[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018182191A1 - Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same - Google Patents

Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same Download PDF

Info

Publication number
WO2018182191A1
WO2018182191A1 PCT/KR2018/002580 KR2018002580W WO2018182191A1 WO 2018182191 A1 WO2018182191 A1 WO 2018182191A1 KR 2018002580 W KR2018002580 W KR 2018002580W WO 2018182191 A1 WO2018182191 A1 WO 2018182191A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
porous support
ion exchange
group
ion
Prior art date
Application number
PCT/KR2018/002580
Other languages
French (fr)
Korean (ko)
Inventor
이은수
이동훈
김나영
염승집
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201880021504.8A priority Critical patent/CN110462906B/en
Priority to US16/079,214 priority patent/US10396385B2/en
Priority to EP18774623.5A priority patent/EP3605691B1/en
Priority to JP2019548730A priority patent/JP6895532B2/en
Priority claimed from KR1020180025675A external-priority patent/KR102028535B1/en
Publication of WO2018182191A1 publication Critical patent/WO2018182191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an ion exchange membrane, a method for manufacturing the same, and an energy storage device including the same. More particularly, the present invention relates to energy storage such as a vanadium redox flow battery having high charge and discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability. The present invention relates to an ion exchange membrane, a method for preparing the same, and an energy storage device including the same, which can achieve high energy efficiency when applied to a device.
  • Renewable energy sources such as solar and wind are used more efficiently than before, but these energy sources are intermittent and unpredictable. These characteristics limit the dependence on these energy sources, and the ratio of renewable energy sources among primary power sources is very low.
  • Rechargeable batteries provide a simple and efficient method of storing electricity, and thus, efforts have been made to utilize them as power sources for intermittent auxiliary power, small appliances such as laptops, tablet PCs, and mobile phones by miniaturizing them to increase mobility.
  • a redox flow battery is a secondary battery capable of storing energy for a long time by repeating charging and discharging by an electrochemical reversible reaction of an electrolyte.
  • the stack and electrolyte tank are independent of each other, which determines the capacity and output characteristics of the battery, freeing cell design and reducing installation space.
  • the redox flow battery has a load leveling function that can be installed in a power plant, a power system, a building to cope with a sudden increase in power demand, a function of compensating or suppressing a power failure or an instantaneous low voltage, and can be freely combined as necessary. It is a very powerful energy storage technology and is suitable for large scale energy storage.
  • the redox flow cell generally consists of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. In the real redox flow battery, the electrolyte reaction is different from each other at the positive electrode and the negative electrode, and there is a pressure difference between the positive electrode side and the negative electrode side because an electrolyte solution flow phenomenon exists. Reactions of the positive and negative electrolytes in the all-vanadium redox flow battery, which is a typical redox flow battery, are shown in Schemes 1 and 2, respectively.
  • an ion exchange membrane having improved physical and chemical durability is required, and in the redox flow battery, the ion exchange membrane is a system.
  • the core material accounts for about 10% of the price.
  • the ion exchange membrane is a key component for determining battery life and price.
  • the selective permeability of ions in the ion exchange membrane is high, so that the crossover of vanadium ions is increased.
  • DMFC direct methanol fuel cells
  • PEMFC polymer electrolyte membrane fuel cells
  • Numerous researches on ion exchange membranes are actively conducted as mediators for transferring ions used in electrolyte membrane fuel cells, proton exchange membrane fuel cells, redox flow batteries, and water purification equipment.
  • a widely used material for ion exchange membranes is Nafion TM based membrane, a polymer containing perfluorinated sulfonic acid group, DuPont, USA.
  • the membrane has an ion conductivity of 0.08 S / cm at room temperature, excellent mechanical strength and chemical resistance at a saturated water content, and has a stable performance as an electrolyte membrane for use in automotive fuel cells.
  • membranes of a similar type include Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane, Asahi Glass's Flemion membrane, Gore & Associate's GoreSelcet membrane, etc., and polymers perfluorinated in alpha or beta form by Ballard Power System of Canada It is under development research.
  • the membranes are expensive and difficult to synthesize, which makes them difficult to mass-produce, as well as crossover in electrical energy systems such as redox flow cells, ions such as low ion conductivity at high or low temperatures.
  • As an exchange membrane there is a disadvantage in that the efficiency is greatly reduced.
  • Another object of the present invention is to provide a method for producing the ion exchange membrane.
  • Still another object of the present invention is to provide an energy storage device including the ion exchange membrane.
  • a porous support including a plurality of pores (pore), and an ion conductor filling the pores of the porous support, the porous support is a micropore of 31 to 1000 ⁇ m size
  • an ion exchange membrane comprising.
  • the porous support may include 1 to 20% by volume of micropores having a size of 31 to 1000 ⁇ m with respect to the total volume of the pores.
  • the porosity of the porous support may be 45% or more.
  • the porous support may have a thickness of 1 to 200 ⁇ m.
  • the ion conductor may be included in 30 to 70% by weight based on the total weight of the ion exchange membrane.
  • the ion exchange membrane may further include an ion conductor layer positioned on one or both surfaces of the porous support, and the thickness of the ion conductor layer on one surface may be 1 to 30 ⁇ m.
  • the thickness of the ion conductor layer on one surface may be 1 to 50% by length based on the total thickness of the ion exchange membrane.
  • the porous support may consist of a plurality of randomly oriented fibers.
  • the method includes preparing a porous support including a plurality of pores, and filling an ion conductor into the pores of the porous support, wherein the porous support includes micropores.
  • a method for producing an ion exchange membrane is provided.
  • the step of preparing the porous support includes carding, garneting, air-laying, wet-laying, melt blowing, spunbonding and It can be produced by any one method selected from the group consisting of stitch bonding.
  • Filling the ion conductor in the pores of the porous support may include preparing the sheet conductor by coating the ion conductor, and melting and impregnating the ion conductor in the form of the sheet in the pores of the porous support.
  • the melt impregnation may be made of 150 to 240 °C at a pressure of 1 to 20 MPa.
  • an energy storage device including the ion exchange membrane is provided.
  • the energy storage device may be a fuel cell.
  • the energy storage device may be a redox flow battery.
  • the ion exchange membrane of the present invention has high charge and discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability to achieve high energy efficiency when applied to energy storage devices such as vanadium redox flow batteries.
  • the ion exchange membrane is an ion exchange membrane in the form of a reinforced composite membrane in which pores of a porous support having micropores are filled with an ion conductor, and the ion conductor layer is contained in a smaller amount by using a porous support having micropores or an ion conductor layer. Even if the thinner thickness is formed, sufficient efficiency is generated, and the resistance can be reduced by reducing the thickness of the overall ion exchange membrane, thereby improving the overall efficiency.
  • the reinforced composite membrane using the porous support having the micro-pores can reduce the content of the ion conductor in the entire reinforced composite membrane as compared to the reinforced composite membrane using the porous support having the nano-pores, so that the swellability of the ion exchange membrane The effect of reducing the amount of dimensional change can be obtained, and the durability can be improved.
  • an ion exchange membrane of the present invention even when a porous support having a micro pore is used, the shape of the ion exchange membrane can be prevented from being deformed, thereby ensuring the shape stability of the ion exchange membrane.
  • FIG. 1 is a schematic diagram showing an ion exchange membrane using the porous support having the micropores according to the present invention.
  • FIG. 2 is a schematic view showing an ion exchange membrane using a porous support having a conventional nanopore.
  • FIG. 3 is a schematic diagram schematically showing an all-vanadium redox battery according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the apparatus used to measure the resistance of the membrane in the experimental example of the present invention.
  • FIG 5 is a graph showing the pore distribution of the porous support according to Preparation Example 3 of the present invention.
  • FIG. 6 is a graph showing the pore distribution of the porous support according to Comparative Preparation Example 3 of the present invention.
  • An ion exchange membrane includes a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support, wherein the porous support is a micropore having a size of 31 to 1000 ⁇ m. (micropore).
  • An ion exchange membrane includes a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support, and the porous support includes micropores. .
  • the porous support may be a nonwoven fibrous web consisting of a plurality of randomly oriented fibers.
  • nonwoven fibrous web is meant a sheet that is interlaid but has the structure of individual fibers or filaments, but not in the same way as a woven fabric.
  • the nonwoven fibrous web may be manufactured by a method such as wet-laying described below.
  • the nonwoven fibrous web may have a basic weight of 5 to 30 g / m 2 .
  • the basis weight of the nonwoven fibrous web is less than 5 g / m 2 , visible pores are formed, and it may be difficult to function as a porous support, and it may be difficult to prepare an ion exchange membrane in the form of a reinforced composite membrane by a melt impregnation method. If it exceeds 30 g / m 2 , it can be produced in the form of paper or fabric in which little pores are formed.
  • the fibers can comprise one or more polymeric materials, and can be used as long as they are generally used as fiber forming polymeric materials, specifically hydrocarbon-based fiber forming polymeric materials.
  • the fiber forming polymer material may be selected from polyolefins such as polybutylene, polypropylene and polyethylene; Polyesters such as polyethylene terephthalate and polybutylene terephthalate; Polyamides (nylon-6 and nylon-6,6); Polyurethane; Polybutene; Polylactic acid; Polyvinyl alcohol; Polyphenylene sulfide; Polysulfones; Fluid crystalline polymers; Polyethylene-co-vinylacetate; Polyacrylonitrile; Cyclic polyolefins; Polyoxymethylene; Polyolefin-based thermoplastic elastomers; And combinations thereof, but is not limited thereto.
  • the porous support includes a micropore (micropore).
  • the shape of the micropores is not particularly limited, and may be in a random form, for example, may include both an elongate shape and a spherical shape in a random form.
  • the micro pore means a pore having a size of 1 to 1000 ⁇ m.
  • the porous support may have a micro pore of 31 to 1000 ⁇ m size, more specifically may have a micro pore of 31 to 700 ⁇ m size.
  • the porous support may include 1 to 20% by volume of micropores having a size of 31 to 1000 ⁇ m with respect to the total volume of the pores, and may include 1 to 10% by volume, more specifically 3 to 10% by volume. May contain%.
  • the present invention includes pores having a size exceeding 30 ⁇ m using a melt impregnation method.
  • Porous support can be prepared. However, since pores of several hundred micrometers in size are visible and large pores are formed, it may be difficult to use such a porous support when preparing an ion exchange membrane, but in the present invention, the distribution of micropores having a size of 31 to 1000 ⁇ m is 1 to 1. The problem can be solved by being limited to 20% by volume.
  • the size of the micropores can be measured by a method of measuring pore size using a capillary flow porometer (CFP).
  • the measurement area is a circular shape having a diameter of 25 mm
  • the measurement method may be a wet up dry down method.
  • the CFP naturally fills the pore with a liquid that does not react with the sample, and then creates a flow of gas between the pores while removing the liquid by the pressure of the unreactive gas, and then the gas flow difference.
  • a method of measuring the pore size by measuring the difference between and pressure Since the method for measuring the pore size using the CFP is well known, a detailed description thereof will be omitted.
  • the porosity of the porous support may be 45% or more, specifically 60% or more.
  • the porous support preferably has a porosity of 90% or less. If the porosity of the porous support exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly.
  • the porosity may be calculated by the ratio of air volume to the total volume of the porous support according to Equation 1 below. At this time, the total volume is calculated by measuring the width, length, thickness by preparing a sample of a rectangular shape, the air volume can be obtained by subtracting the volume of the polymer inverted from the density after measuring the mass of the sample from the total volume.
  • the porosity of the ion exchange membrane may be 0 to 10%.
  • the porous support may have a thickness of 1 to 200 ⁇ m, specifically 10 to 50 ⁇ m. When the thickness of the porous support is less than 1 ⁇ m, the mechanical strength may drop. When the thickness of the porous support exceeds 200 ⁇ m, the resistance loss may increase, and the weight and integration may be reduced.
  • the ion exchange membrane is an ion exchange membrane in the form of a reinforced composite membrane in which an ion conductor is filled in the pores of the porous support including the micropores.
  • the ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
  • the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
  • the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
  • the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
  • Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof
  • Hydrocarbon-based polymers include, but are not limited thereto.
  • the cationic conductor may include a hydrophilic region including a repeating unit represented by Formula 1, and a hydrophobic region including a repeating unit represented by Formula 2 below.
  • A is an ion conductive group
  • the ion conductive group may be any one cationic conductive group selected from the group consisting of sulfonic acid group, carboxylic acid group and phosphoric acid group, the cationic conductive group may be preferably a sulfonic acid group.
  • the ion conductive group may be an anionic conductive group such as an amine group.
  • R 11 to R 16 are each independently selected from a hydrogen atom, a halogen atom, an ion conducting group, an electron donation group, and an electron withdrawing group It may be any one selected.
  • the halogen atom may be any one selected from the group consisting of bromine, fluorine and chlorine.
  • the ion conductive group may be any one cationic conductive group selected from the group consisting of a sulfonic acid group, a carboxylic acid group and a phosphoric acid group, and the cationic conductive group may be preferably a sulfonic acid group.
  • the ion conductive group may be an anionic conductive group such as an amine group.
  • the electron donating group may be any one selected from the group consisting of an alkyl group, an allyl group, an aryl group, an amino group, a hydroxyl group, and an alkoxy group as an organic group for emitting electrons
  • the electron withdrawing group is an organic group that attracts electrons It may be any one selected from the group consisting of alkyl sulfonyl group, acyl group, halogenated alkyl group, aldehyde group, nitro group, nitroso group and nitrile group.
  • the alkyl group may be a methyl group, ethyl group, propyl group, butyl group, isobutyl group, amyl group, hexyl group, cyclohexyl group, octyl group and the like, the halogenated alkyl group is trifluoromethyl group, pentafluoroethyl group, perfluoro It may be a propyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like, the allyl group may be a propenyl group and the like, the aryl group may be a phenyl group, pentafluorophenyl group and the like.
  • the perfluoroalkyl group means an alkyl group in which some hydrogen atoms or all hydrogen atoms are substituted with fluorine.
  • X 1 may be a single bond or a divalent organic group.
  • the divalent organic group is a divalent organic group that attracts electrons or gives out electrons, specifically, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,-(CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , a cyclohexylidene group, a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and a fluorenylidene containing an ion conductive group It may be any one selected from the group consisting of groups.
  • R ' is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group
  • n may be an integer of 1 to 10.
  • X 1 is a single bond, it means that the phenyl groups present on both sides of X are directly connected, and biphenyl group is a representative example thereof.
  • Z 1 is a divalent organic group, and may be -O- or -S-, and preferably, -O-.
  • n 1 may be an integer of 0 to 4, and preferably may be an integer of 0 or 1.
  • R 211 to R 214 , R 221 to R 224, and R 231 to R 234 each independently represent a hydrogen atom; Halogen atom; An electron donation group selected from the group consisting of alkyl, allyl, aryl, amino, hydroxy and alkoxy groups; And an electron withdrawing group selected from the group consisting of an alkyl sulfonyl group, an acyl group, a halogenated alkyl group, an aldehyde group, a nitro group, a nitroso group, and a nitrile group.
  • An electron donation group selected from the group consisting of alkyl, allyl, aryl, amino, hydroxy and alkoxy groups
  • an electron withdrawing group selected from the group consisting of an alkyl sulfonyl group, an acyl group, a halogenated alkyl group, an aldehyde group, a nitro group, a nitroso group, and a nitrile group
  • X 21 and X 22 may each independently be a single bond or a divalent organic group.
  • the divalent organic group is a divalent organic group that attracts electrons or gives out electrons, and specifically -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , cyclohexylidene group and fluorenylidene group can be any one selected from the group.
  • R ' is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group
  • n may be an integer of 1 to 10.
  • Z 21 is a divalent organic group, and may be -O- or -S-, and preferably, -O-.
  • the ion exchange membrane is composed of a hydrophilic region including a repeating unit represented by Formula 1, and an ion conductor including a hydrophobic region including a repeating unit represented by Formula 2, and thus, a perfluorinated ion conductor.
  • Blocking vanadium ions due to the relatively small ion channel has low vanadium ion permeability, and when applied to a vanadium redox flow battery, solves the problem that the vanadium active material crossovers and lowers the energy efficiency, thereby resulting in high energy efficiency. Can be achieved.
  • the ion conductor when the ketone group having a crystallinity is introduced into the hydrophobic region, the ion conductor has a hydrophobic region with increased durability, thereby further improving chemical and thermal stability, and the ion conductor is characterized by fine phase separation between the hydrophilic region and the hydrophobic region. Can have higher ionic conductivity.
  • hydrophilic region or the hydrophobic region of the ion conductor may further include a repeating unit represented by the following formula (3).
  • X 3 may be a single bond or a divalent organic group.
  • the divalent organic group is a divalent organic group that attracts electrons or gives out electrons, specifically, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,-(CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , a cyclohexylidene group, a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and a fluorenylidene containing an ion conductive group It may be any one selected from the group consisting of groups.
  • R ' is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group
  • n may be an integer of 1 to 10.
  • Z 3 is a divalent organic group, and may be -O- or -S-, and preferably -O-.
  • R 31 to R 38 are each independently a hydrogen atom, a halogen atom, an ion conducting group, an ion donating group, an electron donation group, and an electron withdrawing group It may be any one selected. Detailed descriptions of the substituents are the same as described above, and thus repetitive description thereof will be omitted.
  • n 3 is an integer of 0 to 4, and preferably may be an integer of 0 or 1.
  • hydrophilic region may be represented by the following formula (4).
  • A is an ion conductive group
  • X 1 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,- (CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , cyclohexylidene group, containing a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and an ion conductive group It is any one selected from the group consisting of fluorenylidene group, wherein R 'is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group, wherein n is an integer of 1 to 10, Z 1 and Z 3 are each independently -O- or -S-, and R 11 to R 16 and R 31 to R 38 are
  • n 1 and n 3 are each independently an integer of 0 to 4.
  • a more detailed description of A, X 1 , X 3 , Z 1 , Z 3 , R 11 to R 16 , R 31 to R 38 , n 1, and n 3 is the same as described above, and thus a repetitive description thereof will be omitted.
  • hydrophobic region may be represented by the following formula (5).
  • R 211 to R 214 , R 221 to R 224 , R 231 to R 234 and R 31 to R 38 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an electron donor group and an electron withdrawing group
  • X 21 , X 22 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , any one selected from the group consisting of a cyclohexylidene group and a fluorenylidene group, wherein R 'is a hydrogen atom, a halogen atom, an alkyl group And a halogenated alkyl group, and n is an integer of 1 to 10, Z 21 and Z 3 are each independently -O- or -S-, and n 3
  • the ion exchange membrane may be represented by the following formula (6).
  • A is an ion conductive group
  • X 1 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,- (CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , cyclohexylidene group, containing a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and an ion conductive group It is any one selected from the group consisting of fluorenylidene group, wherein X 21 and X 22 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , cyclohexy
  • n 61 and n 62 may each independently be an integer of 1 to 100, and preferably 5 to 40.
  • n 61 or n 62 is less than 1, the phase separation effect of the hydrophilic region and the hydrophobic region is insignificant, and when they are greater than 100, molecular weight control is difficult, and the liquid-liquidity and impregnation may be lowered when preparing the reinforced composite membrane.
  • the repeating unit derived from Formula 3 included in the hydrophilic region may include an ion conductive group, but the repeating unit derived from Formula 3 included in the hydrophobic region may not include an ion conductive group. .
  • the molar ratio of repeating units of the hydrophilic region and the hydrophobic region of the ion conductor may be 1: 0.5 to 1:10, preferably 1: 1 to 1: 5, more preferably greater than 1.25 to 1: May be five.
  • the molar ratio of the repeating units of the hydrophobic region is less than 0.5, the water content may increase, thereby decreasing dimensional stability and durability, and when the molar ratio exceeds 10, the ionic conductivity may be reduced no matter how large the hydrophilic region is.
  • the ion conductor may have a weight average molecular weight of 10,000 g / mol to 1,000,000 g / mol, preferably may have a weight average molecular weight of 100,000 g / mol to 500,000 g / mol.
  • weight average molecular weight of the ion conductor is less than 100,000 g / mol, uniform film formation may be difficult and durability may be degraded. If the weight average molecular weight of the ion conductor exceeds 500,000 g / mol, solubility may decrease.
  • the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
  • the ion conductor may be included in 30 to 70% by weight, specifically 40 to 60% by weight based on the total weight of the ion exchange membrane.
  • the content of the ion conductor is a reduced content as compared to the case of using a porous support having nanopores as the porous support comprises micropores. If the content of the ion conductor is less than 30% by weight, the ion conductivity of the ion exchange membrane may be lowered. If the content of the ion conductor is more than 70% by weight, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced. .
  • the ion exchange membrane has sufficient efficiency even if the ion conductor layer is formed in a smaller amount by using the porous support having the micropores, and compared with the ion exchange membrane using the porous support having the nanopore, Since the content of the ion conductor at can be reduced, the effect of reducing the amount of swelling and the dimensional change of the ion exchange membrane can be obtained, thereby improving durability.
  • the porous support since the porous support has no ion transfer ability, it acts as a resistance in the ion exchange membrane. However, in the case of the ion conductor single membrane, it is difficult to secure durability because of repeated shrinkage and expansion under operating conditions of the membrane, so that the porous support is used for the purpose of securing durability.
  • the porous support having the micropores is relatively less resistant since the pores are larger in size than the porous support having the nanopores.
  • the ratio of the ion conductor layer formed on both sides of the porous support can be reduced compared to the porous support having the nanopores, and thus the entire ion exchange membrane. Can reduce the content of ionic conductors. That is, the ion exchange membrane including the porous support having the micropores can reduce the resistance of the porous support, and reduce the total content of the ion conductor while maintaining the same ion conductivity.
  • the ion exchange membrane may further include an ion conductor layer positioned on one or both surfaces of the porous support.
  • the ion conductor layer may be formed as the ion conductor remaining after filling the pores of the porous support forms a thin film on the surface of the porous support.
  • the thickness of the ion conductor layer on one surface may be 1 to 30 ⁇ m, and specifically 1 to 15 ⁇ m. If the thickness of the ion conductor layer is less than 1 ⁇ m, it may be difficult to implement in process, and if it exceeds 30 ⁇ m, the mechanical strength may be lowered.
  • the ion exchange membrane according to an embodiment of the present invention includes a micro pore having a larger size than a general porous support, the ion conductor is impregnated into the micro pore a lot, and as a result, sufficient efficiency is obtained even when the surface ion conductor layer is thinned. As the ion conductor layer is formed very thin, a reinforced composite membrane having low resistance and advantageous conductivity performance can be produced.
  • the thickness of the ion conductor layer on one surface may be 1 to 50% by length, preferably 1 to 30% by length with respect to the total thickness of the ion exchange membrane. If the thickness of the ion conductor layer is less than 1% by length, there is a risk that the ion conductivity of the exchange membrane is lowered. If the thickness of the ion conductor layer exceeds 50%, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced.
  • the thickness ratio of the ion conductor layer on one surface may be calculated by Equation 2 below.
  • Thickness ratio (length%) of the ion conductor layer on one side (thickness of the ion conductor layer on one side / total thickness of the ion exchange membrane) X 100
  • FIG. 1 is a schematic diagram showing an ion exchange membrane using a porous support having the micropores according to the present invention
  • Figure 2 is a schematic diagram showing an ion exchange membrane using a porous support having a conventional nano-pores.
  • the ion exchange membrane 10 has sufficient efficiency even when the ion conductor layer 12 is formed in a smaller content and a thinner thickness by using the porous support 11 having micropores.
  • the resistance may be reduced by reducing the thickness of the overall ion exchange membrane 10, thereby improving the overall efficiency.
  • the ion exchange membrane 10 using the porous support 11 having the micropores is an ion conductor filled in the pores of the porous support 11 when compared with the ion exchange membrane using the porous support 13 having the nanopores. Since it is possible to reduce the content of, the effect of reducing the amount of swelling and dimensional swelling of the ion exchange membrane 10 can be obtained to improve the durability.
  • the porous supports 11 and 13 do not have ion transfer capability, the porous supports 11 and 13 function as resistances in the ion exchange membrane 10.
  • the ion exchange membrane is manufactured using the porous support 13 having the conventional nanopores, the ion conductive layer 14 has a thickness ratio of 30% or more of the entire membrane and is formed at a predetermined thickness or more to exhibit ion conductivity performance.
  • the ion exchange membrane 10 is manufactured by using the porous support 11 having the micropores, the pore size is very large and the area of resistance is small, so that the thickness ratio of the ion conductor layer 12 is nanopores or several micro distribution.
  • the ion exchange membrane 10 is generally operated by exposing to an aqueous solution of an electrolyte solution containing 1M VOSO 4 and 5M H 2 SO 4, and thus the shape stability of the membrane has a significant advantage in ensuring durability of the system. .
  • a method of manufacturing an ion exchange membrane includes preparing a porous support including a plurality of pores, and filling an ion conductor in the pores of the porous support.
  • a porous support comprising a plurality of pores is prepared.
  • the porous support is formed to include micropores.
  • the porous support including the micropores may be prepared by a method of manufacturing a nonwoven fibrous web, specifically, carding, garneting, air-laying, and wet-laying. -laying, melt blowing, spunbonding and stitch bonding can be prepared by any one method selected from the group consisting of, preferably by a wet-laying method Can be.
  • the wet-laying is a process capable of forming a nonwoven fibrous web, in which the bundle of small fibers having a length in the range of about 3 mm to about 52 mm is separated in the liquid source. And is intrained and subsequently deposited onto the forming screen under the aid of a vacuum source at all times.
  • water may be used as the liquid.
  • the fibers randomly deposited by the wet-rail may be further entangled (eg hydroentangled) or, for example, hot spot bonding, spontaneous bonding, hot air bonding, ultrasonic bonding, needle punching, calender Rings, application of sprayed adhesive, and the like can be bonded to one another.
  • Exemplary wet-laying and bonding processes may be referred to, for example, US Pat. No. 5,767,765 (Nielsen et al.), And exemplary bonding processes may be referred to US Patent Publication No. 2008/0038976 (Berrigan et al.). .
  • an ion exchange membrane in the form of a reinforced composite membrane may be prepared by filling an ion conductor in the pores of the porous support.
  • Filling the pores of the porous support with the ion conductor may be generally carried out by supporting or impregnating the porous support in a solution containing the ion conductor.
  • the filling of the pores of the porous support with the ion conductor may be performed by any one method selected from the group consisting of bar coating, comma coating, slot die, screen printing, spray coating, doctor blade, laminating, and combinations thereof. It may be.
  • the conventional methods as described above increase the amount of ion conductors filled in one pore (because the pore size is large), so that the porous support cries or shrinks, etc. May cause problems.
  • filling the ion conductor in the porous support having the micropores may preferably use a melt impregnation method. That is, the melt impregnation method may be used to fill the ion conductor while preventing the porous support from crying or shrinking.
  • the content of the solvent filled in the pores increases because the porous support having the micropores has a large pore size.
  • the shape of the ion exchange membrane can be modified.
  • the step of filling the pores of the porous support with the ion conductor is prepared by coating the ion conductor in the form of a sheet, and the pores of the porous support of the sheet form Melt impregnation.
  • the step of coating the ion conductor in the form of a sheet may be performed by manufacturing the solution in the form of a solution or dispersion including the ion conductor and coating the same on a substrate.
  • the solution or dispersion containing the ion conductor may be purchased by using a commercially available ion conductor solution or dispersion, or may be prepared by dispersing the ion conductor in a solvent. Since the method for dispersing the ion conductor in a solvent can be used a conventionally known method, a detailed description thereof will be omitted.
  • a solvent for preparing a solution or dispersion including the ion conductor a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of one or more thereof may be used.
  • the hydrophilic solvent is a group consisting of alcohols, isopropyl alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have one or more functional groups selected from, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
  • the organic solvent can be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
  • the method of coating the ion conductor on the substrate may be made by any one method selected from the group consisting of bar coating, comma coating, slot die, screen printing, spray coating, doctor blade, laminating and combinations thereof.
  • the step of melt impregnating the prepared sheet-shaped ion conductor in the pores of the porous support may be arranged by placing the sheet-shaped ion conductor on one side or both sides of the porous support, using heat and pressure This can be done by adding.
  • the conditions of the melt impregnation can be appropriately selected according to the type of the ion conductor, specifically, in consideration of the glass transition temperature of the ion conductor can be appropriately selected. That is, conditions such as pressure, temperature and time may be set so that the sheet-shaped ion conductor is melted and penetrates into the micropores of the porous support. However, at this time, the thermal decomposition temperature of the polymer ion conductor Since the structure may be broken or the ion conduction performance may be lost when it is exceeded, it is preferable to control the conditions of the melt impregnation within a range in which the ion conductor is not damaged.
  • the melt impregnation of the ion conductor in the form of a sheet may be performed from above the glass transition temperature of the ion conductor to below the thermal decomposition temperature of the ion conductor, for example, at 150 to 240 ° C. at a pressure of 1 to 20 MPa. Can be done.
  • the melt impregnation time may vary depending on the production length of the ion exchange membrane and the heating means.
  • the ion conductor When the temperature is below the glass transition temperature (eg 150 ° C.) of the ion conductor, the ion conductor may not be sufficiently dissolved and may be partially impregnated into the porous support, and the temperature may be a thermal decomposition temperature of the ion conductor (eg, For example, 240 ° C.), an ion conductive functional group of the ion conductor, typically a sulfonic acid group, may be decomposed.
  • the temperature may be below the glass transition temperature (eg 150 ° C.) of the ion conductor, the ion conductor may not be sufficiently dissolved and may be partially impregnated into the porous support, and the temperature may be a thermal decomposition temperature of the ion conductor (eg, For example, 240 ° C.), an ion conductive functional group of the ion conductor, typically a sulfonic acid group, may be decomposed.
  • the glass transition temperature is usually 150 ° C. to 200 ° C. or less. Therefore, the melt impregnation of the hydrocarbon-based ion conductor may be made at 150 °C or more.
  • the heating may be applied to any means capable of transferring heat to the ion conductor, and specifically, a heated roll or plate press is brought into contact with a laminate in which the ion conductor is present on the surface of the porous support, or the laminate is Put on a heating plate, but may be to heat the whole laminate, but the present invention is not limited thereto.
  • Energy storage device includes the ion exchange membrane.
  • the energy storage device is a redox flow battery or a fuel cell will be described in detail.
  • the present invention is not limited thereto, and the ion exchange membrane may be applied to an energy storage device having a secondary battery type.
  • the ion exchange membrane has low vanadium ion permeability by blocking vanadium ions due to small ion channels, so that the vanadium active material crossovers when applied to a vanadium redox flow cell. It is possible to achieve a high energy efficiency by solving the problem of lowering the energy efficiency, the energy storage device may be preferably a redox flow battery (redox flow battery).
  • redox flow battery redox flow battery
  • the redox flow battery may be charged and discharged by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode and a negative electrode disposed to face each other and the ion exchange membrane disposed between the positive electrode and the negative electrode.
  • the redox flow battery includes an all-vanadium redox battery using a V (IV) / V (V) redox couple as a cathode electrolyte and a V (II) / V (III) redox couple as a cathode electrolyte;
  • a zinc-bromine (Zn-Br) redox battery using a halogen redox couple as a cathode electrolyte and a zinc (Zn) redox couple as a cathode electrolyte, but the type of
  • the redox flow battery is an all-vanadium redox battery
  • the redox flow battery of the present invention is not limited to the all vanadium-based redox battery.
  • FIG. 3 is a schematic diagram schematically showing the all-vanadium redox battery.
  • the redox flow battery includes a cell housing 102, the ion exchange membrane 104 installed to bisect the cell housing 102 into a positive cell 102A and a negative cell 102B, and the A positive electrode 106 and a negative electrode 108 positioned in each of the positive cell 102A and the negative cell 102B are included.
  • the redox flow battery may further include a cathode electrolyte storage tank 110 in which the cathode electrolyte is stored and a cathode electrolyte storage tank 112 in which the anode electrolyte is stored.
  • the redox flow battery includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102A, and includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102B. can do.
  • the anode electrolyte stored in the cathode electrolyte storage tank 110 flows into the cathode cell 102A through the anode electrolyte inlet by a pump 114 and then from the cathode cell 102A through the anode electrolyte outlet. Discharged.
  • the negative electrolyte stored in the negative electrolyte storage tank 112 flows into the negative cell 102B through the negative electrolyte inlet by a pump 116, and then through the negative electrolyte outlet 102 through the negative electrolyte outlet. Is discharged from
  • the movement of electrons through the anode 106 occurs according to the operation of the power supply / load 118, and thus an oxidation / reduction reaction of V 5+ ⁇ V 4+ occurs.
  • the cathode cell 102B the movement of electrons through the cathode 108 occurs according to the operation of the power source / load 118, and thus, an oxidation / reduction reaction of V 2+ ⁇ V 3+ occurs.
  • the positive electrolyte and the negative electrolyte are circulated to the positive electrolyte storage tank 110 and the negative electrolyte storage tank 112, respectively.
  • the anode 106 and the cathode 108 are Ru, Ti, Ir.
  • a composite material e.g., a Ti base material
  • conductive polymer for example, electrically conductive polymer such as polyacetylene, polythiophene, etc.
  • conductive polymer for example, electrically conductive polymer such as polyacetylene, polythiophene, etc.
  • graphite glassy carbon
  • conductive diamond conductive DLC (Diamond-Like Carbon)
  • nonwoven fabric made of carbon fiber and a woven fabric made of carbon fiber.
  • the positive electrode electrolyte and the negative electrode electrolyte may include any one metal ion selected from the group consisting of titanium ions, vanadium ions, chromium ions, zinc ions, tin ions, and mixtures thereof.
  • the negative electrolyte includes vanadium divalent ions (V 2+ ) or vanadium trivalent ions (V 3+ ) as negative electrolyte ions
  • the positive electrolyte includes vanadium tetravalent ions (V 4) as positive electrolyte ions. + ) Or vanadium pentavalent ions (V 5+ ).
  • the concentration of the metal ions included in the cathode electrolyte and cathode electrolyte is preferably 0.3 to 5 M.
  • the solvent of the cathode electrolyte and the cathode electrolyte is H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 PO 4 , Na 3 PO 4 , K 3 PO Any one selected from the group consisting of 4 , HNO 3 , KNO 3 and NaNO 3 can be used. Since the metal ions serving as the positive electrode and the negative electrode active material are all water soluble, an aqueous solution can be suitably used as a solvent of the positive electrode electrolyte and the negative electrode electrolyte.
  • the ion exchange membrane may be applied to a fuel cell membrane-electrode assembly, and specifically, the membrane-electrode assembly includes an anode electrode and a cathode electrode disposed to face each other, and the above-mentioned ions positioned between the anode electrode and the cathode electrode. It may include an exchange membrane.
  • SDCDPS (3,3-disulfonated-4,4'-dichlorodiphenyl sulfone) and bisphenol A were used for 30 hours at 160-180 ° C. using DMAc / Toluene cosolvent in the presence of potassium carbonate. After the reaction, the resultant was discharged into purified water, washed, and dried in hot air.
  • Bisphenol A and 1,3-bis (4-chlorobenzoy) benzene (1,3-bis (4-chlorobenzoyol) benzene) were prepared using DMAc / Toluene cosolvent in the presence of potassium carbonate. After reacting for 30 hours between 160 to 180 °C, it was discharged and washed in purified water and hot air dried.
  • hydrophilic and hydrophobic regions prepared above were reacted for 30 hours at 160 to 180 ° C. using DMAc / Toluene cosolvent in the presence of potassium carbonate, and then washed in a purified water and then dried by hot air drying.
  • the prepared polymer was dissolved in dichloromethane, and slowly added to a 5-fold excess of chlorosulfonic acid / DCM solution and stirred for 24 hours. The solution was discarded and the precipitated solid was washed with purified water and dried by hot air.
  • the polymer prepared in Preparation Example 1 was dissolved in DMAc at 20% by weight to form a film to prepare an ion conductor in the form of a sheet.
  • a porous support having micropores made of polyphenylene sulfide (PPS) was prepared using the wet-laying method.
  • the prepared porous support has a basis weight of 19.4 g / m 2 , a porosity of 62%, a thickness of 34 ⁇ m, and micropores of 1 to 1000 ⁇ m size are dispersed, and the size of the micropores with respect to the total pore volume is increased.
  • the pore volume of 31 ⁇ m or greater was 3% by volume.
  • the average size of the micropores was 14.0603 ⁇ m and the maximum size was 657.8279 ⁇ m.
  • the pore distribution (vol%) of the pore size ( ⁇ m) of the prepared porous support was measured by the CFP method, and the results are shown graphically in FIG. 5.
  • a sheet-shaped ion conductor prepared in Preparation Example 2 was melt-impregnated at 180 ° C. for 0.5 hours under 1 MPa of the porous support prepared above, and dried in a vacuum at 80 ° C. for 12 hours to prepare an ion exchange membrane in the form of a reinforced composite membrane. It was.
  • Polyamic acid (polyamic acid) was dissolved in dimethylformamide to prepare 5 L of 480 poise spinning solution. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 20 nozzles and applied a high voltage of 3 kV through a quantitative gear pump to produce a web of nanofiber precursor. The solution feed amount was 1.5 ml / min. The prepared web of nanofiber precursor was heat-treated at 350 ° C. to prepare a porous support (porosity: 80% by volume) having nanopores.
  • the porous support prepared above was impregnated with a solution casting prepared by dissolving the polymer prepared in Preparation Example 1 in 20 wt% in DMAc, followed by drying in a vacuum at 80 ° C. for 12 hours.
  • An ion exchange membrane in the form of a reinforced composite membrane was prepared.
  • the weight per unit area of the polyimide nanofibers was 6.8 gsm
  • the basis weight of the polymer was 40 g / m 2 .
  • Nafion 212 manufactured by DuPont a commercially available ion exchange membrane, was used as the fluorine-based ion exchange membrane.
  • Comparative Example 3 was prepared in the same manner as in Preparation Examples 1 to 3, but was used that the pores having a micropore size of less than 31 ⁇ m dispersed.
  • the average size of the micropores was 8.3017 ⁇ m and the maximum size was 25.9855 ⁇ m.
  • the pore distribution (vol%) relative to the pore size ( ⁇ m) of the porous support used was measured by the CFP method and the results are shown graphically in FIG. 6.
  • the swelling ratio of the swelling ratio is immersed in the prepared ion exchange membrane in distilled water at 80 °C for 24 hours, take out the wet ion exchange membrane to measure the thickness and area, and the ion exchange membrane in vacuum at 80 °C 24 hours After measuring the thickness and area after drying, the thickness (T wet ) and the area (L wet ) of the wet state of the ion exchange membrane and the thickness (T dry ) and area (L dry ) of the dry state are represented by Equation 3 And swelling ratio to thickness and area to swelling ratio.
  • the ion-conductivity was calculated by measuring the resistance of the membrane in 1M H 2 SO 4 using the equipment as shown in FIG.
  • the membrane resistance was calculated by Equation 5 below, wherein the effective area of the membrane was 0.75 cm 2 .
  • R 1 is resistance [ ⁇ ] when a film is injected
  • R 2 is resistance [ ⁇ ] when a film is not injected.
  • the ion conductivity was calculated by the following equation.
  • R is the film resistance [ ⁇ ⁇ cm 2] and t is the thickness of the film [cm].
  • Energy efficiency (EE) in the energy storage system (VRFB) was configured as follows to measure the electrochemical properties.
  • the device for measuring the energy efficiency was composed of a unit cell of 25 cm 2 electrode area, two aqueous tanks, a pump for measuring the electrochemical properties in the VRFB.
  • a solution containing 30 mL of 2M VOSO 4 and 3M H 2 SO 4 (a tetravalent vanadium solution) was used as the anolyte solution, and an aqueous solution obtained by electrolytic reduction of the anolyte solution (a trivalent vanadium solution) was used.
  • Anolyte was used slightly more than catholyte to suppress overcharge.
  • the unit cell for measurement consisted of the film
  • a potentiostatic / constant current device was used, and the charge / discharge current density was measured at 60 mA / cm 2 .
  • the charging / discharging of the unit cell was performed in a cur-off method by setting the charge to 1.6 V and the discharging to 1.0 V. The charge / discharge process was performed five times. (VE) and energy efficiency (EE) were calculated.
  • the ion conductor layer thickness ratio is the sum of the thickness ratios of the two ion conductor layers formed on both sides of the porous support.
  • the ion exchange membrane was prepared by using a porous support having a micropore to produce a reinforced composite membrane to exhibit a high level of ion conductivity performance while relatively reducing the thickness of the ion conductor layer to reduce the film thickness, as a result Results have been shown to improve energy efficiency on energy storage systems.
  • An ion exchange membrane according to the present invention, a method for manufacturing the same, and an energy storage device including the same include a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support.
  • a micropore of 1000 to 1000 ⁇ m size it can have high charge and discharge cycle durability, high ion conductivity and excellent chemical and thermal stability, high energy when applied to energy storage devices such as vanadium redox flow battery It is a promising material in energy / environmental / electrical and electronic fields that can achieve efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to an ion exchange membrane, a manufacturing method therefor, and an energy storage device comprising the same. The ion exchange membrane comprises: a porous support including a plurality of pores; and an ion conductor filling the pores of the porous support, wherein the porous support includes a micropore having a size of 31 to 1000 μm. In addition, the ion exchange membrane has high charge/discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability, and thus can achieve a high energy efficiency when applied to an energy storage device, such as a vanadium redox flow cell.

Description

이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치Ion-exchange membrane, method for manufacturing same, and energy storage device including same
본 발명은 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치에 관한 것으로서, 보다 상세하게는 높은 충방전 사이클 내구성, 높은 이온 전도도 및 우수한 화학적 및 열적 안정성을 가져 바나듐 레독스 플로우 전지 등의 에너지 저장 장치에 적용할 경우 높은 에너지 효율을 달성할 수 있는 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치에 관한 것이다.The present invention relates to an ion exchange membrane, a method for manufacturing the same, and an energy storage device including the same. More particularly, the present invention relates to energy storage such as a vanadium redox flow battery having high charge and discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability. The present invention relates to an ion exchange membrane, a method for preparing the same, and an energy storage device including the same, which can achieve high energy efficiency when applied to a device.
화석 연료의 고갈과 환경 오염에 대한 문제를 해결하기 위하여 사용 효율을 향상시킴으로써 화석 연료를 절약하거나 재생 가능한 에너지를 보다 많은 분야에 적용하고자 하는 노력이 이루어지고 있다. In order to solve the problem of depletion of fossil fuels and environmental pollution, efforts are being made to save fossil fuels or to apply renewable energy to more fields by improving the use efficiency.
태양열 및 풍력과 같은 재생 가능한 에너지원은 이전보다 더 많이 효율적으로 사용되고 있으나, 이들 에너지원은 간헐적이며 예측 불가능하다. 이러한 특성으로 인해 이들 에너지원에 대한 의존도가 제한되며, 현재 일차전력원 중 재생에너지원이 차지하는 비율은 매우 낮다.Renewable energy sources such as solar and wind are used more efficiently than before, but these energy sources are intermittent and unpredictable. These characteristics limit the dependence on these energy sources, and the ratio of renewable energy sources among primary power sources is very low.
재충전 가능한 전지(rechargeable battery)는 단순하고 효율적인 전기 저장 방법을 제공하므로 이를 소형화하여 이동성을 높여 간헐적 보조 전원이나 랩탑, 태블릿 PC, 휴대전화 등의 소형가전의 전원으로 활용하고자하는 노력이 지속되고 있다.Rechargeable batteries provide a simple and efficient method of storing electricity, and thus, efforts have been made to utilize them as power sources for intermittent auxiliary power, small appliances such as laptops, tablet PCs, and mobile phones by miniaturizing them to increase mobility.
그 중 레독스 플로우 전지(RFB; Redox Flow Battery)는 전해질의 전기 화학적인 가역 반응에 의한 충전과 방전을 반복하여 에너지를 장기간 저장하여 사용할 수 있는 2차 전지이다. 전지의 용량과 출력 특성을 각각 좌우하는 스택과 전해질 탱크가 서로 독립적으로 구성되어 있어 전지 설계가 자유로우며 설치 공간 제약도 적다.Among them, a redox flow battery (RFB) is a secondary battery capable of storing energy for a long time by repeating charging and discharging by an electrochemical reversible reaction of an electrolyte. The stack and electrolyte tank are independent of each other, which determines the capacity and output characteristics of the battery, freeing cell design and reducing installation space.
또한, 상기 레독스 플로우 전지는 발전소나 전력계통, 건물에 설치해 급격한 전력 수요 증가에 대응할 수 있는 부하 평준화 기능, 정전이나 순간저전압을 보상하거나 억제하는 기능 등을 가지고 있으며 필요에 따라 자유롭게 조합할 수 있는 매우 유력한 에너지 저장 기술이며 대규모 에너지 저장에 적합한 시스템이다.In addition, the redox flow battery has a load leveling function that can be installed in a power plant, a power system, a building to cope with a sudden increase in power demand, a function of compensating or suppressing a power failure or an instantaneous low voltage, and can be freely combined as necessary. It is a very powerful energy storage technology and is suitable for large scale energy storage.
상기 레독스 플로우 전지는 일반적으로 두 개의 분리된 전해질로 구성된다. 하나는 음성 전극 반응에서 전기 활성 물질을 저장하며 다른 하나는 양성 전극 반응에 사용된다. 실제 레독스 플로우 전지에서 전해질 반응은 양극과 음극에서 서로 상이하며 전해질액 흐름 현상이 존재하므로 양극 쪽과 음극 쪽에서 압력차가 발생한다. 대표적인 레독스 플로우 전지인 전바나듐계 레독스 플로우 전지에서 양극 및 음극 전해질의 반응은 각각 하기 반응식 1 및 반응식 2와 같다.The redox flow cell generally consists of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. In the real redox flow battery, the electrolyte reaction is different from each other at the positive electrode and the negative electrode, and there is a pressure difference between the positive electrode side and the negative electrode side because an electrolyte solution flow phenomenon exists. Reactions of the positive and negative electrolytes in the all-vanadium redox flow battery, which is a typical redox flow battery, are shown in Schemes 1 and 2, respectively.
[반응식 1] Scheme 1
Figure PCTKR2018002580-appb-I000001
Figure PCTKR2018002580-appb-I000001
[반응식 2] Scheme 2
Figure PCTKR2018002580-appb-I000002
Figure PCTKR2018002580-appb-I000002
따라서, 상기 양 전극에서의 압력차를 극복하고 충전과 방전을 반복하여도 우수한 전지 성능을 나타내기 위해서는 물리적, 화학적 내구성이 향상된 이온 교환막을 필요로 하며, 상기 레독스 플로우 전지에서 상기 이온 교환막은 시스템 중 약 10% 수준에 이르는 가격을 차지하고 있는 핵심 소재이다.Therefore, in order to overcome the pressure difference between the two electrodes and exhibit excellent battery performance even after repeated charging and discharging, an ion exchange membrane having improved physical and chemical durability is required, and in the redox flow battery, the ion exchange membrane is a system. The core material accounts for about 10% of the price.
이처럼, 상기 레독스 플로우 전지에서 상기 이온 교환막은 전지 수명과 가격을 결정하는 핵심 부품으로 상기 레독스 플로우 전지의 상용화를 위해서는 상기 이온 교환막의 이온의 선택 투과성이 높아서 바나듐 이온의 크로스오버(crossover)가 낮아야 하고, 전기적 저항이 작아서 이온 전도도가 높아야 하고, 기계적 및 화학적으로 안정하여 내구성이 높으면서도 가격이 저렴해야 한다. As described above, in the redox flow battery, the ion exchange membrane is a key component for determining battery life and price. For commercialization of the redox flow battery, the selective permeability of ions in the ion exchange membrane is high, so that the crossover of vanadium ions is increased. Low electrical resistance, low electrical resistance, high ionic conductivity, mechanical and chemical stability, high durability and low price.
한편, 현재 이온 교환막으로 상용화된 고분자 전해질 막은 수 십 년 동안 사용되었을 뿐 아니라 꾸준히 연구되고 있는 분야로서, 최근에도 직접메탄올 연료전지(DMFC; direct methanol fuel cell)나 고분자 전해질막 연료전지(PEMFC; polymer electrolyte membrane fuel cell, proton exchange membrane fuel cell), 레독스 플로우 전지, 수처리 장치(Water purification) 등에 사용되는 이온을 전달하는 매개체로서 이온 교환막에 대한 수많은 연구가 활발히 진행되고 있다.Meanwhile, polymer electrolyte membranes commercialized as ion exchange membranes have been used for decades and are continuously being studied. Recently, direct methanol fuel cells (DMFC) or polymer electrolyte membrane fuel cells (PEMFC; polymer) have been used. Numerous researches on ion exchange membranes are actively conducted as mediators for transferring ions used in electrolyte membrane fuel cells, proton exchange membrane fuel cells, redox flow batteries, and water purification equipment.
현재 이온 교환막으로 널리 사용되는 물질은 미국 듀퐁사의 과불화 술폰산기 함유 고분자인 나피온(Nafion)™ 계열막이 있다. 이 막은 포화 수분 함량일 때, 상온에서 0.08 S/㎝의 이온 전도성과 우수한 기계적 강도 및 내화학성을 가지며, 자동차용 연료전지에 이용될 만큼 전해질막으로서 안정적인 성능을 가지고 있다. 또한, 이와 유사한 형태의 상용막으로는 아사히 케미칼스(Asahi Chemicals)사의 아시플렉스-에스(Aciplex-S)막, 다우케미칼스(Dow Chemicals)사의 다우(Dow)막, 아사히 글래스(Asahi Glass)사의 플레미온(Flemion)막, 고어 & 어쏘시에이트(Gore & Associate)사의 고어셀렉트(GoreSelcet)막 등이 있으며, 캐나다의 발라드 파워 시스템(Ballard Power System)사에서 알파 또는 베타 형태로 과불소화된 고분자가 개발 연구 중에 있다.A widely used material for ion exchange membranes is Nafion ™ based membrane, a polymer containing perfluorinated sulfonic acid group, DuPont, USA. The membrane has an ion conductivity of 0.08 S / cm at room temperature, excellent mechanical strength and chemical resistance at a saturated water content, and has a stable performance as an electrolyte membrane for use in automotive fuel cells. In addition, commercially available membranes of a similar type include Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane, Asahi Glass's Flemion membrane, Gore & Associate's GoreSelcet membrane, etc., and polymers perfluorinated in alpha or beta form by Ballard Power System of Canada It is under development research.
그러나, 상기 막들은 가격이 고가이며 합성 방법이 까다로워 대량 생산의 어려움이 있을 뿐만 아니라, 레독스 흐름전지와 같은 전기에너지 시스템에서 크로스오버 현상, 높은 온도나 낮은 온도에서 낮은 이온 전도도를 갖는 등의 이온 교환막으로서 효율성이 크게 떨어지는 단점을 가지고 있다.However, the membranes are expensive and difficult to synthesize, which makes them difficult to mass-produce, as well as crossover in electrical energy systems such as redox flow cells, ions such as low ion conductivity at high or low temperatures. As an exchange membrane, there is a disadvantage in that the efficiency is greatly reduced.
[선행기술문헌][Preceding technical literature]
한국특허출원 제2014-0044468호Korean Patent Application No.2014-0044468
한국등록특허 제1522256호Korean Registered Patent No. 1522256
한국등록특허 제1440829호Korean Patent Registration No. 1440829
한국등록특허 제1214399호Korean Registered Patent No. 1214399
본 발명의 목적은 높은 충방전 사이클 내구성, 높은 이온 전도도 및 우수한 화학적 및 열적 안정성을 가져 바나듐 레독스 플로우 전지 등의 에너지 저장 장치에 적용할 경우 높은 에너지 효율을 달성할 수 있는 에너지 저장 장치용 이온 교환막을 제공하는 것이다. It is an object of the present invention to achieve high energy efficiency when applied to energy storage devices such as vanadium redox flow batteries because of high charge and discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability, ion exchange for energy storage devices. To provide an act.
본 발명의 다른 목적은 상기 이온 교환막의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the ion exchange membrane.
본 발명의 또 다른 목적은 상기 이온 교환막을 포함하는 에너지 저장 장치를 제공하는 것이다.Still another object of the present invention is to provide an energy storage device including the ion exchange membrane.
본 발명의 일 실시예에 따르면, 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체를 포함하며, 상기 다공성 지지체는 31 내지 1000 ㎛ 크기의 마이크로 포어(micropore)를 포함하는 것인 이온 교환막을 제공한다.According to one embodiment of the present invention, a porous support including a plurality of pores (pore), and an ion conductor filling the pores of the porous support, the porous support is a micropore of 31 to 1000 ㎛ size Provided is an ion exchange membrane comprising.
상기 다공성 지지체는 상기 공극 전체 부피에 대하여 31 내지 1000 ㎛ 크기의 마이크로 포어를 1 내지 20 부피%로 포함하는 것일 수 있다.The porous support may include 1 to 20% by volume of micropores having a size of 31 to 1000 μm with respect to the total volume of the pores.
상기 다공성 지지체의 다공도는 45 % 이상일 수 있다.The porosity of the porous support may be 45% or more.
상기 다공성 지지체의 두께는 1 내지 200 ㎛일 수 있다.The porous support may have a thickness of 1 to 200 μm.
상기 이온 전도체는 상기 이온 교환막 전체 중량에 대하여 30 내지 70 중량%로 포함될 수 있다.The ion conductor may be included in 30 to 70% by weight based on the total weight of the ion exchange membrane.
상기 이온 교환막은 상기 다공성 지지체 일면 또는 양면에 위치하는 이온 전도체 층을 더 포함하고, 상기 일면의 이온 전도체 층의 두께는 1 내지 30 ㎛일 수 있다.The ion exchange membrane may further include an ion conductor layer positioned on one or both surfaces of the porous support, and the thickness of the ion conductor layer on one surface may be 1 to 30 μm.
상기 일면의 이온 전도체 층의 두께는 상기 이온 교환막 전체 두께에 대하여 1 내지 50 길이%일 수 있다.The thickness of the ion conductor layer on one surface may be 1 to 50% by length based on the total thickness of the ion exchange membrane.
상기 다공성 지지체는 무작위로 배향된 복수개의 섬유로 이루어질 수 있다.The porous support may consist of a plurality of randomly oriented fibers.
본 발명의 다른 일 실시예에 따르면, 다수의 공극을 포함하는 다공성 지지체를 제조하는 단계, 그리고 상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계를 포함하며, 상기 다공성 지지체는 마이크로 포어를 포함하는 것인 이온 교환막의 제조 방법을 제공한다.According to another embodiment of the present invention, the method includes preparing a porous support including a plurality of pores, and filling an ion conductor into the pores of the porous support, wherein the porous support includes micropores. Provided is a method for producing an ion exchange membrane.
상기 다공성 지지체를 제조하는 단계는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법에 의하여 제조될 수 있다.The step of preparing the porous support includes carding, garneting, air-laying, wet-laying, melt blowing, spunbonding and It can be produced by any one method selected from the group consisting of stitch bonding.
상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계는 상기 이온 전도체를 코팅하여 시트 형태로 제조하는 단계, 및 상기 시트 형태의 이온 전도체를 상기 다공성 지지체의 공극에 용융 함침시키는 단계를 포함할 수 있다.Filling the ion conductor in the pores of the porous support may include preparing the sheet conductor by coating the ion conductor, and melting and impregnating the ion conductor in the form of the sheet in the pores of the porous support.
상기 용융 함침은 1 내지 20 MPa 의 압력에서 150 내지 240 ℃로 이루어질 수 있다.The melt impregnation may be made of 150 to 240 ℃ at a pressure of 1 to 20 MPa.
본 발명의 또 다른 일 실시예에 따르면, 상기 이온 교환막을 포함하는 에너지 저장 장치를 제공한다.According to another embodiment of the present invention, an energy storage device including the ion exchange membrane is provided.
상기 에너지 저장 장치는 연료 전지일 수 있다.The energy storage device may be a fuel cell.
상기 에너지 저장 장치는 레독스 플로우 전지(redox flow battery)일 수 있다.The energy storage device may be a redox flow battery.
본 발명의 이온 교환막은 높은 충방전 사이클 내구성, 높은 이온 전도도 및 우수한 화학적 및 열적 안정성을 가져 바나듐 레독스 플로우 전지 등의 에너지 저장 장치에 적용할 경우 높은 에너지 효율을 달성할 수 있다.The ion exchange membrane of the present invention has high charge and discharge cycle durability, high ion conductivity, and excellent chemical and thermal stability to achieve high energy efficiency when applied to energy storage devices such as vanadium redox flow batteries.
구체적으로, 상기 이온 교환막은 마이크로 포어를 갖는 다공성 지지체의 공극에 이온 전도체가 채워진 강화 복합막 형태의 이온 교환막으로서, 마이크로 포어를 갖는 다공성 지지체를 이용함으로써 이온 전도체가 더 적은 함량으로 포함되거나 이온 전도체 층이 더 얇은 두께로 형성되어도 충분한 효율이 발생하며, 전체적인 이온 교환막의 두께 감소를 통해 저항이 감소되어 전반적인 효율이 향상될 수 있다.Specifically, the ion exchange membrane is an ion exchange membrane in the form of a reinforced composite membrane in which pores of a porous support having micropores are filled with an ion conductor, and the ion conductor layer is contained in a smaller amount by using a porous support having micropores or an ion conductor layer. Even if the thinner thickness is formed, sufficient efficiency is generated, and the resistance can be reduced by reducing the thickness of the overall ion exchange membrane, thereby improving the overall efficiency.
또한, 상기 마이크로 포어를 갖는 다공성 지지체를 이용한 강화 복합막은 나노 포어를 갖는 다공성 지지체를 이용한 강화 복합막과 비교하였을 때, 강화 복합막 전체에서 이온 전도체의 함량을 감소시킬 수 있으므로, 이온 교환막의 팽윤성 및 치수 변화량이 감소하는 효과를 얻을 수 있어서 내구성을 향상시킬 수 있다.In addition, the reinforced composite membrane using the porous support having the micro-pores can reduce the content of the ion conductor in the entire reinforced composite membrane as compared to the reinforced composite membrane using the porous support having the nano-pores, so that the swellability of the ion exchange membrane The effect of reducing the amount of dimensional change can be obtained, and the durability can be improved.
또한, 범용적으로 사용되는 과불소계 막이나 나노 포어를 갖는 다공성 지지체를 이용한 강화 복합막과 비교하였을 때 상대적으로 낮은 가격으로 인한 경제적 이점도 있다.In addition, there is also an economic advantage due to the relatively low price compared to the reinforcing composite membrane using a porous support having a perfluorine-based membrane or a nano-pore used in general.
본 발명의 이온 교환막의 제조 방법은 마이크로 포어를 갖는 다공성 지지체를 이용하는 경우에도 이온 교환막의 형태가 변형되는 것을 방지하여 이온 교환막의 형태 안정성을 확보할 수 있다.In the method of manufacturing an ion exchange membrane of the present invention, even when a porous support having a micro pore is used, the shape of the ion exchange membrane can be prevented from being deformed, thereby ensuring the shape stability of the ion exchange membrane.
도 1은 본 발명에 따른 상기 마이크로 포어를 갖는 다공성 지지체를 이용한 이온 교환막을 나타내는 모식도이다.1 is a schematic diagram showing an ion exchange membrane using the porous support having the micropores according to the present invention.
도 2는 종래의 나노 포어를 갖는 다공성 지지체를 이용한 이온 교환막을 나타내는 모식도이다.2 is a schematic view showing an ion exchange membrane using a porous support having a conventional nanopore.
도 3은 본 발명의 일 실시예에 따른 전바나듐계 레독스 전지를 개략적으로 나타내는 모식도이다.3 is a schematic diagram schematically showing an all-vanadium redox battery according to an embodiment of the present invention.
도 4는 본 발명의 실험예에서 막의 저항을 측정하기 위하여 사용한 장치를 나타내는 모식도이다.Figure 4 is a schematic diagram showing the apparatus used to measure the resistance of the membrane in the experimental example of the present invention.
도 5는 본 발명의 제조예 3에 따른 다공성 지지체의 포어 분포를 나타낸 그래프이다.5 is a graph showing the pore distribution of the porous support according to Preparation Example 3 of the present invention.
도 6은 본 발명의 비교제조예 3에 따른 다공성 지지체의 포어 분포를 나타낸 그래프이다.6 is a graph showing the pore distribution of the porous support according to Comparative Preparation Example 3 of the present invention.
본 발명의 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체를 포함하며, 상기 다공성 지지체는 31 내지 1000 ㎛ 크기의 마이크로 포어(micropore)를 포함한다.An ion exchange membrane according to an embodiment of the present invention includes a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support, wherein the porous support is a micropore having a size of 31 to 1000 μm. (micropore).
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명의 일 실시예에 따른 이온 교환막은 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체를 포함하며, 상기 다공성 지지체는 마이크로 포어(micropore)를 포함한다.An ion exchange membrane according to an embodiment of the present invention includes a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support, and the porous support includes micropores. .
상기 다공성 지지체는 무작위로 배향된 복수개의 섬유로 이루어지는 부직 섬유질 웹(nonwoven fibrous web)일 수 있다.The porous support may be a nonwoven fibrous web consisting of a plurality of randomly oriented fibers.
상기 부직 섬유질 웹은 인터레이드(interlaid)되지만, 직포 천과 동일한 방식이 아닌, 개개의 섬유 또는 필라멘트의 구조를 갖는 시트를 의미한다. 상기 부직 섬유질 웹은 후술하는 웨트-레잉(wet-laying) 등의 방법에 의해 제조될 수 있다.By nonwoven fibrous web is meant a sheet that is interlaid but has the structure of individual fibers or filaments, but not in the same way as a woven fabric. The nonwoven fibrous web may be manufactured by a method such as wet-laying described below.
상기 부직 섬유질 웹은 평량(basic weight)이 5 내지 30 g/m2일 수 있다. 상기 부직 섬유질 웹의 평량이 5 g/m2 미만인 경우 눈에 보이는 기공이 형성되어 다공성 지지체로서 기능을 하기 어려울 수 있고, 용융 함침 방법으로도 강화 복합막 형태의 이온 교환막으로 제조하기 어려울 수 있으며, 30 g/m2을 초과하는 경우에는 포어가 거의 형성되지 않는 종이 또는 직물의 형태처럼 제조될 수 있다.The nonwoven fibrous web may have a basic weight of 5 to 30 g / m 2 . When the basis weight of the nonwoven fibrous web is less than 5 g / m 2 , visible pores are formed, and it may be difficult to function as a porous support, and it may be difficult to prepare an ion exchange membrane in the form of a reinforced composite membrane by a melt impregnation method. If it exceeds 30 g / m 2 , it can be produced in the form of paper or fabric in which little pores are formed.
상기 섬유는 하나 이상의 중합체 재료를 포함할 수 있고, 일반적으로 섬유 형성 중합체 재료로 사용되는 것이면 어느 것이나 사용 가능하고, 구체적으로 탄화수소계 섬유 형성 중합체 재료를 사용할 수 있다. 예를 들어, 상기 섬유 형성 중합체 재료는 폴리올레핀, 예컨대 폴리부틸렌, 폴리프로필렌 및 폴리에틸렌; 폴리에스테르, 예컨대 폴리에틸렌 테레프탈레이트 및 폴리부틸렌 테레프탈레이트; 폴리아미드(나일론-6 및 나일론-6,6); 폴리우레탄; 폴리부텐; 폴리락트산; 폴리비닐 알코올; 폴리페닐렌 설파이드; 폴리설폰; 유체 결정질 중합체; 폴리에틸렌-코-비닐아세테이트; 폴리아크릴로니트릴; 사이클릭 폴리올레핀; 폴리옥시메틸렌; 폴리올레핀계 열가소성 탄성중합체; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 포함하지만 이로 제한되지 않는다.The fibers can comprise one or more polymeric materials, and can be used as long as they are generally used as fiber forming polymeric materials, specifically hydrocarbon-based fiber forming polymeric materials. For example, the fiber forming polymer material may be selected from polyolefins such as polybutylene, polypropylene and polyethylene; Polyesters such as polyethylene terephthalate and polybutylene terephthalate; Polyamides (nylon-6 and nylon-6,6); Polyurethane; Polybutene; Polylactic acid; Polyvinyl alcohol; Polyphenylene sulfide; Polysulfones; Fluid crystalline polymers; Polyethylene-co-vinylacetate; Polyacrylonitrile; Cyclic polyolefins; Polyoxymethylene; Polyolefin-based thermoplastic elastomers; And combinations thereof, but is not limited thereto.
한편, 상기 다공성 지지체는 마이크로 포어(micropore)를 포함한다.On the other hand, the porous support includes a micropore (micropore).
상기 마이크로 포어의 형상은 특별히 한정되지 않으며, 랜덤(random)한 형태일 수 있고, 예를 들면 길쭉한 형상과 랜덤한 형태의 구형을 모두 포함할 수 있다.The shape of the micropores is not particularly limited, and may be in a random form, for example, may include both an elongate shape and a spherical shape in a random form.
상기 마이크로 포어는 1 내지 1000 ㎛ 크기를 가지는 포어를 의미한다. 상기 다공성 지지체는 31 내지 1000 ㎛ 크기의 마이크로 포어를 가질 수 있고, 더욱 구체적으로 31 내지 700 ㎛ 크기의 마이크로 포어를 가질 수 있다.The micro pore means a pore having a size of 1 to 1000 ㎛. The porous support may have a micro pore of 31 to 1000 ㎛ size, more specifically may have a micro pore of 31 to 700 ㎛ size.
상기 다공성 지지체는 상기 공극 전체 부피에 대하여 31 내지 1000 ㎛ 크기의 마이크로 포어를 1 내지 20 부피%로 포함할 수 있고, 구체적으로 1 내지 10 부피%로 포함할 수 있고, 더욱 구체적으로 3 내지 10 부피%로 포함할 수 있다. The porous support may include 1 to 20% by volume of micropores having a size of 31 to 1000 µm with respect to the total volume of the pores, and may include 1 to 10% by volume, more specifically 3 to 10% by volume. May contain%.
일반적으로 상기 마이크로 포어의 크기가 30㎛를 초과하는 경우 이온 교환막 제조시 웻(wet) 함침 공정을 이용하기 어려울 수 있으나, 본 발명에서는 용융함침 방법을 사용하여 30㎛를 초과하는 크기의 포어를 포함하는 다공성 지지체를 제조할 수 있다. 그러나 수백 마이크로미터 크기의 기공은 눈에 보일 정도의 큰 기공이 형성되는 경우이므로 이러한 다공성 지지체를 이온 교환막 제조시 사용하기 어려울 수 있으나, 본 발명에서는 31 내지 1000 ㎛ 크기의 마이크로 포어의 분포를 1 내지 20 부피%인 것으로 한정하여 상기 문제점을 해결할 수 있다.Generally, when the size of the micropores exceeds 30 μm, it may be difficult to use a wet impregnation process in preparing an ion exchange membrane, but the present invention includes pores having a size exceeding 30 μm using a melt impregnation method. Porous support can be prepared. However, since pores of several hundred micrometers in size are visible and large pores are formed, it may be difficult to use such a porous support when preparing an ion exchange membrane, but in the present invention, the distribution of micropores having a size of 31 to 1000 μm is 1 to 1. The problem can be solved by being limited to 20% by volume.
상기 마이크로 포어의 크기는 CFP(Capillary Flow Porometer)을 이용한 포어 사이즈의 측정 방법으로 측정할 수 있다. 이때, 측정 면적은 지름 25 mm인 원형이고, 측정 방식은 Wet up Dry down 방식일 수 있다. 상기 CFP는 샘플과 반응하지 않는 액체(liquid)를 자연스럽게 포어에 채운 후, 반응성 없는 가스의 압력에 의해서 상기 액체를 제거시키면서 포어 사이에 가스의 흐름(flow)을 생성시킨 후, 이 가스 흐름의 차이와 압력의 차이를 측정하여 기공의 크기를 측정하는 방법이다. 상기 CFP을 이용한 포어 사이즈의 측정 방법은 이미 잘 알려진 내용이므로 더욱 구체적인 설명은 생략한다.The size of the micropores can be measured by a method of measuring pore size using a capillary flow porometer (CFP). In this case, the measurement area is a circular shape having a diameter of 25 mm, the measurement method may be a wet up dry down method. The CFP naturally fills the pore with a liquid that does not react with the sample, and then creates a flow of gas between the pores while removing the liquid by the pressure of the unreactive gas, and then the gas flow difference. A method of measuring the pore size by measuring the difference between and pressure. Since the method for measuring the pore size using the CFP is well known, a detailed description thereof will be omitted.
상기 다공성 지지체의 다공도는 45 % 이상일 수 있고, 구체적으로 60 % 이상일 수 있다. 한편, 상기 다공성 지지체는 90 % 이하의 다공도를 갖는 것이 바람직하다. 만일, 상기 다공성 지지체의 다공도가 90 %를 초과할 경우 형태 안정성이 저하됨으로써 후공정이 원활하게 진행되지 않을 수 있다. 상기 다공도는 하기 수학식 1에 따라 상기 다공성 지지체 전체 부피 대비 공기 부피의 비율에 의하여 계산할 수 있다. 이때, 상기 전체 부피는 직사각형 형태의 샘플을 제조하여 가로, 세로, 두께를 측정하여 계산하고, 공기부피는 샘플의 질량을 측정 후 밀도로부터 역산한 고분자 부피를 전체부피에서 빼서 얻을 수 있다.The porosity of the porous support may be 45% or more, specifically 60% or more. On the other hand, the porous support preferably has a porosity of 90% or less. If the porosity of the porous support exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly. The porosity may be calculated by the ratio of air volume to the total volume of the porous support according to Equation 1 below. At this time, the total volume is calculated by measuring the width, length, thickness by preparing a sample of a rectangular shape, the air volume can be obtained by subtracting the volume of the polymer inverted from the density after measuring the mass of the sample from the total volume.
[수학식 1][Equation 1]
다공도(%) = (다공성 지지체 내 공기부피/다공성 지지체의 전체부피) X 100Porosity (%) = (air volume in porous support / total volume of porous support) X 100
한편, 상기 이온 교환막은 상기 다공성 지지체의 마이크로 포어가 상기 이온 전도체에 의해 채워지기 때문에, 상기 이온 교환막의 다공도는 0 내지 10 %일 수 있다. 상기 이온 교환막은 상기 다공성 지지체의 마이크로 포어가 모두 상기 이온 전도체에 의해 채워져 상기 마이크로 포어를 포함하지 않는 것이 바람직하다.On the other hand, since the ion exchange membrane is filled with the micropores of the porous support by the ion conductor, the porosity of the ion exchange membrane may be 0 to 10%. In the ion exchange membrane, it is preferable that all of the micropores of the porous support are filled with the ion conductor so as not to include the micropores.
상기 다공성 지지체의 두께는 1 내지 200 ㎛일 수 있고, 구체적으로 10 내지 50 ㎛일 수 있다. 상기 다공성 지지체의 두께가 1 ㎛ 미만인 경우 기계적 강도가 떨어질 수 있고, 200 ㎛를 초과하는 경우 저항손실이 증가하고, 경량화 및 집적화가 떨어질 수 있다.The porous support may have a thickness of 1 to 200 μm, specifically 10 to 50 μm. When the thickness of the porous support is less than 1 μm, the mechanical strength may drop. When the thickness of the porous support exceeds 200 μm, the resistance loss may increase, and the weight and integration may be reduced.
상기 이온 교환막은 상기 마이크로 포어를 포함하는 다공성 지지체의 공극에 이온 전도체가 채워진 강화 복합막 형태의 이온 교환막이다.The ion exchange membrane is an ion exchange membrane in the form of a reinforced composite membrane in which an ion conductor is filled in the pores of the porous support including the micropores.
상기 이온 전도체는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다. The ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cationic conductor is a hydrogen ion cationic conductor, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof. Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof. Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof Hydrocarbon-based polymers include, but are not limited thereto.
보다 구체적으로, 상기 양이온 전도체는 하기 화학식 1로 표시되는 반복 단위를 포함하는 친수성 영역, 및 하기 화학식 2로 표시되는 반복 단위를 포함하는 소수성 영역을 포함할 수 있다.More specifically, the cationic conductor may include a hydrophilic region including a repeating unit represented by Formula 1, and a hydrophobic region including a repeating unit represented by Formula 2 below.
[화학식 1][Formula 1]
Figure PCTKR2018002580-appb-I000003
Figure PCTKR2018002580-appb-I000003
상기 화학식 1에서, 상기 A는 이온 전도성기로서, 상기 이온 전도성기는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 양이온 전도성기일 수 있고, 상기 양이온 전도성기는 바람직하게 술폰산기일 수 있다. 또한, 상기 이온 전도성기는 아민기 등의 음이온 전도성기일 수 있다.In Formula 1, A is an ion conductive group, the ion conductive group may be any one cationic conductive group selected from the group consisting of sulfonic acid group, carboxylic acid group and phosphoric acid group, the cationic conductive group may be preferably a sulfonic acid group. . In addition, the ion conductive group may be an anionic conductive group such as an amine group.
상기 화학식 1에서, 상기 R11 내지 R16은 각각 독립적으로 수소 원자, 할로겐 원자, 이온 전도성기(ion conducting group), 전자 공여기(electron donation group) 및 전자 흡인기(electron withdrawing group)로 이루어진 군에서 선택되는 어느 하나일 수 있다.In Formula 1, R 11 to R 16 are each independently selected from a hydrogen atom, a halogen atom, an ion conducting group, an electron donation group, and an electron withdrawing group It may be any one selected.
상기 할로겐 원자는 브롬, 불소 및 염소로 이루어진 군에서 선택되는 어느 하나일 수 있다. The halogen atom may be any one selected from the group consisting of bromine, fluorine and chlorine.
상기 이온 전도성기는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 양이온 전도성기일 수 있고, 상기 양이온 전도성기는 바람직하게 술폰산기일 수 있다. 또한, 상기 이온 전도성기는 아민기 등의 음이온 전도성기일 수 있다.The ion conductive group may be any one cationic conductive group selected from the group consisting of a sulfonic acid group, a carboxylic acid group and a phosphoric acid group, and the cationic conductive group may be preferably a sulfonic acid group. In addition, the ion conductive group may be an anionic conductive group such as an amine group.
또한, 상기 전자 공여기는 전자를 내주는 유기 그룹으로서 알킬기, 알릴기, 아릴기, 아미노기, 하이드록시기 및 알콕시기로 이루어진 군에서 선택되는 어느 하나일 수 있고, 상기 전자 흡인기는 전자를 끌어 당기는 유기 그룹으로서 알킬 설포닐기, 아실기, 할로겐화 알킬기, 알데하이드기, 니트로기, 니트로소기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나일 수 있다.The electron donating group may be any one selected from the group consisting of an alkyl group, an allyl group, an aryl group, an amino group, a hydroxyl group, and an alkoxy group as an organic group for emitting electrons, and the electron withdrawing group is an organic group that attracts electrons It may be any one selected from the group consisting of alkyl sulfonyl group, acyl group, halogenated alkyl group, aldehyde group, nitro group, nitroso group and nitrile group.
상기 알킬기는 메틸기, 에틸기, 프로필기, 부틸기, 이소부틸기, 아밀기, 헥실기, 사이클로헥실기, 옥틸기 등일 수 있고, 상기 할로겐화 알킬기는 트리플루오로메틸기, 펜타플루오로에틸기, 퍼플루오로프로필기, 퍼플루오로부틸기, 퍼플루오로펜틸기, 퍼플루오로헥실기 등일 수 있고, 상기 알릴기는 프로페닐기 등일 수 있고, 상기 아릴기는 페닐기, 펜타플루오로페닐기 등일 수 있다. 상기 퍼플루오로알킬기는 일부의 수소 원자 또는 전체 수소 원자가 플루오르로 치환된 알킬기를 의미한다.The alkyl group may be a methyl group, ethyl group, propyl group, butyl group, isobutyl group, amyl group, hexyl group, cyclohexyl group, octyl group and the like, the halogenated alkyl group is trifluoromethyl group, pentafluoroethyl group, perfluoro It may be a propyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like, the allyl group may be a propenyl group and the like, the aryl group may be a phenyl group, pentafluorophenyl group and the like. The perfluoroalkyl group means an alkyl group in which some hydrogen atoms or all hydrogen atoms are substituted with fluorine.
상기 화학식 1에서, 상기 X1은 단일 결합 또는 2가의 유기기일 수 있다. 상기 2가의 유기기는 전자를 끌어당기거나 전자를 내주는 2가의 유기기로서, 구체적으로 -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -(CH2)n-, -C(CH3)2-, -C(CF3)2-, 시클로헥실리덴기, 이온 전도성기를 포함하는 시클로헥실리덴기, 플루오레닐리덴기 및 이온 전도성기를 포함하는 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나일 수 있다. 이때, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수일 수 있다. 상기 X1이 단일 결합인 경우, 상기 X의 양 옆에 존재하는 페닐기가 직접 연결됨을 의미하여, 이의 대표적인 예로 바이페닐기를 들 수 있다.In Formula 1, X 1 may be a single bond or a divalent organic group. The divalent organic group is a divalent organic group that attracts electrons or gives out electrons, specifically, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,-(CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , a cyclohexylidene group, a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and a fluorenylidene containing an ion conductive group It may be any one selected from the group consisting of groups. In this case, R 'is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group, n may be an integer of 1 to 10. When X 1 is a single bond, it means that the phenyl groups present on both sides of X are directly connected, and biphenyl group is a representative example thereof.
상기 화학식 1에서, 상기 Z1은 2가의 유기 그룹으로서, -O- 또는 -S-일 수 있고, 바람직하게 -O-일 수 있다.In Formula 1, Z 1 is a divalent organic group, and may be -O- or -S-, and preferably, -O-.
상기 화학식 1에서, 상기 n1은 0 내지 4의 정수이고, 바람직하게 0 또는 1의 정수일 수 있다.In Chemical Formula 1, n 1 may be an integer of 0 to 4, and preferably may be an integer of 0 or 1.
[화학식 2][Formula 2]
Figure PCTKR2018002580-appb-I000004
Figure PCTKR2018002580-appb-I000004
상기 화학식 2에서, 상기 R211 내지 R214, R221 내지 R224 및 R231 내지 R234은 각각 독립적으로 수소 원자; 할로겐 원자; 알킬기, 알릴기, 아릴기, 아미노기, 하이드록시기 및 알콕시기로 이루어진 군에서 선택되는 전자 공여기(electron donation group); 및 알킬 설포닐기, 아실기, 할로겐화 알킬기, 알데하이드기, 니트로기, 니트로소기 및 니트릴기로 이루어진 군에서 선택되는 전자 흡인기(electron withdrawing group)로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 치환기들에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In Formula 2, R 211 to R 214 , R 221 to R 224, and R 231 to R 234 each independently represent a hydrogen atom; Halogen atom; An electron donation group selected from the group consisting of alkyl, allyl, aryl, amino, hydroxy and alkoxy groups; And an electron withdrawing group selected from the group consisting of an alkyl sulfonyl group, an acyl group, a halogenated alkyl group, an aldehyde group, a nitro group, a nitroso group, and a nitrile group. Detailed descriptions of the substituents are the same as described above, and thus repetitive description thereof will be omitted.
상기 X21 및 X22는 각각 독립적으로 단일 결합 또는 2가의 유기기일 수 있다. 상기 2가의 유기기는 전자를 끌어당기거나 전자를 내주는 2가의 유기기로서, 구체적으로 -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -C(CH3)2-, -C(CF3)2-, -(CH2)n-, 시클로헥실리덴기 및 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나일 수 있다. 이때, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수일 수 있다. 상기 X21 또는 X22이 단일 결합인 경우, 상기 X의 양 옆에 존재하는 페닐기가 직접 연결됨을 의미하여, 이의 대표적인 예로 바이페닐기를 들 수 있다.X 21 and X 22 may each independently be a single bond or a divalent organic group. The divalent organic group is a divalent organic group that attracts electrons or gives out electrons, and specifically -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , cyclohexylidene group and fluorenylidene group can be any one selected from the group. In this case, R 'is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group, n may be an integer of 1 to 10. When X 21 or X 22 is a single bond, it means that the phenyl groups present at both sides of the X are directly connected, and biphenyl group is a representative example thereof.
상기 Z21은 2가의 유기 그룹으로서, -O- 또는 -S-일 수 있고, 바람직하게 -O-일 수 있다.Z 21 is a divalent organic group, and may be -O- or -S-, and preferably, -O-.
상기 이온 교환막은 상기한 바와 같이 상기 화학식 1로 표시되는 반복 단위를 포함하는 친수성 영역, 및 상기 화학식 2로 표시되는 반복 단위를 포함하는 소수성 영역을 포함하는 이온 전도체로 이루어짐에 따라, 과불소계 이온 전도체 대비 작은 이온 채널로 인하여 바나듐 이온을 블로킹(blocking)함으로써 낮은 바나듐 이온 투과성을 가져 바나듐 레독스 플로우 전지에 적용할 경우 바나듐 활물질이 크로스오버(crossover)되어 에너지 효율을 저하시키는 문제를 해결함으로써 높은 에너지 효율을 달성할 수 있다.As described above, the ion exchange membrane is composed of a hydrophilic region including a repeating unit represented by Formula 1, and an ion conductor including a hydrophobic region including a repeating unit represented by Formula 2, and thus, a perfluorinated ion conductor. Blocking vanadium ions due to the relatively small ion channel has low vanadium ion permeability, and when applied to a vanadium redox flow battery, solves the problem that the vanadium active material crossovers and lowers the energy efficiency, thereby resulting in high energy efficiency. Can be achieved.
특히, 상기 이온 전도체는 소수성 영역에 결정성을 갖는 케톤기가 도입되는 경우 내구성이 증대된 소수성 영역을 가짐으로써 화학적 및 열적 안정성이 더욱 향상되고, 상기 이온 전도체는 상기 친수성 영역과 소수성 영역의 미세 상분리로 인하여 더욱 높은 이온 전도도를 가질 수 있다. In particular, when the ketone group having a crystallinity is introduced into the hydrophobic region, the ion conductor has a hydrophobic region with increased durability, thereby further improving chemical and thermal stability, and the ion conductor is characterized by fine phase separation between the hydrophilic region and the hydrophobic region. Can have higher ionic conductivity.
한편, 상기 이온 전도체의 상기 친수성 영역 또는 상기 소수성 영역은 하기 화학식 3으로 표시되는 반복 단위를 더 포함할 수 있다.On the other hand, the hydrophilic region or the hydrophobic region of the ion conductor may further include a repeating unit represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2018002580-appb-I000005
Figure PCTKR2018002580-appb-I000005
상기 화학식 3에서, 상기 X3은 단일 결합 또는 2가의 유기기일 수 있다. 상기 2가의 유기기는 전자를 끌어당기거나 전자를 내주는 2가의 유기기로서, 구체적으로 -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -(CH2)n-, -C(CH3)2-, -C(CF3)2-, 시클로헥실리덴기, 이온 전도성기를 포함하는 시클로헥실리덴기, 플루오레닐리덴기 및 이온 전도성기를 포함하는 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나일 수 있다. 이때, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수일 수 있다. 상기 X3이 단일 결합인 경우, 상기 X의 양 옆에 존재하는 페닐기가 직접 연결됨을 의미하여, 이의 대표적인 예로 바이페닐기를 들 수 있다.In Formula 3, X 3 may be a single bond or a divalent organic group. The divalent organic group is a divalent organic group that attracts electrons or gives out electrons, specifically, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,-(CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , a cyclohexylidene group, a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and a fluorenylidene containing an ion conductive group It may be any one selected from the group consisting of groups. In this case, R 'is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group, n may be an integer of 1 to 10. When X 3 is a single bond, it means that the phenyl groups present on both sides of X are directly connected, and biphenyl group is a representative example thereof.
상기 화학식 3에서, 상기 Z3은 2가의 유기 그룹으로서, -O- 또는 -S-일 수 있고, 바람직하게 -O-일 수 있다.In Formula 3, Z 3 is a divalent organic group, and may be -O- or -S-, and preferably -O-.
상기 화학식 3에서, 상기 R31 내지 R38은 각각 독립적으로 수소 원자, 할로겐 원자, 이온 전도성기(ion conducting group), 전자 공여기(electron donation group) 및 전자 흡인기(electron withdrawing group)로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 치환기들에 대한 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In Formula 3, R 31 to R 38 are each independently a hydrogen atom, a halogen atom, an ion conducting group, an ion donating group, an electron donation group, and an electron withdrawing group It may be any one selected. Detailed descriptions of the substituents are the same as described above, and thus repetitive description thereof will be omitted.
상기 화학식 3에서, 상기 n3은 0 내지 4의 정수이고, 바람직하게 0 또는 1의 정수일 수 있다.In Chemical Formula 3, n 3 is an integer of 0 to 4, and preferably may be an integer of 0 or 1.
보다 구체적으로, 상기 친수성 영역은 하기 화학식 4로 표시될 수 있다.More specifically, the hydrophilic region may be represented by the following formula (4).
[화학식 4][Formula 4]
Figure PCTKR2018002580-appb-I000006
Figure PCTKR2018002580-appb-I000006
상기 화학식 4에서, 상기 A는 이온 전도성기이고, 상기 X1 및 X3은 각각 독립적으로 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -(CH2)n-, -C(CH3)2-, -C(CF3)2-, 시클로헥실리덴기, 이온 전도성기를 포함하는 시클로헥실리덴기, 플루오레닐리덴기 및 이온 전도성기를 포함하는 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수이고, 상기 Z1 및 Z3은 각각 독립적으로 -O- 또는 -S-이고, 상기 R11 내지 R16 및 R31 내지 R38은 각각 독립적으로 수소 원자, 할로겐 원자, 이온 전도성기, 전자 공여기 및 전자 흡인기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n1 및 n3은 각각 독립적으로 0 내지 4의 정수이다. 상기 A, X1, X3, Z1, Z3, R11 내지 R16, R31 내지 R38, n1 및 n3에 대한 보다 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In Chemical Formula 4, A is an ion conductive group, X 1 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,- (CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , cyclohexylidene group, containing a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and an ion conductive group It is any one selected from the group consisting of fluorenylidene group, wherein R 'is any one selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group and a halogenated alkyl group, wherein n is an integer of 1 to 10, Z 1 and Z 3 are each independently -O- or -S-, and R 11 to R 16 and R 31 to R 38 are each independently a hydrogen atom, a halogen atom, an ion conductive group, an electron donor group and an electron withdrawing group. It is any one selected from the group consisting of, and n 1 and n 3 are each independently an integer of 0 to 4. A more detailed description of A, X 1 , X 3 , Z 1 , Z 3 , R 11 to R 16 , R 31 to R 38 , n 1, and n 3 is the same as described above, and thus a repetitive description thereof will be omitted.
또한, 상기 소수성 영역은 하기 화학식 5로 표시될 수 있다. In addition, the hydrophobic region may be represented by the following formula (5).
[화학식 5][Formula 5]
Figure PCTKR2018002580-appb-I000007
Figure PCTKR2018002580-appb-I000007
상기 화학식 5에서, 상기 R211 내지 R214, R221 내지 R224, R231 내지 R234 및 R31 내지 R38은 각각 독립적으로 수소 원자, 할로겐 원자, 전자 공여기 및 전자 흡인기로 이루어진 군에서 선택되는 어느 하나이고, 상기 X21, X22 및 X3는 각각 독립적으로 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -C(CH3)2-, -C(CF3)2-, -(CH2)n-, 시클로헥실리덴기 및 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수이고, 상기 Z21 및 Z3은 각각 독립적으로 -O- 또는 -S-이고, 상기 n3은 0 내지 4의 정수이다. In Formula 5, R 211 to R 214 , R 221 to R 224 , R 231 to R 234 and R 31 to R 38 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an electron donor group and an electron withdrawing group X 21 , X 22 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , any one selected from the group consisting of a cyclohexylidene group and a fluorenylidene group, wherein R 'is a hydrogen atom, a halogen atom, an alkyl group And a halogenated alkyl group, and n is an integer of 1 to 10, Z 21 and Z 3 are each independently -O- or -S-, and n 3 is 0-4 Is an integer.
상기 화학식 5에서, 상기 R211 내지 R214, R221 내지 R224, R231 내지 R234, R31 내지 R38, X21, X22, X3, Z21, Z3 및 n3에 대한 보다 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In Formula 5, R 211 to R 214 , R 221 to R 224 , R 231 to R 234 , R 31 to R 38 , X 21 , X 22 , X 3 , Z 21 , Z 3 and more than for n 3 Since the detailed description is the same as described above, repeated description is omitted.
또한, 상기 이온 교환막은 하기 화학식 6으로 표시될 수 있다.In addition, the ion exchange membrane may be represented by the following formula (6).
[화학식 6][Formula 6]
Figure PCTKR2018002580-appb-I000008
Figure PCTKR2018002580-appb-I000008
상기 화학식 6에서, 상기 A는 이온 전도성기이고, 상기 X1 및 X3은 각각 독립적으로 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -(CH2)n-, -C(CH3)2-, -C(CF3)2-, 시클로헥실리덴기, 이온 전도성기를 포함하는 시클로헥실리덴기, 플루오레닐리덴기 및 이온 전도성기를 포함하는 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 X21 및 X22는 각각 독립적으로 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, -C(CH3)2-, -C(CF3)2-, -(CH2)n-, 시클로헥실리덴기 및 플루오레닐리덴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기 및 할로겐화 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 1 내지 10의 정수이고, 상기 R11 내지 R16 및 R31 내지 R38은 각각 독립적으로 수소 원자, 할로겐 원자, 이온 전도성기, 전자 공여기 및 전자 흡인기로 이루어진 군에서 선택되는 어느 하나이고, 상기 R211 내지 R214, R221 내지 R224 및 R231 내지 R234는 각각 독립적으로 수소 원자, 할로겐 원자, 전자 공여기 및 전자 흡인기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n1 및 n3은 각각 독립적으로 0 내지 4의 정수이다. 상기 화학식 6에서, 상기 A, X1, R11 내지 R16, R211 내지 R214, R221 내지 R224, R231 내지 R234, R31 내지 R38, X21, X22, X3, Z1, Z21, Z3, n1 및 n3 에 대한 보다 구체적인 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.In Formula 6, A is an ion conductive group, and X 1 and X 3 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2 -,- (CH 2 ) n- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , cyclohexylidene group, containing a cyclohexylidene group containing an ion conductive group, a fluorenylidene group and an ion conductive group It is any one selected from the group consisting of fluorenylidene group, wherein X 21 and X 22 are each independently a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 -,-(CH 2 ) n- , cyclohexylidene group and fluorenylidene group is any one selected from the group, R 'is hydrogen A atom, a halogen atom, an alkyl group and any one selected from the group consisting of a halogenated alkyl group, n is an integer of 1 to 10, wherein R 11 to R 16 and R 31 to R 38 are each independently a hydrogen atom, a halogen atom , And the on-conductive group, and any one selected from the group consisting of electron donor and an electron withdrawing group, wherein R 211 to R 214, R 221 to R 224 and R 231 to R 234 are each independently a hydrogen atom, a halogen atom, an electron- It is any one selected from the group consisting of excitation and an electron withdrawing group, and n 1 and n 3 are each independently an integer of 0 to 4. In Chemical Formula 6, A, X 1 , R 11 to R 16 , R 211 to R 214 , R 221 to R 224 , R 231 to R 234 , R 31 to R 38 , X 21 , X 22 , X 3 , Since more detailed descriptions of Z 1 , Z 21 , Z 3 , n 1 and n 3 are the same as described above, repetitive descriptions are omitted.
상기 화학식 6에서, 상기 n61 및 n62은 각각 독립적으로 1 내지 100의 정수이고, 바람직하게 5 내지 40일 수 있다. 상기 n61 또는 n62이 1 미만인 경우 친수성 영역과 소수성 영역의 상분리 효과가 미미하며, 이들이 100을 초과하는 경우 분자량 제어가 어렵고, 강화 복합막 제조시 조액성 및 함침성이 저하될 수 있다.In Chemical Formula 6, n 61 and n 62 may each independently be an integer of 1 to 100, and preferably 5 to 40. When n 61 or n 62 is less than 1, the phase separation effect of the hydrophilic region and the hydrophobic region is insignificant, and when they are greater than 100, molecular weight control is difficult, and the liquid-liquidity and impregnation may be lowered when preparing the reinforced composite membrane.
상기 화학식 6에서 상기 친수성 영역에 포함되는 상기 화학식 3으로부터 유래된 반복 단위는 이온 전도성기를 포함할 수 있으나, 상기 소수성 영역에 포함되는 상기 화학식 3으로부터 유래된 반복 단위는 이온 전도성기를 포함하지 않을 수 있다. In Formula 6, the repeating unit derived from Formula 3 included in the hydrophilic region may include an ion conductive group, but the repeating unit derived from Formula 3 included in the hydrophobic region may not include an ion conductive group. .
상기 이온 전도체의 상기 친수성 영역과 상기 소수성 영역의 반복 단위들의 몰 비율은 1:0.5 내지 1:10일 수 있고, 바람직하게 1:1 내지 1:5일 수 있고, 더욱 바람직하게 1.25 초과 내지 1:5일 수 있다. 상기 소수성 영역의 반복 단위들의 몰 비율이 0.5 미만인 경우 함수율이 증가하여 치수 안정성 및 내구성이 저하될 수 있고, 10을 초과하면 친수성 영역이 아무리 커지더라도 이온 전도도가 저하될 수 있다.The molar ratio of repeating units of the hydrophilic region and the hydrophobic region of the ion conductor may be 1: 0.5 to 1:10, preferably 1: 1 to 1: 5, more preferably greater than 1.25 to 1: May be five. When the molar ratio of the repeating units of the hydrophobic region is less than 0.5, the water content may increase, thereby decreasing dimensional stability and durability, and when the molar ratio exceeds 10, the ionic conductivity may be reduced no matter how large the hydrophilic region is.
상기 이온 전도체는 10,000 g/mol 내지 1,000,000 g/mol의 중량 평균 분자량을 가질 수 있고, 바람직하게 100,000 g/mol 내지 500,000 g/mol의 중량 평균 분자량을 가질 수 있다. 상기 이온 전도체의 중량 평균 분자량이 100,000 g/mol 미만일 경우, 균일한 막 형성이 어렵고 내구성이 떨어질 수 있다. 상기 이온 전도체의 중량 평균 분자량이 500,000 g/mol을 초과하는 경우, 용해도가 감소할 수 있다.The ion conductor may have a weight average molecular weight of 10,000 g / mol to 1,000,000 g / mol, preferably may have a weight average molecular weight of 100,000 g / mol to 500,000 g / mol. When the weight average molecular weight of the ion conductor is less than 100,000 g / mol, uniform film formation may be difficult and durability may be degraded. If the weight average molecular weight of the ion conductor exceeds 500,000 g / mol, solubility may decrease.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.The anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion conductor, a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
상기 이온 전도체는 상기 이온 교환막 전체 중량에 대하여 30 내지 70 중량%로 포함될 수 있고, 구체적으로 40 내지 60 중량%로 포함될 수 있다. 상기 이온 전도체의 함량은 상기 다공성 지지체가 마이크로 포어를 포함함에 따라 나노 포어를 갖는 다공성 지지체를 사용하는 경우에 비하여 감소된 함량이다. 상기 이온 전도체의 함량이 30 중량% 미만이면 상기 이온 교환막의 이온 전도도가 저하될 우려가 있고, 상기 이온 전도체의 함량이 70 중량%를 초과하면 상기 이온 교환막의 기계적 강도 및 치수안정성이 저하될 수 있다.The ion conductor may be included in 30 to 70% by weight, specifically 40 to 60% by weight based on the total weight of the ion exchange membrane. The content of the ion conductor is a reduced content as compared to the case of using a porous support having nanopores as the porous support comprises micropores. If the content of the ion conductor is less than 30% by weight, the ion conductivity of the ion exchange membrane may be lowered. If the content of the ion conductor is more than 70% by weight, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced. .
상기 이온 교환막은 상기 마이크로 포어를 갖는 다공성 지지체를 사용함으로써 이온 전도체 층이 더 적은 함량으로 형성되어도 충분한 효율이 발생하며, 기존의 나노 포어를 갖는 다공성 지지체를 이용한 이온 교환막과 비교하였을 때, 이온 교환막 전체에서 이온 전도체의 함량을 감소시킬 수 있으므로, 이온 교환막의 팽윤성 및 치수 변화량이 감소하는 효과를 얻을 수 있어서 내구성을 향상시킬 수 있다.The ion exchange membrane has sufficient efficiency even if the ion conductor layer is formed in a smaller amount by using the porous support having the micropores, and compared with the ion exchange membrane using the porous support having the nanopore, Since the content of the ion conductor at can be reduced, the effect of reducing the amount of swelling and the dimensional change of the ion exchange membrane can be obtained, thereby improving durability.
구체적으로, 상기 다공성 지지체는 이온 전달 능력이 없으므로 상기 이온 교환막에서 저항으로 작용한다. 다만, 이온 전도체 단일막의 경우 막의 운전 조건에서 수축, 팽창을 반복하다보니 내구성을 확보 하기 힘들기 때문에 상기 다공성 지지체를 도입하여 내구성을 확보하고자 하는 목적으로 사용하는 것이다. 상기 마이크로 포어를 갖는 다공성 지지체는 나노 포어를 갖는 다공성 지지체 보다는 기공의 크기가 크므로 상대적으로 덜 저항으로 작용한다. Specifically, since the porous support has no ion transfer ability, it acts as a resistance in the ion exchange membrane. However, in the case of the ion conductor single membrane, it is difficult to secure durability because of repeated shrinkage and expansion under operating conditions of the membrane, so that the porous support is used for the purpose of securing durability. The porous support having the micropores is relatively less resistant since the pores are larger in size than the porous support having the nanopores.
상기 마이크로 포어를 갖는 다공성 지지체는 상기 마이크로 포어에 이미 많은 이온 전도체가 채워져 있기 때문에 상기 나노 포어를 갖는 다공성 지지체에 비하여 상기 다공성 지지체 양면에 형성되는 이온 전도체 층의 비율을 줄일 수 있고, 따라서 이온 교환막 전체에서 이온 전도체의 함량을 감소시킬 수 있다. 즉, 상기 마이크로 포어를 갖는 다공성 지지체를 포함하는 이온 교환막은 다공성 지지체를 포함함에 따른 저항을 줄일 수 있고, 동일한 이온 전도도를 유지하면서 이온 전도체의 전체 함량을 줄일 수 있다.Since the porous support having the micropores is already filled with many ion conductors, the ratio of the ion conductor layer formed on both sides of the porous support can be reduced compared to the porous support having the nanopores, and thus the entire ion exchange membrane. Can reduce the content of ionic conductors. That is, the ion exchange membrane including the porous support having the micropores can reduce the resistance of the porous support, and reduce the total content of the ion conductor while maintaining the same ion conductivity.
상기 이온 교환막은 상기 다공성 지지체 일면 또는 양면에 위치하는 이온 전도체 층을 더 포함할 수 있다. 상기 이온 전도체 층은 상기 다공성 지지체의 공극을 채운 후 남은 이온 전도체가 상기 다공성 지지체 표면에 얇은 막을 형성함에 따라 형성될 수 있다.The ion exchange membrane may further include an ion conductor layer positioned on one or both surfaces of the porous support. The ion conductor layer may be formed as the ion conductor remaining after filling the pores of the porous support forms a thin film on the surface of the porous support.
상기 일면의 이온 전도체 층의 두께는 1 내지 30 ㎛일 수 있고, 구체적으로 1 내지 15 ㎛일 수 있다. 상기 이온 전도체 층의 두께가 1 ㎛ 미만인 경우 공정상 구현이 어려울 수 있고 30 ㎛를 초과하는 경우 기계적 강도가 저하될 수 있다. The thickness of the ion conductor layer on one surface may be 1 to 30 μm, and specifically 1 to 15 μm. If the thickness of the ion conductor layer is less than 1 μm, it may be difficult to implement in process, and if it exceeds 30 μm, the mechanical strength may be lowered.
본 발명의 일 실시예에 따른 이온 교환막은 일반적인 다공성 지지체에 비하여 큰 크기의 마이크로 포어를 포함함에 따라 이온 전도체가 마이크로 포어에 많이 함침되고, 그 결과 표면 이온 전도체 층의 두께가 얇아짐에도 충분한 효율을 얻을 수 있고, 이온 전도체 층이 매우 얇게 형성됨에 따라 저항이 낮고 전도도 성능이 유리한 강화복합막을 제조할 수 있다.As the ion exchange membrane according to an embodiment of the present invention includes a micro pore having a larger size than a general porous support, the ion conductor is impregnated into the micro pore a lot, and as a result, sufficient efficiency is obtained even when the surface ion conductor layer is thinned. As the ion conductor layer is formed very thin, a reinforced composite membrane having low resistance and advantageous conductivity performance can be produced.
이때, 상기 일면의 이온 전도체 층의 두께는 상기 이온 교환막 전체 두께에 대하여 1 내지 50 길이%일 수 있고, 바람직하게 1 내지 30 길이%일 수 있다. 상기 이온 전도체 층의 두께가 1 길이% 미만인 경우 교환막의 이온 전도도가 저하될 우려가 있고, 50 길이%를 초과하는 경우 상기 이온 교환막의 기계적 강도 및 치수 안정성이 저하될 수 있다. 상기 일면의 이온 전도체 층의 두께 비율은 하기 수학식 2에 의하여 계산할 수 있다.At this time, the thickness of the ion conductor layer on one surface may be 1 to 50% by length, preferably 1 to 30% by length with respect to the total thickness of the ion exchange membrane. If the thickness of the ion conductor layer is less than 1% by length, there is a risk that the ion conductivity of the exchange membrane is lowered. If the thickness of the ion conductor layer exceeds 50%, the mechanical strength and dimensional stability of the ion exchange membrane may be reduced. The thickness ratio of the ion conductor layer on one surface may be calculated by Equation 2 below.
[수학식 2][Equation 2]
일면의 이온 전도체 층의 두께 비율(길이%) = (일면의 이온 전도체 층의 두께/이온 교환막 전체 두께) X 100Thickness ratio (length%) of the ion conductor layer on one side = (thickness of the ion conductor layer on one side / total thickness of the ion exchange membrane) X 100
도 1은 본 발명에 따른 상기 마이크로 포어를 갖는 다공성 지지체를 이용한 이온 교환막을 나타내는 모식도이고, 도 2는 종래의 나노 포어를 갖는 다공성 지지체를 이용한 이온 교환막을 나타내는 모식도이다.1 is a schematic diagram showing an ion exchange membrane using a porous support having the micropores according to the present invention, Figure 2 is a schematic diagram showing an ion exchange membrane using a porous support having a conventional nano-pores.
도 1 및 도 2를 참고하면, 상기 이온 교환막(10)은 마이크로 포어를 갖는 다공성 지지체(11)를 사용함으로써 이온 전도체 층(12)이 더 적은 함량 및 더 얇은 두께로 형성되어도 충분한 효율이 발생하며, 전체적인 이온 교환막(10)의 두께 감소를 통해 저항이 감소되어 전반적인 효율이 향상될 수 있다.Referring to FIGS. 1 and 2, the ion exchange membrane 10 has sufficient efficiency even when the ion conductor layer 12 is formed in a smaller content and a thinner thickness by using the porous support 11 having micropores. In addition, the resistance may be reduced by reducing the thickness of the overall ion exchange membrane 10, thereby improving the overall efficiency.
또한, 상기 마이크로 포어를 갖는 다공성 지지체(11)를 이용한 이온 교환막(10)은 나노 포어를 갖는 다공성 지지체(13)를 이용한 이온 교환막과 비교하였을 때, 상기 다공성 지지체(11)의 공극에 채워진 이온 전도체의 함량을 감소시킬 수 있으므로, 상기 이온 교환막(10)의 팽윤성 및 치수 변화량이 감소하는 효과를 얻을 수 있어서 내구성을 향상시킬 수 있다.In addition, the ion exchange membrane 10 using the porous support 11 having the micropores is an ion conductor filled in the pores of the porous support 11 when compared with the ion exchange membrane using the porous support 13 having the nanopores. Since it is possible to reduce the content of, the effect of reducing the amount of swelling and dimensional swelling of the ion exchange membrane 10 can be obtained to improve the durability.
구체적으로, 상기 다공성 지지체(11, 13)는 이온 전달 능력이 없으므로 상기 이온 교환막(10)에서 저항으로 작용한다. 기존의 나노 포어를 갖는 다공성 지지체(13)를 사용하여 이온 교환막을 제조하는 경우 이온 전도체 층(14)의 두께 비율이 막 전체의 30 길이% 이상을 차지하고 일정 두께 이상으로 형성하여야 이온 전도도 성능을 보이지만 상기 마이크로 포어를 갖는 다공성 지지체(11)를 사용하여 이온 교환막(10)을 제조하는 경우 포어의 크기가 매우 크고 저항이 되는 면적이 적어 이온 전도체 층(12)의 두께 비율을 나노 포어나 수 마이크로 분포의 지지체를 사용하는 것보다 줄일 수 있으며, 전체적인 이온 교환막(10) 두께 또한 줄여 시스템 상에서 막 두께에 기인하는 저항을 줄이고, V.E(Voltage Efficiency) 성능을 향상시켜 전체적으로 에너지 저장 시스템의 에너지 효율 E.E(Energy Efficiency)를 높일 수 있다.Specifically, since the porous supports 11 and 13 do not have ion transfer capability, the porous supports 11 and 13 function as resistances in the ion exchange membrane 10. When the ion exchange membrane is manufactured using the porous support 13 having the conventional nanopores, the ion conductive layer 14 has a thickness ratio of 30% or more of the entire membrane and is formed at a predetermined thickness or more to exhibit ion conductivity performance. When the ion exchange membrane 10 is manufactured by using the porous support 11 having the micropores, the pore size is very large and the area of resistance is small, so that the thickness ratio of the ion conductor layer 12 is nanopores or several micro distribution. Can reduce the overall ion exchange membrane (10) thickness, reduce the resistance due to the film thickness on the system, improve the VE (Voltage Efficiency) performance, the overall energy efficiency of the energy storage system EE (Energy) Efficiency can be increased.
또한, 동일한 이온 전도도 성능을 확보하면서도 이온 교환막(10)에서 이온 전도체의 함량을 줄이게 되면 형태 안정성 측면에 이점이 크다. 상기 마이크로 포어를 갖는 다공성 지지체(11)를 이용하면 동일한 이온 전도도 성능을 확보하면서도 이온 전도체의 함량을 줄임으로써 상기 이온 전도체 층(12)에서 기인하는 이온 교환막의 팽윤성이 감소하는 효과를 보이며 치수 안정성이 매우 향상될 수 있다. 특히, 레독스 플로우 전지에서 이온 교환막(10)은 일반적으로 1M VOSO4 및 5M H2SO4을 포함하는 전해액의 수용액 상태에 노출하여 운전하므로 막의 형태 안정성은 시스템의 내구성을 확보하는데 상당한 이점이 있다. In addition, while reducing the content of the ion conductor in the ion exchange membrane 10 while ensuring the same ion conductivity performance is a great advantage in terms of morphological stability. When the porous support 11 having the micropores is used, the same ion conductivity performance is ensured while the content of the ion conductor is reduced, thereby reducing the swelling property of the ion exchange membrane resulting from the ion conductor layer 12 and reducing the dimensional stability. Can be greatly improved. In particular, in the redox flow battery, the ion exchange membrane 10 is generally operated by exposing to an aqueous solution of an electrolyte solution containing 1M VOSO 4 and 5M H 2 SO 4, and thus the shape stability of the membrane has a significant advantage in ensuring durability of the system. .
본 발명의 다른 일 실시예에 따른 이온 교환막의 제조 방법은 다수의 공극을 포함하는 다공성 지지체를 제조하는 단계, 그리고 상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계를 포함한다.According to another exemplary embodiment of the present invention, a method of manufacturing an ion exchange membrane includes preparing a porous support including a plurality of pores, and filling an ion conductor in the pores of the porous support.
우선, 다수의 공극을 포함하는 다공성 지지체를 제조한다. 이때, 상기 다공성 지지체는 마이크로 포어를 포함하도록 형성된다.First, a porous support comprising a plurality of pores is prepared. In this case, the porous support is formed to include micropores.
상기 마이크로 포어를 포함하는 다공성 지지체는 부직 섬유질 웹을 제조하는 방법에 의하여 제조될 수 있으며, 구체적으로 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법에 의하여 제조될 수 있고, 바람직하게 웨트-레잉 방법에 의하여 제조될 수 있다.The porous support including the micropores may be prepared by a method of manufacturing a nonwoven fibrous web, specifically, carding, garneting, air-laying, and wet-laying. -laying, melt blowing, spunbonding and stitch bonding can be prepared by any one method selected from the group consisting of, preferably by a wet-laying method Can be.
상기 웨트-레잉(wet-laying)은 부직 섬유질 웹을 형성할 수 있는 공정으로, 상기 웨트-레잉 공정에서, 약 3 mm 내지 약 52 ㎜ 범위의 길이를 갖는 작은 섬유의 묶음이 액체 공급원 내에서 분리 및 인트레인되고, 그 뒤에 항시 진공 공급원의 보조 하에서 성형 스크린 상으로 침착된다. 상기 액체로는 일반적으로 물을 사용할 수 있다. 상기 웨트-레일에 의하여 무작위로 침착된 섬유는 추가로 인탱글링(예를 들어, 하이드로인탱글링)되거나, 또는 예를 들어, 열 점 접합, 자발 접합, 고온 공기 접합, 초음파 접합, 니들 펀칭, 캘린더링, 분사 접착제의 도포, 등을 사용하여 서로 접합될 수 있다. 예시적인 웨트-레잉 및 접합 공정은 예를 들어, 미국등록특허 제5167765호(닐슨 등)를 참고할 수 있고, 예시적인 접합 공정은 미국특허공개 제2008/0038976호(베리간 등)을 참고할 수 있다.The wet-laying is a process capable of forming a nonwoven fibrous web, in which the bundle of small fibers having a length in the range of about 3 mm to about 52 mm is separated in the liquid source. And is intrained and subsequently deposited onto the forming screen under the aid of a vacuum source at all times. In general, water may be used as the liquid. The fibers randomly deposited by the wet-rail may be further entangled (eg hydroentangled) or, for example, hot spot bonding, spontaneous bonding, hot air bonding, ultrasonic bonding, needle punching, calender Rings, application of sprayed adhesive, and the like can be bonded to one another. Exemplary wet-laying and bonding processes may be referred to, for example, US Pat. No. 5,767,765 (Nielsen et al.), And exemplary bonding processes may be referred to US Patent Publication No. 2008/0038976 (Berrigan et al.). .
다음으로, 상기 다공성 지지체의 공극에 이온 전도체를 채워 강화 복합막 형태의 이온 교환막을 제조할 수 있다.Next, an ion exchange membrane in the form of a reinforced composite membrane may be prepared by filling an ion conductor in the pores of the porous support.
상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계는 일반적으로 상기 다공성 지지체를 상기 이온 전도체를 포함하는 용액에 담지 또는 함침하여 이루어질 수 있다. 또한, 상기 이온 전도체로 상기 다공성 지지체의 공극을 채우는 단계는 바 코팅, 콤마 코팅, 슬롯다이, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드, 라미네이팅 및 이들의 조합으로 이루어진 군에서 선택되는 어느 한 방법에 의하여 이루어질 수도 있다. Filling the pores of the porous support with the ion conductor may be generally carried out by supporting or impregnating the porous support in a solution containing the ion conductor. The filling of the pores of the porous support with the ion conductor may be performed by any one method selected from the group consisting of bar coating, comma coating, slot die, screen printing, spray coating, doctor blade, laminating, and combinations thereof. It may be.
그러나, 상기 마이크로 포어를 갖는 다공성 지지체를 이용하는 경우, 상기와 같은 기존 방법들을 사용하면 한 개의 공극에 채워지는 이온 전도체의 양이 많아져(포어 사이즈가 크기 때문에), 다공성 지지체가 울어버리거나 수축되는 등의 문제가 발생할 수 있다.However, in the case of using the porous support having the micropores, the conventional methods as described above increase the amount of ion conductors filled in one pore (because the pore size is large), so that the porous support cries or shrinks, etc. May cause problems.
이에, 상기 마이크로 포어를 갖는 다공성 지지체에 상기 이온 전도체를 채우는 단계는 바람직하게 용융 함침 방법을 이용할 수 있다. 즉, 용융 함침 방법을 사용하면 상기 다공성 지지체가 울어버리거나 수축되는 것을 방지하면서 상기 이온 전도체를 채울 수 있다.Thus, filling the ion conductor in the porous support having the micropores may preferably use a melt impregnation method. That is, the melt impregnation method may be used to fill the ion conductor while preventing the porous support from crying or shrinking.
구체적으로, 마이크로 포어를 갖는 다공성 지지체에 일반적으로 사용되는 웻(wet) 함침 공정을 적용하게 되면, 상기 마이크로 포어를 갖는 다공성 지지체는 기공 크기가 크기 때문에 기공 안에 채워지는 용매의 함량이 많아지고, 이는 건조시 이온 교환막의 형태를 변형시킬 수 있다. 상기 용융 함침 방법을 사용하면 상기 문제를 방지하고 마이크로 포어를 갖는 다공성 지지체를 이용하여 이온 교환막 제조시 형태 안정성을 확보 할 수 있다.Specifically, when the wet impregnation process generally used for the porous support having micropores is applied, the content of the solvent filled in the pores increases because the porous support having the micropores has a large pore size. When drying, the shape of the ion exchange membrane can be modified. By using the melt impregnation method, it is possible to prevent the above problems and to secure morphological stability during the production of the ion exchange membrane using the porous support having the micropores.
구체적으로, 상기 용융 함침 방법을 적용하는 경우, 상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계는 상기 이온 전도체를 코팅하여 시트 형태로 제조하는 단계, 및 상기 시트 형태의 이온 전도체를 상기 다공성 지지체의 공극에 용융 함침시키는 단계를 포함한다.Specifically, when the melt impregnation method is applied, the step of filling the pores of the porous support with the ion conductor is prepared by coating the ion conductor in the form of a sheet, and the pores of the porous support of the sheet form Melt impregnation.
상기 이온 전도체를 코팅하여 시트 형태로 제조하는 단계는 상기 이온 전도체를 포함하는 용액 또는 분산액 형태로 제조한 후 이를 기판에 코팅하여 이루어질 수 있다. The step of coating the ion conductor in the form of a sheet may be performed by manufacturing the solution in the form of a solution or dispersion including the ion conductor and coating the same on a substrate.
상기 이온 전도체를 포함하는 용액 또는 분산액은 상용화된 이온 전도체 용액 또는 분산액을 구입하여 사용할 수 있고, 상기 이온 전도체를 용매에 분산시켜 제조할 수도 있다. 상기 이온 전도체를 용매에 분산시키는 방법은 종래 일반적으로 알려진 방법을 사용하는 것이 가능하므로 구체적인 설명은 생략한다.The solution or dispersion containing the ion conductor may be purchased by using a commercially available ion conductor solution or dispersion, or may be prepared by dispersing the ion conductor in a solvent. Since the method for dispersing the ion conductor in a solvent can be used a conventionally known method, a detailed description thereof will be omitted.
상기 이온 전도체를 포함하는 용액 또는 분산액을 제조하기 위한 용매로는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매를 이용할 수 있다. As a solvent for preparing a solution or dispersion including the ion conductor, a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of one or more thereof may be used.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 이소프로필 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. The hydrophilic solvent is a group consisting of alcohols, isopropyl alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have one or more functional groups selected from, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
상기 유기 용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란 및 이들의 혼합물에서 선택할 수 있다.The organic solvent can be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
또한, 상기 이온 전도체를 기판에 코팅하는 방법은 바 코팅, 콤마 코팅, 슬롯다이, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드, 라미네이팅 및 이들의 조합으로 이루어진 군에서 선택되는 어느 한 방법에 의하여 이루어질 수도 있다.In addition, the method of coating the ion conductor on the substrate may be made by any one method selected from the group consisting of bar coating, comma coating, slot die, screen printing, spray coating, doctor blade, laminating and combinations thereof.
다음으로, 상기 제조된 시트 형태의 이온 전도체를 상기 다공성 지지체의 공극에 용융 함침시키는 단계는 상기 시트 형태의 이온 전도체를 상기 다공성 지지체의 일면 또는 양면에 배치한 후, 핫 프레스 등을 이용하여 열과 압력을 가하면서 이루어질 수 있다.Next, the step of melt impregnating the prepared sheet-shaped ion conductor in the pores of the porous support may be arranged by placing the sheet-shaped ion conductor on one side or both sides of the porous support, using heat and pressure This can be done by adding.
이때, 상기 용융 함침의 조건은 상기 이온 전도체의 종류에 따라 적절하게 선택할 수 있고, 구체적으로 상기 이온 전도체의 유리 전이 온도를 고려하여 적절하게 선택할 수 있다. 즉, 상기 시트 형태의 이온 전도체가 멜팅(melting)되어 상기 다공성 지지체의 마이크로 포어로 잘 스며들 수 있도록 압력, 온도, 시간 등의 조건을 설정할 수 있고, 다만 이때 상기 고분자인 이온 전도체의 열 분해 온도를 초과하게 되면 구조가 깨지거나 이온 전도 성능을 잃을 수 있으므로, 상기 이온 전도체가 손상되지 않는 범위 내에서 상기 용융 함침의 조건을 조절하는 것이 바람직하다.At this time, the conditions of the melt impregnation can be appropriately selected according to the type of the ion conductor, specifically, in consideration of the glass transition temperature of the ion conductor can be appropriately selected. That is, conditions such as pressure, temperature and time may be set so that the sheet-shaped ion conductor is melted and penetrates into the micropores of the porous support. However, at this time, the thermal decomposition temperature of the polymer ion conductor Since the structure may be broken or the ion conduction performance may be lost when it is exceeded, it is preferable to control the conditions of the melt impregnation within a range in which the ion conductor is not damaged.
구체적으로, 상기 시트 형태의 이온 전도체의 용융 함침은 상기 이온 전도체의 유리 전이 온도 이상에서부터 상기 이온 전도체의 열 분해 온도 이하에서 이루어질 수 있고, 예를 들어 1 내지 20 MPa 의 압력에서 150 내지 240 ℃에서 이루어질 수 있다. 상기 용융 함침 시간은 상기 이온 교환막의 제조 길이 및 가열 수단에 따라 달라질 수 있다. 상기 온도가 상기 이온 전도체의 유리 전이 온도(예를 들어 150 ℃) 미만인 경우 상기 이온 전도체가 충분히 용해되지 않아 상기 다공성 지지체에 부분 함침될 수 있고, 상기 온도가 상기 이온 전도체의 열 분해 온도(예를 들어 240 ℃)를 초과하는 경우 상기 이온 전도체의 이온 전도성 관능기, 대표적으로 술폰산기가 분해될 수 있다.Specifically, the melt impregnation of the ion conductor in the form of a sheet may be performed from above the glass transition temperature of the ion conductor to below the thermal decomposition temperature of the ion conductor, for example, at 150 to 240 ° C. at a pressure of 1 to 20 MPa. Can be done. The melt impregnation time may vary depending on the production length of the ion exchange membrane and the heating means. When the temperature is below the glass transition temperature (eg 150 ° C.) of the ion conductor, the ion conductor may not be sufficiently dissolved and may be partially impregnated into the porous support, and the temperature may be a thermal decomposition temperature of the ion conductor (eg, For example, 240 ° C.), an ion conductive functional group of the ion conductor, typically a sulfonic acid group, may be decomposed.
예를 들어, 상기 이온 전도체가 탄화수소계 이온 전도체인 경우, 보통 유리 전이 온도가 150 ℃ 내지 200 ℃ 이하이다. 따라서, 상기 탄화수소계 이온 전도체의 용융 함침은 150 ℃ 이상에서 이루어질 수 있다. For example, when the ion conductor is a hydrocarbon-based ion conductor, the glass transition temperature is usually 150 ° C. to 200 ° C. or less. Therefore, the melt impregnation of the hydrocarbon-based ion conductor may be made at 150 ℃ or more.
상기 가열은 상기 이온 전도체에 열을 전달할 수 있는 수단이면 어느 것이나 적용 가능하고, 구체적으로 상기 다공성 지지체 표면에 상기 이온 전도체가 존재하는 적층체에 가열된 롤 또는 판형 프레스를 접촉시키거나 또는 상기 적층체를 가열 플레이트에 올려 놓고, 상기 적층체 전체를 가열하는 것일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.The heating may be applied to any means capable of transferring heat to the ion conductor, and specifically, a heated roll or plate press is brought into contact with a laminate in which the ion conductor is present on the surface of the porous support, or the laminate is Put on a heating plate, but may be to heat the whole laminate, but the present invention is not limited thereto.
본 발명의 또 다른 일 실시예에 따른 에너지 저장 장치는 상기 이온 교환막을 포함한다. 이하, 상기 에너지 저장 장치가 레독스 플로우 전지 또는 연료 전지인 경우에 대하여 상세하게 설명하나, 본 발명이 이에 한정되는 것은 아니고, 상기 이온 교환막은 2차 전지 형태의 에너지 저장 장치에도 적용이 가능하다.Energy storage device according to another embodiment of the present invention includes the ion exchange membrane. Hereinafter, a case where the energy storage device is a redox flow battery or a fuel cell will be described in detail. However, the present invention is not limited thereto, and the ion exchange membrane may be applied to an energy storage device having a secondary battery type.
상기 에너지 저장 장치의 하나의 예시에서, 상기 이온 교환막은 작은 이온 채널로 인하여 바나듐 이온을 블로킹(blocking)함으로써 낮은 바나듐 이온 투과성을 가져 바나듐 레독스 플로우 전지에 적용할 경우 바나듐 활물질이 크로스오버(crossover)되어 에너지 효율을 저하시키는 문제를 해결함으로써 높은 에너지 효율을 달성할 수 있는 바, 상기 에너지 저장 장치는 바람직하게 레독스 플로우 전지(redox flow battery)일 수 있다. In one example of the energy storage device, the ion exchange membrane has low vanadium ion permeability by blocking vanadium ions due to small ion channels, so that the vanadium active material crossovers when applied to a vanadium redox flow cell. It is possible to achieve a high energy efficiency by solving the problem of lowering the energy efficiency, the energy storage device may be preferably a redox flow battery (redox flow battery).
상기 레독스 플로우 전지는 서로 마주보도록 배치되는 양극과 음극 및 상기 양극과 음극 사이에 배치되는 상기 이온 교환막을 포함하는 전지 셀에 양극 전해질 및 음극 전해질을 공급하여 충방전을 행할 수 있다. The redox flow battery may be charged and discharged by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell including a positive electrode and a negative electrode disposed to face each other and the ion exchange membrane disposed between the positive electrode and the negative electrode.
상기 레독스 플로우 전지는 양극 전해질로 V(IV)/V(V) 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 전바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 설파이드 레독스 커플을 사용하는 폴리설파이드브로민 레독스 전지; 또는 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 아연(Zn) 레독스 커플을 사용하는 아연-브로민(Zn-Br) 레독스 전지일 수 있으나, 본 발명에서 상기 레독스 플로우 전지의 종류가 한정되지 않는다.The redox flow battery includes an all-vanadium redox battery using a V (IV) / V (V) redox couple as a cathode electrolyte and a V (II) / V (III) redox couple as a cathode electrolyte; A vanadium-based redox battery using a halogen redox couple as a cathode electrolyte and a V (II) / V (III) redox couple as a cathode electrolyte; Polysulfidebromine redox cells using a halogen redox couple as the positive electrolyte and a sulfide redox couple as the negative electrolyte; Or a zinc-bromine (Zn-Br) redox battery using a halogen redox couple as a cathode electrolyte and a zinc (Zn) redox couple as a cathode electrolyte, but the type of the redox flow battery may be It is not limited.
이하, 상기 레독스 플로우 전지가 전바나듐계 레독스 전지인 경우를 예로 들어 설명한다. 그러나, 본 발명의 레독스 플로우 전지가 상기 전바나듐계 레독스 전지에 한정되는 것은 아니다.Hereinafter, the case where the redox flow battery is an all-vanadium redox battery will be described as an example. However, the redox flow battery of the present invention is not limited to the all vanadium-based redox battery.
도 3은 상기 전바나듐계 레독스 전지를 개략적으로 나타내는 모식도이다.3 is a schematic diagram schematically showing the all-vanadium redox battery.
상기 도 3을 참고하면, 상기 레독스 플로우 전지는 셀 하우징(102), 상기 셀 하우징(102)을 양극 셀(102A)과 음극 셀(102B)로 양분하도록 설치된 상기 이온 교환막(104), 그리고 상기 양극 셀(102A)과 음극 셀(102B) 각각에 위치하는 양극(106) 및 음극(108)을 포함한다.Referring to FIG. 3, the redox flow battery includes a cell housing 102, the ion exchange membrane 104 installed to bisect the cell housing 102 into a positive cell 102A and a negative cell 102B, and the A positive electrode 106 and a negative electrode 108 positioned in each of the positive cell 102A and the negative cell 102B are included.
또한, 상기 레독스 플로우 전지는 추가적으로 상기 양극 전해질이 저장되는 양극 전해질 저장 탱크(110) 및 상기 음극 전해질이 저장되는 음극 전해질 저장 탱크(112)를 더 포함할 수 있다.In addition, the redox flow battery may further include a cathode electrolyte storage tank 110 in which the cathode electrolyte is stored and a cathode electrolyte storage tank 112 in which the anode electrolyte is stored.
또한, 상기 레독스 플로우 전지는 상기 양극 셀(102A)의 상단 및 하단에 양극 전해질 유입구 및 양극 전해질 유출구를 포함하고, 상기 음극 셀(102B)의 상단 및 하단에 음극 전해질 유입구 및 음극 전해질 유출구를 포함할 수 있다.In addition, the redox flow battery includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102A, and includes a cathode electrolyte inlet and a cathode electrolyte outlet at the top and bottom of the cathode cell 102B. can do.
상기 양극 전해질 저장 탱크(110)에 저장된 상기 양극 전해질은 펌프(114)에 의하여 상기 양극 전해질 유입구를 통하여 상기 양극 셀(102A)에 유입된 후, 상기 양극 전해질 유출구를 통하여 상기 양극 셀(102A)로부터 배출된다. The anode electrolyte stored in the cathode electrolyte storage tank 110 flows into the cathode cell 102A through the anode electrolyte inlet by a pump 114 and then from the cathode cell 102A through the anode electrolyte outlet. Discharged.
마찬가지로, 상기 음극 전해질 저장 탱크(112)에 저장된 상기 음극 전해질은 펌프(116)에 의하여 상기 음극 전해질 유입구를 통하여 상기 음극 셀(102B)에 유입된 후, 상기 음극 전해질 유출구를 통하여 상기 음극 셀(102B)로부터 배출된다.Similarly, the negative electrolyte stored in the negative electrolyte storage tank 112 flows into the negative cell 102B through the negative electrolyte inlet by a pump 116, and then through the negative electrolyte outlet 102 through the negative electrolyte outlet. Is discharged from
상기 양극 셀(102A)에서는 전원/부하(118)의 동작에 따라 상기 양극(106)을 통한 전자의 이동이 발생하며, 이에 따라 V5+↔V4+의 산화/환원 반응이 일어난다. 마찬가지로, 상기 음극 셀(102B)에서는 전원/부하(118)의 동작에 따라 상기 음극(108)을 통한 전자의 이동이 발생하며, 이에 따라 V2+↔V3+의 산화/환원 반응이 일어난다. 산화/환원 반응을 마친 양극 전해질과 음극 전해질은 각각 양극 전해질 저장 탱크(110)와 음극 전해질 저장 탱크(112)로 순환된다.In the anode cell 102A, the movement of electrons through the anode 106 occurs according to the operation of the power supply / load 118, and thus an oxidation / reduction reaction of V 5+ ↔ V 4+ occurs. Similarly, in the cathode cell 102B, the movement of electrons through the cathode 108 occurs according to the operation of the power source / load 118, and thus, an oxidation / reduction reaction of V 2+ ↔ V 3+ occurs. After the oxidation / reduction reaction, the positive electrolyte and the negative electrolyte are circulated to the positive electrolyte storage tank 110 and the negative electrolyte storage tank 112, respectively.
상기 양극(106)과 음극(108)은 Ru, Ti, Ir. Mn, Pd, Au 및 Pt 중에서 선택되는 1종 이상의 금속과, Ru, Ti, Ir, Mn, Pd, Au 및 Pt 중에서 선택되는 1종 이상의 금속의 산화물을 포함하는 복합재(예를 들어, Ti 기재에 Ir 산화물이나 Ru 산화물을 도포한 것), 상기 복합재를 포함하는 카본 복합물, 상기 복합재를 포함하는 치수 안정 전극(DSE), 도전성 폴리머(예를 들어, 폴리아세틸렌, 폴리티오펜 등의 전기가 통하는 고분자 재료), 그래파이트, 유리질 카본, 도전성 다이아몬드, 도전성 DLC(Diamond-Like Carbon), 카본 파이버로 이루어지는 부직포 및 카본 파이버로 이루어지는 직포로 이루어진 군에서 선택되는 어느 하나로 구성된 형태일 수 있다.The anode 106 and the cathode 108 are Ru, Ti, Ir. A composite material (e.g., a Ti base material) comprising an oxide of at least one metal selected from Mn, Pd, Au, and Pt; and at least one metal selected from Ru, Ti, Ir, Mn, Pd, Au, and Pt. Coated with Ir oxide or Ru oxide), carbon composite containing the composite material, dimensionally stable electrode (DSE) containing the composite material, conductive polymer (for example, electrically conductive polymer such as polyacetylene, polythiophene, etc.) Material), graphite, glassy carbon, conductive diamond, conductive DLC (Diamond-Like Carbon), a nonwoven fabric made of carbon fiber, and a woven fabric made of carbon fiber.
상기 양극 전해질 및 음극 전해질은 티탄 이온, 바나듐 이온, 크롬 이온, 아연 이온, 주석 이온 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 금속 이온을 포함할 수 있다.The positive electrode electrolyte and the negative electrode electrolyte may include any one metal ion selected from the group consisting of titanium ions, vanadium ions, chromium ions, zinc ions, tin ions, and mixtures thereof.
예를 들어, 상기 음극 전해질은 음극 전해질 이온으로서 바나듐 2가 이온(V2+) 또는 바나듐 3가 이온(V3+)을 포함하고, 상기 양극 전해질은 양극 전해질 이온으로서 바나듐 4가 이온(V4+) 또는 바나듐 5가 이온(V5+)을 포함할 수 있다.For example, the negative electrolyte includes vanadium divalent ions (V 2+ ) or vanadium trivalent ions (V 3+ ) as negative electrolyte ions, and the positive electrolyte includes vanadium tetravalent ions (V 4) as positive electrolyte ions. + ) Or vanadium pentavalent ions (V 5+ ).
상기 양극 전해질 및 음극 전해질에 포함되는 상기 금속 이온의 농도는 O.3 내지 5 M인 것이 바람직하다. The concentration of the metal ions included in the cathode electrolyte and cathode electrolyte is preferably 0.3 to 5 M.
상기 양극 전해질 및 음극 전해질의 용매로는 H2SO4, K2SO4, Na2SO4, H3PO4, H4P2O7, K2PO4, Na3PO4, K3PO4, HNO3, KNO3 및 NaNO3로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다. 상기 양극 및 음극 활물질이 되는 상기 금속 이온들이 모두 수용성이므로, 상기 양극 전해질 및 음극 전해질의 용매로서 수용액을 적합하게 이용할 수 있다. 특히, 수용액으로서, 상기 황산, 인산, 질산, 황산염, 인산염 및 질산염으로 이루어진 군에서 선택되는 어느 하나를 사용하는 경우 상기 금속 이온의 안정성, 반응성 및 용해도를 향상시킬 수 있다.The solvent of the cathode electrolyte and the cathode electrolyte is H 2 SO 4 , K 2 SO 4 , Na 2 SO 4 , H 3 PO 4 , H 4 P 2 O 7 , K 2 PO 4 , Na 3 PO 4 , K 3 PO Any one selected from the group consisting of 4 , HNO 3 , KNO 3 and NaNO 3 can be used. Since the metal ions serving as the positive electrode and the negative electrode active material are all water soluble, an aqueous solution can be suitably used as a solvent of the positive electrode electrolyte and the negative electrode electrolyte. In particular, when using any one selected from the group consisting of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate and nitrate as the aqueous solution, it is possible to improve the stability, reactivity and solubility of the metal ion.
한편, 상기 이온 교환막은 연료 전지용 막-전극 어셈블리에도 적용될 수 있으며, 구체적으로 상기 막-전극 어셈블리는 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 및 상기 애노드 전극과 캐소드 전극 사이에 위치하는 상기한 이온 교환막을 포함할 수 있다.On the other hand, the ion exchange membrane may be applied to a fuel cell membrane-electrode assembly, and specifically, the membrane-electrode assembly includes an anode electrode and a cathode electrode disposed to face each other, and the above-mentioned ions positioned between the anode electrode and the cathode electrode. It may include an exchange membrane.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
[제조예: 이온 교환막의 제조]Preparation Example: Preparation of Ion Exchange Membrane
(제조예 1: 술폰화된 폴리에테르술폰-에테르케톤 블록 공중합체의 제조)Preparation Example 1: Preparation of sulfonated polyethersulfone-etherketone block copolymer
하기 반응식 3을 이용하여 이온 전도체를 제조하였다.An ion conductor was prepared using Scheme 3 below.
[반응식 3]Scheme 3
Figure PCTKR2018002580-appb-I000009
Figure PCTKR2018002580-appb-I000009
1-1) 친수성 영역의 제조1-1) Preparation of Hydrophilic Region
SDCDPS(3,3-disulfonated-4,4'-dichlorodiphenyl sulfone)와 비스페놀 A(bisphenol A)를 탄산 칼륨(Potassium carbonate)의 존재 하에 DMAc/Toluene 공용매를 이용하여 160 내지 180 ℃ 사이에서 30 시간 동안 반응 뒤, 정제수에 토출하여 씻어낸 뒤 열풍건조 하였다. SDCDPS (3,3-disulfonated-4,4'-dichlorodiphenyl sulfone) and bisphenol A were used for 30 hours at 160-180 ° C. using DMAc / Toluene cosolvent in the presence of potassium carbonate. After the reaction, the resultant was discharged into purified water, washed, and dried in hot air.
1-2) 소수성 영역의 제조1-2) Preparation of Hydrophobic Region
비스페놀 A(bisphenol A)와 1,3-비스(4-클로로벤조일)벤젠(1,3-bis(4-chlorobenzoyol)benzene)을 탄산 칼륨(Potassium carbonate)의 존재 하에 DMAc/Toluene 공용매를 이용하여 160 내지 180 ℃ 사이에서 30 시간 동안 반응시킨 뒤, 정제수에 토출하여 씻어낸 뒤 열풍건조 하였다. Bisphenol A and 1,3-bis (4-chlorobenzoy) benzene (1,3-bis (4-chlorobenzoyol) benzene) were prepared using DMAc / Toluene cosolvent in the presence of potassium carbonate. After reacting for 30 hours between 160 to 180 ℃, it was discharged and washed in purified water and hot air dried.
1-3) 중합체의 제조1-3) Preparation of Polymer
상기 제조된 친수성 영역 및 소수성 영역을 탄산 칼륨(Potassium carbonate)의 존재 하에 DMAc/Toluene 공용매를 이용하여 160 내지 180 ℃ 사이에서 30 시간 동안 반응 뒤, 정제수에 토출하여 씻어낸 뒤 열풍건조 하였다. The hydrophilic and hydrophobic regions prepared above were reacted for 30 hours at 160 to 180 ° C. using DMAc / Toluene cosolvent in the presence of potassium carbonate, and then washed in a purified water and then dried by hot air drying.
1-4) 이온전도체의 제조1-4) Preparation of Ion Conductor
상기 제조된 중합체를 디클로로메탄(dichloromethane)에 용해시킨 후, 5 배 과량의 클로로술포닉산(chlorosulfonic acid)/DCM 용액에 천천히 넣어 24 시간 동안 교반하였다. 상기 용액을 폐기하고 석출된 고형물을 정제수에 씻어낸 뒤 열풍 건조하였다.The prepared polymer was dissolved in dichloromethane, and slowly added to a 5-fold excess of chlorosulfonic acid / DCM solution and stirred for 24 hours. The solution was discarded and the precipitated solid was washed with purified water and dried by hot air.
(제조예 2: 시트 형태의 이온 전도체의 제조)Preparation Example 2 Preparation of Ion Conductor in Sheet Form
상기 제조예 1에서 제조된 중합체를 DMAc에 20 중량%로 용해시킨 후 제막하여 시트 형태의 이온 전도체를 제조하였다.The polymer prepared in Preparation Example 1 was dissolved in DMAc at 20% by weight to form a film to prepare an ion conductor in the form of a sheet.
(제조예 3: 이온 교환막의 제조)Production Example 3: Preparation of Ion Exchange Membrane
웨트-레잉 방법을 이용하여 폴리페닐렌 설파이드(PPS) 재질의 마이크로 포어를 갖는 다공성 지지체를 제조하였다. 상기 제조된 다공성 지지체는 평량이 19.4 g/m2이고, 다공도가 62 %이고, 두께가 34 ㎛이고, 1 내지 1000 ㎛ 크기의 마이크로 포어가 분산되어 있고, 공극 전체 부피에 대하여 마이크로 포어 중 크기가 31 ㎛ 이상인 포어의 부피는 3 부피%이었다. 마이크로 포어의 평균 크기는 14.0603 ㎛이었고, 최대 크기는 657.8279 ㎛이었다. 상기 제조된 다공성 지지체의 포어 크기(㎛)에 대한 포어 분포(부피%)를 CFP 방법으로 측정하였고, 그 결과를 도 5에 그래프로 나타내었다. A porous support having micropores made of polyphenylene sulfide (PPS) was prepared using the wet-laying method. The prepared porous support has a basis weight of 19.4 g / m 2 , a porosity of 62%, a thickness of 34 μm, and micropores of 1 to 1000 μm size are dispersed, and the size of the micropores with respect to the total pore volume is increased. The pore volume of 31 μm or greater was 3% by volume. The average size of the micropores was 14.0603 μm and the maximum size was 657.8279 μm. The pore distribution (vol%) of the pore size (μm) of the prepared porous support was measured by the CFP method, and the results are shown graphically in FIG. 5.
상기 제조예 2에서 제조한 시트 형태의 이온 전도체를 상기 제조된 다공성 지지체 1 MPa 하에서 180 ℃로 0.5 시간 동안 용융 함침하고, 80 ℃의 진공에서 12 시간 동안 건조하여 강화 복합막 형태의 이온 교환막을 제조하였다.A sheet-shaped ion conductor prepared in Preparation Example 2 was melt-impregnated at 180 ° C. for 0.5 hours under 1 MPa of the porous support prepared above, and dried in a vacuum at 80 ° C. for 12 hours to prepare an ion exchange membrane in the form of a reinforced composite membrane. It was.
(비교제조예 1: 이온 교환막의 제조)Comparative Preparation Example 1 Preparation of Ion Exchange Membrane
폴리아믹산(polyamic acid)을 디메틸포름아마이드에 용해시켜 480 poise의 방사용액 5 L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 20 개로 구성되고 고전압이 3 kV로 인가된 방사 챔버로 공급하여 방사하여 나노섬유 전구체의 웹을 제조하였다. 이때 용액 공급량은 1.5 ml/min이었다. 제조된 나노섬유 전구체의 웹을 350 ℃에서 열처리하여 나노 포어를 갖는 다공성 지지체(다공도: 80 부피%)를 제조하였다.Polyamic acid (polyamic acid) was dissolved in dimethylformamide to prepare 5 L of 480 poise spinning solution. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 20 nozzles and applied a high voltage of 3 kV through a quantitative gear pump to produce a web of nanofiber precursor. The solution feed amount was 1.5 ml / min. The prepared web of nanofiber precursor was heat-treated at 350 ° C. to prepare a porous support (porosity: 80% by volume) having nanopores.
상기에서 제조된 다공성 지지체에 상기 제조예 1에서 제조한 중합체를 DMAc에 20 중량%로 용해시켜 제조한 이온 전도체 용액을 코팅하여(solution casting) 함침시킨 후, 80 ℃의 진공에서 12 시간 동안 건조하여 강화 복합막 형태의 이온 교환막을 제조하였다. 이때 폴리이미드 나노섬유의 단위면적당 중량은 6.8 gsm이고, 상기 중합체의 평량은 40 g/m2이었다.The porous support prepared above was impregnated with a solution casting prepared by dissolving the polymer prepared in Preparation Example 1 in 20 wt% in DMAc, followed by drying in a vacuum at 80 ° C. for 12 hours. An ion exchange membrane in the form of a reinforced composite membrane was prepared. In this case, the weight per unit area of the polyimide nanofibers was 6.8 gsm, and the basis weight of the polymer was 40 g / m 2 .
(비교제조예 2: 이온 교환막의 제조)Comparative Preparation Example 2 Preparation of Ion Exchange Membrane
비교예 2로는 불소계 이온교환막으로서, 상업적으로 판매되는 이온 교환막인 듀폰사의 Nafion 212를 사용하였다.As Comparative Example 2, Nafion 212 manufactured by DuPont, a commercially available ion exchange membrane, was used as the fluorine-based ion exchange membrane.
(비교제조예3: 이온 교환막의 제조) Comparative Preparation Example 3: Preparation of Ion Exchange Membrane
비교예3으로는 상기 제조예 1내지 3과 동일한 방법으로 제조하였으나 마이크로 포어 크기가 31 ㎛ 미만인 기공이 분산되어 있는 것을 사용하였다. 마이크로 포어의 평균 크기는 8.3017 ㎛이었고, 최대 크기는 25.9855 ㎛이었다. 상기 사용된 다공성 지지체의 포어 크기(㎛)에 대한 포어 분포(부피%)를 CFP 방법으로 측정하였고, 그 결과를 도 6에 그래프로 나타내었다. Comparative Example 3 was prepared in the same manner as in Preparation Examples 1 to 3, but was used that the pores having a micropore size of less than 31 ㎛ dispersed. The average size of the micropores was 8.3017 μm and the maximum size was 25.9855 μm. The pore distribution (vol%) relative to the pore size (μm) of the porous support used was measured by the CFP method and the results are shown graphically in FIG. 6.
[실험예: 제조한 이온 교환막의 성능 측정]Experimental Example: Performance Measurement of the Prepared Ion Exchange Membrane
상기 제조예 3(실시예 1) 및 비교제조예 1 내지 3(비교예 1 내지 3)에서 제조된 강화 복합막 형태의 이온 교환막에 대하여 팽윤성(swelling ratio), 이온 전도도(Ion-Conductivity) 및 에너지 저장시스템(VRFB)에서의 에너지 효율(EE, Energy Efficiency)를 측정하였고, 그 결과를 표 1에 나타내었다.Swelling ratio, ion-conductivity and energy of the ion exchange membranes of the reinforced composite membranes prepared in Preparation Example 3 (Example 1) and Comparative Preparation Examples 1 to 3 (Comparative Examples 1 to 3). Energy efficiency (EE) in the storage system (VRFB) was measured and the results are shown in Table 1.
상기 팽윤성은(swelling ratio)은 제조한 이온 교환막을 80 ℃의 증류수에 24시간 동안 침지시킨 후 젖은 상태의 이온 교환막을 꺼내어 두께 및 면적을 측정하고, 상기 이온 교환막을 80 ℃의 진공 상태에서 24시간 동안 건조시킨 후 두께 및 면적을 측정한 후, 상기 이온 교환막의 젖은 상태의 두께(Twet) 및 면적(Lwet)과 건조 상태의 두께(Tdry) 및 면적(Ldry)을 하기 수학식 3 및 4에 대입하여 두께에 대한 팽윤비 및 면적에 대한 팽윤비를 측정하였다.The swelling ratio of the swelling ratio is immersed in the prepared ion exchange membrane in distilled water at 80 ℃ for 24 hours, take out the wet ion exchange membrane to measure the thickness and area, and the ion exchange membrane in vacuum at 80 ℃ 24 hours After measuring the thickness and area after drying, the thickness (T wet ) and the area (L wet ) of the wet state of the ion exchange membrane and the thickness (T dry ) and area (L dry ) of the dry state are represented by Equation 3 And swelling ratio to thickness and area to swelling ratio.
[수학식 3][Equation 3]
(Twet - Tdry / Tdry) X 100 = △T(두께에 대한 팽윤비, %)(T wet -T dry / T dry ) X 100 = ΔT (swelling ratio to thickness,%)
[수학식 4][Equation 4]
(Lwet - Ldry / Ldry) X 100 = △L(면적에 대한 팽윤비, %) (L wet - L dry / L dry) X 100 = △ L ( swelling of the area ratio,%)
상기 이온 전도도(Ion-Conductivity)는 하기 도 4와 같은 장비를 이용하여 1M H2SO4에서의 막의 저항을 측정하여 산출하였다. The ion-conductivity was calculated by measuring the resistance of the membrane in 1M H 2 SO 4 using the equipment as shown in FIG.
상기 막 저항은 하기 수학식 5에 의해 계산하였으며, 이때 막의 유효면적은 0.75cm2이었다.The membrane resistance was calculated by Equation 5 below, wherein the effective area of the membrane was 0.75 cm 2 .
[수학식 5][Equation 5]
막 저항(R) = (R1 - R2) X (막의 유효면적)Membrane Resistance (R) = (R 1 -R 2 ) X (Effective Area of Membrane)
여기서, R1은 막을 주입했을 때의 저항[Ω], R2는 막을 주입하지 않았을 때의 저항[Ω]이다.Here, R 1 is resistance [Ω] when a film is injected, and R 2 is resistance [Ω] when a film is not injected.
상기 이온 전도도는 하기 수학식 6에 의해 산출하였다.The ion conductivity was calculated by the following equation.
[수학식 6][Equation 6]
이온 전도도(S/cm) = 1/R X t Ionic Conductivity (S / cm) = 1 / R X t
여기서, R은 막 저항[Ω·㎠]이고, t는 막의 두께[cm]이다. Where R is the film resistance [Ω · cm 2] and t is the thickness of the film [cm].
상기 에너지 저장시스템(VRFB)에서의 에너지 효율(EE, Energy Efficiency)은 하기와 같은 장치를 구성하여 전기 화학적 특성을 측정하였다.Energy efficiency (EE) in the energy storage system (VRFB) was configured as follows to measure the electrochemical properties.
상기 에너지 효율을 측정하기 위한 장치는 VRFB에서의 전기 화학적 특성 측정을 위하여 전극 면적 25 cm2의 단위 셀, 2개의 수용액 탱크, 펌프로 구성하였다. 양극액으로 30 mL의 2M VOSO4 및 3M H2SO4를 포함하는 용액(4가 바나듐 수용액)을 사용하였으며, 음극액은 양극액을 전해 환원한 수용액(3가 바나듐 수용액)을 사용하였다. 양극액은 과충전을 억제하기 위해 음극액보다 약간 많은 양을 사용하였다. 측정용 단위 셀은 측정 대상의 막, 카본 펠트, 집전체로 구성하였다. 측정용 단위 셀의 충/방전을 위해 정전위/정전류기를 사용하였으며, 충/방전 전류밀도는 60 mA/cm2에서 측정하였다. 또한 단위 셀의 충/방전은 충전 1.6 V, 방전 1.0 V로 설정하여 cur-off방식으로 진행하였으며, 5회 충/방전을 진행하여, 하기 수학식 7을 활용하여 전류효율(CE), 전압효율(VE), 에너지효율(EE)을 산출하였다.The device for measuring the energy efficiency was composed of a unit cell of 25 cm 2 electrode area, two aqueous tanks, a pump for measuring the electrochemical properties in the VRFB. A solution containing 30 mL of 2M VOSO 4 and 3M H 2 SO 4 (a tetravalent vanadium solution) was used as the anolyte solution, and an aqueous solution obtained by electrolytic reduction of the anolyte solution (a trivalent vanadium solution) was used. Anolyte was used slightly more than catholyte to suppress overcharge. The unit cell for measurement consisted of the film | membrane, a carbon felt, and an electrical power collector of a measurement object. For charging / discharging the unit cell for measurement, a potentiostatic / constant current device was used, and the charge / discharge current density was measured at 60 mA / cm 2 . In addition, the charging / discharging of the unit cell was performed in a cur-off method by setting the charge to 1.6 V and the discharging to 1.0 V. The charge / discharge process was performed five times. (VE) and energy efficiency (EE) were calculated.
[수학식 7][Equation 7]
CE=QD/QC CE = Q D / Q C
VE=EAD/EAC VE = E AD / E AC
EE=CE×VE EE = CE × VE
여기서, QC[C], QD[C]는 충전과 방전시의 쿨롱 양이고, EAC[V], EAD[V]는 충전과 방전시 셀 전압이다. Where Q C [C] and Q D [C] are the coulomb amounts during charging and discharging, and E AC [V] and E AD [V] are the cell voltages during charging and discharging.
실시예(제조예3)Example (Manufacturing Example 3) 비교예 1(비교제조예1)Comparative Example 1 (Comparative Production Example 1) 비교예 2(불소계 이온교환막)Comparative Example 2 (Fluorine-based ion exchange membrane) 비교예 3(비교제조예3)Comparative Example 3 (Comparative Production Example 3)
CE(%)CE (%) 96.896.8 -- -- 97.897.8
VE(%)VE (%) 94.794.7 -- -- 89.989.9
EE(%)EE (%) 91.691.6 86.386.3 83.483.4 87.987.9
Swelling ration (%)Swelling ration (%) 1111 2020 2424 1515
Ion-Conductivity (S/cm)Ion-Conductivity (S / cm) 1.8x10-1 1.8 x 10 -1 1.7x10-1 1.7 x 10 -1 8.1x10-2 8.1 x 10 -2 1.8x10-1 1.8 x 10 -1
이온 전도체 층 두께 비율1) Ion conductor layer thickness ratio 1) 50 길이%50 length% 65 길이%65 length% -- 55 길이%55 length%
1) 이온 전도체 층 두께 비율은 다공성 지지체 양면에 형성된 2개의 이온 전도체 층들의 두께 비율을 합한 것임 1) The ion conductor layer thickness ratio is the sum of the thickness ratios of the two ion conductor layers formed on both sides of the porous support.
상기 표 1을 참고하면, 상기 이온 교환막은 마이크로 포어를 갖는 다공성 지지체를 이용하여 강화 복합막을 제조하여 높은 수준의 이온 전도도 성능을 나타내면서 상대적으로 이온 전도체 층의 두께를 줄여 막 두께를 감소하였으며, 그 결과 에너지 저장 시스템 상에서의 에너지 효율을 향상시키는 결과를 보였다. Referring to Table 1, the ion exchange membrane was prepared by using a porous support having a micropore to produce a reinforced composite membrane to exhibit a high level of ion conductivity performance while relatively reducing the thickness of the ion conductor layer to reduce the film thickness, as a result Results have been shown to improve energy efficiency on energy storage systems.
또한, 이온 교환막의 팽윤성이 감소하여 치수 안정성이 매우 향상되었으며 이를 통해 에너지 저장 시스템(VRFB)에서의 내구성 향상을 기대할 수 있다.In addition, the swelling property of the ion exchange membrane is reduced, the dimensional stability is greatly improved, and through this, it can be expected to improve durability in the energy storage system (VRFB).
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
[부호의 설명][Description of the code]
10: 이온 교환막10: ion exchange membrane
11, 13: 다공성 지지체11, 13: porous support
12, 14: 이온 전도체 층12, 14: ion conductor layer
102: 셀 하우징102: cell housing
102A: 양극 셀 102B: 음극 셀102A: anode cell 102B: cathode cell
104: 이온 교환막104: ion exchange membrane
106: 양극106: anode
108: 음극108: cathode
110: 양극 전해질 저장 탱크110: anode electrolyte storage tank
112: 음극 전해질 저장 탱크112: cathodic electrolyte storage tank
114, 116: 펌프114, 116: pump
118: 전원/부하 118: power / load
201: 이온 교환막201: ion exchange membrane
202: 전극202: electrode
203: 펌프203: pump
204: 1M H2SO4 204: 1 M H 2 SO 4
205: LCR 미터205: LCR Meter
본 발명에 따른 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치는 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고 상기 다공성 지지체의 공극을 채우고 있는 이온 전도체를 포함하며, 상기 다공성 지지체는31 내지 1000 ㎛ 크기의 마이크로 포어(micropore)를 포함함으로써, 높은 충방전 사이클 내구성, 높은 이온 전도도 및 우수한 화학적 및 열적 안정성을 가질 수 있고, 바나듐 레독스 플로우 전지 등의 에너지 저장 장치에 적용할 경우 높은 에너지 효율을 달성할 수 있는 에너지/환경/ 전기전자 분야의 유망한 소재이다.An ion exchange membrane according to the present invention, a method for manufacturing the same, and an energy storage device including the same include a porous support including a plurality of pores, and an ion conductor filling the pores of the porous support. By including a micropore of 1000 to 1000 ㎛ size, it can have high charge and discharge cycle durability, high ion conductivity and excellent chemical and thermal stability, high energy when applied to energy storage devices such as vanadium redox flow battery It is a promising material in energy / environmental / electrical and electronic fields that can achieve efficiency

Claims (15)

  1. 다수의 공극(pore)을 포함하는 다공성 지지체, 그리고A porous support comprising a plurality of pores, and
    상기 다공성 지지체의 공극을 채우고 있는 이온 전도체를 포함하며,It includes an ion conductor filling the pores of the porous support,
    상기 다공성 지지체는 31 내지 1000 ㎛ 크기의 마이크로 포어(micropore)를 포함하는 것인 이온 교환막.The porous support is an ion exchange membrane comprising a micropore of 31 to 1000 ㎛ size.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 지지체는 상기 공극 전체 부피에 대하여 31 내지 1000 ㎛ 크기의 마이크로 포어를 1 내지 20 부피%로 포함하는 것인 이온 교환막. The porous support is an ion exchange membrane of 1 to 20% by volume of micropores of 31 to 1000 ㎛ size with respect to the total volume of the voids.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 지지체의 다공도는 45 % 이상인 것인 이온 교환막.The porosity of the porous support is 45% or more ion exchange membrane.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 지지체의 두께는 1 내지 200 ㎛인 것인 이온 교환막.The thickness of the porous support is 1 to 200 ㎛ ion exchange membrane.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 이온 전도체는 상기 이온 교환막 전체 중량에 대하여 30 내지 70 중량%로 포함되는 것인 이온 교환막.The ion conductor is an ion exchange membrane of 30 to 70% by weight based on the total weight of the ion exchange membrane.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 이온 교환막은 상기 다공성 지지체 일면 또는 양면에 위치하는 이온 전도체 층을 더 포함하고,The ion exchange membrane further includes an ion conductor layer located on one or both surfaces of the porous support,
    상기 일면의 이온 전도체 층의 두께는 1 내지 30 ㎛인 것인 이온 교환막.The thickness of the ion conductor layer of one surface is 1 to 30 ㎛.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 일면의 이온 전도체 층의 두께는 상기 이온 교환막 전체 두께에 대하여 1 내지 50 길이%인 것인 이온 교환막.The thickness of the ion conductor layer of the one surface is 1 to 50% by length based on the total thickness of the ion exchange membrane.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 지지체는 무작위로 배향된 복수개의 섬유로 이루어지는 것인 이온 교환막.The porous support is an ion exchange membrane consisting of a plurality of randomly oriented fibers.
  9. 다수의 공극을 포함하는 다공성 지지체를 제조하는 단계, 그리고Preparing a porous support comprising a plurality of pores, and
    상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계를 포함하며,Filling the pores of the porous support with ionic conductors,
    상기 다공성 지지체는 31 내지 1000 ㎛ 크기의 마이크로 포어를 포함하는 것인 이온 교환막의 제조 방법.The porous support is a method for producing an ion exchange membrane will comprise a micro pore of 31 to 1000 ㎛ size.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 다공성 지지체를 제조하는 단계는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법에 의하여 제조되는 것인 이온 교환막의 제조 방법.Preparation of the porous support may include carding, garneting, air-laying, wet-laying, melt blowing, spunbonding and A method for producing an ion exchange membrane, which is prepared by any one method selected from the group consisting of stitch bonding.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 다공성 지지체의 공극에 이온 전도체를 채우는 단계는Filling the ion conductor in the pores of the porous support is
    상기 이온 전도체를 코팅하여 시트 형태로 제조하는 단계, 및Coating the ion conductor to prepare a sheet;
    상기 시트 형태의 이온 전도체를 상기 다공성 지지체의 공극에 용융 함침시키는 단계Melt impregnating the sheet conductor with the pores of the porous support
    를 포함하는 것인 이온 교환막의 제조 방법.Method for producing an ion exchange membrane comprising a.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 용융 함침은 1 내지 20 MPa의 압력에서 150 내지 240 ℃로 이루어지는 것인 이온 교환막의 제조 방법.The melt impregnation is a method of producing an ion exchange membrane of 150 to 240 ℃ at a pressure of 1 to 20 MPa.
  13. 제 1 항에 따른 이온 교환막을 포함하는 에너지 저장 장치.An energy storage device comprising the ion exchange membrane according to claim 1.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 에너지 저장 장치는 연료 전지인 것인 에너지 저장 장치.The energy storage device is a fuel cell.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 에너지 저장 장치는 레독스 플로우 전지(redox flow battery)인 것인 에너지 저장 장치.The energy storage device is a redox flow battery (redox flow battery).
PCT/KR2018/002580 2017-03-31 2018-03-05 Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same WO2018182191A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880021504.8A CN110462906B (en) 2017-03-31 2018-03-05 Ion exchange membrane, method of manufacturing the same, and energy storage device including the same
US16/079,214 US10396385B2 (en) 2017-03-31 2018-03-05 Ion exchanging membrane, method for manufacturing the same, and energy storage device comprising the same
EP18774623.5A EP3605691B1 (en) 2017-03-31 2018-03-05 Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
JP2019548730A JP6895532B2 (en) 2017-03-31 2018-03-05 Ion exchange membrane and its manufacturing method, and energy storage device including this

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0041699 2017-03-31
KR20170041699 2017-03-31
KR10-2018-0025675 2018-03-05
KR1020180025675A KR102028535B1 (en) 2017-03-31 2018-03-05 Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same

Publications (1)

Publication Number Publication Date
WO2018182191A1 true WO2018182191A1 (en) 2018-10-04

Family

ID=63676368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002580 WO2018182191A1 (en) 2017-03-31 2018-03-05 Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same

Country Status (1)

Country Link
WO (1) WO2018182191A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167765A (en) 1990-07-02 1992-12-01 Hoechst Celanese Corporation Wet laid bonded fibrous web containing bicomponent fibers including lldpe
US20080038976A1 (en) 2006-07-31 2008-02-14 Berrigan Michael R Bonded nonwoven fibrous webs comprising softenable oriented semicrystalline polymeric fibers and apparatus and methods for preparing such webs
KR20110006122A (en) * 2009-07-13 2011-01-20 코오롱인더스트리 주식회사 Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR20120021517A (en) * 2010-08-05 2012-03-09 코오롱글로벌 주식회사 Microbial fuel cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material, membrane-electrode assembly for the same and electrode for the same
KR20120060327A (en) * 2010-12-02 2012-06-12 코오롱글로벌 주식회사 Microbial electrolysis cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material
KR101214399B1 (en) 2010-08-19 2012-12-21 (주) 시온텍 A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same
KR20130078498A (en) * 2011-12-30 2013-07-10 한국화학연구원 Porous polymeric substrate for fuel cell or redox battery, reinforced composite electrolyte membranes using the same and process for preparing the same
KR20140044468A (en) 2012-10-05 2014-04-15 상지대학교산학협력단 Corynebacterium sp. microorganism having enhanced l-threonine productivity by regulation of gdh activity and a method of producing l-threonine using the same
KR101440829B1 (en) 2013-01-08 2014-09-17 전남대학교산학협력단 Polymer electrolyte composite membrane having excellent thermal-stability and interfacial-stability, and energy storage system comprising the same
KR101522256B1 (en) 2014-05-15 2015-05-22 전남대학교산학협력단 Sulfonated copolymer, method for producing the same, polymer electrolyte comprising the same and energy storage comprising the polymer electrolyte
KR20160128531A (en) * 2015-04-28 2016-11-08 더블유스코프코리아 주식회사 Ion-exchange membrane for water treatment and manufacturing method the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167765A (en) 1990-07-02 1992-12-01 Hoechst Celanese Corporation Wet laid bonded fibrous web containing bicomponent fibers including lldpe
US20080038976A1 (en) 2006-07-31 2008-02-14 Berrigan Michael R Bonded nonwoven fibrous webs comprising softenable oriented semicrystalline polymeric fibers and apparatus and methods for preparing such webs
KR20110006122A (en) * 2009-07-13 2011-01-20 코오롱인더스트리 주식회사 Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR20120021517A (en) * 2010-08-05 2012-03-09 코오롱글로벌 주식회사 Microbial fuel cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material, membrane-electrode assembly for the same and electrode for the same
KR101214399B1 (en) 2010-08-19 2012-12-21 (주) 시온텍 A Ion exchange membrane by pore-filled of porous support membrane and a method of fabricating the same
KR20120060327A (en) * 2010-12-02 2012-06-12 코오롱글로벌 주식회사 Microbial electrolysis cells using reinforcement proton exchange membrane comprising hydrocarbonaceous material
KR20130078498A (en) * 2011-12-30 2013-07-10 한국화학연구원 Porous polymeric substrate for fuel cell or redox battery, reinforced composite electrolyte membranes using the same and process for preparing the same
KR20140044468A (en) 2012-10-05 2014-04-15 상지대학교산학협력단 Corynebacterium sp. microorganism having enhanced l-threonine productivity by regulation of gdh activity and a method of producing l-threonine using the same
KR101440829B1 (en) 2013-01-08 2014-09-17 전남대학교산학협력단 Polymer electrolyte composite membrane having excellent thermal-stability and interfacial-stability, and energy storage system comprising the same
KR101522256B1 (en) 2014-05-15 2015-05-22 전남대학교산학협력단 Sulfonated copolymer, method for producing the same, polymer electrolyte comprising the same and energy storage comprising the polymer electrolyte
KR20160128531A (en) * 2015-04-28 2016-11-08 더블유스코프코리아 주식회사 Ion-exchange membrane for water treatment and manufacturing method the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605691A4 *

Similar Documents

Publication Publication Date Title
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
WO2018199458A1 (en) Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
WO2013081437A1 (en) Sulphonate based compound, polymer electrolyte membrane comprising same and fuel cell comprising same
KR102028535B1 (en) Ion exchanging membrane, method for manufacturing the same and energy storage system comprising the same
WO2011025259A2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2011078465A4 (en) Porous support having improved strength, reinforced composite electrolyte membrane using same, membrane-electrode assembly having same membrane, and fuel cell having same membrane
WO2019225873A1 (en) Micropore-filled double-sided membrane for low vanadium ion permeability and method for manufacturing same
WO2014178619A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2014081235A1 (en) Ion-conducting polymer comprising phenyl pendant substituted with two or more sulfonated aromatic groups, and usage of same
WO2020005018A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and membrane electrode assembly comprising same
WO2022270934A1 (en) Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same
CN108780907A (en) Membrane module, electrode assembly, membrane electrode assembly and electrochemical cell and liquid accumulator cell made of these components
WO2016163773A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
WO2016122200A1 (en) Compound comprising aromatic ring, and polyelectrolyte membrane using same
WO2021066544A1 (en) Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
WO2018182191A1 (en) Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
WO2016122195A1 (en) Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
CN108028407B (en) Ion conductor, method for producing same, and ion exchange membrane, membrane electrode assembly, and fuel cell each comprising same
WO2019168321A1 (en) Ion exchange membrane and energy storage device comprising same
WO2021133045A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same
WO2021006551A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and electrochemical device comprising same
WO2024014741A1 (en) Polymer electrolyte membrane and membrane-electrode assembly comprising same
WO2023121035A1 (en) Fiber surface-modified porous support, and reinforced composite membrane using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018774623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018774623

Country of ref document: EP

Effective date: 20191031