WO2018179778A1 - Autonomous travel system for agricultural work vehicles - Google Patents
Autonomous travel system for agricultural work vehicles Download PDFInfo
- Publication number
- WO2018179778A1 WO2018179778A1 PCT/JP2018/002712 JP2018002712W WO2018179778A1 WO 2018179778 A1 WO2018179778 A1 WO 2018179778A1 JP 2018002712 W JP2018002712 W JP 2018002712W WO 2018179778 A1 WO2018179778 A1 WO 2018179778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tractor
- vehicle
- control device
- side software
- software
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims description 175
- 230000005540 biological transmission Effects 0.000 description 21
- 230000004044 response Effects 0.000 description 17
- 238000012790 confirmation Methods 0.000 description 15
- 238000012937 correction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
Definitions
- the present invention relates to an autonomous traveling system for an agricultural work vehicle that causes the agricultural work vehicle to autonomously travel by communication between an operating device and the agricultural work vehicle.
- Patent Documents 1 to 3 In recent years, an autonomous traveling system has been developed that autonomously travels an unmanned work vehicle on which an operator is not boarded in order to efficiently and easily perform farm work on a farm field (see Patent Documents 1 to 3).
- an operator can remotely control an operation device such as a tablet-type personal computer in order to monitor the autonomous traveling of a work vehicle at a work site such as a farm field.
- the software (application) for the autonomous traveling system stored in the operation device and the software (firmware) installed in the control device for the work vehicle are updated to correct the defective part.
- software update version upgrade
- only one of the operating device and the work vehicle may be updated in software. In this case, there is a case where the affinity between the software of the operation device and the software of the work vehicle is lost, and there is a possibility that the work vehicle that has started autonomous traveling may become unmanageable by the operation device.
- the present invention has been made in view of the above-described present situation, and it is a technical problem to provide an autonomous traveling system for an agricultural work vehicle that can safely operate an agricultural work vehicle that is traveling autonomously.
- the present invention is an autonomous traveling system of an agricultural work vehicle in which autonomous traveling of the agricultural working vehicle is controlled by a remote operating device capable of communicating with the agricultural working vehicle, the device side software version of the remote operating device and the agricultural working vehicle If the version of the vehicle-side software does not match, autonomous traveling of the farm work vehicle is prohibited.
- the version of the device-side software is older than the version of the vehicle-side software
- communication between the remote control device and the farm work vehicle is interrupted, and the device-side software is installed in the farm work vehicle.
- the update may be notified.
- the version of the vehicle-side software is older than the version of the device-side software
- communication between the remote operation device and the farm vehicle is interrupted, and the vehicle-side software is used in the remote operation device.
- the update may be notified.
- the autonomous traveling system includes a server that communicates with the farm vehicle and manages an operation state of the farm vehicle, and the server stores update histories of the device-side software and the vehicle-side software. It may be a thing.
- the server compares the versions of the vehicle-side software and the device-side software and detects a mismatch between the versions of the vehicle-side software and the device-side software, the farm vehicle or the remote The operation device may be notified.
- the farming machine can run autonomously with highly safe software that eliminates problems, making it safer Can be improved.
- the difference between the unmanned tractor and the manned tractor is whether or not the operator directly operates, and the configuration as a tractor is common to unmanned and manned. That is, even an unmanned tractor can be operated (boarded) by an operator and operated directly (in other words, it can be used as a manned tractor). Moreover, even if it is a manned tractor, an operator can get off and can perform autonomous driving
- the autonomous traveling is a configuration in which the tractor 1 is provided for traveling by the autonomous traveling control device 51 or the like included in the tractor shown in FIG. 4, and the tractor 1 travels along a predetermined route.
- the autonomous work means that the configuration that the tractor 1 is equipped with for work is controlled by the autonomous traveling control device 51 and the like, and the tractor 1 performs work along a predetermined route.
- the remote operation device 70 operated by the operator performs wireless communication with the tractor 1 in the field (work area) H ⁇ b> 1, thereby The autonomous traveling of the tractor 1 that acquires position information (positioning information) by communication is controlled.
- the unmanned tractor 1 communicates with the server 100 installed in the management center C1 through a communication network N1 such as a telephone line network, and the driving information of the tractor 1 is transmitted to the server 100 together with position information (positioning information) and time information. Sent to.
- the server 100 accumulates driving information of the unmanned tractor 1 together with position information and time information, and stores it as work history information.
- a reference station (portable reference station) 60 is installed in the vicinity of the farm field H1, and the reference station 60 includes position information serving as a reference point that is an installation position, and a signal from the positioning satellite 63 (hereinafter referred to as “satellite signal”). Is directly received by the positioning antenna 61, and a signal from the positioning satellite 63 (hereinafter referred to as “vehicle signal”) received by the unmanned tractor 1 by the wireless communication antenna 64 is indirectly received.
- the reference station 60 uses the reference station communication device 62 to calculate position correction information from the satellite signal and the vehicle signal by the RTK positioning method or the like, and transmits the position correction information to the tractor 1 through the wireless communication antenna 64.
- the tractor 1 corrects the satellite positioning information measured by the positioning antenna 6 (see FIG. 2) by using the correction information transmitted from the reference station 60, and the current position information of the tractor 1 (for example, latitude information / longitude information). )
- the remote control device 70 performs wireless communication with the tractor 1 without communication connection to the communication network N1, receives the driving information of the tractor 1 together with position information and time information, and serves as work history information.
- the operator operates the remote operation device 70 while visually confirming the situation in the field H1 and the state of the tractor 1, thereby starting the autonomous traveling and the tractor 1 connected to the remote operation device 70 in communication. Stop can be instructed.
- the remote operation device 70 is connected to an access point 90 such as a router connected to the communication network N1 via an ONU (Optical Network Unit) or a modem.
- the remote operation device 70 can communicate with the server 100 via the communication network N1 by establishing communication connection with the access point 90 in the office O1. Then, the remote control device 70 becomes communicable with the server 100.
- the work history information of the tractor 1 already stored is transmitted to the server 100.
- the server 100 When the server 100 receives the work history information from the remote control device 70 (hereinafter referred to as “additional work history information”), the server 100 has already received and stored the work history information (hereinafter referred to as “basic work history”). Information)). Then, the server 100 collates the basic work history information and the additional work history information to generate updated work history information in which the additional work history information is added to the basic work history information, and the name of the operator who operated the tractor 1 It is memorized with the model etc.
- additional work history information hereinafter referred to as “additional work history information”
- the external terminal device (service tool) 80 is a terminal device possessed by a serviceman of the sales company or manufacturing company of the tractor 1 and can communicate with the tractor 1 by connecting to the tractor 1 by wire.
- the tractor 1 connected to the external terminal device 80 communicates with the server 100 via the communication network N1, for example, software (firmware) update in a control device or the like in the tractor 1 or failure diagnosis of the tractor 1 can be performed. Executed.
- the tractor 1 is equipped with the body 2 which autonomously travels the agricultural field H1.
- the machine body 2 is provided with a work machine 3 detachably.
- the work machine 3 is used for farm work. Examples of the work machine 3 include various work machines such as a tillage machine, a plow, a fertilizer machine, a mowing machine, and a seeding machine.
- a desired work machine 3 is selected from these as required, and the machine body 2 Can be attached to.
- the machine body 2 is configured to be able to change the height and posture of the mounted work machine 3.
- the airframe 2 which is the airframe of the tractor 1 has a front portion supported by a pair of left and right front wheels 7 and 7 and a rear portion supported by a pair of left and right rear wheels 8 and 8.
- the front wheels 7 and 7 and the rear wheels 8 and 8 constitute a traveling part.
- a bonnet 9 is arranged at the front of the machine body 2.
- the bonnet 9 accommodates an engine 10 that is a drive source of the tractor 1.
- the engine 10 can be configured by, for example, a diesel engine, but is not limited thereto, and may be configured by, for example, a gasoline engine. Further, as the drive source, an electric motor may be used in addition to or instead of the engine.
- a cabin 11 on which an operator is boarded is disposed behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for the operator to steer, a seat 13 for the operator to sit on, and various operating devices for performing various operations. Yes.
- the agricultural work vehicle is not limited to the one with the cabin 11 and may be one without the cabin 11.
- examples of the operation device include a monitor device, a throttle lever, a main transmission lever, a lift lever, a PTO switch, a PTO transmission lever, and a plurality of hydraulic transmission levers. These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
- the monitor device is configured to display various information of the tractor 1.
- the throttle lever is for setting the rotational speed of the engine 10.
- the main transmission lever is used to change the transmission ratio of the transmission case 22.
- the raising / lowering lever is for raising / lowering the height of the working machine 3 mounted on the machine body 2 within a predetermined range.
- the PTO switch is used to intermittently transmit power to a PTO shaft (power extraction shaft) protruding outward from the rear end side of the mission case 22. That is, when the PTO switch is in the ON state, power is transmitted to the PTO shaft and the PTO shaft rotates to drive the work machine 3, while when the PTO switch is in the OFF state, the power to the PTO shaft is cut off. The PTO shaft does not rotate and the work machine 3 stops.
- the PTO shift lever is used to change the power input to the work machine 3, and specifically, is used to change the rotation speed of the PTO shaft.
- the hydraulic shift lever is for switching the hydraulic external take-off valve.
- a chassis 20 constituting the framework is provided at the lower part of the body 2.
- the chassis 20 includes a body frame 21, a mission case 22, a front axle 23, a rear axle 24, and the like.
- the fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member.
- the mission case 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24.
- the front axle 23 is configured to transmit the power input from the mission case 22 to the front wheels 7.
- the rear axle 24 is configured to transmit the power input from the mission case 22 to the rear wheel 8.
- the tractor 1 is an engine control device that can communicate with each other via a vehicle bus line 18 as a control unit for controlling the operation (forward, reverse, stop, turn, etc.) of the airframe 2.
- a machine control device 16 and a work machine control device 17 are provided.
- An output side of the engine control device 15 is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 5.
- the input side of the engine control device 15 is electrically connected to a rotational speed sensor 31 that detects the rotational speed of the engine 5.
- the output side of the machine control device 16 includes a transmission 42 including a hydraulic transmission that shifts the power from the engine 5, and left and right braking devices that brake power transmission to the left and right rear wheels 8 in the rear axle 24. 26 or the like.
- the input side of the machine control device 16 is electrically connected to a vehicle speed sensor 32 that detects the rotational speed of the rear wheel 8, a tilt angle sensor 33 that detects the tilt angle and the tilt angular speed of the fuselage 2, and the like.
- the output side of the work implement control device 17 is electrically connected to the work implement lifting / lowering actuator 44, and the input side of the work implement control device 17 detects the posture or operation state of the work implement 3. And electrically connected.
- the tractor 1 includes a vehicle-mounted terminal device 19 connected to the vehicle bus line 18, and the vehicle-mounted terminal device 19 can be connected to the communication network N1 via a wireless telephone line or the like. That is, the tractor 1 can communicate with the server 100 of the management center C1 by connecting to the communication network N1 through the vehicle-mounted terminal device 19. Further, the tractor 1 is provided with a vehicle bus line 18 and an external terminal (not shown) that can be connected, and an external terminal device (service tool) 80 such as a computer operated by a serviceman is electrically connected to the vehicle bus line 18. It is configured to be connectable.
- an external terminal device 80 such as a computer operated by a serviceman is electrically connected to the vehicle bus line 18. It is configured to be connectable.
- the common rail device 41 is for injecting fuel into each cylinder of the engine 10.
- the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close by the engine control device 15, so that high-pressure fuel pumped from the fuel tank to the common rail device 41 by the fuel supply pump is sent from each injector to the engine 10.
- the injection pressure, the injection timing, and the injection period (injection amount) of the fuel injected into each cylinder and supplied from each injector are controlled with high accuracy.
- the transmission 42 is specifically a movable swash plate type hydraulic continuously variable transmission, and is provided in the transmission case 22.
- the transmission ratio of the transmission case 22 can be set to a desired transmission ratio.
- the lift actuator 44 operates, for example, a three-point link mechanism that connects the work machine 3 to the machine body 2 to move the work machine 3 to a retracted position (a position where farm work is not performed) or a work position (a position where farm work is performed). It raises or lowers to either.
- a three-point link mechanism that connects the work machine 3 to the machine body 2 to move the work machine 3 to a retracted position (a position where farm work is not performed) or a work position (a position where farm work is performed). It raises or lowers to either.
- the tractor 1 having the control devices 15 to 17 as described above is configured such that the control devices 15 to 17 communicate with each other via the vehicle bus line 18 based on various operations of the operator boarded in the cabin 11.
- the farm work can be executed while traveling in the farm field.
- the tractor 1 according to the embodiment can autonomously travel based on a predetermined control signal output from the remote operation device 70, for example, without an operator boarding.
- the tractor 1 has various configurations such as an autonomous traveling control device 51 for enabling autonomous traveling. Further, the tractor 1 is provided with various configurations such as a positioning antenna 6 necessary for acquiring position information of itself (the body) based on the positioning system. With such a configuration, the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field.
- an autonomous traveling control device 51 for enabling autonomous traveling.
- the tractor 1 is provided with various configurations such as a positioning antenna 6 necessary for acquiring position information of itself (the body) based on the positioning system. With such a configuration, the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field.
- the tractor 1 includes an autonomous traveling control device 51, a steering control device 52, a positioning surveying device 53, a wireless communication router (low power data communication device) 54, and a steering actuator 43.
- the autonomous traveling control device 51 and the steering control device 52 are configured to be able to communicate with the engine control device 15, the machine control device 16, and the work implement control device 17 via the vehicle bus line 18.
- the autonomous traveling control device 51 is connected to each of the positioning surveying device 53 and the wireless communication router 54 via the autonomous traveling bus line 56 in the autonomous traveling communication system different from the steering communication system using the vehicle bus line 18. Mutual communication is possible.
- the steering actuator 43 is provided, for example, in the middle of the rotating shaft (steering shaft) of the steering handle 12, and adjusts the turning angle (steering angle) of the steering handle 12.
- the steering control device 52 calculates an appropriate rotation angle of the steering handle 12 so that the tractor 1 travels along the route.
- the steering actuator 43 is controlled so that the steering handle 12 rotates at the rotation angle.
- the steering control device 52 receives a detection signal of the rotation angle of the steering handle 12 from the steering angle sensor 35, and via the vehicle bus line 18, the engine control device 15, the machine control device 16, and the work implement control device 17. By communicating with each, steering according to the vehicle speed of the tractor 1 can be executed.
- the steering actuator 43 does not adjust the turning angle of the steering handle 12, but may adjust the steering angle of the front wheel 7 of the tractor 1. In this case, the steering handle 12 even if turning is performed. Does not rotate.
- the positioning antenna 6 receives signals from positioning satellites constituting a positioning system such as a satellite positioning system (GNSS).
- the positioning antenna 6 is disposed on the upper surface of the roof 14 in the cabin 11.
- the signal received by the positioning antenna 6 is input to the positioning surveying device 53, and the positioning surveying device 53 calculates the position information of the tractor 1 (strictly, the positioning antenna 6) as, for example, latitude / longitude information.
- the position information calculated by the positioning surveying device 53 is acquired by the autonomous traveling control device 51 and used for controlling the tractor 1.
- the positioning surveying device 53 is electrically connected to the first wireless communication antenna 48a in the wireless communication antenna unit 48, and will be described later through a first wireless communication network (for example, a wireless communication network in the 920 MHz band) using specific low power wireless. Communicates with a reference station (portable reference station) 60 to be used.
- the wireless communication antenna unit 48 is disposed on the upper surface of the roof 14 in the cabin 11.
- the positioning surveying device 53 corrects the satellite positioning information of the tractor 1 (mobile station) by receiving correction information (positioning correction information) from the reference station 60 installed at the agricultural field proximity position via the first wireless communication antenna 48a. Then, the current position of the tractor 1 is obtained.
- various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied.
- RTK positioning is applied, and in addition to the positioning antenna 6 being provided in the tractor 1 on the mobile station side, the reference station 60 having the reference station positioning antenna 61 is provided.
- the reference station 60 is arranged at a position (reference point) that does not interfere with the traveling of the tractor 1, for example, around the farm field.
- the position information of the reference point that is the installation position of the reference station 60 is set in advance.
- the reference station 60 is provided with a reference station communication device 62 capable of communicating via a first wireless communication network established between the positioning surveying device 53 of the tractor 1 and a communication device using the first wireless communication antenna 48a.
- the carrier phase (satellite positioning information) from the positioning satellite 63 is measured by both the reference station 60 installed at the reference point and the positioning antenna 6 of the tractor 1 on the mobile station side for which position information is to be obtained.
- the reference station 60 generates correction information including the measured satellite positioning information and the reference point position information every time the satellite positioning information is measured from the positioning satellite 63 or every time the set period elapses, and the reference station communication device 62 To the first wireless communication antenna 48 a of the tractor 1.
- the positioning surveying device 53 of the tractor 1 (corresponding to the mobile station) corrects the satellite positioning information measured by the positioning antenna 6 by using the correction information transmitted from the reference station 60, thereby obtaining the current position information ( For example, latitude information / longitude information) is obtained.
- GNSS-RTK is a positioning method that has been corrected based on information of a reference station whose position is known, and has improved accuracy. There are a plurality of methods depending on the distribution method of information from the reference station. Since the present invention does not depend on the GNSS-RTK system, details are omitted in this embodiment.
- the positioning surveying device 53 can measure not only the position information of the tractor 1 (airframe 2) by satellite positioning, but also the front and rear, right and left tilt angle information by inertial surveying.
- the inclination angle information measured by the positioning surveying device 53 is acquired by the autonomous traveling control device 51 in a state associated with the position information (latitude / longitude information) and used for controlling the tractor 1.
- the positioning surveying device 53 can also measure the height position of the positioning antenna 6 with respect to the farm scene, and thus the vehicle height of the tractor 1 (airframe 2).
- the wireless communication antenna unit 48 is disposed on the top surface of the roof 14 of the cabin 11 of the tractor 1 and first and second wireless communication antennas 48a and 48b that are connected to communicate with the first and second wireless communication networks having different frequency bands. It has.
- the first wireless communication network is constructed by, for example, a specific low-power radio in the 920 MHz band having a high data transmission speed in order to communicate the positioning correction information by the reference station 60.
- the second wireless communication network is constructed by, for example, a 2.4 GHz band low-power data communication system in order to allow high-speed data communication such as image data to be performed at high speed.
- a part of the antennas 48 a and 48 b may be disposed in the cabin 11.
- the first wireless communication antenna 48a is electrically connected to the positioning surveying device 53, and the second wireless communication antenna 48b is electrically connected to the wireless communication router 54.
- the wireless communication router 54 connected to the second wireless communication antenna 48b communicates with the remote control device 70 capable of displaying an image operated by an operator outside the tractor 1 through the second wireless communication network.
- the wireless communication router 54 receives the control signal from the remote operation device 70 and transmits it to the autonomous travel control device 51 via the autonomous travel bus line 56.
- the wireless communication router 54 receives a captured image of the camera 36 by performing wireless communication with the camera 36 that captures the front of the tractor 1 via the second wireless communication network.
- the camera 36 is attached to an upper position of the cabin 11 and photographs a state of a farm field such as the vicinity of the hood 6 in front of the cabin 11.
- the camera 36 is integrally attached to the wireless communication antenna unit 48, but may be attached to a plurality of locations such as a side position and a rear position of the roof 14 of the cabin 11.
- the remote operation device 70 is specifically configured as a tablet personal computer including a touch panel.
- the operator can check the information displayed on the touch panel of the remote operation device 70 (for example, information on a field necessary for autonomous traveling).
- the operator operates the remote control device 70 to transmit a control signal for controlling the tractor 1 to the autonomous traveling control device 51 of the tractor 1.
- the remote operation device 70 of the embodiment is not limited to a tablet personal computer, and may be configured by, for example, a notebook personal computer.
- a monitor device mounted on another tractor different from the tractor 1 can be a remote control device.
- the autonomous traveling control device 51 compares the traveling route generated by the remote operation device 70 with the position information of the tractor 1 and autonomously operates at a predetermined traveling speed while performing a predetermined operation on the tractor 1 along the traveling route.
- the steering angle of the tractor 1, the target engine speed, the gear ratio, and the like are calculated and communicated with the control devices 15 to 17 and 52 through the vehicle bus line 18.
- the tractor 1 can perform farm work by the work implement 3 while autonomously traveling along the travel route.
- the route in the field area (travel area) where the tractor 1 autonomously travels may be referred to as “travel route” in the following description.
- the area (work area) to be farmed by the work machine 3 of the tractor 1 is determined as an area excluding the headland and the margin from the entire field area. Are set based on these registered points and the work width of the tractor 1 when the registration work of the registered points is executed.
- the autonomous traveling control device 51 stops fuel injection in the common rail device 41 and communicates with the machine control device 16 by communication with the engine control device 15 when the operator performs a stop operation on the remote control device 70. By making the transmission 42 neutral by communication, a braking operation by a brake device 26 described later is applied. At this time, the autonomous traveling control device 52 controls the steering actuator 43 so that the handle 12 is set to the neutral position by communication with the steering control device 51, and directs the left and right front wheels 7, 7 in the straight traveling direction. It is good.
- the autonomous traveling control device 51 is in a communication state with the reference station 60 in the positioning surveying device 53 (communication state in the first communication network), and in a communication state with the remote control device 70 in the wireless communication router 54 (communication state in the second communication network). ) Confirm each via the autonomous bus line 56.
- the autonomous traveling control device 51 confirms that the communication state in any of the first and second communication networks is cut off, the autonomous traveling control device 51 communicates with the engine control device 15 and the transmission control device 16 to thereby determine the autonomousness of the tractor 1. Stop driving. Note that the autonomous traveling control device 51 determines that the communication with the communication partner has been interrupted when the positioning surveying device 53 and the wireless communication router 54 have not received a signal from the communication partner for a predetermined period or longer. .
- the tractor 1 is provided with a pair of left and right brake devices 26 and 26 for braking the left and right rear wheels 8 and 8 by two systems of operation of the brake pedal and parking brake lever and automatic control. That is, both the left and right brake devices 26, 26 are configured to brake both the left and right rear wheels 8, 8 by operating the brake pedal (or parking brake lever) in the braking direction. Further, when the turning angle of the handle 12 becomes equal to or larger than a predetermined angle, the brake device 26 for the rear wheel 8 on the inside of the turn automatically performs a braking operation according to a command from the machine control device 16 ( So-called auto brake).
- the reference station 60 includes a reference station wireless communication antenna 64 that distributes correction information, a reference station positioning antenna 61 that receives a signal from the positioning satellite 63, and a reference station communication device that is electrically connected to the wireless communication antenna 64 and the positioning antenna 61, respectively. 62.
- the reference station 60 is installed at a reference point for specifying the position of the tractor (work vehicle) 1 serving as a mobile station.
- the portable reference station 60 installed at the reference point sends a signal from the positioning satellite 63 received by the reference station positioning antenna 61 to the reference station communication device 62, and the reference station communication device 62 measures the satellite positioning information and the reference point position information.
- the correction information including etc. is generated.
- the reference station 60 distributes the correction information generated by the reference station communication device 62 via the first wireless communication network.
- the reference station 60 may be configured to be disassembled into a plurality of members, and each disassembled member may be configured to have a size that can be accommodated in a predetermined case and transported.
- the unmanned tractor 1 controls the communication operation of the wireless communication router 54 by the autonomous traveling control device 51, so that the wireless communication router 54 starts searching for a remote control device 70 that can communicate through the second wireless communication network. That is, the wireless communication router 54 generates a communication confirmation signal including a tractor ID unique to the unmanned tractor 1 and transmits it from the second wireless communication antenna 48b.
- the remote operation device 70 stores in advance the tractor ID of the unmanned tractor 1 that can communicate with the autonomous traveling system. Then, when receiving the communication confirmation signal including the tractor ID, the remote operation device 70 authenticates the communication with the wireless communication router 54 of the unmanned tractor 1 when the received tractor ID matches the previously stored tractor ID. .
- the remote operation device 70 authenticates communication with the unmanned tractor 1, generates a response signal to the communication confirmation signal, and transmits the response signal to the wireless communication router 54 of the unmanned tractor 1.
- the remote operation device 70 generates a response signal including a device ID unique to the own device and transmits the response signal to the wireless communication router 54 through the second wireless communication network.
- the unmanned tractor 1 stores in advance the device ID of the remote operation device 70 that can communicate with the autonomous traveling system in the autonomous traveling control device 51 or the wireless communication router 54. Therefore, when the unmanned tractor 1 receives the response signal at the wireless communication router 54 via the second wireless communication antenna 48b, the remote operation is performed when the device ID in the received response signal matches the device ID stored in advance. Communication with the device 70 is authenticated.
- the unmanned tractor 1 when communication is established between the unmanned tractor 1 (wireless communication router 54) and the remote control device 70, the unmanned tractor 1 notifies the server 100 that communication has been established. At this time, the unmanned tractor 1 transmits the tractor ID of the unmanned tractor 1 and the device ID of the remote control device 70 to the server 100 from the vehicle-mounted terminal device 19 via the communication network N1.
- the position information (unmanned tractor 1) is obtained by communicating with the positioning satellite 63 and the reference station 60 through the antennas 6 and 48a. (Latitude / longitude information). Then, after the above-described authentication process between the unmanned tractor 1 (wireless communication router 54) and the remote control device 70, the position information of the unmanned tractor 1 is transmitted to the server 100 together with the tractor ID and the device ID.
- the server 100 When the server 100 confirms from the tractor ID and the device ID that the tractor 1 and the remote control device can be used in the autonomous traveling system, the server 100 authenticates the unmanned tractor 1 to enable communication between the unmanned tractor 1 and the server 100. .
- the server 100 authenticates the unmanned tractor 1
- the server 100 reads map information centered on the position information received from the unmanned tractor 1 and transmits the read map information to the unmanned tractor 1.
- the server 100 confirms the field (work area) assigned to the operator who operates the unmanned tractor 1 based on the tractor ID and the device ID, and maps the information on the field (work area) as the work target to the map information. And transmitted to the unmanned tractor 1.
- the unmanned tractor 1 gives the received map information to the wireless communication router 54 via the autonomous traveling control device 51, and the map information is sent from the wireless communication router 54. Transmit to the remote control device 70.
- the remote control device 70 that has received the map information displays a map including the field (work area) assigned to the operator on the display based on the received map information.
- the operator designates a field (working area) to be worked by the unmanned tractor 1 from the map displayed on the display by operating a touch panel constituting the display of the remote control device 70.
- the operator can use the unmanned tractor 1 to perform operations (cultivation work, sowing work, fertilization work, pricking work, upsetting work, etc.) on the remote control device 70 and the size of the work machine and the work machine. specify.
- the remote operation device 70 When the remote operation device 70 generates a response signal including the field (work area) and the work machine designated by the operator and transmits the response signal to the unmanned tractor 1, the unmanned tractor 1 performs the work by the designated field and work machine. Based on the calculation, a work route (work route) along which the unmanned tractor 1 moves is generated. That is, when the autonomous traveling control device 51 is notified of the contents of the farm field and the work implement included in the response signal received by the wireless communication router 54, the autonomous traveling control device 51 operates the work route from the designated farm field and the working implement. Set. Then, the wireless communication router 54 transmits a communication confirmation signal including the set work route to the remote operation device 70.
- the remote operation device 70 When the remote operation device 70 receives an operation for starting autonomous traveling by the operator, the remote operation device 70 generates a response signal for permitting autonomous traveling and transmits the response signal to the unmanned tractor 1 (wireless communication router 54).
- the unmanned tractor 1 receives the response signal serving as the autonomous traveling permission signal by the wireless communication router 54, the autonomous traveling control device 51 passes through the engine control device 15, the machine control device 16, the work implement control device 17, and the steering control device 52. The control operation of each part is executed, and the autonomous traveling of the unmanned tractor 1 is started.
- the driving state of the machine body 2 and the work machine 3 (engine speed, vehicle speed of the machine body 2, engine load, tilt attitude of the machine body 2, tilt attitude of the work machine 3,
- the lift position, the braking operation of the left and right brake devices 26, the steering angle of the handle 10, the switching of the PTO switch, etc.) are transmitted to the server 100 and the remote control device 70 together with the position information and time information.
- the position information is latitude / longitude information calculated by the positioning surveying device 53 based on information received from the positioning satellite 63 and the reference station 60.
- the time information is the control devices 15 to 17, 52,. 53 is information indicating the time counted in any one of 53.
- the autonomous traveling system in the present embodiment is a version (revised version) of vehicle-side software (firmware) of the control devices 15 to 17, 51, 52 in the unmanned tractor 1 subject to autonomous traveling. Number) and the version of the device-side software (application) for the autonomous traveling system in the remote control device 70 are mutually confirmed.
- the vehicle-side software of the unmanned tractor 1 matches the device-side software of the remote control device 70
- the autonomous traveling of the unmanned tractor 1 by the autonomous traveling system is permitted. That is, when the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70 do not match, autonomous traveling of the unmanned tractor 1 by the autonomous traveling system is prohibited.
- the server 100 stores the versions of the vehicle-side software and the device-side software together with the update histories of the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70.
- “Version match” means not only when one of the software on each of the tractor 1 side and the remote control device 70 side is revised, but also when only one software is revised. However, the case where it becomes possible to operate by using the other software of the latest version is also included.
- the software on each of the tractor 1 side and the remote control device 70 side has two versions of old and new, and both software are both new versions, or both software are both If it is an old version, the versions shall match.
- both the vehicle-side software of the tractor 1 and the device-side software of the remote control device 70 are both old versions (when the versions of the vehicle-side software and the device-side software are old)
- the unmanned tractor When the authentication operation for establishing communication between the remote control device 1 and the remote control device 70 is executed, the communication confirmation signal and the response signal do not include version information indicating the version of each software. Therefore, since both the unmanned tractor 1 and the remote control device 70 receive a signal without version information, it is determined that the software of each other is the same in the old version, and the mutual authentication is performed. Communication between the devices 70 is established.
- the unmanned tractor 1 When the unmanned tractor 1 and the remote control device 70 having the old version of software permit communication with each, the unmanned tractor 1 sends the tractor ID, the device ID, and the location information to make an authentication request to the server 100. Send. Since the server 100 does not receive the software version information of the unmanned tractor 1 and the remote control device 70, it is determined from the stored version update history that the software of the unmanned tractor 1 and the remote control device 70 is the old version software. Check.
- the server 100 recognizes that each of the unmanned tractor 1 and the remote control device 70 is operating with the old version of the software, and thereby updates the software to prompt the unmanned tractor 1 and the remote control device 70 to update the software. Is notified together with the transmission of the map information.
- the unmanned tractor 1 receives the update notification from the server 100 together with the map information, the unmanned tractor 1 transmits the map information and the update notification to the remote control device 70.
- the remote operation device 70 receives the update notification from the server 100 together with the map information, the software update of the unmanned tractor 1 and the remote operation device 70 is completed after the designated operation of the field (work area) and the work machine is completed.
- Notification screen for example, “Tractor operation is possible. Please note that both tractor software and autonomous driving applications have been updated. Please update the software after the work is completed.” Show on the display. Accordingly, the operator can confirm that the operation for autonomous traveling of the unmanned tractor 1 is possible by confirming the notification screen of the remote operation device 70, and the software of each of the unmanned tractor 1 and the remote operation device. You can recognize that the version has been updated.
- each of the communication confirmation signal and the response signal includes version information indicating the version of each software. Therefore, the unmanned tractor 1 and the remote control device 70 confirm the version information included in the received signal, respectively, determine that the respective software matches in the new version, and authenticate each other. Communication between the remote control devices 70 is established.
- the unmanned tractor 1 transmits the version information of each software together with the tractor ID, the device ID, and the position information in order to make an authentication request to the server 100.
- the server 100 receives the software version information of each of the unmanned tractor 1 and the remote control device 70, thereby confirming that the software of each of the unmanned tractor 1 and the remote control device 70 is a new version of software.
- the device-side software of the remote control device 70 is the old version (the device-side software version is older than the vehicle-side software version).
- version information is included in the communication confirmation signal, but version information is not included in the response signal.
- the communication confirmation signal generated based on the new version of the vehicle side software is configured to be processed by the old version of the apparatus side software. Accordingly, the remote operation device 70 authenticates the unmanned tractor 1 by receiving the communication confirmation signal.
- the unmanned tractor 1 since the unmanned tractor 1 receives a response signal without version information, the unmanned tractor 1 determines that the software does not match each other, stops the transmission operation of the communication confirmation signal by the wireless communication router 54, and Block communication. The unmanned tractor 1 transmits the version information of the vehicle-side software to the server 100 together with the tractor ID, the device ID, and the position information.
- the server 100 receives only the version information of the vehicle-side software, thereby recognizing that the versions of the vehicle-side software of the tractor 1 and the device-side software of the remote control device 70 are inconsistent. Further, the server 100 confirms the update history of the device-side software of the remote operation device 70, reads the version of the device-side software of the remote operation device 70, and notifies the unmanned tractor 1. The unmanned tractor 1 stops the engine 10 after notifying the device side software of the remote control device 70 to be updated.
- the remote control device 70 since the remote control device 70 does not receive a communication confirmation signal from the unmanned tractor 1 (wireless communication router 54) even after a predetermined time has elapsed, it is determined that communication with the unmanned tractor 1 has been interrupted. To do. Accordingly, the remote control device 70 notifies that the communication with the unmanned tractor 1 has been cut off and notifies the confirmation of the state of the unmanned tractor 1 (for example, “Cannot communicate with the tractor. Stop the engine of the tractor. "Please check the tractor after stopping the tractor engine”.
- the operator gets on the unmanned tractor 1 by confirming the screen display of the remote control device 70.
- the unmanned tractor 1 is notified of the update of the device-side software, for example, by display on a monitor device (not shown) in the cabin 11.
- the operator who boarded the unmanned tractor 1 can recognize that the update of the apparatus side software of the remote operation apparatus 70 is requested
- the operator when the operator confirms an update request for the device-side software of the remote operation device 70, the operator returns to the office O ⁇ b> 1 and connects the remote operation device 70 to the access point 90 for communication.
- the remote operation device 70 is communicably connected to the communication network N1 via the access point 90, so that it can communicate with the server 100 and requests the server 100 to update the device-side software.
- the remote operation device 70 transmits the device ID of its own device to the server 100, so that the server 100 confirms the update request from the remote operation device 70 and authenticates communication with the remote operation device 70. .
- the new version of the device side software (optimum version application) is read out in order to correspond to the new version of the vehicle side software of the unmanned tractor 1, and the remote control device 70.
- the remote operation device 70 executes an update from the old version of the device side software.
- the remote operation device 70 notifies the server 100 of completion, and the server 100 and the remote operation device. Communication with 70 is interrupted.
- the device-side software of the remote control device 70 when performing an authentication operation for establishing communication between the unmanned tractor 1 and the remote control device 70, the communication confirmation signal does not include version information. Since the remote operation device 70 receives a communication confirmation signal without version information, the remote operation device 70 determines that the software does not match each other and blocks communication with the unmanned tractor 1 (wireless communication router 54).
- the unmanned tractor 1 (wireless communication router 54) does not receive a response signal from the remote operation device 70 even after a predetermined time has elapsed, it is determined that communication with the remote operation device 70 has been interrupted. Therefore, the remote control device 70 notifies that the communication with the unmanned tractor 1 has been interrupted by, for example, a monitor device (not shown) in the cabin 11.
- the remote operation device 70 recognizes that the vehicle-side software of the unmanned tractor 1 is old and confirms a mismatch with the version of the device-side software, thereby notifying the update of the vehicle-side software of the unmanned tractor 1 (For example, a character notation such as “The tractor software has not been updated. Please contact the service store and update the tractor software”) is displayed on the display. Thereby, the operator can recognize that the operation for autonomous traveling is impossible because the vehicle-side software in the unmanned tractor 1 remains the old version by checking the notification screen of the remote control device 70. .
- the operator when the operator confirms an update request for the vehicle-side software of the unmanned tractor 1, the operator contacts a service store such as a store to request an update of the vehicle-side software. Then, an external terminal device (service tool) 80 is wired to the unmanned tractor 1 by a serviceman, and the unmanned tractor 1 is notified of the update (update) of the vehicle-side software of the unmanned tractor 1. At this time, the external terminal device 80 transmits a device ID unique to the own device to the unmanned tractor 1.
- a service store such as a store
- the unmanned tractor 1 is communicably connected to the communication network N1 by the vehicle-mounted terminal device 19, can communicate with the server 100, and requests the server 100 to update the vehicle-side software.
- the unmanned tractor 1 transmits the device ID of the external terminal device 80 together with the tractor ID of the self-device to the server 100, so that the server 100 confirms the update request through the external terminal device 80 and the unmanned tractor 1 Authenticate communications with.
- a new version of the vehicle-side software (optimum version firmware) is read in order to correspond to the new version of the device-side software of the remote control device 70, and the unmanned tractor 1 Send to.
- the unmanned tractor 1 receives the new version of the vehicle-side software
- the unattended tractor 1 updates the old version of the vehicle-side software.
- the server 100 and the remote control device 70 are notified of completion. Communication with is interrupted.
- the server device 100 can confirm the update history of the software of each of the unmanned tractor 1 and the remote control device 70.
- the software version match may be determined.
- the server 100 confirms that the software versions of the unmanned tractor 1 and the remote control device 70 match, communication between the unmanned tractor 1 and the remote control device 70 is established.
- the server 100 receives software version information of each of the unmanned tractor 1 and the remote control device 70 with which communication has been established, as in the case of FIG. 6, FIG. 8, and FIG. It may be compared with the version information of the software to confirm whether update is necessary.
- the remote control device 70 used in the farm field H1 is communicatively connected to the communication network N1 via a wireless telephone line, for example, and the server 100 It becomes possible to communicate with. Therefore, even if the versions of the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70 do not match, the old version of the software can be updated based on the communication between the remote control device 70 and the server 100.
- the device-side software of the remote operation device 70 is an old version (the device-side software version is older than the vehicle-side software version). ), A communication error is notified by the remote operation device 70, and an update of the device-side software is notified by the unmanned tractor 1. As a result, the operator recognizes that the device side software of the remote operation device 70 needs to be updated. Therefore, the operator operates the remote operation device 70 to update (update) the device side software to the server 100. Request.
- the software update request notification from the remote operation device 70 includes the device ID of the remote operation device 70, and the server 100 authenticates the remote operation device 70 based on the device ID and Establish communication.
- the server 100 reads the new version of the device side software (the optimum version of the application) and transmits it to the remote control device 70 so as to correspond to the new version of the vehicle side software of the unmanned tractor 1.
- the remote control device 70 notifies the update of the vehicle side software.
- the operator recognizes that the vehicle side software of the unmanned tractor 1 needs to be updated, so that the server 100 is updated (updated) with respect to the server 100 by operating the remote control device 70. Request.
- the software update request notification from the remote operation device 70 includes the tractor ID of the unmanned tractor 1 together with the device ID of the remote operation device 70, and the server 100 performs the remote operation device based on the device ID and the tractor ID. 70, the unmanned tractor ID is authenticated, and communication with the remote control device 70 and the plain tractor 1 is established. The server 100 reads out the new version of the vehicle-side software (the optimum version of the application) and transmits it to the unmanned tractor 1 so as to correspond to the new version of the device-side software of the remote control device 70.
- the unmanned tractor 1 when the vehicle-side software of the unmanned tractor 1 is updated, the unmanned tractor 1 notifies the remote control device 70 that the software update in the unmanned tractor 1 has been completed. Further, when the remote control device 70 recognizes the completion of the software update in the unmanned tractor 1, the remote control device 70 notifies the operator of the completion of the software update by displaying it on the display and the server 100 also completes the software. Notice.
- the present invention is not limited to the above-described embodiment, and can be embodied in various forms.
- the configuration of each unit is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention. That is, in the above-described embodiment, it is assumed that the single tractor 1 is operated in the field, but the multiple tractors 1 may be operated. At this time, for example, as shown in FIG. 16, a part of the farm work is performed by the unmanned tractor 1 in the field, and the remaining farm work is performed by the manned tractor 1A. By performing cooperative work of farm work, follow-up work, accompanying work, etc. by unmanned tractor 1 and manned tractor 1A, farm work can be shared in a single farm field.
- the unmanned tractor 1 may perform the farm work in a certain farm field, and at the same time, the manned tractor 1A may perform the farm work in another farm field. Further, any of the cooperative work, the follow-up work, and the accompanying work may be executed by a plurality of unmanned tractors 1.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Guiding Agricultural Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Selective Calling Equipment (AREA)
Abstract
In this autonomous travel system for an agricultural work vehicle 1, the autonomous travel of the agricultural work agricultural work vehicle 1 is controlled by a remotely operated device 70 that is capable of communicating with the agricultural work vehicle 1. In addition, autonomous travel by the agricultural work vehicle 1 is prohibited if the device-side software version for the remotely operated device 70 and the vehicle-side software version for the agricultural work vehicle 1 do not match.
Description
本発明は、操作装置と農作業車両との通信により農作業車両の自律走行を実行させる農作業車両の自律走行システムに関する。
The present invention relates to an autonomous traveling system for an agricultural work vehicle that causes the agricultural work vehicle to autonomously travel by communication between an operating device and the agricultural work vehicle.
近年、圃場での農作業を効率よく簡便に行うため、オペレータが搭乗していない無人の作業車両を自律的に走行させる自律走行システムが開発されている(特許文献1~3参照)。特許文献1~3の自律走行システムでは、圃場等の作業場で作業車両の自律走行を監視するべく、タブレット型のパーソナルコンピュータなどの操作装置により、オペレータが遠隔操作可能としている。
In recent years, an autonomous traveling system has been developed that autonomously travels an unmanned work vehicle on which an operator is not boarded in order to efficiently and easily perform farm work on a farm field (see Patent Documents 1 to 3). In the autonomous traveling systems of Patent Documents 1 to 3, an operator can remotely control an operation device such as a tablet-type personal computer in order to monitor the autonomous traveling of a work vehicle at a work site such as a farm field.
ところで、操作装置に格納された自律走行システム用のソフトウェア(アプリケーション)、及び、作業車両の制御装置に実装されるソフトウェア(ファームウェア)はそれぞれ、不具合箇所の修正のために更新される。そして、操作装置と作業車両のそれぞれで、ソフトウェアの更新(バージョンアップ)が実行されるため、操作装置及び作業車両のいずれか一方のみがソフトウェアが更新される場合がある。この場合、操作装置のソフトウェアと作業車両のソフトウェアとに親和性がなくなる場合があり、自律走行を開始させた作業車両が、操作装置により操縦不能となる恐れがある。
By the way, the software (application) for the autonomous traveling system stored in the operation device and the software (firmware) installed in the control device for the work vehicle are updated to correct the defective part. And since software update (version upgrade) is performed in each of the operating device and the work vehicle, only one of the operating device and the work vehicle may be updated in software. In this case, there is a case where the affinity between the software of the operation device and the software of the work vehicle is lost, and there is a possibility that the work vehicle that has started autonomous traveling may become unmanageable by the operation device.
本発明は、上記の現状に鑑みてなされたものであり、自律走行中の農作業車両を安全に操作できる農作業車両の自律走行システムを提供することを技術的課題としている。
The present invention has been made in view of the above-described present situation, and it is a technical problem to provide an autonomous traveling system for an agricultural work vehicle that can safely operate an agricultural work vehicle that is traveling autonomously.
本発明は、農作業車両と通信可能な遠隔操作装置により、前記農作業車両の自律走行が制御される農作業車両の自律走行システムであって、前記遠隔操作装置の装置側ソフトウェアのバージョンと前記農作業車両の車両側ソフトウェアのバージョンとが一致しない場合、前記農作業車両の自律走行が禁止されるというものである。
The present invention is an autonomous traveling system of an agricultural work vehicle in which autonomous traveling of the agricultural working vehicle is controlled by a remote operating device capable of communicating with the agricultural working vehicle, the device side software version of the remote operating device and the agricultural working vehicle If the version of the vehicle-side software does not match, autonomous traveling of the farm work vehicle is prohibited.
上記自律走行システムにおいて、前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれのバージョンが共に古い場合、前記農作業車両の自律走行を許可するとともに、前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれの更新を前記遠隔操作装置により通知するものとしてもよい。
In the above autonomous traveling system, when both the device-side software and the vehicle-side software are both old versions, the farm work vehicle is allowed to autonomously travel, and the device-side software and the vehicle-side software are updated remotely. It is good also as what notifies by an apparatus.
上記自律走行システムにおいて、前記装置側ソフトウェアのバージョンが前記車両側ソフトウェアのバージョンよりも古い場合、前記遠隔操作装置と前記農作業車両との通信が遮断されるとともに、前記農作業車両において前記装置側ソフトウェアの更新が通知されるものとしてもよい。
In the autonomous traveling system, when the version of the device-side software is older than the version of the vehicle-side software, communication between the remote control device and the farm work vehicle is interrupted, and the device-side software is installed in the farm work vehicle. The update may be notified.
上記自律走行システムにおいて、前記車両側ソフトウェアのバージョンが前記装置側ソフトウェアのバージョンよりも古い場合、前記遠隔操作装置と前記農作業車両との通信が遮断されるとともに、前記遠隔操作装置において前記車両側ソフトウェアの更新が通知されるものとしてもよい。
In the autonomous traveling system, when the version of the vehicle-side software is older than the version of the device-side software, communication between the remote operation device and the farm vehicle is interrupted, and the vehicle-side software is used in the remote operation device. The update may be notified.
上記自律走行システムにおいて、前記農作業車両と通信して前記農作業車両の動作状態を管理するサーバを備えており、前記サーバが、前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれの更新履歴を記憶しているものとしてもよい。
The autonomous traveling system includes a server that communicates with the farm vehicle and manages an operation state of the farm vehicle, and the server stores update histories of the device-side software and the vehicle-side software. It may be a thing.
上記自律走行システムにおいて、前記サーバが、前記車両側ソフトウェアと前記装置側ソフトウェアのバージョンを比較して、前記車両側ソフトウェアと前記装置側ソフトウェアのバージョンの不一致を検出したとき、前記農作業車両又は前記遠隔操作装置に通知するものとしてもよい。
In the autonomous traveling system, when the server compares the versions of the vehicle-side software and the device-side software and detects a mismatch between the versions of the vehicle-side software and the device-side software, the farm vehicle or the remote The operation device may be notified.
本発明によれば、遠隔操作装置の装置側ソフトウェアのバージョンと農作業車両の車両側ソフトウェアのバージョンとが一致した場合に、農作業車両の自律走行が許可されるため、農作業車両の自律走行時において、操縦不能となることを忌避できるとともに、緊急事態にも対応可能となる。また、装置側ソフトウェア及び車両側ソフトウェアが古い場合に、最新のものに更新するようにオペレータへ通知するため、不具合の解消された安全性の高いソフトウェアにより農作業機械の自律走行を実行でき、より安全性を向上できる。
According to the present invention, when the version of the device-side software of the remote operation device and the version of the vehicle-side software of the farm vehicle match, since the autonomous running of the farm vehicle is permitted, during the autonomous running of the farm vehicle, It is possible to avoid being out of control and respond to emergency situations. In addition, when the software on the device side and the software on the vehicle side are old, the operator is notified to update to the latest software, so the farming machine can run autonomously with highly safe software that eliminates problems, making it safer Can be improved.
<自律走行システム>
以下に、本発明を具体化した実施形態を図面に基づいて説明する。まず始めに、本発明に係る農作業車両の一例であるトラクタを自律走行させる自律走行システムについて、図1~図4を参照して以下に説明する。以下の説明では、自律走行及び自律作業を行うトラクタを「無人トラクタ」又は「ロボットトラクタ」と称し、オペレータが直接操作することにより走行して作業を行うトラクタを「有人トラクタ」と称することがある。 <Autonomous driving system>
DESCRIPTION OF EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. First, an autonomous traveling system that autonomously travels a tractor that is an example of an agricultural work vehicle according to the present invention will be described below with reference to FIGS. In the following description, a tractor that performs autonomous traveling and autonomous work may be referred to as an “unmanned tractor” or a “robot tractor”, and a tractor that travels and operates by direct operation by an operator may be referred to as a “manned tractor”. .
以下に、本発明を具体化した実施形態を図面に基づいて説明する。まず始めに、本発明に係る農作業車両の一例であるトラクタを自律走行させる自律走行システムについて、図1~図4を参照して以下に説明する。以下の説明では、自律走行及び自律作業を行うトラクタを「無人トラクタ」又は「ロボットトラクタ」と称し、オペレータが直接操作することにより走行して作業を行うトラクタを「有人トラクタ」と称することがある。 <Autonomous driving system>
DESCRIPTION OF EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. First, an autonomous traveling system that autonomously travels a tractor that is an example of an agricultural work vehicle according to the present invention will be described below with reference to FIGS. In the following description, a tractor that performs autonomous traveling and autonomous work may be referred to as an “unmanned tractor” or a “robot tractor”, and a tractor that travels and operates by direct operation by an operator may be referred to as a “manned tractor”. .
なお、本実施形態において、無人トラクタと有人トラクタの違いは、オペレータの直接操作の有無であり、トラクタとしての構成は無人と有人とで共通である。即ち、無人トラクタであっても、オペレータが搭乗(乗車)して直接操作することができる(言い換えれば、有人トラクタとして使用することができる)。また、有人トラクタであっても、オペレータが降車して自律走行及び自律作業を行わせることができる(言い換えれば、無人トラクタとして使用することができる)。
In this embodiment, the difference between the unmanned tractor and the manned tractor is whether or not the operator directly operates, and the configuration as a tractor is common to unmanned and manned. That is, even an unmanned tractor can be operated (boarded) by an operator and operated directly (in other words, it can be used as a manned tractor). Moreover, even if it is a manned tractor, an operator can get off and can perform autonomous driving | running | working and autonomous work (in other words, it can be used as an unmanned tractor).
更に、自律走行とは、図4に示すトラクタ1が備える自律走行制御装置51等によって、当該トラクタ1が走行のために備える構成が制御され、予め定められた経路に沿ってトラクタ1が走行することを意味する。また、本明細書において自律作業とは、トラクタ1が作業のために備える構成が自律走行制御装置51等によって制御され、予め定められた経路に沿ってトラクタ1が作業を行うことを意味する。
Furthermore, the autonomous traveling is a configuration in which the tractor 1 is provided for traveling by the autonomous traveling control device 51 or the like included in the tractor shown in FIG. 4, and the tractor 1 travels along a predetermined route. Means that. Further, in this specification, the autonomous work means that the configuration that the tractor 1 is equipped with for work is controlled by the autonomous traveling control device 51 and the like, and the tractor 1 performs work along a predetermined route.
図1に示す如く、本実施形態の自律走行システムでは、オペレータにより操作される遠隔操作装置70が、圃場(作業領域)H1内のトラクタ1と無線通信を実行することで、測位衛星63との通信により位置情報(測位情報)を獲得するトラクタ1の自律走行が制御される。無人トラクタ1は、電話回線網などによる通信ネットワーク網N1を通じて、管理センターC1に据え付けられているサーバ100と通信し、トラクタ1の駆動情報を、位置情報(測位情報)や時刻情報と共に、サーバ100に送信される。サーバ100は、無人トラクタ1の駆動情報を位置情報及び時刻情報と共に蓄積し、作業履歴情報として記憶する。
As shown in FIG. 1, in the autonomous traveling system of the present embodiment, the remote operation device 70 operated by the operator performs wireless communication with the tractor 1 in the field (work area) H <b> 1, thereby The autonomous traveling of the tractor 1 that acquires position information (positioning information) by communication is controlled. The unmanned tractor 1 communicates with the server 100 installed in the management center C1 through a communication network N1 such as a telephone line network, and the driving information of the tractor 1 is transmitted to the server 100 together with position information (positioning information) and time information. Sent to. The server 100 accumulates driving information of the unmanned tractor 1 together with position information and time information, and stores it as work history information.
圃場H1近傍には、基準局(可搬型基準局)60が設置されており、基準局60は、設置位置である基準点となる位置情報を備えており、測位衛星63からの信号(以下、「衛星信号」と呼ぶ)を測位アンテナ61で直接的に受信するとともに、無線通信アンテナ64で無人トラクタ1で受信した測位衛星63からの信号(以下、「車両信号」と呼ぶ)を間接的に受信する。
A reference station (portable reference station) 60 is installed in the vicinity of the farm field H1, and the reference station 60 includes position information serving as a reference point that is an installation position, and a signal from the positioning satellite 63 (hereinafter referred to as “satellite signal”). Is directly received by the positioning antenna 61, and a signal from the positioning satellite 63 (hereinafter referred to as "vehicle signal") received by the unmanned tractor 1 by the wireless communication antenna 64 is indirectly received.
基準局60は、基準局通信装置62で、衛星信号及び車両信号から位置補正情報をRTK測位法などにより算出し、無線通信アンテナ64を通じてトラクタ1に送信する。トラクタ1は、測位アンテナ6(図2参照)にて測定した衛星測位情報を、基準局60から送信される補正情報を用いて補正して、トラクタ1の現在位置情報(例えば、緯度情報・経度情報)を求めている。
The reference station 60 uses the reference station communication device 62 to calculate position correction information from the satellite signal and the vehicle signal by the RTK positioning method or the like, and transmits the position correction information to the tractor 1 through the wireless communication antenna 64. The tractor 1 corrects the satellite positioning information measured by the positioning antenna 6 (see FIG. 2) by using the correction information transmitted from the reference station 60, and the current position information of the tractor 1 (for example, latitude information / longitude information). )
圃場H1内において、遠隔操作装置70は、通信ネットワーク網N1に通信接続することなく、トラクタ1と無線通信を行い、トラクタ1の駆動情報を、位置情報及び時刻情報と共に受信し、作業履歴情報として記憶する。オペレータは、圃場H1内の状況とトラクタ1の状態を目視で確認しながら、遠隔操作装置70を操作することにより、遠隔操作装置70と通信接続されたトラクタ1に対して、自律走行の開始及び停止を指示できる。
In the field H1, the remote control device 70 performs wireless communication with the tractor 1 without communication connection to the communication network N1, receives the driving information of the tractor 1 together with position information and time information, and serves as work history information. Remember. The operator operates the remote operation device 70 while visually confirming the situation in the field H1 and the state of the tractor 1, thereby starting the autonomous traveling and the tractor 1 connected to the remote operation device 70 in communication. Stop can be instructed.
オペレータの事務所O1内において、遠隔操作装置70は、ONU(Optical Network Unit)又はモデムなどを介して通信ネットワーク網N1と通信接続されたルータなどのアクセスポイント90と通信接続する。遠隔操作装置70は、事務所O1内のアクセスポイント90と通信接続することで、通信ネットワーク網N1を介してサーバ100と通信可能となる。そして、遠隔操作装置70は、サーバ100と通信可能な状態となる。既に記憶しているトラクタ1の作業履歴情報をサーバ100に送信する。
In the operator's office O1, the remote operation device 70 is connected to an access point 90 such as a router connected to the communication network N1 via an ONU (Optical Network Unit) or a modem. The remote operation device 70 can communicate with the server 100 via the communication network N1 by establishing communication connection with the access point 90 in the office O1. Then, the remote control device 70 becomes communicable with the server 100. The work history information of the tractor 1 already stored is transmitted to the server 100.
サーバ100は、遠隔操作装置70からの作業履歴情報(以下、「追加作業履歴情報」と呼ぶ)を受信すると、既にトラクタ1から受信して記憶している作業履歴情報(以下、「基本作業履歴情報」と呼ぶ)を読み出す。そして、サーバ100は、基本作業履歴情報と追加作業履歴情報とを照合することで、基本作業履歴情報に追加作業履歴情報を追加した更新作業履歴情報を生成し、操作したオペレータの名前やトラクタ1の機種などと共に記憶する。
When the server 100 receives the work history information from the remote control device 70 (hereinafter referred to as “additional work history information”), the server 100 has already received and stored the work history information (hereinafter referred to as “basic work history”). Information)). Then, the server 100 collates the basic work history information and the additional work history information to generate updated work history information in which the additional work history information is added to the basic work history information, and the name of the operator who operated the tractor 1 It is memorized with the model etc.
外部端末装置(サービスツール)80は、トラクタ1の販売会社や製造会社のサービスマンによって所持される端末装置であって、トラクタ1と有線接続することで、トラクタ1と通信可能となる。外部端末装置80と接続したトラクタ1が、通信ネットワーク網N1を介してサーバ100と通信することで、例えば、トラクタ1内の制御装置などにおけるソフトウェア(ファームウェア)の更新やトラクタ1の故障診断などが実行される。
The external terminal device (service tool) 80 is a terminal device possessed by a serviceman of the sales company or manufacturing company of the tractor 1 and can communicate with the tractor 1 by connecting to the tractor 1 by wire. When the tractor 1 connected to the external terminal device 80 communicates with the server 100 via the communication network N1, for example, software (firmware) update in a control device or the like in the tractor 1 or failure diagnosis of the tractor 1 can be performed. Executed.
<トラクタ>
次いで、トラクタ1について、図2~図4を参照して以下に説明する。図2及び図3に示すように、トラクタ1は、圃場H1を自律走行する機体2を備える。機体2には、作業機3が着脱可能に備えられる。当該作業機3は農作業に用いられる。この作業機3としては、例えば、耕耘機、プラウ、施肥機、草刈機、播種機等の種々の作業機があり、これらの中から必要に応じて所望の作業機3を選択して機体2に装着することができる。機体2は、装着された作業機3の高さ及び姿勢を変更可能に構成されている。トラクタ1の機体である機体2は、その前部が左右一対の前輪7,7で支持され、その後部が左右一対の後輪8,8で支持されている。前輪7,7及び後輪8,8が走行部を構成している。 <Tractor>
Next, thetractor 1 will be described below with reference to FIGS. As shown in FIG.2 and FIG.3, the tractor 1 is equipped with the body 2 which autonomously travels the agricultural field H1. The machine body 2 is provided with a work machine 3 detachably. The work machine 3 is used for farm work. Examples of the work machine 3 include various work machines such as a tillage machine, a plow, a fertilizer machine, a mowing machine, and a seeding machine. A desired work machine 3 is selected from these as required, and the machine body 2 Can be attached to. The machine body 2 is configured to be able to change the height and posture of the mounted work machine 3. The airframe 2 which is the airframe of the tractor 1 has a front portion supported by a pair of left and right front wheels 7 and 7 and a rear portion supported by a pair of left and right rear wheels 8 and 8. The front wheels 7 and 7 and the rear wheels 8 and 8 constitute a traveling part.
次いで、トラクタ1について、図2~図4を参照して以下に説明する。図2及び図3に示すように、トラクタ1は、圃場H1を自律走行する機体2を備える。機体2には、作業機3が着脱可能に備えられる。当該作業機3は農作業に用いられる。この作業機3としては、例えば、耕耘機、プラウ、施肥機、草刈機、播種機等の種々の作業機があり、これらの中から必要に応じて所望の作業機3を選択して機体2に装着することができる。機体2は、装着された作業機3の高さ及び姿勢を変更可能に構成されている。トラクタ1の機体である機体2は、その前部が左右一対の前輪7,7で支持され、その後部が左右一対の後輪8,8で支持されている。前輪7,7及び後輪8,8が走行部を構成している。 <Tractor>
Next, the
機体2の前部にはボンネット9が配置されている。このボンネット9内にはトラクタ1の駆動源であるエンジン10等が収容されている。このエンジン10は、例えばディーゼルエンジンにより構成することができるが、これに限るものではなく、例えばガソリンエンジンにより構成しても良い。また、駆動源としては、エンジンに加えて、又はこれに代えて、電気モータを使用しても良い。
A bonnet 9 is arranged at the front of the machine body 2. The bonnet 9 accommodates an engine 10 that is a drive source of the tractor 1. The engine 10 can be configured by, for example, a diesel engine, but is not limited thereto, and may be configured by, for example, a gasoline engine. Further, as the drive source, an electric motor may be used in addition to or instead of the engine.
ボンネット9の後方には、オペレータが搭乗するキャビン11が配置されている。このキャビン11の内部には、オペレータが操向操作するためのステアリングハンドル12と、オペレータが座ることが可能な座席13と、各種の操作を行うための様々な操作装置と、が主として設けられている。ただし、農業用作業車両は、キャビン11付きのものに限るものではなく、キャビン11を備えないものであってもよい。
A cabin 11 on which an operator is boarded is disposed behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for the operator to steer, a seat 13 for the operator to sit on, and various operating devices for performing various operations. Yes. However, the agricultural work vehicle is not limited to the one with the cabin 11 and may be one without the cabin 11.
図示は省略するが、上記の操作装置としては、例えばモニタ装置、スロットルレバー、主変速レバー、昇降レバー、PTOスイッチ、PTO変速レバー及び複数の油圧変速レバー等が挙げられる。これら操作装置は、座席13の近傍又はステアリングハンドル12の近傍に配置されている。
Although not shown, examples of the operation device include a monitor device, a throttle lever, a main transmission lever, a lift lever, a PTO switch, a PTO transmission lever, and a plurality of hydraulic transmission levers. These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
モニタ装置は、トラクタ1の様々な情報を表示可能に構成されている。スロットルレバーは、エンジン10の回転速度を設定するものである。主変速レバーは、ミッションケース22の変速比を変更操作するものである。昇降レバーは、機体2に装着された作業機3の高さを所定範囲内で昇降操作するものである。PTOスイッチは、ミッションケース22の後端側から外向きに突出したPTO軸(動力取出軸)への動力伝達を継断操作するものである。すなわち、PTOスイッチがON状態であるときPTO軸に動力が伝達されてPTO軸が回転し、作業機3が駆動される一方、PTOスイッチがOFF状態であるときPTO軸への動力が遮断されてPTO軸が回転せず、作業機3が停止する。PTO変速レバーは、作業機3に入力される動力の変更操作を行うものであり、具体的にはPTO軸の回転速度の変速操作を行うものである。油圧変速レバーは、油圧外部取出バルブを切換操作するものである。
The monitor device is configured to display various information of the tractor 1. The throttle lever is for setting the rotational speed of the engine 10. The main transmission lever is used to change the transmission ratio of the transmission case 22. The raising / lowering lever is for raising / lowering the height of the working machine 3 mounted on the machine body 2 within a predetermined range. The PTO switch is used to intermittently transmit power to a PTO shaft (power extraction shaft) protruding outward from the rear end side of the mission case 22. That is, when the PTO switch is in the ON state, power is transmitted to the PTO shaft and the PTO shaft rotates to drive the work machine 3, while when the PTO switch is in the OFF state, the power to the PTO shaft is cut off. The PTO shaft does not rotate and the work machine 3 stops. The PTO shift lever is used to change the power input to the work machine 3, and specifically, is used to change the rotation speed of the PTO shaft. The hydraulic shift lever is for switching the hydraulic external take-off valve.
図1に示すように、機体2の下部には、その骨組を構成するシャーシ20が設けられている。当該シャーシ20は、機体フレーム21、ミッションケース22、フロントアクスル23、及びリアアクスル24等から構成されている。
As shown in FIG. 1, a chassis 20 constituting the framework is provided at the lower part of the body 2. The chassis 20 includes a body frame 21, a mission case 22, a front axle 23, a rear axle 24, and the like.
機体フレーム21は、トラクタ1の前部における支持部材であって、直接、又は防振部材等を介してエンジン10を支持している。ミッションケース22は、エンジン10からの動力を変化させてフロントアクスル23及びリアアクスル24に伝達する。フロントアクスル23は、ミッションケース22から入力された動力を前輪7に伝達するように構成されている。リアアクスル24は、ミッションケース22から入力された動力を後輪8に伝達するように構成されている。
The fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member. The mission case 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24. The front axle 23 is configured to transmit the power input from the mission case 22 to the front wheels 7. The rear axle 24 is configured to transmit the power input from the mission case 22 to the rear wheel 8.
図4に示すように、トラクタ1は、機体2の動作(前進、後進、停止及び旋回等)を制御するための制御部として、車両バス回線18を介して相互に通信可能としたエンジン制御装置15、本機制御装置16、及び作業機制御装置17を備える。エンジン制御装置15の出力側が、エンジン5に設けられる燃料噴射装置としてのコモンレール装置41と電気的に接続されている。一方、エンジン制御装置15の入力側が、エンジン5の回転速度を検出する回転速度センサ31などと電気的に接続している。
As shown in FIG. 4, the tractor 1 is an engine control device that can communicate with each other via a vehicle bus line 18 as a control unit for controlling the operation (forward, reverse, stop, turn, etc.) of the airframe 2. 15, a machine control device 16 and a work machine control device 17 are provided. An output side of the engine control device 15 is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 5. On the other hand, the input side of the engine control device 15 is electrically connected to a rotational speed sensor 31 that detects the rotational speed of the engine 5.
本機制御装置16の出力側が、エンジン5からの動力を変速させる油圧式変速装置などを含む変速装置42や、リアアクスル24における左右の後輪8への動力伝達に制動をかける左右のブレーキ装置26などと電気的に接続されている。一方、本機制御装置16の入力側が、後輪8の回転速度を検出する車速センサ32、機体2の傾斜角及び傾斜角速度を検出する傾斜角センサ33などと電気的に接続されている。また、作業機制御装置17の出力側が、作業機昇降アクチュエータ44と電気的に接続されるとともに、作業機制御装置17の入力側が、作業機3の姿勢や動作状態などを検出する作業機センサ34と電気的に接続される。
The output side of the machine control device 16 includes a transmission 42 including a hydraulic transmission that shifts the power from the engine 5, and left and right braking devices that brake power transmission to the left and right rear wheels 8 in the rear axle 24. 26 or the like. On the other hand, the input side of the machine control device 16 is electrically connected to a vehicle speed sensor 32 that detects the rotational speed of the rear wheel 8, a tilt angle sensor 33 that detects the tilt angle and the tilt angular speed of the fuselage 2, and the like. In addition, the output side of the work implement control device 17 is electrically connected to the work implement lifting / lowering actuator 44, and the input side of the work implement control device 17 detects the posture or operation state of the work implement 3. And electrically connected.
また、トラクタ1は、車両バス回線18と接続した車両搭載端末装置19を備えており、車両搭載端末装置19は、無線電話回線などを介して通信ネットワーク網N1に接続できる。すなわち、トラクタ1は車両搭載端末装置19で通信ネットワーク網N1と通信接続することにより、管理センターC1のサーバ100と通信可能となる。更に、トラクタ1は、車両バス回線18と可能な外部端子(図示省略)を備えており、サービスマンにより操作されるコンピュータなどの外部端末装置(サービスツール)80を車両バス回線18に対して電気的に接続可能に構成されている。
Further, the tractor 1 includes a vehicle-mounted terminal device 19 connected to the vehicle bus line 18, and the vehicle-mounted terminal device 19 can be connected to the communication network N1 via a wireless telephone line or the like. That is, the tractor 1 can communicate with the server 100 of the management center C1 by connecting to the communication network N1 through the vehicle-mounted terminal device 19. Further, the tractor 1 is provided with a vehicle bus line 18 and an external terminal (not shown) that can be connected, and an external terminal device (service tool) 80 such as a computer operated by a serviceman is electrically connected to the vehicle bus line 18. It is configured to be connectable.
コモンレール装置41は、エンジン10の各気筒に燃料を噴射するものである。この場合、エンジン10の各気筒に対するインジェクタの燃料噴射バルブがエンジン制御装置15で開閉制御されることによって、燃料供給ポンプによって燃料タンクからコモンレール装置41に圧送された高圧の燃料が各インジェクタからエンジン10の各気筒に噴射され、各インジェクタから供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。
The common rail device 41 is for injecting fuel into each cylinder of the engine 10. In this case, the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close by the engine control device 15, so that high-pressure fuel pumped from the fuel tank to the common rail device 41 by the fuel supply pump is sent from each injector to the engine 10. The injection pressure, the injection timing, and the injection period (injection amount) of the fuel injected into each cylinder and supplied from each injector are controlled with high accuracy.
変速装置42は、具体的には例えば可動斜板式の油圧式無段変速装置であり、ミッションケース22に備えられている。変速装置42を本機制御装置16により制御して斜板の角度を適宜に調整することにより、ミッションケース22の変速比を所望の変速比にすることができる。
The transmission 42 is specifically a movable swash plate type hydraulic continuously variable transmission, and is provided in the transmission case 22. By controlling the transmission 42 by the main unit control device 16 and adjusting the angle of the swash plate as appropriate, the transmission ratio of the transmission case 22 can be set to a desired transmission ratio.
昇降アクチュエータ44は、例えば作業機3を機体2に連結している三点リンク機構を動作させることにより、作業機3を退避位置(農作業を行わない位置)又は作業位置(農作業を行う位置)の何れかに上げ下げするものである。昇降アクチュエータ44を作業機制御装置17により制御して作業機3を適宜に昇降動作させることにより、例えば圃場領域の所望の高さで作業機3により農作業を行うことができる。
The lift actuator 44 operates, for example, a three-point link mechanism that connects the work machine 3 to the machine body 2 to move the work machine 3 to a retracted position (a position where farm work is not performed) or a work position (a position where farm work is performed). It raises or lowers to either. By controlling the elevating actuator 44 by the work machine control device 17 and appropriately moving the work machine 3 up and down, for example, farm work can be performed by the work machine 3 at a desired height in the field area.
上述のような制御装置15~17を備えるトラクタ1は、キャビン11内に搭乗したオペレータの各種操作に基づき、制御装置15~17が車両バス回線18を介して相互に通信して、トラクタ1の各部(機体2、作業機3等)を制御することで、圃場内を走行しながら農作業を実行可能に構成されている。加えて、実施形態のトラクタ1は、例えばオペレータが搭乗しなくても、遠隔操作装置70により出力される所定の制御信号に基づいて自律走行させることが可能となっている。
The tractor 1 having the control devices 15 to 17 as described above is configured such that the control devices 15 to 17 communicate with each other via the vehicle bus line 18 based on various operations of the operator boarded in the cabin 11. By controlling each part (the machine body 2, the work machine 3, etc.), the farm work can be executed while traveling in the farm field. In addition, the tractor 1 according to the embodiment can autonomously travel based on a predetermined control signal output from the remote operation device 70, for example, without an operator boarding.
具体的には、図4に示すように、このトラクタ1は自律走行を可能とするための自律走行制御装置51等の各種の構成が追加されている。更に、トラクタ1は、測位システムに基づいて自ら(の機体)の位置情報を取得するために必要な測位アンテナ6等の各種の構成を備えている。このような構成により、トラクタ1は、測位システムに基づいて自らの位置情報を取得して、圃場上を自律走行することが可能となっている。
Specifically, as shown in FIG. 4, the tractor 1 has various configurations such as an autonomous traveling control device 51 for enabling autonomous traveling. Further, the tractor 1 is provided with various configurations such as a positioning antenna 6 necessary for acquiring position information of itself (the body) based on the positioning system. With such a configuration, the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field.
次に、自律走行のためにトラクタ1が備える構成について詳細に説明する。具体的には、トラクタ1は、図2~図4に示すように、自律走行制御装置51、操舵制御装置52、測位測量装置53、無線通信ルータ(小電力データ通信装置)54、操舵アクチュエータ43、測位アンテナ6、及び無線通信アンテナユニット48等を備える。
Next, the configuration of the tractor 1 for autonomous traveling will be described in detail. Specifically, as shown in FIGS. 2 to 4, the tractor 1 includes an autonomous traveling control device 51, a steering control device 52, a positioning surveying device 53, a wireless communication router (low power data communication device) 54, and a steering actuator 43. A positioning antenna 6, a wireless communication antenna unit 48, and the like.
自律走行制御装置51及び操舵制御装置52は、車両バス回線18を介して、エンジン制御装置15、本機制御装置16、及び作業機制御装置17それぞれと相互に通信可能に構成されている。また、自律走行制御装置51は、車両バス回線18による操縦用通信系統とは別系統となる自律走行用通信系統における自律走行バス回線56を介して、測位測量装置53及び無線通信ルータ54それぞれと相互通信可能となっている。
The autonomous traveling control device 51 and the steering control device 52 are configured to be able to communicate with the engine control device 15, the machine control device 16, and the work implement control device 17 via the vehicle bus line 18. In addition, the autonomous traveling control device 51 is connected to each of the positioning surveying device 53 and the wireless communication router 54 via the autonomous traveling bus line 56 in the autonomous traveling communication system different from the steering communication system using the vehicle bus line 18. Mutual communication is possible.
操舵アクチュエータ43は、例えば、ステアリングハンドル12の回転軸(ステアリング軸)の中途部に設けられ、ステアリングハンドル12の回動角度(操舵角)を調整するものである。予め定められた経路をトラクタ1が(無人トラクタとして)走行する場合、操舵制御装置52は、当該経路に沿ってトラクタ1が走行するようにステアリングハンドル12の適切な回動角度を算出し、算出した回動角度でステアリングハンドル12が回動するように操舵アクチュエータ43を制御する。
The steering actuator 43 is provided, for example, in the middle of the rotating shaft (steering shaft) of the steering handle 12, and adjusts the turning angle (steering angle) of the steering handle 12. When the tractor 1 travels (as an unmanned tractor) along a predetermined route, the steering control device 52 calculates an appropriate rotation angle of the steering handle 12 so that the tractor 1 travels along the route. The steering actuator 43 is controlled so that the steering handle 12 rotates at the rotation angle.
また、操舵制御装置52は操舵角センサ35からステアリングハンドル12の回転角度の検出信号を受けるとともに、車両バス回線18を介して、エンジン制御装置15、本機制御装置16、及び作業機制御装置17それぞれと通信することで、トラクタ1の車速に応じた操舵を実行できる。なお、操舵アクチュエータ43はステアリングハンドル12の回動角度を調整するものではなくトラクタ1の前輪7の操舵角を調整するものであってもよく、その場合、旋回走行を行ったとしてもステアリングハンドル12は回転しない。
Further, the steering control device 52 receives a detection signal of the rotation angle of the steering handle 12 from the steering angle sensor 35, and via the vehicle bus line 18, the engine control device 15, the machine control device 16, and the work implement control device 17. By communicating with each, steering according to the vehicle speed of the tractor 1 can be executed. Note that the steering actuator 43 does not adjust the turning angle of the steering handle 12, but may adjust the steering angle of the front wheel 7 of the tractor 1. In this case, the steering handle 12 even if turning is performed. Does not rotate.
測位アンテナ6は、例えば衛星測位システム(GNSS)等の測位システムを構成する測位衛星からの信号を受信するものである。測位アンテナ6は、キャビン11における屋根14の上面に配置されている。測位アンテナ6で受信された信号は、測位測量装置53に入力されて、測位測量装置53でトラクタ1(厳密には、測位アンテナ6)の位置情報が、例えば緯度・経度情報として算出される。当該測位測量装置53で算出された位置情報は、自律走行制御装置51により取得されて、トラクタ1の制御に利用される。
The positioning antenna 6 receives signals from positioning satellites constituting a positioning system such as a satellite positioning system (GNSS). The positioning antenna 6 is disposed on the upper surface of the roof 14 in the cabin 11. The signal received by the positioning antenna 6 is input to the positioning surveying device 53, and the positioning surveying device 53 calculates the position information of the tractor 1 (strictly, the positioning antenna 6) as, for example, latitude / longitude information. The position information calculated by the positioning surveying device 53 is acquired by the autonomous traveling control device 51 and used for controlling the tractor 1.
測位測量装置53は、無線通信アンテナユニット48における第1無線通信アンテナ48aと電気的に接続しており、特定小電力無線による第1無線通信ネットワーク(例えば、920MHz帯の無線通信ネットワーク)を通じて、後述する基準局(可搬型基準局)60と通信を行う。無線通信アンテナユニット48は、キャビン11における屋根14の上面に配置されている。測位測量装置53は、第1無線通信アンテナ48aを介して、圃場近接位置に設置された基準局60から補正情報(測位補正情報)を受信することによりトラクタ1(移動局)の衛星測位情報を補正して、トラクタ1の現在位置を求める。例えば、DGPS(ディファレンシャルGPS測位)、RTK測位(リアルタイムキネマティック測位)等の各種の測位方法を適用することができる。
The positioning surveying device 53 is electrically connected to the first wireless communication antenna 48a in the wireless communication antenna unit 48, and will be described later through a first wireless communication network (for example, a wireless communication network in the 920 MHz band) using specific low power wireless. Communicates with a reference station (portable reference station) 60 to be used. The wireless communication antenna unit 48 is disposed on the upper surface of the roof 14 in the cabin 11. The positioning surveying device 53 corrects the satellite positioning information of the tractor 1 (mobile station) by receiving correction information (positioning correction information) from the reference station 60 installed at the agricultural field proximity position via the first wireless communication antenna 48a. Then, the current position of the tractor 1 is obtained. For example, various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied.
本実施形態では、例えば、RTK測位を適用しており、移動局側となるトラクタ1に測位アンテナ6を備えるのに加えて、基準局測位アンテナ61を備えた基準局60が備えられている。基準局60は、例えば、圃場の周囲等、トラクタ1の走行の邪魔にならない位置(基準点)に配置されている。基準局60の設置位置となる基準点の位置情報は予め設定されている。基準局60には、トラクタ1の測位測量装置53及び第1無線通信アンテナ48aによる通信装置との間で構築される第1無線通信ネットワークを介して通信可能な基準局通信装置62が備えられている。
In this embodiment, for example, RTK positioning is applied, and in addition to the positioning antenna 6 being provided in the tractor 1 on the mobile station side, the reference station 60 having the reference station positioning antenna 61 is provided. The reference station 60 is arranged at a position (reference point) that does not interfere with the traveling of the tractor 1, for example, around the farm field. The position information of the reference point that is the installation position of the reference station 60 is set in advance. The reference station 60 is provided with a reference station communication device 62 capable of communicating via a first wireless communication network established between the positioning surveying device 53 of the tractor 1 and a communication device using the first wireless communication antenna 48a.
RTK測位では、基準点に設置された基準局60と、位置情報を求める対象の移動局側となるトラクタ1の測位アンテナ6との両方で測位衛星63からの搬送波位相(衛星測位情報)を測定している。基準局60では、測位衛星63から衛星測位情報を測定する毎に又は設定周期が経過する毎に、測定した衛星測位情報と基準点の位置情報等を含む補正情報を生成して、基準局通信装置62からトラクタ1の第1無線通信アンテナ48aに補正情報を送信している。トラクタ1(移動局に相当する)の測位測量装置53は、測位アンテナ6にて測定した衛星測位情報を、基準局60から送信される補正情報を用いて補正して、トラクタ1の現在位置情報(例えば、緯度情報・経度情報)を求めている。
In RTK positioning, the carrier phase (satellite positioning information) from the positioning satellite 63 is measured by both the reference station 60 installed at the reference point and the positioning antenna 6 of the tractor 1 on the mobile station side for which position information is to be obtained. ing. The reference station 60 generates correction information including the measured satellite positioning information and the reference point position information every time the satellite positioning information is measured from the positioning satellite 63 or every time the set period elapses, and the reference station communication device 62 To the first wireless communication antenna 48 a of the tractor 1. The positioning surveying device 53 of the tractor 1 (corresponding to the mobile station) corrects the satellite positioning information measured by the positioning antenna 6 by using the correction information transmitted from the reference station 60, thereby obtaining the current position information ( For example, latitude information / longitude information) is obtained.
なお、本実施形態ではGNSS-RTK法を利用した高精度の衛星測位システムを利用しているが、これに限られるものではなく、高精度の位置座標が得られる限りにおいて他の測位システムを用いてもよい。GNSS-RTKは、位置のわかっている基準局の情報に基づいて、補正して精度を高めた測位方式で、基準局からの情報の配信方法の違いで複数の方式が存在する。本発明はGNSS-RTK方式には依存しないので、本実施例では詳細は割愛する。
In this embodiment, a high-accuracy satellite positioning system using the GNSS-RTK method is used. However, the present invention is not limited to this, and other positioning systems can be used as long as high-accuracy position coordinates can be obtained. May be. GNSS-RTK is a positioning method that has been corrected based on information of a reference station whose position is known, and has improved accuracy. There are a plurality of methods depending on the distribution method of information from the reference station. Since the present invention does not depend on the GNSS-RTK system, details are omitted in this embodiment.
また、測位測量装置53は、衛星測位によるトラクタ1(機体2)の位置情報だけでなく、慣性測量による前後左右の傾斜角情報を計測可能になっている。測位測量装置53で計測された傾斜角情報は、自律走行制御装置51により位置情報(緯度・経度情報)と対応付けた状態で取得されて、トラクタ1の制御に利用される。なお、測位測量装置53は、圃場面に対する測位アンテナ6の高さ位置、ひいてはトラクタ1(機体2)の車高を計測することも可能である。
In addition, the positioning surveying device 53 can measure not only the position information of the tractor 1 (airframe 2) by satellite positioning, but also the front and rear, right and left tilt angle information by inertial surveying. The inclination angle information measured by the positioning surveying device 53 is acquired by the autonomous traveling control device 51 in a state associated with the position information (latitude / longitude information) and used for controlling the tractor 1. In addition, the positioning surveying device 53 can also measure the height position of the positioning antenna 6 with respect to the farm scene, and thus the vehicle height of the tractor 1 (airframe 2).
無線通信アンテナユニット48は、トラクタ1のキャビン11の屋根14の上面に配置されており、周波数帯域の異なる第1及び第2無線通信ネットワークと通信接続する第1及び第2無線通信アンテナ48a,48bを備えている。第1無線通信ネットワークは、基準局60による測位補正情報を通信させるべく、例えば、データ伝送速度の速い920MHz帯の特定小電力無線などで構築される。第2無線通信ネットワークは、画像データなどのデータ容量の多いデータを高速で通信でさせるべく、例えば、2.4GHz帯の小電力データ通信システムなどで構築される。なお、アンテナ48a,48bの一部はキャビン11内に配置してもよい。
The wireless communication antenna unit 48 is disposed on the top surface of the roof 14 of the cabin 11 of the tractor 1 and first and second wireless communication antennas 48a and 48b that are connected to communicate with the first and second wireless communication networks having different frequency bands. It has. The first wireless communication network is constructed by, for example, a specific low-power radio in the 920 MHz band having a high data transmission speed in order to communicate the positioning correction information by the reference station 60. The second wireless communication network is constructed by, for example, a 2.4 GHz band low-power data communication system in order to allow high-speed data communication such as image data to be performed at high speed. A part of the antennas 48 a and 48 b may be disposed in the cabin 11.
第1無線通信アンテナ48aは、測位測量装置53と電気的に接続しており、第2無線通信アンテナ48bは、無線通信ルータ54と電気的に接続している。第2無線通信アンテナ48bと接続された無線通信ルータ54は、第2無線通信ネットワークを通じて、トラクタ1外部のオペレータにより操作される画像表示可能な遠隔操作装置70と通信を行う。無線通信ルータ54は、遠隔操作装置70からの制御信号を受信し、自律走行バス回線56を介して自律走行制御装置51に送信する。
The first wireless communication antenna 48a is electrically connected to the positioning surveying device 53, and the second wireless communication antenna 48b is electrically connected to the wireless communication router 54. The wireless communication router 54 connected to the second wireless communication antenna 48b communicates with the remote control device 70 capable of displaying an image operated by an operator outside the tractor 1 through the second wireless communication network. The wireless communication router 54 receives the control signal from the remote operation device 70 and transmits it to the autonomous travel control device 51 via the autonomous travel bus line 56.
また、無線通信ルータ54は、トラクタ1の前方を撮影するカメラ36と第2無線通信ネットワークを介した無線通信を行うことで、カメラ36の撮影画像を受信する。カメラ36は、キャビン11の上側位置に取り付けられ、キャビン11前方のボンネット6周辺などの圃場の状態を撮影する。本実施形態では、カメラ36は、無線通信アンテナユニット48に一体に取り付けられるものとしているが、キャビン11の屋根14の側方位置や後方位置などの複数箇所に取り付けられるものとしても構わない。
Further, the wireless communication router 54 receives a captured image of the camera 36 by performing wireless communication with the camera 36 that captures the front of the tractor 1 via the second wireless communication network. The camera 36 is attached to an upper position of the cabin 11 and photographs a state of a farm field such as the vicinity of the hood 6 in front of the cabin 11. In the present embodiment, the camera 36 is integrally attached to the wireless communication antenna unit 48, but may be attached to a plurality of locations such as a side position and a rear position of the roof 14 of the cabin 11.
遠隔操作装置70は、具体的には、タッチパネルを備えるタブレット型のパーソナルコンピュータとして構成される。オペレータは、遠隔操作装置70のタッチパネルに表示された情報(例えば、自律走行を行うときに必要な圃場の情報等)を参照して確認することができる。また、オペレータは、遠隔操作装置70を操作して、トラクタ1の自律走行制御装置51に、トラクタ1を制御するための制御信号を送信する。なお、実施形態の遠隔操作装置70はタブレット型のパーソナルコンピュータに限るものではなく、これに代えて、例えばノート型のパーソナルコンピュータで構成することも可能である。あるいは、トラクタ1とは異なる他のトラクタに搭載されるモニタ装置を遠隔操作装置とすることもできる。
The remote operation device 70 is specifically configured as a tablet personal computer including a touch panel. The operator can check the information displayed on the touch panel of the remote operation device 70 (for example, information on a field necessary for autonomous traveling). In addition, the operator operates the remote control device 70 to transmit a control signal for controlling the tractor 1 to the autonomous traveling control device 51 of the tractor 1. Note that the remote operation device 70 of the embodiment is not limited to a tablet personal computer, and may be configured by, for example, a notebook personal computer. Alternatively, a monitor device mounted on another tractor different from the tractor 1 can be a remote control device.
自律走行制御装置51は、遠隔操作装置70により生成された走行経路とトラクタ1の位置情報とを比較し、トラクタ1を走行経路に沿って所定の作業を行わせながら所定の走行速度にて自律走行させるために、トラクタ1の操舵角、目標のエンジン回転数や変速比等を算出して、車両バス回線18を通じて、各制御装置15~17,52と通信する。これにより、トラクタ1は、当該走行経路に沿って自律走行しつつ、作業機3による農作業を行うことができる。このように、トラクタ1が自律走行する圃場領域(走行領域)内の経路を、以下の説明において「走行ルート」と称する場合がある。また、圃場領域(走行領域)においてトラクタ1の作業機3による農作業の対象となる領域(作業領域)は、圃場領域の全体から枕地及び余裕代を除いた領域として定められ、オペレータ等が後述の登録点の登録作業を実行したときにこれら登録点とトラクタ1の作業幅とに基づいて設定される。
The autonomous traveling control device 51 compares the traveling route generated by the remote operation device 70 with the position information of the tractor 1 and autonomously operates at a predetermined traveling speed while performing a predetermined operation on the tractor 1 along the traveling route. In order to run, the steering angle of the tractor 1, the target engine speed, the gear ratio, and the like are calculated and communicated with the control devices 15 to 17 and 52 through the vehicle bus line 18. Thereby, the tractor 1 can perform farm work by the work implement 3 while autonomously traveling along the travel route. In this way, the route in the field area (travel area) where the tractor 1 autonomously travels may be referred to as “travel route” in the following description. In the field area (running area), the area (work area) to be farmed by the work machine 3 of the tractor 1 is determined as an area excluding the headland and the margin from the entire field area. Are set based on these registered points and the work width of the tractor 1 when the registration work of the registered points is executed.
自律走行制御装置51は、遠隔操作装置70に対してオペレータが停止操作を実行したとき、エンジン制御装置15との通信により、コモンレール装置41における燃料噴射を停止させるとともに、本機制御装置16との通信により、変速装置42を中立状態とした上で、後述のブレーキ装置26による制動動作を作用させる。このとき、自律走行制御装置52は、操舵制御装置51との通信により、ハンドル12を中立位置とするように操舵アクチュエータ43を制御して、左右の前輪7,7の方向を直進方向に向けるものとしてもよい。
The autonomous traveling control device 51 stops fuel injection in the common rail device 41 and communicates with the machine control device 16 by communication with the engine control device 15 when the operator performs a stop operation on the remote control device 70. By making the transmission 42 neutral by communication, a braking operation by a brake device 26 described later is applied. At this time, the autonomous traveling control device 52 controls the steering actuator 43 so that the handle 12 is set to the neutral position by communication with the steering control device 51, and directs the left and right front wheels 7, 7 in the straight traveling direction. It is good.
自律走行制御装置51は、測位測量装置53における基準局60との通信状態(第1通信ネットワークにおける通信状態)、及び無線通信ルータ54における遠隔操作装置70との通信状態(第2通信ネットワークにおける通信状態)それぞれを、自律走行バス回線56を介して確認する。自律走行制御装置51は、第1及び第2通信ネットワークのいずれかでの通信状態が遮断されたことを確認すると、エンジン制御装置15及び変速制御装置16などと通信することで、トラクタ1の自律走行を停止させる。なお、自律走行制御装置51は、測位測量装置53、及び無線通信ルータ54がそれぞれ、通信相手からの信号を所定期間以上受信しない場合に、当該通信相手との通信が遮断されたものと判定する。
The autonomous traveling control device 51 is in a communication state with the reference station 60 in the positioning surveying device 53 (communication state in the first communication network), and in a communication state with the remote control device 70 in the wireless communication router 54 (communication state in the second communication network). ) Confirm each via the autonomous bus line 56. When the autonomous traveling control device 51 confirms that the communication state in any of the first and second communication networks is cut off, the autonomous traveling control device 51 communicates with the engine control device 15 and the transmission control device 16 to thereby determine the autonomousness of the tractor 1. Stop driving. Note that the autonomous traveling control device 51 determines that the communication with the communication partner has been interrupted when the positioning surveying device 53 and the wireless communication router 54 have not received a signal from the communication partner for a predetermined period or longer. .
更に、トラクタ1には、ブレーキペダルや駐車ブレーキレバーの操作と自動制御という2つの系統によって、左右の後輪8,8にブレーキを掛ける左右一対のブレーキ装置26,26を設けている。すなわち、左右両方のブレーキ装置26,26は、ブレーキペダル(又は駐車ブレーキレバー)の制動方向への操作によって、左右両方の後輪8,8にブレーキを掛けるように構成されている。また、ハンドル12の回動角度が所定角度以上になれば、本機制御装置16の指令によって、旋回内側の後輪8に対するブレーキ装置26が自動的に制動動作をするように構成されている(いわゆるオートブレーキ)。
Furthermore, the tractor 1 is provided with a pair of left and right brake devices 26 and 26 for braking the left and right rear wheels 8 and 8 by two systems of operation of the brake pedal and parking brake lever and automatic control. That is, both the left and right brake devices 26, 26 are configured to brake both the left and right rear wheels 8, 8 by operating the brake pedal (or parking brake lever) in the braking direction. Further, when the turning angle of the handle 12 becomes equal to or larger than a predetermined angle, the brake device 26 for the rear wheel 8 on the inside of the turn automatically performs a braking operation according to a command from the machine control device 16 ( So-called auto brake).
基準局60は、補正情報を配信する基準局無線通信アンテナ64と、測位衛星63からの信号を受信する基準局測位アンテナ61と、無線通信アンテナ64及び測位アンテナ61それぞれと電気的に接続された基準局通信装置62とを備える。基準局60は、移動局となるトラクタ(作業車両)1の位置特定における基準点に設置される。基準点に設置された可搬型基準局60は、基準局測位アンテナ61で受信した測位衛星63からの信号を基準局通信装置62に送り、基準局通信装置62において、測定した衛星測位情報と基準点の位置情報等を含む補正情報を生成する。そして、基準局60は、基準局通信装置62で生成した補正情報を、第1無線通信ネットワークを介して配信する。なお、基準局60は、複数部材に分解可能に構成されており、分解した各部材は、所定のケースに収容して運搬可能な大きさに構成されるものとしてもよい。
The reference station 60 includes a reference station wireless communication antenna 64 that distributes correction information, a reference station positioning antenna 61 that receives a signal from the positioning satellite 63, and a reference station communication device that is electrically connected to the wireless communication antenna 64 and the positioning antenna 61, respectively. 62. The reference station 60 is installed at a reference point for specifying the position of the tractor (work vehicle) 1 serving as a mobile station. The portable reference station 60 installed at the reference point sends a signal from the positioning satellite 63 received by the reference station positioning antenna 61 to the reference station communication device 62, and the reference station communication device 62 measures the satellite positioning information and the reference point position information. The correction information including etc. is generated. Then, the reference station 60 distributes the correction information generated by the reference station communication device 62 via the first wireless communication network. The reference station 60 may be configured to be disassembled into a plurality of members, and each disassembled member may be configured to have a size that can be accommodated in a predetermined case and transported.
<自律走行システムにおける基本処理動作>
次に、図5~図11を参照しながら、圃場H1における無人トラクタ1の自律走行における基本処理動作について、以下に説明する。図5~図7に示すように、圃場H1内の無人トラクタ1に対してキースイッチがONとなると、各制御装置15~17,51,52、測位測量装置53、及び無線通信ルータ54が電源投入されるとともに、エンジン10が駆動してアイドリング状態となる。このとき、無人トラクタ1は、左右ブレーキ装置26の制動作用により停止状態となっている。一方、遠隔操作装置70の電源が投入されると、タッチパネルで構成されるディスプレイが表示されるとともに、装置側ソフトウェアを起動する。 <Basic processing operation in autonomous driving system>
Next, the basic processing operation in the autonomous traveling of theunmanned tractor 1 in the agricultural field H1 will be described below with reference to FIGS. As shown in FIGS. 5 to 7, when the key switch is turned on for the unmanned tractor 1 in the field H1, the control devices 15 to 17, 51, 52, the positioning surveying device 53, and the wireless communication router 54 are powered on. At the same time, the engine 10 is driven to enter an idling state. At this time, the unmanned tractor 1 is stopped by the braking action of the left and right brake device 26. On the other hand, when the power of the remote control device 70 is turned on, a display constituted by a touch panel is displayed and the device side software is activated.
次に、図5~図11を参照しながら、圃場H1における無人トラクタ1の自律走行における基本処理動作について、以下に説明する。図5~図7に示すように、圃場H1内の無人トラクタ1に対してキースイッチがONとなると、各制御装置15~17,51,52、測位測量装置53、及び無線通信ルータ54が電源投入されるとともに、エンジン10が駆動してアイドリング状態となる。このとき、無人トラクタ1は、左右ブレーキ装置26の制動作用により停止状態となっている。一方、遠隔操作装置70の電源が投入されると、タッチパネルで構成されるディスプレイが表示されるとともに、装置側ソフトウェアを起動する。 <Basic processing operation in autonomous driving system>
Next, the basic processing operation in the autonomous traveling of the
無人トラクタ1は、自律走行制御装置51により無線通信ルータ54の通信動作を制御することで、無線通信ルータ54は、第2無線通信ネットワークを通じて通信可能な遠隔操作装置70の検索を開始する。すなわち、無線通信ルータ54は、無人トラクタ1固有のトラクタIDを含んだ通信確認信号を生成して、第2無線通信アンテナ48bより送信する。遠隔操作装置70は、自律走行システムで通信可能な無人トラクタ1のトラクタIDを予め記憶している。そして、遠隔操作装置70は、トラクタIDを含む通信確認信号を受信したとき、受信したトラクタIDが予め記憶したトラクタIDと一致する場合に、無人トラクタ1の無線通信ルータ54との通信を認証する。
The unmanned tractor 1 controls the communication operation of the wireless communication router 54 by the autonomous traveling control device 51, so that the wireless communication router 54 starts searching for a remote control device 70 that can communicate through the second wireless communication network. That is, the wireless communication router 54 generates a communication confirmation signal including a tractor ID unique to the unmanned tractor 1 and transmits it from the second wireless communication antenna 48b. The remote operation device 70 stores in advance the tractor ID of the unmanned tractor 1 that can communicate with the autonomous traveling system. Then, when receiving the communication confirmation signal including the tractor ID, the remote operation device 70 authenticates the communication with the wireless communication router 54 of the unmanned tractor 1 when the received tractor ID matches the previously stored tractor ID. .
遠隔操作装置70は、無人トラクタ1との通信を認証した後、通信確認信号に対する応答信号を生成して、無人トラクタ1の無線通信ルータ54に送信する。なお、遠隔操作装置70は、自機器固有の装置IDを含んだ応答信号を生成し、第2無線通信ネットワークを通じて無線通信ルータ54に送信する。無人トラクタ1は、自律走行システムで通信可能な遠隔操作装置70の装置IDを、自律走行制御装置51又は無線通信ルータ54で予め記憶している。従って、無人トラクタ1は、第2無線通信アンテナ48bを介して無線通信ルータ54で応答信号を受信すると、受信した応答信号における装置IDと、予め記憶した装置IDとが一致する場合に、遠隔操作装置70との通信を認証する。
The remote operation device 70 authenticates communication with the unmanned tractor 1, generates a response signal to the communication confirmation signal, and transmits the response signal to the wireless communication router 54 of the unmanned tractor 1. The remote operation device 70 generates a response signal including a device ID unique to the own device and transmits the response signal to the wireless communication router 54 through the second wireless communication network. The unmanned tractor 1 stores in advance the device ID of the remote operation device 70 that can communicate with the autonomous traveling system in the autonomous traveling control device 51 or the wireless communication router 54. Therefore, when the unmanned tractor 1 receives the response signal at the wireless communication router 54 via the second wireless communication antenna 48b, the remote operation is performed when the device ID in the received response signal matches the device ID stored in advance. Communication with the device 70 is authenticated.
上述のようにして、無人トラクタ1(無線通信ルータ54)と遠隔操作装置70との間で通信が確立すると、無人トラクタ1は、通信が確立したことをサーバ100に通知する。このとき、無人トラクタ1は、無人トラクタ1のトラクタID及び遠隔操作装置70の装置IDを、車両搭載用端末装置19より通信ネットワーク網N1を介してサーバ100に送信する。
As described above, when communication is established between the unmanned tractor 1 (wireless communication router 54) and the remote control device 70, the unmanned tractor 1 notifies the server 100 that communication has been established. At this time, the unmanned tractor 1 transmits the tractor ID of the unmanned tractor 1 and the device ID of the remote control device 70 to the server 100 from the vehicle-mounted terminal device 19 via the communication network N1.
また、無人トラクタ1のキースイッチがONとされて、測位測量装置53が電源投入されると、アンテナ6,48aを通じて測位衛星63及び基準局60それぞれと通信することで、無人トラクタ1の位置情報(緯度・経度情報)を算出している。そして、上述の無人トラクタ1(無線通信ルータ54)及び遠隔操作装置70間の認証処理後に、サーバ100に対して、トラクタID及び装置IDと共に、無人トラクタ1の位置情報を送信する。
Further, when the key switch of the unmanned tractor 1 is turned ON and the positioning surveying device 53 is turned on, the position information (unmanned tractor 1) is obtained by communicating with the positioning satellite 63 and the reference station 60 through the antennas 6 and 48a. (Latitude / longitude information). Then, after the above-described authentication process between the unmanned tractor 1 (wireless communication router 54) and the remote control device 70, the position information of the unmanned tractor 1 is transmitted to the server 100 together with the tractor ID and the device ID.
サーバ100は、トラクタID及び装置IDより自律走行システム使用可能なトラクタ1及び遠隔操作装置であることを確認すると、無人トラクタ1とサーバ100との通信を可能とすべく、無人トラクタ1を認証する。サーバ100は、無人トラクタ1を認証すると、無人トラクタ1から受信した位置情報を中心とする地図情報を読み出して、読み出した地図情報を無人トラクタ1に送信する。このとき、サーバ100は、トラクタID及び装置IDより、無人トラクタ1を操作するオペレータに対して割り当てられた圃場(作業領域)を確認し、作業対象となる圃場(作業領域)の情報を地図情報に付加して、無人トラクタ1に送信する。
When the server 100 confirms from the tractor ID and the device ID that the tractor 1 and the remote control device can be used in the autonomous traveling system, the server 100 authenticates the unmanned tractor 1 to enable communication between the unmanned tractor 1 and the server 100. . When the server 100 authenticates the unmanned tractor 1, the server 100 reads map information centered on the position information received from the unmanned tractor 1 and transmits the read map information to the unmanned tractor 1. At this time, the server 100 confirms the field (work area) assigned to the operator who operates the unmanned tractor 1 based on the tractor ID and the device ID, and maps the information on the field (work area) as the work target to the map information. And transmitted to the unmanned tractor 1.
無人トラクタ1は、車両搭載端末装置19でサーバ100から地図情報を受信すると、受信した地図情報を自律走行制御装置51を介して無線通信ルータ54に与えて、当該地図情報を無線通信ルータ54より遠隔操作装置70に送信する。地図情報を受信した遠隔操作装置70は、受信した地図情報に基づいて、オペレータに割り当てられた圃場(作業領域)を含む地図をディスプレイに表示する。
When the vehicle-mounted terminal device 19 receives the map information from the server 100, the unmanned tractor 1 gives the received map information to the wireless communication router 54 via the autonomous traveling control device 51, and the map information is sent from the wireless communication router 54. Transmit to the remote control device 70. The remote control device 70 that has received the map information displays a map including the field (work area) assigned to the operator on the display based on the received map information.
オペレータは、遠隔操作装置70のディスプレイを構成するタッチパネルを操作するなどして、ディスプレイ上に表示された地図上から、無人トラクタ1による作業対象となる圃場(作業領域)を指定する。また、オペレータは、遠隔操作装置70に対して無人トラクタ1による作業(耕運作業、播種作業、施肥作業、代掻き作業、畝立て作業など)を行うための作業機及び作業機の大きさなどを指定する。
The operator designates a field (working area) to be worked by the unmanned tractor 1 from the map displayed on the display by operating a touch panel constituting the display of the remote control device 70. In addition, the operator can use the unmanned tractor 1 to perform operations (cultivation work, sowing work, fertilization work, pricking work, upsetting work, etc.) on the remote control device 70 and the size of the work machine and the work machine. specify.
遠隔操作装置70は、オペレータにより指定された圃場(作業領域)及び作業機を含む応答信号を生成して、無人トラクタ1に送信すると、無人トラクタ1は、指定された圃場及び作業機による作業に基づいて、演算により無人トラクタ1が移動する作業ルート(作業経路)を生成する。すなわち、無線通信ルータ54で受信した応答信号に含まれる圃場及び作業機の内容が、自律走行制御装置51に通知されると、自律走行制御装置51が、指定された圃場及び作業機より作業ルートを設定する。そして、無線通信ルータ54が、設定した作業ルートを含む通信確認信号を遠隔操作装置70に送信する。
When the remote operation device 70 generates a response signal including the field (work area) and the work machine designated by the operator and transmits the response signal to the unmanned tractor 1, the unmanned tractor 1 performs the work by the designated field and work machine. Based on the calculation, a work route (work route) along which the unmanned tractor 1 moves is generated. That is, when the autonomous traveling control device 51 is notified of the contents of the farm field and the work implement included in the response signal received by the wireless communication router 54, the autonomous traveling control device 51 operates the work route from the designated farm field and the working implement. Set. Then, the wireless communication router 54 transmits a communication confirmation signal including the set work route to the remote operation device 70.
遠隔操作装置70は、オペレータによる自律走行の開始の操作を受け付けると、自律走行を許可する応答信号を生成し、無人トラクタ1(無線通信ルータ54)に送信する。無人トラクタ1は、自律走行許可信号となる応答信号を無線通信ルータ54で受信すると、エンジン制御装置15、本機制御装置16、作業機制御装置17、及び操舵制御装置52を通じて自律走行制御装置51による各部の制御動作が実行され、無人トラクタ1の自律走行が開始される。
When the remote operation device 70 receives an operation for starting autonomous traveling by the operator, the remote operation device 70 generates a response signal for permitting autonomous traveling and transmits the response signal to the unmanned tractor 1 (wireless communication router 54). When the unmanned tractor 1 receives the response signal serving as the autonomous traveling permission signal by the wireless communication router 54, the autonomous traveling control device 51 passes through the engine control device 15, the machine control device 16, the work implement control device 17, and the steering control device 52. The control operation of each part is executed, and the autonomous traveling of the unmanned tractor 1 is started.
無人トラクタ1は、自律走行を開始すると、機体2及び作業機3の駆動状態(エンジン回転数、機体2の車速、エンジン負荷、機体2の傾き姿勢、作業機3の傾き姿勢、作業機3の昇降位置、左右のブレーキ装置26の制動操作、ハンドル10の操舵角、PTOスイッチの切換など)を、位置情報及び時刻情報と共に、サーバ100及び遠隔操作装置70それぞれに送信する。なお、位置情報は、測位衛星63及び基準局60それぞれから受信した情報に基づき、測位測量装置53で算出した緯度・経度情報であり、時刻情報は、無人トラクタ1の制御装置15~17,52,53のいずれかで計時された時刻を示す情報である。
When the unmanned tractor 1 starts autonomous traveling, the driving state of the machine body 2 and the work machine 3 (engine speed, vehicle speed of the machine body 2, engine load, tilt attitude of the machine body 2, tilt attitude of the work machine 3, The lift position, the braking operation of the left and right brake devices 26, the steering angle of the handle 10, the switching of the PTO switch, etc.) are transmitted to the server 100 and the remote control device 70 together with the position information and time information. The position information is latitude / longitude information calculated by the positioning surveying device 53 based on information received from the positioning satellite 63 and the reference station 60. The time information is the control devices 15 to 17, 52,. 53 is information indicating the time counted in any one of 53.
<ソフトウェアのバージョンの確認処理>
本実施形態における自律走行システムは、図5~図11に示すように、自律走行の対象となる無人トラクタ1における制御装置15~17,51,52の車両側ソフトウェア(ファームウェア)のバージョン(改訂版数)と、遠隔操作装置70内の自律走行システム用の装置側ソフトウェア(アプリケーション)のバージョンとが互いに確認される。そして、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアが一致する場合に、自律走行システムによる無人トラクタ1の自律走行が許可される。すなわち、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアが一致しない場合には、自律走行システムによる無人トラクタ1の自律走行が禁止される。また、サーバ100が、無人トラクタ1の車両側ソフトウェア及び遠隔操作装置70の装置側ソフトウェアそれぞれの更新履歴と共に、各バージョンの車両側ソフトウェア及び装置側ソフトウェアを記憶している。 <Software version check process>
As shown in FIGS. 5 to 11, the autonomous traveling system in the present embodiment is a version (revised version) of vehicle-side software (firmware) of thecontrol devices 15 to 17, 51, 52 in the unmanned tractor 1 subject to autonomous traveling. Number) and the version of the device-side software (application) for the autonomous traveling system in the remote control device 70 are mutually confirmed. When the vehicle-side software of the unmanned tractor 1 matches the device-side software of the remote control device 70, the autonomous traveling of the unmanned tractor 1 by the autonomous traveling system is permitted. That is, when the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70 do not match, autonomous traveling of the unmanned tractor 1 by the autonomous traveling system is prohibited. The server 100 stores the versions of the vehicle-side software and the device-side software together with the update histories of the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70.
本実施形態における自律走行システムは、図5~図11に示すように、自律走行の対象となる無人トラクタ1における制御装置15~17,51,52の車両側ソフトウェア(ファームウェア)のバージョン(改訂版数)と、遠隔操作装置70内の自律走行システム用の装置側ソフトウェア(アプリケーション)のバージョンとが互いに確認される。そして、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアが一致する場合に、自律走行システムによる無人トラクタ1の自律走行が許可される。すなわち、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアが一致しない場合には、自律走行システムによる無人トラクタ1の自律走行が禁止される。また、サーバ100が、無人トラクタ1の車両側ソフトウェア及び遠隔操作装置70の装置側ソフトウェアそれぞれの更新履歴と共に、各バージョンの車両側ソフトウェア及び装置側ソフトウェアを記憶している。 <Software version check process>
As shown in FIGS. 5 to 11, the autonomous traveling system in the present embodiment is a version (revised version) of vehicle-side software (firmware) of the
なお、「バージョンの一致」とは、トラクタ1側及び遠隔操作装置70側それぞれのソフトウェアのうちの一方の改訂に合わせて他方を改訂した場合だけでなく、一方のソフトウェアのみが改訂されている場合であっても、最新バージョンとなる他方のソフトウェアの使用で動作可能となる場合も含まれる。以下では、説明を簡単にするため、トラクタ1側及び遠隔操作装置70側それぞれのソフトウェアが、新旧の2バージョンを有しており、両ソフトウェアが共に新バージョンである場合、又は、両ソフトウェアが共に旧バージョンである場合に、バージョンが一致するものとする。
“Version match” means not only when one of the software on each of the tractor 1 side and the remote control device 70 side is revised, but also when only one software is revised. However, the case where it becomes possible to operate by using the other software of the latest version is also included. In the following, in order to simplify the explanation, the software on each of the tractor 1 side and the remote control device 70 side has two versions of old and new, and both software are both new versions, or both software are both If it is an old version, the versions shall match.
図5に示すように、トラクタ1の車両側ソフトウェア及び遠隔操作装置70の装置側ソフトウェアそれぞれのバージョンが共に旧バージョンである場合(車両側ソフトウェア及び装置側ソフトウェアそれぞれのバージョンが古い場合)、無人トラクタ1と遠隔操作装置70との通信確立のための認証動作を実行する際、通信確認信号及び応答信号それぞれに、各ソフトウェアのバージョンを示すバージョン情報が含まれていない。従って、無人トラクタ1及び遠隔操作装置70はともに、バージョン情報のない信号を受信するため、互いのソフトウェアが旧バージョンで一致しているものと判定して相互に認証し、無人トラクタ1及び遠隔操作装置70間の通信を確立する。
As shown in FIG. 5, when both the vehicle-side software of the tractor 1 and the device-side software of the remote control device 70 are both old versions (when the versions of the vehicle-side software and the device-side software are old), the unmanned tractor When the authentication operation for establishing communication between the remote control device 1 and the remote control device 70 is executed, the communication confirmation signal and the response signal do not include version information indicating the version of each software. Therefore, since both the unmanned tractor 1 and the remote control device 70 receive a signal without version information, it is determined that the software of each other is the same in the old version, and the mutual authentication is performed. Communication between the devices 70 is established.
旧バージョンのソフトウェアを有する無人トラクタ1及び遠隔操作装置70が、それぞれとの通信を許可したとき、無人トラクタ1は、サーバ100に対して認証要求を行うべく、トラクタID及び装置IDと位置情報を送信する。サーバ100では、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョン情報を受信しないため、記憶したバージョン更新履歴より、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアが旧バージョンのソフトウェアであることを確認する。
When the unmanned tractor 1 and the remote control device 70 having the old version of software permit communication with each, the unmanned tractor 1 sends the tractor ID, the device ID, and the location information to make an authentication request to the server 100. Send. Since the server 100 does not receive the software version information of the unmanned tractor 1 and the remote control device 70, it is determined from the stored version update history that the software of the unmanned tractor 1 and the remote control device 70 is the old version software. Check.
サーバ100は、無人トラクタ1及び遠隔操作装置70それぞれが旧バージョンのソフトウェアで動作していることを認識することで、無人トラクタ1及び遠隔操作装置70それぞれに対してソフトウェアの更新を促すためのアップデートの通知を、地図情報の送信と共に行う。無人トラクタ1は、地図情報と共にアップデート通知をサーバ100から受信すると、遠隔操作装置70に対して、地図情報及びアップデート通知を送信する。
The server 100 recognizes that each of the unmanned tractor 1 and the remote control device 70 is operating with the old version of the software, and thereby updates the software to prompt the unmanned tractor 1 and the remote control device 70 to update the software. Is notified together with the transmission of the map information. When the unmanned tractor 1 receives the update notification from the server 100 together with the map information, the unmanned tractor 1 transmits the map information and the update notification to the remote control device 70.
これにより、遠隔操作装置70は、地図情報と共にサーバ100からのアップデート通知を受信するため、圃場(作業領域)及び作業機の指定動作終了後に、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのアップデートを促す通知画面(例えば、「トラクタの操作は可能です。なお、トラクタのソフトウェア、自律走行アプリケーションは共にバージョンが更新されております。作業終了後にソフトウェアをアップデートしてください」といった文字表記など)をディスプレイに表示する。これにより、オペレータは、遠隔操作装置70の通知画面を確認することで、無人トラクタ1の自律走行のための操作が可能であることを確認できるとともに、無人トラクタ1及び遠隔操作装置それぞれのソフトウェアのバージョンが更新されていることを認識できる。
Thereby, since the remote operation device 70 receives the update notification from the server 100 together with the map information, the software update of the unmanned tractor 1 and the remote operation device 70 is completed after the designated operation of the field (work area) and the work machine is completed. Notification screen (for example, “Tractor operation is possible. Please note that both tractor software and autonomous driving applications have been updated. Please update the software after the work is completed.”) Show on the display. Accordingly, the operator can confirm that the operation for autonomous traveling of the unmanned tractor 1 is possible by confirming the notification screen of the remote operation device 70, and the software of each of the unmanned tractor 1 and the remote operation device. You can recognize that the version has been updated.
図6に示すように、トラクタ1の車両側ソフトウェア及び遠隔操作装置70の装置側ソフトウェアそれぞれのバージョンが共に新バージョンである場合(車両側ソフトウェア及び装置側ソフトウェアそれぞれのバージョンが新しい場合)、無人トラクタ1と遠隔操作装置70との通信確立のための認証動作を実行する際、通信確認信号及び応答信号それぞれに、各ソフトウェアのバージョンを示すバージョン情報が含まれる。そのため、無人トラクタ1及び遠隔操作装置70はそれぞれ、受信した信号に含まれるバージョン情報を確認することで、それぞれのソフトウェアが新バージョンで一致するものと判定して相互に認証し、無人トラクタ1及び遠隔操作装置70間の通信を確立する。
As shown in FIG. 6, when both the vehicle-side software of the tractor 1 and the device-side software of the remote control device 70 are new versions (when the versions of the vehicle-side software and the device-side software are new), the unmanned tractor When executing an authentication operation for establishing communication between 1 and the remote control device 70, each of the communication confirmation signal and the response signal includes version information indicating the version of each software. Therefore, the unmanned tractor 1 and the remote control device 70 confirm the version information included in the received signal, respectively, determine that the respective software matches in the new version, and authenticate each other. Communication between the remote control devices 70 is established.
また、無人トラクタ1は、サーバ100に対して認証要求を行うべく、トラクタID及び装置IDと位置情報と共に、各ソフトウェアのバージョン情報を送信する。サーバ100では、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョン情報を受信することで、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアが新バージョンのソフトウェアであることを確認する。
Further, the unmanned tractor 1 transmits the version information of each software together with the tractor ID, the device ID, and the position information in order to make an authentication request to the server 100. The server 100 receives the software version information of each of the unmanned tractor 1 and the remote control device 70, thereby confirming that the software of each of the unmanned tractor 1 and the remote control device 70 is a new version of software.
図8に示すように、無人トラクタ1の車両側ソフトウェアが新バージョンである一方で遠隔操作装置70の装置側ソフトウェアが旧バージョンである場合(装置側ソフトウェアのバージョンが車両側ソフトウェアのバージョンよりも古い場合)、無人トラクタ1と遠隔操作装置70との通信確立のための認証動作を実行する際、通信確認信号にバージョン情報が含まれているものの、応答信号にバージョン情報が含まれていない。このとき、新バージョンとなる車両側ソフトウェアに基づいて生成される通信確認信号は、旧バージョンの装置側ソフトウェアで処理可能に構成されるものとする。従って、遠隔操作装置70は、通信確認信号を受信することで、無人トラクタ1を認証する。
As shown in FIG. 8, when the vehicle-side software of the unmanned tractor 1 is the new version, the device-side software of the remote control device 70 is the old version (the device-side software version is older than the vehicle-side software version). In the case of performing an authentication operation for establishing communication between the unmanned tractor 1 and the remote control device 70, version information is included in the communication confirmation signal, but version information is not included in the response signal. At this time, the communication confirmation signal generated based on the new version of the vehicle side software is configured to be processed by the old version of the apparatus side software. Accordingly, the remote operation device 70 authenticates the unmanned tractor 1 by receiving the communication confirmation signal.
一方、無人トラクタ1は、バージョン情報のない応答信号を受信するため、互いのソフトウェアが不一致であるものと判定し、無線通信ルータ54による通信確認信号の送信動作を停止させ、遠隔操作装置70との通信を遮断する。また、無人トラクタ1は、サーバ100に対して、トラクタID、装置ID、及び位置情報と共に、車両側ソフトウェアのバージョン情報を送信する。
On the other hand, since the unmanned tractor 1 receives a response signal without version information, the unmanned tractor 1 determines that the software does not match each other, stops the transmission operation of the communication confirmation signal by the wireless communication router 54, and Block communication. The unmanned tractor 1 transmits the version information of the vehicle-side software to the server 100 together with the tractor ID, the device ID, and the position information.
サーバ100は、車両側ソフトウェアのバージョン情報のみを受信することで、トラクタ1の車両側ソフトウェア及び遠隔操作装置70の装置側ソフトウェアそれぞれのバージョンが不一致であることを認識する。また、サーバ100は、遠隔操作装置70の装置側ソフトウェアに対する更新履歴を確認し、遠隔操作装置70の装置側ソフトウェアのバージョンを読み出して、無人トラクタ1に通知する。無人トラクタ1は、遠隔操作装置70の装置側ソフトウェアの更新を促す通知を行った後、エンジン10を停止させる。
The server 100 receives only the version information of the vehicle-side software, thereby recognizing that the versions of the vehicle-side software of the tractor 1 and the device-side software of the remote control device 70 are inconsistent. Further, the server 100 confirms the update history of the device-side software of the remote operation device 70, reads the version of the device-side software of the remote operation device 70, and notifies the unmanned tractor 1. The unmanned tractor 1 stops the engine 10 after notifying the device side software of the remote control device 70 to be updated.
一方、遠隔操作装置70は、無人トラクタ1(無線通信ルータ54)からの通信確認信号を所定時間が経過しても受信しないこととなるため、無人トラクタ1との通信が遮断されたものと判定する。従って、遠隔操作装置70は、無人トラクタ1との通信が遮断されたことを通知して無人トラクタ1の状態の確認を通知する画面(例えば、「トラクタと通信ができません。トラクタのエンジンを停止させます。トラクタのエンジンの停止後、トラクタを確認してください」といった文字表記など)をディスプレイに表示する。
On the other hand, since the remote control device 70 does not receive a communication confirmation signal from the unmanned tractor 1 (wireless communication router 54) even after a predetermined time has elapsed, it is determined that communication with the unmanned tractor 1 has been interrupted. To do. Accordingly, the remote control device 70 notifies that the communication with the unmanned tractor 1 has been cut off and notifies the confirmation of the state of the unmanned tractor 1 (for example, “Cannot communicate with the tractor. Stop the engine of the tractor. "Please check the tractor after stopping the tractor engine".
従って、オペレータは、遠隔操作装置70の画面表示を確認することで、無人トラクタ1に搭乗する。このとき、無人トラクタ1では、例えば、キャビン11内のモニタ装置(図示省略)における表示などにより、装置側ソフトウェアの更新が通知されている。これにより、無人トラクタ1に搭乗したオペレータは、遠隔操作装置70の装置側ソフトウェアのアップデートが要求されていることを認識できる。
Therefore, the operator gets on the unmanned tractor 1 by confirming the screen display of the remote control device 70. At this time, the unmanned tractor 1 is notified of the update of the device-side software, for example, by display on a monitor device (not shown) in the cabin 11. Thereby, the operator who boarded the unmanned tractor 1 can recognize that the update of the apparatus side software of the remote operation apparatus 70 is requested | required.
図8及び図9に示すように、オペレータは、遠隔操作装置70の装置側ソフトウェアに対する更新要求を確認すると、事務所O1に戻り、遠隔操作装置70をアクセスポイント90に対して通信接続させる。これにより、遠隔操作装置70は、アクセスポイント90を介して通信ネットワーク網N1と通信接続されるため、サーバ100と通信可能となり、装置側ソフトウェアの更新をサーバ100に対して要求する。このとき、遠隔操作装置70は、自機器の装置IDをサーバ100に送信することで、サーバ100は、遠隔操作装置70からの更新要求を確認すると共に、遠隔操作装置70との通信を認証する。
As shown in FIGS. 8 and 9, when the operator confirms an update request for the device-side software of the remote operation device 70, the operator returns to the office O <b> 1 and connects the remote operation device 70 to the access point 90 for communication. As a result, the remote operation device 70 is communicably connected to the communication network N1 via the access point 90, so that it can communicate with the server 100 and requests the server 100 to update the device-side software. At this time, the remote operation device 70 transmits the device ID of its own device to the server 100, so that the server 100 confirms the update request from the remote operation device 70 and authenticates communication with the remote operation device 70. .
サーバ100と遠隔操作装置70との通信が確立されると、無人トラクタ1の車両側ソフトウェアの新バージョンに対応させるべく、新バージョンの装置側ソフトウェア(最適バージョンのアプリケーション)を読み出して、遠隔操作装置70に送信する。遠隔操作装置70では、新バージョンの装置側ソフトウェアを受信すると、旧バージョンの装置側ソフトウェアからの更新を実行し、ソフトウェアの更新が完了すると、サーバ100へ完了通知を行い、サーバ100と遠隔操作装置70との通信が遮断される。
When the communication between the server 100 and the remote control device 70 is established, the new version of the device side software (optimum version application) is read out in order to correspond to the new version of the vehicle side software of the unmanned tractor 1, and the remote control device 70. When receiving the new version of the device side software, the remote operation device 70 executes an update from the old version of the device side software. When the software update is completed, the remote operation device 70 notifies the server 100 of completion, and the server 100 and the remote operation device. Communication with 70 is interrupted.
図10に示すように、トラクタ1の車両側ソフトウェアが旧バージョンである一方で遠隔操作装置70の装置側ソフトウェアが新バージョンである場合(車両側ソフトウェアのバージョンが装置側ソフトウェアのバージョンよりも古い場合)、無人トラクタ1と遠隔操作装置70との通信確立のための認証動作を実行する際、通信確認信号にバージョン情報が含まれていない。遠隔操作装置70は、バージョン情報のない通信確認信号を受信するため、互いのソフトウェアが不一致であるものと判定し、無人トラクタ1(無線通信ルータ54)との通信を遮断する。
As shown in FIG. 10, when the vehicle-side software of the tractor 1 is an old version, the device-side software of the remote control device 70 is a new version (when the version of the vehicle-side software is older than the version of the device-side software) ) When performing an authentication operation for establishing communication between the unmanned tractor 1 and the remote control device 70, the communication confirmation signal does not include version information. Since the remote operation device 70 receives a communication confirmation signal without version information, the remote operation device 70 determines that the software does not match each other and blocks communication with the unmanned tractor 1 (wireless communication router 54).
無人トラクタ1(無線通信ルータ54)は、遠隔操作装置70からの応答信号を所定時間が経過しても受信しないこととなるため、遠隔操作装置70との通信が遮断されたものと判定する。従って、遠隔操作装置70は、、例えば、キャビン11内のモニタ装置(図示省略)などにより、無人トラクタ1との通信が遮断されたことを通知する。
Since the unmanned tractor 1 (wireless communication router 54) does not receive a response signal from the remote operation device 70 even after a predetermined time has elapsed, it is determined that communication with the remote operation device 70 has been interrupted. Therefore, the remote control device 70 notifies that the communication with the unmanned tractor 1 has been interrupted by, for example, a monitor device (not shown) in the cabin 11.
一方、遠隔操作装置70は、無人トラクタ1の車両側ソフトウェアが古いことを認識して、装置側ソフトウェアのバージョンとの不一致を確認することで、無人トラクタ1の車両側ソフトウェアの更新を通知する画面(例えば、「トラクタのソフトウェアが更新されておりません。サービス店に連絡し、トラクタのソフトウェアを更新してください」といった文字表記など)をディスプレイに表示する。これにより、オペレータは、遠隔操作装置70の通知画面を確認することで、無人トラクタ1における車両側ソフトウェアが古いバージョンのままであるため、自律走行のための操作が不可能であることを認識できる。
On the other hand, the remote operation device 70 recognizes that the vehicle-side software of the unmanned tractor 1 is old and confirms a mismatch with the version of the device-side software, thereby notifying the update of the vehicle-side software of the unmanned tractor 1 (For example, a character notation such as “The tractor software has not been updated. Please contact the service store and update the tractor software”) is displayed on the display. Thereby, the operator can recognize that the operation for autonomous traveling is impossible because the vehicle-side software in the unmanned tractor 1 remains the old version by checking the notification screen of the remote control device 70. .
図10及び図11に示すように、オペレータは、無人トラクタ1の車両側ソフトウェアに対する更新要求を確認すると、販売店などのサービス店に連絡して、車両側ソフトウェアの更新を要求する。そして、サービスマンによって外部端末装置(サービスツール)80が無人トラクタ1に有線接続されて、無人トラクタ1の車両側ソフトウェアの更新(アップデート)を無人トラクタ1に通知する。このとき、外部端末装置80は、自機器固有の装置IDを無人トラクタ1に送信する。
As shown in FIG. 10 and FIG. 11, when the operator confirms an update request for the vehicle-side software of the unmanned tractor 1, the operator contacts a service store such as a store to request an update of the vehicle-side software. Then, an external terminal device (service tool) 80 is wired to the unmanned tractor 1 by a serviceman, and the unmanned tractor 1 is notified of the update (update) of the vehicle-side software of the unmanned tractor 1. At this time, the external terminal device 80 transmits a device ID unique to the own device to the unmanned tractor 1.
これにより、無人トラクタ1は、車両搭載端末装置19により通信ネットワーク網N1と通信接続されて、サーバ100と通信可能となり、車両側ソフトウェアの更新をサーバ100に対して要求する。このとき、無人トラクタ1は、自機器のトラクタIDと共に外部端末装置80の装置IDをサーバ100に送信することで、サーバ100は、外部端末装置80を通じた更新要求を確認すると共に、無人トラクタ1との通信を認証する。
Thereby, the unmanned tractor 1 is communicably connected to the communication network N1 by the vehicle-mounted terminal device 19, can communicate with the server 100, and requests the server 100 to update the vehicle-side software. At this time, the unmanned tractor 1 transmits the device ID of the external terminal device 80 together with the tractor ID of the self-device to the server 100, so that the server 100 confirms the update request through the external terminal device 80 and the unmanned tractor 1 Authenticate communications with.
サーバ100と無人トラクタ1との通信が確立されると、遠隔操作装置70の装置側ソフトウェアの新バージョンに対応させるべく、新バージョンの車両側ソフトウェア(最適バージョンのファームウェア)を読み出して、無人トラクタ1に送信する。無人トラクタ1では、新バージョンの車両側ソフトウェアを受信すると、旧バージョンの車両側ソフトウェアからの更新を実行し、ソフトウェアの更新が完了すると、サーバ100へ完了通知を行い、サーバ100と遠隔操作装置70との通信が遮断される。
When communication between the server 100 and the unmanned tractor 1 is established, a new version of the vehicle-side software (optimum version firmware) is read in order to correspond to the new version of the device-side software of the remote control device 70, and the unmanned tractor 1 Send to. When the unmanned tractor 1 receives the new version of the vehicle-side software, the unattended tractor 1 updates the old version of the vehicle-side software. When the software update is completed, the server 100 and the remote control device 70 are notified of completion. Communication with is interrupted.
なお、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアが旧バージョンである場合、図12に示すように、サーバ装置100で無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアの更新履歴を確認することで、ソフトウェアのバージョンの一致を判定するものとしても構わない。この場合、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョンが一致することをサーバ100で確認された後、無人トラクタ1と遠隔操作装置70との通信が確立する。また、上述した図6、図8、及び図10の場合のように、サーバ100が、通信確立した無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョン情報を受信する場合においても、記憶した最新のソフトウェアのバージョン情報と比較し、更新の要否を確認するものとしてもよい。
If the software of each of the unmanned tractor 1 and the remote control device 70 is an old version, as shown in FIG. 12, the server device 100 can confirm the update history of the software of each of the unmanned tractor 1 and the remote control device 70. The software version match may be determined. In this case, after the server 100 confirms that the software versions of the unmanned tractor 1 and the remote control device 70 match, communication between the unmanned tractor 1 and the remote control device 70 is established. Further, even when the server 100 receives software version information of each of the unmanned tractor 1 and the remote control device 70 with which communication has been established, as in the case of FIG. 6, FIG. 8, and FIG. It may be compared with the version information of the software to confirm whether update is necessary.
<別実施形態>
本発明の自律走行システムにお別実施形態について、図13~図15を参照して以下に説明する。図13に示すように、本実施形態の自律走行システムでは、圃場H1内で利用される遠隔操作装置70が、例えば、無線電話回線などを介して、通信ネットワーク網N1と通信接続し、サーバ100と通信可能となる。そのため、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアそれぞれのバージョンが不一致であっても、遠隔操作装置70とサーバ100との通信に基づいて、バージョンの古いソフトウェアを更新できる。 <Another embodiment>
Another embodiment of the autonomous traveling system of the present invention will be described below with reference to FIGS. As shown in FIG. 13, in the autonomous traveling system of the present embodiment, theremote control device 70 used in the farm field H1 is communicatively connected to the communication network N1 via a wireless telephone line, for example, and the server 100 It becomes possible to communicate with. Therefore, even if the versions of the vehicle-side software of the unmanned tractor 1 and the device-side software of the remote control device 70 do not match, the old version of the software can be updated based on the communication between the remote control device 70 and the server 100.
本発明の自律走行システムにお別実施形態について、図13~図15を参照して以下に説明する。図13に示すように、本実施形態の自律走行システムでは、圃場H1内で利用される遠隔操作装置70が、例えば、無線電話回線などを介して、通信ネットワーク網N1と通信接続し、サーバ100と通信可能となる。そのため、無人トラクタ1の車両側ソフトウェアと遠隔操作装置70の装置側ソフトウェアそれぞれのバージョンが不一致であっても、遠隔操作装置70とサーバ100との通信に基づいて、バージョンの古いソフトウェアを更新できる。 <Another embodiment>
Another embodiment of the autonomous traveling system of the present invention will be described below with reference to FIGS. As shown in FIG. 13, in the autonomous traveling system of the present embodiment, the
図14に示すように、無人トラクタ1の車両側ソフトウェアが新バージョンである一方で遠隔操作装置70の装置側ソフトウェアが旧バージョンである場合(装置側ソフトウェアのバージョンが車両側ソフトウェアのバージョンよりも古い場合)、遠隔操作装置70で通信エラーの通知がなされるとともに、無人トラクタ1で装置側ソフトウェアの更新が通知される。これにより、オペレータは、遠隔操作装置70の装置側ソフトウェアの更新が必要であることを認識するため、遠隔操作装置70を操作することで、サーバ100に対して、装置側ソフトウェアの更新(アップデート)を要求する。
As shown in FIG. 14, when the vehicle-side software of the unmanned tractor 1 is a new version, the device-side software of the remote operation device 70 is an old version (the device-side software version is older than the vehicle-side software version). ), A communication error is notified by the remote operation device 70, and an update of the device-side software is notified by the unmanned tractor 1. As a result, the operator recognizes that the device side software of the remote operation device 70 needs to be updated. Therefore, the operator operates the remote operation device 70 to update (update) the device side software to the server 100. Request.
遠隔操作装置70からのソフトウェア更新の要求通知には、遠隔操作装置70の装置IDが含まれており、サーバ100は、装置IDに基づいて、遠隔操作装置70を認証し、遠隔操作装置70との通信を確立する。サーバ100は、無人トラクタ1の車両側ソフトウェアの新バージョンに対応させるべく、新バージョンの装置側ソフトウェア(最適バージョンのアプリケーション)を読み出して、遠隔操作装置70に送信する。
The software update request notification from the remote operation device 70 includes the device ID of the remote operation device 70, and the server 100 authenticates the remote operation device 70 based on the device ID and Establish communication. The server 100 reads the new version of the device side software (the optimum version of the application) and transmits it to the remote control device 70 so as to correspond to the new version of the vehicle side software of the unmanned tractor 1.
このようにして、遠隔操作装置70の装置側ソフトウェアが更新されると、オペレータが無人トラクタ1に対してキースイッチをONとしする。これにより、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョンが新しいものとなることで、図6に示すように、無人トラクタ1と遠隔操作装置70との通信が確立し、無人トラクタ1の自律走行を開始できる。
In this way, when the device-side software of the remote operation device 70 is updated, the operator turns on the key switch for the unmanned tractor 1. As a result, since the software versions of the unmanned tractor 1 and the remote control device 70 are new, communication between the unmanned tractor 1 and the remote control device 70 is established as shown in FIG. Autonomous driving can be started.
一方、図15に示すように、トラクタ1の車両側ソフトウェアが旧バージョンである一方で遠隔操作装置70の装置側ソフトウェアが新バージョンである場合(車両側ソフトウェアのバージョンが装置側ソフトウェアのバージョンよりも古い場合)、遠隔操作装置70で車両側ソフトウェアの更新が通知される。これにより、オペレータは、無人トラクタ1の車両側ソフトウェアの更新が必要であることを認識するため、遠隔操作装置70を操作することで、サーバ100に対して、車両側ソフトウェアの更新(アップデート)を要求する。
On the other hand, as shown in FIG. 15, when the vehicle-side software of the tractor 1 is an old version while the device-side software of the remote operation device 70 is a new version (the vehicle-side software version is higher than the device-side software version). If it is old), the remote control device 70 notifies the update of the vehicle side software. As a result, the operator recognizes that the vehicle side software of the unmanned tractor 1 needs to be updated, so that the server 100 is updated (updated) with respect to the server 100 by operating the remote control device 70. Request.
遠隔操作装置70からのソフトウェア更新の要求通知には、遠隔操作装置70の装置IDと共に無人トラクタ1のトラクタIDが含まれており、サーバ100は、装置ID及びトラクタIDに基づいて、遠隔操作装置70と共に無人トラクタIDを認証し、遠隔操作装置70及び無地トラクタ1それぞれとの通信を確立する。サーバ100は、遠隔操作装置70の装置側ソフトウェアの新バージョンに対応させるべく、新バージョンの車両側ソフトウェア(最適バージョンのアプリケーション)を読み出して、無人トラクタ1に送信する。
The software update request notification from the remote operation device 70 includes the tractor ID of the unmanned tractor 1 together with the device ID of the remote operation device 70, and the server 100 performs the remote operation device based on the device ID and the tractor ID. 70, the unmanned tractor ID is authenticated, and communication with the remote control device 70 and the plain tractor 1 is established. The server 100 reads out the new version of the vehicle-side software (the optimum version of the application) and transmits it to the unmanned tractor 1 so as to correspond to the new version of the device-side software of the remote control device 70.
このようにして、無人トラクタ1の車両側ソフトウェアが更新されると、無人トラクタ1は、遠隔操作装置70に対して、無人トラクタ1でのソフトウェア更新が完了したことを通知する。また、遠隔操作装置70は、無人トラクタ1でのソフトウェア更新の完了を認識すると、ソフトウェア更新の完了をディスプレイに表示するなどして、オペレータに通知するとともに、サーバ100に対してもソフトウェアの完了を通知する。
Thus, when the vehicle-side software of the unmanned tractor 1 is updated, the unmanned tractor 1 notifies the remote control device 70 that the software update in the unmanned tractor 1 has been completed. Further, when the remote control device 70 recognizes the completion of the software update in the unmanned tractor 1, the remote control device 70 notifies the operator of the completion of the software update by displaying it on the display and the server 100 also completes the software. Notice.
その後、遠隔操作装置70と無人トラクタ1との通信が遮断されるとともに、遠隔操作装置70は、無人トラクタ1からの通信確認信号を受信する。このとき、無人トラクタ1及び遠隔操作装置70それぞれのソフトウェアのバージョンが新しいものとなっているため、図6に示すように、無人トラクタ1と遠隔操作装置70との通信が確立し、無人トラクタ1の自律走行を開始できる。
Thereafter, communication between the remote operation device 70 and the unmanned tractor 1 is interrupted, and the remote operation device 70 receives a communication confirmation signal from the unmanned tractor 1. At this time, since the software versions of the unmanned tractor 1 and the remote control device 70 are new, communication between the unmanned tractor 1 and the remote control device 70 is established as shown in FIG. Can start autonomous driving.
本発明は、前述の実施形態に限らず、様々な態様に具体化できる。各部の構成は図示の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更が可能である。すなわち、上述の実施形態では、圃場内において単一のトラクタ1で作業されるものとしたが、複数のトラクタ1で作業されるものとしてもよい。このとき、例えば、図16に示すように、圃場内において農作業の一部が無人トラクタ1により行われるとともに、残りの農作業は有人トラクタ1Aにより行う。無人トラクタ1及び有人トラクタ1Aにより農作業の協調作業、追従作業、随伴作業等を実行することで、単一の圃場において農作業を分担して行える。また、上記の協調作業では、ある圃場において農作業を無人トラクタ1が行い、それと同時に別の圃場において農作業を有人トラクタ1Aが行うものとしてもよい。更に、複数の無人トラクタ1により、上記協調作業、追従作業、随伴作業のいずれかを実行させるものとしても構わない。
The present invention is not limited to the above-described embodiment, and can be embodied in various forms. The configuration of each unit is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention. That is, in the above-described embodiment, it is assumed that the single tractor 1 is operated in the field, but the multiple tractors 1 may be operated. At this time, for example, as shown in FIG. 16, a part of the farm work is performed by the unmanned tractor 1 in the field, and the remaining farm work is performed by the manned tractor 1A. By performing cooperative work of farm work, follow-up work, accompanying work, etc. by unmanned tractor 1 and manned tractor 1A, farm work can be shared in a single farm field. Further, in the cooperative work described above, the unmanned tractor 1 may perform the farm work in a certain farm field, and at the same time, the manned tractor 1A may perform the farm work in another farm field. Further, any of the cooperative work, the follow-up work, and the accompanying work may be executed by a plurality of unmanned tractors 1.
1 トラクタ(作業車両)
15 エンジン制御装置
16 本機制御装置
17 作業機制御装置
18 車両バス回線
19 車両搭載端末装置
48 無線通信アンテナユニット
48a 第1無線通信アンテナ
48b 第2無線通信アンテナ
51 自律走行制御装置
52 操舵制御装置
53 測位側量装置
54 無線通信ルータ
56 自律走行バス回線
60 基準局
63 測位衛星
70 遠隔操作装置
80 外部端末装置
90 アクセスポイント
100 サーバ
C1 管理センター
H1 圃場(作業領域)
N1 通信ネットワーク網
O1 事務所 1 Tractor (work vehicle)
DESCRIPTION OFSYMBOLS 15 Engine control apparatus 16 This machine control apparatus 17 Work implement control apparatus 18 Vehicle bus line 19 Vehicle-mounted terminal apparatus 48 Wireless communication antenna unit 48a First wireless communication antenna 48b Second wireless communication antenna 51 Autonomous traveling control apparatus 52 Steering control apparatus 53 Positioning side quantity device 54 Wireless communication router 56 Autonomous traveling bus line 60 Reference station 63 Positioning satellite 70 Remote control device 80 External terminal device 90 Access point 100 Server C1 Management center H1 Farm field (work area)
N1 communication network O1 office
15 エンジン制御装置
16 本機制御装置
17 作業機制御装置
18 車両バス回線
19 車両搭載端末装置
48 無線通信アンテナユニット
48a 第1無線通信アンテナ
48b 第2無線通信アンテナ
51 自律走行制御装置
52 操舵制御装置
53 測位側量装置
54 無線通信ルータ
56 自律走行バス回線
60 基準局
63 測位衛星
70 遠隔操作装置
80 外部端末装置
90 アクセスポイント
100 サーバ
C1 管理センター
H1 圃場(作業領域)
N1 通信ネットワーク網
O1 事務所 1 Tractor (work vehicle)
DESCRIPTION OF
N1 communication network O1 office
Claims (6)
- 農作業車両と通信可能な遠隔操作装置により、前記農作業車両の自律走行が制御される農作業車両の自律走行システムであって、
前記遠隔操作装置の装置側ソフトウェアのバージョンと前記農作業車両の車両側ソフトウェアのバージョンとが一致しない場合、前記農作業車両の自律走行が禁止されることを特徴とする農作業車両の自律走行システム。 An autonomous traveling system for an agricultural work vehicle in which autonomous traveling of the agricultural work vehicle is controlled by a remote control device capable of communicating with the agricultural work vehicle,
An autonomous traveling system for agricultural work vehicles, wherein autonomous traveling of the agricultural work vehicle is prohibited when the version of the device side software of the remote operation device and the version of the vehicle side software of the agricultural work vehicle do not match. - 前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれのバージョンが共に古い場合、前記農作業車両の自律走行を許可するとともに、前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれの更新を前記遠隔操作装置により通知することを特徴とする請求項1に記載の農作業車両の自律走行システム。 When both versions of the device-side software and the vehicle-side software are old, the agricultural operation vehicle is allowed to autonomously travel, and updates of the device-side software and the vehicle-side software are notified by the remote control device. The autonomous traveling system of the agricultural work vehicle according to claim 1 characterized by things.
- 前記装置側ソフトウェアのバージョンが前記車両側ソフトウェアのバージョンよりも古い場合、前記遠隔操作装置と前記農作業車両との通信が遮断されるとともに、前記農作業車両において前記装置側ソフトウェアの更新が通知されることを特徴とする請求項1に記載の農作業車両の自律走行システム。 When the version of the device-side software is older than the version of the vehicle-side software, communication between the remote control device and the farm work vehicle is interrupted, and the update of the device-side software is notified in the farm work vehicle. The autonomous traveling system of agricultural work vehicles according to claim 1 characterized by things.
- 前記車両側ソフトウェアのバージョンが前記装置側ソフトウェアのバージョンよりも古い場合、前記遠隔操作装置と前記農作業車両との通信が遮断されるとともに、前記遠隔操作装置において前記車両側ソフトウェアの更新が通知されることを特徴とする請求項1に記載の農作業車両の自律走行システム。 When the version of the vehicle-side software is older than the version of the device-side software, communication between the remote operation device and the farm vehicle is interrupted, and the update of the vehicle-side software is notified in the remote operation device. The autonomous traveling system of agricultural work vehicles according to claim 1 characterized by things.
- 前記農作業車両と通信して前記農作業車両の動作状態を管理するサーバを備えており、
前記サーバが、前記装置側ソフトウェア及び前記車両側ソフトウェアそれぞれの更新履歴を記憶していることを特徴とする請求項1に記載の農作業車両の自律走行システム。 A server that communicates with the farm vehicle and manages the operating state of the farm vehicle;
2. The autonomous traveling system for agricultural vehicles according to claim 1, wherein the server stores update histories of the device-side software and the vehicle-side software. - 前記サーバが、前記車両側ソフトウェアと前記装置側ソフトウェアのバージョンを比較して、前記車両側ソフトウェアと前記装置側ソフトウェアのバージョンの不一致を検出したとき、前記農作業車両又は前記遠隔操作装置に通知することを特徴とする請求項5に記載の農作業車両の自律走行システム。 When the server compares the versions of the vehicle-side software and the device-side software and detects a mismatch between the versions of the vehicle-side software and the device-side software, the server notifies the farm work vehicle or the remote control device. The autonomous traveling system for agricultural work vehicles according to claim 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017070820A JP6737731B2 (en) | 2017-03-31 | 2017-03-31 | Agricultural vehicle autonomous driving system |
JP2017-070820 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179778A1 true WO2018179778A1 (en) | 2018-10-04 |
Family
ID=63675003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/002712 WO2018179778A1 (en) | 2017-03-31 | 2018-01-29 | Autonomous travel system for agricultural work vehicles |
Country Status (2)
Country | Link |
---|---|
JP (3) | JP6737731B2 (en) |
WO (1) | WO2018179778A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019187652A1 (en) * | 2018-03-27 | 2019-10-03 | ヤンマー株式会社 | Software management device |
US20210223771A1 (en) * | 2020-01-17 | 2021-07-22 | Zimeno, Inc. Dba Monarch Tractor | Vehicle control by a remote operator |
EP3851591A3 (en) * | 2019-12-28 | 2021-10-13 | Kubota Corporation | Working machine and program update system for working machine |
US11150104B2 (en) | 2019-10-31 | 2021-10-19 | International Business Machines Corporation | Route management utilizing geolocation based clustering |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019204941A1 (en) * | 2019-04-05 | 2020-10-08 | Robert Bosch Gmbh | System for safe teleoperated driving |
KR102383141B1 (en) * | 2020-07-28 | 2022-04-07 | 한국자동차연구원 | System and method for updating firmware of agricultural machinery |
JP7552528B2 (en) | 2021-08-03 | 2024-09-18 | トヨタ自動車株式会社 | Information processing device, information processing method, and system |
JP7439810B2 (en) | 2021-10-26 | 2024-02-28 | トヨタ自動車株式会社 | Server, information processing system and information processing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140737A (en) * | 2001-10-30 | 2003-05-16 | Fujitsu Ten Ltd | Support system |
JP2006180547A (en) * | 2006-02-10 | 2006-07-06 | Nec Micro Systems Ltd | Remote control system and apparatus |
JP2009232282A (en) * | 2008-03-24 | 2009-10-08 | Panasonic Electric Works Co Ltd | Network system |
JP2014069598A (en) * | 2012-09-27 | 2014-04-21 | Mitsubishi Motors Corp | Remote control system for pieces of on-vehicle equipment |
JP2015115063A (en) * | 2014-11-26 | 2015-06-22 | 株式会社小松製作所 | Work machine, management system, and management method |
JP2015195463A (en) * | 2014-03-31 | 2015-11-05 | 東芝ライテック株式会社 | Communication device, communication method and communication system |
JP2016093127A (en) * | 2014-11-13 | 2016-05-26 | ヤンマー株式会社 | Agricultural work vehicle |
JP2016149655A (en) * | 2015-02-12 | 2016-08-18 | 富士通株式会社 | Management method, management program, management apparatus, management system, and information processing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6111179B2 (en) | 2013-10-22 | 2017-04-05 | 日立建機株式会社 | Autonomous traveling system for dump truck |
JP6562678B2 (en) | 2015-03-30 | 2019-08-21 | 株式会社クボタ | Automated traveling vehicle |
IN2015MU01824A (en) | 2015-05-07 | 2015-05-22 | Kpit Technologies Ltd |
-
2017
- 2017-03-31 JP JP2017070820A patent/JP6737731B2/en active Active
-
2018
- 2018-01-29 WO PCT/JP2018/002712 patent/WO2018179778A1/en active Application Filing
-
2020
- 2020-07-16 JP JP2020121815A patent/JP7467266B2/en active Active
-
2022
- 2022-10-24 JP JP2022169715A patent/JP7571102B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140737A (en) * | 2001-10-30 | 2003-05-16 | Fujitsu Ten Ltd | Support system |
JP2006180547A (en) * | 2006-02-10 | 2006-07-06 | Nec Micro Systems Ltd | Remote control system and apparatus |
JP2009232282A (en) * | 2008-03-24 | 2009-10-08 | Panasonic Electric Works Co Ltd | Network system |
JP2014069598A (en) * | 2012-09-27 | 2014-04-21 | Mitsubishi Motors Corp | Remote control system for pieces of on-vehicle equipment |
JP2015195463A (en) * | 2014-03-31 | 2015-11-05 | 東芝ライテック株式会社 | Communication device, communication method and communication system |
JP2016093127A (en) * | 2014-11-13 | 2016-05-26 | ヤンマー株式会社 | Agricultural work vehicle |
JP2015115063A (en) * | 2014-11-26 | 2015-06-22 | 株式会社小松製作所 | Work machine, management system, and management method |
JP2016149655A (en) * | 2015-02-12 | 2016-08-18 | 富士通株式会社 | Management method, management program, management apparatus, management system, and information processing method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019187652A1 (en) * | 2018-03-27 | 2019-10-03 | ヤンマー株式会社 | Software management device |
US11150104B2 (en) | 2019-10-31 | 2021-10-19 | International Business Machines Corporation | Route management utilizing geolocation based clustering |
EP3851591A3 (en) * | 2019-12-28 | 2021-10-13 | Kubota Corporation | Working machine and program update system for working machine |
US20210223771A1 (en) * | 2020-01-17 | 2021-07-22 | Zimeno, Inc. Dba Monarch Tractor | Vehicle control by a remote operator |
US11567492B2 (en) * | 2020-01-17 | 2023-01-31 | Zimeno, Inc. | Vehicle control by a remote operator |
US20230136169A1 (en) * | 2020-01-17 | 2023-05-04 | Zimeno, Inc. Dba Monarch Tractor | Vehicle control by a remote operator |
US11774958B2 (en) | 2020-01-17 | 2023-10-03 | Zimeno, Inc. | Vehicle control by a remote operator |
US20230409026A1 (en) * | 2020-01-17 | 2023-12-21 | Zimeno, Inc. Dba Monarch Tractor | Vehicle control by a remote operator |
US20240012408A1 (en) * | 2020-01-17 | 2024-01-11 | Zimeno, Inc. Dba Monarch Tractor | Vehicle control by a remote operator |
Also Published As
Publication number | Publication date |
---|---|
JP2018170990A (en) | 2018-11-08 |
JP2020185002A (en) | 2020-11-19 |
JP2023015109A (en) | 2023-01-31 |
JP6737731B2 (en) | 2020-08-12 |
JP7467266B2 (en) | 2024-04-15 |
JP7571102B2 (en) | 2024-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018179778A1 (en) | Autonomous travel system for agricultural work vehicles | |
WO2018179777A1 (en) | Autonomous travel system for agricultural work vehicles | |
JP6807794B2 (en) | Autonomous driving system for agricultural work vehicles | |
WO2018135143A1 (en) | Wireless communication terminal device | |
KR102548019B1 (en) | Path generation device and work vehicle | |
JP6564725B2 (en) | Driving instruction device | |
JP6718838B2 (en) | Driving support system for agricultural vehicles | |
JP2018170991A (en) | Autonomous travel system for farm work vehicle | |
JP6718574B2 (en) | Agricultural vehicle information collection system | |
JP7100688B2 (en) | Autonomous driving system for agricultural work vehicles | |
JP2017162373A (en) | Work vehicle | |
JP6739382B2 (en) | Autonomous driving system | |
JP7250849B2 (en) | Remote control system and autonomous working system | |
JP6679508B2 (en) | Base station | |
JP2017182373A (en) | Route generation device | |
JP2017182375A (en) | Route generation device | |
JP6916344B2 (en) | Work vehicle information collection system | |
WO2018110226A1 (en) | Communication system | |
JP2017182376A (en) | Route generation device | |
JP2017182374A (en) | Service vehicle | |
JP7047015B2 (en) | Driving support system | |
JP2020035485A (en) | Autonomous travel system | |
JP6821841B2 (en) | Reference station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18778042 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18778042 Country of ref document: EP Kind code of ref document: A1 |