[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018180333A1 - Control device for onboard power supply system, and onboard power supply system - Google Patents

Control device for onboard power supply system, and onboard power supply system Download PDF

Info

Publication number
WO2018180333A1
WO2018180333A1 PCT/JP2018/008951 JP2018008951W WO2018180333A1 WO 2018180333 A1 WO2018180333 A1 WO 2018180333A1 JP 2018008951 W JP2018008951 W JP 2018008951W WO 2018180333 A1 WO2018180333 A1 WO 2018180333A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power storage
storage unit
power supply
charging
Prior art date
Application number
PCT/JP2018/008951
Other languages
French (fr)
Japanese (ja)
Inventor
永典 蒲原
滋之 藤井
皓 滕
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2018180333A1 publication Critical patent/WO2018180333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control device for an in-vehicle power supply system and an in-vehicle power supply device.
  • the present invention has been made based on the above-described circumstances, and can be applied to an in-vehicle power supply system in which power is supplied by a power storage unit at least when a power supply unit fails, and it is determined that the power storage unit is in a deteriorated state. It is an object of the present invention to realize a control device in which necessary power is easily supplied from a power storage unit even when the power storage unit is continuously used.
  • the control device includes: A control device for an in-vehicle power supply system including an in-vehicle power source unit and an in-vehicle power storage unit that supplies power to the load when power supply from the power source unit to the load is interrupted, A charging circuit for charging the power storage unit; A voltage detection unit for detecting a charging voltage of the power storage unit; Based on the charging voltage detected by the voltage detection unit, a control unit that causes the charging circuit to perform a charging operation so that the charging voltage of the power storage unit reaches a charging target voltage; A deterioration determination unit that determines whether or not the power storage unit is in a predetermined deterioration state; Have The control unit sets the charging target voltage to a first target voltage when the deterioration determining unit determines that the power storage unit is not in the deteriorated state, and determines that the power storage unit is in the deteriorated state. In this case, the charging target voltage is set to a second target voltage that is larger than the first target voltage.
  • the on-vehicle power supply device includes the control device and a power storage unit.
  • the control device of the first aspect can determine whether or not the power storage unit is in a deteriorated state by the deterioration determination unit. Furthermore, when it is determined that the power storage unit is in a deteriorated state, the control unit performs the charging operation by setting the charge target voltage to a second target voltage that is higher than the first target voltage when not in the deteriorated state. The charging voltage of the power storage unit can be raised. Therefore, even if the use of the power storage unit is continued after it is determined that the power storage unit is in a deteriorated state, the required power for backup is easily supplied by the power storage unit.
  • the vehicle-mounted power supply device of the second aspect has the same effect as the control device of the first aspect.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle power supply system including an in-vehicle power supply device according to a first embodiment. It is a block diagram which shows notionally the relationship and related structure of each function performed with the control circuit of the vehicle-mounted power supply device of Example 1.
  • FIG. 3 is a flowchart illustrating a flow of charge control executed by a control circuit of the in-vehicle power supply device according to the first embodiment.
  • 4 is a flowchart illustrating a flow of deterioration determination during charge control in FIG. 3. It is a graph which illustrates the change of the charging voltage at the time of degradation determination control performed with the vehicle-mounted power supply device of Example 1, a charging current, and an electrical storage part (capacitor) temperature.
  • the control device may include a temperature detection unit that detects the temperature of the power storage unit, an internal resistance value detection unit that detects the internal resistance value of the power storage unit, and a capacity detection unit that detects the capacity of the power storage unit.
  • the deterioration determination unit is configured to determine whether the power storage unit is in a deteriorated state based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the capacity of the power storage unit detected by the capacity detection unit. It may be determined whether or not there is.
  • the deterioration determination unit includes the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the first information that defines the temperature and the rate of change of the internal resistance value in association with each other.
  • a first conversion value obtained by converting the internal resistance value detected by the internal resistance value detection unit to a value at the specified temperature is detected, and the temperature detected by the temperature detection unit and the capacitance detected by the capacitance detection unit
  • the limit value of the internal resistance determined by the third information is specified when the second conversion value is a capacitance, When one conversion value is larger than the limit value of the internal resistance, it may function to determine that the deterioration has occurred.
  • the control device may include a discharge circuit that performs a discharge operation in which a discharge current flows from the power storage unit to the load and a blocking operation that blocks the discharge current.
  • the control unit may function to cause the discharge circuit to perform a discharge operation when the power supply from the power supply unit is in an abnormal state where the power supply is reduced or cut off.
  • This control device can cause the discharge circuit to perform a discharge operation when the power supply unit is in a predetermined failure state, and can use the power storage unit as a backup power supply.
  • the power storage unit is continuously used after it is determined to be in a deteriorated state by the deterioration determination unit, and the power storage unit is used as a backup power source when the power supply from the power supply unit is reduced or shut off Therefore, the required power is easily supplied due to the effect of increasing the charging voltage.
  • An in-vehicle power supply system 100 (hereinafter also referred to as a power supply system 100) shown in FIG. 1 includes an in-vehicle power supply unit 91 (hereinafter also referred to as a power supply unit 91) that functions as a main power supply unit and an in-vehicle power supply unit that functions as a backup power supply.
  • Power storage unit 92 (hereinafter also referred to as power storage unit 92) and on-vehicle power supply system control device 2 (hereinafter also referred to as control device 2), and is configured as a system capable of supplying power to load 94.
  • the load 94 is illustrated as an electric power supply target.
  • the load 94 includes various electrical components such as a shift-by-wire control system and an electronically controlled brake system, and the type and number thereof are not limited. .
  • the power supply unit 91 is a power supply unit mounted on the vehicle and functions as a main power supply for supplying power to various objects.
  • the power supply unit 91 is configured as a known in-vehicle battery such as a lead battery, for example.
  • the power supply unit 91 has a high potential side terminal electrically connected to the wiring unit 81 and applies a predetermined output voltage to the wiring unit 81. In FIG. 1, fuses, ignition switches and the like are omitted.
  • the power storage unit 92 is configured by known power storage means such as an electric double layer capacitor (EDLC).
  • the power storage unit 92 is electrically connected to the charging circuit 3A and the discharging circuit 3B via the conductive path 9, and is charged by the charging circuit 3A and discharged by the discharging circuit 3B.
  • the power storage unit 92 applies an output voltage corresponding to the degree of charge to the conductive path 9.
  • the power storage unit 92 functions as a backup power source and becomes a power supply source when power supply from at least the power supply unit 91 is interrupted.
  • the on-vehicle power supply device 1 (hereinafter also referred to as the power supply device 1) is configured by the power storage unit 92 and the control device 2 described later.
  • the output voltage of the power supply unit 91 is applied to the wiring unit 81 serving as a power line. Electric power is supplied to the electrical components.
  • “when the power supply from the power supply unit 91 is in a normal state in which the power supply has not decreased” refers to a time when the output voltage of the power supply unit 91 exceeds a predetermined value, and specifically, is detected by the control circuit 10. This is when the voltage of the wiring part 81 exceeds a predetermined value.
  • “when the power supply from the power supply unit 91 is in an abnormal state where the power supply is reduced or cut off” is when the output voltage of the power supply unit 91 is equal to or lower than a predetermined value. This is when the voltage of the wiring part 81 to be performed is not more than a predetermined value.
  • the control device 2 includes a charging / discharging circuit 3 including a charging circuit 3A and a discharging circuit 3B, a control circuit 10, a current detection unit 22, a voltage detection unit 24, a temperature detection unit 26, and the like.
  • the charging circuit 3 ⁇ / b> A is a circuit that performs a charging operation for charging the power storage unit 92 based on power supply from the power supply unit 91.
  • the charging circuit 3 ⁇ / b> A is configured as a known charging circuit such as a DCDC converter and is controlled by the control circuit 10. Make up the configuration.
  • Control circuit 10 performs charging control so as to give charging circuit 3 ⁇ / b> A a charging instruction signal for instructing charging of power storage unit 92 or a charging stop signal for instructing charging stop of power storage unit 92.
  • the control circuit 10 causes the charging circuit 3A to start a charging operation when predetermined charging is started (for example, when an ignition switch is turned on), and the charging target in which the output voltage (charging voltage) of the power storage unit 92 is set.
  • a charging instruction signal is given to the charging circuit 3A until the voltage (first target voltage Vf or second target voltage Vg) is reached.
  • the charging circuit 3 ⁇ / b> A performs a voltage conversion operation of increasing or decreasing the power supply voltage input via the wiring unit 81 when the charging instruction signal is given from the control circuit 10, and the converted voltage is stored in the power storage unit 92. Is applied to the conductive path 9 connected to.
  • the charging stop signal is given from the control circuit 10 to the charging circuit 3A, the charging circuit 3A does not perform the charging operation, and at this time, the wiring unit 81 and the power storage unit 92 are made non-conductive.
  • the discharge circuit 3B is configured as a known discharge circuit such as a DCDC converter, and is configured to be controlled by the control circuit 10.
  • the discharge circuit 3B is given a discharge instruction signal for instructing discharge of the power storage unit 92 or a discharge stop signal for instructing to stop discharge of the power storage unit 92 by the control circuit 10, and a discharge current is supplied from the power storage unit 92 to the load 94.
  • a discharging operation to flow and a blocking operation to block the discharge current are performed.
  • the discharge circuit 3B When the discharge instruction signal is given from the control circuit 10, the discharge circuit 3B performs a step-up operation or a step-down operation using the voltage of the conductive path 9 to which the output voltage of the power storage unit 92 is applied as an input voltage, and outputs the conductive A discharge operation (specifically, a discharge operation in which a target voltage instructed by the control circuit 10 is applied to the conductive path 8) is performed so as to apply a target voltage set to the path 8.
  • the discharge stop signal is given from the control circuit 10
  • the discharge circuit 3 ⁇ / b> B stops such a discharge operation and performs a shut-off operation so that the conductive path 8 and the power storage unit 92 are not conductive. .
  • the discharge circuit 3B Since the output-side conductive path 8 connected to the discharge circuit 3B is connected to a conductive path (wiring section 81) electrically connected to the load 94, the discharge circuit 3B is discharged when the discharge operation is performed.
  • the output current (discharge current) output from the circuit 3B can be supplied to the load 94.
  • the current detection unit 22 is configured as a known current detection circuit, and generates a detection value indicating the current flowing through the conductive path 9. Specifically, for example, a resistor that is interposed in the conductive path 9 and an amplifier that amplifies the voltage across the resistor, and a signal obtained by amplifying the voltage across the resistor is used as an analog voltage indicating a current flowing through the conductive path 9. A value is given to the control circuit 10.
  • the voltage detection unit 24 is a circuit that detects a charging voltage of the power storage unit 92 (an output voltage applied to the conductive path 9 by the power storage unit 92), and is configured by a known voltage detection circuit.
  • the voltage detection unit 24 is configured by, for example, a known voltage dividing circuit, divides the voltage applied to the conductive path 9 by a predetermined voltage dividing ratio, and inputs the divided voltage to the control circuit 10.
  • the detection value input from the voltage detection unit 24 to the control circuit 10 is a value that can specify the voltage applied to the conductive path 9 (a value that can specify the output voltage of the power storage unit 92).
  • the voltage applied to the conductive path 9 is grasped by the value input from the detection unit 24.
  • the configuration of the voltage detection unit 24 is not limited to this example, and may be a circuit that inputs the voltage of the conductive path 9 to the control circuit 10 as it is, for example.
  • the temperature detection unit 26 is configured by a known temperature sensor such as a thermistor and functions to detect the temperature of the power storage unit 92.
  • the temperature detection unit 26 is configured to input a voltage value indicating the temperature at the position where the temperature detection unit 26 is disposed to the control circuit 10.
  • the temperature detection unit 26 is fixed, for example, in contact with the surface portion of the power storage unit 92, and outputs a value indicating the temperature (outside surface temperature) of the surface portion of the power storage unit 92 as a detection value.
  • the temperature detection unit 26 may be mounted in the vicinity of the power storage unit 92 on the substrate on which the power storage unit 92 is mounted. Further, the temperature detection unit 26 may be disposed in the vicinity of the power storage unit 92 and may not be in contact with the power storage unit 92.
  • the control circuit 10 is configured as a microcomputer, for example, and includes a CPU, a memory such as a ROM or a RAM, an AD converter, and the like.
  • the control circuit 10 can operate with the power from the power storage unit 92 even when the power supply from the power supply unit 91 is interrupted.
  • a value indicating the voltage of the wiring unit 81 (that is, the output voltage value of the power supply unit 91) is input to the control circuit 10, and the control circuit 10 can continuously monitor the voltage of the wiring unit 81. .
  • the control circuit 10 detects the output voltage of the power supply unit 91, as shown in FIG. 1, the wiring unit 81 and the control circuit 10 are electrically connected by a conductive path, and the voltage of the wiring unit 81 is directly controlled by the control circuit. 10 or a voltage obtained by dividing the voltage of the wiring unit 81 by a voltage dividing circuit or the like may be input to the control circuit 10.
  • FIG. 2 conceptually shows each function executed by the control circuit 10, and the control circuit 10 functions as a control unit 11 that causes at least the charging circuit 3A and the discharging circuit 3B to perform a charging operation or a discharging operation. And a function as a deterioration determination unit 13 that determines whether or not the power storage unit is in a predetermined deterioration state, and a deterioration signal is transmitted to the outside when the deterioration determination unit 13 determines that it is in a deterioration state.
  • each function as the control unit 11, the transmission unit 12, the deterioration determination unit 13, the internal resistance value detection unit 15, and the capacitance detection unit 16 may be realized by software processing by an information processing device, or may be realized by a hardware circuit. May be.
  • each function as the control unit 11, the transmission unit 12, the deterioration determination unit 13, the internal resistance value detection unit 15, and the capacitance detection unit 16 may be realized by a common device, and each of the individual devices It may be realized by.
  • the control circuit 10 shown in FIG. 1 includes an ignition on signal (hereinafter referred to as an IG on signal) indicating that a start switch (specifically, an ignition switch) for starting a vehicle power source from an external device (not shown) is in an on state. Or an ignition on signal (hereinafter also referred to as an IG off signal) indicating that the ignition switch is in an off state.
  • an ignition on signal hereinafter also referred to as an IG off signal
  • the control circuit 10 performs discharge control for reducing the charging voltage (output voltage) of the power storage unit 92 to the target voltage value Voff during the off operation.
  • the target voltage value Voff during the off operation is lower than the target voltage values (first target voltage Vf and second target voltage Vg) set when the ignition switch is in the on state.
  • the control circuit 10 performs the discharge control immediately after that and gives a discharge instruction to the discharge circuit 3B in a state in which the charging operation of the charging circuit 3A is stopped. Then, the discharge circuit 3B is caused to perform a discharge operation. Then, the discharging operation is continued until the charging voltage of power storage unit 92 reaches target voltage value Voff during the off operation. When the charging voltage of the power storage unit 92 reaches the target voltage value Voff or less during the off operation, both the charging operation of the charging circuit 3A and the discharging operation of the discharging circuit 3B are stopped.
  • the ignition switch is switched from the off state to the on state, that is, the signal input to the control circuit 10 is turned off.
  • the control circuit 10 starts charging control of the power storage unit 92.
  • the control circuit 10 performs the charging control of the power storage unit 92 in the flow as shown in FIG. 3, for example.
  • the control circuit 10 performs the process of step S ⁇ b> 1 and starts charging the power storage unit 92.
  • the control unit 11 starts outputting a charging instruction signal to the charging circuit 3A, and causes the charging circuit 3A to start a continuous charging operation.
  • the control circuit 10 performs deterioration determination in step S2.
  • the control circuit 10 performs the deterioration determination in step S2 in the flow as shown in FIG.
  • the internal resistance value Rb is obtained from the formula Ia.
  • the deterioration determination unit 13 performs the process of step S22, the temperature Ta detected by the temperature detection unit 26, the internal resistance value Rb detected by the internal resistance value detection unit 15, the temperature and the internal resistance.
  • a first conversion value Rc obtained by converting the internal resistance value Rb detected by the internal resistance value detection unit 15 into a value at a specified temperature is detected based on the first information determined in association with the change rate of the value. .
  • the first information determined by associating the internal resistance change rate at each temperature is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, etc.
  • the specified temperature reference value
  • the internal resistance value Ra at the specified temperature is stored in advance in a memory or the like (not shown).
  • the deterioration determination unit 13 detects the current capacity Cb in step S23.
  • the deterioration determination unit 13 checks the temperature Tb detected by the temperature detection unit 26 at the start time tc (see FIG. 5) in step S23. Further, an average current Ib from time tc to time td (a time after a fixed time has elapsed from time tc) is calculated. For example, the charging current is detected n times every predetermined short time from time tc to time td, and the value obtained by dividing the integrated value of the charging currents of n times by n is defined as the average current Ib.
  • the deterioration determination unit 13 performs the process of step S24, the temperature detected by the temperature detection unit 26 (specifically, the average value Td), and the capacitance Cb detected by the capacitance detection unit 16. Then, based on the second information determined by associating the temperature and the rate of change of the capacity, a second conversion value Cc obtained by converting the capacity Cb detected by the capacity detection unit 16 to a value at the specified temperature is detected. As shown in FIG. 7, the second information determined in association with the capacity change rate at each temperature is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, etc.
  • the second conversion value Cc is obtained from the second information shown in FIG. 7 based on the average value Td and the capacitance Cb.
  • the second conversion value Cc may be obtained based on the temperature Tb and the capacitance Cb. You may obtain
  • the deterioration determination unit 13 performs the process of step S25, and converts the second conversion value Cc obtained in step S24 into the third information determined by associating the capacitance and the limit value of the internal resistance. Based on this, the limit value Rd of the internal resistance determined by the third information when the second conversion value Cc is a capacitance is specified. As shown in FIG. 8, the third information determined by associating the limit value Rd of the internal resistance for each capacitor is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, or the like. The deterioration determination unit 13 specifies the limit value Rd for the capacity Cc based on the second conversion value Cc obtained in step S24 and the third information as shown in FIG.
  • step S26 the deterioration determination unit 13 performs the process of step S26, compares the limit value Rd obtained in step S25 with the first conversion value Rc obtained in step S22, and the first conversion value Rc is If it is larger than the limit value Rd of the internal resistance obtained in step S25, it is determined that the battery is in a deteriorated state (step S27). Otherwise, it is determined that it is not in a deteriorated state (step S28).
  • step S ⁇ b> 2 of FIG. 3 when it is determined in this deterioration determination that the power storage unit 92 is not in the deteriorated state, the control unit 11 charges in step S ⁇ b> 4.
  • the target voltage is set to the first target voltage Vf.
  • the control circuit 10 transmits a predetermined deterioration signal to the outside in step S5.
  • the transmission destination of the deterioration signal is not particularly limited, and examples thereof include an external ECU.
  • the control part 11 sets a charge target voltage to the 2nd target voltage Vg in step S6 after step S5.
  • the second target voltage Vg is, for example, a value that is larger than the first target voltage Vf by a constant value X.
  • the control unit 11 sets the charging target voltage to the first target voltage Vf when the deterioration determination unit 13 determines that the power storage unit 92 is not in the deteriorated state, and determines that the power storage unit 92 is in the deteriorated state.
  • the charging target voltage is set to a second target voltage Vg that is larger than the first target voltage Vf.
  • the control unit 11 Based on the charging voltage (output voltage of the power storage unit 92) detected by the voltage detection unit 24, the control unit 11 performs a charging operation on the charging circuit 3A so that the charging voltage of the power storage unit 92 reaches the charging target voltage. Make it. Specifically, after step S4 or step S6, the control unit 11 determines whether or not the charging voltage detected by the voltage detection unit 24 has reached the charging target voltage set in step S4 or step S6. If not reached, the process proceeds to No to continue charging, and if reached, the process proceeds to Yes to end the charging (step S8).
  • the power supply from the power supply unit 91 when the power supply from the power supply unit 91 is normal, the output voltage of the power supply unit 91 is applied to the wiring unit 81 serving as a power line. Electric power is supplied to the electrical components.
  • “when the power supply from the power supply unit 91 is normal” is when the output voltage applied to the wiring unit 81 by the power supply unit 91 exceeds a predetermined value.
  • a voltage V1 for example, the voltage value of the wiring unit 81 itself or the wiring unit 81
  • a voltage detection circuit not shown
  • the control circuit 10 has a detection value V1 (a value indicating a voltage applied to the wiring unit 81) input from the voltage detection circuit that is less than a threshold value. It is determined whether or not the voltage of the wiring part 81 is less than a predetermined value.
  • the predetermined value is a value that is smaller than the output voltage when the power supply unit 91 is fully charged and larger than 0, and is set to a value that is slightly larger than 0 V, for example.
  • the control circuit 10 (specifically, the control unit 11) shown in FIG. 1 continues the voltage of the wiring unit 81 to which the output voltage from the power supply unit 91 is applied after the ignition switch (start switch) is switched on. Monitor. And the control part 11 repeats determination whether the voltage of the wiring part 81 is less than a predetermined value, and when it determines with it being less than a predetermined value, it keeps charging circuit 3A in a stop state, and it becomes discharge circuit 3B. Let the discharge operation. In this configuration, the state in which the voltage of the wiring unit 81 is less than the predetermined value corresponds to an example of “an abnormal state in which the power supply from the power supply unit 91 is reduced or cut off”. In this way, the control unit 11 functions to cause the discharge circuit 3B to perform a discharge operation in the “abnormal state where power supply from the power supply unit 91 is reduced or cut off”.
  • the power supply device 1 and the control device 2 shown in FIG. 1 can determine whether or not the power storage unit 92 is in a deteriorated state by the deterioration determining unit 13. And when it determines with the electrical storage part 92 being in a degradation state, the degradation signal can be transmitted outside by the transmission part 12, and it can alert
  • the control device 2 includes a temperature detection unit 26 that detects the temperature of the power storage unit 92, an internal resistance value detection unit 15 that detects the internal resistance value of the power storage unit 92, and a capacity detection unit 16 that detects the capacity of the power storage unit 92.
  • the deterioration determination unit 13 is first information that is determined by associating the temperature detected by the temperature detection unit 26, the internal resistance value detected by the internal resistance value detection unit 15, and the change rate of the temperature and the internal resistance value. Based on the above, a first conversion value obtained by converting the internal resistance value detected by the internal resistance value detection unit 15 into a value at the specified temperature is detected.
  • the detection by the capacitance detection unit 16 based on the temperature detected by the temperature detection unit 26, the capacitance detected by the capacitance detection unit 16, and the second information determined by associating the change rate of the temperature and the capacity A second conversion value obtained by converting the measured capacity into a value at the specified temperature is detected. Further, based on the second conversion value and the third information determined by associating the capacitance and the limit value of the internal resistance, the limit value of the internal resistance determined by the third information when the second conversion value is a capacitance. Is identified. And it determines with deterioration, when a 1st conversion value is larger than the limit value of internal resistance.
  • the control device 2 includes a discharge circuit 3B that performs a discharge operation in which a discharge current flows from the power storage unit 92 to the load 94 and a blocking operation that blocks the discharge current.
  • the control unit 11 functions to cause the discharge circuit 3B to perform a discharge operation when the power supply unit 91 is in a predetermined failure state.
  • the control device 2 can cause the discharge circuit 3B to perform a discharge operation when the power supply unit 91 is in a predetermined failure state, and can use the power storage unit 92 as a backup power supply.
  • the power storage unit 92 is continuously used after the deterioration determination unit 13 determines that the battery is in the deteriorated state, and the power storage unit 92 is used as a backup power source when the power supply unit 91 is in a predetermined failure state.
  • the required power is easily supplied by the effect of raising the charging voltage.
  • a lead battery is used for the power supply unit 91 as the main power supply unit.
  • the present invention is not limited to this configuration, and the lead battery is not limited to this configuration, and in any example in which the above embodiment or the above embodiment is modified.
  • Other known storage batteries other than those may be used.
  • the number of power supply means configuring the power supply unit 91 is not limited to one, and may be configured by a plurality of power supply means.
  • an electric double layer capacitor (EDLC) is used for the power storage unit 92.
  • the present invention is not limited to this configuration, and the power storage unit is not limited to this configuration.
  • Other power storage means such as a lithium ion battery, a lithium ion capacitor, or a nickel metal hydride rechargeable battery may be used for 92.
  • the number of power storage units constituting the power storage unit 92 is not limited to one, and may be configured by a plurality of power storage units.
  • the charging circuit 3A is configured as a DCDC converter
  • the above-described embodiment or any of the modified embodiments is not limited to this example.
  • a simple charging circuit can be used.
  • the discharge circuit 3B is configured as a DCDC converter
  • any of the above-described embodiments or the above-described embodiments is not limited to this example, and various publicly known various types can be used.
  • a simple discharge circuit can be used.
  • control unit the transmission unit, the deterioration determination unit, the internal resistance value detection unit, and the capacitance detection unit are all realized by the control circuit 10, but any of the above-described embodiment or the above-described embodiment has been changed. In the example, any one or a plurality of functions, or each function may be realized by separate control circuits.
  • the deterioration determination unit performs SOH (State Of Health) by various known methods. And this SOH may be used as the degree of deterioration. And when SOH is below a predetermined value, you may determine with a deterioration state.
  • the power storage unit is based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the capacity of the power storage unit 92 detected by the capacity detection unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)

Abstract

A control device: that can be used in an onboard power supply system that uses a power storage unit to supply power at least when a power supply unit is down; and that makes it easy for the necessary power to be supplied from the power storage unit even if the power storage unit remains in use after it has been determined that the power storage unit is in a deteriorated state. A control device (2) that has: a control unit (11) that makes a charging circuit (3A) perform a charging operation such that the charge voltage of a power storage unit (92) reaches a target charge voltage; and a deterioration determination unit (13) that determines whether the power storage unit (92) is in a prescribed deteriorated state. The control unit (11): sets the target charge voltage at a first target voltage Vf when the deterioration determination unit (13) has determined that the power storage unit (92) is not in the deteriorated state: and sets the target charge voltage at a second target voltage Vg that is greater than the first target voltage Vf when it has been determined that the power storage unit (92) is in the deteriorated state.

Description

車載用電源システムの制御装置及び車載用電源装置Control device for in-vehicle power supply system and in-vehicle power supply device
 本発明は、車載用電源システムの制御装置及び車載用電源装置に関するものである。 The present invention relates to a control device for an in-vehicle power supply system and an in-vehicle power supply device.
 近年では、シフトバイワイヤ制御システムや電動パーキングブレーキシステムなどの電子制御システムを搭載した車両が増えつつある。この種の車両では、主電源の失陥が生じて電力供給が途絶えてしまうと、電子制御システムを動作させることができなくなる懸念があるため、何らかの方法でバックアップ動作を行うことが求められる。特に、このようなバックアップ動作のニーズは、電子制御システムの重要度が増すにつれて更に高まりつつある。 In recent years, an increasing number of vehicles are equipped with electronic control systems such as shift-by-wire control systems and electric parking brake systems. In this type of vehicle, if the main power supply fails and power supply is interrupted, there is a concern that the electronic control system cannot be operated. Therefore, it is required to perform a backup operation by some method. In particular, the need for such backup operations is increasing as the importance of electronic control systems increases.
特開2008-235155号公報JP 2008-235155 A
 ところで、この種のバックアップシステムでは、バックアップ電源となる蓄電部の劣化が進むと、バックアップ動作が要求される時(例えば、電源失陥時)に蓄電部から十分な電力を供給することができなくなる虞がある。そこで、特許文献1の技術では、蓄電部の内部抵抗及び容量を測定し、劣化状態かどうかの状態確認を行うようにしている。しかし、特許文献1の技術では、劣化状態と判定したとしても、適切な対応(ユニットの交換など)が迅速になされない場合には、バックアップ動作が保証されないまま使用され続けることになってしまう。 By the way, in this type of backup system, when the power storage unit serving as a backup power source deteriorates, sufficient power cannot be supplied from the power storage unit when a backup operation is required (for example, when the power supply fails). There is a fear. Therefore, in the technique of Patent Document 1, the internal resistance and the capacity of the power storage unit are measured, and the state is checked to see if it is in a deteriorated state. However, in the technique of Patent Document 1, even if it is determined that the state is in a deteriorated state, if an appropriate response (unit replacement or the like) is not performed quickly, the backup operation will continue to be used without being guaranteed.
 本発明は上記した事情に基づいてなされたものであり、少なくとも電源部の失陥時に蓄電部によって電力供給を行う車載用電源システムに適用することができ、蓄電部が劣化状態であると判定された後に蓄電部の使用が継続されても蓄電部から必要な電力が供給されやすい制御装置を実現することを目的とする。 The present invention has been made based on the above-described circumstances, and can be applied to an in-vehicle power supply system in which power is supplied by a power storage unit at least when a power supply unit fails, and it is determined that the power storage unit is in a deteriorated state. It is an object of the present invention to realize a control device in which necessary power is easily supplied from a power storage unit even when the power storage unit is continuously used.
 本発明の第1態様の制御装置は、
 車載用の電源部と、少なくとも前記電源部から負荷への電力供給が途絶えた時に前記負荷への電力供給を行う車載用の蓄電部とを備えた車載用電源システムの制御装置であって、
 前記蓄電部を充電する充電回路と、
 前記蓄電部の充電電圧を検出する電圧検出部と、
 前記電圧検出部で検出される充電電圧に基づき、前記蓄電部の充電電圧が充電目標電圧に達するように前記充電回路に充電動作を行わせる制御部と、
 前記蓄電部が所定の劣化状態であるか否かを判定する劣化判定部と、
を有し、
 前記制御部は、前記劣化判定部によって前記蓄電部が前記劣化状態でないと判定される場合に前記充電目標電圧を第1目標電圧に設定し、前記蓄電部が前記劣化状態であると判定される場合に前記充電目標電圧を前記第1目標電圧よりも大きい第2目標電圧に設定する。
The control device according to the first aspect of the present invention includes:
A control device for an in-vehicle power supply system including an in-vehicle power source unit and an in-vehicle power storage unit that supplies power to the load when power supply from the power source unit to the load is interrupted,
A charging circuit for charging the power storage unit;
A voltage detection unit for detecting a charging voltage of the power storage unit;
Based on the charging voltage detected by the voltage detection unit, a control unit that causes the charging circuit to perform a charging operation so that the charging voltage of the power storage unit reaches a charging target voltage;
A deterioration determination unit that determines whether or not the power storage unit is in a predetermined deterioration state;
Have
The control unit sets the charging target voltage to a first target voltage when the deterioration determining unit determines that the power storage unit is not in the deteriorated state, and determines that the power storage unit is in the deteriorated state. In this case, the charging target voltage is set to a second target voltage that is larger than the first target voltage.
 本発明の第2態様の車載用電源装置は、上記制御装置と、蓄電部とを含む。 The on-vehicle power supply device according to the second aspect of the present invention includes the control device and a power storage unit.
 第1態様の制御装置は、劣化判定部によって蓄電部が劣化状態であるか否かを判定することができる。更に、蓄電部が劣化状態であると判定された場合には、制御部が、充電目標電圧を劣化状態でないときの第1目標電圧よりも大きい第2目標電圧に設定して充電動作を行うため、蓄電部の充電電圧を引き上げることができる。従って、蓄電部が劣化状態であると判定された後に蓄電部の使用が継続されても、蓄電部によってバックアップ用の必要電力が供給されやすくなる。 The control device of the first aspect can determine whether or not the power storage unit is in a deteriorated state by the deterioration determination unit. Furthermore, when it is determined that the power storage unit is in a deteriorated state, the control unit performs the charging operation by setting the charge target voltage to a second target voltage that is higher than the first target voltage when not in the deteriorated state. The charging voltage of the power storage unit can be raised. Therefore, even if the use of the power storage unit is continued after it is determined that the power storage unit is in a deteriorated state, the required power for backup is easily supplied by the power storage unit.
 第2態様の車載用電源装置は、第1態様の制御装置と同様の効果を奏する。 The vehicle-mounted power supply device of the second aspect has the same effect as the control device of the first aspect.
実施例1の車載用電源装置を備えた車載用電源システムを概略的に例示するブロック図である。1 is a block diagram schematically illustrating an in-vehicle power supply system including an in-vehicle power supply device according to a first embodiment. 実施例1の車載用電源装置の制御回路で実行される各機能の関係及び関連構成を概念的に示すブロック図である。It is a block diagram which shows notionally the relationship and related structure of each function performed with the control circuit of the vehicle-mounted power supply device of Example 1. FIG. 実施例1の車載用電源装置の制御回路で実行される充電制御の流れを例示するフローチャートである。3 is a flowchart illustrating a flow of charge control executed by a control circuit of the in-vehicle power supply device according to the first embodiment. 図3の充電制御中の劣化判定の流れを例示するフローチャートである。4 is a flowchart illustrating a flow of deterioration determination during charge control in FIG. 3. 実施例1の車載用電源装置で実行される劣化判定制御時の充電電圧、充電電流、蓄電部(キャパシタ)温度の変化を例示するグラフである。It is a graph which illustrates the change of the charging voltage at the time of degradation determination control performed with the vehicle-mounted power supply device of Example 1, a charging current, and an electrical storage part (capacitor) temperature. 温度と内部抵抗値の変化率とを対応付けて定めた第1情報を概念的に示すグラフである。It is a graph which shows notionally the 1st information which defined temperature and the change rate of an internal resistance value in association. 温度と容量の変化率とを対応付けて定めた第2情報を概念的に示すグラフである。It is a graph which shows notionally the 2nd information which defined and matched temperature and the rate of change of capacity. 容量と内部抵抗の限界値とを対応付けて定めた第3情報を概念的に示すグラフである。It is a graph which shows notionally the 3rd information which defined the capacity | capacitance and the limit value of internal resistance in correlation.
 ここで、本発明の望ましい例を示す。但し、本発明は以下の例に限定されない。
 制御装置は、蓄電部の温度を検出する温度検出部と、蓄電部の内部抵抗値を検出する内部抵抗値検出部と、蓄電部の容量を検出する容量検出部と、を有していてもよい。劣化判定部は、温度検出部で検出された温度と、内部抵抗値検出部で検出された内部抵抗値と、容量検出部で検出された蓄電部の容量とに基づいて蓄電部が劣化状態であるか否かを判定してもよい。
 このようにすれば、蓄電部の劣化判定を行う上で、蓄電部の温度、蓄電部の内部抵抗値、蓄電部の容量を反映することができ、温度、内部抵抗値、容量に基づく正確性の高い判定が可能となる。
Here, a desirable example of the present invention will be shown. However, the present invention is not limited to the following examples.
The control device may include a temperature detection unit that detects the temperature of the power storage unit, an internal resistance value detection unit that detects the internal resistance value of the power storage unit, and a capacity detection unit that detects the capacity of the power storage unit. Good. The deterioration determination unit is configured to determine whether the power storage unit is in a deteriorated state based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the capacity of the power storage unit detected by the capacity detection unit. It may be determined whether or not there is.
In this way, in determining the deterioration of the power storage unit, it is possible to reflect the temperature of the power storage unit, the internal resistance value of the power storage unit, and the capacity of the power storage unit, and accuracy based on the temperature, the internal resistance value, and the capacity. A high determination can be made.
 劣化判定部は、温度検出部で検出された温度と、内部抵抗値検出部で検出された内部抵抗値と、温度と内部抵抗値の変化率とを対応付けて定めた第1情報と、に基づいて内部抵抗値検出部で検出された内部抵抗値を規定温度のときの値に変換した第1変換値を検出し、温度検出部で検出された温度と、容量検出部で検出された容量と、温度と容量の変化率とを対応付けて定めた第2情報とに基づき、容量検出部で検出された容量を規定温度のときの値に変換した第2変換値を検出し、第2変換値と、容量と内部抵抗の限界値とを対応付けて定めた第3情報とに基づき、第2変換値が容量であるときに第3情報で定まる内部抵抗の限界値を特定し、第1変換値が内部抵抗の限界値よりも大きい場合に劣化と判定するように機能してもよい。 The deterioration determination unit includes the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the first information that defines the temperature and the rate of change of the internal resistance value in association with each other. A first conversion value obtained by converting the internal resistance value detected by the internal resistance value detection unit to a value at the specified temperature is detected, and the temperature detected by the temperature detection unit and the capacitance detected by the capacitance detection unit And a second conversion value obtained by converting the capacity detected by the capacity detection unit to a value at the specified temperature based on the second information determined by associating the temperature and the rate of change of the capacity, Based on the converted value and the third information determined by associating the capacitance and the limit value of the internal resistance, the limit value of the internal resistance determined by the third information is specified when the second conversion value is a capacitance, When one conversion value is larger than the limit value of the internal resistance, it may function to determine that the deterioration has occurred.
 このようにすれば、劣化判定時の温度を考慮した正確な劣化判定を行うことができる。更に、温度を考慮した劣化判定を行うにあたり、各温度に対応した劣化判定式を多数用意しておく必要がないため、データ量を抑えることができる。 In this way, it is possible to perform accurate deterioration determination in consideration of the temperature at the time of deterioration determination. Furthermore, when performing deterioration determination in consideration of temperature, it is not necessary to prepare a large number of deterioration determination formulas corresponding to each temperature, so that the data amount can be suppressed.
 制御装置は、蓄電部から負荷に放電電流を流す放電動作と、放電電流を遮断する遮断動作とを行う放電回路を有していてもよい。制御部は、電源部からの電力供給が低下又は遮断された異常状態である場合に放電回路に放電動作を行わせるように機能してもよい。 The control device may include a discharge circuit that performs a discharge operation in which a discharge current flows from the power storage unit to the load and a blocking operation that blocks the discharge current. The control unit may function to cause the discharge circuit to perform a discharge operation when the power supply from the power supply unit is in an abnormal state where the power supply is reduced or cut off.
 この制御装置は、電源部が所定の失陥状態である場合に放電回路に放電動作を行わせ、蓄電部をバックアップ電源として用いることができる。そして、劣化判定部によって劣化状態と判定された後に蓄電部が継続して使用され、電源部からの電力供給が低下又は遮断された異常状態となったときに蓄電部をバックアップ電源として用いた場合には、充電電圧の引き上げの効果によって必要電力が供給されやすくなる。 This control device can cause the discharge circuit to perform a discharge operation when the power supply unit is in a predetermined failure state, and can use the power storage unit as a backup power supply. When the power storage unit is continuously used after it is determined to be in a deteriorated state by the deterioration determination unit, and the power storage unit is used as a backup power source when the power supply from the power supply unit is reduced or shut off Therefore, the required power is easily supplied due to the effect of increasing the charging voltage.
 <実施例1>
 図1で示す車載用電源システム100(以下、電源システム100ともいう)は、主電源部として機能する車載用の電源部91(以下、電源部91ともいう)と、バックアップ電源として機能する車載用の蓄電部92(以下、蓄電部92ともいう)と、車載用電源システムの制御装置2(以下、制御装置2ともいう)とを備えており、負荷94に電力を供給し得るシステムとして構成されている。なお、図1では、電力供給対象として負荷94を例示しているが、負荷94としては、シフトバイワイヤ制御システム、電子制御ブレーキシステムなど、様々な電気部品が該当し、その種類や数は限定されない。
<Example 1>
An in-vehicle power supply system 100 (hereinafter also referred to as a power supply system 100) shown in FIG. 1 includes an in-vehicle power supply unit 91 (hereinafter also referred to as a power supply unit 91) that functions as a main power supply unit and an in-vehicle power supply unit that functions as a backup power supply. Power storage unit 92 (hereinafter also referred to as power storage unit 92) and on-vehicle power supply system control device 2 (hereinafter also referred to as control device 2), and is configured as a system capable of supplying power to load 94. ing. In FIG. 1, the load 94 is illustrated as an electric power supply target. However, the load 94 includes various electrical components such as a shift-by-wire control system and an electronically controlled brake system, and the type and number thereof are not limited. .
 電源部91は、車両に搭載される電源部であり且つ様々な対象へ電力を供給するための主電源として機能する。電源部91は、例えば、鉛バッテリ等の公知の車載バッテリとして構成されている。電源部91は、高電位側の端子が配線部81に電気的に接続され、配線部81に対して所定の出力電圧を印加する。なお、図1では、ヒューズやイグニッションスイッチなどは省略して示している。 The power supply unit 91 is a power supply unit mounted on the vehicle and functions as a main power supply for supplying power to various objects. The power supply unit 91 is configured as a known in-vehicle battery such as a lead battery, for example. The power supply unit 91 has a high potential side terminal electrically connected to the wiring unit 81 and applies a predetermined output voltage to the wiring unit 81. In FIG. 1, fuses, ignition switches and the like are omitted.
 蓄電部92は、例えば、電気二重層キャパシタ(EDLC)等の公知の蓄電手段によって構成されている。蓄電部92は導電路9を介して充電回路3A及び放電回路3Bに電気的に接続されており、充電回路3Aによって充電がなされ、放電回路3Bによって放電がなされる。蓄電部92は、導電路9に対して充電度合いに応じた出力電圧を印加する。この蓄電部92は、バックアップ電源として機能し、少なくとも電源部91からの電力供給が途絶えたときに電力供給源となる。本構成では、この蓄電部92と後述する制御装置2によって車載用電源装置1(以下、電源装置1ともいう)が構成されている。 The power storage unit 92 is configured by known power storage means such as an electric double layer capacitor (EDLC). The power storage unit 92 is electrically connected to the charging circuit 3A and the discharging circuit 3B via the conductive path 9, and is charged by the charging circuit 3A and discharged by the discharging circuit 3B. The power storage unit 92 applies an output voltage corresponding to the degree of charge to the conductive path 9. The power storage unit 92 functions as a backup power source and becomes a power supply source when power supply from at least the power supply unit 91 is interrupted. In this configuration, the on-vehicle power supply device 1 (hereinafter also referred to as the power supply device 1) is configured by the power storage unit 92 and the control device 2 described later.
 電源システム100は、電源部91からの電力供給が低下していない正常のときに電源部91の出力電圧が電力線となる配線部81に印加され、電源部91から配線部81を介して様々な電気部品に電力が供給される。本構成において「電源部91からの電力供給が低下していない正常状態のとき」とは、電源部91の出力電圧が所定値を超えるときであり、具体的には、制御回路10が検出する配線部81の電圧が所定値を超えるときである。逆に、「電源部91からの電力供給が低下又は遮断された異常状態のとき」とは、電源部91の出力電圧が所定値以下のときであり、具体的には、制御回路10が検出する配線部81の電圧が所定値以下のときである。 In the power supply system 100, when the power supply from the power supply unit 91 is normal and the output voltage of the power supply unit 91 is normal, the output voltage of the power supply unit 91 is applied to the wiring unit 81 serving as a power line. Electric power is supplied to the electrical components. In this configuration, “when the power supply from the power supply unit 91 is in a normal state in which the power supply has not decreased” refers to a time when the output voltage of the power supply unit 91 exceeds a predetermined value, and specifically, is detected by the control circuit 10. This is when the voltage of the wiring part 81 exceeds a predetermined value. Conversely, “when the power supply from the power supply unit 91 is in an abnormal state where the power supply is reduced or cut off” is when the output voltage of the power supply unit 91 is equal to or lower than a predetermined value. This is when the voltage of the wiring part 81 to be performed is not more than a predetermined value.
 制御装置2は、充電回路3A及び放電回路3Bを備えた充放電回路3、制御回路10、電流検出部22、電圧検出部24、温度検出部26などを備える。 The control device 2 includes a charging / discharging circuit 3 including a charging circuit 3A and a discharging circuit 3B, a control circuit 10, a current detection unit 22, a voltage detection unit 24, a temperature detection unit 26, and the like.
 充電回路3Aは、電源部91からの電力供給に基づいて蓄電部92を充電する充電動作を行う回路であり、例えば、DCDCコンバータ等の公知の充電回路として構成され、制御回路10によって制御される構成をなす。制御回路10は、充電回路3Aに対し、蓄電部92の充電を指示する充電指示信号、又は蓄電部92の充電停止を指示する充電停止信号を与えるように充電制御を行う。制御回路10は、例えば所定の充電開始時(例えばイグニッションスイッチがオン状態になった時)に充電回路3Aに充電動作を開始させ、蓄電部92の出力電圧(充電電圧)が設定された充電目標電圧(第1目標電圧Vf又は第2目標電圧Vg)に達するまで充電回路3Aに対して充電指示信号を与える。充電回路3Aは、制御回路10から充電指示信号が与えられているときに、配線部81を介して入力される電源電圧を昇圧又は降圧する電圧変換動作を行い、その変換した電圧を蓄電部92に接続された導電路9に印加する。制御回路10から充電回路3Aに対して充電停止信号が与えられているときには、充電回路3Aは充電動作を行わず、このときには、配線部81と蓄電部92とを非導通状態とする。 The charging circuit 3 </ b> A is a circuit that performs a charging operation for charging the power storage unit 92 based on power supply from the power supply unit 91. The charging circuit 3 </ b> A is configured as a known charging circuit such as a DCDC converter and is controlled by the control circuit 10. Make up the configuration. Control circuit 10 performs charging control so as to give charging circuit 3 </ b> A a charging instruction signal for instructing charging of power storage unit 92 or a charging stop signal for instructing charging stop of power storage unit 92. For example, the control circuit 10 causes the charging circuit 3A to start a charging operation when predetermined charging is started (for example, when an ignition switch is turned on), and the charging target in which the output voltage (charging voltage) of the power storage unit 92 is set. A charging instruction signal is given to the charging circuit 3A until the voltage (first target voltage Vf or second target voltage Vg) is reached. The charging circuit 3 </ b> A performs a voltage conversion operation of increasing or decreasing the power supply voltage input via the wiring unit 81 when the charging instruction signal is given from the control circuit 10, and the converted voltage is stored in the power storage unit 92. Is applied to the conductive path 9 connected to. When the charging stop signal is given from the control circuit 10 to the charging circuit 3A, the charging circuit 3A does not perform the charging operation, and at this time, the wiring unit 81 and the power storage unit 92 are made non-conductive.
 放電回路3Bは、例えばDCDCコンバータ等の公知の放電回路として構成され、制御回路10によって制御される構成をなす。放電回路3Bには、制御回路10によって、蓄電部92の放電を指示する放電指示信号、又は蓄電部92の放電停止を指示する放電停止信号が与えられ、蓄電部92から負荷94に放電電流を流す放電動作と、放電電流を遮断する遮断動作とを行う。放電回路3Bは、制御回路10から放電指示信号が与えられている場合、蓄電部92の出力電圧が印加される導電路9の電圧を入力電圧として昇圧動作又は降圧動作を行い、出力側の導電路8に対して設定された目標電圧を印加するように放電動作(具体的には、導電路8に対し制御回路10で指示される目標電圧を印加する放電動作)を行う。放電回路3Bは、制御回路10から放電停止信号が与えられている場合、このような放電動作を停止させ、導電路8と蓄電部92との間を非導通状態とするように遮断動作を行う。放電回路3Bに接続された出力側の導電路8は、負荷94に電気的に接続された導電路(配線部81)に接続されているため、放電回路3Bが放電動作を行っているときには放電回路3Bから出力される出力電流(放電電流)が負荷94に供給されうる。 The discharge circuit 3B is configured as a known discharge circuit such as a DCDC converter, and is configured to be controlled by the control circuit 10. The discharge circuit 3B is given a discharge instruction signal for instructing discharge of the power storage unit 92 or a discharge stop signal for instructing to stop discharge of the power storage unit 92 by the control circuit 10, and a discharge current is supplied from the power storage unit 92 to the load 94. A discharging operation to flow and a blocking operation to block the discharge current are performed. When the discharge instruction signal is given from the control circuit 10, the discharge circuit 3B performs a step-up operation or a step-down operation using the voltage of the conductive path 9 to which the output voltage of the power storage unit 92 is applied as an input voltage, and outputs the conductive A discharge operation (specifically, a discharge operation in which a target voltage instructed by the control circuit 10 is applied to the conductive path 8) is performed so as to apply a target voltage set to the path 8. When the discharge stop signal is given from the control circuit 10, the discharge circuit 3 </ b> B stops such a discharge operation and performs a shut-off operation so that the conductive path 8 and the power storage unit 92 are not conductive. . Since the output-side conductive path 8 connected to the discharge circuit 3B is connected to a conductive path (wiring section 81) electrically connected to the load 94, the discharge circuit 3B is discharged when the discharge operation is performed. The output current (discharge current) output from the circuit 3B can be supplied to the load 94.
 電流検出部22は、公知の電流検出回路として構成されており、導電路9を流れる電流を示す検出値を生成する。具体的には、例えば、導電路9に介在する抵抗と、この抵抗の両端電圧を増幅する増幅器とによって構成され、抵抗の両端電圧を増幅した信号を、導電路9を流れる電流を示すアナログ電圧値として制御回路10に与える。 The current detection unit 22 is configured as a known current detection circuit, and generates a detection value indicating the current flowing through the conductive path 9. Specifically, for example, a resistor that is interposed in the conductive path 9 and an amplifier that amplifies the voltage across the resistor, and a signal obtained by amplifying the voltage across the resistor is used as an analog voltage indicating a current flowing through the conductive path 9. A value is given to the control circuit 10.
 電圧検出部24は、蓄電部92の充電電圧(蓄電部92によって導電路9に印加される出力電圧)を検出する回路であり、公知の電圧検出回路によって構成されている。電圧検出部24は、例えば、公知の分圧回路によって構成されており、導電路9に印加された電圧を所定の分圧比で分圧し、分圧した電圧を制御回路10に入力する。電圧検出部24から制御回路10に入力される検出値は導電路9に印加される電圧を特定しうる値(蓄電部92の出力電圧を特定しうる値)であり、制御回路10は、電圧検出部24から入力された値によって導電路9に印加される電圧を把握する。なお、電圧検出部24の構成はこの例に限定されず、例えば、導電路9の電圧をそのまま制御回路10に入力する回路であってもよい。 The voltage detection unit 24 is a circuit that detects a charging voltage of the power storage unit 92 (an output voltage applied to the conductive path 9 by the power storage unit 92), and is configured by a known voltage detection circuit. The voltage detection unit 24 is configured by, for example, a known voltage dividing circuit, divides the voltage applied to the conductive path 9 by a predetermined voltage dividing ratio, and inputs the divided voltage to the control circuit 10. The detection value input from the voltage detection unit 24 to the control circuit 10 is a value that can specify the voltage applied to the conductive path 9 (a value that can specify the output voltage of the power storage unit 92). The voltage applied to the conductive path 9 is grasped by the value input from the detection unit 24. The configuration of the voltage detection unit 24 is not limited to this example, and may be a circuit that inputs the voltage of the conductive path 9 to the control circuit 10 as it is, for example.
 温度検出部26は、サーミスタなどの公知の温度センサによって構成され、蓄電部92の温度を検出するように機能する。温度検出部26は、この温度検出部26が配置された位置の温度を示す電圧値を制御回路10に入力する構成をなす。温度検出部26は、例えば蓄電部92の表面部に接触する形で固定されており、蓄電部92の表面部の温度(外面温度)を示す値を検出値として出力する。なお、蓄電部92が基板に実装される場合、温度検出部26は、蓄電部92が実装される基板において蓄電部92の近傍に実装すればよい。また、温度検出部26は、蓄電部92の近傍に配置されていればよく、蓄電部92に接触していなくてもよい。 The temperature detection unit 26 is configured by a known temperature sensor such as a thermistor and functions to detect the temperature of the power storage unit 92. The temperature detection unit 26 is configured to input a voltage value indicating the temperature at the position where the temperature detection unit 26 is disposed to the control circuit 10. The temperature detection unit 26 is fixed, for example, in contact with the surface portion of the power storage unit 92, and outputs a value indicating the temperature (outside surface temperature) of the surface portion of the power storage unit 92 as a detection value. When the power storage unit 92 is mounted on the substrate, the temperature detection unit 26 may be mounted in the vicinity of the power storage unit 92 on the substrate on which the power storage unit 92 is mounted. Further, the temperature detection unit 26 may be disposed in the vicinity of the power storage unit 92 and may not be in contact with the power storage unit 92.
 制御回路10は、例えばマイクロコンピュータとして構成されており、CPU、ROM又はRAM等のメモリ、AD変換器等を有している。制御回路10は、電源部91からの電力供給が途絶えた場合でも、蓄電部92からの電力によって動作することが可能となっている。 The control circuit 10 is configured as a microcomputer, for example, and includes a CPU, a memory such as a ROM or a RAM, an AD converter, and the like. The control circuit 10 can operate with the power from the power storage unit 92 even when the power supply from the power supply unit 91 is interrupted.
 制御回路10には、配線部81の電圧(即ち、電源部91の出力電圧値)を示す値が入力され、制御回路10は配線部81の電圧を継続的に監視し得る構成となっている。制御回路10が電源部91の出力電圧を検出する構成は、図1のように配線部81と制御回路10とを導電路によって電気的に接続し、配線部81の電圧を直接的に制御回路10に入力する構成であってもよく、配線部81の電圧を分圧回路等によって分圧した電圧を制御回路10に入力する構成であってもよい。 A value indicating the voltage of the wiring unit 81 (that is, the output voltage value of the power supply unit 91) is input to the control circuit 10, and the control circuit 10 can continuously monitor the voltage of the wiring unit 81. . In the configuration in which the control circuit 10 detects the output voltage of the power supply unit 91, as shown in FIG. 1, the wiring unit 81 and the control circuit 10 are electrically connected by a conductive path, and the voltage of the wiring unit 81 is directly controlled by the control circuit. 10 or a voltage obtained by dividing the voltage of the wiring unit 81 by a voltage dividing circuit or the like may be input to the control circuit 10.
 次に、図2等を参照し、制御回路10が実行する各機能を説明する。図2には、制御回路10が実行する各機能を概念的に示しており、制御回路10は、少なくとも、充電回路3A及び放電回路3Bに充電動作又は放電動作を行わせる制御部11としての機能と、蓄電部が所定の劣化状態であるか否かを判定する劣化判定部13としての機能と、劣化判定部13が劣化状態であると判定した場合に、外部に対して劣化信号を送信する送信部12としての機能と、蓄電部92の内部抵抗値を検出する内部抵抗値検出部15としての機能と、蓄電部92の容量を検出する容量検出部16としての機能とを有する。これら制御部11、送信部12、劣化判定部13、内部抵抗値検出部15、容量検出部16としての各機能は、情報処理装置によるソフトウェア処理によって実現されてもよく、ハードウェア回路によって実現されてもよい。また、制御部11、送信部12、劣化判定部13、内部抵抗値検出部15、容量検出部16としての各機能は、複数の機能が共通の装置によって実現されてもよく、それぞれ個別の装置によって実現されてもよい。 Next, each function executed by the control circuit 10 will be described with reference to FIG. FIG. 2 conceptually shows each function executed by the control circuit 10, and the control circuit 10 functions as a control unit 11 that causes at least the charging circuit 3A and the discharging circuit 3B to perform a charging operation or a discharging operation. And a function as a deterioration determination unit 13 that determines whether or not the power storage unit is in a predetermined deterioration state, and a deterioration signal is transmitted to the outside when the deterioration determination unit 13 determines that it is in a deterioration state. It has the function as the transmission part 12, the function as the internal resistance value detection part 15 which detects the internal resistance value of the electrical storage part 92, and the function as the capacity | capacitance detection part 16 which detects the capacity | capacitance of the electrical storage part 92. These functions as the control unit 11, the transmission unit 12, the deterioration determination unit 13, the internal resistance value detection unit 15, and the capacitance detection unit 16 may be realized by software processing by an information processing device, or may be realized by a hardware circuit. May be. In addition, each function as the control unit 11, the transmission unit 12, the deterioration determination unit 13, the internal resistance value detection unit 15, and the capacitance detection unit 16 may be realized by a common device, and each of the individual devices It may be realized by.
 次に、制御装置2における蓄電部92の充電電圧(出力電圧)の調整方法について説明する。 Next, a method for adjusting the charging voltage (output voltage) of the power storage unit 92 in the control device 2 will be described.
 図1で示す制御回路10には、図示しない外部装置から車両の動力源を始動させる始動スイッチ(具体的には、イグニッションスイッチ)がオン状態であることを示すイグニッションオン信号(以下、IGオン信号ともいう)又はイグニッションスイッチがオフ状態であることを示すイグニッションオン信号(以下、IGオフ信号ともいう)が入力されるようになっている。制御回路10は、イグニッションスイッチがオン状態からオフ状態に切り替わった場合、蓄電部92の充電電圧(出力電圧)をオフ動作時の目標電圧値Voffまで低下させる放電制御を行う。このオフ動作時の目標電圧値Voffは、イグニッションスイッチがオン状態である時に設定される目標電圧値(第1目標電圧Vf及び第2目標電圧Vg)よりも低い値である。 The control circuit 10 shown in FIG. 1 includes an ignition on signal (hereinafter referred to as an IG on signal) indicating that a start switch (specifically, an ignition switch) for starting a vehicle power source from an external device (not shown) is in an on state. Or an ignition on signal (hereinafter also referred to as an IG off signal) indicating that the ignition switch is in an off state. When the ignition switch is switched from the on state to the off state, the control circuit 10 performs discharge control for reducing the charging voltage (output voltage) of the power storage unit 92 to the target voltage value Voff during the off operation. The target voltage value Voff during the off operation is lower than the target voltage values (first target voltage Vf and second target voltage Vg) set when the ignition switch is in the on state.
 例えば、あるタイミングでイグニッションスイッチがオン状態からオフ状態に切り替わった場合、その直後から制御回路10が放電制御を行い、充電回路3Aの充電動作を停止させた状態で放電回路3Bに放電指示を与え、放電回路3Bに放電動作を行わせる。そして、蓄電部92の充電電圧がオフ動作時の目標電圧値Voffに達するまで放電動作を継続する。蓄電部92の充電電圧がオフ動作時の目標電圧値Voff以下に達した場合、充電回路3Aの充電動作及び放電回路3Bの放電動作をいずれも停止させた状態とする。 For example, when the ignition switch is switched from the on state to the off state at a certain timing, the control circuit 10 performs the discharge control immediately after that and gives a discharge instruction to the discharge circuit 3B in a state in which the charging operation of the charging circuit 3A is stopped. Then, the discharge circuit 3B is caused to perform a discharge operation. Then, the discharging operation is continued until the charging voltage of power storage unit 92 reaches target voltage value Voff during the off operation. When the charging voltage of the power storage unit 92 reaches the target voltage value Voff or less during the off operation, both the charging operation of the charging circuit 3A and the discharging operation of the discharging circuit 3B are stopped.
 このように充電回路3Aの充電動作及び放電回路3Bの放電動作をいずれも停止させた後、イグニッションスイッチがオフ状態からオン状態に切り替わった場合、即ち、制御回路10に入力される信号がIGオフ信号からIGオン信号に切り替わった場合には、制御回路10は、蓄電部92の充電制御を開始する。 In this way, after both the charging operation of the charging circuit 3A and the discharging operation of the discharging circuit 3B are stopped, the ignition switch is switched from the off state to the on state, that is, the signal input to the control circuit 10 is turned off. When the signal is switched to the IG ON signal, the control circuit 10 starts charging control of the power storage unit 92.
 制御回路10は、蓄電部92の充電制御を、例えば図3のような流れで行う。制御回路10は、充電制御を開始した場合、ステップS1の処理を行い、蓄電部92の充電を開始する。具体的には、制御部11が充電回路3Aに対する充電指示信号の出力を開始し、充電回路3Aに継続的な充電動作を開始させる。制御回路10は、ステップS1で充電動作を開始した後、ステップS2において、劣化判定を行う。 The control circuit 10 performs the charging control of the power storage unit 92 in the flow as shown in FIG. 3, for example. When the charging control is started, the control circuit 10 performs the process of step S <b> 1 and starts charging the power storage unit 92. Specifically, the control unit 11 starts outputting a charging instruction signal to the charging circuit 3A, and causes the charging circuit 3A to start a continuous charging operation. After starting the charging operation in step S1, the control circuit 10 performs deterioration determination in step S2.
 制御回路10は、ステップS2の劣化判定を、例えば図4のような流れで行う。制御回路10では、ステップS2の劣化判定の開始後、まず、ステップS21において、内部抵抗値検出部15が現在(ステップS21の実行時点)の蓄電部92の内部抵抗値Rbを検出する。具体的には、図5のように、充電開始前と充電開始直後での電圧変化量(Vb-Va)と、充電開始後に発生する充電電流Iaとに基づき、Rb=(Vb-Va)/Iaの式により内部抵抗値Rbを求める。 The control circuit 10 performs the deterioration determination in step S2 in the flow as shown in FIG. In the control circuit 10, after the start of the deterioration determination in step S2, first, in step S21, the internal resistance value detection unit 15 detects the current internal resistance value Rb of the power storage unit 92 (at the time of execution of step S21). Specifically, as shown in FIG. 5, Rb = (Vb−Va) / V based on the amount of voltage change (Vb−Va) before and after the start of charging, and the charging current Ia generated after the start of charging. The internal resistance value Rb is obtained from the formula Ia.
 ステップS21の後、劣化判定部13は、ステップS22の処理を行い、温度検出部26で検出された温度Taと、内部抵抗値検出部15で検出された内部抵抗値Rbと、温度と内部抵抗値の変化率とを対応付けて定めた第1情報とに基づいて内部抵抗値検出部15で検出された内部抵抗値Rbを規定温度のときの値に変換した第1変換値Rcを検出する。図6のように、各温度のときの内部抵抗変化率を対応付けて定めた第1情報がテーブルデータや演算式などとして制御回路10内のメモリ(図示略)に予め記憶されており、劣化判定部13は、ステップS21又はステップS22の実行時点での温度検出部26による検出温度Taと、図6のような第1情報とに基づきTaのときの変化率Aを特定する。そして、この変化率Aと、ステップS21で検出した内部抵抗値Rbと、予め定められた規定温度のときの内部抵抗値Raとに基づき、Rc=(Rb×(100-A)/100)/Raの式により、内部抵抗値Rbを規定温度のときの値に変換した第1変換値Rcを検出する。なお、本構成では、規定温度(基準値)を例えば20℃としている。また、制御回路10では、規定温度のときの内部抵抗値Raが予め図示しないメモリ等に記憶されている。 After step S21, the deterioration determination unit 13 performs the process of step S22, the temperature Ta detected by the temperature detection unit 26, the internal resistance value Rb detected by the internal resistance value detection unit 15, the temperature and the internal resistance. A first conversion value Rc obtained by converting the internal resistance value Rb detected by the internal resistance value detection unit 15 into a value at a specified temperature is detected based on the first information determined in association with the change rate of the value. . As shown in FIG. 6, the first information determined by associating the internal resistance change rate at each temperature is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, etc. The determination unit 13 specifies the rate of change A when Ta based on the temperature detected by the temperature detection unit 26 at the time of execution of step S21 or step S22 and the first information as shown in FIG. Then, based on the rate of change A, the internal resistance value Rb detected in step S21, and the internal resistance value Ra at a predetermined specified temperature, Rc = (Rb × (100−A) / 100) / A first conversion value Rc obtained by converting the internal resistance value Rb into a value at the specified temperature is detected by the equation of Ra. In this configuration, the specified temperature (reference value) is set to 20 ° C., for example. Further, in the control circuit 10, the internal resistance value Ra at the specified temperature is stored in advance in a memory or the like (not shown).
 図4で示すステップS22の後、劣化判定部13は、ステップS23にて現在の容量Cbの検出を行う。劣化判定部13は、まず、ステップS23の開始時間tc(図5参照)での温度検出部26による検出温度Tbを確認する。更に、時間tcから時間td(時間tcから一定時間が経過した時間)までの平均電流Ibを算出する。例えば、時間tcから時間tdまで所定の短時間毎にn回充電電流を検出し、そのn回の充電電流の積算値をnで除した値を平均電流Ibとする。そして、平均電流Ibと、時間tc、tdの間の経過時間(td-tc)と、時間tcでの充電電圧Vcと、時間tdでの充電電圧Vdとに基づき、現在(ステップS23の実行時点)の蓄電部92の容量Cbを、Cb=(Ib×(td-tc))/(Vd-Vc)により検出する。また、劣化判定部13は、時間tdでの温度検出部26による検出温度Tcを確認し、温度Tb、Tcの平均値Tdを、Td=(Tb+Tc)/2によって求める。 After step S22 shown in FIG. 4, the deterioration determination unit 13 detects the current capacity Cb in step S23. First, the deterioration determination unit 13 checks the temperature Tb detected by the temperature detection unit 26 at the start time tc (see FIG. 5) in step S23. Further, an average current Ib from time tc to time td (a time after a fixed time has elapsed from time tc) is calculated. For example, the charging current is detected n times every predetermined short time from time tc to time td, and the value obtained by dividing the integrated value of the charging currents of n times by n is defined as the average current Ib. Based on the average current Ib, the elapsed time between the times tc and td (td−tc), the charging voltage Vc at the time tc, and the charging voltage Vd at the time td, the current time (the execution time of step S23) ) Is detected by Cb = (Ib × (td−tc)) / (Vd−Vc). Further, the deterioration determination unit 13 confirms the temperature Tc detected by the temperature detection unit 26 at time td, and obtains an average value Td of the temperatures Tb and Tc by Td = (Tb + Tc) / 2.
 ステップS23の後、劣化判定部13は、ステップS24の処理を行い、温度検出部26で検出された温度(具体的には、平均値Td)と、容量検出部16で検出された容量Cbと、温度と容量の変化率とを対応付けて定めた第2情報とに基づき、容量検出部16で検出された容量Cbを規定温度のときの値に変換した第2変換値Ccを検出する。図7のように、各温度のときの容量変化率を対応付けて定めた第2情報がテーブルデータや演算式などとして制御回路10内のメモリ(図示略)に予め記憶されており、劣化判定部13は、ステップS23の実行時点での温度検出部26による検出温度(具体的には、平均値Td)と、図6のような第2情報とに基づきTdのときの変化率Bを特定する。そして、この変化率Bと、ステップS23で検出した容量Cbと、予め定められた規定温度のときの容量Caとに基づき、Cc=(Cb×(100-B)/100)/Caの式により、容量Cbを規定温度のときの値に変換した第2変換値Ccを検出する。なお、制御回路10では、規定温度のときの容量Caが予め図示しないメモリ等に記憶されている。なお、この例では、平均値Tdと容量Cbに基づいて図7で示す第2情報により第2変換値Ccを求めたが、温度Tbと容量Cbに基づいて求めてもよく、温度Tcと容量Cbに基づいて求めてもよい。 After step S23, the deterioration determination unit 13 performs the process of step S24, the temperature detected by the temperature detection unit 26 (specifically, the average value Td), and the capacitance Cb detected by the capacitance detection unit 16. Then, based on the second information determined by associating the temperature and the rate of change of the capacity, a second conversion value Cc obtained by converting the capacity Cb detected by the capacity detection unit 16 to a value at the specified temperature is detected. As shown in FIG. 7, the second information determined in association with the capacity change rate at each temperature is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, etc. The unit 13 specifies the rate of change B at Td based on the temperature detected by the temperature detection unit 26 (specifically, the average value Td) at the time of execution of step S23 and the second information as shown in FIG. To do. Then, based on the rate of change B, the capacitance Cb detected in step S23, and the capacitance Ca at a predetermined specified temperature, the equation Cc = (Cb × (100−B) / 100) / Ca is obtained. The second conversion value Cc obtained by converting the capacitance Cb into a value at the specified temperature is detected. In the control circuit 10, the capacitance Ca at the specified temperature is stored in advance in a memory or the like (not shown). In this example, the second conversion value Cc is obtained from the second information shown in FIG. 7 based on the average value Td and the capacitance Cb. However, the second conversion value Cc may be obtained based on the temperature Tb and the capacitance Cb. You may obtain | require based on Cb.
 ステップS24の後、劣化判定部13は、ステップS25の処理を行い、ステップS24で得られた第2変換値Ccと、容量と内部抵抗の限界値とを対応付けて定めた第3情報とに基づき、第2変換値Ccが容量であるときに第3情報で定まる内部抵抗の限界値Rdを特定する。図8のように、各容量のときの内部抵抗の限界値Rdを対応付けて定めた第3情報がテーブルデータや演算式などとして制御回路10内のメモリ(図示略)に予め記憶されており、劣化判定部13は、ステップS24で得られた第2変換値Ccと図8のような第3情報とに基づき容量Ccのときの限界値Rdを特定する。 After step S24, the deterioration determination unit 13 performs the process of step S25, and converts the second conversion value Cc obtained in step S24 into the third information determined by associating the capacitance and the limit value of the internal resistance. Based on this, the limit value Rd of the internal resistance determined by the third information when the second conversion value Cc is a capacitance is specified. As shown in FIG. 8, the third information determined by associating the limit value Rd of the internal resistance for each capacitor is stored in advance in a memory (not shown) in the control circuit 10 as table data, an arithmetic expression, or the like. The deterioration determination unit 13 specifies the limit value Rd for the capacity Cc based on the second conversion value Cc obtained in step S24 and the third information as shown in FIG.
 ステップS25の後、劣化判定部13は、ステップS26の処理を行い、ステップS25で得られた限界値RdとステップS22で得られた第1変換値Rcとを比較し、第1変換値RcがステップS25で得られた内部抵抗の限界値Rdよりも大きい場合に劣化状態であると判定し(ステップS27)、そうでない場合には劣化状態でないと判定する(ステップS28)。 After step S25, the deterioration determination unit 13 performs the process of step S26, compares the limit value Rd obtained in step S25 with the first conversion value Rc obtained in step S22, and the first conversion value Rc is If it is larger than the limit value Rd of the internal resistance obtained in step S25, it is determined that the battery is in a deteriorated state (step S27). Otherwise, it is determined that it is not in a deteriorated state (step S28).
 制御回路10では、このような流れで図3のステップS2の劣化判定を行った後、この劣化判定で蓄電部92が劣化状態でないと判定される場合、制御部11が、ステップS4にて充電目標電圧を第1目標電圧Vfに設定する。一方、制御回路10は、ステップS2の劣化判定で蓄電部92が劣化状態であると判定される場合には、ステップS5にて送信部12が外部に対して所定の劣化信号を送信する。劣化信号の送信先は特に限定されず、例えば、外部のECUなどが挙げられる。外部のECUは、制御回路10から劣化信号を取得した場合、ユーザに対する蓄電部92が異常である旨の所定報知(所定ランプの表示や音声報知など)を行うことが望ましい。そして、制御部11は、ステップS5の後のステップS6にて、充電目標電圧を第2目標電圧Vgに設定する。第2目標電圧Vgは、例えば、第1目標電圧Vfよりも一定値Xだけ大きい値である。このように制御部11は、劣化判定部13によって蓄電部92が劣化状態でないと判定される場合に充電目標電圧を第1目標電圧Vfに設定し、蓄電部92が劣化状態であると判定される場合に充電目標電圧を第1目標電圧Vfよりも大きい第2目標電圧Vgに設定する。 In the control circuit 10, after performing the deterioration determination in step S <b> 2 of FIG. 3 in such a flow, when it is determined in this deterioration determination that the power storage unit 92 is not in the deteriorated state, the control unit 11 charges in step S <b> 4. The target voltage is set to the first target voltage Vf. On the other hand, when it is determined in step S2 that the power storage unit 92 is in a deteriorated state, the control circuit 10 transmits a predetermined deterioration signal to the outside in step S5. The transmission destination of the deterioration signal is not particularly limited, and examples thereof include an external ECU. When the external ECU acquires the deterioration signal from the control circuit 10, it is desirable to perform a predetermined notification (such as displaying a predetermined lamp or a sound notification) that the power storage unit 92 is abnormal to the user. And the control part 11 sets a charge target voltage to the 2nd target voltage Vg in step S6 after step S5. The second target voltage Vg is, for example, a value that is larger than the first target voltage Vf by a constant value X. As described above, the control unit 11 sets the charging target voltage to the first target voltage Vf when the deterioration determination unit 13 determines that the power storage unit 92 is not in the deteriorated state, and determines that the power storage unit 92 is in the deteriorated state. The charging target voltage is set to a second target voltage Vg that is larger than the first target voltage Vf.
 そして、制御部11は、電圧検出部24で検出される充電電圧(蓄電部92の出力電圧)に基づき、蓄電部92の充電電圧が充電目標電圧に達するように充電回路3Aに充電動作を行わせる。具体的には、制御部11は、ステップS4又はステップS6の後、電圧検出部24で検出される充電電圧がステップS4又はステップS6で設定された充電目標電圧に到達したか否かを判定し、到達していない場合には、Noに進んで充電を継続し、到達した場合には、Yesに進んで充電を終了する(ステップS8)。 Based on the charging voltage (output voltage of the power storage unit 92) detected by the voltage detection unit 24, the control unit 11 performs a charging operation on the charging circuit 3A so that the charging voltage of the power storage unit 92 reaches the charging target voltage. Make it. Specifically, after step S4 or step S6, the control unit 11 determines whether or not the charging voltage detected by the voltage detection unit 24 has reached the charging target voltage set in step S4 or step S6. If not reached, the process proceeds to No to continue charging, and if reached, the process proceeds to Yes to end the charging (step S8).
 次に、電源部91からの電力供給が低下又は遮断した場合について説明する。
 図1で示す電源システム100は、電源部91からの電力供給が正常のときに電源部91の出力電圧が電力線となる配線部81に印加され、電源部91から配線部81を介して様々な電気部品に電力が供給される。ここでいう「電源部91からの電力供給が正常のとき」とは、電源部91によって配線部81に印加される出力電圧が所定値を超えるときである。制御回路10(具体的には制御部11)には、図示しない電圧検出回路により、配線部81に印加される電圧を示す値V1(例えば、配線部81の電圧値そのもの、或いは配線部81の電圧を分圧した値など)が入力されるようになっており、制御回路10は、この電圧検出回路から入力される検出値V1(配線部81に印加される電圧を示す値)が閾値未満であるか否かを判定することで、配線部81の電圧が所定値未満であるか否かを判定している。なお、所定値は、電源部91の満充電時の出力電圧よりも小さく0よりも大きい値であり、例えば0Vよりもやや大きい値に設定される。
Next, a case where the power supply from the power supply unit 91 is reduced or cut off will be described.
In the power supply system 100 shown in FIG. 1, when the power supply from the power supply unit 91 is normal, the output voltage of the power supply unit 91 is applied to the wiring unit 81 serving as a power line. Electric power is supplied to the electrical components. Here, “when the power supply from the power supply unit 91 is normal” is when the output voltage applied to the wiring unit 81 by the power supply unit 91 exceeds a predetermined value. In the control circuit 10 (specifically, the control unit 11), a voltage V1 (for example, the voltage value of the wiring unit 81 itself or the wiring unit 81) indicating the voltage applied to the wiring unit 81 by a voltage detection circuit (not shown) is provided. The control circuit 10 has a detection value V1 (a value indicating a voltage applied to the wiring unit 81) input from the voltage detection circuit that is less than a threshold value. It is determined whether or not the voltage of the wiring part 81 is less than a predetermined value. The predetermined value is a value that is smaller than the output voltage when the power supply unit 91 is fully charged and larger than 0, and is set to a value that is slightly larger than 0 V, for example.
 図1で示す制御回路10(具体的には制御部11)は、イグニッションスイッチ(始動スイッチ)がオン状態に切り替わった後、電源部91からの出力電圧が印加される配線部81の電圧を継続的に監視する。そして、制御部11は、配線部81の電圧が所定値未満であるか否かの判定を繰り返し、所定値未満であると判定した場合、充電回路3Aを停止状態で維持しつつ放電回路3Bに放電動作を行わせる。本構成では、配線部81の電圧が所定値未満である状態が、「電源部91からの電力供給が低下又は遮断された異常状態」の一例に相当する。このように、制御部11は、「電源部91からの電力供給が低下又は遮断された異常状態」である場合に放電回路3Bに放電動作を行わせるように機能する。 The control circuit 10 (specifically, the control unit 11) shown in FIG. 1 continues the voltage of the wiring unit 81 to which the output voltage from the power supply unit 91 is applied after the ignition switch (start switch) is switched on. Monitor. And the control part 11 repeats determination whether the voltage of the wiring part 81 is less than a predetermined value, and when it determines with it being less than a predetermined value, it keeps charging circuit 3A in a stop state, and it becomes discharge circuit 3B. Let the discharge operation. In this configuration, the state in which the voltage of the wiring unit 81 is less than the predetermined value corresponds to an example of “an abnormal state in which the power supply from the power supply unit 91 is reduced or cut off”. In this way, the control unit 11 functions to cause the discharge circuit 3B to perform a discharge operation in the “abnormal state where power supply from the power supply unit 91 is reduced or cut off”.
 ここで、本構成の効果を例示する。
 図1で示す電源装置1及び制御装置2は、劣化判定部13によって蓄電部92が劣化状態であるか否かを判定することができる。そして、蓄電部92が劣化状態であると判定された場合には、送信部12によって外部に劣化信号を送信し、蓄電部92が劣化状態であることを報知することができる。更に、蓄電部92が劣化状態であると判定された場合には、制御部11が、充電目標電圧を劣化状態でないときの第1目標電圧Vfよりも大きい第2目標電圧Vgに設定して充電動作を行うため、蓄電部92の充電電圧を引き上げることができる。従って、蓄電部92が劣化状態であると判定された後に蓄電部92の使用が継続されても、蓄電部92によってバックアップ用の必要電力が供給されやすくなる。
Here, the effect of this structure is illustrated.
The power supply device 1 and the control device 2 shown in FIG. 1 can determine whether or not the power storage unit 92 is in a deteriorated state by the deterioration determining unit 13. And when it determines with the electrical storage part 92 being in a degradation state, the degradation signal can be transmitted outside by the transmission part 12, and it can alert | report that the electrical storage part 92 is in a degradation state. Further, when it is determined that the power storage unit 92 is in the deteriorated state, the control unit 11 sets the charge target voltage to the second target voltage Vg that is higher than the first target voltage Vf when not in the deteriorated state and charges. Since the operation is performed, the charging voltage of the power storage unit 92 can be increased. Therefore, even if the use of the power storage unit 92 is continued after it is determined that the power storage unit 92 is in a deteriorated state, the required power for backup is easily supplied by the power storage unit 92.
 制御装置2は、蓄電部92の温度を検出する温度検出部26と、蓄電部92の内部抵抗値を検出する内部抵抗値検出部15と、蓄電部92の容量を検出する容量検出部16と、を有する。劣化判定部13は、温度検出部26で検出された温度と、内部抵抗値検出部15で検出された内部抵抗値と、温度と内部抵抗値の変化率とを対応付けて定めた第1情報と、に基づいて、内部抵抗値検出部15で検出された内部抵抗値を規定温度のときの値に変換した第1変換値を検出する。更に、温度検出部26で検出された温度と、容量検出部16で検出された容量と、温度と容量の変化率とを対応付けて定めた第2情報とに基づき、容量検出部16で検出された容量を規定温度のときの値に変換した第2変換値を検出する。更には、第2変換値と、容量と内部抵抗の限界値とを対応付けて定めた第3情報とに基づき、第2変換値が容量であるときに第3情報で定まる内部抵抗の限界値を特定する。そして、第1変換値が内部抵抗の限界値よりも大きい場合に劣化と判定する。 The control device 2 includes a temperature detection unit 26 that detects the temperature of the power storage unit 92, an internal resistance value detection unit 15 that detects the internal resistance value of the power storage unit 92, and a capacity detection unit 16 that detects the capacity of the power storage unit 92. Have. The deterioration determination unit 13 is first information that is determined by associating the temperature detected by the temperature detection unit 26, the internal resistance value detected by the internal resistance value detection unit 15, and the change rate of the temperature and the internal resistance value. Based on the above, a first conversion value obtained by converting the internal resistance value detected by the internal resistance value detection unit 15 into a value at the specified temperature is detected. Further, the detection by the capacitance detection unit 16 based on the temperature detected by the temperature detection unit 26, the capacitance detected by the capacitance detection unit 16, and the second information determined by associating the change rate of the temperature and the capacity. A second conversion value obtained by converting the measured capacity into a value at the specified temperature is detected. Further, based on the second conversion value and the third information determined by associating the capacitance and the limit value of the internal resistance, the limit value of the internal resistance determined by the third information when the second conversion value is a capacitance. Is identified. And it determines with deterioration, when a 1st conversion value is larger than the limit value of internal resistance.
 このようにすれば、劣化判定時の温度を考慮した正確な劣化判定を行うことができる。更に、温度を考慮した劣化判定を行うにあたり、各温度に対応した劣化判定式を多数用意しておく必要がないため、データ量を抑えることができる。 In this way, it is possible to perform accurate deterioration determination in consideration of the temperature at the time of deterioration determination. Furthermore, when performing deterioration determination in consideration of temperature, it is not necessary to prepare a large number of deterioration determination formulas corresponding to each temperature, so that the data amount can be suppressed.
 制御装置2は、蓄電部92から負荷94に放電電流を流す放電動作と、放電電流を遮断する遮断動作とを行う放電回路3Bを有する。制御部11は、電源部91が所定の失陥状態である場合に放電回路3Bに放電動作を行わせるように機能する。 The control device 2 includes a discharge circuit 3B that performs a discharge operation in which a discharge current flows from the power storage unit 92 to the load 94 and a blocking operation that blocks the discharge current. The control unit 11 functions to cause the discharge circuit 3B to perform a discharge operation when the power supply unit 91 is in a predetermined failure state.
 この制御装置2は、電源部91が所定の失陥状態である場合に放電回路3Bに放電動作を行わせ、蓄電部92をバックアップ電源として用いることができる。そして、劣化判定部13によって劣化状態と判定された後に蓄電部92が継続して使用され、電源部91が所定の失陥状態となったときに蓄電部92をバックアップ電源として用いた場合には、充電電圧の引き上げの効果によって必要電力が供給されやすくなる。 The control device 2 can cause the discharge circuit 3B to perform a discharge operation when the power supply unit 91 is in a predetermined failure state, and can use the power storage unit 92 as a backup power supply. When the power storage unit 92 is continuously used after the deterioration determination unit 13 determines that the battery is in the deteriorated state, and the power storage unit 92 is used as a backup power source when the power supply unit 91 is in a predetermined failure state. The required power is easily supplied by the effect of raising the charging voltage.
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。また、上述した又は後述する実施例は、矛盾しない範囲で組み合わせてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention. Moreover, you may combine the Example mentioned above or mentioned later in the range which does not contradict.
 上述した実施例では、主電源部としての電源部91に鉛バッテリを用いているが、この構成に限定されず、上述した実施例又は上述した実施例を変更したいずれの例においても、鉛バッテリ以外の公知の他の蓄電池を用いてもよい。電源部91を構成する電源手段の数は1つに限定されず、複数の電源手段によって構成されていてもよい。 In the embodiment described above, a lead battery is used for the power supply unit 91 as the main power supply unit. However, the present invention is not limited to this configuration, and the lead battery is not limited to this configuration, and in any example in which the above embodiment or the above embodiment is modified. Other known storage batteries other than those may be used. The number of power supply means configuring the power supply unit 91 is not limited to one, and may be configured by a plurality of power supply means.
 上述した実施例では、蓄電部92に電気二重層キャパシタ(EDLC)を用いているが、この構成に限定されず、上述した実施例又は上述した実施例を変更したいずれの例においても、蓄電部92にリチウムイオン電池、リチウムイオンキャパシタ、ニッケル水素充電池などの他の蓄電手段を用いてもよい。また、蓄電部92を構成する蓄電手段の数は1つに限定されず、複数の蓄電手段によって構成されていてもよい。 In the embodiment described above, an electric double layer capacitor (EDLC) is used for the power storage unit 92. However, the present invention is not limited to this configuration, and the power storage unit is not limited to this configuration. Other power storage means such as a lithium ion battery, a lithium ion capacitor, or a nickel metal hydride rechargeable battery may be used for 92. In addition, the number of power storage units constituting the power storage unit 92 is not limited to one, and may be configured by a plurality of power storage units.
 上述した実施例では、充電回路3AがDCDCコンバータとして構成される例を説明したが、上述した実施例又は上述した実施例を変更したいずれの例においても、この例に限定されず、公知の様々な充電回路を用いることができる。 In the above-described embodiment, the example in which the charging circuit 3A is configured as a DCDC converter has been described. However, the above-described embodiment or any of the modified embodiments is not limited to this example. A simple charging circuit can be used.
 上述した実施例では、放電回路3BがDCDCコンバータとして構成される例を説明したが、上述した実施例又は上述した実施例を変更したいずれの例においても、この例に限定されず、公知の様々な放電回路を用いることができる。 In the above-described embodiment, the example in which the discharge circuit 3B is configured as a DCDC converter has been described. However, any of the above-described embodiments or the above-described embodiments is not limited to this example, and various publicly known various types can be used. A simple discharge circuit can be used.
 上述した実施例では、制御部、送信部、劣化判定部、内部抵抗値検出部、容量検出部がいずれも制御回路10によって実現されたが、上述した実施例又は上述した実施例を変更したいずれの例においても、いずれか1又は複数の機能、若しくはそれぞれの機能が別々の制御回路によって実現されてもよい。 In the above-described embodiment, the control unit, the transmission unit, the deterioration determination unit, the internal resistance value detection unit, and the capacitance detection unit are all realized by the control circuit 10, but any of the above-described embodiment or the above-described embodiment has been changed. In the example, any one or a plurality of functions, or each function may be realized by separate control circuits.
 上述した実施例では、劣化判定の一例を示したが、上述した実施例又は上述した実施例を変更したいずれの例においても、劣化判定部は、公知の様々な方法でSOH(State Of Health)を測定し、このSOHを劣化度として用いてもよい。そして、SOHが所定値以下のときに劣化状態と判定してもよい。また、上述した実施例では、温度検出部で検出された温度と、内部抵抗値検出部で検出された内部抵抗値と、容量検出部で検出された蓄電部92の容量とに基づいて蓄電部92が劣化状態であるか否かを判定する一例を示したが、温度、内部抵抗値、容量に基づいて劣化状態であるか否かを判定する別の方法を用いてもよい。 In the embodiment described above, an example of the deterioration determination is shown. However, in any example in which the above-described embodiment or the above-described embodiment is changed, the deterioration determination unit performs SOH (State Of Health) by various known methods. And this SOH may be used as the degree of deterioration. And when SOH is below a predetermined value, you may determine with a deterioration state. In the above-described embodiment, the power storage unit is based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the capacity of the power storage unit 92 detected by the capacity detection unit. Although an example of determining whether or not 92 is in a deteriorated state has been shown, another method for determining whether or not in a deteriorated state based on temperature, internal resistance value, and capacity may be used.
 1…車載用電源装置
 2…車載用電源システムの制御装置
 3A…充電回路
 3B…放電回路
 10…制御回路
 11…制御部
 12…送信部
 13…劣化判定部
 15…内部抵抗値検出部
 16…容量検出部
 24…電圧検出部
 26…温度検出部
 91…車載用の電源部
 92…蓄電部
 94…負荷
DESCRIPTION OF SYMBOLS 1 ... Vehicle-mounted power supply device 2 ... Control apparatus of vehicle-mounted power supply system 3A ... Charging circuit 3B ... Discharge circuit 10 ... Control circuit 11 ... Control part 12 ... Transmission part 13 ... Degradation determination part 15 ... Internal resistance value detection part 16 ... Capacity Detection unit 24 ... Voltage detection unit 26 ... Temperature detection unit 91 ... In-vehicle power supply unit 92 ... Power storage unit 94 ... Load

Claims (5)

  1.  車載用の電源部と、少なくとも前記電源部から負荷への電力供給が途絶えた時に前記負荷への電力供給を行う車載用の蓄電部とを備えた車載用電源システムの制御装置であって、
     前記蓄電部を充電する充電回路と、
     前記蓄電部の充電電圧を検出する電圧検出部と、
     前記電圧検出部で検出される充電電圧に基づき、前記蓄電部の充電電圧が充電目標電圧に達するように前記充電回路に充電動作を行わせる制御部と、
     前記蓄電部が所定の劣化状態であるか否かを判定する劣化判定部と、
    を有し、
     前記制御部は、前記劣化判定部によって前記蓄電部が前記劣化状態でないと判定される場合に前記充電目標電圧を第1目標電圧に設定し、前記蓄電部が前記劣化状態であると判定される場合に前記充電目標電圧を前記第1目標電圧よりも大きい第2目標電圧に設定する車載用電源システムの制御装置。
    A control device for an in-vehicle power supply system including an in-vehicle power source unit and an in-vehicle power storage unit that supplies power to the load when power supply from the power source unit to the load is interrupted,
    A charging circuit for charging the power storage unit;
    A voltage detection unit for detecting a charging voltage of the power storage unit;
    Based on the charging voltage detected by the voltage detection unit, a control unit that causes the charging circuit to perform a charging operation so that the charging voltage of the power storage unit reaches a charging target voltage;
    A deterioration determination unit that determines whether or not the power storage unit is in a predetermined deterioration state;
    Have
    The control unit sets the charging target voltage to a first target voltage when the deterioration determining unit determines that the power storage unit is not in the deteriorated state, and determines that the power storage unit is in the deteriorated state. A control device for an in-vehicle power supply system that sets the charging target voltage to a second target voltage that is higher than the first target voltage.
  2.  前記蓄電部の温度を検出する温度検出部と、
     前記蓄電部の内部抵抗値を検出する内部抵抗値検出部と、
     前記蓄電部の容量を検出する容量検出部と、
    を有し、
     前記劣化判定部は、前記温度検出部で検出された温度と、前記内部抵抗値検出部で検出された内部抵抗値と、前記容量検出部で検出された前記蓄電部の容量とに基づいて前記蓄電部が前記劣化状態であるか否かを判定する請求項1に記載の車載用電源システムの制御装置。
    A temperature detection unit for detecting the temperature of the power storage unit;
    An internal resistance value detection unit for detecting an internal resistance value of the power storage unit;
    A capacity detection unit for detecting a capacity of the power storage unit;
    Have
    The deterioration determination unit is based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the capacity of the power storage unit detected by the capacity detection unit. The control apparatus of the vehicle-mounted power supply system of Claim 1 which determines whether an electrical storage part is the said deterioration state.
  3.  前記劣化判定部は、
     前記温度検出部で検出された温度と、前記内部抵抗値検出部で検出された内部抵抗値と、温度と内部抵抗値の変化率とを対応付けて定めた第1情報と、に基づいて前記内部抵抗値検出部で検出された内部抵抗値を規定温度のときの値に変換した第1変換値を検出し、
     前記温度検出部で検出された温度と、前記容量検出部で検出された容量と、温度と容量の変化率とを対応付けて定めた第2情報とに基づき、前記容量検出部で検出された容量を規定温度のときの値に変換した第2変換値を検出し、
     前記第2変換値と、容量と内部抵抗の限界値とを対応付けて定めた第3情報とに基づき、前記第2変換値が容量であるときに前記第3情報で定まる内部抵抗の限界値を特定し、
     前記第1変換値が前記内部抵抗の限界値よりも大きい場合に劣化と判定する請求項2に記載の車載用電源システムの制御装置。
    The deterioration determination unit
    Based on the temperature detected by the temperature detection unit, the internal resistance value detected by the internal resistance value detection unit, and the first information determined by associating the change rate of the temperature and the internal resistance value, Detecting a first conversion value obtained by converting the internal resistance value detected by the internal resistance value detection unit into a value at a specified temperature;
    Based on the temperature detected by the temperature detection unit, the capacitance detected by the capacitance detection unit, and the second information determined by associating the change rate of the temperature and the capacity, detected by the capacitance detection unit Detecting the second conversion value obtained by converting the capacity to the value at the specified temperature,
    Based on the second conversion value and the third information determined by associating the capacitance and the limit value of the internal resistance, the limit value of the internal resistance determined by the third information when the second conversion value is a capacitance. Identify
    The control device for an in-vehicle power supply system according to claim 2, wherein the deterioration is determined when the first conversion value is larger than a limit value of the internal resistance.
  4.  前記蓄電部から前記負荷に放電電流を流す放電動作と、前記放電電流を遮断する遮断動作とを行う放電回路を有し、
     前記制御部は、前記電源部からの電力供給が低下又は遮断された異常状態である場合に前記放電回路に前記放電動作を行わせる請求項1から請求項3のいずれか一項に記載の車載用電源システムの制御装置。
    A discharge circuit that performs a discharge operation of flowing a discharge current from the power storage unit to the load and a blocking operation of cutting off the discharge current;
    The in-vehicle unit according to any one of claims 1 to 3, wherein the control unit causes the discharge circuit to perform the discharge operation when the power supply from the power supply unit is in an abnormal state in which power supply is reduced or cut off. Power system controller.
  5.  請求項1から請求項4のいずれか一項に記載の車載用電源システムの制御装置と、前記蓄電部とを含む車載用電源装置。 A vehicle-mounted power supply device including the control device for the vehicle-mounted power supply system according to any one of claims 1 to 4 and the power storage unit.
PCT/JP2018/008951 2017-03-29 2018-03-08 Control device for onboard power supply system, and onboard power supply system WO2018180333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017064573A JP2018170821A (en) 2017-03-29 2017-03-29 Controller of on-vehicle power supply system and on-vehicle power supply device
JP2017-064573 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180333A1 true WO2018180333A1 (en) 2018-10-04

Family

ID=63675276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008951 WO2018180333A1 (en) 2017-03-29 2018-03-08 Control device for onboard power supply system, and onboard power supply system

Country Status (2)

Country Link
JP (1) JP2018170821A (en)
WO (1) WO2018180333A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034279A (en) * 2020-07-22 2020-12-04 惠州市德赛西威汽车电子股份有限公司 Constant power supply testing device, system and method
CN113169582A (en) * 2018-12-03 2021-07-23 株式会社自动网络技术研究所 Vehicle-mounted standby power supply control device and vehicle-mounted standby power supply device
CN114643901A (en) * 2020-12-21 2022-06-21 矢崎总业株式会社 Backup battery control module and backup battery control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017138B2 (en) 2018-12-03 2022-02-08 株式会社オートネットワーク技術研究所 In-vehicle backup power supply control device and in-vehicle backup power supply
JP7396385B2 (en) * 2022-03-23 2023-12-12 いすゞ自動車株式会社 battery management device
WO2023188367A1 (en) * 2022-03-31 2023-10-05 株式会社オートネットワーク技術研究所 Power supply control device
WO2024202170A1 (en) * 2023-03-30 2024-10-03 パナソニックIpマネジメント株式会社 Backup power supply system and method for controlling backup power supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105641A (en) * 2004-10-01 2006-04-20 Shin Kobe Electric Mach Co Ltd Backup power supply system
JP2010190707A (en) * 2009-02-18 2010-09-02 Panasonic Corp Energy storage device
WO2012043744A1 (en) * 2010-09-29 2012-04-05 三洋電機株式会社 Charging control device
JP2012085452A (en) * 2010-10-12 2012-04-26 Honda Motor Co Ltd Control device for lithium ion battery
WO2015194327A1 (en) * 2014-06-17 2015-12-23 株式会社豊田自動織機 Power supply device for vehicle
JP2016096696A (en) * 2014-11-17 2016-05-26 レノボ・シンガポール・プライベート・リミテッド Backup system for extending life period of secondary battery, management method and information processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105641A (en) * 2004-10-01 2006-04-20 Shin Kobe Electric Mach Co Ltd Backup power supply system
JP2010190707A (en) * 2009-02-18 2010-09-02 Panasonic Corp Energy storage device
WO2012043744A1 (en) * 2010-09-29 2012-04-05 三洋電機株式会社 Charging control device
JP2012085452A (en) * 2010-10-12 2012-04-26 Honda Motor Co Ltd Control device for lithium ion battery
WO2015194327A1 (en) * 2014-06-17 2015-12-23 株式会社豊田自動織機 Power supply device for vehicle
JP2016096696A (en) * 2014-11-17 2016-05-26 レノボ・シンガポール・プライベート・リミテッド Backup system for extending life period of secondary battery, management method and information processing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169582A (en) * 2018-12-03 2021-07-23 株式会社自动网络技术研究所 Vehicle-mounted standby power supply control device and vehicle-mounted standby power supply device
CN112034279A (en) * 2020-07-22 2020-12-04 惠州市德赛西威汽车电子股份有限公司 Constant power supply testing device, system and method
CN114643901A (en) * 2020-12-21 2022-06-21 矢崎总业株式会社 Backup battery control module and backup battery control system
US20220200311A1 (en) * 2020-12-21 2022-06-23 Yazaki Corporation Backup Battery Control Module and Backup Battery Control System
EP4020753A1 (en) * 2020-12-21 2022-06-29 Yazaki Corporation Backup battery control module and backup battery control system
US11721998B2 (en) 2020-12-21 2023-08-08 Yazaki Corporation Backup battery control module and backup battery control system
CN114643901B (en) * 2020-12-21 2024-04-16 矢崎总业株式会社 Standby battery control module and standby battery control system

Also Published As

Publication number Publication date
JP2018170821A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018180333A1 (en) Control device for onboard power supply system, and onboard power supply system
JP4807058B2 (en) Vehicle power supply
JP4782663B2 (en) Charging system, charging device, and battery pack
CN108367724B (en) Discrete accumulator using diagnostics
JP4873106B2 (en) Power supply
US20140147713A1 (en) Battery monitoring apparatus
CN112424028B (en) Vehicle-mounted backup power supply control device and vehicle-mounted backup power supply device
CN109804524B (en) Spare device for vehicle
WO2017086110A1 (en) Charge/discharge device
US9527396B2 (en) Abnormality detection device
JP2020022295A5 (en)
WO2017068874A1 (en) On-vehicle power source device
JP6635298B2 (en) Charge / discharge device and power supply device
JP6549055B2 (en) Battery pack
CN112513652A (en) Internal resistance detection device and power supply device
JP6322123B2 (en) Current limit circuit
JP4670301B2 (en) Backup power system
WO2017057211A1 (en) In-vehicle power source device
WO2024075387A1 (en) In-vehicle backup control device
JP5277819B2 (en) Power storage device
JP2009092627A (en) Electric storage device
JP2018164323A (en) On-vehicle controller and on-vehicle power supply

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776464

Country of ref document: EP

Kind code of ref document: A1