WO2018181515A1 - 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 - Google Patents
新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 Download PDFInfo
- Publication number
- WO2018181515A1 WO2018181515A1 PCT/JP2018/012845 JP2018012845W WO2018181515A1 WO 2018181515 A1 WO2018181515 A1 WO 2018181515A1 JP 2018012845 W JP2018012845 W JP 2018012845W WO 2018181515 A1 WO2018181515 A1 WO 2018181515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- glucose
- steviol
- glycoside
- seq
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/36—Terpene glycosides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/60—Sweeteners
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/24—Condensed ring systems having three or more rings
- C07H15/256—Polyterpene radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/18—Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/56—Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/85—Saccharomyces
- C12R2001/865—Saccharomyces cerevisiae
Definitions
- the present invention relates to a novel steviol glycoside, a method for producing the same, and a sweetener composition containing the same.
- the present invention further relates to foods and drinks, plants and extracts thereof, and flavor enhancers containing the novel steviol glycosides.
- Stevia rebaudiana leaves contain a secondary metabolite called steviol, a diterpenoid, and steviol glycosides are about 300 times sweeter than sugar, making them calories. It is used in the food industry as a sweetener. Obesity has been developed internationally as a serious social problem, and the demand for calorie-free sweeteners is increasing day by day from the viewpoint of promoting health and reducing medical costs.
- Stevia's main steviol glycoside is finally modified with a sugar to a glycoside called Rebaudioside A (Reb.A) with four sugars ( Figure 1).
- Stevioloside the steviol trisaccharide glycoside, which is the precursor, is the most quantitatively, and these two are the central substances of Stevia's sweetness.
- Stevioside has the highest content in stevia leaves and is known to exhibit sweetness about 250 to 300 times that of sugar.
- Reb.A is a steviol tetrasaccharide glycoside with high sweetness (350 to 450 times that of sugar) and good taste, and these are attracting attention as calorie-less sweeteners.
- glycosides that are considered to be reaction intermediates and analogs with different types of sugars are known.
- Rebaudioside sugars of Reb.A are glucose, but among them, rebaudioside C (Reb.C) in which rhamnose is added instead of glucose at the 2nd position of glucose at the 13th position, Rebaudioside F (Reb.F) with xylose added at the position is known.
- Rebaudioside C Reb.C
- Rebaudioside F Reb.F
- Reb.A where all four glycoside sugars are glucose, has a good taste so far, it is said that Stevia plants with higher Reb.A content than wild type Stevia plants will be obtained by breeding etc. Attempts have been made (for example, Patent Document 1).
- some stevia varieties that have undergone breed improvement may contain trace amounts of steviol glycosides whose structure has not yet been specified. It may have a characteristic flavor.
- research on steviol glycosides in which glucose is further added to Reb.A and varieties containing the same have been progressed, but varieties containing many steviol glycosides containing rhamnose such as Reb.C
- an object of the present invention is to determine the structure of a trace amount of novel steviol glycosides that affect the taste quality and grasp the taste quality characteristics.
- a further object of the present invention is to provide a novel steviol glycoside, a process for producing the same, and a sweetener composition containing the same.
- the present inventors have succeeded in determining the structure of a small amount of a novel steviol glycoside that affects taste quality.
- the present invention is based on the above findings.
- a small amount of novel steviol glycosides that affect taste quality can be provided. Furthermore, according to this invention, the manufacturing method of a novel steviol glycoside, the sweetener composition containing the novel steviol glycoside, food-drinks, a plant, its extract, and a flavor enhancer can be provided.
- FIG. 3 is a diagram showing a selected ion chromatogram of sample 1 with m / z 1095.4. It is a figure which shows the selected ion chromatogram of m / z
- (A) is a view showing a 1 H-NMR spectrum (800 MHz, Pyr-d5) of Compound 15, and
- (b) is a view showing a 13 C-NMR spectrum (200 MHz, Pyr-d5) of Compound 15.
- (A) is a diagram showing the 1 H- 1 H cozy spectrum of the compound 15 (800MHz, Pyr-d5) , a diagram showing a (b) the HSQC spectrum of compound 15 (800MHz, Pyr-d5) .
- (A) is a view showing the HMBC spectrum (800 MHz, Pyr-d5) of Compound 15, and (b) is a view showing the TOCSY spectrum (800 MHz, Pyr-d5) of Compound 15.
- FIG. 5 shows a NOESY spectrum (800 MHz, Pyr-d5) of Compound 15.
- (A) is a diagram showing a 1 H-NMR spectrum (800 MHz, Pyr-d5) of Compound 17, and (b) is a diagram showing a 13 C-NMR spectrum (200 MHz, Pyr-d5) of Compound 17.
- (A) is a diagram showing the 1 H- 1 H cozy spectrum (800MHz, Pyr-d5) of Compound 17 is a diagram showing a (b) the HSQC spectrum of compound 17 (800MHz, Pyr-d5) .
- (A) is a figure which shows the HMBC spectrum (800MHz, (Pyr-d5)) of the compound 17
- (b) is a figure which shows the TOCSY spectrum (800MHz, (Pyr-d5)) of the compound 17.
- FIG. 5 shows a NOESY spectrum (800 MHz, Pyr-d5) of Compound 17. It is a figure which shows the extraction ion chromatogram of novel steviol glycoside 1 (stevia leaf extract) and a chemically synthesized product ( ⁇ form of compound 15). It is a figure which shows the MS / MS and MS3 fragmentation mass spectrum of novel steviol glycoside 1 (stevia leaf extract) and a chemically synthesized product ( ⁇ form of compound 15). It is a figure which shows the extraction ion chromatogram of novel steviol glycoside 2 (stevia leaf extract) and a chemically synthesized product ( ⁇ form of compound 17).
- rebaudioside In this specification, “rebaudioside”, “rebaudioside” and “Reb.” Have the same meaning, and all mean “rebaudioside”. Similarly, in the present specification, “zulcoside” has the same meaning as “zulcoside”, and both mean “dulcoside”.
- novel steviol glycosides The present inventors have identified for the first time the structure of a trace amount of a novel steviol glycoside that affects taste quality.
- the novel steviol glycoside of the present invention (hereinafter also referred to as “the glycoside of the present invention”) has the formula (1): (Where R represents the formula (2) or the formula (3): Represents the sugar chain of glc represents glucose and rha represents rhamnose) Or a derivative, salt, or hydrate thereof.
- the glycoside of the present invention has a sugar chain containing two molecules of glucose and one molecule of rhamnose at position 13 of steviol, and one molecule of glucose and one molecule of rhamnose or 2 at position 19. It has a sugar chain that contains a molecule of glucose and a molecule of rhamnose.
- glc represents glucose and rha represents rhamnose.
- glc may be ⁇ -glucose or ⁇ -glucose, and rha may be ⁇ -rhamnose or ⁇ -rhamnose.
- glc may be ⁇ -glucose and ⁇ -glucose, and rha may be ⁇ -rhamnose and ⁇ -rhamnose.
- Glc-1- indicates that the carbon atom at the 1-position of glucose is glycosidically bonded to steviol
- glc (1-3) -glc-1- indicates “glc-1-”.
- glycoside A examples include glycosides having structures represented by formulas (11) and (12).
- Glycoside A represented by the formula (11) has a ⁇ -glucoside bond to the 19th carboxyl group of steviol
- the glycoside A represented by the formula (12) is a 19th carboxyl group of steviol.
- Glucose has an ⁇ -glucoside bond.
- glycoside B examples include glycosides having structures represented by formula (13) and formula (14).
- Glycoside B represented by the formula (13) has a ⁇ -glucoside bond to the 19th carboxyl group of steviol
- the glycoside B represented by the formula (14) is a 19th carboxyl group of steviol.
- Glucose has an ⁇ -glucoside bond.
- the glycoside of the present invention includes isomers such as ⁇ -form and ⁇ -form as described above. Therefore, the glycoside of the present invention may be only ⁇ -form, ⁇ -form alone, or a mixture of ⁇ -form and ⁇ -form.
- the ⁇ -form ratio is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and more preferably 99% or more. Particularly preferred.
- the ⁇ and ⁇ isomers are isolated by using known methods such as high performance liquid chromatography (High Performance Liquid Chromatography: HPLC) and ultra high performance liquid chromatography (Ultra (High) PerformancePerLiquid chromatography: UPLC). -It can be purified.
- the glycoside of the present invention may be not only a compound represented by the formula (1) but also a derivative, salt or hydrate thereof.
- the “derivative” means a compound formed by a structural change of a small part in the compound, for example, a compound in which a part of the hydroxyl group is substituted with another substituent. To do.
- a part of the hydroxyl group contained in the compound is selected from hydrogen, halogen, alkyl group, alkenyl group, alkynyl group, aryl group, amino group, cyano group and the like. And a compound substituted with a substituent.
- a salt of a compound of formula (1) means a physiologically acceptable salt of a compound of formula (1), such as a sodium salt.
- the “hydrate of the compound of the formula (1)” means a compound in which a water molecule is added to the compound of the formula (1).
- the glycoside of the present invention is not particularly limited, but may be a plant-derived product, a chemical synthesis product, or a biosynthesis product. For example, it may be isolated and purified from a plant body rich in Reb.C, but may be obtained by chemical synthesis or biosynthesis. The detail of the manufacturing method of the glycoside of this invention is mentioned later in this specification.
- the glycoside of the present invention has a sweetness higher than that of sugar (sucrose), has an early sweetness rise, and has a taste that is as good as sugar. It can affect taste quality just by being included. Therefore, the glycoside of the present invention can be used as a novel sweetener.
- glycoside A is selected from glycoside A or glycoside B.
- Glycoside B has a sweetness higher than that of sugar (sucrose), has a fast onset of sweetness, has a good sweetness after-sugaring, and has high water solubility. Therefore, it can be suitably used for various uses as a sweetener as described later.
- Glycoside A is less sweet than Glycoside B, but has a higher sweetness than sugar (sucrose) and has a fast onset of sweetness. .
- Glycoside A can also be suitably used as a sweetener in the same manner as Glycoside B, but has a lower water solubility than Glycoside B, so that it is a lactic acid bacteria beverage, suspension-loaded beverage, and turbidity. It can be particularly preferably used for beverages having Moreover, it can be used suitably also for sweetness adjustments, such as a pharmaceutical.
- the low water solubility makes it possible to enhance the throat irritation while suppressing the bitter taste felt on the tongue, which is advantageous for improving the drinking quality of the beverage.
- sweetener composition comprising a novel steviol glycoside
- a sweetener composition comprising a compound represented by formula (1), or a derivative, salt or hydrate thereof (hereinafter referred to as Also referred to as “sweetener composition of the present invention”).
- the sweetener composition of the present invention is not particularly limited as long as it contains a compound represented by the formula (1) or a derivative, salt or hydrate thereof, and a compound represented by the formula (1) or a derivative thereof.
- a composition containing an extract containing a salt or hydrate is not particularly limited as long as it contains a compound represented by the formula (1) or a derivative, salt or hydrate thereof.
- the amount of the glycoside of the present invention contained in the sweetener composition of the present invention is not particularly limited.
- the sweetener composition of the present invention is preferably a composition comprising the glycoside of the present invention in an amount at least 0.01% greater than the amount present in wild-type stevia or stevia extract.
- the glycoside of the present invention was first detected from varieties rich in Reb.C, and was not contained or contained in wild type stevia or its extract. Even if it is the amount below the detection limit value.
- the sweetener composition of the present invention may further contain other steviol glycosides.
- the sweetener composition of the present invention comprises, in addition to the glycoside of the present invention, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, Rebaudio Side F, Rebaudio Side I, Rebaudio Side J, Rebaudio Side K, Rebaudio Side N, Rebaudio Side M, Rebaudio Side O, Rebaudio Side Q, Rebau
- steviol glycosides selected from the group consisting of Dioside R, Dulcoside A, Dulcoside C, Rubusoside, Steviol, Steviol Monoside, Steviolbioside and Stevioside may be further included.
- “zulcoside C” refers to a compound having the following structure.
- the composition ratio of the glycoside of the present invention to other steviol glycosides is preferably 0.01: 9.99 to 6: 4 by mass ratio.
- the sweetener composition of the present invention may further contain a general sweetener.
- Such common sweeteners include fructose, sugar, fructose glucose liquid sugar, glucose, maltose, sucrose, high fructose liquid sugar, sugar alcohol, oligosaccharides, honey, sugarcane juice (brown molasses), starch syrup, Natural sweeteners such as Rahan fruit powder, Rahan fruit extract, licorice powder, licorice extract, Somatococcus danieri seed powder, Somatococcus danieri seed extract, and artificial sweeteners such as acesulfame potassium, sucralose, neotame, aspartame, saccharin Etc.
- natural sweeteners are preferably used from the viewpoints of refreshing, ease of drinking, natural taste, and imparting an appropriate richness, and fructose, glucose, maltose, sucrose, and sugar are particularly preferably used. Only one kind of these sweetening ingredients may be used, or a plurality of kinds may be used.
- a food / beverage product comprising the compound represented by formula (1), or a derivative, salt or hydrate thereof (hereinafter referred to as “the food / beverage product of the present invention”).
- the food or drink of the present invention is not particularly limited as long as it contains a compound represented by formula (1), or a derivative, salt, or hydrate thereof, and a compound represented by formula (1), or a derivative or salt thereof.
- the food / beverage products containing the extract containing a hydrate, and a sweetener composition may be sufficient.
- the food and drink means beverages and foods. Accordingly, in one embodiment, the present invention provides a novel beverage or food and provides a method for producing the beverage or food.
- the amount of the glycoside of the present invention contained in the food / beverage product of the present invention varies depending on the specific food / beverage product, but is preferably about 0.0004% to 0.8%, preferably 0.04% to 0.00%. 4% is particularly preferable. By setting the content within this range, there is an advantage that post-drawing can be suppressed.
- the food and drink of the present invention may further contain other steviol glycosides.
- the sweetener composition of the present invention comprises, in addition to the glycoside of the present invention, rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, Rebaudio Side F, Rebaudio Side I, Rebaudio Side J, Rebaudio Side K, Rebaudio Side N, Rebaudio Side M, Rebaudio Side O, Rebaudio Side Q, Rebau
- One or more steviol glycosides selected from the group consisting of Dioside R, Dulcoside A, Dulcoside C, Rubusoside, Steviol, Steviol Monoside, Steviolbioside and Stevioside may be further included.
- the composition ratio of the glycoside of the present invention to other steviol glycosides is preferably 0.01: 9.99 to 6: 4 by mass ratio.
- the food and drink of the present invention may further contain a general sweetener.
- Such common sweeteners include fructose, sugar, fructose glucose liquid sugar, glucose, maltose, sucrose, high fructose liquid sugar, sugar alcohol, oligosaccharides, honey, sugarcane juice (brown molasses), starch syrup, Natural sweeteners such as Rahan fruit powder, Rahan fruit extract, licorice powder, licorice extract, Somatococcus danieri seed powder, Somatococcus danieri seed extract, and artificial sweeteners such as acesulfame potassium, sucralose, neotame, aspartame, saccharin Etc.
- natural sweeteners are preferably used from the viewpoints of refreshing, ease of drinking, natural taste, and imparting an appropriate richness, and fructose, glucose, maltose, sucrose, and sugar are particularly preferably used. Only one kind of these sweetening ingredients may be used, or a plurality of kinds may be used.
- Examples of the food of the present invention are not particularly limited, but foods include confectionery, bread making, flour, noodles, rice, agricultural and forestry processed foods, livestock processed products, processed fishery products, milk -Dairy products, oils and fats, processed oils and fats, seasonings or other food materials.
- beverage of the present invention are not particularly limited, but carbonated beverages, non-carbonated beverages, alcoholic beverages, non-alcoholic beverages, beer-taste beverages such as beer and non-alcoholic beer, coffee beverages, tea beverages, Examples include cocoa beverages, nutritional beverages, and functional beverages.
- the beverage of the present invention may be prepared as a packaged beverage that has been sterilized by heating and packed in a container.
- the container is not particularly limited, and examples thereof include a PET bottle, an aluminum can, a steel can, a paper pack, a chilled cup, and a bottle.
- heat sterilization the kind is not specifically limited, For example, it can carry out using normal techniques, such as UHT sterilization and retort sterilization.
- the temperature of the heat sterilization step is not particularly limited, but is, for example, 65 to 130 ° C., preferably 85 to 120 ° C. and 10 to 40 minutes. However, if a sterilization value equivalent to the above conditions is obtained, sterilization at a suitable temperature for several seconds, for example, 5 to 30 seconds is not problematic.
- a plant containing a novel steviol glycoside and an extract thereof are provided.
- the food / beverage products Preferably a drink containing the plant body of this invention or the extract of a plant body is provided.
- the amount of the glycoside of the present invention contained in the plant of the present invention is not particularly limited, but is preferably 0.001% to 1.000%, and more preferably 0.01% to 0.80%.
- the plant of the present invention is preferably a plant containing the glycoside of the present invention in a higher content by 0.1% or more than that of the wild type Stevia species.
- the steviol glycoside of the present invention is not contained at all in the wild-type stevia, or even if it is contained, the amount is below the detection limit value.
- “Contains a glycoside of the present invention at a content of 0.01% or more higher than that of wild type stevia species” means a unit amount of an extract obtained from fresh leaves (non-dried leaves) of a wild type stevia plant (for example, 10 ml) ), The same unit amount of the extract obtained from fresh leaves (non-dried leaves) of the plant body of the present invention (the wild type stevia) This means that the amount (concentration) of the glycoside of the present invention contained in the same amount as the extract obtained from the leaves of the plant body is 0.01% or more.
- the plant body of the present invention is 0.02% or more, 0.03% or more, 0.04% or more, 0.05% or more, 0.07% or more, 0.09% or more, 0.10% or more of the glycoside of the present invention compared to the wild type stevia species. 0.15% or higher, 0.20% or higher, 0.40% or higher, 0.60% or higher, 0.80% or higher, 1.0% or higher, 1.50% or higher, 2.00% or higher, 4.00% or higher, 6.00% or higher, 8.00% or higher, 10.00% or higher May be included.
- the ratio of the glycoside of the present invention to the total steviol glycoside is 0.01% or more” is present in the extract obtained from fresh leaves (non-dried leaves) of the stevia plant of the present invention. It means that the glycoside of the present invention is present at a ratio of 0.01% or more with respect to the total amount of steviol glycoside.
- the total steviol glycoside does not include unknown steviol glycosides, nor does it include steviol glycosides that are present below the detection limit.
- the total steviol glycoside is rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, rebaudio.
- the content of the glycoside of the present invention in the plant of the present invention is as described above, but when the dried leaf is obtained from the plant of the present invention, the glycoside of the present invention relative to the weight of the dried leaf.
- the dry leaves of the plant body of the present invention means that the fresh water content of the plant body of the present invention is dried, so that the water content is 10 wt% or less, 7 wt% or less, 5 wt% or less, 4 wt% or less, 3
- the weight is reduced to not more than wt%, not more than 2 wt%, not more than 1 wt%.
- the moisture content of the dried leaves of the plant of the present invention is 3 to 4% by weight.
- Examples of the plant body of the present invention include, for example, a plant body containing a large amount of Reb.C.
- the steviol glycoside of the present invention is not contained at all in the wild-type stevia, or even if it is contained, the amount is below the detection limit value.
- the present inventors have found that the steviol glycosides of the present invention are contained more in plants containing a large amount of Reb.C. Therefore, novel steviol glycosides and extracts thereof include plants and extracts thereof that are rich in such Reb.C.
- Such a plant containing a large amount of Reb.C is not particularly limited.
- examples include recombinant stevia plants and plants having a rebaudioside C ratio of 40% or more in the total steviol glycosides (hereinafter also referred to as “high Reb.C plants”).
- Such a high Reb.C plant is, for example, a high rebaudioside C-containing non-genetically modified stevia plant containing 20% or more of rebaudioside C in comparison with the wild type stevia species. And the plant body whose ratio of rebaudioside C to the total steviol glycoside is 40% or more is mentioned.
- the high Reb.C plant is a species derived from a wild Stevia plant, and has a gene that has been mutated so that rebaudioside C is high.
- the mutation of the gene is not particularly limited, and examples thereof include those that occur under natural conditions, those that occur by non-genetic recombination techniques, and those that occur by genetic recombination.
- High Reb.C plants can be screened, for example, by detecting a gene polymorphism from the tissue of the plant.
- “screening” means identifying a high Reb.C plant body and other plant bodies and selecting a high Reb.C plant body.
- the high Reb.C plant can also be obtained by a screening method comprising the step of identifying a polymorphism in which the 60th base sequence of the base sequence shown in SEQ ID NO: 11 is mutated from wild type A to T in the genome of the test plant. Can be screened.
- the plant body of the present invention includes not only the whole plant body but also a plant organ (eg, leaf, petal, stem, root, seed, etc.), plant tissue (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, fence-like shape) Tissue, spongy tissue, etc.) or various forms of plant cells (eg, suspension culture cells), protoplasts, leaf sections, callus, and the like.
- a plant organ eg, leaf, petal, stem, root, seed, etc.
- plant tissue eg, epidermis, phloem, soft tissue, xylem, vascular bundle, fence-like shape
- Tissue eg, spongy tissue, etc.
- various forms of plant cells eg, suspension culture cells
- protoplasts eg, leaf sections, callus, and the like.
- the plant body of the present invention may include a tissue culture or a plant culture cell. It is because a plant body can be regenerated by culturing such tissue culture or plant culture cells.
- tissue culture or plant culture cells of the plant of the present invention include embryos, meristem cells, pollen, leaves, roots, root tips, petals, protoplasts, leaf sections, and callus. It is not limited.
- the plant extract of the present invention can be obtained by reacting the fresh or dried leaves of the plant of the present invention with an appropriate solvent (an aqueous solvent such as water or an organic solvent such as alcohol, ether and acetone). It can.
- an appropriate solvent an aqueous solvent such as water or an organic solvent such as alcohol, ether and acetone.
- the plant extract of the present invention preferably contains the glycoside of the present invention in a content higher by 0.01% or more than the wild type stevia species, and the ratio of the glycoside of the present invention to the total steviol glycosides Is 0.01% or more.
- “contains the glycoside of the present invention in a content higher by 0.01% or more than the wild type Stevia species” is as described above.
- “the ratio of the glycoside of the present invention to the total steviol glycoside is 0.01% or more” is as described above.
- Flavor modifier containing a novel steviol glycoside The novel steviol glycoside of the present invention is considered to have an influence on the flavor of the stevia extract, although only a trace amount is contained in the stevia extract. . Although not being bound by theory, it is considered that the flavor of food and drink can be adjusted by adding a small amount of the steviol glycoside of the present invention. Therefore, according to one aspect of the present invention, there is provided a flavor adjusting agent comprising a compound represented by the above formula (1) or a derivative, salt or hydrate thereof.
- the “flavor modifier” refers to a substance that, when added to a food or drink, adjusts the flavor of the food or drink.
- the flavor adjusting agent of the present invention when added to a food or drink, the flavor of the food or drink itself can be adjusted without the consumer recognizing the taste of the flavor adjuster itself.
- the steviol glycoside of the present invention has a feature that sweetness is better after that of conventional steviol glycosides, so that it is used as a flavor regulator to adjust the sweetness of food and drink. be able to.
- the flavor enhancer of the present invention preferably contains one or more other sweeteners in addition to the compound represented by the above formula (1) or a derivative, salt or hydrate thereof.
- Such sweeteners include rebaudioside A, rebaudioside B, rebaudioside C, rebaudioside D, rebaudioside E, rebaudioside F, rebaudioside I, Rebaudioside J, Rebaudioside K, Rebaudioside N, Rebaudioside M, Rebaudioside O, Rebaudioside Q, Rebaudioside R, Zulcoside A, Zulcoside C, Rubusoside,
- One or more steviol glycosides selected from the group consisting of steviol, steviolmonoside, steviolbioside and stevioside, fructose, sugar, fructose glucose liquid sugar, glucose, maltose, sucrose, high fructose liquid sugar, sugar alcohol , Oligosaccharides, honey, sugar cane juice (brown molasses), chickenpox, r
- the steviol glycoside of the present invention is produced by (A) isolation / purification from a plant body, (B) chemical synthesis, or (C) biosynthesis. be able to. Each will be described below.
- the novel steviol glycoside can be isolated and purified from the plant body.
- the novel steviol glycoside is extracted in the form of an extract by reacting the fresh or dried leaves of the plant of the present invention with an appropriate solvent (aqueous solvent such as water or organic solvent such as alcohol, ether and acetone). can do.
- an appropriate solvent aqueous solvent such as water or organic solvent such as alcohol, ether and acetone.
- ethyl acetate and other organic solvents water gradient, high-performance liquid chromatography (High Performance Liquid Chromatography: HPLC), ultra-high performance liquid chromatography (Ultra (High) Performance)
- HPLC High Performance Liquid Chromatography
- Ultra (High) Performance Ultra-high performance liquid chromatography
- UPLC Liquid Chromatography
- novel steviol glycoside content in the plant body can be measured by the method described in WO2016 / 090460 or the method described in Examples described later. Specifically, it can be measured by sampling fresh leaves from the plant of the present invention and performing LC-MS / MS.
- Steviol glycosides have a structure in which various sugar canes (glucose, rhamnose, xylose, etc.) are added to steviol of aglycone in various bond forms (bonding position and solid). Therefore, the target steviol glycoside can be obtained through various synthetic routes depending on the starting material selected. However, it is understood by those skilled in the art of the present invention that the time and yield for obtaining the target compound vary greatly depending on the synthesis route.
- the present inventors have now known a novel method for producing the steviol glycoside of the present invention with high selectivity and high yield by a specific synthetic route.
- the method for producing steviol glycosides according to the present invention when chemical synthesis of steviol glycosides is performed, as shown in Scheme 1, steviol glycosides are divided into “steviol glycosides” and “sugar hemiacetal bodies”. And proceed with synthesis.
- Steviol glycoside can be prepared by deriving from existing natural products (rebaudioside, zulcoside, stevioside, steviolbioside, rubusoside, etc.).
- sugar hemiacetal bodies can be prepared from existing natural products, or can be prepared by chemical synthesis. The present inventors have found that when steviol glycoside and sugar hemiacetal are condensed using Mitsunobu reaction, the desired steviol glycoside can be obtained with good yield and extremely high ⁇ selectivity.
- a method for producing a compound represented by the formula (1) (A) The following formula (4): (Where glc represents glucose and rha represents rhamnose) From the rebaudioside C shown by the following formula (5): (Wherein p-glc represents glucose in which at least one hydroxyl group is protected with a protecting group, and p-rha represents rhamnose in which at least one hydroxyl group is protected with a protecting group.) From the step of preparing intermediate 1 represented by formula (B) and glucopyranoside derivative (6): Or an intermediate 2 represented by formula (7): (Wherein p-glc represents glucose in which at least one hydroxyl group is protected with a protecting group, and p-rha represents rhamnose in which at least one hydroxyl group is protected with a protecting group) A step of preparing an intermediate 3 represented by: (C) The intermediate 1 and the intermediate 2 or 3 are reacted in the presence of a phosphine
- examples of the protecting group include an acyl protecting group, a trisubstituted silyl group, an acetal protecting group, and an ether protecting group.
- Preferable examples include trisubstituted silyl groups (such as trimethylsilyl group, triethylsilyl group, and t-butyldimethylsilyl group) or acyl protecting groups (such as acetyl group and benzoyl group).
- Steviol glycoside can be obtained, for example, according to the following scheme 2 using naturally occurring rebaudioside C (zulcoside B) as a raw material.
- rebaudioside® C is dissolved in a solvent such as methanol and water, a strong base such as sodium hydroxide is added, and the mixture is refluxed at 60 ° C. to 120 ° C. for 2 hours or longer.
- a strong base such as sodium hydroxide
- the glucose molecule is eliminated from the position, and the compound 2 is obtained.
- the solvent may be evaporated after neutralizing the reaction solution with a cation exchange resin or the like.
- Compound 2 can be obtained by further dissolving compound 2 in a solvent such as pyridine and protecting the hydroxyl group contained in compound 2 by adding acetic anhydride or the like.
- Step 2a Synthesis of the disaccharide hemiacetal body (Step 2a) is shown in Scheme 3, and synthesis of the trisaccharide hemiacetal body (Step 2b) is shown in Scheme 4.
- compound 6 is dissolved in a solvent such as ethanol or THF, a catalyst such as palladium hydroxide is added at room temperature, and the reaction is completed by stirring at room temperature for 2 hours or more in a hydrogen atmosphere, and then the catalyst is filtered off.
- a solvent such as pyridine
- acetic anhydride is added at room temperature, and the mixture is stirred at room temperature for 12 to 36 hours. Thereafter, the solution is concentrated under reduced pressure, acetonitrile and water are added, an oxidizing agent such as cerium ammonium nitrate is added, and the mixture is stirred for 5 minutes to 2 hours to obtain compound 8 (intermediate 2).
- compound 6 is dissolved in a solvent such as ethanol or THF, a catalyst such as palladium hydroxide is added at room temperature, and the reaction is completed by stirring at room temperature for 2 hours or more in a hydrogen atmosphere, and then the catalyst is filtered off.
- a solvent such as ethanol or THF
- a catalyst such as palladium hydroxide
- the reaction is completed by stirring at room temperature for 2 hours or more in a hydrogen atmosphere, and then the catalyst is filtered off.
- Compound 9 is obtained by dissolving compound 7 in acetonitrile, adding benzaldehyde dimethyl acetal at room temperature, and stirring for 2 hours or more.
- Steps 1 and 2 Second, by reacting the disaccharide hemiacetal or trisaccharide hemiacetal obtained in Steps 1 and 2 (2a or 2b) with steviol glycoside by Mitsunobu reaction, the 19-position carboxyl group of steviol is reacted with disaccharide.
- a glycoside in which a hemiacetal body or a trisaccharide hemiacetal body is selectively bound can be obtained.
- these compounds are dissolved in 1,4-dioxane, phosphine reagents such as tributylphosphine or triphenylphosphine, and azo compounds such as 1,1'-Azobis (N, N'-dimethylformamide) (TMAD).
- the steviol glycoside of the present invention introduces a polynucleotide encoding a predetermined protein into host cells derived from bacteria, plants, insects, mammals other than humans, etc., and steviol or steviol glycosides.
- Glucose, UDP-glucose and / or UDP-rhamnose can also be produced as a substrate.
- the substrates steviol, steviol glycoside, UDP-glucose, and UDP-rhamnose may be given or biosynthesized in cells.
- Examples of the predetermined protein include stevia-derived UGT85C2 (amino acid sequence is SEQ ID NO: 2), UGT74G1 (amino acid sequence is SEQ ID NO: 4), UGT91D2 (amino acid sequence is SEQ ID NO: 6), UGT76G1 (amino acid sequence is SEQ ID NO: 8).
- UDP-rhamnose synthase AtRHM2 (amino acid sequence is SEQ ID NO: 10) derived from Arabidopsis thaliana, but are not limited thereto as long as they have equivalent activities.
- the above protein is an enzyme derived from Arabidopsis thaliana or stevia, and is expected to have a high activity even in an environment outside plant cells such as Arabidopsis thaliana or stevia (for example, extracellular, in host cells other than stevia).
- a polynucleotide encoding the above protein for example, UGT85C2 gene is SEQ ID NO: 1, UGT74G1 gene is SEQ ID NO: 3, UGT91D2 gene is SEQ ID NO: 5, UGT76G1 gene is SEQ ID NO: 7, and AtRHM2 gene is SEQ ID NO: 9). Introduced into host cells derived from bacteria, fungi, plants, insects, mammals other than humans, etc.
- the substrate steviol, steviol glycosides, UDP-glucose, UDP-rhamnose to give the compounds of the present invention.
- the compound of the present invention can be produced by expressing the protein in a host cell and providing an appropriate substrate.
- a method for producing the novel steviol glycoside of the present invention wherein a non-human transformant introduced with at least one of the following polynucleotides (a) to (g) is used: A method characterized by this is provided.
- A a polynucleotide encoding a protein having 90% or more identity to the amino acid sequence of SEQ ID NO: 2 and having an activity of adding glucose to the hydroxyl group at position 13 of steviol glycoside
- b A polynucleotide encoding a protein having 90% or more identity to the amino acid sequence of SEQ ID NO: 4 and having an activity of adding glucose to a carboxylic acid at position 19 of a steviol glycoside
- c A polynucleotide encoding a protein having 90% or more identity to the amino acid sequence of 6 and having an activity of adding rhamnose to glucose bound at position 13 of steviol glycosides in a 1 ⁇ 2 bond
- d It has 90% or more identity to the amino acid sequence of SEQ ID NO: 8 and is a 1 ⁇ 3 bond at the 3rd position of glucose at the 13th position of steviol glycoside.
- a polynucleotide encoding a protein having an activity of adding glucose via a 1 ⁇ 3 bond (g) having at least 90% identity to the amino acid sequence of SEQ ID NO: 10 and from UDP-glucose to UDP- Polynucleotide encoding a protein having activity to generate rhamnose
- 91% or more, 92% or more, 93% or more, 94% or more independently of the base sequence of each SEQ ID NO described in the above (a) to (g), 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4% or more, 99.5% or more, Polynucleotides having a sequence identity of 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more may be used.
- amino acid sequence has a sequence identity of 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more, and is described in (a) to (g) above.
- a protein having a predetermined activity may be used.
- the polynucleotide encoding the protein is preferably introduced into the host in a state of being inserted into an appropriate expression vector.
- the polynucleotides may be individually inserted into separate vectors.
- Suitable expression vectors are usually (I) a promoter capable of transcription in a host cell; (Ii) a polynucleotide of the present invention linked to the promoter; and (iii) an expression cassette comprising, as a component, a signal that functions in a host cell for transcription termination and polyadenylation of an RNA molecule. .
- the method for producing an expression vector includes, but is not limited to, a method using a plasmid, phage or cosmid, or a DNA molecule having a necessary component.
- the specific type of the vector is not particularly limited, and a vector that can be expressed in the host cell can be appropriately selected. That is, according to the type of the host cell, a promoter sequence is appropriately selected in order to reliably express the polynucleotide of the present invention, and a vector in which this and the polynucleotide of the present invention are incorporated into various plasmids or the like is used as an expression vector. Good.
- the expression vector of the present invention contains an expression control region (for example, promoter, terminator and / or origin of replication) depending on the type of host to be introduced.
- Conventional promoters for example, trc promoter, tac promoter, lac promoter, etc.
- yeast promoters include glyceraldehyde 3-phosphate dehydrogenase promoter, PH05 promoter,
- the promoter for filamentous fungi include amylase and trpC.
- promoters for expressing a target gene in plant cells include cauliflower mosaic virus 35S RNA promoter, rd29A gene promoter, rbcS promoter, and enhancer sequences of the cauliflower mosaic virus 35S RNA promoter derived from Agrobacterium. And the mac-1 promoter added to the 5 'side of the mannopine synthase promoter sequence.
- animal cell host promoters include viral promoters (eg, SV40 early promoter, SV40 late promoter, etc.).
- promoters that are inducibly activated by external stimuli include mouse mammary tumor virus (MMTV) promoter, tetracycline responsive promoter, metallothionein promoter, heat shock protein promoter, and the like.
- the expression vector preferably contains at least one selectable marker.
- auxotrophic markers LEU2, URA3, HIS3, TRP1, ura5, niaD
- drug resistance markers hygromycin, zeocin
- geneticin resistance gene G418r
- copper resistance gene CUP1
- cerulenin resistance gene fas2m, PDR4
- Minoru Ogura et al., Biochemistry, vol. 64, p. 660, 1992; Hussain et al., Gene, vol. 101, p. 149, 1991 can be used.
- a host cell transformation method As a host cell transformation method, a commonly known method can be used. For example, electroporation method (Mackenxie, D. A. et al., Appl. Environ. Microbiol., Vol. 66, p. 4655-4661, 2000), particle delivery method (JP 2005-287403), sphero Plast method (Proc. Natl. Acad. Sci. USA, vol. 75, p. 1929, 1978), lithium acetate method (J. Bacteriology, vol. 153, p. 163, 1983), Methods in yeast genetics, 2000 Edition : A) Cold Spring Harbor Laboratory Course Manual)), but is not limited thereto.
- electroporation method Mackenxie, D. A. et al., Appl. Environ. Microbiol., Vol. 66, p. 4655-4661, 2000
- particle delivery method JP 2005-287403
- sphero Plast method Proc. Natl. Aca
- non-human transformant By culturing the non-human transformant thus obtained, it is possible to cause the non-human transformant to produce steviol glycosides.
- a non-human transformant is preferably yeast.
- sample 1 is a high Reb.C plant having a polymorphism in which the 60th nucleotide sequence of the nucleotide sequence shown in SEQ ID NO: 11 is mutated from A to T in the genome.
- the polymorphism had a statistical correlation with the phenotype of high Reb.C concentration. It became clear.
- test solution was prepared by weighing 10.0 mg of each dried stevia leaf that had been lyophilized into a glass vial, adding 1.0 ⁇ mL of water / methanol (1/1 vol / vol) as an extraction solvent, and then ultrasonically washing.
- a steviol glycoside extract was obtained from stevia leaves by irradiating ultrasonic waves at a set temperature of 25 ° C. for 20 minutes with a vessel (AS ONE, AS52GTU). Further, for use in HPLC-MS, it was diluted 10-fold with water / methanol and filtered through a filter (Nacalai Tesque, Cosmonis filter S (solvent system)) having a pore size of 0.45 ⁇ m.
- LC mobile phase mobile phase A is 0.2% acetic acid-containing milli-Q water
- mobile phase B is methanol
- the binary gradient is kept constant at 10% mobile phase B concentration for 0 ⁇ 5 minutes, then for 15 minutes.
- the mobile phase B concentration was changed from 10% to 70%, and the B concentration was further changed from 70% to 100% in 5 minutes.
- the mobile phase B concentration was maintained at 100% for 5 minutes.
- the flow rate of the mobile phase was 0.4 ⁇ mL / min, and 5 ⁇ L of stevia leaf extract that had been diluted and filtered was injected.
- MS was a triple quadrupole mass spectrometer LCMS-8030 (Shimadzu Corporation) equipped with an electrospray ionization (ESI) ion source.
- the mass spectrometry measurement was performed in a negative ion measurement mode and a selected ion monitoring (SIM) mode in which measurement is performed by selecting an m / z value.
- the m / z value to be selected is the m / z value calculated based on the molecular weight of steviol glycosides in which D-glucopyranosyl (Glc), L-rhamnopyranosyl (Rha), and xylopyranosyl (Xyl) are composed of sugar chains. Selected.
- m / z 641.2 (Glc (2)), 773.2 (Glc (2), Xyl (1)), 787.2 (Glc (2), Rha (1)), 803.2 (Glc (3)), 935.3 ( Glc (3), (Xyl (1)), 949.3 (Glc (3), Rha (1)), 965.3 (Glc (4)), 1095.4 (Glc (3), Rha (2)), 1097.4 (Glc (4) ), Xyl (1)), 1111.4 (Glc (4), Rha (1)), 1127.4 (Glc (5)), 1257.5 (Glc (4), Rha (2)), 1259.5 (Glc (5), Xyl (1)), 1273.5 (Glc (5), Rha (1)), 1289.5 (Glc (6)), 1435.6 (Glc (6), Rha (1)) were selected.
- Figure 2 shows the selected ion chromatogram of sample 1 (EM3-4) m / z 1095.4.
- sample 1 EM3-4
- m / z 1095.4 modified sugar chain of steviol glycosides contains 3 glucose (Glc) and 2 rhamnose (Rha)
- Glc glucose
- Rha 2 rhamnose
- the peak of Rt228.73 shown in FIG. 2 is an unknown substance.
- the peak value of Rt 28.73 min from the sample 3 in which the content of rebaudioside C is lower than that of rebaudioside A and the sugar chain elongation is lower than the other samples was below the detection limit.
- Fig. 3 shows the selected ion chromatogram of sample 1 (EM3-4) for m / z 1257.5.
- EM3-4 modified sugar chain of steviol glycosides
- Rha 2 rhamnose
- HPLC-ESI-HRMS high-performance liquid chromatography-electrospray ionization accurate mass spectrometry
- the HPLC instrument configuration uses a Prominence LC-20AD (Shimadzu Corporation) for the liquid-feed unit LC pump, and a separation column.
- SM-C18 (4.6 x 250 mm) (manufactured by Intact) was used.
- LC mobile phase 0.2% acetic acid-containing milliQ water is used as mobile phase A, methanol is used as mobile phase B, and the binary gradient is constant at a mobile phase B concentration of 10% for 0-5 minutes. Thereafter, the mobile phase B concentration was changed from 10% to 70% in 15 minutes, and the B concentration was changed from 70% to 100% in 5 minutes.
- the mobile phase B concentration was maintained at 100% for 5 minutes.
- the flow rate of the mobile phase was 0.4 mL / min, and 20 ⁇ L of stevia leaf extract filtered after dilution was injected.
- Orbitrap Elite MS manufactured by Thermo Fisher Scientific
- the mass spectrometry measurement was performed in a negative ion measurement mode, in the range of m / z 150-2000, with a setting resolution of 60,000.
- MS / MS measurement was performed in the CID mode in which the target m / z 1095.4 or 1257.5 was selected and fragmentation was performed by collision with an inert gas.
- the target ion of MS 3 was the strongest ion in the MS / MS spectrum. Irradiation of energy required for fragmentation was performed at 35, which is a collision energy standard specific to the device.
- FIG. 4 shows MS / MS and MS 3 fragmented mass spectra of novel steviol glycoside 1 (corresponding to m / z 1095.4, Rt: 28.73). From the MS / MS spectrum of the novel steviol glycoside, a peak was detected as a main peak at m / z 787.38 corresponding to elimination of 1 Glc and 1 Rha. From this result, it is understood that the number of sugar chains ester-bonded to the 19th carbon is one Glc and one Rha. In order to obtain further structural information, an MS 3 spectrum was obtained that fragmented the main peak m / z 787.4 obtained by MS / MS.
- FIG. 5 shows MS / MS and MS 3 fragmented mass spectra of novel steviol glycoside 2 (corresponding to m / z 1257.5, Rt: 28.50). From the MS / MS spectrum of the novel steviol glycoside, a peak was detected as a main peak at m / z 787.38 corresponding to elimination of 2 Glc and 1 Rha. This result shows that the number of sugar chains ester-bonded to the 19th carbon is 2 Glc and 1 Rha. In order to obtain further structural information, an MS 3 spectrum was obtained that fragmented the main peak m / z 787.4 obtained by MS / MS.
- rebaudioside C (compound 1), a known natural product, was purchased from Ark Pharm, and the ester bond at the 19th position of steviol was alkali-hydrolyzed, and then the hydroxyl group of the sugar chain was acetyl (Ac).
- Steviol glycoside was obtained by protecting with a group.
- disaccharide hemiacetals a disaccharide skeleton is formed by the condensation reaction of an appropriately protected glucose acceptor (compound 4) and rhamnose donor (compound 5), and the protecting group at the 1-position of the reducing end is deprotected. Thus, a disaccharide hemiacetal body was obtained.
- disaccharide hemiacetal As shown in Scheme 9, disaccharide hemiacetal (compound 8) was synthesized by 4-Methoxyphenyl 3-O-Benzyl-4,6-O-benzylidine- ⁇ -D-glucopyranoside (compound) purchased from Tokyo Kasei. 4) Dissolve (3.0 g, 6.46 mmol), compound 5 (3.3 g, 7.10 mmol) and molecular sieves 4 ⁇ (6.0 g) in dichloromethane (136 mL), and add trifluoromethanesulfonic acid (114 ⁇ L, 1.29 mmol) at room temperature. And stirred at room temperature for 18 hours.
- Steviol glycoside was obtained by protecting with a group.
- a disaccharide acceptor (Compound 9) was synthesized from a condensation reaction of a suitably protected glucose acceptor (Compound 4) and a rhamnose donor (Compound 5), and the glucose donor (Compound 10) and As a result of the condensation reaction, a trisaccharide skeleton was obtained.
- the protecting group at the reducing terminal 1-position of the obtained trisaccharide was deprotected to obtain a trisaccharide hemiacetal body.
- Stevia leaf cDNA was obtained by extracting total RNA from Stevia leaves using the RNeasy Plant Mini kit (QIAGEN), and 0.5 ⁇ g of the RNA was subjected to reverse transcription (RT) reaction with Random Oligo-dT primer.
- the PCR reaction solution (50 ⁇ l) was composed of 1 ⁇ l of stevia leaf-derived cDNA, 1 ⁇ KOD plus buffer (TOYOBO), 0.2 mM dNTPs, each primer 0.4 pmol / ⁇ l, 1 mM MgSO 4 , 1 U heat-resistant KOD plus polymerase.
- the PCR reaction was carried out at 95 ° C. for 5 minutes, and then amplified at 30 ° C. for 0.5 minutes, at 50 ° C. for 0.5 minute, and at 68 ° C. for 2 minutes for a total of 30 cycles of amplification.
- Each PCR product was electrophoresed on a 0.8% agarose gel and stained with ethidium bromide.
- a combination of SrUGT85C2 using UGT85C2 as a template, SrUGT91D2 using UGT91D2 as a template, SrUGT74G1 using UGT74G1 as a template, SrUGT76G1 using UGT76G1 as a template, AtAHM2 as a template and primer combination of AtAHM2 and heat-resistant KOD DNA polymerase And restriction enzyme sites were added to both ends of each ORF.
- the obtained DNA fragment was subcloned using the Zero Blunt-TOPO PCR Cloning Kit (Invitrogen), and sequenced by the primer walking method using a synthetic oligonucleotide primer using DNA®Sequencer® model 3100 (Applied® Biosystems). It was confirmed that each UGT gene was cloned.
- Transformation of yeast Saccharomyces cerevisiae YPH499 strain (ura3-52 lys2-801 amber ade2-101 ochre trp1- ⁇ 63 his3- ⁇ 200 leu2- ⁇ 1 a) was used as a host, and the plasmids shown in Table 2 were introduced by the lithium acetate method.
- a strain that grows on SC-Trp & Ura & His agar medium (6.7 g of Yeast nitrogen baase without amino acids, glucose 20 g, amino acid mixed powder-Trp & Ura & His 1.3 g, Bacto agar 20 g per liter) was selected.
- the amino acid mix powder-Trp & Ura & His is adenine sulfate 2.5 g, L-arginine hydrochloride 1.2 g, L-aspartic acid 6.0 g, L-glutamic acid 6.0 g, L-leucine 3.6 g, L-lysine 1.8 g, L- It was prepared by mixing 1.2 g of methionine, 3.0 g of L-phenylalanine, 22.5 g of L-serine, 12 g of L-threonine, 1.8 g of L-tyrosine, and 9.0 g of L-valine.
- each transformant was inoculated into 10 ml of SC-Trp & Ura & His liquid medium (excluding Bacto agar of SC-Trp & Ura & His agar medium) and cultured with shaking at 30 ° C. for 1 day.
- 1 ml of the pre-culture solution is inoculated into 10 ml of SG-Trp & Ura & His liquid medium (6.7 g of Yeast nitrogen baase without amino acids, 20 g of galactose, 1.3 g of amino acid mix powder-Trp & Ura & His per liter) And cultured with shaking at 30 ° C. for 2 days.
- SG-Trp & Ura & His liquid medium 6.7 g of Yeast nitrogen baase without amino acids, 20 g of galactose, 1.3 g of amino acid mix powder-Trp & Ura & His per liter
- the bacterial cells were collected from the culture solution, and total RNA was purified using RNeasy Mini Mini Kit.
- RNA 1 ⁇ g of total RNA was taken, and cDNA was synthesized using Superscript II reverse transcriptase (Thermo Fisher Scientific) and random hexamer as primers.
- steviol glycosides Culture was performed under the same conditions as in the above examples, except that 0.5 ⁇ g or 2 ⁇ g of steviol (ChromaDex Inc.) was added to 1 ml of the medium in the liquid medium for main culture. After completion of the culture, the culture solution was separated into a supernatant and cells by centrifugation. The culture supernatant is washed with acetonitrile, applied to a Sep-Pak C18 column equilibrated with water, washed with 20% acetonitrile, eluted with 80% acetonitrile, dried and dissolved in a small amount of 80% acetonitrile. A glycoside sample was prepared. This glycoside sample was subjected to the following analysis.
- the evaluation was performed by selecting a sucrose-added sample having a sweetness intensity equivalent to that of the sample to which the new steviol glycoside was added, and 5 persons trained in the sweetener sensuality became panelists. Sensory evaluation was performed. As a result, it was found that the prepared sample to which the novel glycoside 2 was added had sweetness equivalent to that of the Brix1 sucrose-added sample. Therefore, it was found that the novel steviol glycoside has a sweetness of 14.7 with respect to sucrose. The new steviol glycoside 1 was not sufficiently dissolved in water, so an accurate sweetness level could not be obtained. However, as described later, it was confirmed that the new steviol glycoside 1 also has sweetness.
- the obtained beverage samples were subjected to sensory evaluation using the indicators of sweetness rise, sweetness after-effect, sweetness total amount, miscellaneous taste, and miscellaneous after-effect.
- the miscellaneous taste means unfavorable flavors other than sweet taste such as astringency, including bitter taste in the present specification.
- Persons who were trained in the sensuality of sweeteners (7 persons: Suntory Foods International Co., Ltd.) were evaluated as panelists, and the evaluation criteria were as follows. Very weak (-3), weak (-2), slightly weak (-1), normal (0), slightly strong (+1), strong (+2), and very strong (+3).
- the results are shown in FIG.
- the score shown in the figure is an average value of scores by seven panelists.
- Compound 17 having the same structure as novel steviol glycoside 2 was found to be Reb. A and Reb.
- Reb. It was found to have a total sweetness comparable to D.
- novel steviol glycosides 1 and 2 both have sweetness and are useful as sweeteners. It can also be seen that all glycosides are characterized by a weak undesired flavor such as bitterness. In addition, about the compound 17, it had the flavor similar to the mixture of (alpha) body and (beta) body used for sweetness degree evaluation.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Nutrition Science (AREA)
- Polymers & Plastics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Saccharide Compounds (AREA)
- Seasonings (AREA)
- Non-Alcoholic Beverages (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- General Preparation And Processing Of Foods (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明者らは、味質に影響を与える微量の新規ステビオール配糖体の構造を初めて特定した。本発明の新規ステビオール配糖体(以下、「本発明の配糖体」ともいう)は、式(1):
(式中、
Rは、式(2)または式(3):
の糖鎖を表し、
glcはグルコースを表し、rhaはラムノースを表す)
で示される化合物、またはその誘導体、塩、もしくは水和物である。
式(11)で示される配糖体Aは、ステビオールの19位のカルボキシル基にグルコースがβグルコシド結合しており、式(12)で示される配糖体Aは、ステビオールの19位のカルボキシル基にグルコースがαグルコシド結合している。
式(13)で示される配糖体Bは、ステビオールの19位のカルボキシル基にグルコースがβグルコシド結合しており、式(14)で示される配糖体Bは、ステビオールの19位のカルボキシル基にグルコースがαグルコシド結合している。
本発明の一態様によれば、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含む甘味料組成物(以下、「本発明の甘味料組成物」ともいう)が提供される。本発明の甘味料組成物は、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含んでいれば特に限定されず、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含む抽出物を含む組成物であってもよい。
本発明の一態様によれば、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含む飲食品(以下、「本発明の飲食品」ともいう)が提供される。本発明の飲食品は、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含んでいれば特に限定されず、式(1)で示される化合物、またはその誘導体、塩、もしくは水和物を含む抽出物や甘味料組成物を含む飲食品であってもよい。ここで飲食品とは、飲料及び食品を意味する。したがって、ある実施態様では、本発明は新規な飲料又は食品を提供し、また、当該飲料又は食品の製造方法を提供する。
本発明の一態様によれば、新規ステビオール配糖体を含む植物体およびその抽出物が提供される。また本発明の他の一態様によれば、本発明の植物体または植物体の抽出物を含む、飲食品、好ましくは飲料、が提供される。本発明の植物体に含まれる本発明の配糖体の量は、特に限定されないが、0.001%~1.000%であるのが好ましく、0.01%~0.80%であることがより好ましい。
本発明の新規ステビオール配糖体は、ステビア抽出物の中に微量しか含まれていないものの、該ステビア抽出物の風味に影響を与えているものと考えられる。理論に拘束されるものではないが、本発明のステビオール配糖体を少量添加することで、飲食品の風味を調整できるものと考えられる。したがって、本発明の一態様によれば、上記式(1)で示される化合物またはその誘導体、塩、もしくは水和物を含む風味調整剤が提供される。
上述のとおり、本発明のステビオール配糖体は、(A)植物体からの単離・精製、(B)化学合成、または(C)生合成によって製造することができる。それぞれについて以下に説明する。
本発明の植物体は本発明の新規ステビオール配糖体を含むものであるため、該植物体から新規ステビオール配糖体を単離・精製することができる。新規ステビオール配糖体は、本発明の植物体の新鮮葉または乾燥葉に適切な溶媒(水等の水性溶媒又はアルコール、エーテル及びアセトン等の有機溶媒)を反応させることにより抽出液の状態で抽出することができる。抽出条件等はWO2016/090460に記載の方法や、後述の実施例に記載の方法を参照することができる。
本発明のステビオール配糖体の化学合成による製造方法について、以下に詳細に説明する。
(A)下記式(4):
(式中、glcはグルコースを表し、rhaはラムノースを表す)
で示されるレバウディオサイドCから、下記式(5):
(式中、p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す。)
で示される中間体1を調製する工程と
(B)グルコピラノシド誘導体から式(6):
で示される中間体2、または式(7):
(式中、p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す)
で示される中間体3を調製する工程と、
(C)前記中間体1と、前記中間体2または3とを、ホスフィン試薬及びアゾ化合物の存在下で反応させ、下記式(8):
(式中、
R1は、式(9)または式(10):
の糖鎖を表し、
p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す)
で示される中間体4を得る工程を含む、方法が提供される。
2糖ヘミアセタールと3糖ヘミアセタールは、例えば、市販されているグルコピラノシド誘導体を原料として得ることができる。2糖ヘミアセタール体の合成(第2a工程)をスキーム3に示し、3糖ヘミアセタール体の合成(第2b工程)をスキーム4に示す。
式(1)で示される化合物の合成は、例えば、上記工程1および2(2aまたは2b)から得られた化合物3(中間体1)および化合物8または13(中間体2または3)を用いて、下記スキーム5または6に従って得ることができる。
本発明のステビオール配糖体は、所定のタンパク質をコードするポリヌクレオチドを、細菌、植物、昆虫、ヒトを除く哺乳動物などに由来する宿主細胞に導入して、ステビオールやステビオール配糖体、UDP-グルコースおよび/またはUDP-ラムノースを基質として生成することもできる。基質であるステビオール、ステビオール配糖体、UDP-グルコース、UDP-ラムノースは、与えてもよいし、細胞内で生合成させてもよい。所定のタンパク質の例としては、ステビア由来のUGT85C2(アミノ酸配列は配列番号2)、UGT74G1(アミノ酸配列は配列番号4)、UGT91D2(アミノ酸配列は配列番号6)、UGT76G1(アミノ酸配列は配列番号8)、及びシロイヌナズナ由来のUDP-ラムノース合成酵素AtRHM2(アミノ酸配列は配列番号10)、が挙げられるが同等の活性を有するものであればこれに限定されない。
(a)配列番号2のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位の水酸基にグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(b)配列番号4のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のカルボン酸にグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(c)配列番号6のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位に結合したグルコースに1→2結合でラムノースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(d)配列番号8のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位のグルコースの3位に1→3結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(e)配列番号6のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のグルコースに、1→2結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(f)配列番号8のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のグルコースに、1→3結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド
(g)配列番号10のアミノ酸配列に対して90%以上の同一性を有し、かつ、UDP-グルコースからUDP-ラムノースを生成する活性を有するタンパク質をコードするポリヌクレオチド
(i)宿主細胞内で転写可能なプロモーター;
(ii)該プロモーターに結合した、本発明のポリヌクレオチド;および
(iii)RNA分子の転写終結およびポリアデニル化に関し、宿主細胞内で機能するシグナルを構成要素として含む発現カセット
を含むように構成される。
発現ベクターは、少なくとも1つの選択マーカーを含むことが好ましい。このようなマーカーとしては、栄養要求性マーカー(LEU2、URA3、HIS3、TRP1、ura5、niaD)、薬剤耐性マーカー(ハイグロマイシン、ゼオシン)、ジェネチシン耐性遺伝子(G418r)、銅耐性遺伝子(CUP1)(Marin et al.,Proc.Natl.Acad.Sci. USA,vol. 81,p.337,1984)、セルレニン耐性遺伝子(fas2m, PDR4)(それぞれ、猪腰淳嗣ら,生化学,vol.64,p.660,1992;Hussain et al.,Gene,vol.101,p.149,1991)などが利用可能である。
サントリーグローバルイノベーションセンター株式会社(SIC)で開発した、4系統の新規ステビア植物体(サンプル1(EM3-4)、サンプル2(EM2-27-8)、サンプル3(EM2-27-15)、およびサンプル4(EM2-11))の葉から得られた抽出物の高速液体クロマトグラフィー(HPLC)分離-質量分析(MS)を行い、D-グルコピラノシル(Glc)、L-ラムノピラノシル(Rha)、キシロピラノシル(Xyl)が糖鎖で構成されたステビオール配糖体の分子量をもとに、ステビア植物体に含有されるステビオール配糖体のスクリーニング分析を行った。ここで、サンプル1はゲノムに配列番号11に示す塩基配列の第60番目の塩基配列が野生型のAからTに変異した多型を有する高Reb.C植物体である。なお、高Reb.C濃度の表現型と配列番号11の多型との相関関係について統計解析を行ったところ、当該多型は高Reb.C濃度の表現型と統計学上の相関関係を有することが明らかになった。
本発明において、レバウディオサイドC高含有率品種から検出された新規ステビオール配糖体1および2の構造解析は次の手順で行った。
(i)高速液体クロマトグラフィー(HPLC)- 高分解能質量分析(MS)およびMS/MS、3段階までのイオンの断片化(MS3断片化)のフラグメント化解析による構造推定、
(ii)化学反応による推定ステビオール配糖体標準品の化学合成、
(iii)化学合成標準品のHPLC- 高分解能MSおよびMS3断片化の保持時間と断片化パターンの一致による構造確認
検液の調製は、凍結乾燥処理を行ったステビア乾燥葉それぞれ10.0mgをガラスバイアルに秤量し、抽出溶媒として水/メタノール(1/1 vol/vol) を1.0 mL添加し、その後超音波洗浄器(AS ONE, AS52GTU)にて20分間、25°Cの設定温度にて超音波を照射し、ステビア葉からステビオール配糖体の抽出液を得た。さらにHPLC-MSに供するために、水/メタノールで10倍希釈を行い、細孔サイズ0.45 μmのフィルター(ナカライテスク、コスモナイスフィルターS(溶媒系))にてろ過を行った。
[新規ステビオール配糖体1の合成]
(1)合成経路の概要
スキーム7に示したように、新規ステビオール配糖体1 (化合物15) の合成では、ステビオールグリコシド (化合物3) と2糖ヘミアセタール体 (化合物8) を、光延反応で縮合することで、新規ステビオール配糖体 1(化合物15) の骨格を得る事とした。ステビオールグリコシドの合成では、既知の天然物であるレバウディオサイドC (化合物1) をArk Pharm社から購入し、ステビオール19位のエステル結合をアルカリ加水分解後、糖鎖の水酸基をアセチル (Ac) 基で保護することで、ステビオールグリコシドを得た。2糖ヘミアセタール体 の合成では、適切に保護されたグルコースアクセプター (化合物4) とラムノースドナー (化合物5) の縮合反応によって、2糖骨格を作り、還元末端1位の保護基を脱保護することで、2糖ヘミアセタール体を得た。得られたステビオールグリコシドと2糖ヘミアセタール体を、光延反応で縮合したところ、75% (α/β= 1/20) と良好な収率且つ高いβ選択性で反応が進行した。得られた化合物の保護基を脱保護することで、新規ステビオール配糖体1(15) を得た。
次に、各合成工程について説明する。
スキーム8に示したように、ステビオールグリコシド (化合物3) の合成では、Ark Pharm社から購入したレバウディオサイドC (化合物1) (1.0g、1.05 mmol) を、メタノール (10mL) と水 (10mL) に溶解させ、4 mol/L水酸化ナトリウム (2.6mL、10.5mmol) を室温で加え、100 ℃にて20時間還流した。反応終了をTLC (クロロホルム/メタノール/水 = 5/4/0.1、Rf値 = 0.9) で確認後、反応液を陽イオン交換樹脂Dowex MAC-3水素フォーム (SIGMA-ALDRICH社) で中和 (pH 7) し、樹脂を濾別後、減圧濃縮して得られたシラップを真空ポンプで18時間乾燥させ、化合物2 (828mg、quant.)を得た。
[化合物3]
1H-NMR (CDCl3, 400 MHz) δ 0.81 (m, 2H), 0.83-1.45 (complex, 19H), 1.39-1.91 (complex, 24H), 1.91-2.35 (s, 30H), 3.58 (m, 1H), 3.71-3.81 (complex, 4H), 3.95-4.12 (complex, 7H), 4.34-4.46 (complex, 3H), 4.56-4.66 (complex, 4H), 4.69-4.92 (complex, 7H), 5.05-5.14 (complex, 5H), 5.23-5.38 (complex, 6H), 5.45 (s, 1H); 13C-NMR (CDCl3, 100 MHz) δ 15.9, 17.3, 19.1, 20.5, 20.7, 20.8, 20.9, 21.1, 21.5, 21.7, 29.1, 37.8, 38.0, 39.5, 40.7, 41.4, 42.2, 43.8, 48.4, 53.8, 56.8, 61.6, 63.0, 65.5, 66.8, 68.0, 68.6, 69.3, 69.6, 69.8, 70.5, 70.9, 71.6, 71.9, 72.4, 72.8, 73.9, 74.9, 81.3, 87.3, 96.6, 96.8, 99.2, 99.4, 125.4, 128.3, 129.1, 137.9, 151.9, 168.9, 169.2, 169.5, 169.6, 169.8, 170.1, 170.2, 170.3, 170.6, 170.9, 176.8, 183.4.
スキーム9に示したように、2糖ヘミアセタール体 (化合物8) の合成では、東京化成から購入した4-Methoxyphenyl 3-O-Benzyl-4,6-O-benzylidine-β-D-glucopyranoside (化合物4) (3.0g、6.46mmol) と化合物5 (3.3g、7.10mmol)、モレキュラーシーブス4Å (6.0g) をジクロロメタン(136mL) に溶解させ、トリフルオロメタンスルホン酸 (114μL、1.29mmol) を室温で加え、室温にて18時間攪拌した。反応終了をTLC (酢酸エチル/ヘキサン = 1/2、Rf値 = 0.5) にて確認後、トリエチルアミン (100μL) で中和 (pH 8) し、モレキュラーシーブス4Åを濾別し、減圧濃縮して得られたシラップをシリカゲルカラムクロマトグラフィーに供し、溶出液(酢酸エチル/ヘキサン = 1/1.5) にて化合物6 (3.9g、81%) を得た。
[化合物6]
1H-NMR (CDCl3, 400 MHz) δ 1.18 (d, J = 6.4 Hz, 3H, H-6 of Rha), 1.96 (s, 3H, OAc), 1.98 (s, 3H, OAc), 2.07 (s, 3H, OAc), 3.51 (m, 1H, H-5), 3.73-3.81 (complex, 5H, H-4, H-6, OMe), 3.83-3.96 (complex, 2H, H-2, H-3), 4.28 (m, 1H, H-5 of Rha), 4.36 (m, 1H, H-6’), 4.70 (d, 1H, CH2Ph), 4.95 (d, 1H, CH2Ph), 4.99 (d, J = 7.2 Hz, 1H, H-1), 5.03 (t, 1H, H-4 of Rha), 5.20 (dd, 1H, H-3 of Rha), 5.32 (s, 1H, H-1 of Rha), 5.34 (m, 1H, H-2 of Rha), 5.57 (s, 1H, CHPh), 6.90 (dd, 4H, OMePh), 7.21-7.49 (complex, 10H, Ph); 13C-NMR (CDCl3, 100 MHz) δ 14.2, 17.4, 20.8, 20.9, 21.0, 22.8, 31.7, 55.8, 66.2, 66.7, 68.8, 69.4, 69.5, 71.0, 75.2, 76.7, 77.5, 81.7, 81.8, 98.4, 100.8, 101.4, 114.8, 118.3, 126.1, 127.9, 128.4, 128.5×2, 129.2, 137.2, 137.9, 150.8, 155.7, 169.9, 170.1, 170.2.
[化合物8]
1H-NMR (CDCl3, 400 MHz) δ 1.16-1.19 (complex, 4.5H, H-6α of Rha, H-6β of Rha), 1.97-2.34 (complex, 27 H, OAc), 3.58 (t, 0.5H, H-2β), 3.72-3.75 (complex, 1.5H, H-2α, H-5β), 4.00 (m, 1H, H-4α of Rha), 4.05-4.16 (complex, 1.5H), 4.21-4.27 (complex, 3H), 4.76 (d, J = 7.6 Hz, 0.5H, H-1β), 4.86 (s, 1H, H-1α of Rha), 4.91 (s, 0.5H, H-1β of Rha), 4.98-5.08 (complex, 4.6H), 5.23-5.26 (complex, 2H), 5.34 (d, J = 3.2 Hz, 1H, H-1α), 5.48 (t, 1H, H-3α); 13C-NMR (CDCl3, 100 MHz) δ 17.2, 17.5, 20.7×2, 20.8×3, 20.9×2, 21.0, 21.6, 62.1, 62.2, 67.2, 67.3, 67.5, 68.5, 68.6, 68.7, 70.0, 70.4, 71.0, 74.2, 77.4, 77.9, 79.3, 92.0, 75.7, 98.4, 99.2, 125.4, 128.3, 129.1, 137.9, 169.8, 169.9×2, 170.0, 170.1×2, 170.2, 170.4, 170.9×2.
スキーム10に示したように、化合物15の合成では、化合物8(291mg、0.503mmol)と化合物3(391mg、0.335mmol) を1,4-ジオキサン (17mL) に溶解させ、トリブチルホスフィン (252 μL、1.01 mmol)、1,1’-Azobis (N,N’-dimethylformamide) (TMAD) (173 mg、1.01 mmol) を室温で加え、60℃にて6時間攪拌した。反応終了をTLC (トルエン/酢酸エチル = 1/1、Rf値 = 0.4) にて確認後、酢酸エチルで希釈し、有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、減圧濃縮して得られたシラップをシリカゲルカラムクロマトグラフィーに供し、溶出液 (トルエン/酢酸エチル = 1.5/1) にて化合物14 (435mg、75%、α/β= 1/20) を得た。
[化合物14]
1H-NMR (CDCl3, 400 MHz) δ 0.50-1.18 (complex, 7H), 1.15 (d, 3H, H-6 of Rham), 1.24 (s, 3H), 1.40-2.32 (complex, 70H), 3.60 (m, 1H), 3.73 (m, 2H), 3.82-4.28 (complex, 10H), 4.40-4.48 (complex, 2H), 4.63 (d, J = 7.6 Hz, 1H), 4.72 (d, J = 8.0 Hz, 1H), 4.75-4.88 (complex, 3H), 4.98 (s, 1H), 5.01-5.18 (complex, 8H), 5.24-5.31 (complex, 4H), 5.32 (s, 1H), 5.71 (d, J = 7.6 Hz, 1H, H-1β), 6.31 (d, J = 3.0 Hz, 0.05H, H-1α); 13C-NMR (CDCl3, 100 MHz) δ 16.6, 17.4, 17.6, 20.5, 20.7×2, 20.8×3, 20.9×3, 21.6, 29.0, 39.5, 42.5, 44.1, 53.8, 57.9, 61.7, 66.6, 67.4, 68.0, 68.3, 68.5, 68.7, 69.7, 69.8, 70.8, 71.1, 71.4, 71.9×2, 72.4, 72.9, 74.2, 75.1, 86.6, 92.2, 96.4, 96.9, 97.7, 99.3, 125.4, 128.3, 129.1, 152.9, 169.0, 169.5, 169.8×2, 169.9, 170.0, 170.1, 170.2×2, 170.3, 170.5, 170.6, 170.9×2, 174.6.
[化合物15(β体)]
1H-NMR (pyridine-d5, 800 MHz) δ 0.68 (m, 1H), 0.86 (m, 1H), 0.98 (m, 1H), 1.11-1.15 (complex, 4H), 1.24 (m, 2H), 1.39 (m, 2H), 1.49 (s, 3H), 1.62 (m, 3H), 1.71 (d, 3H), 1.75 (d, 3H), 1.88 (m, 1H), 1.93 (m, 1H), 2.00 (m, 2H), 2.11 (m, 2H), 2.19 (m, 2H), 2.46 (m, 1H), 2.66 (m, 1H), 3.62 (m, 1H), 3.91 (m, 1H), 3.97-4.10 (complex, 5H), 4.17-4.42 (complex, 11H), 4.49 (m, 1H), 4.51-4.59 (complex, 3H), 4.73 (m, 1H), 4.82 (m, 1H), 4.87 (m, 1H), 4.98 (d, J = 8.0 Hz,1H), 5.08 (s, 1H), 5.10 (d, J = 7.2 Hz, 1H), 5.66 (s, 1H), 6.26 (d, J = 7.2 Hz, 1H), 6.41 (s, 1H), 6.47 (s, 1H); 13C-NMR (pyridine-d5, 200 MHz) δ 17.1, 19.2×2, 20.1, 20.9, 22.3, 29.6, 37.9, 38.2, 39.9, 40.9, 41.9, 42.8, 43.7, 44.5, 48.4, 54.1, 58.3, 62.3, 62.4, 62.5, 69.8×2, 70.2, 71.2, 71.6, 72.4, 72.5, 72.6, 74.0, 74.1, 75.2, 76.4, 76.8, 77.4, 78.5, 78.8, 79.0, 79.5, 86.9, 89.8, 94.0, 98.4, 101.8, 101.9, 104.4, 105.3, 154.5, 176.2.
[α]D = -46.3°(c 0.05, MeOH)
MALDI-TOF-MS m/z found [M + Na]+1119.5, C50H80O26calcd for [M + Na]+1119.5.
(1)合成経路の概要
スキーム11に示したように、新規ステビオール配糖体2(化合物17)の合成では、ステビオールグリコシド (化合物3) と3糖ヘミアセタール体 (化合物13) を、光延反応で縮合することで、新規ステビオール配糖体2の骨格を得る事とした。ステビオールグリコシド の合成では、既知の天然物であるレバウディオサイドC (化合物1) をArk Pharm社から購入し、ステビオール19位のエステル結合をアルカリ加水分解後、糖鎖の水酸基をアセチル (Ac) 基で保護することで、ステビオールグリコシドを得た。3糖ヘミアセタール体の合成では、適切に保護されたグルコースアクセプター (化合物4) とラムノースドナー (化合物5) の縮合反応から2糖アクセプター(化合物9)を合成し、グルコースドナー(化合物10)との縮合反応によって、3糖骨格とした。得られた3糖の還元末端1位の保護基を脱保護することで、3糖ヘミアセタール体を得た。ステビオールグリコシドと3糖ヘミアセタール体を、光延反応で縮合したところ、44% (α/β= 1/10) と良好な収率且つ高いβ選択性で反応が進行した。得られた化合物の保護基を脱保護することで、新規ステビオール配糖体2を得た。
次に、各合成工程について説明する。
ステビオールグリコシドの合成は、「新規ステビオール配糖体1の合成」の場合と同様の方法で行った。
[化合物11]
1H-NMR (CDCl3, 400 MHz) δ 1.16 (d, J = 6.0 Hz, 1H, H-6 of Rha), 1.94-2.19 (complex, 21H, OAc), 3.43-3.52 (complex, 2H), 3.62-3.81 (complex, 5H, OMe), 3.96-4.04 (complex, 2H), 4.07-4.18 (complex, 3H), 4.28-4.35 (complex, 2H), 4.86 (d, J = 8.0 Hz, 1H, H-1), 4.94-4.98 (complex, 2H, H-1), 5.01-5.11 (complex, 2H), 5.16-5.21 (complex, 2H), 5.28 (s, 2H, H-1 of Rha), 5.52 (s, 1H, PhCH), 6.90 (dd, 4H, PhOMe), 7.31-7.49 (complex, 5H, Ph); 13C-NMR (CDCl3, 100 MHz) δ 14.3, 17.3, 20.4, 20.7, 20.9×3, 21.0, 21.1, 55.8, 60.5, 62.0, 66.3, 66.9, 68.3, 68.7, 69.3, 69.4, 70.7, 71.6, 71.9, 72.9, 78.9, 81.0, 97.7, 99.3, 100.7, 101.6, 114.8, 118.4, 126.2, 128.4, 129.4, 137.1, 150.7, 155.8, 169.4, 169.5, 170.0, 170.2, 170.4, 170.5, 170.8, 171.2.
[化合物13]
1H-NMR (CDCl3, 400 MHz) δ 1.18 (d, J = 6.4 Hz, 1H, H-6 of Rha), 1.93-2.19 (complex, 27H, OAc), 3.60 (t, 1.6H, H-2β), 3.68 (m, 1.2H, H-5β), 3.78 (m, 1.4H, H-5’β), 3.97 (t, 1H, H-3β), 4.03 (dd, 1H, H-6’β), 4.15 (m, 2.3H, H-6β,H-6β), 4.22 (m, 1.2H, H-5β of Rha), 4.43 (dd, 1.2H, H-6’β), 4.67 (d, J = 7.6 Hz, 1H, H-1β), 4.77 (d, J = 8.0 Hz, 1H, H-1’β), 4.82-4.91 (complex, 2.4H, H-4β, H-2’β), 5.06-5.14 (complex, 2.3H, H-4’β, H-4β of Rha), 5.16 (s, 1H, H-1 of Rha), 5.26-5.33 (complex, 2.4H, H-3’β, H-3β of Rha), 5.39 (m, 1.1H, H-2β of Rha); 13C-NMR (CDCl3, 100 MHz) δ 17.3, 17.5, 20.6, 20.7×2, 20.8×3, 20.9×2, 21.6, 29.8, 31.1, 61.7, 61.8, 62.4, 67.4, 67.6, 67.9, 68.0, 68.1×2, 68.3, 68.8×2, 69.5, 69.9, 70.6×2, 71.5, 71.8, 71.9, 72.1, 72.3, 72.8, 73.0, 75.5, 79.9, 80.1, 80.5, 91.9, 95.8, 98.1, 98.9, 99.6, 99.8, 125.4, 128.4, 129.2, 169.1, 169.4, 169.5, 169.6, 169.7, 170.0×3, 170.1, 170.4, 170.5×2, 170.7.
スキーム13に示したように、化合物17の合成では、化合物13 (468mg、0.540mmol)と化合物3(420mg、0.360mmol) を1,4-ジオキサン (18mL) に溶解させ、トリブチルホスフィン (270μL、1.08mmol)、1,1’-Azobis (N,N’-dimethylformamide) (TMAD) (186mg、1.08mmol) を室温で加え、60℃にて6時間攪拌した。反応終了をTLC (トルエン/酢酸エチル = 1/1、Rf値 = 0.4) にて確認後、酢酸エチルで希釈し、有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別し、減圧濃縮して得られたシラップをシリカゲルカラムクロマトグラフィーに供し、溶出液 (トルエン/酢酸エチル = 1.5/1) および (トルエン/アセトン = 3/1)にて化合物16(320mg、44%、α/β= 1/10) を得た。
[化合物16]
1H-NMR (CDCl3, 400 MHz) δ 0.45-1.18 (complex, 8H), 1.28 (d, 3H, H-6 of Rham), 1.40-1.81 (complex, 20H), 1.81-2.35 (complex, 54H, OAc), 3.60 (m, 1.2H), 3.71-3.78 (complex, 3H), 3.81-3.91 (complex, 2.4H), 3.98-4.20 (complex, 10H), 4.40-4.50 (complex, 3.4H), 4.62 (d, J = 8.0 Hz, 1.1H, H-1), 4.73 (d, J = 8.0 Hz, 1H, H-1), 4.75-4.91 (complex, 7H), 4.96-5.12 (complex, 7H), 5.17 (s, 1H, H-1 of Rha), 5.21-5.31 (complex, 6H), 5.32 (s, 1H, H-1 of Rha), 5.38 (t, 1.1H), 5.60 (d, J = 8.0 Hz, 1H, H-1β), 6.22 (d, J = 3.0 Hz, 0.1H, H-1α); 13C-NMR (CDCl3, 100 MHz) δ 16.7, 17.5, 20.5, 20.7×2, 20.8×2, 20.9×2, 21.0, 21.6, 29.0, 39.6, 42.5, 44.0, 53.9, 58.1, 61.7, 66.7, 67.6, 68.0, 68.1, 68.3, 68.5, 69.8, 70.2, 70.7, 71.2, 71.4, 71.8, 71.9, 72.2, 72.4, 72.8, 72.9, 75.2, 80.3, 81.4, 86.6, 92.2, 96.4, 96.9, 99.3, 99.8, 125.4, 128.4, 129. 2, 138.0, 152.9, 169.0, 169.3, 169.5×2, 169.6×2, 169.8, 170.1×3, 170.2, 170.5, 170.6, 170.9×2, 174.7.
[化合物17(β体)]
1H-NMR (pyridine-d5, 800 MHz) δ 0.67 (m, 1H), 0.86 (m, 1H), 0.96 (m, 1H), 1.07 (m, 1H), 1.14 (s, 3H), 1.26 (m, 1H), 1.36 (m, 1H), 1.41 (m, 1H), 1.48 (s, 3H), 1.61 (m, 3H), 1.70 (m, 6H), 1.87-2.21 (complex, 11H), 2.46 (m, 1H), 2.57 (m, 1H), 3.63 (m, 1H), 3.85 (m, 1H), 3.95-4.09 (complex, 8H), 4.14-4.31 (complex, 14H), 4.33 (m, 1H), 4.45 (m, 2H), 4.55 (m, 3H), 4.78 (m, 1H), 4.82 (m, 1H), 4.86 (m, 1H), 4.98 (d, J = 8.0 Hz, 1H), 5.05-5.11 (complex, 3H), 5.66 (s, 1H), 6.17 (d, J = 8.0 Hz, 1H), 6.24 (s, 1H), 6.46 (s, 1H); 13C-NMR (pyridine-d5, 200 MHz) δ 17.0, 19.2, 20.1, 20.9, 22.3, 29.6, 37.8, 38.3, 39.9, 40.8, 41.9, 42.7, 43.7, 44.5, 48.4, 54.2, 58.4, 61.9, 62.4, 62.5, 69.1, 69.8×2, 70.5, 71.6, 71.7, 72.3, 72.4, 72.5×2, 73.9, 74.1, 75.2, 76.4, 76.5, 77.5, 78.3, 78.4, 78.5, 78.8×2, 86.9, 88.8, 89.8, 93.8, 98.4, 101.8, 101.9, 104.4, 104.5, 105.3, 154.4, 176.0.
[α]D = -44.5°(c 0.1, MeOH)
MALDI-TOF-MS m/z found [M + Na]+1281.4, C56H90O31calcd for [M + Na]+1281.5.
(i)と同条件で、HPLC- 高分解能MS/MSおよびMS3断片化による新規ステビオール配糖体1の化学合成品(化合物15のβ体)とステビア葉抽出液の比較を行った結果、保持時間29.1分のピークで化学合成品とステビア葉抽出液からのピークが検出された(図14)。また、それぞれのMS/MSおよびMS3断片化マススペクトル(図15)も一致した。この結果から、植物体の抽出液から得られた新規ステビオール配糖体1は化合物15のβ体と同じ構造を有することが確認された。
酵母において、ステビオールから新規ステビオール配糖体を生成させた。まず、ステビア由来の配糖化酵素遺伝子UGT85C2、UGT91D2、UGT74G1、UGT76G1の4種と、シロイヌナズナ由来UDP-ラムノース合成酵素遺伝子AtRHM2を同時に発現させる酵母を育種した。
UGT85C2遺伝子増幅用プライマーセット
CACC-NdeI-SrUGT85C2-Fw(下線部NdeI認識部位):
5’-CACCCATATGGATGCAATGGCTACAACTGAGAA-3’(配列番号12)
BglII-SrUGT85C2-Rv(下線部BglII認識部位):
5’-AGATCTCTAGTTTCTTGCTAGCACGGTGATTT-3’(配列番号13)
UGT91D2遺伝子増幅用プライマーセット
SrUGT91D2-pET15b-FW
5’-TGCCGCGCGGCAGCCATATGTACAACGTTACTTATCATC-3’(配列番号35)
SrUGT91D2-pET15b-RV
5’-GTTAGCAGCCGGATCCTTAACTCTCATGATCGATGGCAA-3’(配列番号36)
UGT74G1遺伝子増幅用プライマーセット
CACC-NdeI-SrUGT74G1-Fw(下線部NdeI認識部位):
5’-CACCCATATGGCGGAACAACAAAAGATCAAGAAAT-3’ (配列番号14)
BamHI-SrUGT74G1-Rv(下線部BamHI認識部位):
5’-GGATCCTTAAGCCTTAATTAGCTCACTTACAAATT-3’ (配列番号15)
UGT76G1遺伝子増幅用プライマーセット
CACC-NdeI-SrUGT76G1-Fw(下線部NdeI認識部位):
5’-CACCCATATGGAAAATAAAACGGAGACCA-3’ (配列番号16)
BamHI-SrUGT76G1-Rv(下線部BamHI認識部位):
5’-GGATCCTTACAACGATGAAATGTAAGAAACTA-3’ (配列番号17)
このPCR産物はpENTR-TOPO Directionalベクター(Invitrogen)に製造業者が推奨する方法でサブクローニングした。DNA Sequencer model 3100(Applied Biosystems)を用い、合成オリゴヌクレオチドプライマーによるプライマーウォーキング法によって配列を決定し、目的のUGT遺伝子、すなわちUGT85C2、UGT91D2、UGT74G1、UGT76G1の全てのUGT遺伝子がクローニングできたことを確認した。
これらのUGT遺伝子、およびシロイヌナズナ由来のUDP-ラムノース合成酵素遺伝子AtRHM2(J Biol Chem 2007 Oka et. al)を酵母発現ベクターに組み込むために下記のプライマーセットを設計した。
SrUGT85C2セット
Bgl2-UGT85C2-F(下線部BglII認識部位):
5’-ACAGATCTATGGATGCAATGGCTACAACTGAGA-3’ (配列番号18)
Sal-UGT85C2-R(下線部SalI認識部位):
5’-TAGTCGACTAGTTTCTTGCTAGCACGGTGATTTC-3’ (配列番号19)
SrUGT91D2セット
NotI-UGT91DIL3-F(下線部NotI認識部位):
5’-AAGCGGCCGCATGTACAACGTTACTTATCATCAAAATTCAAA-3’ (配列番号20)
Pac-UGT91D1L3-R(下線部PacI認識部位):
5’-CGTTAATTAACTCTCATGATCGATGGCAACC-3’ (配列番号21)
SrUGT74G1セット
Not-UGT74G1-F(下線部NotI認識部位):
5’-AAGCGGCCGCATGGCGGAACAACAAAAGATCAAG-3’ (配列番号22)
Pac-UGT74G1-R(下線部PacI認識部位):
5’-CGTTAATTAAGCCTTAATTAGCTCACTTACAAATTCG-3’ (配列番号23)
SrUGT76G1セット
Bam-UGT76G1-F(下線部BamHI認識部位):
5’-AAGGATCCATGGAAAATAAAACGGAGACCACCG-3’ (配列番号24)
Sal-UGT76G1-R(下線部SalI認識部位):
5’-GCGTCGACTTACAACGATGAAATGTAAGAAACTAGAGACTCTAA-3’ (配列番号25)
AtRHM2セット
Bam-AtRHM2-F(下線部BamHI認識部位):
5’-GGATCCATGGATGATACTACGTATAAGCCAAAG-3’ (配列番号26)
Xho-AtRHM2-R(下線部XhoI認識部位):
5’-CTCGAGTTAGGTTCTCTTGTTTGGTTCAAAGA-3’ (配列番号27)
(1)プラスミドpESC-URA-UGT56の構築
UGT85C2を制限酵素BglIIと制限酵素SalIで切り出し、ベクターpESC-URA(ストラタジーン)を制限酵素BamHIと制限酵素SalIで切断したものと連結して、プラスミドpESC-URA-UGT-5を得た。このプラスミドpESC-URA-UGT-5を制限酵素NotIと制限酵素PacIで切断したものと、UGT91D2を制限酵素NotIと制限酵素PacIで切り出したものを連結し、pESC-URA-UGT56を得た。
(2)プラスミドpESC-HIS-UGT78の構築
UGT76G1を制限酵素BamHIと制限酵素SalIで切り出し、ベクターpESC-HIS(ストラタジーン)を同じ制限酵素で切断したものを連結し、プラスミドpESC-HIS-UGT-8を得た。このプラスミドpESC-HIS-UGT-8を制限酵素NotIと制限酵素PacIで切断したものと、UGT74G1をNotIとPacIで切り出したものを連結し、pESC-HIS-UGT78を得た。
(3)プラスミドpESC-TRP-AtRHM2の構築
AtAHM2を制限酵素BamHIと制限酵素XhoIで切り出し、ベクターpESC-TRP(ストラタジーン)を同じ制限酵素で切断したものを連結し、プラスミドpESC-TRP-AtAHM2を得た。
Saccharomyces cerevisiae YPH499株(ura3-52 lys2-801amberade2-101ochre trp1-Δ63 his3-Δ200 leu2-Δ1 a)を宿主として、酢酸リチウム法で、表2のプラスミドを導入した。形質転換株として、SC-Trp&Ura&His寒天培地(1Lあたり、Yeast nitrogen baase without amino acids 6.7g、グルコース 20g、アミノ酸ミックスパウダー-Trp&Ura&His 1.3g、Bacto agar 20g)で生育するものを選抜した。
得られた形質転換株を以下の通り培養した。
まず、前培養としてSC-Trp&Ura&His液体培地(SC- Trp&Ura&His寒天培地のBacto agarを除く)10 mlに、それぞれの形質転換株を植菌し、30℃で1日間振とう培養した。次に、本培養として前培養液のうち、1 mlを10 mlのSG-Trp&Ura&His液体培地(1Lあたり、Yeast nitrogen baase without amino acids 6.7g、ガラクトース 20g、アミノ酸ミックスパウダー-Trp&Ura&His 1.3g)に植菌し、30℃で2日間振とう培養した。
UGT85C2発現確認用
UGT85C2-r1:
5’-CAAGTCCCCAACCAAATTCCGT-3’ (配列番号28)
UGT91D2発現確認用
UGT91D1L3-r1:
5’-CACGAACCCGTCTGGCAACTC-3’ (配列番号29)
UGT74G1発現確認用
UGT74G1-r1:
5’-CCCGTGTGATTTCTTCCACTTGTTC-3’ (配列番号30)
UGT76G1発現確認用
UGT76G1-r1:
5’-CAAGAACCCATCTGGCAACGG-3’ (配列番号31)
AtAHM2 発現確認用
AtAHM2-r1
5’-GCTTTGTCACCAGAATCACCATT-3’ (配列番号32)
GAL10p領域 (プロモーター領域)
PGAL10-f3:
5’-GATTATTAAACTTCTTTGCGTCCATCCA-3’ (配列番号33)
GAL1p領域(プロモーター領域)
PGAL1-f3:
5’-CCTCTATACTTTAACGTCAAGGAGAAAAAACC-3’ (配列番号34)
UGT85C2:UGT85C2-r1(配列番号28)とPGAL1-f3(配列番号34)
UGT91D2またはUGT91D2L3:UGT91D1L3-r1(配列番号29)とPGAL10-f3(配列番号33)
UGT74G1:UGT74G1-r1(配列番号30)とPGAL1-f3(配列番号34)
UGT76G1:UGT76G1-r1(配列番号31)とPGAL10-f3(配列番号33)
AtAHM2:AtAHM2-r1(配列番号32)とPGAL10-f3(配列番号33)
これにより、形質転換株で、導入した遺伝子が発現していることが確認できた。
培養は、本培養用の液体培地に培地1 mlあたり0.5μgまたは2μgのステビオール(ChromaDex Inc.)を添加した以外は、上記実施例と同様の条件で行った。培養終了後、培養液を遠心分離により、上清と菌体に分離した。培養上清を、アセトニトリルで洗浄後、水で平衡化したSep-Pak C18カラムに供し、20% アセトニトリルで洗浄後、80%アセトニトリルで溶出し、乾固後、少量の80% アセトニトリルに溶解して配糖体サンプルを調製した。この配糖体サンプルを以下の分析に供した。
LC-MSによる分析は、「新規ステビオール配糖体の単離」についての実施例に記載のとおり分析した。
新規ステビオール配糖体の甘味度を評価するため、Brix0.5から3まで0.5刻となるようショ糖を純水に添加したサンプルを調製した。新規ステビオール配糖体2と同じ構造を有する化合物17を1,700ppmとなるように純水に添加してサンプルを調製した。ここで、化合物17中に含まれるα体とβ体との比率(α:β、モル比)は1:10であった。
各種ステビオール配糖体の味質の評価を行うため、図20に示した添加量となるようにReb.Aと、Reb.Dと、新規ステビオール配糖体2と同じ構造を有する化合物17とをそれぞれ純水に添加して、飲料サンプルを調製した。飲料サンプルは全て、甘味度をReb.Aについては300、Reb.Dについては250、新規配糖体2(化合物17)については14.7として、ショ糖(スクロース)換算のBrixが最終的に2となるように調整した。
新規ステビオール配糖体1および2それぞれの粉体における香味を評価した。具体的には、化学合成によって得られた化合物15(新規ステビオール配糖体1に対応)と化合物17(新規ステビオール配糖体2に対応)を高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)を用いてβ体のみを単離し、粉体状としたものについて香味を評価した。甘味料の官能に関して訓練を受けた者(3名:サントリー食品インターナショナル株式会社)がパネラーとなって評価を行った。結果を表3に示す。
Claims (16)
- 植物由来物、化学合成物、または生合成物である、請求項1に記載の化合物。
- 請求項1または2に記載の化合物を含む、飲食品。
- 請求項1または2に記載の化合物を含む、甘味料組成物。
- レバウディオサイドA、レバウディオサイドB、レバウディオサイドC、レバウディオサイドD、レバウディオサイドE,レバウディオサイドF、レバウディオサイドI、レバウディオサイドJ、レバウディオサイドK、レバウディオサイドN、レバウディオサイドM、レバウディオサイドO、レバウディオサイドQ、レバウディオサイドR、ズルコサイドA、ズルコサイドC、ルブソシド、ステビオール、ステビオールモノシド、ステビオールビオシドおよびステビオシドからなる群から選択される一種以上のステビオール配糖体をさらに含む、請求項4に記載の甘味料組成物。
- 請求項4または5に記載の甘味料組成物を含む飲食品。
- 飲料である、請求項6に記載の飲食品。
- 請求項1に記載の化合物を含む植物体。
- 請求項8に記載の植物体の、請求項1に記載の化合物を含む抽出物。
- 請求項8に記載の植物体または請求項9に記載の植物体の抽出物を含む飲食品。
- 飲料である請求項10に記載の飲食品。
- 請求項1に記載の化合物の製造方法であって、
(A)下記式(4):
(式中、glcはグルコースを表し、rhaはラムノースを表す)
で示されるレバウディオサイドCから、下記式(5):
(式中、p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す。)
で示される中間体1を調製する工程と
(B)グルコピラノシド誘導体から式(6):
で示される中間体2、または式(7):
(式中、p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す)
で示される中間体3を調製する工程と、
(C)前記中間体1と、前記中間体2または3とを、ホスフィン試薬およびアゾ化合物の存在下で反応させ、下記式(8):
(式中、
R1は、式(9)または式(10):
の糖鎖を表し、
p-glcは少なくとも一つのヒドロキシル基が保護基で保護されているグルコースを表し、p-rhaは少なくとも一つのヒドロキシル基が保護基で保護されているラムノースを表す)
で示される中間体4を得る工程を含む、方法。 - 請求項1または2に記載の化合物の甘味料としての使用。
- 請求項1に記載の化合物の製造方法であって、下記(a)~(g):
(a)配列番号2のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位の水酸基にグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド;
(b)配列番号4のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のカルボン酸にグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号6のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位に結合したグルコースに1→2結合でラムノースを付加する活性を有するタンパク質をコードするポリヌクレオチド;
(d)配列番号8のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の13位のグルコースの3位に1→3結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド;
(e)配列番号6のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のグルコースに、1→2結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド;
(f)配列番号8のアミノ酸配列に対して90%以上の同一性を有し、かつ、ステビオール配糖体の19位のグルコースに、1→3結合でグルコースを付加する活性を有するタンパク質をコードするポリヌクレオチド;および
(g)配列番号10のアミノ酸配列に対して90%以上の同一性を有し、かつ、UDP-グルコースからUDP-ラムノースを生成する活性を有するタンパク質をコードするポリヌクレオチド
の少なくとも1つのポリヌクレオチドを導入した非ヒト形質転換体を用いることを特徴とする方法。 - 前記非ヒト形質転換体が酵母である、請求項14に記載の方法。
- ステビオールを含む培地で前記非ヒト形質転換体の培養を行うことを特徴とする、請求項14又は15に記載の方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019510000A JP6789382B2 (ja) | 2017-03-31 | 2018-03-28 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
SG11201908370V SG11201908370VA (en) | 2017-03-31 | 2018-03-28 | Novel steviol glycoside and production method therefor, and sweetener composition containing same |
NZ758479A NZ758479A (en) | 2017-03-31 | 2018-03-28 | Novel steviol glycoside and production method therefor, and sweetener composition containing same |
ES18774610T ES2942429T3 (es) | 2017-03-31 | 2018-03-28 | Nuevo glucósido de esteviol y método de producción del mismo, y composición edulcorante que lo contiene |
AU2018243332A AU2018243332B2 (en) | 2017-03-31 | 2018-03-28 | Novel steviol glycoside and production method therefor, and sweetener composition containing same |
EP18774610.2A EP3611179B1 (en) | 2017-03-31 | 2018-03-28 | Novel steviol glycoside and production method therefor, and sweetener composition containing same |
BR112019020304-4A BR112019020304B1 (pt) | 2017-03-31 | 2018-03-28 | Composto, alimento ou bebida, composição edulcorante, método para produzir o composto, uso do composto, e, agente de controle de sabor |
CN201880021489.7A CN110621686A (zh) | 2017-03-31 | 2018-03-28 | 新型甜菊醇糖苷及其制造方法,以及含有该物质的甜味剂组合物 |
US16/498,034 US11873521B2 (en) | 2017-03-31 | 2018-03-28 | Steviol glycoside and production method therefor, and sweetener composition containing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071457 | 2017-03-31 | ||
JP2017-071457 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181515A1 true WO2018181515A1 (ja) | 2018-10-04 |
Family
ID=63676201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012845 WO2018181515A1 (ja) | 2017-03-31 | 2018-03-28 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11873521B2 (ja) |
EP (1) | EP3611179B1 (ja) |
JP (2) | JP6789382B2 (ja) |
CN (1) | CN110621686A (ja) |
AU (1) | AU2018243332B2 (ja) |
BR (1) | BR112019020304B1 (ja) |
ES (1) | ES2942429T3 (ja) |
NZ (1) | NZ758479A (ja) |
SG (2) | SG10202111903TA (ja) |
WO (1) | WO2018181515A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138365A1 (ja) * | 2018-12-28 | 2020-07-02 | サントリーホールディングス株式会社 | チラミン低含有ステビア植物 |
WO2020218382A1 (ja) * | 2019-04-26 | 2020-10-29 | サントリーホールディングス株式会社 | Glp-1分泌促進剤 |
WO2021020516A1 (ja) | 2019-07-31 | 2021-02-04 | サントリーホールディングス株式会社 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
WO2021020517A1 (ja) | 2019-07-31 | 2021-02-04 | サントリーホールディングス株式会社 | 新規ステビオール配糖体を含む植物体 |
WO2021029338A1 (ja) | 2019-08-09 | 2021-02-18 | サントリーホールディングス株式会社 | 泡保持性を有する飲料および飲料における泡保持性を改善する方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017388705B2 (en) | 2016-12-27 | 2024-03-14 | Suntory Holdings Limited | High rebaudioside C-content stevia plant |
WO2021252814A1 (en) * | 2020-06-11 | 2021-12-16 | Corn Products Development, Inc. | Production and uses of oligosaccharides and steviol glycosides |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3436317B2 (ja) | 1993-11-24 | 2003-08-11 | 大日本インキ化学工業株式会社 | ステビア甘味料の製造方法 |
JP2005287403A (ja) | 2004-03-31 | 2005-10-20 | Suntory Ltd | 脂質生産菌の育種方法およびその利用 |
WO2010038911A1 (en) * | 2008-10-03 | 2010-04-08 | Morita Kagaku Kogyo Co., Ltd. | New steviol glycoside |
WO2016090460A1 (en) | 2014-12-08 | 2016-06-16 | Qibin Wang | High rebaudioside-c plant varietal and compositions extracted therefrom with high rebaudioside-c and total steviol glycoside content |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4361697A (en) * | 1981-05-21 | 1982-11-30 | F. K. Suzuki International, Inc. | Extraction, separation and recovery of diterpene glycosides from Stevia rebaudiana plants |
US4612942A (en) * | 1984-03-08 | 1986-09-23 | Stevia Company, Inc. | Flavor enhancing and modifying materials |
JPH10271928A (ja) | 1997-01-30 | 1998-10-13 | Morita Kagaku Kogyo Kk | ステビア・レバウディアナ・ベルトニーに属する新植物 |
WO2009149577A1 (en) | 2008-06-13 | 2009-12-17 | Givaudan Sa | Methods of identifying modulators of the bitter taste receptor tas2r44 |
PL2482676T3 (pl) | 2009-06-16 | 2015-03-31 | Epc Beijing Natural Products Co Ltd | Zmniejszanie lub eliminowanie posmaku w słodziku przy użyciu rebaudiozydu D |
CN105671108A (zh) * | 2010-06-02 | 2016-06-15 | 沃维公司 | 甜菊糖苷的重组生产 |
CN105283464B (zh) | 2013-03-15 | 2018-02-13 | 可口可乐公司 | 甜菊醇糖苷、其组合物以及其纯化 |
CA2939784C (en) | 2014-02-18 | 2023-01-24 | Mcneil Nutritionals, Llc | Process for separation, isolation and characterization of steviol glycosides |
US10612065B2 (en) | 2015-05-29 | 2020-04-07 | Cargill, Incorporated | Heat treatment to produce glycosides |
-
2018
- 2018-03-28 AU AU2018243332A patent/AU2018243332B2/en active Active
- 2018-03-28 ES ES18774610T patent/ES2942429T3/es active Active
- 2018-03-28 WO PCT/JP2018/012845 patent/WO2018181515A1/ja active Application Filing
- 2018-03-28 EP EP18774610.2A patent/EP3611179B1/en active Active
- 2018-03-28 BR BR112019020304-4A patent/BR112019020304B1/pt active IP Right Grant
- 2018-03-28 NZ NZ758479A patent/NZ758479A/en unknown
- 2018-03-28 SG SG10202111903TA patent/SG10202111903TA/en unknown
- 2018-03-28 US US16/498,034 patent/US11873521B2/en active Active
- 2018-03-28 JP JP2019510000A patent/JP6789382B2/ja active Active
- 2018-03-28 CN CN201880021489.7A patent/CN110621686A/zh active Pending
- 2018-03-28 SG SG11201908370V patent/SG11201908370VA/en unknown
-
2020
- 2020-11-02 JP JP2020183592A patent/JP7225183B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3436317B2 (ja) | 1993-11-24 | 2003-08-11 | 大日本インキ化学工業株式会社 | ステビア甘味料の製造方法 |
JP2005287403A (ja) | 2004-03-31 | 2005-10-20 | Suntory Ltd | 脂質生産菌の育種方法およびその利用 |
WO2010038911A1 (en) * | 2008-10-03 | 2010-04-08 | Morita Kagaku Kogyo Co., Ltd. | New steviol glycoside |
WO2016090460A1 (en) | 2014-12-08 | 2016-06-16 | Qibin Wang | High rebaudioside-c plant varietal and compositions extracted therefrom with high rebaudioside-c and total steviol glycoside content |
Non-Patent Citations (15)
Title |
---|
"Methods in yeast genetics", 2000, A COLD SPRING HARBOR LABORATORY COURSE MANUAL |
"Methods in Yeast Genetics, A laboratory manual", COLD SPRING HARBOR LABORATORY PRESS |
BRANDLE, J. ET AL.: "Genetic control of rebaudioside A and C concentration in leaves of the sweet herb, Stevia rebaudiana", CAN. J. PLANT SCI., vol. 79, 1999, pages 85 - 92, XP000872153 * |
CEUNEN, S. ET AL.: "Steviol glycosides: chemical diversity, metabolism, and function", JOURNAL OF NATURAL PRODUCTS, vol. 76, 2013, pages 1201 - 1228, XP002769526 * |
GARDANA, C. ET AL.: "Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography-mass spectrometry", JOURNAL OF CHROMATOGRAPHY A, vol. 1217, no. 9, 2010, pages 1463 - 1470, XP026885937 * |
HUSSAIN ET AL., GENE, vol. 101, 1991, pages 149 |
J. BACTERIOLOGY, vol. 153, 1983, pages 163 |
JUNJI INOKOSHI ET AL., JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 64, 1992, pages 660 |
MACKENXIE, D. A. ET AL., APPL. ENVIRON. MICROBIOL., vol. 66, 2000, pages 4655 - 4661 |
MARIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 337 |
OHTA, M. ET AL.: "Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita", APPL. GLYCOSCI., vol. 57, no. 3, 2010, pages 199 - 209, XP055121080 * |
PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", vol. 3, 2001, COLD SPRING HARBOUR LABORATORY PRESS |
See also references of EP3611179A4 |
STARRATT, A. N. ET AL.: "Rebaudioside F, a di terpene glycoside from Stevia rebaudiana", PHYTOCHEMISTRY, vol. 59, no. 4, 2002, pages 367 - 370, XP004335033 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138365A1 (ja) * | 2018-12-28 | 2020-07-02 | サントリーホールディングス株式会社 | チラミン低含有ステビア植物 |
JPWO2020138365A1 (ja) * | 2018-12-28 | 2021-11-04 | サントリーホールディングス株式会社 | チラミン低含有ステビア植物 |
WO2020218382A1 (ja) * | 2019-04-26 | 2020-10-29 | サントリーホールディングス株式会社 | Glp-1分泌促進剤 |
WO2021020516A1 (ja) | 2019-07-31 | 2021-02-04 | サントリーホールディングス株式会社 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
WO2021020517A1 (ja) | 2019-07-31 | 2021-02-04 | サントリーホールディングス株式会社 | 新規ステビオール配糖体を含む植物体 |
JPWO2021020516A1 (ja) * | 2019-07-31 | 2021-10-28 | サントリーホールディングス株式会社 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
JP7002703B2 (ja) | 2019-07-31 | 2022-02-04 | サントリーホールディングス株式会社 | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 |
AU2020320849B2 (en) * | 2019-07-31 | 2023-11-16 | Suntory Holdings Limited | Novel steviol glycoside, method for producing same, and sweetener composition containing same |
WO2021029338A1 (ja) | 2019-08-09 | 2021-02-18 | サントリーホールディングス株式会社 | 泡保持性を有する飲料および飲料における泡保持性を改善する方法 |
Also Published As
Publication number | Publication date |
---|---|
BR112019020304B1 (pt) | 2023-12-05 |
CN110621686A (zh) | 2019-12-27 |
US20200224235A1 (en) | 2020-07-16 |
SG10202111903TA (en) | 2021-12-30 |
EP3611179A1 (en) | 2020-02-19 |
JP2021035965A (ja) | 2021-03-04 |
EP3611179B1 (en) | 2023-03-01 |
ES2942429T3 (es) | 2023-06-01 |
SG11201908370VA (en) | 2019-10-30 |
EP3611179A4 (en) | 2020-12-09 |
JP7225183B2 (ja) | 2023-02-20 |
US11873521B2 (en) | 2024-01-16 |
NZ758479A (en) | 2023-06-30 |
JPWO2018181515A1 (ja) | 2020-02-06 |
AU2018243332A1 (en) | 2019-11-14 |
BR112019020304A2 (pt) | 2020-04-28 |
JP6789382B2 (ja) | 2020-11-25 |
AU2018243332B2 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7225183B2 (ja) | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 | |
JP6970689B2 (ja) | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 | |
JP7002703B2 (ja) | 新規ステビオール配糖体およびその製造方法、ならびにそれを含む甘味料組成物 | |
JP2022513480A (ja) | 変異型ステビオール配糖体の生合成製造 | |
CN114173555B (zh) | 含有新型甜菊醇糖苷的植物体 | |
BR112019013208B1 (pt) | Composto, composição de adoçante, alimento ou bebida, método para produzir o composto, uso do composto, e, agente de controle do sabor | |
WO2024010074A1 (ja) | ステビオール配糖体生合成変異酵素とその利用 | |
NZ785123B2 (en) | Novel steviol glycoside, method for producing same, and sweetener composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774610 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019510000 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019020304 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018774610 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018774610 Country of ref document: EP Effective date: 20191031 |
|
ENP | Entry into the national phase |
Ref document number: 2018243332 Country of ref document: AU Date of ref document: 20180328 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112019020304 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190927 |