibration method of an energy storage unit of the present invention
- FIG. 5 is a schematic structural view of an active cooling power calibration system of an energy storage unit of the present invention.
- the exemplary embodiment proposed herein overcomes the existing active cooling power calibration test of the energy storage unit in the wind tunnel environment by the active cooling power calibration method and system of the energy storage unit, and has low test efficiency. High cost defects.
- the present invention accurately simulates the manner in which the power battery is heated by means of a heating device disposed in a cooling system of a new energy vehicle such as an electric vehicle, such as a high pressure heater (HVH) in an electric vehicle.
- HVH high pressure heater
- FIG. 1 is a schematic flow chart of an active cooling power calibration method of an energy storage unit of the present invention
- FIG. 3 is a schematic structural view of a thermal management system for an active cooling power calibration method of an energy storage unit of the present invention.
- An active cooling power calibration method in accordance with an example of the present invention is described below in conjunction with FIGS. 1 and 3.
- the thermal management system of the active cooling power calibration method of the energy storage unit and/or the active cooling power calibration method of the energy storage unit is implemented as an example in an electric vehicle, but this is not The use of the invention is limited Set in the electric car.
- the heating device causes the inlet temperature of the power battery 31 to reach the target temperature.
- the inlet temperature of the power battery 31 is brought to a target temperature by turning on the high-pressure heater 34 of the electric vehicle and operating at the target power P HVH .
- the target power P HVH may be the heating power of the power battery 31 corresponding to the current operating point, and the target temperature may be the heating temperature of the battery corresponding to the current operating point.
- the cooling power of the power battery 31 is generally determined according to the heating power inside the power battery 31 (such as determined according to the internal resistance of the power battery 31 and the current of the power battery 31), and then the corresponding cooling power request is issued by the VCU.
- the CCU matches the cooling power value requested by the VCU by adjusting the rotational speed of the compressor 11 in the air conditioning cooling system.
- the cooling power request value may be divided into several operating point points based on the heating power of the power battery 31, and based on the cooling power corresponding to each operating point, the high pressure heater 34 may be set by The battery cooling system is heated in a manner of constant power (target power P HVH ) corresponding to the cooling power of the operating point, thereby accurately simulating the heat generation of the power battery 31.
- the cooling system cools the power battery 31 in such a manner that the inlet temperature is maintained at the target temperature.
- the air conditioning cooling system of the electric vehicle is turned on and the inlet temperature of the power battery 31 is stabilized at the target temperature by adjusting the actual rotation speed of the compressor 11.
- the thermal management system architecture of an electric vehicle typically includes three systems, namely an air conditioning cooling system, a motor cooling system, and a battery cooling system.
- the air conditioning cooling system mainly includes components such as a compressor 11, a condenser 12, a PTC heater 13, a cooler 14, an expansion valve 15, and a PTC fan 16.
- the motor cooling system mainly includes a driving motor 21, a motor cooling pump 22, an in-vehicle charger (OBC) 23, a DC/DC converter 24, an inverter 25, a radiator 26, a fan 27, and the like, and a pipe connecting the above components.
- the pipeline is filled with coolant.
- the battery cooling system mainly includes a power battery 31, a battery cooling pump 32, a three-way valve 33, a high pressure heater 34, and the like, and a pipe connecting the above components, and the pipe is also filled with the coolant.
- the motor cooling system and The battery cooling systems can be connected in a switchable manner or operate relatively independently of each other, such as a four-way valve 40 disposed between the motor cooling system and the battery cooling system, and in communication by switching the four-way valve 40
- the mode adjusts the connection between the motor cooling system and the battery cooling system to a series mode (connected) or a parallel mode (each operating relatively independently).
- the battery cooling system and the air conditioning cooling system can be partially connected or can be operated relatively independently in a switchable manner, such as a three-way valve 33 is provided between the motor cooling system and the battery cooling system, and The manner in which the valve 33 is connected adjusts the battery cooling system to a heating mode (each relatively independent operation) or a cooling mode (the cooler 14 is connected to the battery cooling system).
- a switchable manner such as a three-way valve 33 is provided between the motor cooling system and the battery cooling system, and The manner in which the valve 33 is connected adjusts the battery cooling system to a heating mode (each relatively independent operation) or a cooling mode (the cooler 14 is connected to the battery cooling system).
- the four-way valve 40 places the motor cooling system in parallel with the battery cooling system, ie, the motor cooling system and the battery cooling system are independent of each other.
- the motor cooling system mainly relies on the motor cooling pump 22 to drive the circulation of the coolant to dissipate the heat through the radiator 26, thereby maintaining the components such as the drive motor 21 at an appropriate operating temperature range.
- the battery cooling system is responsible for maintaining the temperature of the power battery 31 within a suitable operating temperature range. When the temperature of the power battery 31 is too low and heating is required, the battery cooling system is adjusted to the heating mode by switching the three-way valve 33.
- the power battery 31 mainly relies on the high-pressure heater 34 to heat the coolant, and the battery cooling pump 32 drives the coolant to circulate in the battery cooling system, thereby operating the power battery 31 within a suitable operating temperature range.
- the battery cooling system is adjusted to the cooling mode by switching the three-way valve 33.
- the power battery 31 mainly relies on the cooler 14 connected to the battery cooling system. The refrigerant exchanges heat with the coolant in the battery cooling system, and the battery cooling pump 32 causes the coolant to be circulated and cooled in the battery cooling system, thereby operating the power battery 31 within a suitable operating temperature range.
- the modification method may be: changing the cooler 14 in the air conditioning cooling system and the high pressure heater 34 in the battery cooling system from parallel installation to series installation, and canceling the three-way valve 33 in the original circuit. That is, after the cooling system is modified, the cooler 14 in the air conditioning cooling system can be in the same cooling circuit as the high pressure heater 34 and the power battery 31 in the battery cooling circuit, and at this time, the cooler 14 and the high pressure heater 34 can work at the same time.
- the motor cooling system and the battery cooling system can also be placed in a parallel mode by switching the four-way valve 40 to reduce the influence of components in the unrelated system on the calibration test.
- the air-conditioning cooling is turned on in step S200.
- the system exchanges heat between the cooler 14 and the coolant in the battery cooling system, and can adjust the heat exchange effect of the cooler 14 in the air conditioning cooling system by adjusting the actual speed of the compressor 11 in the air conditioning cooling system.
- the inlet temperature of the power battery 31 is stabilized at the target temperature.
- step S300 it can be further divided into the following steps:
- the cooling power of the calibration cooler 14 is the target power P HVH of the high pressure heater 34.
- the cooling power of the cooler 14 can be calibrated by establishing a heat balance equation at the inlet of the power battery 31, that is, according to equation (1):
- P Chiller represents the cooling power of the cooler 14 that exchanges heat with the coolant
- C represents the specific heat of the coolant
- q M represents the mass flow rate of the coolant at the inlet of the power battery
- T BattInlet represents the power battery. 31 inlet temperature of the coolant at the inlet.
- the high-pressure heater 34 adjusts the cooling power of the cooler 14 by adjusting the actual rotational speed of the compressor 11 under a constant target power P HVH output condition, by monitoring (eg, by power)
- the temperature sensor is installed at the inlet of the battery 31 to monitor the inlet temperature of the power battery 31.
- the purpose of calibrating the cooling power by the above formula (1) is to prevent the temperature of the power battery 31 from rising further when the cooler 14 cools the power battery 31 with the cooling power.
- the technician can also calibrate the cooling power of the cooler 14 by other means to obtain a cooling power that prevents the temperature of the power battery 31 from rising further and even lowers the temperature of the power battery 31 to a reasonable temperature range.
- FIG. 4 is a flow chart showing the calibration of the duty cycle of the compressor in an embodiment of the active cooling power calibration method of the energy storage unit of the present invention.
- the inlet temperature of the power battery 31 can be used as a double closed loop control strategy to calibrate the duty cycle of the compressor 11. details as follows:
- the target rotational speed of the compressor 11 is calculated based on the inlet temperature of the power battery 31 and the target temperature.
- the target rotational speed of the compressor 11 can be calculated by performing PID processing on the temperature difference between the inlet temperature of the power battery 31 and the target temperature.
- the manner in which the target rotational speed of the compressor 11 is calculated is not constant, and those skilled in the art can make flexible adjustments based on the specific application environment.
- the duty ratio of the compressor 11 is calculated.
- the duty ratio of the compressor 11 can be obtained by still performing PID processing on the speed difference between the actual rotational speed of the compressor 11 and the target rotational speed.
- the actual rotational speed of the compressor 11 corresponding to the cooling power of the current operating point can be obtained.
- the heat of the power battery 31 can be accurately simulated by using the high pressure heater 34 in the electric vehicle, and the cooling of the compressor 11 is calibrated by the heat balance equation established at the inlet of the power battery 31.
- the power, and the manner in which the duty cycle of the compressor 11 is calibrated using a double closed loop strategy, can substantially simulate or even completely replace the cooling power calibration test of the power battery 31 in the wind tunnel environment bay. The above method effectively reduces the development cost in the whole vehicle development process, shortens the development cycle, and improves the development efficiency.
- the series mode and the parallel mode, the heating mode and the cooling mode described above are only one possible way of the internal structure of the electric vehicle in the preferred embodiment, and those skilled in the art can also deviate from the principle of the present invention. Apply this method to other new Energy car.
- the present embodiment places the cooler 14, the power battery 31, and the high pressure heater 34 in the same cooling circuit in such a manner that the cooler 14 in the air conditioning cooling system is connected in series to the battery cooling system.
- any modification that can cause the cooler 14 in the air conditioning cooling system to be in the same cooling circuit as the high pressure heater 34 and the power battery 31 in the battery cooling system can be used to implement the present invention.
- FIG. 5 is a schematic structural view of an active cooling power calibration system of an energy storage unit of the present invention. As shown in FIG. 5, another aspect of the present invention provides an active cooling power calibration system for an energy storage unit. Still taking an electric vehicle as an example, the cooling power calibration system mainly includes:
- a heating module for bringing the inlet temperature of the power battery 31 to a target temperature can be a high pressure heater 34 such as an electric vehicle.
- the manner in which the inlet temperature of the power battery 31 reaches the target temperature may be such that the high temperature heater 34 reaches the target temperature of the power battery 31 by operating at the target power.
- the target power P HVH may be the heating power of the power battery 31 corresponding to the current operating point, and the target temperature may be the heating temperature of the battery corresponding to the current operating point.
- the cooling module can be an air conditioning cooling system for an electric vehicle.
- the manner in which the inlet temperature is maintained at the target temperature may be such that the cooler 14 cools the power battery 31 such that the inlet temperature of the power battery 31 is maintained at the target temperature by adjusting the actual number of revolutions of the compressor 11.
- a calibration module for calibrating parameters of the cooling module if the inlet temperature is stable to the target temperature.
- the parameters such as the cooling power of the cooler 14 of the air conditioning cooling system and the duty ratio of the compressor 11 of the air conditioning cooling system are calibrated.
- the cooling power calibration system further includes a switching module, a control module, and a parameter determination module.
- the switching module is used to place the high pressure heater 34, the power battery 31, and the cooler 14 of the air conditioning cooling system in the same cooling circuit.
- the control module is configured to operate the high pressure heater 34 at a set target power.
- the parameter determining module is configured to calibrate the cooling power of the cooler 14 to the target power of the heating module; and calculate the target rotational speed of the compressor 11 based on the target temperature and the inlet temperature of the power battery 31, and calibrate the compression based on the target rotational speed and the actual rotational speed.
- the active cooling power calibration method of the energy storage unit mainly includes the heating device to bring the inlet temperature of the power battery 31 to the target temperature; the cooling system cools the power battery 31 in such a manner that the inlet temperature is maintained at the target temperature; Temperature stability Calibrate the parameters of the cooling system at the target temperature.
- the active cooling power calibration system of the energy storage unit mainly comprises a heating module, a cooling module, a calibration module, a switching module, a control module and a parameter determination module.
- the battery pack is heated, the cooling power of the compressor 11 is established by establishing a heat balance equation at the inlet of the power battery 31, and the duty ratio of the compressor 11 is calibrated by a double closed loop strategy, so that the active cooling power calibration method of the present invention can roughly simulate or even replace
- the cooling power calibration test of the power battery 31 carried out in the wind tunnel environment cabin effectively reduces the development cost in the development process of the vehicle, shortens the development cycle of the vehicle, and improves the development efficiency of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Automation & Control Theory (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Electromagnetism (AREA)
- Air-Conditioning For Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
一种储能单元的主动冷却功率标定方法及系统。储能单元的主动冷却功率标定方法及系统旨在解决在风洞环境舱中进行储能单元的主动冷却功率标定试验存在的效率低、成本高的问题。储能单元的主动冷却功率标定方法主要包括如下步骤:加热装置使储能单元的入口温度达到目标温度(S100);冷却系统以使入口温度维持在目标温度的方式冷却储能单元(S200);在入口温度稳定于目标温度的情形下,标定冷却系统的参数(S300)。通过在加热装置使储能单元的入口温度达到目标温度以及冷却系统使入口温度维持在目标温度的情形下,标定冷却系统参数的方式,可以大致模拟甚至代替在风洞环境舱中进行的储能单元的主动冷却功率标定试验,有效降低开发费用,提高开发效率。
Description
本发明涉及新能源汽车的热管理控制领域,具体涉及一种储能单元的主动冷却功率标定方法及系统。
热管理系统是新能源汽车必不可少的一部分,该系统能够从整体角度对新能源汽车进行监控,使各关键部件工作在适宜的温度,以保证新能源汽车的平稳运行,从而为驾驶者提供良好的驾驶体验。以电动汽车为例,在电动汽车的动力电池温度过高时,通常是由整车控制器(VCU)向空调控制器(CCU)发出冷却功率的请求,CCU根据接收到的请求,通过调节空调冷却系统中压缩机的转速,使该转速与冷却功率请求匹配的方式,使空调冷却系统中的制冷剂对动力电池冷却系统中的冷却液进行主动冷却,进而冷却液对动力电池进行冷却降温。而CCU通过调节压缩机转速的方式,准确匹配VCU发出的冷却功率请求是动力电池冷却过程中的难点,解决此问题的方法一般是通过在风洞环境舱里做大量的标定试验,以确定在不同的VCU冷却功率请求下,CCU对空调冷却系统中压缩机的调速控制策略,从而达到CCU准确响应VCU发出的冷却功率请求的目的。
仍以电动汽车为例,在风洞环境舱进行VCU和CCU冷却功率的标定试验通常是通过让电动汽车在转鼓试验台上运行的方式,模拟真实工况下的电池发热情况,然后通过多次的参数调整和数据采集,来标定VCU在不同的请求情况下,CCU对压缩机的调节策略。不可避免地,风洞环境舱中的冷却功率标定试验带来了以下问题:首先,电动汽车达到设定的热平衡过程需要的时间较长,导致每次试验时电动汽车的动力电池耗电速度太快,不足以支撑多次试验,直接影响了试验效率,间接延长了整车开发周期。其次,由于标定过程需要进行大量的标定试验,需要花费大量的试验费用,这也就不利于整车开发的成本控制。
相应地,本领域需要一种新的储能单元的主动冷却功率标定方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决在风洞环境舱中进行储能单元的主动冷却功率标定试验存在的效率低、成本高的问题,本发明提供了一种储能单元的主动冷却功率标定方法,该冷却功率标定方法包括以下步骤:
加热装置使储能单元的入口温度达到目标温度;
冷却系统以使所述入口温度维持在所述目标温度的方式冷却所述储能单元;
在所述入口温度稳定于所述目标温度的情形下,标定冷却系统的参数。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述冷却系统为试验车辆的空调冷却系统,所述参数包括冷却器的冷却功率以及压缩机的占空比。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述冷却功率标定方法还包括:
使所述加热装置、所述储能单元和所述冷却器处于同一冷却回路中。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述的“加热装置使储能单元的入口温度达到目标温度”进一步包括:
使所述加热装置以设定的目标功率运行;
所述加热装置通过以该目标功率运行的方式使所述储能单元的入口温度达到所述目标温度。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述的“冷却系统以使所述入口温度维持在所述目标温度的方式冷却所述储能单元”进一步包括:
通过调节所述压缩机的实际转速,使所述储能单元的入口温度维持在所述目标温度。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述冷却功率标定方法还包括:
标定所述冷却器的冷却功率为所述加热装置的目标功率;以及
基于所述目标温度和所述储能单元的入口温度计算所述压缩机的目标转速;并且
标定基于所述目标转速和所述实际转速得出的所述压缩机的占空比。
在上述储能单元的主动冷却功率标定方法的优选技术方案中,所述试验车辆为新能源汽车,所述加热装置为新能源汽车的高压加热器。
本发明还提供了一种储能单元的主动冷却功率标定系统,所述冷却功率标定系统包括:
加热模块,其用于使储能单元的入口温度达到目标温度;
冷却模块,其用于以“使所述入口温度维持在所述目标温度”的方式冷却所述储能单元;
标定模块,其用于:在所述入口温度稳定于所述目标温度的情形下,标定冷却系统的参数。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述冷却模块为试验车辆的空调冷却系统,所述参数包括冷却器的冷却功率以及压缩机的占空比。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述冷却功率标定系统还包括切换模块,该切换模块用于使所述加热装置、所述储能单元和所述冷却器处于同一冷却回路中。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述系统还包括控制模块,其用于使所述加热模块以设定的目标功率运行;
所述的“使储能单元的入口温度达到目标温度”的具体方式为:
所述加热模块通过以所述目标功率运行的方式使所述储能单元的入口温度达到所述目标温度。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述的“以使所述入口温度维持在所述目标温度的方式冷却所述储能单元”的具体方式为:
通过调节所述压缩机的实际转速,使所述储能单元的入口温度维持在所述目标温度。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述系统还包括参数确定模块,该参数确定模块用于:
标定所述冷却器的冷却功率为所述加热模块的目标功率;以及
基于所述目标温度和所述储能单元的入口温度计算所述压缩机的目标转速;并且
标定基于所述目标转速和所述实际转速得出的所述压缩机的占空比。
在上述储能单元的主动冷却功率标定系统的优选技术方案中,所述试验车辆为新能源汽车,所述加热模块为新能源汽车的高压加热器。
本领域技术人员能够理解的是,在本发明的优选技术方案中,储能单元的主动冷却功率标定方法主要步骤包括:加热装置使储能单元的入口温度达到目标温度;冷却系统以使入口温度维持在目标温度的方式冷却储能单元;在入口温度稳定于目标温度的情形下,标定冷却系统的参数。其中,加热装置优选为试验车辆的高压加热器,冷却系统优选为试验车辆的空调冷却系统。通过利用试验车辆自身的高压加热器使储能单元入口温度达到目标温度,空调冷却系统将入口温度维持在目标温度,以及在入口温度稳定于目标温度的情形下标定空调冷却系统参数的方式,可以大致模拟甚至代替在风洞环境舱中进行的储能单元的主动冷却功率标定试验,有效降低开发费用,提高开发效率。
图1是本发明的储能单元的主动冷却功率标定方法的流程示意图;
图2是现有的新能源汽车的热管理系统的结构示意图;
图3是用于本发明的储能单元的主动冷却功率标定方法的的热管理系统结构示意图;
图4是本发明的储能单元的主动冷却功率标定方法的一种实施方式中标定压缩机占空比的流程示意图;
图5是本发明的储能单元的主动冷却功率标定系统的结构示意图。
附图标记列表
11、压缩机;12、冷凝器;13、PTC加热器;14、冷却器(Chiller);15、膨胀阀;16、PTC风扇;21、驱动电机;22、电机冷却泵;23、车载充电机(OBC);24、DC/DC转换器;25、逆变器;26、散热器;27、风扇;31动力电池;32、电池冷却泵;33、三通阀;34、高压加热器(HVH);40、四通阀。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中通过将空调冷却系统中的冷却器串联至电池冷却系统中的方式使冷却器、动力电池和高压加热器处于同一冷却回路中,但是这种方式非一成不变,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
在此提出的示例性实施方式,通过一种储能单元的主动冷却功率标定方法和系统,克服现有的在风洞环境舱中进行储能单元的主动冷却功率标定试验存在的试验效率低、成本高的缺陷。具体而言,本发明通过借助新能源汽车(如电动汽车)的冷却系统中配置的加热装置,如电动汽车内的高压加热器(HVH),来精确地模拟出动力电池发热的方式。这样一来,在普通的汽车试验场,甚至是在电动汽车处于静止状态的情形下,即可实现动力电池的主动冷却功率的标定,从而取代了风洞环境舱中的标定试验,有效地降低了开发费用,缩短了开发周期,提高了开发效率。
图1是本发明的储能单元的主动冷却功率标定方法的流程示意图,图3是用于本发明的储能单元的主动冷却功率标定方法的的热管理系统结构示意图。以下结合图1和图3描述根据本发明一种示例的主动冷却功率标定方法。在本文所有示例中,都是以储能单元的主动冷却功率标定方法和/或储能单元的主动冷却功率标定方法的的热管理系统实现在电动汽车中作为示例来说明的,但这并不是将本发明的用途只限
定在电动汽车。按照本发明的储能单元的主动冷却功率标定方法的一种示例,该方法主要包括如下步骤:
S100、加热装置使动力电池31的入口温度达到目标温度。如开启电动汽车的高压加热器34并以目标功率PHVH运行的方式使动力电池31的入口温度达到目标温度。其中,目标功率PHVH可以是当前工况点对应的动力电池31的发热功率,目标温度可以是当前工况点对应的电池的发热温度。
需要说明的是,动力电池31的冷却功率通常是根据动力电池31内部的发热功率来确定(如根据动力电池31的内阻与动力电池31的电流确定),然后由VCU发出对应的冷却功率请求给CCU,CCU通过调节空调冷却系统中的压缩机11的转速来匹配VCU请求的冷却功率值。在一种可能的实施方式中,可以基于动力电池31的发热功率将冷却功率请求值分成若干个工况点,并且基于每一个工况点对应的冷却功率,高压加热器34可以通过设定一个与该工况点的冷却功率相对应的恒定功率(目标功率PHVH)的方式对电池冷却系统进行加热,从而精确模拟动力电池31的发热情况。
S200、冷却系统以使入口温度维持在目标温度的方式冷却动力电池31。如开启电动汽车的空调冷却系统并通过调节压缩机11的实际转速的方式,使动力电池31的入口温度稳定在目标温度。
S300、在入口温度稳定于目标温度的情形下,标定空调冷却系统的参数。如在动力电池31的入口温度稳定在目标温度的情形下,记录空调冷却系统中的冷却器(Chiller)14的冷却功率PChiller以及压缩机11的占空比等参数。
图2是现有的新能源汽车的热管理系统的结构示意图。如图2所示,电动汽车的热管理系统架构通常包含三个系统,即空调冷却系统、电机冷却系统和电池冷却系统。其中,空调冷却系统主要包括压缩机11、冷凝器12、PTC加热器13、冷却器14,膨胀阀15和PTC风扇16等部件。电机冷却系统主要包括驱动电机21、电机冷却泵22、车载充电机(OBC)23、DC/DC转换器24、逆变器25、散热器26、风扇27等部件以及连接上述部件的管路,并且管路中充满了冷却液。电池冷却系统主要包括动力电池31、电池冷却泵32、三通阀33、高压加热器34等部件以及连接上述部件的管路,并且管路中也充满了冷却液。其中,电机冷却系统与
电池冷却系统之间能够通过可切换的方式使二者连通或者各自相对独立地运转,如在电机冷却系统与电池冷却系统之间设置有四通阀40,并且在通过切换四通阀40的连通方式将电机冷却系统与电池冷却系统的连接形式调整为串联模式(连通)或并联模式(各自相对独立地运转)。其中,电池冷却系统与空调冷却系统之间能够通过可切换的方式使二者部分连通或者各自相对独立地运转,如在电机冷却系统与电池冷却系统之间设置有三通阀33,并且通过切换三通阀33的连通方式调整电池冷却系统为加热模式(各自相对独立运转)或冷却模式(冷却器14连通至电池冷却系统)。
在正常工作模式下,四通阀40使电机冷却系统与电池冷却系统之间处于并联模式,即电机冷却系统与电池冷却系统相互独立。此时,电机冷却系统主要依靠电机冷却泵22带动冷却液循环的方式将热量通过散热器26散发出去,从而使驱动电机21等部件维持在适宜的工作温度区间。电池冷却系统则负责将动力电池31的温度维持在适宜的工作温度区间内。当动力电池31的温度过低需要加热时,通过切换三通阀33的方式将电池冷却系统调整至加热模式。在加热模式下,动力电池31主要依靠高压加热器34加热冷却液,电池冷却泵32带动冷却液在电池冷却系统中循环,进而使动力电池31工作在适宜的工作温度区间内。而当动力电池31温度过高需要冷却时,通过切换三通阀33的方式将电池冷却系统调整至冷却模式,在冷却模式下,动力电池31主要依靠连通至电池冷却系统中的冷却器14的冷媒与电池冷却系统中的冷却液进行热交换,电池冷却泵32带动冷却液在电池冷却系统中循环冷却,进而使动力电池31工作在适宜的工作温度区间内。
如图3所示,为了可以使用电动汽车配置的高压加热器34模拟动力电池31的发热,进而对动力电池31的冷却功率进行标定,需要首先对电动汽车的冷却系统进行如下的改造。改造方法可以为:将空调冷却系统中的冷却器14和电池冷却系统中的高压加热器34由并联安装改为串联安装,并取消原回路中的三通阀33。也就是说,在冷却系统改造后,空调冷却系统中的冷却器14可以与电池冷却回路中的高压加热器34以及动力电池31处于同一冷却回路中,并且此时,冷却器14与高压加热器34可以同时进行工作。
将冷却器14和高压加热器34串联后,还可以通过切换四通阀40的方式,使电机冷却系统和电池冷却系统处于并联模式,以减小无关系统中的部件对标定试验的影响。
在上述条件下,开启高压加热器34并以目标功率PHVH运行的方式使动力电池31的入口温度(即动力电池31入口的冷却液温度)达到目标温度后,在步骤S200中,开启空调冷却系统使冷却器14与电池冷却系统中的冷却液进行热交换,并且可以通过调整空调冷却系统中的压缩机11的实际转速的方式,进而调节空调冷却系统中的冷却器14的热交换效果,最终使得动力电池31的入口温度稳定在目标温度。
在动力电池31的入口温度温度稳定在目标温度的情形下,动力电池31的入口达到热平衡状态。在步骤S300中,又可以进一步分为如下步骤:
S310、标定冷却器14的冷却功率为高压加热器34的目标功率PHVH。
在一种可能的实施方式中,可以通过在动力电池31入口处建立热平衡方程,也就是根据公式(1)来标定出冷却器14的冷却功率:
PHVH-PChiller=CqMT′BattInlet (1)
在公式(1)中,PChiller表示与冷却液进行热交换的冷却器14的冷却功率,C表示冷却液比热,qM表示动力电池31入口处冷却液的质量流量,TBattInlet表示动力电池31入口处冷却液的入口温度。
由上述公式(1)可知,在高压加热器34以恒定的目标功率PHVH输出工况下,通过调节压缩机11实际转速,进而间接调节冷却器14的冷却功率,通过监控(如通过在动力电池31入口处安装温度传感器监控动力电池31的入口温度),只要动力电池31的入口温度大致不变,即可认为高压加热器34的加热功率完全被冷却器14的冷却功率中和,也就是说,当入口温度大致不变时,T′BattInlet的值约等于零,此时公式(1)变为PHVH-PChiller=0,因此可大致地认为在当前状态下高压加热器34的目标功率PHVH与冷却器14的冷却功率PChiller相等。又由于目标功率PHVH为设定的已知量,从而PChiller的值也就标定出来了。
需要说明的是,利用上述公式(1)标定冷却功率的目的在于,冷却器14以该冷却功率对动力电池31进行冷却时可以避免动力电池31的温度进一步上升。当然,在不偏离本发明原理的情形下,本领域
技术人员还可以利用其它方式标定冷却器14的冷却功率,来得到避免动力电池31的温度进一步上升、甚至使动力电池31温度下降至合理的温度区间的冷却功率。
S320、基于目标温度和入口温度计算压缩机11的目标转速;并且标定基于目标转速和实际转速得到的压缩机11的占空比。
图4是本发明的储能单元的主动冷却功率标定方法的一种实施方式中标定压缩机占空比的流程示意图。如图4所示,在一种可能的实施方式中,可以利用动力电池31的入口温度做双闭环控制策略,来标定压缩机11的占空比。具体如下:
首先,基于动力电池31的入口温度与目标温度,计算出压缩机11的目标转速。如可以通过对动力电池31的入口温度与目标温度的温度差进行PID处理,从而计算出压缩机11的目标转速。当然,计算压缩机11的目标转速的方式并非一成不变,本领域技术人员可以基于具体应用环境作出灵活调整。
然后,基于压缩机11的目标转速与实际转速,计算压缩机11的占空比。如仍然可以通过对压缩机11的实际转速和目标转速的速度差进行PID处理,从而获得压缩机11的占空比。
同样地,标定压缩机11的占空比的方式并非一成不变,本领域技术人员可以基于具体应用环境作出灵活调整。
至此,当前工况点的标定试验完成。
基于标定出的压缩机11的占空比,即可获得与当前工况点的冷却功率对应的压缩机11的实际转速。
如上,本发明的储能单元的主动冷却功率标定方法中,通过利用电动汽车中的高压加热器34可以精确模拟动力电池31发热、利用在动力电池31入口建立的热平衡方程标定压缩机11的冷却功率、以及利用双闭环策略标定压缩机11的占空比的方式,可以大致模拟甚至完全代替在风洞环境舱中进行的动力电池31的冷却功率标定试验。上述方式有效地降低了整车开发过程中的开发费用,缩短了开发周期,提高了开发效率。
当然,上述的串联模式和并联模式、加热模式和冷却模式只是本优选的实施方式中电动汽车的内部构造的一种可能的方式,本领域技术人员在不偏离本发明原理的情况下,还可以将本方法应用于其他新
能源汽车。具体而言,本实施例利用将空调冷却系统中的冷却器14串联至电池冷却系统中的方式使冷却器14、动力电池31和高压加热器34处于同一冷却回路中。但是本领域技术人员应当理解,任意可以使空调冷却系统中的冷却器14与电池冷却系统中的高压加热器34和动力电池31处于同一冷却回路的改造方式均可以用于实现本发明。
图5是本发明的储能单元的主动冷却功率标定系统的结构示意图。如图5所示,本发明的另一方面提供了一种储能单元的主动冷却功率标定系统。仍以电动汽车为例,该冷却功率标定系统主要包括:
加热模块,其用于使动力电池31的入口温度达到目标温度。如加热模块可以为如电动汽车的高压加热器34。使动力电池31的入口温度达到目标温度的方式可以为高压加热器34通过以目标功率运行的方式使动力电池31的入口温度达到目标温度。其中,目标功率PHVH可以是当前工况点对应的动力电池31的发热功率,目标温度可以是当前工况点对应的电池的发热温度。
冷却模块,其用于以“使入口温度维持在目标温度”的方式冷却动力电池31。如冷却模块可以为电动汽车的空调冷却系统。使入口温度维持在目标温度的方式可以为:通过调节压缩机11的实际转速的方式,使冷却器14以使动力电池31的入口温度维持在目标温度的方式冷却动力电池31。
标定模块,其用于在入口温度稳定于目标温度的情形下标定冷却模块的参数。如标定出空调冷却系统的冷却器14的冷却功率以及空调冷却系统的压缩机11的占空比等参数。
此外,冷却功率标定系统还包括切换模块、控制模块以及参数确定模块。其中,切换模块用于使高压加热器34、动力电池31和空调冷却系统的冷却器14处于同一冷却回路中。其中,控制模块用于使高压加热器34以设定的目标功率运行。其中,参数确定模块用于标定冷却器14的冷却功率为加热模块的目标功率;以及基于目标温度和动力电池31的入口温度计算压缩机11的目标转速,并且基于目标转速和实际转速,标定压缩机11的占空比。
上述优选的实施方式,储能单元的主动冷却功率标定方法主要包括加热装置使动力电池31的入口温度达到目标温度;冷却系统以使入口温度维持在目标温度的方式冷却动力电池31;以及在入口温度稳定
于目标温度的情形下,标定冷却系统的参数。储能单元的主动冷却功率标定系统主要包括加热模块、冷却模块、标定模块、切换模块、控制模块以及参数确定模块。通过对电动汽车中的热管理系统结构进行改造,如将空调冷却系统中的冷却器14与电池冷却系统中的高压加热器34和动力电池31串联的方式,可以实现通过利用高压加热器34精确模拟电池包发热、利用在动力电池31入口建立热平衡方程标定压缩机11的冷却功率以及利用双闭环策略标定压缩机11的占空比,从而使本发明的主动冷却功率标定方法可以大致模拟甚至代替风洞环境舱中进行的动力电池31的冷却功率标定试验,有效地降低了整车开发过程中的开发费用,缩短了整车的开发周期,提高了整车的开发效率。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (14)
- 一种储能单元的主动冷却功率标定方法,其特征在于,所述冷却功率标定方法包括如下步骤:加热装置使储能单元的入口温度达到目标温度;冷却系统以使所述入口温度维持在所述目标温度的方式冷却所述储能单元;在所述入口温度稳定于所述目标温度的情形下,标定冷却系统的参数。
- 根据权利要求1所述的储能单元的主动冷却功率标定方法,其特征在于,所述冷却系统为试验车辆的空调冷却系统,所述参数包括冷却器的冷却功率以及压缩机的占空比。
- 根据权利要求2所述的储能单元的主动冷却功率标定方法,其特征在于,所述冷却功率标定方法还包括:使所述加热装置、所述储能单元和所述冷却器处于同一冷却回路中。
- 根据权利要求2所述的储能单元的主动冷却功率标定方法,其特征在于,所述的“加热装置使储能单元的入口温度达到目标温度”进一步包括:使所述加热装置以设定的目标功率运行;所述加热装置通过以该目标功率运行的方式使所述储能单元的入口温度达到所述目标温度。
- 根据权利要求4所述的储能单元的主动冷却功率标定方法,其特征在于,所述的“冷却系统以使所述入口温度维持在所述目标温度的方式冷却所述储能单元”进一步包括:通过调节所述压缩机的实际转速,使所述储能单元的入口温度维持在所述目标温度。
- 根据权利要求5所述的储能单元的主动冷却功率标定方法,其特征在于,所述冷却功率标定方法还包括:标定所述冷却器的冷却功率为所述加热装置的目标功率;以及基于所述目标温度和所述储能单元的入口温度计算所述压缩机的目标转速;并且标定基于所述目标转速和所述实际转速得出的所述压缩机的占空比。
- 根据权利要求2至6中任一项所述的储能单元的主动冷却功率标定方法,其特征在于,所述试验车辆为新能源汽车,所述加热装置为新能源汽车的高压加热器。
- 一种储能单元的主动冷却功率标定系统,其特征在于,所述冷却功率标定系统包括:加热模块,其用于使储能单元的入口温度达到目标温度;冷却模块,其用于以“使所述入口温度维持在所述目标温度”的方式冷却所述储能单元;标定模块,其用于:在所述入口温度稳定于所述目标温度的情形下,标定冷却系统的参数。
- 根据权利要求8所述的储能单元的主动冷却功率标定系统,其特征在于,所述冷却模块为试验车辆的空调冷却系统,所述参数包括冷却器的冷却功率以及压缩机的占空比。
- 根据权利要求9所述的储能单元的主动冷却功率标定系统,其特征在于,所述冷却功率标定系统还包括切换模块,该切换模块用于使所述加热装置、所述储能单元和所述冷却器处于同一冷却回路中。
- 根据权利要求9所述的储能单元的主动冷却功率标定系统,其特征在于,所述系统还包括控制模块,其用于使所述加热模块以设定的目标功率运行;所述的“使储能单元的入口温度达到目标温度”的具体方式为:所述加热模块通过以所述目标功率运行的方式使所述储能单元的入口温度达到所述目标温度。
- 根据权利要求11所述的储能单元的主动冷却功率标定系统,其特征在于,所述的“以使所述入口温度维持在所述目标温度的方式冷却所述储能单元”的具体方式为:通过调节所述压缩机的实际转速,使所述储能单元的入口温度维持在所述目标温度。
- 根据权利要求12所述的储能单元的主动冷却功率标定系统,其特征在于,所述系统还包括参数确定模块,该参数确定模块用于:标定所述冷却器的冷却功率为所述加热模块的目标功率;以及基于所述目标温度和所述储能单元的入口温度计算所述压缩机的目标转速;并且标定基于所述目标转速和所述实际转速得出的所述压缩机的占空比。
- 根据权利要求9至13中任一项所述的储能单元的主动冷却功率标定系统,其特征在于,所述试验车辆为新能源汽车,所述加热模块为新能源汽车的高压加热器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710222879.8A CN107132865B (zh) | 2017-04-07 | 2017-04-07 | 试验车辆的储能单元的主动冷却功率标定方法及系统 |
CN201710222879.8 | 2017-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018184326A1 true WO2018184326A1 (zh) | 2018-10-11 |
Family
ID=59716576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/095215 WO2018184326A1 (zh) | 2017-04-07 | 2017-07-31 | 储能单元的主动冷却功率标定方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10838032B2 (zh) |
CN (1) | CN107132865B (zh) |
WO (1) | WO2018184326A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10834853B2 (en) | 2018-03-02 | 2020-11-10 | Micron Technology, Inc. | Electronic device with a card-level thermal regulator mechanism and associated systems, devices, and methods |
CN111791755B (zh) * | 2019-04-09 | 2024-02-13 | 微宏公司 | 一种电池热管理方法 |
CN111098665B (zh) * | 2020-01-19 | 2020-11-20 | 湖南汽车工程职业学院 | 一种内燃机汽车多模式温度管理系统 |
CN111098666B (zh) * | 2020-01-19 | 2020-11-20 | 湖南汽车工程职业学院 | 一种电动汽车多模式温度管理系统 |
DE102020206529A1 (de) * | 2020-05-26 | 2021-12-02 | Ford Global Technologies, Llc | System zum Kühlen einer Batterie eines Kraftfahrzeugs, sowie Kraftfahrzeug |
CN113400886B (zh) * | 2020-06-04 | 2022-08-12 | 一汽奔腾轿车有限公司 | 一种新能源车空调及热管理系统高温标定方法 |
CN111855231A (zh) * | 2020-07-28 | 2020-10-30 | 摩登汽车有限公司 | 新能源汽车的动力系统热性能参数标定的操作方法 |
CN112397798B (zh) * | 2020-11-13 | 2022-04-26 | 上汽大众汽车有限公司 | 一种动力电池管理系统及匹配方法 |
CN112736320B (zh) * | 2020-12-28 | 2022-05-10 | 东软睿驰汽车技术(沈阳)有限公司 | 一种冷却系统的冷却参数确定方法、装置及设备 |
CN112693365B (zh) * | 2021-01-04 | 2022-11-29 | 吉林大学 | 一种增程式电动汽车动力耦合热控制系统及其控制方法 |
CN112902471B (zh) * | 2021-02-04 | 2022-11-01 | 浙江吉利控股集团有限公司 | 一种车辆冷却的控制方法、控制系统和车辆 |
CN112793466B (zh) * | 2021-03-24 | 2022-10-25 | 辽宁工业大学 | 一种新能源汽车电池管理系统的控制方法 |
CN113745710B (zh) * | 2021-08-06 | 2023-01-31 | 中国科学院电工研究所 | 电动汽车电池包与充电桩联合冷却方法及系统 |
CN113859049B (zh) * | 2021-09-07 | 2023-07-21 | 恒大新能源汽车投资控股集团有限公司 | 电池热管理方法、装置、电子设备及计算机可读存储介质 |
CN114649565B (zh) * | 2022-02-19 | 2023-09-29 | 深圳市品众自动化设备有限公司 | 一种锂电池化成分容设备的控制方法及系统 |
CN115328234B (zh) * | 2022-09-16 | 2023-10-24 | 中国第一汽车股份有限公司 | 电机冷却系统冷却能力的诊断方法及装置、处理器、车辆 |
CN115742867A (zh) * | 2022-12-13 | 2023-03-07 | 蔚来汽车科技(安徽)有限公司 | 控制车辆冷却液液位的方法、装置、车辆和存储介质 |
CN115773857B (zh) * | 2023-02-08 | 2023-04-11 | 中国空气动力研究与发展中心超高速空气动力研究所 | 一种用于高温流场的平板试验水冷模型支架 |
CN117393920B (zh) * | 2023-12-11 | 2024-03-08 | 深圳市普裕时代新能源科技有限公司 | 一种锂离子电池液冷储能系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201893429U (zh) * | 2010-11-26 | 2011-07-06 | 上海汽车集团股份有限公司 | 电池热管理系统 |
CN202032680U (zh) * | 2011-04-19 | 2011-11-09 | 北汽福田汽车股份有限公司 | 汽车空调系统 |
CN202042573U (zh) * | 2011-02-24 | 2011-11-16 | 上海通用汽车有限公司 | 车用动力电池组恒温控制系统 |
CN102468505A (zh) * | 2010-11-17 | 2012-05-23 | 现代自动车株式会社 | 用于控制燃料电池系统的温度的方法 |
CN106229574A (zh) * | 2016-08-18 | 2016-12-14 | 宁德时代新能源科技股份有限公司 | 电池包的冷却方法及系统 |
US20160372806A1 (en) * | 2015-06-17 | 2016-12-22 | Hyundai Motor Company | System and method for thermally managing battery |
WO2017002591A1 (ja) * | 2015-07-02 | 2017-01-05 | 株式会社日立製作所 | 電力貯蔵システム、エネルギー貯蔵管理システム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100333771B1 (ko) * | 1998-06-15 | 2002-08-27 | 삼성전자 주식회사 | 충전가능한배터리의용량캘리브레이팅방법 |
JP4048968B2 (ja) * | 2003-02-12 | 2008-02-20 | 株式会社デンソー | 車両用空調装置 |
JP2005254974A (ja) * | 2004-03-11 | 2005-09-22 | Toyota Motor Corp | 車両用温度調節システム |
CN102355011A (zh) * | 2011-07-29 | 2012-02-15 | 奇瑞汽车股份有限公司 | 一种车载电池管理单元的标定系统及其标定方法 |
KR101456007B1 (ko) * | 2012-11-01 | 2014-11-03 | 엘지전자 주식회사 | 전기자동차용 공기조화장치 |
CN103407346B (zh) * | 2013-08-30 | 2016-03-23 | 奇瑞新能源汽车技术有限公司 | 一种纯电动汽车整车热管理系统 |
CN203727131U (zh) * | 2014-03-11 | 2014-07-23 | 广州汽车集团股份有限公司 | 一种新能源汽车热管理系统 |
CN204367820U (zh) * | 2015-01-05 | 2015-06-03 | 安徽江淮汽车股份有限公司 | 一种集成动力电池冷却功能的车用空调控制系统 |
CN105552478B (zh) * | 2016-01-15 | 2018-03-23 | 温州大学激光与光电智能制造研究院 | 动力电池温度控制系统的设计方法及相应的控制系统 |
CN105984304A (zh) * | 2016-05-03 | 2016-10-05 | 浙江吉利控股集团有限公司 | 一种纯电动汽车整车热管理系统 |
CN106546813B (zh) * | 2016-10-20 | 2019-01-25 | 北京空间机电研究所 | 一种大冷量低温制冷系统功率标定装置及方法 |
-
2017
- 2017-04-07 CN CN201710222879.8A patent/CN107132865B/zh active Active
- 2017-07-31 WO PCT/CN2017/095215 patent/WO2018184326A1/zh active Application Filing
-
2018
- 2018-04-06 US US15/947,533 patent/US10838032B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102468505A (zh) * | 2010-11-17 | 2012-05-23 | 现代自动车株式会社 | 用于控制燃料电池系统的温度的方法 |
CN201893429U (zh) * | 2010-11-26 | 2011-07-06 | 上海汽车集团股份有限公司 | 电池热管理系统 |
CN202042573U (zh) * | 2011-02-24 | 2011-11-16 | 上海通用汽车有限公司 | 车用动力电池组恒温控制系统 |
CN202032680U (zh) * | 2011-04-19 | 2011-11-09 | 北汽福田汽车股份有限公司 | 汽车空调系统 |
US20160372806A1 (en) * | 2015-06-17 | 2016-12-22 | Hyundai Motor Company | System and method for thermally managing battery |
WO2017002591A1 (ja) * | 2015-07-02 | 2017-01-05 | 株式会社日立製作所 | 電力貯蔵システム、エネルギー貯蔵管理システム |
CN106229574A (zh) * | 2016-08-18 | 2016-12-14 | 宁德时代新能源科技股份有限公司 | 电池包的冷却方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
US20180292505A1 (en) | 2018-10-11 |
CN107132865A (zh) | 2017-09-05 |
US10838032B2 (en) | 2020-11-17 |
CN107132865B (zh) | 2020-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018184326A1 (zh) | 储能单元的主动冷却功率标定方法及系统 | |
CN107054130B (zh) | 储能单元的冷却控制方法及系统 | |
JP7059670B2 (ja) | 充電システム | |
JP6026281B2 (ja) | 自動車用の冷却装置 | |
JP2004027991A (ja) | 車両用制御装置 | |
US20140196485A1 (en) | Method for controlling a thermal storage heat pump system | |
CN111347939A (zh) | 车辆及其动力电池温度控制装置 | |
CN113525017A (zh) | 一种电池冷却与乘员舱制冷的制冷量分配方法及系统 | |
JP2020055342A (ja) | 車両の熱管理システム | |
CN111670352B (zh) | 用于在试验台上调节驱动单元的冷却剂回路的冷却剂的温度的方法 | |
CN107462391B (zh) | 新能源汽车的散热器性能参数的标定方法及标定系统 | |
JP2012081932A (ja) | 駆動用バッテリ温度調整システム | |
CN115799723A (zh) | 电池温度控制方法、系统及设备 | |
CN107036833B (zh) | 散热器性能参数的标定方法及标定系统 | |
CN113858909B (zh) | 一种电动压缩机转速控制方法和系统 | |
CN114464919A (zh) | 一种动力电池系统温控调试装置 | |
KR20180029439A (ko) | 차량용 히트펌프 시스템 및 이의 제어 방법 | |
CN116048057B (zh) | 一种热管理测试系统及方法 | |
CN107914541A (zh) | 用于电动车辆的马达的集成控制方法和系统 | |
CN107117047B (zh) | 新能源汽车的储能单元热容的标定方法及标定系统 | |
US11524551B2 (en) | Abnormality diagnosis device for blower system | |
KR20120050640A (ko) | 배터리 온도 관리장치 | |
CN112060980B (zh) | 一种燃料电池车辆的冷却模块总成及冷却系统 | |
CN118156667A (zh) | 热管理系统、热管理方法和计算机装置 | |
SE543330C2 (en) | A method of controlling a battery cooling system of a vehicle comprising an electric propulsion engine, and a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904394 Country of ref document: EP Kind code of ref document: A1 |