[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018179671A1 - 画像処理装置と画像処理方法および撮像装置 - Google Patents

画像処理装置と画像処理方法および撮像装置 Download PDF

Info

Publication number
WO2018179671A1
WO2018179671A1 PCT/JP2018/000464 JP2018000464W WO2018179671A1 WO 2018179671 A1 WO2018179671 A1 WO 2018179671A1 JP 2018000464 W JP2018000464 W JP 2018000464W WO 2018179671 A1 WO2018179671 A1 WO 2018179671A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
parallax
imaging
image
Prior art date
Application number
PCT/JP2018/000464
Other languages
English (en)
French (fr)
Inventor
昌俊 横川
真史 内田
隆浩 永野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880019853.6A priority Critical patent/CN110463194B/zh
Priority to EP18776730.6A priority patent/EP3606057B1/en
Priority to JP2019508592A priority patent/JP7024782B2/ja
Priority to US16/488,787 priority patent/US10999562B2/en
Publication of WO2018179671A1 publication Critical patent/WO2018179671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/25Image signal generators using stereoscopic image cameras using two or more image sensors with different characteristics other than in their location or field of view, e.g. having different resolutions or colour pickup characteristics; using image signals from one sensor to control the characteristics of another sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/15Image signal generation with circuitry for avoiding or correcting image misregistration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0088Synthesising a monoscopic image signal from stereoscopic images, e.g. synthesising a panoramic or high resolution monoscopic image

Definitions

  • This technique relates to an image processing apparatus, an image processing method, and an imaging apparatus, and enables to obtain a highly sensitive captured image while suppressing deterioration of image quality performance using captured images acquired by a plurality of imaging units.
  • Patent Document 1 discloses that a captured image generated by a camera that can be attached to and detached from the information processing terminal is supplied to the information processing terminal by wireless communication.
  • Patent Document 2 discloses that a plurality of image pickup units are provided to simultaneously generate a plurality of images having different image quality, for example, a first field angle and an image having a second field angle narrower than the first field angle. Has been.
  • the detachable camera is larger in size than the imaging unit of the information processing terminal, and when using the detachable camera, it is necessary to establish communication with the information processing terminal. For this reason, the operation for obtaining a good captured image is complicated and the portability is also lowered. Moreover, even if a plurality of imaging units are provided, the images that can be acquired are images according to the performance of each imaging unit.
  • this technique provides an image processing device, an image processing method, and an imaging device that can obtain a highly sensitive captured image while suppressing deterioration in image quality performance using captured images acquired by a plurality of imaging units. With the goal.
  • the first aspect of this technology is A parallax detection unit that detects a parallax of the second viewpoint with respect to the first viewpoint based on a first imaging signal of the first viewpoint and a second imaging signal that is a second viewpoint different from the first viewpoint;
  • An image generation unit that generates a color image using the first imaging signal and a parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit;
  • the first imaging signal includes a white pixel and a color component pixel
  • the second imaging signal is in an image processing apparatus having fewer white pixels and more color component pixels than the first imaging signal.
  • the parallax detection unit includes, for example, a first imaging signal of a first viewpoint in which white pixels are provided more than color component pixels in a pixel block of 2 pixels ⁇ 2 pixels, and fewer white pixels than the first imaging signal. Then, the parallax of the second viewpoint with respect to the first viewpoint is detected based on the second imaging signal of the second viewpoint different from the first viewpoint in which the number of color component pixels is increased.
  • the image generation unit performs parallax compensation on the second imaging signal based on the parallax detected by the parallax detection unit, and generates a parallax compensation second imaging signal.
  • the image generation unit When the image generation unit satisfies a predetermined condition, that is, when a color image is generated using the first imaging signal and the parallax-compensated second imaging signal, the image generation performance is lower than the color image generated from the first imaging signal.
  • a predetermined condition that is, when a color image is generated using the first imaging signal and the parallax-compensated second imaging signal
  • the image generation performance is lower than the color image generated from the first imaging signal.
  • the image generation unit determines a risk of degradation in image quality based on the first imaging signal and the parallax-compensated second imaging signal, and performs parallax compensation on the first imaging signal with a synthesis ratio corresponding to the determined risk. Two image signals are combined to generate a color image.
  • the image generation unit generates a first luminance signal and a first color signal from the first imaging signal, generates a second luminance signal and a second color signal from the second imaging signal, a second color signal, and the parallax.
  • the parallax-compensated second color signal is generated based on the parallax detected by the detection unit and a color image is generated using the parallax-compensated second imaging signal, the image quality performance is higher than that of the color image generated from the first imaging signal.
  • the image generation unit selects either the first color signal or the parallax compensation second color signal in units of captured images or synthesizes the first color signal and the parallax compensation second color signal in units of pixels according to the risk. .
  • the parallax detection unit performs parallax detection using the first luminance signal and the second luminance signal, or the first luminance signal, the second luminance signal, the first color signal, and the second color signal.
  • a parallax detection control unit that performs frequency detection based on the first imaging signal and controls the parallax detection unit according to the detection result, the parallax detection unit based on the first luminance signal and the second luminance signal.
  • the parallax detection is performed using the calculated cost value and the cost value calculated based on the first color signal and the second color signal, and the parallax detection control unit integrates the two cost values with a synthesis ratio according to the frequency detection result.
  • the parallax detection is performed based on the integrated cost value.
  • the image generation unit performs frequency detection based on the first luminance signal, and performs image quality improvement processing on the first color signal according to the frequency detection result.
  • the image generation unit performs parallax compensation on the second luminance signal to generate a parallax compensated second luminance signal, and combines the first luminance signal with the parallax compensated second luminance signal to improve the image quality of the first luminance signal.
  • the luminance image quality improvement unit sets the synthesis ratio of the first luminance signal and the parallax-compensated second luminance signal according to the noise intensity of the imaging unit that generates the first imaging signal.
  • the image generation unit performs interpolation processing of the white pixel signal in the first imaging signal, color signal for the pixel signal of the color component pixel, the demosaic process using the white pixel signal subjected to the interpolation process, and the signal after the demosaic process
  • a first color signal is generated by the conversion.
  • the image generation unit generates a pixel signal for each color component of the processing target pixel using the color ratio based on the white pixel signal after the interpolation processing and the pixel signal of the color component pixel and the white pixel signal of the processing target pixel.
  • the image generation unit generates a first luminance signal by interpolation processing of the white pixel signal in the first imaging signal
  • the parallax detection unit generates the first imaging generated by interpolation processing of the white pixel signal by the signal generation unit. Parallax detection is performed using the signal.
  • the second aspect of this technology is A first imaging signal of a first viewpoint including a white pixel and a color component pixel, and a second imaging point of a second viewpoint different from the first viewpoint in which the number of color components pixels is increased by reducing the number of white pixels from the first imaging signal.
  • An image processing method includes: generating a color image by an image generation unit using the first imaging signal and a parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the third aspect of this technology is A first imaging unit that generates a first imaging signal of a first viewpoint including white pixels and color component pixels; A second imaging unit that generates a second imaging signal of a second viewpoint different from the first viewpoint in which the number of white component is reduced and the ratio of color component pixels is increased compared to the first imaging unit; A parallax detection unit that detects a parallax of the second viewpoint with respect to the first viewpoint based on the first imaging signal and the second imaging signal;
  • the imaging apparatus includes: the first imaging signal; and an image generation unit that generates a color image using a parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the parallax detection unit detects the parallax of the second viewpoint relative to the first viewpoint based on the first imaging signal of the first viewpoint and the second imaging signal that is a second viewpoint different from the first viewpoint. Is done.
  • a color image is generated by the image generation unit using the first imaging signal and the parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the first imaging signal includes white pixels and color component pixels
  • the second imaging signal has fewer white pixels and more color component pixels than the first imaging signal.
  • the second image pickup signal is fused to the first image pickup signal based on the first image pickup signal having more white pixels than the second image pickup signal, it is possible to obtain a high-sensitivity image pickup while suppressing deterioration in image quality performance. It becomes like this.
  • the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. It is the figure which illustrated the coring curve memorize
  • FIG. It is the flowchart which illustrated operation
  • FIG. 1 exemplifies the appearance of a device to which the imaging device of this technology is applied.
  • an imaging device is applied to an information processing terminal.
  • FIG. 1A shows the front side of the information processing terminal 10, and a display unit 53 and an operation unit 55 are provided on the front side.
  • FIG. 1B shows the back side of the information processing terminal 10, and a plurality of imaging units, for example, two imaging units 21-BW and 21-CR are provided on the back side.
  • FIG. 2 illustrates the configuration of the information processing terminal.
  • the information processing terminal 10 includes a plurality of imaging units, for example, two imaging units 21-H and 21-C, an image processing unit 30, a sensor unit 51, a communication unit 52, a display unit 53, a touch panel 54, an operation unit 55, and a storage unit 56. And a control unit 60.
  • the imaging units 21-H and 21-C and the image processing unit 30 are functional blocks constituting the imaging device of this technology, and the image processing unit 30 corresponds to the image processing device of this technology.
  • the imaging units 21-H and 21-C are provided on the same surface side of the information processing terminal 10 as shown in FIG.
  • the imaging units 21-H and 21-C are configured by using an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and perform photoelectric conversion of light captured by a lens (not shown) to capture an image.
  • the image data of the image is generated and output to the image processing unit 30.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image processing unit 30 uses the captured images acquired by the imaging unit 21-H and the imaging unit 21-C to obtain a highly sensitive captured image while suppressing a decrease in image quality performance. That is, the image processing unit 30 performs image processing using the captured images acquired by the imaging unit 21-H and the imaging unit 21-C, and is individually acquired by the imaging unit 21-H and the imaging unit 21-C. A high-sensitivity captured image is generated while suppressing deterioration in image quality performance over the captured image, and is output to the display unit 53 and the storage unit 56. Details of the configuration and operation of the image processing unit 30 will be described later.
  • the sensor unit 51 is configured by using a gyro sensor or the like, and detects shaking generated in the information processing terminal 10.
  • the sensor unit 51 outputs the detected shake information to the control unit 60.
  • the communication unit 52 communicates with devices on a network such as a LAN (Local Area Network) or the Internet.
  • a network such as a LAN (Local Area Network) or the Internet.
  • the display unit 53 displays a captured image based on the image data supplied from the image processing unit 30 and displays a menu screen and various application screens based on an information signal from the control unit 60.
  • a touch panel 54 is placed on the display surface side of the display unit 53 so that the GUI function can be used.
  • the operation unit 55 is configured by using an operation switch or the like, and generates an operation signal corresponding to a user operation and outputs the operation signal to the control unit 60.
  • the storage unit 56 stores information generated by the information processing terminal 10, for example, image data supplied from the image processing unit 30, and various types of information used for executing communication and applications in the information processing terminal 10.
  • the control unit 60 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) (not shown), and the like.
  • the control unit 60 executes a program stored in the ROM or RAM, and controls the operation of each unit so that the operation according to the user operation on the touch panel 54 or the operation unit 55 is performed on the information processing terminal 10.
  • the information processing terminal 10 is not limited to the configuration shown in FIG. 2.
  • an encoding processing unit for encoding image data and storing it in the storage unit 56, a resolution conversion unit for matching the image data with the resolution of the display unit, etc. May be provided.
  • the image processing unit 30 performs fusion processing using the captured images acquired by the imaging unit 21-H and the imaging unit 21-C.
  • FIG. 3 is a diagram for explaining the image quality obtained by the fusion processing. For example, when a black-and-white captured image is acquired by the imaging unit 21-H and a color captured image is acquired by the imaging unit 21-C, the color captured image is converted into the viewpoint of the black-and-white captured image by fusion processing based on the monochrome captured image. By using color information after performing parallax compensation, a highly sensitive fusion image can be generated. For this reason, the image quality performance can be improved over the monocular image quality (image quality when only the imaging unit 21-C is used).
  • the viewpoints of the imaging unit 21-H and the imaging unit 21-C are different, if the detection accuracy of the parallax is low, there is a high risk of causing a color shift or a color loss, and the image quality performance is reduced due to the color shift or the color loss.
  • the image quality is lower than the monocular image quality (image quality when only the imaging unit 21-C is used).
  • color omission occurs due to occlusion.
  • FIG. 4 shows occlusion.
  • the imaging unit 21-H generates the first imaging signal of the first viewpoint as a configuration including white pixels and color component pixels.
  • the imaging unit 21-C generates a second imaging signal of a second viewpoint different from the first viewpoint by reducing the number of white pixels and increasing the ratio of color component pixels as compared to the imaging unit 21-H. That is, the imaging unit 21-H generates a first imaging signal that is more sensitive than the imaging unit 21-C, and the imaging unit 21-C generates a second imaging signal that has a higher color resolution than the imaging unit 21-H. Generate.
  • the imaging unit 21-H includes a color component pixel and has a color resolution lower than that of the imaging unit 21-C, but generates a color component image in the same manner as the imaging unit 21-C to generate a parallax.
  • the color signal after parallax compensation generated from the imaging signal is selected or synthesized (blended) to generate a fusion image with high image quality performance.
  • FIG. 5 illustrates a pixel configuration of the imaging unit 21-H. 5 and 6 illustrate a 5 pixel ⁇ 5 pixel region which is a partial region of the imaging region.
  • FIG. 5A illustrates a case where a pixel block of 2 images ⁇ 2 pixels is configured by a red pixel (R), a blue pixel (B), and two white pixels (W).
  • FIG. 5B illustrates a case where a pixel block of 2 images ⁇ 2 pixels is configured by a red pixel (R) or a blue pixel (B) and three white pixels (W). (C) of FIG.
  • FIG. 5 is a block in which a pixel block of 2 images ⁇ 2 pixels is composed of a red pixel (R) or a blue pixel (B) and three white pixels (W) and four white pixels (W).
  • R red pixel
  • B blue pixel
  • W white pixels
  • W white pixels
  • FIG. 5 is a pixel block of 2 images ⁇ 2 pixels configured by any one of a red pixel (R), a blue pixel (B), and a green pixel (G) and three white pixels (W).
  • the case is shown as an example.
  • the green pixel (G) is not provided. Therefore, as described later, the luminance image, the red image, and the blue image generated from the demosaic process are green. Generate an image.
  • FIG. 6 illustrates a pixel configuration of the imaging unit 21-c.
  • FIG. 6A illustrates a case where three primary color pixels of a red pixel (R), a blue pixel (B), and a green pixel (G) are provided as a Bayer array.
  • FIG. 6B shows a pixel block of 2 images ⁇ 2 pixels, a red pixel (R), a blue pixel (B), a green pixel (G), three primary color pixels, and a white pixel (without a color filter). The case where it comprises with W) is illustrated.
  • the pixels for each color of the imaging unit 21-H and the pixels for each color of the imaging unit 21-C may not be the same as long as the difference in spectral sensitivity is smaller than a predetermined value.
  • the pixel configurations of the imaging unit 21-H and the imaging unit 21-C are not limited to the pixel configurations illustrated in FIGS.
  • the color filter is not limited to a primary color filter, and a complementary color filter may be used.
  • the color arrangement is not limited to the Bayer arrangement, and may be another color arrangement such as a stripe arrangement or a mosaic arrangement.
  • the image processing unit 30 detects the parallax of the second viewpoint with respect to the first viewpoint by the parallax detection unit based on the first imaging signal and the second imaging signal described above. In addition, the image processing unit 30 generates a color image using the first imaging signal and the parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the image generation unit satisfies a predetermined condition, that is, when a color image is generated using the first imaging signal and the parallax-compensated second imaging signal, the image generation performance is lower than the color image generated from the first imaging signal.
  • a color image is generated using the first imaging signal and the parallax-compensated second imaging signal, and when the predetermined condition is not satisfied, the color image is generated from the first imaging signal.
  • the image processing unit 30 generates the first luminance signal and the first color signal from the first imaging signal, generates the second luminance signal and the second color signal from the second imaging signal, and the second color signal and the parallax.
  • the parallax-compensated second color signal is generated based on the parallax detected by the detection unit and a color image is generated using the parallax-compensated second imaging signal, the image quality performance is higher than that of the color image generated from the first imaging signal.
  • the color signal of the color image is generated by selecting or combining one of the first color signal and the parallax compensation second color signal.
  • the luminance signal of the color image is a first luminance signal that has been improved in image quality using the first luminance signal or the second luminance signal.
  • the image processing unit 30 performs such fusion processing so that a captured image with higher image quality performance than the captured image acquired by the imaging unit 21-H or the imaging unit 21-C can be displayed or recorded.
  • a luminance signal and a color difference signal are generated from the first imaging signal generated by the imaging unit 21-H
  • a luminance signal and a color difference signal are generated from the second imaging signal generated by the imaging unit 21-C.
  • a fusion process based on the viewpoint of the imaging unit 21-H is performed using the color difference signal or the color difference signal and the luminance signal.
  • FIG. 7 illustrates the configuration of the first embodiment of the image processing unit.
  • the image processing unit 30-1 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36a, and a parallax compensation unit. 37, a fallback determination unit 38, and a signal selection unit 41.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs white pixel interpolation processing using the imaging signal PS-H to generate an image signal (hereinafter referred to as “brightness signal”) SDw of a luminance image.
  • FIG. 8 is a diagram for explaining the operation of the interpolation unit.
  • the imaging unit 21-H calculates the pixel value of the white pixel WC at the position of the red pixel or the blue pixel in the pixel configuration shown in FIG. A case where calculation is performed by interpolation processing will be described.
  • the interpolation process is to calculate the interpolation cost value for each direction, the pixel value of the interpolation pixel the interpolation cost value is minimized may be a pixel value of a white pixel W C.
  • Expression (2) represents a calculation expression of the interpolation cost value diff v for vertical interpolation.
  • Expression (3) represents a calculation formula for the interpolation cost value diff h for horizontal interpolation, and
  • Expressions (4) and (5) represent calculation formulas for the interpolation cost values diff s1 and diff s2 for diagonal interpolation.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates the pixel value of the white pixel at the position of the red pixel and the blue pixel, and generates the luminance signal SDw.
  • the interpolation unit 31-H outputs the generated luminance signal SDw to the demosaic processing unit 32-H, the fallback determination unit 38, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component, for example, three primary color signals, using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H.
  • FIG. 9 illustrates the configuration of the demosaic processing unit 32-H.
  • the demosaic processing unit 32-H includes a red interpolation coefficient calculation unit 321r, a blue interpolation coefficient calculation unit 321b, a red component image generation unit 322r, a blue component image generation unit 322b, and a green component image generation unit 322g.
  • the red interpolation coefficient calculation unit 321r is a ratio of the sum of the pixel signal of the white pixel W and the sum of the pixel signal of the red pixel R in the block range J of a predetermined size (for example, 5 pixels ⁇ 5 pixels is shown). A certain color ratio is calculated based on Expression (10), and is output to the red component image generation unit 322r as a red interpolation coefficient RTr.
  • the blue interpolation coefficient calculation unit 321b has a ratio of the sum of the pixel signal of the white pixel W and the sum of the pixel signal of the blue pixel R in a block range J of a predetermined size (for example, 5 pixels ⁇ 5 pixels is shown). A certain color ratio is calculated based on Expression (11), and is output to the blue component image generation unit 322b as a blue interpolation coefficient RTb.
  • the red component image generation unit 322r applies a red interpolation coefficient to the pixel value DW (x, y) at the interpolation pixel position (x, y) in the luminance image generated by the interpolation unit 31-H.
  • the pixel value DR (x, y) of the red pixel at the interpolation pixel position (x, y) is calculated by multiplying the red interpolation coefficient RTr calculated by the calculation unit 321r.
  • DR (x, y) RTr ⁇ DW (x, y) (12)
  • the blue component image generation unit 322b applies the blue interpolation coefficient to the pixel value DW (x, y) at the interpolation pixel position (x, y) in the luminance image generated by the interpolation unit 31-H.
  • the blue interpolation coefficient RTb calculated by the calculation unit 321b is multiplied to calculate the pixel value DB (x, y) of the blue pixel at the interpolation pixel position (x, y).
  • DB (x, y) RTb ⁇ DW (x, y) (13)
  • the green component image generation unit 322g calculates the red component image from the pixel value DW (x, y) at the interpolation pixel position (x, y) in the luminance image generated by the interpolation unit 31-H.
  • the pixel value DG (x, y) of the green pixel at the interpolation pixel position (x, y) is calculated.
  • DG (x, y) DW (x, y) ⁇ DR (x, y) ⁇ DB (x, y) (14)
  • the demosaic processing unit 32-H generates a three primary color image signal using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and generates a YUV converting unit 33-. Output to H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, and outputs the three primary color image signals to the YUV conversion unit 33-C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36a and the color difference signal Huv to the signal selection unit 41, respectively.
  • the color difference signal Huv indicates a color difference signal Hu indicating a difference between luminance and blue and a color difference signal Hv indicating a difference between luminance and red.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the fallback determination unit 38, and the color difference signal Cuv to the parallax compensation unit 37, respectively.
  • the color difference signal Cuv indicates a color difference signal Cu indicating a difference between luminance and blue and a color difference signal Cv indicating a difference between luminance and red.
  • the parallax detection unit 36a uses the luminance signal Hy from the YUV conversion unit 33-H and the luminance signal Cy from the YUV conversion unit 33-C to capture the captured image acquired by the imaging unit 21-H as a reference captured image. The parallax of the captured image acquired by the unit 21-C is detected.
  • the parallax detection unit 36a generates parallax information by block matching corresponding point detection processing. For example, the block area on the other captured image that is most similar to the reference block area based on the target position on the reference captured image is set to a cost value such as SSD (SumSof Squared Difference) or SAD (Sum of Absolute Difference). Use to detect.
  • the parallax detection unit 36a calculates a parallax vector indicating the difference in position between the detected block area and the reference block area. Further, the parallax detection unit 36a calculates the parallax with each pixel on the reference captured image as the position of interest, and generates parallax information indicating the parallax vector calculated for each pixel.
  • disparity information generation is not limited to block matching, and other methods such as the KLT (Kanade-Lucas-Tomasi) method may be used.
  • the parallax detection unit 36a outputs the generated parallax information DTa to the parallax compensation unit 37 and the fallback determination unit 38.
  • the parallax compensation unit 37 performs parallax compensation on the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36a with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTa supplied from the parallax detection unit 36a. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a color resolution higher than that of the color difference signal Huv generated by the YUV conversion unit 33-H when there is no risk of deterioration in image quality performance. If there is a risk of a decrease in the color difference, the signal selection control signal ET is generated so as to select the color difference signal Huv.
  • FIG. 10 illustrates the configuration of the fallback determination processing unit.
  • the fallback determination unit 38 includes an image feature amount calculation unit 381 and a signal selection determination unit 382.
  • the image feature amount calculation unit 381 calculates an image feature amount for performing image quality deterioration determination due to parallax and pixel saturation.
  • the image feature amount calculation unit 381 is a function block for calculating an image feature amount for determining deterioration in image quality due to parallax, as a parallax histogram generation unit 3811, a parallax distribution feature amount calculation unit 3812, and a search range exceeded feature amount calculation.
  • a unit 3813, a parallax gap histogram generation unit 3814, and a parallax gap feature amount calculation unit 3815 are examples of the image feature amount calculation unit 3815.
  • the image feature amount calculation unit 381 includes a saturation determination histogram generation unit 3816 and a saturation feature amount calculation unit 3817 as functional blocks for calculating an image feature amount for performing deterioration determination of image quality due to pixel saturation. ing.
  • the image feature amount calculation unit 381 may use the entire captured image as an image feature amount calculation target region. As illustrated in FIG. 11, regions on the upper, lower, left, and right end portions (regions indicated by diagonal lines) in the captured image. Except for this, the calculation target area may be set.
  • the calculation target region is set excluding the region on the edge side, it is possible to prevent the parallax and the later-described parallax gap distance and the like from being calculated because the target pixel is the position of the side edge, for example. And image features can be calculated with high accuracy. In addition, calculation costs such as histogram generation can be reduced.
  • the parallax histogram generation unit 3811 generates a histogram using the parallax vector calculated for each pixel in the calculation target region.
  • 12 illustrates a parallax histogram.
  • FIG. 12A illustrates a parallax histogram of a captured image in a state where the subject is close to the same plane
  • FIG. 12B illustrates a distance to the subject.
  • 2 illustrates a parallax histogram of captured images having different values. In this parallax histogram, a peak is generated at a position away from the parallax “0” in the minus direction due to a difference in distance.
  • FIG. 12 illustrates a parallax histogram.
  • 12C illustrates a parallax histogram of a captured image in a state in which a plurality of parallaxes are generated at different distances to the subject and a large parallax is generated when the subject is approaching.
  • a peak occurs at a position further away in the minus direction than in (b) in FIG. .
  • the parallax distribution feature amount calculation unit 3812 calculates a statistic indicating the feature of the parallax distribution from the parallax histogram generated by the parallax histogram generation unit 3811 as the parallax distribution feature amount.
  • the parallax distribution feature amount calculation unit 3812 calculates, for example, a standard deviation as a statistic indicating the feature of the parallax distribution, and sets the calculated standard deviation as the parallax distribution feature amount FVfsd.
  • the disparity distribution feature amount calculated from the histogram of FIG. 12A is “FVfsd-a”
  • the disparity distribution feature amount “FVfsd-b” calculated from the histogram of FIG. 12B and FIG.
  • the parallax distribution feature amount is “FVfsd-a ⁇ FVfsd-b, FVfsd-c”.
  • the signal selection determination unit 382 described later has the subject on the same plane based on the parallax distribution feature quantity FVfsd. It is possible to determine whether it is close or has multiple parallaxes.
  • the search range excess feature amount calculation unit 3813 indicates the ratio of the frequency (over_search_range_counter) that causes a parallax greater than or equal to a preset search range from the parallax histogram generated by the parallax histogram generation unit 3811 to the total frequency (counter). A feature amount FVosr exceeding the search range is calculated.
  • the search range excess feature amount calculation unit 3813 performs the calculation of Expression (15) using the parallax histogram to calculate the search range excess feature amount FVosr.
  • FVosr over_search_range_counter / counter * 100 (15)
  • the parallax gap histogram generation unit 3814 generates a parallax gap histogram.
  • FIG. 13 is a diagram for explaining the absolute value of the parallax difference used to generate the parallax gap histogram. As illustrated in FIG. 13, the parallax gap histogram generation unit 3814 calculates the parallax PV1 at a position that is horizontally separated from the position of the target pixel in the calculation target region by the pixel “ ⁇ (PARALLAX_DIFF_DISTANCE / 2)”.
  • the parallax difference absolute value PVapd is small, for example, when the subject is close to the same plane, since the difference between the parallax PV1 and the parallax PV2 is small. Further, the parallax difference absolute value PVapd has a large difference between the parallax PV1 and the parallax PV2, for example, when the distance to the subject is different and the pixel of interest is the boundary of the subject with different distances. Become.
  • the parallax gap histogram generation unit 3814 generates a parallax gap histogram that is a histogram of the parallax difference absolute value PVapd calculated using each pixel of the calculation target region as a target pixel.
  • FIG. 14 illustrates a parallax gap histogram.
  • the parallax gap feature value calculation unit 3815 calculates the parallax gap feature value FVpd from the parallax gap histogram generated by the parallax gap histogram generation unit 3814.
  • the parallax gap feature value calculation unit 3815 obtains a parallax gap feature value FVpd indicating the ratio of the frequency (large_parallax_diff_counter) with respect to the total frequency (counter) that is greater than or equal to the preset maximum parallax gap distance from the parallax gap histogram. calculate.
  • the parallax gap feature quantity calculation unit 3815 calculates the formula (17) using the parallax gap histogram to calculate the parallax gap feature quantity FVpd.
  • FVpd large_parallax_diff_counter / counter * 100 (17)
  • the parallax gap feature quantity FVpd calculated by the parallax gap feature quantity calculation unit 3815 indicates the ratio of pixels that cause the maximum parallax gap distance.
  • the subjects on the same plane have a small parallax gap, and the parallax gap is large at the image boundary portions of the subjects with different distances. Therefore, it is possible to determine the state of occurrence of the image boundaries of the subjects with different distances.
  • the saturation determination histogram generation unit 3816 generates a pixel value histogram indicating the frequency (number of pixels) for each pixel value based on the luminance signal SDw supplied from the interpolation unit 31-H. Also, a pixel value histogram indicating the frequency (number of pixels) for each pixel value is generated based on the luminance signal Cy supplied from the YUV conversion unit 33-C.
  • FIG. 15 illustrates a pixel value histogram.
  • 15A shows a pixel value histogram based on the luminance signal SDw
  • FIG. 15B shows a luminance value histogram based on the luminance signal Cy.
  • the imaging unit 21-H is provided with more white pixels than the imaging unit 21-C that output electrical signals based on the amount of incident light in the entire wavelength region of visible light. Sensitivity is higher than C. Therefore, when a subject with the same luminance is imaged, the pixel value histogram based on the captured image acquired by the imaging unit 21-H is a signal value compared to the luminance value histogram based on the captured image acquired by the imaging unit 21-C. The frequency in a high area becomes high.
  • the saturation feature amount calculation unit 3817 calculates a saturation feature amount FVsat based on the luminance value histogram generated by the saturation determination histogram generation unit 3816.
  • the saturation feature amount calculation unit 3817 includes a frequency (saturation_counter_W) of pixel values equal to or higher than a preset saturation determination setting value (SATURATION_AREA_W) in the pixel value histogram based on the captured image acquired by the imaging unit 21-H, and the imaging unit.
  • the frequency (saturation_counter_Y) of the pixel value equal to or larger than the preset saturation determination setting value (SATURATION_AREA_Y) in the pixel value histogram based on the captured image acquired in 21-C is calculated.
  • the saturation feature amount calculation unit 3817 calculates a saturation feature amount FVsat indicating a ratio of the difference between the frequency (saturation_counter_W) and the frequency (saturation_counter_Y) to the total frequency (counter).
  • the saturation feature amount FVsat calculated by the saturation feature amount calculation unit 3817 indicates a difference in pixel saturation status. Therefore, for example, when the value of the saturation feature amount is large, it is determined that the captured image causes degradation in image quality due to pixel saturation in the fusion processing based on the captured image acquired by the imaging unit 21-H. Is possible.
  • the signal selection determination unit 382 determines whether or not the fusion image causes deterioration in image quality based on the image feature amount calculated by the image feature amount calculation unit 381 and the camera feature amount acquired from the control unit 60 or the like.
  • the signal selection determination unit 382 generates a signal selection control signal ET based on the determination result and outputs the signal selection control signal ET to the signal selection unit 41.
  • the signal selection determination unit 382 includes individual determination units 3821 to 3825 and an integrated determination processing unit 3828 as functional blocks for determining whether or not image quality degradation occurs.
  • the individual determination unit 3821 determines whether or not the fusion image causes deterioration in image quality based on the parallax distribution feature amount calculated by the parallax distribution feature amount calculation unit 3812.
  • the individual determination unit 3821 compares the determination threshold value Thfsd set in advance with respect to the parallax distribution feature amount FVfsd and the parallax distribution feature amount.
  • the individual determination unit 3821 determines that the image quality is deteriorated when the parallax distribution feature amount FVfsd is larger than the determination threshold Thfsd, that is, when the parallax variation is large.
  • Individual determination unit 3821 outputs the individual determination result to integrated determination processing unit 3828.
  • the individual determination unit 3822 determines whether or not the fusion image causes deterioration of image quality based on the search range excess feature amount FVosr calculated by the search range excess feature amount calculation unit 3813.
  • the individual determination unit 3822 compares the search range excess feature quantity FVosr with a preset determination threshold Thosr for the search range excess feature quantity.
  • the individual determination unit 3822 can determine that the occlusion area is large when the search range excess feature value FVosr is larger than the determination threshold value Thosr.
  • the individual determination unit 3822 outputs the individual determination result to the integrated determination processing unit 3828.
  • the individual determination unit 3823 determines whether or not the fusion image causes deterioration in image quality based on the parallax gap feature value FVpd calculated by the parallax gap feature value calculation unit 3815.
  • the individual determination unit 3823 compares the parallax gap feature quantity FVpd with a preset determination threshold Thpd for the parallax gap feature quantity. When the parallax gap feature value FVpd is larger than the determination threshold value Thpd, the individual determination unit 3823 can determine that there are many image boundaries of subjects with greatly different distances. Since image boundaries of subjects with greatly different distances are likely to cause occlusion, it is determined that image quality degradation occurs when there are many image boundaries of subjects with greatly different distances.
  • the individual determination unit 3823 outputs the individual determination result to the integrated determination processing unit 3828.
  • the individual determination unit 3824 determines whether or not the fusion image causes image quality degradation based on the saturation feature amount FVsat calculated by the saturation feature amount calculation unit 3817.
  • the individual determination unit 3824 compares the saturation feature amount FVsat with a determination threshold Thsat that is set in advance for the saturation feature amount. When the saturation feature amount FVsat is larger than the determination threshold Thsat, that is, the individual determination unit 3824 is acquired by the imaging unit 21-H compared to the captured image acquired by the imaging unit 21-C. When the number of captured images increases, it is determined that the image quality is deteriorated.
  • the individual determination unit 3824 outputs the individual determination result to the integrated determination processing unit 3828.
  • the individual determination unit 3825 determines whether or not the fusion image causes deterioration in image quality based on the camera feature amount.
  • the camera feature amount imaging setting information related to the brightness at the time of imaging or imaging setting information related to the subject distance is used.
  • the imaging unit 21-CR When the subject is bright, a high-sensitivity image can be acquired by the imaging unit 21-CR. Therefore, the effect of the fusion processing is less than that when the subject is dark. Therefore, imaging setting information related to the brightness at the time of imaging is used as the camera feature amount.
  • the occlusion caused by the difference between the viewpoints of the imaging unit 21-H and the imaging unit 21-C is small when the subject is far away and increases when the subject is close. Therefore, the imaging setting information related to the subject distance is used as the camera feature amount.
  • the individual determination unit 3825 acquires camera information from the imaging units 21 -H and 21 -C and the control unit 60. The individual determination unit 3825 compares the camera feature amount with a determination threshold value set in advance for the camera feature amount, and determines whether or not the fusion processing causes deterioration in image quality. The individual determination unit 3825 outputs the individual determination result to the integrated determination processing unit 3828.
  • the integrated determination processing unit 3828 performs fallback determination for each captured image, for example, in units of frames using the individual determination results supplied from the individual determination units 3821 to 3825, and generates a signal selection control signal according to the fallback determination result. To the signal selection unit 41. For example, the integrated determination processing unit 3828 determines that image quality degradation does not occur in any of the individual determination results supplied from the individual determination units 3821 to 3825 when the risk of image quality performance degradation is lower than a threshold. In the fallback determination, it is determined that there is no deterioration in image quality performance by the fusion process.
  • the integrated determination processing unit 3828 determines that image quality degradation is caused by any of the individual determination results supplied from the individual determination units 3821 to 3825 when the risk of degradation in image quality performance is equal to or greater than a threshold value. In the fallback determination, it is determined that the image quality performance is deteriorated by the fusion process. For example, when it is determined that there is no deterioration in image quality performance, the integrated determination processing unit 3828 selects the parallax compensation color difference signal CPuv having a higher color resolution than the color difference signal Huv generated by the YUV conversion unit 33-H, and When it is determined that the performance is deteriorated, the signal selection control signal ET is generated so as to select the color difference signal Huv.
  • the signal selection unit 41 is generated by the color difference signal Huv generated by the YUV conversion unit 33-H or the YUV conversion unit 33-C and subjected to parallax compensation. Any one of the parallax compensation color difference signals CPuv is output as the color difference signal SDuv.
  • the image processing unit 30-1 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image.
  • FIG. 7 shows a configuration in which the luminance signal and the color difference signal are output to the display unit 53 and the recording unit 56, but a color space conversion unit for the luminance signal and the color difference signal is provided to display, for example, an image signal of three primary colors. It is good also as a structure output to the part 53 or the recording part 56.
  • FIG. 16 is a flowchart illustrating the operation of the image processing unit according to the first embodiment.
  • the image processing unit 30-1 performs preprocessing.
  • FIG. 17 is a flowchart illustrating the preprocessing.
  • the image processing unit 30-1 performs an interpolation process.
  • the image processing unit 30-1 performs interpolation processing using the white pixels of the captured image generated by the imaging unit 21-H, generates a luminance signal SDw, and proceeds to step ST12.
  • step ST12 the image processing unit 30-1 performs demosaic processing.
  • the image processing unit 30-1 performs demosaic processing using the luminance signal SDw generated in step ST11 and the pixel signals of, for example, red pixels and blue pixels from the imaging unit 21-H, and performs a red component image, a blue component image, and a green component. Each image signal of the component image is generated.
  • the image processing unit 30-1 performs demosaic processing using the pixel signals of the red pixel, the blue pixel, and the green pixel from the imaging unit 21-C, and each of the red component image, the blue component image, and the green component image. An image signal is generated, and the process proceeds to step ST13.
  • step ST13 the image processing unit 30-1 performs YUV conversion.
  • step ST12 the image processing unit 30-1 performs color space conversion on the image signal generated by the demosaic process using the luminance signal SDw and the pixel signal from the imaging unit 21-H, and generates the luminance signal Hy and the color difference signal Huv. To do. Further, the image processing unit 30-1 performs color space conversion of the image signal generated by the demosaic process using the pixel signals of the red pixel, the blue pixel, and the green pixel from the imaging unit 21-C in step ST12, thereby obtaining a luminance signal. Cy and the color difference signal Cuv are generated, and the process returns to step ST2 in FIG.
  • step ST2 the image processing unit 30-1 performs parallax detection.
  • the image processing unit 30-1 performs parallax detection using the luminance signal Hy and the luminance signal Cy generated in the preprocessing in step ST1, generates parallax information DTa indicating the parallax detection result, and proceeds to step ST3.
  • step ST3 the image processing unit 30-1 performs parallax compensation.
  • the image processing unit 30-1 performs the parallax compensation of the color difference signal Cuv of the viewpoint of the imaging unit 21-C generated in step ST1 using the parallax information DTa generated in step ST2, and the viewpoint of the imaging unit 21-H Is generated, and the process proceeds to step ST4.
  • step ST4 the image processing unit 30-1 performs fallback determination.
  • the image processing unit 30-1 determines the risk of degradation in image quality performance based on the luminance signals SDw and Cy generated in the preprocessing in step ST1 and the parallax information DTa generated in step ST2, and proceeds to step ST5.
  • step ST5 the image processing unit 30-1 performs signal selection processing. If it is determined by the fallback determination in step ST4 that there is no risk of degradation in image quality performance, the image processing unit 30-1 performs a step ST3 in which the color resolution is higher than the color difference signal Huv generated in the preprocessing in step ST1. The generated parallax compensation color difference signal CPuv is selected. The image processing unit 30-1 selects the color difference signal Huv when it is determined that there is a risk of deterioration in image quality performance. Further, the image processing unit 30-1 outputs the luminance signal SDw and the parallax compensation color difference signal CPuv or the color difference signal Huv generated in the preprocessing in step ST1 to a display unit, a recording unit, or the like.
  • the image processing unit 30-1 generates and generates parallax compensation from the color difference signal of the second viewpoint with high color resolution when there is no risk of deterioration in image quality performance.
  • a process for selecting the parallax compensation color difference signal and a process for selecting the color difference signal of the first viewpoint when there is a risk of deterioration in image quality performance are performed for each captured image.
  • the image processing unit 30-1 outputs the selected color difference signal and the luminance signal of the first viewpoint having high resolution to the display unit 53 and the recording unit 56. Therefore, by using the image processing unit 30-1, it is possible to display or record a captured image with higher image quality performance than the captured image acquired by the imaging unit 21-H or the imaging unit 21-C.
  • the image pickup unit 21-H is provided with color component pixels, and a color difference signal is generated from the first image pickup signal of the first viewpoint generated by the image pickup unit 21-H, and there is a risk of deterioration in image quality performance.
  • the color difference signal of the first viewpoint is selected, it is possible to prevent color shift and color loss in the color image after the fusion processing.
  • the color difference signal Huv generated based on the signal from the imaging unit 21-H and the color generated based on the signal from the imaging unit 21-C and subjected to parallax compensation are performed.
  • the case where the parallax compensation color difference signal CPuv having a high resolution is selected in units of captured images so as to obtain a highly sensitive captured image while suppressing a decrease in image quality performance has been described.
  • the color difference signal Huv generated based on the signal from the imaging unit 21-H and the color difference signal generated based on the signal from the imaging unit 21-C and subjected to parallax compensation have high color resolution.
  • the parallax compensation color difference signal CPuv is synthesized on a pixel-by-pixel basis so as not to cause degradation in image quality performance with high sensitivity while suppressing degradation in image quality performance.
  • FIG. 18 illustrates the configuration of the second embodiment of the image processing unit.
  • the image processing unit 30-2 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36a, and a parallax compensation unit. 37.
  • a signal synthesis unit 42 is provided.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H and output to the signal synthesis unit 42, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36a and the color difference signal Huv to the signal synthesis unit 42, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the color difference signal Cuv to the parallax compensation unit 37, respectively.
  • the parallax detection unit 36a uses the luminance signal Hy from the YUV conversion unit 33-H and the luminance signal Cy from the YUV conversion unit 33-C to capture the captured image acquired by the imaging unit 21-H as a reference captured image. The parallax of the captured image acquired by the unit 21-C is detected. The parallax detection unit 36 a outputs parallax information indicating the detection result of parallax to the signal synthesis unit 42.
  • the parallax compensation unit 37 performs parallax compensation of the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a, and the captured image acquired by the imaging unit 21-H.
  • a parallax compensation color difference signal CPuv which is a viewpoint is generated.
  • the parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal synthesis unit 42.
  • the signal synthesis unit 42 synthesizes and synthesizes the color difference signal Huv and the parallax compensation color difference signal CPuv so that the image quality performance does not deteriorate.
  • the subsequent color difference signal SDuv is output to the display unit 53 and the recording unit 56.
  • FIG. 19 illustrates the configuration of the signal synthesis unit.
  • the signal synthesis unit 42 includes a frequency detection unit 421, a coring processing unit 422, low-pass filters 423 and 424, a difference calculation unit 425, an absolute value calculation unit 426, a coring processing unit 427, a synthesis ratio setting unit 428, and a synthesis process. Part 429.
  • the frequency detection unit 421 uses the luminance signal SDw generated by the interpolation unit 31-H to detect for each pixel, what frequency characteristics the detection target pixel is in the image.
  • FIG. 20 is a diagram for explaining the operation of the frequency detection unit.
  • the frequency detection unit 421 performs an operation shown in Expression (19) on the pixel position (x, y) of the luminance image indicated by the luminance signal SDw, and calculates an activity act HOR indicating the frequency characteristics in the horizontal direction.
  • “i” is a parameter indicating the movement position within the measurement range.
  • the measurement range is 9 pixels.
  • the dynamic range DMR is a difference value between the maximum value and the minimum value of the pixel value DW within the measurement range, as shown in Expression (20).
  • the coring processing unit 422 sets a composition ratio (blend ratio) ⁇ a corresponding to the activity act for each pixel.
  • the coring processing unit 422 stores a coring curve indicating the synthesis ratio ⁇ a for the activity act, and obtains the synthesis ratio ⁇ a for the activity act detected by the frequency detection unit 421 from the coring curve.
  • the coring processing unit 422 sets the synthesis ratio ⁇ a corresponding to the activity act and outputs it to the synthesis ratio setting unit 428. Note that FIG. 21 and a coring curve described later are merely examples, and the present invention is not limited to the case where the composition ratio changes linearly according to the activity act.
  • the low-pass filter 423 performs low-pass filter processing of the color difference signal Huv, and the low-pass filter 424 performs low-pass filter processing of the parallax compensation color difference signal CPuv, thereby equalizing the bands of the respective color difference signals.
  • the low-pass filters 423 and 424 remove noise components such as false colors of the color difference signal by performing low-pass filter processing.
  • the low-pass filters 423 and 424 output the color difference signal after the filter processing to the difference calculation unit 425.
  • the difference calculation unit 425 calculates the difference between the low-pass filter processed color difference signal Huv supplied from the low-pass filter 423 and the low-pass filter processed parallax compensation color difference signal CPuv supplied from the low-pass filter 423. Is calculated for each pixel and output to the absolute value calculation unit 426.
  • the absolute value calculation unit 426 calculates the difference absolute value abs calculated for each pixel by the difference calculation unit 425 and outputs the difference absolute value abs to the coring processing unit 427.
  • the coring processing unit 427 sets the composition ratio ⁇ b according to the absolute difference value abs.
  • a coring curve indicating the synthesis ratio ⁇ b with respect to the difference absolute value abs is stored, and the synthesis ratio ⁇ b2 with respect to the difference absolute value abs calculated by the absolute value calculation unit 426 is obtained from the coring curve.
  • the coring processing unit 427 sets the combination ratio ⁇ b corresponding to the difference absolute value abs and outputs the set combination ratio ⁇ b to the combination ratio setting unit 428.
  • the composition ratio setting unit 428 performs the processing of Expression (22) using the composition ratio ⁇ a supplied from the coring processing unit 422 and the composition ratio ⁇ b supplied from the coring processing unit 427, and the composition ratios ⁇ a and ⁇ b
  • the combination ratio having a large value is set as the combination ratio of the color difference signal Huv and the parallax compensation color difference signal CPuv, and is output to the combination processing unit 429.
  • max ( ⁇ a, ⁇ b) (22)
  • the composition processing unit 429 performs the calculation of Expression (23) for each pixel using the composition ratio ⁇ set by the composition ratio setting unit 428, and obtains the color difference signal SDuv obtained by combining the color difference signal Huv and the parallax compensation color difference signal CPuv. Generate. That is, since the image quality performance is deteriorated due to false color in the high frequency region, when the risk of image quality degradation is lower than the threshold value, the color difference signal Huv and the parallax compensation color difference at a composition ratio corresponding to the risk of image quality performance degradation.
  • the image processing unit 30-2 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal synthesis unit 42 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • FIG. 23 is a flowchart illustrating the operation of the image processing unit according to the second embodiment.
  • the image processing unit 30-2 performs preprocessing.
  • the image processing unit 30-2 performs the processing of the flowchart illustrated in FIG. 17, generates the luminance signal SDw and the color difference signal Huv, the luminance signal Cy and the color difference signal Cuv, and proceeds to step ST22.
  • step ST22 the image processing unit 30-2 performs parallax detection.
  • the image processing unit 30-2 performs parallax detection using the luminance signal Hy and the luminance signal Cy generated in the preprocessing of step ST21, generates parallax information DTa indicating the parallax detection result, and proceeds to step ST23.
  • step ST23 the image processing unit 30-2 performs parallax compensation.
  • the image processing unit 30-2 performs parallax compensation of the color difference signal Cuv of the viewpoint of the imaging unit 21-C generated in step ST21 using the parallax information DTa generated in step ST22, and the viewpoint of the imaging unit 21-H Is generated, and the process proceeds to step ST24.
  • the image processing unit 30-2 performs a signal synthesis process.
  • the image processing unit 30-2 generates the color difference signal SDuv by combining the color difference signal Huv and the parallax compensation color difference signal CPuv so that the image quality performance does not deteriorate. Further, the image processing unit 30-2 outputs the luminance signal SDw generated by the preprocessing in step ST21 and the color difference signal SDuv generated by the signal synthesis processing to a display unit, a recording unit, or the like.
  • the image processing unit 30-2 is not limited to the sequential processing in which the processing is performed in the order of steps, and may be performed sequentially for each pixel by pipeline processing.
  • the image processing unit 30-2 performs parallax compensation from the color difference signal of the second viewpoint with high color resolution, and generates the color difference between the generated parallax compensation color difference signal and the second viewpoint.
  • a process of synthesizing the color difference signal of the first viewpoint having a color resolution lower than that of the signal in units of pixels according to the risk of deterioration in image quality performance is performed.
  • the image processing unit 30-2 outputs the high-resolution luminance signal of the first viewpoint and the color difference signal generated by the synthesis process to the display unit 53 and the recording unit 56. Therefore, by using the image processing unit 30-2, it is possible to display or record a captured image with higher image quality performance than the captured image acquired by the imaging unit 21-H or the imaging unit 21-C.
  • the process of synthesizing the color difference signals is performed in units of pixels so as not to deteriorate the image quality performance, it is possible to prevent color misregistration and color loss in units of pixels.
  • parallax compensation of the parallax compensation color difference signal CPuv is performed with high accuracy by improving the parallax detection accuracy, and image quality resulting from selection of the color difference signal Huv and the parallax compensation color difference signal CPuv in units of captured images. Reduce degradation and improve the accuracy of fallback determination.
  • FIG. 24 illustrates the configuration of the third embodiment of the image processing unit.
  • the image processing unit 30-3 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36b, and a parallax compensation unit. 37, a fallback determination unit 38, and a signal selection unit 41.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H and output to the fallback determination unit 38, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36b and the color difference signal Huv to the parallax detection unit 36b and the signal selection unit 41, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36b and the fallback determination unit 38, and the color difference signal Cuv to the parallax detection unit 36b and the parallax compensation unit 37, respectively.
  • the parallax detection unit 36b performs parallax detection using the luminance signals Hy and Cy and the color difference signals Huv and Cuv.
  • FIG. 25 illustrates the configuration of the parallax detection unit.
  • the parallax detection unit 36b includes cost calculation units 361, 362, 363, a cost integration unit 364, and a cost minimum vector determination unit 365.
  • the cost calculation units 361, 362, and 363 use the standard image based on the parallax detection target pixel position in the captured image acquired by the imaging unit 21-H and the reference image in the captured image acquired by the imaging unit 21-C. To calculate the cost.
  • the cost calculation unit 361 calculates a cost value (for example, SAD) COSTy using the reference image signal in the luminance signal Hy and the reference image signal in the luminance signal Cy, and outputs the cost value to the cost integration unit 364.
  • the cost calculation unit 362 calculates a cost value (for example, SAD) COSTu using the reference image signal in the color difference signal Hu and the reference image signal in the color difference signal Cu, and outputs the cost value to the cost integration unit 364.
  • the cost calculation unit 362 calculates a cost value (for example, SAD) COSTv using the standard image signal in the color difference signal Hv and the reference image signal in the color difference signal Cv, and outputs the cost value to the cost integration unit 364.
  • the cost calculation units 361, 362, and 363 move the reference image within the search range to calculate the cost value
  • the cost integration unit 364 calculates the cost value COST for each reference image that is sequentially moved, Output to the minimum cost vector determination unit 365.
  • the minimum cost vector determination unit 365 uses, as the parallax information DTb, vector information indicating the position of the reference image at which the cost value COST is minimum with respect to the base image.
  • the cost value may be SSD, and other methods may be used instead of block matching.
  • the parallax compensation unit 37 performs parallax compensation of the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTb supplied from the parallax detection unit 36b.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36b with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTb supplied from the parallax detection unit 36b. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a color resolution higher than that of the color difference signal Huv generated by the YUV conversion unit 33-H when there is no risk of deterioration in image quality performance. If there is a risk of decrease, the signal selection control signal ET is generated so as to select the color difference signal Huv and output to the signal selection unit 41.
  • the signal selection unit 41 is generated by the color difference signal Huv generated by the YUV conversion unit 33-H or the YUV conversion unit 33-C and subjected to parallax compensation. Any one of the parallax compensation color difference signals CPuv is output as the color difference signal SDuv.
  • the image processing unit 30-3 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • the operation shown in FIG. 16 is performed, and in the parallax detection in step ST2, as described above, the parallax detection is performed using the luminance signals Hy and Cy and the color difference signals Huv and Cuv. Can be done.
  • the image quality performance is higher than that of the captured image acquired by the imaging unit 21-H or the imaging unit 21-C.
  • a high-capacity image can be displayed or recorded.
  • image quality degradation caused by selecting the color difference signal of the first viewpoint and the parallax compensation color difference signal having a high color resolution in units of captured images will be described in the first embodiment. Compared to this, it can be reduced.
  • the determination accuracy of the fallback determination can be improved as compared with the first embodiment.
  • the parallax compensation of the parallax compensation color difference signal CPuv is performed with high accuracy by improving the parallax detection accuracy, thereby resulting in the pixel unit synthesis processing of the color difference signal Huv and the parallax compensation color difference signal CPuv. Reduce image quality degradation.
  • FIG. 26 illustrates the configuration of the fourth embodiment of the image processing unit.
  • the image processing unit 30-4 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36b, and a parallax compensation unit. 37.
  • a signal synthesis unit 42 is provided.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H and output to the signal synthesis unit 42, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36b and the color difference signal Huv to the parallax detection unit 36b and the signal synthesis unit 42, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the color difference signal Cuv to the parallax detection unit 36b and the parallax compensation unit 37, respectively.
  • the parallax detection unit 36b uses the luminance signal Hy color difference signal Huv from the YUV conversion unit 33-H, the luminance signal Cy and color difference signal Cuv from the YUV conversion unit 33-C, and captures images captured by the imaging unit 21-H. The parallax of the captured image acquired by the imaging unit 21-C using the image as the reference captured image is detected. The parallax detection unit 36 b outputs parallax information DTb indicating the parallax detection result to the parallax compensation unit 37.
  • the parallax compensation unit 37 performs parallax compensation of the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTb supplied from the parallax detection unit 36b, and the captured image acquired by the imaging unit 21-H.
  • a parallax compensation color difference signal CPuv which is a viewpoint is generated.
  • the parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal synthesis unit 42.
  • the signal synthesis unit 42 synthesizes the color difference signal Huv and the parallax compensation color difference signal CPuv so that the image quality performance does not deteriorate.
  • the image processing unit 30-4 displays the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv generated by the signal combining unit 42 as a fusion image signal as a display unit 53 or a recording unit 56. Output to.
  • the operation shown in FIG. 23 is performed, and in the parallax detection in step ST22, as described above, the parallax detection is performed using the luminance signals Hy and Cy and the color difference signals Huv and Cuv. Can be done.
  • the image quality performance is higher than that of the captured image acquired by the imaging unit 21-H or the imaging unit 21-C.
  • a high-capacity image can be displayed or recorded.
  • image quality degradation caused by pixel-by-pixel combination processing of the color difference signal of the first viewpoint and the parallax compensation color difference signal having high color resolution can be reduced as compared with the second embodiment.
  • the parallax compensation color difference signal CPuv is highly accurately performed by improving the parallax detection accuracy, so that the color difference signal Huv and the parallax compensation color difference signal are improved. It is intended to reduce image quality deterioration due to selection of a CPuv captured image unit and to improve the determination accuracy of fallback determination.
  • parallax detection is performed using the luminance signal SDw.
  • FIG. 27 illustrates the configuration of the fifth embodiment of the image processing unit.
  • the image processing unit 30-5 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36b, and a parallax compensation unit. 37, a fallback determination unit 38, and a signal selection unit 41.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the parallax detection unit 36b, the fallback determination unit 38, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-H, and generates a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated color difference signal Huv to the parallax detection unit 36b and the signal selection unit 412, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36b and the fallback determination unit 38, and the color difference signal Cuv to the parallax detection unit 36b and the parallax compensation unit 37, respectively.
  • the parallax detection unit 36b performs parallax detection using the luminance signals SDw and Cy and the color difference signals Huv and Cuv, generates parallax information DTb indicating the detected parallax, and outputs the parallax information DTb to the parallax compensation unit 37 and the fallback determination unit 38. .
  • the parallax compensation unit 37 performs parallax compensation of the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTb supplied from the parallax detection unit 36b.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36b with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTb supplied from the parallax detection unit 36b. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a color resolution higher than that of the color difference signal Huv generated by the YUV conversion unit 33-H when there is no risk of deterioration in image quality performance. If there is a risk of decrease, the signal selection control signal ET is generated so as to select the color difference signal Huv and output to the signal selection unit 41.
  • the signal selection unit 41 is generated by the color difference signal Huv generated by the YUV conversion unit 33-H or the YUV conversion unit 33-C and subjected to parallax compensation. Any one of the parallax compensation color difference signals CPuv is output as the color difference signal SDuv.
  • the image processing unit 30-3 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • the operation shown in FIG. 16 is performed, and in the parallax detection in step ST2, as described above, the parallax detection is performed using the luminance signals SDw and Cy and the color difference signals Huv and Cuv. Can be done.
  • the parallax detection is also performed using the color difference signal and the luminance signal, the parallax detection is performed with higher accuracy than in the third embodiment in which the parallax detection is performed using the color difference signal. be able to.
  • the parallax compensation color difference signal CPuv is improved with high accuracy by improving the parallax detection accuracy, so that the color difference signal Huv and the parallax compensation color difference signal are improved. Image quality deterioration caused by CPuv composition processing is prevented.
  • parallax detection is performed using the luminance signal SDw.
  • FIG. 28 illustrates the configuration of the sixth embodiment of the image processing unit.
  • the image processing unit 30-4 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36b, and a parallax compensation unit. 37.
  • a signal synthesis unit 42 is provided.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the parallax detection unit 36b, the signal synthesis unit 42, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-H, and generates a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated color difference signal Huv to the parallax detection unit 36b and the signal synthesis unit 42, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36b and the color difference signal Cuv to the parallax detection unit 36b and the parallax compensation unit 37, respectively.
  • the parallax detection unit 36b uses the luminance signal SDw from the interpolation unit 31-H, the color difference signal Huv from the YUV conversion unit 33-H, the luminance signal Cy and the color difference signal Cuv from the YUV conversion unit 33-C, and an imaging unit.
  • the parallax of the captured image acquired by the imaging unit 21-C is detected using the captured image acquired in 21-H as a reference captured image.
  • the parallax detection unit 36 b outputs parallax information DTb indicating the parallax detection result to the parallax compensation unit 37.
  • the parallax compensation unit 37 performs parallax compensation of the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTb supplied from the parallax detection unit 36b, and the captured image acquired by the imaging unit 21-H.
  • a parallax compensation color difference signal CPuv which is a viewpoint is generated.
  • the parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal synthesis unit 42.
  • the signal synthesis unit 42 synthesizes the color difference signal Huv and the parallax compensation color difference signal CPuv so that the image quality performance does not deteriorate.
  • the image processing unit 30-6 displays the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv generated by the signal combining unit 42 as a fusion image signal as a display unit 53 or a recording unit 56. Output to.
  • the operation shown in FIG. 23 is performed, and in the parallax detection in step ST22, as described above, the parallax detection is performed using the luminance signals SDw and Cy and the color difference signals Huv and Cuv. Can be done.
  • the sixth embodiment of the image processing unit it is possible to obtain the same operational effects as those of the fourth embodiment.
  • the parallax detection is also performed using the color difference signal and the luminance signal, the parallax detection is performed with higher accuracy than in the fourth embodiment in which the parallax detection is performed using the color difference signal. be able to.
  • the color difference signal Huv is generated using the signal of the captured image acquired by the imaging unit 21-H having fewer color pixels than the captured image acquired by the imaging unit 21-C. Is generated. That is, the captured image acquired by the imaging unit 21-H has a low sampling rate of color pixels, and therefore, for example, a false color (aliasing noise) may be generated in the color difference signal Huv. For this reason, in the seventh embodiment, when the parallax detection is performed using the color difference signal Huv, the parallax detection accuracy is prevented from being deteriorated due to a false color or the like.
  • FIG. 29 illustrates the configuration of the seventh embodiment of the image processing unit.
  • the image processing unit 30-7 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a frequency detection unit 34, and a coring process.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the parallax detection unit 36b, the fallback determination unit 38, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-H, and generates a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated color difference signal Huv to the parallax detection unit 36b and the signal selection unit 412, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36b and the fallback determination unit 38, and the color difference signal Cuv to the parallax detection unit 36b and the parallax compensation unit 37, respectively.
  • the frequency detector 34 performs the same operation as the frequency detector 421 in the signal synthesizer 42 of the second embodiment shown in FIG. That is, the frequency detection unit 34 uses the luminance signal SDw generated by the interpolation unit 31-H, and an activity act that is a detection result of what frequency characteristic the detection target pixel is for each pixel. Is calculated and output to the coring processing unit 35.
  • the coring processing unit 35 performs the same operation as the coring processing unit 422 in the signal synthesis unit 42 of the second embodiment shown in FIG. That is, the coring processing unit 35 sets the composition ratio ⁇ a corresponding to the activity act for each pixel.
  • the coring processing unit 35 stores a coring curve indicating the composition ratio ⁇ a for the activity act, and obtains the composition ratio ⁇ a for the activity act detected by the frequency detection unit 34 from the coring curve.
  • the coring processing unit 35 sets the composition ratio ⁇ a corresponding to the activity act and outputs it to the parallax detection unit 36c.
  • the parallax detection unit 36c performs parallax detection using the luminance signals SDw and Cy, the color difference signals Huv and Cuv, and the combination ratio ⁇ a set by the coring processing unit 35, and generates parallax information DTc indicating the detected parallax. Output to the parallax compensation unit 37 and the fallback determination unit 38.
  • the parallax detection unit 36c has the same configuration as the parallax detection unit 36b illustrated in FIG. 25, and the cost integration unit 364 integrates the cost values calculated by the cost calculation units 361, 362, and 363 into Expression (24). As shown, the synthesis ratio ⁇ a is used.
  • the parallax compensation unit 37 performs parallax compensation on the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTc supplied from the parallax detection unit 36c.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36c with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTc supplied from the parallax detection unit 36c. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a color resolution higher than that of the color difference signal Huv generated by the YUV conversion unit 33-H when there is no risk of deterioration in image quality performance. If there is a risk of decrease, the signal selection control signal ET is generated so as to select the color difference signal Huv and output to the signal selection unit 41.
  • the signal selection unit 41 is generated by the color difference signal Huv generated by the YUV conversion unit 33-H or the YUV conversion unit 33-C and subjected to parallax compensation. Any one of the parallax compensation color difference signals CPuv is output as the color difference signal SDuv.
  • the image processing unit 30-3 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • the operation shown in FIG. 16 is performed, and in the parallax detection in step ST2, as described above, the luminance signals SDw and Cy, the color difference signals Huv and Cuv, and the composition ratio ⁇ a are obtained. It is sufficient to perform parallax detection using this.
  • parallax detection is performed using a synthesis ratio that is set based on the detection result of what frequency characteristic the detection target pixel is for each pixel.
  • parallax detection can be performed without being affected by false colors or the like.
  • the color difference signal Huv is generated using the signal of the captured image acquired by the imaging unit 21-H having fewer color pixels than the captured image acquired by the imaging unit 21-C. Is generated. That is, the captured image acquired by the imaging unit 21-H has a low sampling rate of color pixels, and therefore, for example, a false color (aliasing noise) may be generated in the color difference signal Huv. Therefore, in the eighth embodiment, even when selection of the color difference signal Huv and synthesis processing using the color difference signal Huv are performed, deterioration in image quality performance due to a low sampling rate of color pixels is prevented.
  • FIG. 30 illustrates the configuration of the eighth embodiment of the image processing unit.
  • the image processing unit 30-8 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36a, and a parallax compensation unit. 37, a fallback determination unit 38, a color image quality improvement unit 39, and a signal selection unit 41.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the fallback determination unit 38, the color image quality improvement unit 39, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36a and the generated color difference signal Huv to the color image quality improvement unit 39, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the fallback determination unit 38, and the color difference signal Cuv to the parallax compensation unit 37, respectively.
  • the parallax detection unit 36a performs parallax detection using the luminance signals Hy and Cy, generates parallax information DTa indicating the detected parallax, and outputs the parallax information DTa to the parallax compensation unit 37 and the fallback determination unit 38.
  • the parallax compensation unit 37 performs parallax compensation on the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36a with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTa supplied from the parallax detection unit 36a. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a higher color resolution than the color difference signal Huv when there is no risk of deterioration in image quality performance. A signal selection control signal ET is generated and output to the signal selection unit 41 so as to select the image quality improvement color difference signal HQuv that has been subjected to the image quality improvement processing by the improvement unit 39.
  • the color image quality improvement unit 39 performs image quality improvement processing of the color difference signal Huv generated by the YUV conversion unit 33-H based on the luminance signal SDw generated by the interpolation unit 31-H, and generates an image quality improved color difference signal HQuv. It outputs to the signal selection part 41.
  • FIG. 31 illustrates the configuration of the color image quality improvement unit.
  • the color image quality improvement unit 39 includes a frequency detection unit 391, a coring processing unit 392, a low-pass filter 393, and a synthesis processing unit 394.
  • the frequency detection unit 391 performs the same operation as the frequency detection unit 421 in the signal synthesis unit 42 of the second embodiment shown in FIG. In other words, the frequency detection unit 391 uses the luminance signal SDw generated by the interpolation unit 31-H, and an activity act that is a detection result of what frequency characteristic the detection target pixel is for each pixel. Is calculated and output to the coring processing unit 392.
  • the coring processing unit 392 performs the same operation as the coring processing unit 422 in the signal synthesis unit 42 of the second embodiment shown in FIG. That is, the coring processing unit 392 sets the composition ratio ⁇ a corresponding to the activity act for each pixel.
  • the coring processing unit 392 stores a coring curve indicating the synthesis ratio ⁇ a for the activity act, and obtains the synthesis ratio ⁇ a for the activity act detected by the frequency detection unit 391 from the coring curve.
  • the coring processing unit 392 sets the composition ratio ⁇ a corresponding to the activity act and outputs it to the composition processing unit 394.
  • the low-pass filter 393 performs low-pass filter processing of the color difference signal Huv, removes high-frequency components such as false colors, and outputs the filtered color difference signal Huv LPF to the synthesis processing unit 394.
  • the synthesis processing unit 394 synthesizes the color difference signal Huv and the color difference signal Huv LPF after the filter processing with the synthesis ratio ⁇ a set by the coring processing unit 392. Expressions (25) and (26) indicate processing performed by the synthesis processing unit 394.
  • the composition processing unit 394 outputs the image quality improved color difference signal HQuv after the composition to the signal selection unit 41.
  • HQu (1- ⁇ a) Hu LPF + ⁇ aHu
  • HQv (1- ⁇ a) Hv LPF + ⁇ aHv (26)
  • the signal selection unit 41 is generated by the image quality improvement color difference signal HQuv or YUV conversion unit 33-C supplied from the color image quality improvement unit 39 and performs parallax compensation.
  • One of the received parallax compensation color difference signals CPuv is output as a color difference signal SDuv.
  • the image processing unit 30-8 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • the operation shown in FIG. 16 is performed, and as described above, the image quality of the color difference signal Huv is improved by using the luminance signal SDw in the preprocessing in step ST1. do it.
  • the eighth embodiment of the image processing unit it is possible to obtain the same operational effects as those in the first embodiment.
  • the image quality improvement of the color difference signal Huv of the first viewpoint is performed based on the detection result of the frequency characteristic of the pixel to be detected for each pixel. Even when the color difference signal of the first viewpoint is selected or combined, it is possible to prevent deterioration in image quality performance due to the low sampling rate of color pixels in the imaging unit 21-H.
  • FIG. 32 illustrates the configuration of the ninth embodiment of the image processing unit.
  • the image processing unit 30-9 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36a, and a parallax compensation unit. 37, a fallback determination unit 38, a signal selection unit 41, and a luminance image quality improvement unit 43.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the fallback determination unit 38, the color image quality improvement unit 39, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36a and the generated color difference signal Huv to the color image quality improvement unit 39, respectively.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the parallax compensation unit 37, and the color difference signal Cuv to the parallax compensation unit 37, respectively.
  • the parallax detection unit 36a performs parallax detection using the luminance signals Hy and Cy, generates parallax information DTa indicating the detected parallax, and outputs the parallax information DTa to the parallax compensation unit 37 and the fallback determination unit 38.
  • the parallax compensation unit 37 performs parallax compensation on the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36a with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the parallax compensation unit 37 performs parallax compensation of the luminance signal Cy generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36a with respect to the luminance signal Cy, and the parallax compensation luminance signal that is the viewpoint of the captured image acquired by the imaging unit 21-H. CPy is generated.
  • the parallax compensation unit 37 outputs the generated parallax compensation luminance signal CPy to the luminance image quality improvement unit 43.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTa supplied from the parallax detection unit 36a. Determine the risk of decline. Further, the fallback determination unit 38 selects the parallax compensation color difference signal CPuv having a higher color resolution than the color difference signal Huv when there is no risk of deterioration in image quality performance. A signal selection control signal ET is generated and output to the signal selection unit 41 so as to select the image quality improvement color difference signal HQuv that has been subjected to the image quality improvement processing by the improvement unit 39.
  • the signal selection unit 41 is generated by the image quality improvement color difference signal HQuv or YUV conversion unit 33-C supplied from the color image quality improvement unit 39 and performs parallax compensation.
  • One of the received parallax compensation color difference signals CPuv is output as a color difference signal SDuv.
  • the luminance image quality improvement unit 43 combines the luminance signal SDw generated by the interpolation unit 31-H and the parallax compensation luminance signal CPy supplied from the parallax compensation unit 37 in accordance with the noise intensity of the imaging unit 21-H, and performs imaging.
  • the luminance image quality is improved by reducing the influence of noise of the unit 21-H.
  • the luminance image quality improvement unit 43 calculates the synthesis ratio ⁇ y based on the luminance signal SDw, the parallax compensation luminance signal CPy, and the noise intensity ⁇ for each pixel as shown in Expression (27). Further, as shown in Expression (28), the luminance image quality improvement unit 43 generates the luminance signal SDy by combining the luminance signal SDw and the parallax compensation luminance signal CPy for each pixel with the combination ratio ⁇ y.
  • the image processing unit 30-9 outputs the luminance signal SDy output from the luminance image quality improvement unit 43 and the color difference signal SDuv output from the signal selection unit 41 to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • the operation shown in FIG. 16 is performed, and the luminance signal SDw and the parallax-compensated luminance signal CPy are synthesized at the timing after step ST3 to improve the luminance image quality.
  • the signal SDy may be generated.
  • the ninth embodiment of the image processing unit it is possible to obtain the same operational effects as those of the first embodiment.
  • the image quality performance of the luminance signal can be improved as compared with the first embodiment.
  • FIG. 33 illustrates the configuration of the tenth embodiment of the image processing unit.
  • the image processing unit 30-10 includes an interpolation unit 31-H, a demosaic processing unit 32-H, a YUV conversion unit 33-H, a demosaic processing unit 32-C, a YUV conversion unit 33-C, a parallax detection unit 36a, and a parallax compensation unit. 37, a fallback determination unit 38, and a signal synthesis unit 42a.
  • the imaging signal PS-H output from the imaging unit 21-H is input to the interpolation unit 31-H and the demosaic processing unit 32-H.
  • the imaging signal PS-C output from the imaging unit 21-C is input to the demosaic processing unit 32-C.
  • the interpolation unit 31-H performs an interpolation process using the imaging signal PS-H, calculates a pixel value of a white pixel at the position of a red pixel or a blue pixel, generates a luminance signal SDw, and de-mosaic processing unit 32 -H, output to the fallback determination unit 38, the signal synthesis unit 42a, the display unit 53, and the recording unit 56.
  • the demosaic processing unit 32-H generates an image signal for each color component using the imaging signal PS-H output from the imaging unit 21-H and the luminance signal SDw generated by the interpolation unit 31-H, and performs YUV conversion. Output to the unit 33-H.
  • the demosaic processing unit 32-C performs a demosaic process similar to the conventional one using the imaging signal PS-C output from the imaging unit 21-C, generates an image signal for each color component, and generates a YUV conversion unit 33- Output to C.
  • the YUV conversion unit 33-H performs color space conversion of the three primary color image signals generated by the demosaic processing unit 32-H, and generates a luminance signal Hy and a color difference signal Huv.
  • the YUV conversion unit 33-H outputs the generated luminance signal Hy to the parallax detection unit 36a and the generated color difference signal Huv to the signal synthesis unit 42a.
  • the YUV conversion unit 33-C performs color space conversion of the image signals of the three primary colors generated by the demosaic processing unit 32-C, and generates a luminance signal Cy and a color difference signal Cuv.
  • the YUV conversion unit 33-C outputs the generated luminance signal Cy to the parallax detection unit 36a and the fallback determination unit 38, and the color difference signal Cuv to the parallax compensation unit 37, respectively.
  • the parallax detection unit 36a performs parallax detection using the luminance signals Hy and Cy, generates parallax information DTa indicating the detected parallax, and outputs the parallax information DTa to the parallax compensation unit 37 and the fallback determination unit 38.
  • the parallax compensation unit 37 performs parallax compensation on the color difference signal Cuv generated by the YUV conversion unit 33-C based on the parallax information DTa supplied from the parallax detection unit 36a.
  • the parallax compensation unit 37 moves the pixel position based on the parallax information generated by the parallax detection unit 36a with respect to the color difference signal Cuv, and the parallax compensation color difference signal that is the viewpoint of the captured image acquired by the imaging unit 21-H.
  • Generate CPuv The parallax compensation unit 37 outputs the generated parallax compensation color difference signal CPuv to the signal selection unit 41.
  • the fallback determination unit 38 is based on the luminance signal SDw supplied from the interpolation unit 31-H, the luminance signal Cy supplied from the YUV conversion unit 33-C, and the parallax information DTa supplied from the parallax detection unit 36a. The risk of decrease is determined for each captured image. Further, the fallback determination unit 38 scores the determined risk of degradation in image quality performance for each captured image to obtain the determination information ES.
  • the integrated determination processing unit 3828 of the fallback determination unit 38 shown in FIG. 10 performs fallback determination using the individual determination results supplied from the individual determination units 3821 to 3825, and for example, determination that has been determined to cause degradation in image quality. The number of results may be used as the discrimination information ES, or the determination results determined to cause deterioration in image quality are individually scored, and the score addition value of each determination result may be used as the discrimination information ES.
  • the signal synthesis unit 42a Based on the discrimination information ES from the fallback determination unit 38, the signal synthesis unit 42a generates the color difference signal Huv supplied from the YUV conversion unit 33-H or the parallax that has been subjected to parallax compensation by the YUV conversion unit 33-C.
  • the color difference signal SDuv is generated by synthesizing the compensation color difference signal CPuv.
  • FIG. 34 illustrates the configuration of the signal synthesis unit. Note that portions corresponding to the signal synthesis unit 42 in the second embodiment illustrated in FIG. 19 are denoted by the same reference numerals.
  • the signal synthesis unit 42a includes a frequency detection unit 421, a coring processing unit 422a, low-pass filters 423 and 424, a difference calculation unit 425, an absolute value calculation unit 426, a coring processing unit 427a, a synthesis ratio setting unit 428, and a synthesis process. Part 429.
  • the frequency detection unit 421 uses the luminance signal SDw generated by the interpolation unit 31-H to detect for each pixel what frequency characteristics the detection target pixel is in the image, and performs an activity act for each pixel. Is calculated and output to the coring processing unit 422a.
  • the coring processing unit 422a sets the composition ratio ⁇ a corresponding to the activity act for each pixel based on the coring curve.
  • the coring curve indicates the composition ratio ⁇ a with respect to the activity act. Further, the coring processing unit 422a uses a coring curve corresponding to the discrimination information ES.
  • the coring curve may be stored in the coring processing unit 422a in advance, or the coring processing unit 422a may generate the coring curve according to the discrimination information ES.
  • the coring curve corresponding to the discrimination information ES will be described later.
  • the low-pass filter 423 performs low-pass filter processing of the color difference signal Huv, and the low-pass filter 424 performs low-pass filter processing of the parallax compensation color difference signal CPuv, thereby equalizing the bands of the respective color difference signals.
  • the low-pass filters 423 and 424 remove noise components such as false colors of the color difference signal by performing low-pass filter processing.
  • the low-pass filters 423 and 424 output the color difference signal after the filter processing to the difference calculation unit 425.
  • the difference calculation unit 425 calculates the difference between the low-pass filter processed color difference signal Huv supplied from the low-pass filter 423 and the low-pass filter processed parallax compensation color difference signal CPuv supplied from the low-pass filter 423. Is calculated for each pixel and output to the absolute value calculation unit 426.
  • the absolute value calculation unit 426 calculates the difference absolute value abs calculated for each pixel by the difference calculation unit 425, and outputs it to the coring processing unit 427a.
  • the coring processing unit 427a sets the composition ratio ⁇ b corresponding to the difference absolute value abs based on the coring curve.
  • the coring curve indicates the composite ratio ⁇ b with respect to the absolute difference value abs. Further, the coring processing unit 427a uses a coring curve corresponding to the discrimination information ES.
  • FIG. 35 illustrates the relationship between the coring curve and the discrimination information.
  • 35A and 35C illustrate the coring curve used in the coring processor 422a
  • FIGS. 35B and 35D show the core used in the coring processor 427a.
  • a ring curve is illustrated.
  • the coring processing unit 422a reduces the thresholds Tha0 and Tha1 and increases the synthesis ratio ⁇ a with respect to the activity act as the risk of deterioration in image quality increases based on the discrimination information ES.
  • the coring processing unit 427a increases the threshold values Thb0 and Thb1 and increases the composite ratio ⁇ b with respect to the absolute difference value abs as the risk of degradation in image quality increases based on the discrimination information ES.
  • the composition ratio setting unit 428 performs the processing of the above-described equation (22) using the composition ratio ⁇ a supplied from the coring processing unit 422a and the composition ratio ⁇ b supplied from the coring processing unit 427a, and the composition ratio ⁇ a, A combination ratio having a large value of ⁇ b is set as a combination ratio of the color difference signal Huv and the parallax compensation color difference signal CPuv, and is output to the combination processing unit 429.
  • the composition processing unit 429 performs the calculation of the above equation (23) for each pixel using the composition ratio ⁇ set by the composition ratio setting unit 428, and the color difference signal obtained by combining the color difference signal Huv and the parallax compensation color difference signal CPuv. Generate SDuv.
  • the image processing unit 30-10 outputs the luminance signal SDw output from the interpolation unit 31-H and the color difference signal SDuv output from the signal combining unit 42a to the display unit 53 and the recording unit 56 as image signals of the fusion image. .
  • step ST24 of FIG. 23 is performed at the timing after step ST5, and the determination information ES generated in step ST5 is used.
  • the color difference signal Huv and the parallax compensation color difference signal CPuv may be combined using the coring curve thus generated to generate the color difference signal SDuv.
  • the tenth embodiment of the image processing unit it is possible to obtain the same operational effects as those of the second embodiment.
  • the pixel unit of the color difference signal of the first viewpoint and the parallax compensation color difference signal with high color resolution is set. Image quality deterioration due to the composition processing can be prevented more effectively than in the second embodiment.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is not limited to an information processing terminal, but is an automobile, an electric car, a hybrid electric car, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, an agricultural machine (tractor), etc. It may be realized as an apparatus mounted on any kind of moving body.
  • FIG. 36 is a block diagram illustrating a schematic configuration example of a vehicle control system 7000 that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. .
  • the communication network 7010 for connecting the plurality of control units conforms to an arbitrary standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various calculations, and a drive circuit that drives various devices to be controlled. Is provided.
  • Each control unit includes a network I / F for communicating with other control units via a communication network 7010, and is connected to devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG.
  • control unit 7600 as a functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, an audio image output unit 7670, An in-vehicle network I / F 7680 and a storage unit 7690 are illustrated.
  • other control units include a microcomputer, a communication I / F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an operation amount of an accelerator pedal, an operation amount of a brake pedal, and steering of a steering wheel. At least one of sensors for detecting an angle, an engine speed, a rotational speed of a wheel, or the like is included.
  • the drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, or the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 7200 can be input with radio waves or various switch signals transmitted from a portable device that substitutes for a key.
  • the body system control unit 7200 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310 that is a power supply source of the drive motor according to various programs. For example, information such as battery temperature, battery output voltage, or remaining battery capacity is input to the battery control unit 7300 from a battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
  • the outside information detection unit 7400 detects information outside the vehicle on which the vehicle control system 7000 is mounted.
  • the outside information detection unit 7400 is connected to at least one of the imaging unit 7410 and the outside information detection unit 7420.
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the outside information detection unit 7420 detects, for example, current weather or an environmental sensor for detecting weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the surrounding information detection sensors.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects sunlight intensity, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the imaging unit 7410 and the outside information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 37 shows an example of installation positions of the imaging unit 7410 and the vehicle outside information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, and 7918 are provided at, for example, at least one of the front nose, the side mirror, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior of the vehicle 7900.
  • An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • Imaging units 7912 and 7914 provided in the side mirror mainly acquire an image of the side of the vehicle 7900.
  • An imaging unit 7916 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or
  • FIG. 37 shows an example of shooting ranges of the respective imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively
  • the imaging range d The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, an overhead image when the vehicle 7900 is viewed from above is obtained.
  • the vehicle outside information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners of the vehicle 7900 and the upper part of the windshield in the vehicle interior may be, for example, an ultrasonic sensor or a radar device.
  • the vehicle outside information detection units 7920, 7926, and 7930 provided on the front nose, the rear bumper, the back door, and the windshield in the vehicle interior of the vehicle 7900 may be, for example, LIDAR devices.
  • These outside information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, and the like.
  • the vehicle exterior information detection unit 7400 causes the imaging unit 7410 to capture an image outside the vehicle and receives the captured image data. Further, the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information.
  • the outside information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information.
  • the vehicle outside information detection unit 7400 may calculate a distance to an object outside the vehicle based on the received information.
  • the outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, a character on a road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and combines the image data captured by the different imaging units 7410 to generate an overhead image or a panoramic image. Also good.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410.
  • the vehicle interior information detection unit 7500 detects vehicle interior information.
  • a driver state detection unit 7510 that detects the driver's state is connected to the in-vehicle information detection unit 7500.
  • Driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects biometric information of the driver, a microphone that collects sound in the passenger compartment, and the like.
  • the biometric sensor is provided, for example, on a seat surface or a steering wheel, and detects biometric information of an occupant sitting on the seat or a driver holding the steering wheel.
  • the vehicle interior information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determines whether the driver is asleep. May be.
  • the vehicle interior information detection unit 7500 may perform a process such as a noise canceling process on the collected audio signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input by a passenger, such as a touch panel, a button, a microphone, a switch, or a lever.
  • the integrated control unit 7600 may be input with data obtained by recognizing voice input through a microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be.
  • the input unit 7800 may be, for example, a camera.
  • the passenger can input information using a gesture.
  • data obtained by detecting the movement of the wearable device worn by the passenger may be input.
  • the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600.
  • a passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • General-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F7620 is a cellular communication protocol such as GSM (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or wireless LAN (Wi-Fi (registered trademark)). Other wireless communication protocols such as Bluetooth (registered trademark) may also be implemented.
  • the general-purpose communication I / F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or an operator-specific network) via, for example, a base station or an access point.
  • the general-purpose communication I / F 7620 is a terminal (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal) that exists in the vicinity of the vehicle using, for example, P2P (Peer To Peer) technology. You may connect with.
  • a terminal for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal
  • P2P Peer To Peer
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in vehicles.
  • the dedicated communication I / F 7630 is a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or cellular communication protocol, which is a combination of the lower layer IEEE 802.11p and the upper layer IEEE 1609. May be implemented.
  • the dedicated communication I / F 7630 typically includes vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) Perform V2X communication, which is a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), performs positioning, and performs latitude, longitude, and altitude of the vehicle.
  • the position information including is generated.
  • the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from a radio station installed on the road, and acquires information such as the current position, traffic jam, closed road, or required time. Note that the function of the beacon receiving unit 7650 may be included in the dedicated communication I / F 7630 described above.
  • the in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle.
  • the in-vehicle device I / F 7660 may establish a wireless connection using a wireless communication protocol such as a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the in-vehicle device I / F 7660 is connected to a USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface), or MHL (Mobile High-definition Link) via a connection terminal (and a cable if necessary). ) Etc. may be established.
  • the in-vehicle device 7760 may include, for example, at least one of a mobile device or a wearable device that a passenger has, or an information device that is carried into or attached to the vehicle.
  • In-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.
  • In-vehicle device I / F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
  • the in-vehicle network I / F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the in-vehicle network I / F 7680 transmits and receives signals and the like in accordance with a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is connected via at least one of a general-purpose communication I / F 7620, a dedicated communication I / F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F 7660, and an in-vehicle network I / F 7680.
  • the vehicle control system 7000 is controlled according to various programs based on the acquired information. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. Also good.
  • the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning. You may perform the cooperative control for the purpose. Further, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, or the like based on the acquired information on the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform the cooperative control for the purpose of driving.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 7610 is information acquired via at least one of the general-purpose communication I / F 7620, the dedicated communication I / F 7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I / F 7660, and the in-vehicle network I / F 7680.
  • the three-dimensional distance information between the vehicle and the surrounding structure or an object such as a person may be generated based on the above and local map information including the peripheral information of the current position of the vehicle may be created.
  • the microcomputer 7610 may generate a warning signal by predicting a danger such as a collision of a vehicle, approach of a pedestrian or the like or an approach to a closed road based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices.
  • Display unit 7720 may include at least one of an on-board display and a head-up display, for example.
  • the display portion 7720 may have an AR (Augmented Reality) display function.
  • the output device may be other devices such as headphones, wearable devices such as glasses-type displays worn by passengers, projectors, and lamps.
  • the display device can display the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually. Further, when the output device is an audio output device, the audio output device converts an audio signal made up of reproduced audio data or acoustic data into an analog signal and outputs it aurally.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be configured by a plurality of control units.
  • the vehicle control system 7000 may include another control unit not shown.
  • some or all of the functions of any of the control units may be given to other control units. That is, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units.
  • a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may transmit / receive detection information to / from each other via the communication network 7010. .
  • the imaging units 7410, 7910, 7912, 7914, 7916, and 7918 use a plurality of imaging units, for example, the imaging units 21-H and 21-C shown in FIG. To do.
  • the image processing unit 30 is provided in the integrated control unit 7600 of the application example shown in FIG. With such a configuration, even if the imaging units 7410, 7910, 7912, 7914, 7916, and 7918 are reduced in size and thickness, a captured image with high image quality performance can be acquired.
  • the image processing unit 30 may be implemented in a module (for example, an integrated circuit module configured by one die) for the integrated control unit 7600 illustrated in FIG.
  • the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
  • a program in which a processing sequence is recorded is installed and executed in a memory in a computer incorporated in dedicated hardware.
  • the program can be installed and executed on a general-purpose computer capable of executing various processes.
  • the program can be recorded in advance on a hard disk, SSD (Solid State Drive), or ROM (Read Only Memory) as a recording medium.
  • the program is a flexible disk, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto optical disc), a DVD (Digital Versatile Disc), a BD (Blu-Ray Disc (registered trademark)), a magnetic disk, or a semiconductor memory card. It can be stored (recorded) in a removable recording medium such as temporarily or permanently. Such a removable recording medium can be provided as so-called package software.
  • the program may be transferred from the download site to the computer wirelessly or by wire via a network such as a LAN (Local Area Network) or the Internet.
  • the computer can receive the program transferred in this way and install it on a recording medium such as a built-in hard disk.
  • the image processing apparatus may have the following configuration.
  • a parallax detection unit that detects a parallax of the second viewpoint with respect to the first viewpoint based on a first imaging signal of the first viewpoint and a second imaging signal that is a second viewpoint different from the first viewpoint;
  • An image generation unit that generates a color image using the first imaging signal and a parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit;
  • the first imaging signal includes white pixels and color component pixels
  • the second imaging signal is an image processing apparatus having fewer white pixels and more color component pixels than the first imaging signal.
  • the image generation unit generates the color image using the first imaging signal and the parallax-compensated second imaging signal when a predetermined condition is satisfied, and the first image signal when the predetermined condition is not satisfied.
  • the image processing apparatus according to (1), wherein the color image is generated from one imaging signal.
  • the case where the predetermined condition is satisfied is that the color image generated from the first imaging signal when the color image is generated using the first imaging signal and the parallax-compensated second imaging signal.
  • the image processing device according to (2), wherein the risk of degradation in image quality performance is lower than a threshold value.
  • the image generation unit determines a risk of deterioration in the image quality performance based on the first imaging signal and the parallax-compensated second imaging signal, and performs the first imaging with a synthesis ratio corresponding to the determined risk.
  • the image generation unit generates a first luminance signal and a first color signal from the first imaging signal, generates a second luminance signal and a second color signal from the second imaging signal, and the second Generates a parallax-compensated second color signal based on the color signal and the parallax detected by the parallax detection unit, and generates the color image from the first imaging signal when the parallax-compensated second imaging signal is generated.
  • the selection or combination of the first color signal and the parallax compensation second color signal is performed,
  • the image processing apparatus according to any one of (1) to (4), wherein the parallax detection unit performs parallax detection using the first luminance signal and the second luminance signal.
  • the image generation unit selects either the first color signal or the parallax compensation second color signal in units of captured images or the first color signal and the parallax compensation in units of pixels according to the risk.
  • parallax detection unit performs parallax detection using the first luminance signal, the second luminance signal, the first color signal, and the second color signal.
  • Processing equipment (8) a parallax detection control unit that performs frequency detection based on the first imaging signal and controls the parallax detection unit according to a detection result; The parallax detection unit performs parallax detection using a cost value calculated based on the first luminance signal and the second luminance signal and a cost value calculated based on the first color signal and the second color signal.
  • the image processing apparatus according to (7), wherein the parallax detection control unit causes the parallax detection to be performed based on an integrated cost value obtained by integrating the two cost values with a synthesis ratio corresponding to the frequency detection result.
  • the image generation unit performs frequency detection based on the first luminance signal, and performs image quality improvement processing on the first color signal according to the frequency detection result (5) to (8) An image processing apparatus according to claim 1.
  • the image generation unit generates a parallax-compensated second luminance signal by performing parallax compensation on the second luminance signal, and synthesizes the parallax-compensated second luminance signal with the first luminance signal.
  • the image processing apparatus according to any one of (5) to (9), wherein the image quality of the luminance signal is improved.
  • the image generation unit sets a synthesis ratio of the first luminance signal and the parallax-compensated second luminance signal according to noise intensity of the imaging unit that generates the first imaging signal.
  • Image processing apparatus (12) The image generation unit performs interpolation processing of a white pixel signal in the first imaging signal, demosaic processing using the pixel signal of the color component pixel and the white pixel signal subjected to the interpolation processing, and after demosaic processing
  • the image processing apparatus according to any one of (5) to (11), wherein the first color signal is generated by color space conversion of the signal.
  • the image generation unit uses the white pixel signal after interpolation processing, the color ratio based on the pixel signal of the color component pixel, and the white pixel signal of the processing target pixel to generate a pixel signal for each color component of the processing target pixel.
  • the image processing apparatus according to (12).
  • the image generation unit generates the first luminance signal by interpolation processing of a white pixel signal in the first imaging signal,
  • the image processing device according to any one of (5) to (13), wherein the parallax detection unit performs parallax detection using the first imaging signal generated by interpolation processing of a white pixel signal by the image generation unit.
  • the first imaging signal is a signal in which the white pixel is provided more than the color component pixel in a pixel block of 2 pixels ⁇ 2 pixels. apparatus.
  • the imaging device of this technique can also take the following structures. (1) a first imaging unit that generates a first imaging signal of a first viewpoint including white pixels and color component pixels; A second imaging unit that generates a second imaging signal of a second viewpoint different from the first viewpoint in which the number of white component is reduced and the ratio of color component pixels is increased compared to the first imaging unit; A parallax detection unit that detects a parallax of the second viewpoint with respect to the first viewpoint based on the first imaging signal and the second imaging signal; An imaging device comprising: the first imaging signal; and an image generation unit that generates a color image using a parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the imaging device according to (1) wherein in the first imaging unit, the white pixels or more are provided in the 2 ⁇ 2 pixel block.
  • the color component pixels in the first imaging unit are two color component pixels in three primary colors.
  • the second imaging unit includes three primary color component pixels or the three primary color component pixels and a white pixel.
  • the second imaging with respect to the first viewpoint based on the first imaging signal of the first viewpoint and the second imaging signal that is a second viewpoint different from the first viewpoint.
  • a viewpoint parallax is detected.
  • a color image is generated by the image generation unit using the first imaging signal and the parallax-compensated second imaging signal that has been parallax-compensated based on the parallax detected by the parallax detection unit.
  • the first imaging signal includes white pixels and color component pixels
  • the second imaging signal has fewer white pixels and more color component pixels than the first imaging signal.
  • the second image pickup signal is fused to the first image pickup signal based on the first image pickup signal having more white pixels than the second image pickup signal, it is possible to obtain a high-sensitivity image pickup while suppressing deterioration in image quality performance. Will be able to. Therefore, it is suitable for devices requiring high image quality performance while maintaining a low profile, for example, portable devices such as smartphones and in-vehicle devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

視差検出部36aは、白画素と色成分画素を含む第1視点の第1撮像信号PS-Hと、第1撮像信号よりも白画素を少なくして色成分画素の割合を多くした第1視点と異なる第2視点の第2撮像信号PS-Cに基づき、第1視点に対する第2視点の視差を検出する。視差補償部37は、視差検出部36aで検出された視差に基づき第2視点の撮像信号に対して視差補償を行い、第1視点の視差補償色差信号を生成する。フォールバック判定部38と信号選択部41は、第1視点の色差信号に対して視差補償第2色差信号を用いるフュージョン処理での画質性能の低下のリスクに応じて、視差補償第2色差信号または第1視点の色差信号を選択して画質性能の低下を抑制しつつ高感度の撮像画を得る。

Description

画像処理装置と画像処理方法および撮像装置
 この技術は、画像処理装置と画像処理方法および撮像装置に関し、複数の撮像部で取得された撮像画を用いて画質性能の低下を抑制しつつ高感度の撮像画を得られるようにする。
 従来、携帯型の電子機器例えばスマートフォン等の情報処理端末では、小型化・薄型化のために撮像部の画質が一眼レフカメラ等に比べて低下している。このため、例えば特許文献1では、情報処理端末に対して着脱可能なカメラで生成された撮像画を、無線通信で情報処理端末に供給することが行われている。また、特許文献2では、複数の撮像部を設けて、画質の異なる複数の画像例えば第1の画角と第1の画角よりも狭い第2の画角の画像を同時に生成することが開示されている。
特開2015-088824号公報 特開2013-219525号公報
 ところで、着脱可能なカメラは、情報処理端末の撮像部に比べてサイズが大きく、着脱可能なカメラを利用する場合には情報処理端末との通信を確立する必要がある。このため良好な撮像画を得るための操作が煩雑で携帯性も低下する。また、複数の撮像部を設けても、取得できる画像はそれぞれの撮像部の性能に応じた画像である。
 そこで、この技術では複数の撮像部で取得された撮像画を用いて画質性能の低下を抑制しつつ高感度の撮像画を得ることができる画像処理装置と画像処理方法および撮像装置を提供することを目的とする。
 この技術の第1の側面は、
 第1視点の第1撮像信号と、前記第1視点と異なる第2視点であって第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
 前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部とを備え、
 前記第1撮像信号は白画素と色成分画素を含み、前記第2撮像信号は前記第1撮像信号よりも白画素が少なく色成分画素が多い画像処理装置にある。
 この技術において、視差検出部は、例えば2画素×2画素の画素ブロック内において白画素を色成分画素以上に設けた第1視点の第1撮像信号と、第1撮像信号よりも白画素を少なくして色成分画素を多くした第1視点と異なる第2視点の第2撮像信号に基づき、第1視点に対する第2視点の視差を検出する。画像生成部は、視差検出部で検出された視差に基づき第2撮像信号に対して視差補償を行い、視差補償第2撮像信号を生成する。画像生成部は、所定の条件を満たす場合、すなわち第1撮像信号と視差補償第2撮像信号を用いてカラー画像を生成した場合に第1撮像信号から生成したカラー画像よりも画質性能の低下のリスクが閾値よりも低い場合、第1撮像信号と視差補償第2撮像信号を用いてカラー画像を生成して、所定の条件を満たさない場合に第1撮像信号からカラー画像を生成する。画像生成部は、例えば第1撮像信号と視差補償第2撮像信号に基づき、画質性能の低下のリスクを判別して、判別したリスクに応じた合成比で第1撮像信号に対して視差補償第2撮像信号を合成してカラー画像を生成する。
 また、画像生成部は、第1撮像信号から第1輝度信号と第1色信号の生成と、第2撮像信号から第2輝度信号と第2色信号の生成と、第2色信号と前記視差検出部で検出された視差に基づき視差補償第2色信号の生成を行い、視差補償第2撮像信号を用いてカラー画像を生成した場合に第1撮像信号から生成したカラー画像よりも画質性能の低下を生じるリスクに応じて、第1色信号と前記視差補償第2色信号の何れかの選択または合成を行う。また、画像生成部は、リスクに応じて撮像画単位で第1色信号と視差補償第2色信号の何れかの選択または画素単位で第1色信号と視差補償第2色信号の合成を行う。
 視差検出部は、第1輝度信号と第2輝度信号、または第1輝度信号と第2輝度信号と第1色信号と第2色信号を用いて視差検出を行う。また、第1撮像信号に基づき周波数検出を行い、検出結果に応じて視差検出部の制御を行う視差検出制御部を有し、視差検出部は、第1輝度信号と第2輝度信号に基づいて算出したコスト値と第1色信号と第2色信号に基づいて算出したコスト値を用いて視差検出を行い、視差検出制御部は、周波数検出結果に応じた合成比で2つのコスト値を統合した統合コスト値に基づき視差検出を行わせる。
 また、画像生成部は、第1輝度信号に基づき周波数検出を行い、第1色信号に対して周波数検出結果に応じて画質改善処理を行う。また、画像生成部は、第2輝度信号の視差補償を行い視差補償第2輝度信号を生成して、第1輝度信号に視差補償第2輝度信号を合成して第1輝度信号の画質改善を行う。例えば、輝度画質改善部は、第1撮像信号を生成する撮像部のノイズ強度に応じて、第1輝度信号と視差補償第2輝度信号の合成比を設定する。
 また、画像生成部は、第1撮像信号における白画素信号の補間処理と、色成分画素の画素信号と補間処理が行われた白画素信号を用いたデモザイク処理とデモザイク処理後の信号に対する色空間変換によって、第1色信号を生成する。例えば、画像生成部は、補間処理後の白画素信号と色成分画素の画素信号に基づく色比と処理対象画素の白画素信号を用いて処理対象画素の色成分毎の画素信号を生成する。また、画像生成部は、第1撮像信号における白画素信号の補間処理によって第1輝度信号を生成して、視差検出部は、信号生成部で白画素信号の補間処理によって生成された第1撮像信号を用いて視差検出を行う。
 この技術の第2の側面は、
 白画素と色成分画素を含む第1視点の第1撮像信号と、前記第1撮像信号よりも白画素を少なくして色成分画素の割合を多くした前記第1視点と異なる第2視点の第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を視差検出部で検出することと、
 前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を画像生成部で生成することと
を含む画像処理方法にある。
 この技術の第3の側面は、
 白画素と色成分画素を含む第1視点の第1撮像信号を生成する第1撮像部と、
 前記第1撮像部よりも白画素を少なくして色成分画素の割合を多くした前記第1視点と異なる第2視点の第2撮像信号を生成する第2撮像部と、
 前記第1撮像信号と前記第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
 前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部と
を備える撮像装置にある。
 この技術によれば、第1視点の第1撮像信号と、第1視点と異なる第2視点であって第2撮像信号に基づき、第1視点に対する前記第2視点の視差が視差検出部で検出される。また、第1撮像信号と、視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像が画像生成部で生成される。さらに、第1撮像信号は白画素と色成分画素を含み、第2撮像信号は前記第1撮像信号よりも白画素が少なく色成分画素が多くされる。したがって、白画素が第2撮像信号より多い第1撮像信号を基準に第2撮像信号を第1撮像信号にフュージョンするため、画質性能の低下を抑制しつつ高感度の撮像画を得ることができるようになる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
撮像装置を適用した機器の外観を例示した図である。 情報処理端末の構成を例示した図である。 フュージョン処理によって得られる画質を説明するための図である。 オクルージョンを示した図である。 撮像部21-Hの画素構成を例示した図である。 撮像部21-cの画素構成を例示した図である。 画像処理部の第1の実施の形態の構成を例示した図である。 補間部の動作を説明するための図である。 デモザイク処理部32-Hの構成を例示した図である。 フォールバック判定処理部の構成を例示した図である。 画像特徴量の算出対象領域を例示した図である。 視差ヒストグラムを例示した図である。 視差差分絶対値を説明するための図である。 視差ギャップヒストグラムを例示した図である。 画素値ヒストグラムを例示した図である。 画像処理部の第1の実施の形態の動作を例示したフローチャートである。 前処理を例示したフローチャートである。 画像処理部の第2の実施の形態の構成を例示した図である。 信号合成部の構成を例示した図である。 周波数検出部の動作を説明するための図である。 コアリング処理部422に記憶されているコアリングカーブを例示した図である。 コアリング処理部427に記憶されているコアリングカーブを例示した図である。 画像処理部の第2の実施の形態の動作を例示したフローチャートである。 画像処理部の第3の実施の形態の構成を例示した図である。 視差検出部の構成を例示した図である。 画像処理部の第4の実施の形態の構成を例示した図である。 画像処理部の第5の実施の形態の構成を例示した図である。 画像処理部の第6の実施の形態の構成を例示した図である。 画像処理部の第7の実施の形態の構成を例示した図である。 画像処理部の第8の実施の形態の構成を例示した図である。 色画質改善部の構成を例示した図である。 画像処理部の第9の実施の形態の構成を例示した図である。 画像処理部の第10の実施の形態の構成を例示した図である。 信号合成部の構成を例示した図である。 コアリングカーブと判別情報の関係を例示した図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態について説明する。なお、説明は以下の順序で行う。
 1.画像処理装置を適用した機器の構成
 2.画像処理の概要
 3.第1の実施の形態
 4.第2の実施の形態
 5.第3の実施の形態
 6.第4の実施の形態
 7.第5の実施の形態
 8.第6の実施の形態
 9.第7の実施の形態
 10.第8の実施の形態
 11.第9の実施の形態
 12.第10の実施の形態
 13.応用例
 <1.画像処理装置を適用した機器の構成>
 図1は、この技術の撮像装置を適用した機器の外観を例示している。なお、以下の説明では、例えば情報処理端末に撮像装置を適用している。図1の(a)は情報処理端末10の表側を示しており、表示部53および操作部55が表側に設けられている。図1の(b)は情報処理端末10の裏側を示しており、複数の撮像部例えば2つの撮像部21-BW,21-CRが裏側に設けられている。
 図2は、情報処理端末の構成を例示している。情報処理端末10は、複数の撮像部例えば2つの撮像部21-H,21-C、画像処理部30、センサ部51、通信部52、表示部53、タッチパネル54、操作部55、記憶部56、および制御部60を有している。撮像部21-H,21-Cと画像処理部30は、この技術の撮像装置を構成する機能ブロックであり、画像処理部30はこの技術の画像処理装置に相当する。
 撮像部21-H,21-Cは、図1の(b)に示すように情報処理端末10の同一面側に設けられている。撮像部21-H,21-Cは、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子を用いて構成されており、レンズ(図示せず)により取り込まれた光の光電変換を行い、撮像画の画像データを生成して画像処理部30へ出力する。
 画像処理部30は、撮像部21-Hと撮像部21-Cで取得された撮像画を用いて、画質性能の低下を抑制しつつ高感度の撮像画を得る。すなわち、画像処理部30は、撮像部21-Hと撮像部21-Cで取得された撮像画を用いて画像処理を行い、撮像部21-Hや撮像部21-Cで個々に取得される撮像画よりも画質性能の低下を抑制しつつ高感度の撮像画を生成して、表示部53や記憶部56へ出力する。なお、画像処理部30の構成および動作の詳細については後述する。
 センサ部51はジャイロセンサなどを用いて構成されており、情報処理端末10に生じた揺れを検出する。センサ部51は、検出した揺れの情報を制御部60へ出力する。
 通信部52は、LAN(Local Area Network)やインターネットなどのネットワーク上の機器と通信を行う。
 表示部53は、画像処理部30から供給された画像データに基づき撮像画の表示、制御部60からの情報信号に基づきメニュー画面や各種アプリケーション画面等の表示を行う。また、表示部53の表示面側にはタッチパネル54が載置されており、GUI機能利用できるように構成されている。
 操作部55は操作スイッチ等を用いて構成されており、ユーザ操作に応じた操作信号を生成して制御部60へ出力する。
 記憶部56は、情報処理端末10で生成された情報例えば画像処理部30から供給された画像データや、情報処理端末10で通信やアプリケーションを実行するために用いられる各種情報を記憶する。
 制御部60は、CPU(Central Processing Unit),ROM(Read Only Memory),RAM(Random Access Memory)(図示せず)などで構成されている。制御部60は、ROMまたはRAMに記憶されたプログラムを実行して、タッチパネル54や操作部55に対するユーザ操作に応じた動作が情報処理端末10で行われるように各部の動作を制御する。
 なお、情報処理端末10は、図2に示す構成に限られず、例えば画像データを符号化して記憶部56に記憶するための符号化処理部、画像データを表示部の解像度に合わせる解像度変換部等が設けられてもよい。
 <2.画像処理の概要>
 画像処理部30は、撮像部21-Hと撮像部21-Cで取得された撮像画を用いてフュージョン処理を行う。図3は、フュージョン処理によって得られる画質を説明するための図である。例えば撮像部21-Hで白黒撮像画を取得して撮像部21-Cでカラー撮像画を取得している場合、白黒撮像画を基準としたフュージョン処理によって、カラー撮像画を白黒撮像画の視点に視差補償して色情報を用いることで高感度のフュージョン画像を生成できる。このため、画質性能を単眼画質(撮像部21-Cのみを用いた場合の画質)よりも高められる。しかし、撮像部21-Hと撮像部21-Cでは視点が異なることから、視差の検出精度が低いと色ずれや色の欠落を生じるリスクが高くなり、色ずれや色の欠落によって画質性能は単眼画質(撮像部21-Cのみを用いた場合の画質)よりも低下してしまう。また、白黒撮像画を基準としたフュージョン処理では、オクルージョンによって色の欠落が生じてしまう。図4は、オクルージョンを示している。撮像部21-Hと撮像部21-Cの視差によってオクルージョンが生じると、撮像部21-Cで取得されたカラー撮像画ではオクルージョン領域に対応する色情報がない。このため、フュージョン処理によって生成されたフュージョン画像ではオクルージョン領域で色が欠落した画像となり画質性能が低下する。
 そこで、本技術では、撮像部21-Hは白画素と色成分画素を含む構成として第1視点の第1撮像信号を生成する。また、撮像部21-Cは撮像部21-Hよりも白画素を少なくして色成分画素の割合を多くして第1視点と異なる第2視点の第2撮像信号を生成する。すなわち、撮像部21-Hは撮像部21-Cよりも高感度である第1撮像信号を生成して、撮像部21-Cは撮像部21-Hよりも色解像度の高い第2撮像信号を生成する。さらに、撮像部21-Hは色成分画素を含む構成であり、撮像部21-Cよりも色解像度は低下しているが、撮像部21-Cと同様に色成分画像を生成して、視差の違いによる色ずれや色の欠落等の画質性能の低下のリスクに応じて、撮像部21-Hで取得した第1撮像信号から生成した色成分信号と撮像部21-Cで取得した第2撮像信号から生成した視差補償後の色信号の選択または合成(ブレンド)を行い、画質性能の高いフュージョン画像を生成する。
 図5は、撮像部21-Hの画素構成を例示している。なお、図5および図6では、撮像領域の一部領域である5画素×5画素の領域を図示している。図5の(a)は、2画像×2画素の画素ブロックを赤画素(R)と青画素(B)と2つの白画素(W)で構成した場合を例示している。また、図5の(b)は、2画像×2画素の画素ブロックを赤画素(R)または青画素(B)と3つの白画素(W)で構成した場合を例示している。図5の(c)は、2画像×2画素の画素ブロックが赤画素(R)または青画素(B)と3つの白画素(W)で構成されたブロックと4つの白画素(W)で構成されたブロックを垂直方向または水平方向に交互に設けた構成を例示している。さらに、図5の(d)は、2画像×2画素の画素ブロックを赤画素(R),青画素(B),緑画素(G)のいずれか1つと3つの白画素(W)で構成した場合を例示している。なお、図5の(a)乃至図5の(c)では、緑画素(G)が設けられていないことから、後述するように、デモザイク処理によって生成した輝度画像と赤色画像と青色画像から緑色画像を生成する。
 図6は、撮像部21-cの画素構成を例示している。図6の(a)は、赤画素(R)と青画素(B)と緑画素(G)の三原色画素をベイヤー配列として設けた場合を例示している。また、図6の(b)は、2画像×2画素の画素ブロックを赤画素(R)と青画素(B)と緑画素(G)の三原色画素とカラーフィルタが配されていない白画素(W)で構成した場合を例示している。
 また、撮像部21-Hの色毎の画素と撮像部21-Cの色毎の画素は、分光感度差が所定よりも小さければ同一でなくともよい。また、撮像部21-Hと撮像部21-Cの画素構成は、図5および図6に示す画素構成に限られない。例えばカラーフィルタとして原色系フィルタを用いる場合に限らず補色系フィルタを用いてもよい。また、色配列はベイヤー配列に限らずストライブ配列やモザイク配列等のような他の色配列であってもよい。
 画像処理部30は、上述の第1撮像信号と第2撮像信号に基づき、第1視点に対する第2視点の視差を視差検出部で検出する。また、画像処理部30は、第1撮像信号と、視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を画像生成部で生成する。画像生成部は、所定の条件を満たす場合、すなわち第1撮像信号と視差補償第2撮像信号を用いてカラー画像を生成した場合に第1撮像信号から生成したカラー画像よりも画質性能の低下のリスクが閾値よりも低い場合、第1撮像信号と視差補償第2撮像信号を用いてカラー画像を生成して、所定の条件を満たさない場合に第1撮像信号からカラー画像を生成する。例えば、画像処理部30は、第1撮像信号から第1輝度信号と第1色信号の生成と、第2撮像信号から第2輝度信号と第2色信号の生成と、第2色信号と視差検出部で検出された視差に基づき視差補償第2色信号の生成を行い、視差補償第2撮像信号を用いてカラー画像を生成した場合に第1撮像信号から生成したカラー画像よりも画質性能の低下を生じるリスクに応じて、第1色信号と視差補償第2色信号の何れかの選択または合成等を行いカラー画像の色信号を生成する。また、カラー画像の輝度信号は、第1輝度信号または第2輝度信号を用いて画質改善がなされた第1輝度信号を用いる。
 画像処理部30は、このようなフュージョン処理を行い、撮像部21-Hまたは撮像部21-Cで取得される撮像画よりも画質性能の高い撮像画を表示または記録できるようにする。以下の実施の形態では、撮像部21-Hで生成された第1撮像信号から輝度信号と色差信号を生成して、撮像部21-Cで生成された第2撮像信号から輝度信号と色差信号を生成して、撮像部21-Hの視点を基準とするフュージョン処理を色差信号または色差信号と輝度信号を用いて行う場合について説明する。
 <3.第1の実施の形態>
 次に画像処理部の第1の実施の形態について説明する。図7は、画像処理部の第1の実施の形態の構成を例示している。画像処理部30-1は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36a、視差補償部37、フォールバック判定部38、信号選択部41を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて白画素の補間処理を行い、輝度画像の画像信号(以下「輝度信号」という)SDwを生成する。図8は、補間部の動作を説明するための図であり、撮像部21-Hが例えば図6の(b)に示す画素構成で赤画素または青画素の位置における白画素WCの画素値を補間処理によって算出する場合について説明する。
 補間処理では、例えば上下左右の白画素の画素値を用いて式(1)の演算を行い、白画素Wの画素値DWを算出する。なお、白画素Wの上側に隣接する白画素Wの画素値をDW、白画素Wの下側に隣接する白画素Wの画素値をDW、白画素Wの右側に隣接する白画素Wの画素値をDW、白画素Wの左側に隣接する白画素Wの画素値をDWとする。
 DW=1/4(DW+DW+DW+DW)・・・(1)
 また、補間処理では、方向毎に補間コスト値を算出して、補間コスト値が最小となる補間画素の画素値を白画素Wの画素値としてもよい。式(2)は垂直補間の補間コスト値diffの算出式を示している。また、式(3)は水平補間の補間コスト値diffの算出式、式(4)(5)は斜め補間の補間コスト値diffs1,diffs2の算出式を示している。
Figure JPOXMLDOC01-appb-M000001
 ここで、垂直補間の補間コスト値diffが最小となった場合、式(6)に基づき垂直補間画素の画素値DWを算出して、算出した画素値DWを白画素Wの画素値DWとする。水平補間の補間コスト値diffが最小となった場合、式(7)に基づき水平補間画素の画素値DWを算出して、算出した画素値DWを白画素Wの画素値DWとする。斜め補間の補間コスト値diffs1が最小となった場合、式(8)に基づき斜め補間画素の画素値DWs1を算出して、算出した画素値DWs1を白画素Wの画素値DWとする。また、斜め補間の補間コスト値diffs2が最小となった場合、式(9)に基づき斜め補間画素の画素値DWs2を算出して、算出した画素値DWs2を白画素Wの画素値DWとする。なお、白画素Wの左上に隣接する白画素WTLの画素値をDWTL、白画素Wの右上に隣接する白画素WTRの画素値をDWTR、白画素Wの左下に隣接する白画素WBLの画素値をDWBL、白画素Wの右下に隣接する白画素WBRの画素値をDWBRとする。
 DW=1/2(DW+DW) ・・・(6)
 DW=1/2(DW+DW) ・・・(7)
 DWs1=1/2(DWTL+DWBR)・・・(8)
 DWs2=1/2(DWTR+DWBL)・・・(9)
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して輝度信号SDwを生成する。補間部31-Hは、生成した輝度信号SDwをデモザイク処理部32-Hとフォールバック判定部38、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号、例えば三原色信号を生成する。図9は、デモザイク処理部32-Hの構成を例示している。デモザイク処理部32-Hは、赤色補間係数算出部321r、青色補間係数算出部321b、赤成分画像生成部322r、青成分画像生成部322bおよび緑成分画像生成部322gを有している。
 赤色補間係数算出部321rは、所定サイズ(図9では例えば5画素×5画素の場合を示す)のブロック範囲Jにおいて白画素Wの画素信号の和と赤画素Rの画素信号の和の比率である色比を式(10)に基づき算出して、赤色補間係数RTrとして赤成分画像生成部322rへ出力する。
Figure JPOXMLDOC01-appb-M000002
 青色補間係数算出部321bは、所定サイズ(図9では例えば5画素×5画素の場合を示す)のブロック範囲Jにおいて白画素Wの画素信号の和と青画素Rの画素信号の和の比率である色比を式(11)に基づき算出して、青色補間係数RTbとして青成分画像生成部322bへ出力する。
Figure JPOXMLDOC01-appb-M000003
 赤成分画像生成部322rは、式(12)に示すように、補間部31-Hで生成された輝度画像における補間画素位置(x,y)の画素値DW(x,y)に赤色補間係数算出部321rで算出された赤色補間係数RTrを乗算して、補間画素位置(x,y)における赤色画素の画素値DR(x,y)を算出する。
 DR(x,y)=RTr×DW(x,y)  ・・・(12)
 青成分画像生成部322bは、式(13)に示すように、補間部31-Hで生成された輝度画像における補間画素位置(x,y)の画素値DW(x,y)に青色補間係数算出部321bで算出された青色補間係数RTbを乗算して、補間画素位置(x,y)における青色画素の画素値DB(x,y)を算出する。
 DB(x,y)=RTb×DW(x,y)  ・・・(13)
 緑成分画像生成部322gは、式(14)に示すように、補間部31-Hで生成された輝度画像における補間画素位置(x,y)の画素値DW(x,y)から赤成分画像生成部322rで算出された補間画素位置(x,y)の画素値DR(x,y)と青成分画像生成部322bで算出された補間画素位置(x,y)の画素値DB(x,y)を減算して、補間画素位置(x,y)における緑色画素の画素値DG(x,y)を算出する。
 DG(x,y)=DW(x,y)-DR(x,y)-DB(x,y)  ・・・(14)
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて三原色画像信号を生成してYUV変換部33-Hへ出力する。
 デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、三原色画像信号をYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36a、色差信号Huvを信号選択部41へそれぞれ出力する。なお、色差信号Huvは、輝度と青の差を示す色差信号Huと輝度と赤の差を示す色差信号Hvを示している。
 YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36aとフォールバック判定部38、色差信号Cuvを視差補償部37へそれぞれ出力する。なお、色差信号Cuvは、輝度と青の差を示す色差信号Cuと輝度と赤の差を示す色差信号Cvを示している。
 視差検出部36aは、YUV変換部33-Hからの輝度信号HyとYUV変換部33-Cからの輝度信号Cyを用いて、撮像部21-Hで取得された撮像画を基準撮像画として撮像部21-Cで取得された撮像画の視差を検出する。
 視差検出部36aは、ブロックマッチングの対応点検出処理によって視差情報を生成する。例えば、基準撮像画上の注目位置を基準とした基準ブロック領域に最も類似する他方の撮像画上のブロック領域を、SSD(Sum of Squared Difference)またはSAD(Sum of Absolute Difference)などのコスト値を用いて検出する。視差検出部36aは、検出したブロック領域と基準ブロック領域の位置の差を示す視差ベクトルを算出する。また、視差検出部36aは、基準撮像画上の各画素を注目位置として視差の算出を行い、画素毎に算出した視差ベクトルを示す視差情報を生成する。なお、視差情報の生成ではブロックマッチングに限らず他の手法例えばKLT(Kanade-Lucas-Tomasi)法等を用いてもよい。視差検出部36aは、生成した視差情報DTaを視差補償部37とフォールバック判定部38へ出力する。
 視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36aで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36aから供給された視差情報DTaに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合はYUV変換部33-Hで生成された色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合、色差信号Huvを選択するように信号選択制御信号ETを生成する。
 図10は、フォールバック判定処理部の構成を例示している。フォールバック判定部38は、画像特徴量算出部381と信号選択判定部382を有している。
 画像特徴量算出部381は、視差および画素の飽和に起因する画質の劣化判定を行うための画像特徴量を算出する。画像特徴量算出部381は、視差に起因する画質の劣化判定を行うための画像特徴量を算出する機能ブロックとして、視差ヒストグラム生成部3811、視差分布特徴量算出部3812、サーチ範囲超え特徴量算出部3813、視差ギャップヒストグラム生成部3814、視差ギャップ特徴量算出部3815を有している。また、画像特徴量算出部381は、画素の飽和に起因する画質の劣化判定を行うための画像特徴量を算出する機能ブロックとして、飽和判定ヒストグラム生成部3816、飽和特徴量算出部3817を有している。なお、画像特徴量算出部381は、撮像画全体を画像特徴量の算出対象領域としてもよく、図11に示すように、撮像画において上下左右の端部側の領域(斜線で示す領域)を除いて算出対象領域を設定してもよい。このように、端部側の領域を除いて算出対象領域を設定すれば、例えば注目画素が側端の位置であるために視差や後述する視差ギャップ距離等の算出ができなくなってしまうことを防止することが可能となり、精度よく画像特徴を算出できるようになる。また、ヒストグラムの生成等の演算コストも低減できる。
 視差ヒストグラム生成部3811は、算出対象領域の各画素について算出されている視差ベクトルを用いてヒストグラムを生成する。なお、図12は、視差ヒストグラムを例示しており、図12の(a)は、被写体が同一平面に近い状態であるの撮像画の視差ヒスグラム、図12の(b)は、被写体までの距離が異なる撮像画の視差ヒストグラムを例示している。この視差ヒストグラムでは、距離の違いにより視差「0」からマイナス方向に離れた位置にピークを生じている。図12の(c)は、被写体までの距離が異なり複数の視差を生じており、被写体が接近していることで大きな視差を生じる状態である撮像画の視差ヒストグラムを例示している。この視差ヒストグラムでは、図12の(b)に比べて被写体が接近して大きさ視差を生じていることから、図12の(b)よりもマイナス方向にさらに離れた位置にピークを生じている。
 視差分布特徴量算出部3812は、視差ヒストグラム生成部3811で生成された視差ヒストグラムから視差分布の特徴を示す統計量を視差分布特徴量として算出する。視差分布特徴量算出部3812は、視差分布の特徴を示す統計量として例えば標準偏差を算出して、算出した標準偏差を視差分布特徴量FVfsdとする。例えば図12の(a)のヒストグラムから算出した視差分布特徴量を「FVfsd-a」、図12の(b)のヒストグラムから算出した視差分布特徴量「FVfsd-b」、図12の(c)のヒストグラムから算出した視差分布特徴量「FVfsd-c」とする。この場合、視差分布特徴量は「FVfsd-a<FVfsd-b,FVfsd-c」となる。このように、視差分布特徴量算出部3812で視差ヒストグラムの標準偏差を視差分布特徴量FVfsdとして算出すれば、後述する信号選択判定部382は、視差分布特徴量FVfsdに基づき、被写体が同一平面に近いかあるいは複数の視差があるか判定できる。
 サーチ範囲超え特徴量算出部3813は、視差ヒストグラム生成部3811で生成された視差ヒストグラムから予め設定されているサーチ範囲以上の視差を生じている度数(over_search_range_counter)の全度数(counter)に対する割合を示すサーチ範囲超え特徴量FVosrを算出する。サーチ範囲超え特徴量算出部3813は、視差ヒストグラムを用いて式(15)の演算を行い、サーチ範囲超え特徴量FVosrを算出する。
 FVosr=over_search_range_counter / counter *100 ・・・(15)
 視差ギャップヒストグラム生成部3814は、視差ギャップヒストグラムを生成する。図13は、視差ギャップヒストグラムを生成に用いる視差差分絶対値を説明するための図である。視差ギャップヒストグラム生成部3814は、図13に示すように、算出対象領域の注目画素の位置から水平に「-(PARALLAX_DIFF_DISTANCE/2)」の画素分だけ離れた位置の視差PV1を算出する。また、視差ギャップヒストグラム生成部3814は、注目画素位置から水平に「(PARALLAX_DIFF_DISTANCE/2)」の画素分だけ離れた位置の視差PV2を算出して、式(16)に示す視差差分絶対値PVapdを算出する。なお、視差ギャップ距離(PARALLAX_DIFF_DISTANCE)は予め設定されている。
 PVapd=ABS(PV1-PV2) ・・・(16)
 視差差分絶対値PVapdは、例えば被写体が同一平面に近い状態である場合、視差PV1と視差PV2の差は小さいことから視差差分絶対値PVapdの値は小さくなる。また、視差差分絶対値PVapdは、例えば被写体までの距離が異なり、注目画素が距離の異なる被写体の境界であると、視差PV1と視差PV2の差が大きいことから視差差分絶対値PVapdの値は大きくなる。視差ギャップヒストグラム生成部3814は、算出対象領域の各画素を注目画素として算出した視差差分絶対値PVapdのヒストグラムである視差ギャップヒストグラムを生成する。なお、図14は視差ギャップヒストグラムを例示している。
 視差ギャップ特徴量算出部3815は、視差ギャップヒストグラム生成部3814で生成された視差ギャップヒストグラムから視差ギャップ特徴量FVpdを算出する。視差ギャップ特徴量算出部3815は、視差ギャップヒストグラムから予め設定されている最大視差ギャップ距離以上の視差ギャップを生じている度数(large_parallax_diff_counter)の全度数(counter)に対する割合を示す視差ギャップ特徴量FVpdを算出する。視差ギャップ特徴量算出部3815は、視差ギャップヒストグラムを用いて式(17)の演算を行い、視差ギャップ特徴量FVpdを算出する。
 FVpd = large_parallax_diff_counter / counter * 100 ・・・(17)
 このように、視差ギャップ特徴量算出部3815で算出された視差ギャップ特徴量FVpdは、最大視差ギャップ距離を生じる画素の割合を示している。ここで、同一平面にある被写体は視差ギャップが小さく、距離が異なる被写体の画像境界部分では視差ギャップが大きいことから、距離が大きく異なる被写体の画像境界の発生状況を判定することが可能となる。
 飽和判定ヒストグラム生成部3816は、補間部31-Hから供給された輝度信号SDwに基づき画素値毎の度数(画素数)を示す画素値ヒストグラムを生成する。また、YUV変換部33-Cから供給された輝度信号Cyに基づき画素値毎の度数(画素数)を示す画素値ヒストグラムを生成する。
 図15は画素値ヒストグラムを例示している。なお、図15の(a)は輝度信号SDwに基づく画素値ヒストグラム、図15の(b)は輝度信号Cyに基づく輝度値ヒストグラムを示している。上述のように、撮像部21-Hは、可視光の全波長領域の入射光量に基づく電気信号を出力する白画素が撮像部21-Cよりも多く設けられていることから、撮像部21-Cに比べて感度が高い。したがって、同一輝度の被写体を撮像した場合、撮像部21-Hで取得された撮像画に基づく画素値ヒストグラムは、撮像部21-Cで取得された撮像画に基づく輝度値ヒストグラムに比べて信号値の高い領域での度数が高くなる。
 飽和特徴量算出部3817は、飽和判定ヒストグラム生成部3816で生成された輝度値ヒストグラムに基づき飽和特徴量FVsatを算出する。飽和特徴量算出部3817は、撮像部21-Hで取得された撮像画に基づく画素値ヒストグラムにおける予め設定されている飽和判定設定値(SATURATION_AREA_W)以上の画素値の度数(saturation_counter_W)と、撮像部21-Cで取得された撮像画に基づく画素値ヒストグラムにおける予め設定されている飽和判定設定値(SATURATION_AREA_Y)以上の画素値の度数(saturation_counter_Y)を算出する。また、飽和特徴量算出部3817は、度数(saturation_counter_W)と度数(saturation_counter_Y)の差分の全度数(counter)に対する割合を示す飽和特徴量FVsatを算出する。飽和特徴量算出部3817は、撮像部21-Hで取得された撮像画に基づく画素値ヒストグラムと撮像部21-Cで取得された撮像画に基づく画素値ヒストグラムを用いて式(18)の演算を行い、飽和特徴量FVsatを算出する。
  FVsat=(saturation_counter_W-saturation_counter_Y)/ counter * 100)
                           ・・・(18)
 このように、飽和特徴量算出部3817で算出された飽和特徴量FVsatは、画素飽和状況の相違を示している。したがって、例えば飽和特徴量の値が大きい場合、撮像部21-Hで取得された撮像画を基準としたフュージョン処理において画素の飽和に起因する画質の劣化を生じる撮像画であることを判定することが可能となる。
 信号選択判定部382は、画像特徴量算出部381で算出された画像特徴量と、制御部60等から取得したカメラ特徴量に基づき、フュージョン画像が画質の劣化を生じるか否かを判別する。信号選択判定部382は、判別結果に基づき信号選択制御信号ETを生成して信号選択部41へ出力する。信号選択判定部382は、画質の劣化を生じるか否かを判定する機能ブロックとして、個別判定部3821~3825と統合判定処理部3828を有している。
 個別判定部3821は、視差分布特徴量算出部3812で算出された視差分布特徴量に基づき、フュージョン画像が画質の劣化を生じるか否かを判定する。個別判定部3821は、視差分布特徴量FVfsdと視差分布特徴量に対して予め設定されている判定閾値Thfsdを比較する。個別判定部3821は、視差分布特徴量FVfsdが判定閾値Thfsdよりも大きい場合、すなわち視差のばらつきが大きい場合に画質の劣化を生じると判定する。個別判定部3821は、個別判定結果を統合判定処理部3828へ出力する。
 個別判定部3822は、サーチ範囲超え特徴量算出部3813で算出されたサーチ範囲超え特徴量FVosrに基づき、フュージョン画像が画質の劣化を生じるか否かを判定する。個別判定部3822は、サーチ範囲超え特徴量FVosrとサーチ範囲超え特徴量に対して予め設定されている判定閾値Thosrを比較する。個別判定部3822は、サーチ範囲超え特徴量FVosrが判定閾値Thosrよりも大きい場合、オクルージョンの領域が多いことを判別できる。個別判定部3822は、個別判定結果を統合判定処理部3828へ出力する。
 個別判定部3823は、視差ギャップ特徴量算出部3815で算出された視差ギャップ特徴量FVpdに基づき、フュージョン画像が画質の劣化を生じるか否かを判定する。個別判定部3823は、視差ギャップ特徴量FVpdと視差ギャップ特徴量に対して予め設定されている判定閾値Thpdを比較する。個別判定部3823は、視差ギャップ特徴量FVpdが判定閾値Thpdより大きい場合、距離が大きく異なる被写体の画像境界が多いことを判別できる。距離が大きく異なる被写体の画像境界はオクルージョンを生じやすいことから、距離が大きく異なる被写体の画像境界が多くなる場合に画質の劣化を生じると判定する。個別判定部3823は、個別判定結果を統合判定処理部3828へ出力する。
 個別判定部3824は、飽和特徴量算出部3817で算出された飽和特徴量FVsatに基づき、フュージョン画像が画質の劣化を生じるか否か判定する。個別判定部3824は、飽和特徴量FVsatと飽和特徴量に対して予め設定されている判定閾値Thsatを比較する。個別判定部3824は、飽和特徴量FVsatが判定閾値Thsatよりも大きい場合、すなわち、飽和している画素が撮像部21-Cで取得された撮像画に比べて撮像部21-Hで取得された撮像画で多くなる場合に画質の劣化を生じると判定する。個別判定部3824は、個別判定結果を統合判定処理部3828へ出力する。
 個別判定部3825は、カメラ特徴量に基づき、フュージョン画像が画質の劣化を生じるか否かを判定する。カメラ特徴量としては、撮像時における明るさに関連した撮像設定情報や被写体距離に関連した撮像設定情報を用いる。被写体が明るい場合は撮像部21-CRで感度の高い画像を取得できることからフュージョン処理の効果は被写体が暗い場合に比べて少ない。したがって、撮像時における明るさに関連した撮像設定情報をカメラ特徴量として用いる。また、撮像部21-Hと撮像部21-Cの視点の違いによって生じるオクルージョンは、被写体が離れている場合には少なく被写体が近い場合には多くなる。したがって、被写体距離に関連した撮像設定情報をカメラ特徴量として用いる。撮像時における明るさに関連した撮像設定情報としては例えば撮像部21-H,21-CのISO感度や露光時間等の設定情報を用いる。被写体距離に関連した撮像設定情報としてはフォーカス位置やズーム倍率等の設定情報を用いる。個別判定部3825は、撮像部21-H,21-Cや制御部60からカメラ情報を取得する。個別判定部3825は、カメラ特徴量とカメラ特徴量に対して予め設定されている判定閾値を比較して、フュージョン処理が画質の劣化を生じるか否か判定する。個別判定部3825は、個別判定結果を統合判定処理部3828へ出力する。
 統合判定処理部3828は、個別判定部3821~3825から供給された個別判定結果を用いて撮像画毎例えばフレーム単位でフォールバック判定を行い、フォールバック判定結果に応じて信号選択制御信号を生成して信号選択部41へ出力する。例えば、統合判定処理部3828は、画質性能の低下のリスクが閾値よりも低い場合、すなわち個別判定部3821~3825から供給された個別判定結果のいずれにおいても画質の劣化を生じないと判定されている場合、フォールバック判定ではフュージョン処理で画質性能の劣化なしと判定する。また、統合判定処理部3828は、画質性能の低下のリスクが閾値以上である場合、すなわち個別判定部3821~3825から供給された個別判定結果のいずれかで画質の劣化を生じる判定されている場合、フォールバック判定ではフュージョン処理で画質性能の劣化有りと判定する。統合判定処理部3828は、例えば画質性能の劣化無しと判定されている場合はYUV変換部33-Hで生成された色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の劣化有りと判定されている場合は色差信号Huvを選択するように信号選択制御信号ETを生成する。
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、YUV変換部33-Hで生成された色差信号HuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 画像処理部30-1は、補間部31-Hから出力された輝度信号SDwと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。なお、図7では、輝度信号と色差信号を表示部53や記録部56へ出力する構成を示しているが、輝度信号と色差信号の色空間変換部を設けて、例えば三原色の画像信号を表示部53や記録部56へ出力する構成としてもよい。
 図16は、画像処理部の第1の実施の形態の動作を例示したフローチャートである。ステップST1で画像処理部30-1は前処理を行う。図17は前処理を例示したフローチャートである。ステップST11で画像処理部30-1は補間処理を行う。画像処理部30-1は、撮像部21-Hで生成された撮像画の白画素を用いて補間処理を行い、輝度信号SDwを生成してステップST12に進む。
 ステップST12で画像処理部30-1はデモザイク処理を行う。画像処理部30-1は、ステップST11で生成した輝度信号SDwと撮像部21-Hからの例えば赤画素と青画素の画素信号を用いてデモザイク処理を行い、赤成分画像と青成分画像と緑成分画像のそれぞれの画像信号を生成する。また、画像処理部30-1は、撮像部21-Cからの赤画素と青画素と緑画素の画素信号を用いてデモザイク処理を行い、赤成分画像と青成分画像と緑成分画像のそれぞれの画像信号を生成してステップST13に進む。
 ステップST13で画像処理部30-1はYUV変換を行う。画像処理部30-1は、ステップST12で輝度信号SDwと撮像部21-Hからの画素信号を用いたデモザイク処理で生成した画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。また、画像処理部30-1は、ステップST12で撮像部21-Cからの赤画素と青画素と緑画素の画素信号を用いたデモザイク処理で生成した画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成して図16のステップST2に戻る。
 ステップST2で画像処理部30-1は視差検出を行う。画像処理部30-1はステップST1の前処理で生成した輝度信号Hyと輝度信号Cyを用いて視差検出を行い、視差検出結果を示す視差情報DTaを生成してステップST3に進む。
 ステップST3で画像処理部30-1は視差補償を行う。画像処理部30-1は、ステップST2で生成された視差情報DTaを用いてステップST1で生成された撮像部21-Cの視点の色差信号Cuvの視差補償を行い、撮像部21-Hの視点である視差補償色差信号CPuvを生成してステップST4に進む。
 ステップST4で画像処理部30-1はフォールバック判定を行う。画像処理部30-1は、ステップST1の前処理で生成された輝度信号SDw,Cy、およびステップST2で生成された視差情報DTaに基づき画質性能の低下のリスクを判定してステップST5に進む。
 ステップST5で画像処理部30-1は信号選択処理を行う。画像処理部30-1は、ステップST4のフォールバック判定によって画質性能の低下のリスクがないと判定された場合はステップST1の前処理で生成された色差信号Huvよりも色解像度の高いステップST3で生成された視差補償色差信号CPuvを選択する。また、画像処理部30-1は、画質性能の低下のリスクがあると判定された場合、色差信号Huvを選択する。さらに、画像処理部30-1は、ステップST1の前処理で生成した輝度信号SDwと視差補償色差信号CPuvまたは色差信号Huvを、表示部や記録部等へ出力する。
 このような、第1の実施の形態によれば、画像処理部30-1では、画質性能の低下のリスクがない場合は色解像度の高い第2視点の色差信号から視差補償を行い、生成した視差補償色差信号を選択する処理と、画質性能の低下のリスクがある場合は第1視点の色差信号を選択する処理が撮像画単位で行われる。また、画像処理部30-1は、選択された色差信号と高解像度である第1視点の輝度信号を表示部53や記録部56へ出力する。したがって、画像処理部30-1を用いることで、撮像部21-Hまたは撮像部21-Cで取得される撮像画よりも画質性能の高い撮像画を表示または記録できるようになる。また、撮像部21-Hには色成分画素が設けられており、撮像部21-Hで生成された第1視点の第1撮像信号から色差信号を生成して、画質性能の低下のリスクがある場合は、第1視点の色差信号を選択するのでフュージョン処理後のカラー画像において色ずれや色の欠落を防止できる。
 <4.第2の実施の形態>
 上述の画像処理部の第1の実施の形態では、撮像部21-Hからの信号に基づき生成した色差信号Huvと撮像部21-Cからの信号に基づき生成されて視差補償が行われた色解像度の高い視差補償色差信号CPuvを、画質性能の低下を抑制しつつ高感度の撮像画が得られるように撮像画単位で選択する場合について説明した。次に、第2の実施の形態では、撮像部21-Hからの信号に基づき生成した色差信号Huvと撮像部21-Cからの信号に基づき生成されて視差補償が行われた色解像度の高い視差補償色差信号CPuvを、画質性能の低下を抑制しつつ高感度の画質性能の低下を生じないように画素単位で合成する場合について説明する。
 図18は、画像処理部の第2の実施の形態の構成を例示している。なお、上述の実施の形態との対応部分については同一符号を付している。画像処理部30-2は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36a、視差補償部37、信号合成部42を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-Hと信号合成部42、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36a、色差信号Huvを信号合成部42へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36a、色差信号Cuvを視差補償部37へそれぞれ出力する。
 視差検出部36aは、YUV変換部33-Hからの輝度信号HyとYUV変換部33-Cからの輝度信号Cyを用いて、撮像部21-Hで取得された撮像画を基準撮像画として撮像部21-Cで取得された撮像画の視差を検出する。視差検出部36aは、視差の検出結果を示す視差情報を信号合成部42へ出力する。
 視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号合成部42へ出力する
 信号合成部42は、画質性能が低下しないように、色差信号Huvと視差補償色差信号CPuvを合成して、合成後の色差信号SDuvを表示部53や記録部56へ出力する。
 図19は、信号合成部の構成を例示している。信号合成部42は、周波数検出部421、コアリング処理部422、低域通過フィルタ423,424、差分算出部425、絶対値算出部426、コアリング処理部427、合成比設定部428および合成処理部429を有している。
 周波数検出部421は、補間部31-Hで生成された輝度信号SDwを用いて、画素毎に検出対象画素がどのような周波数特性の画像における画素であるか検出する。図20は、周波数検出部の動作を説明するための図である。周波数検出部421は、例えば輝度信号SDwで示される輝度画像の画素位置(x,y)に対して式(19)に示す演算を行い、水平方向の周波数特性を示すアクティビティactHORを算出する。なお、式(19)において、「i」は計測範囲内における移動位置を示すパラメータであり、図20の場合は「i=1~4」の値であり計測範囲は9画素である。また、式(19)において、ダイナミックレンジDMRは式(20)に示すように、計測範囲内における画素値DWの最大値と最小値の差分値である。
Figure JPOXMLDOC01-appb-M000004
 なお、撮像部21-Hでは、撮像素子で生じたノイズによって画質性能が低下することからダイナミックレンジDMRが撮像部21-Hのノイズ強度σ以下である場合、アクティビティactHOR=0とする。
 周波数検出部421は、水平方向と同様にして垂直方向のアクティビティactVERを算出して、水平方向のアクティビティactHORと垂直方向のアクティビティactVERとの加算値を式(21)に示すように、画素位置(x,y)のアクティビティactとする。周波数検出部421は、画素毎にアクティビティactを算出してコアリング処理部422へ出力する。
   act=actHOR + actVER ・・・(21)
 コアリング処理部422は、アクティビティactに応じた合成比(ブレンド比)αaを画素毎に設定する。コアリング処理部422では、アクティビティactに対する合成比αaを示すコアリングカーブが記憶されており、周波数検出部421で検出されたアクティビティactに対する合成比αaをコアリングカーブから求める。図21は、コアリング処理部422に記憶されているコアリングカーブを例示している。例えばコアリングカーブは、アクティビティactが閾値Tha0以下である場合は合成比を「αa=1」とする。アクティビティactが閾値Tha0よりも大きく閾値Tha1以下である場合は、アクティビティactが大きくなるに伴い合成比を「αa=1」から「αa=0」に順次低下させる。さらに、アクティビティactが閾値Tha1よりも大きい場合は合成比を「αa=0」とする。コアリング処理部422は、アクティビティactに応じた合成比αaを設定して合成比設定部428へ出力する。なお、図21および後述するコアリングカーブは例示であって、アクティビティactに応じて合成比がリニアに変化する場合に限られない。
 低域通過フィルタ423は色差信号Huvの低域通過フィルタ処理を行い、低域通過フィルタ424は視差補償色差信号CPuvの低域通過フィルタ処理を行うことで、それぞれの色差信号の帯域を等しくする。また、低域通過フィルタ423,424は、低域通過フィルタ処理を行うことで色差信号の偽色等のノイズ成分を除去する。低域通過フィルタ423,424は、フィルタ処理後の色差信号を差分算出部425へ出力する。
 差分算出部425は、低域通過フィルタ423から供給された低域通過フィルタ処理後の色差信号Huvと、低域通過フィルタ423から供給された低域通過フィルタ処理後の視差補償色差信号CPuvの差分を画素毎に算出して絶対値算出部426へ出力する。
 絶対値算出部426は、差分算出部425で画素毎に算出された差分絶対値absを算出してコアリング処理部427へ出力する。
 コアリング処理部427は、差分絶対値absに応じた合成比αbを設定する。コアリング処理部427では、差分絶対値absに対する合成比αbを示すコアリングカーブが記憶されており、絶対値算出部426で算出された差分絶対値absに対する合成比αb2をコアリングカーブから求める。図22は、コアリング処理部427に記憶されているコアリングカーブを例示している。例えばコアリングカーブは、差分絶対値absが閾値Thb0以下である場合は合成比を「αb=0」とする。差分絶対値absが閾値Thb0よりも大きく閾値Thb1以下である場合は、差分絶対値absが大きくなるに伴い合成比を「αb=0」から「αb=1」に順次低下させる。さらに、差分絶対値absが閾値Thb1よりも大きい場合は合成比を「αb=1」とする。コアリング処理部427は、差分絶対値absに応じた合成比αbを設定して合成比設定部428へ出力する。
 合成比設定部428は、コアリング処理部422から供給された合成比αaとコアリング処理部427から供給された合成比αbを用いて式(22)の処理を行い、合成比αa,αbのいずれか値の大きい合成比を、色差信号Huvと視差補償色差信号CPuvの合成比に設定して合成処理部429へ出力する。
  α=max(αa,αb)  ・・・(22)
 合成処理部429は、合成比設定部428で設定された合成比αを用いて式(23)の演算を画素毎に行い、色差信号Huvと視差補償色差信号CPuvが合成された色差信号SDuvを生成する。すなわち、高域領域では偽色によって画質性能の低下を生じることから、画質性能の低下のリスクが閾値よりも低い場合、画質性能の低下のリスクに応じた合成比で色差信号Huvと視差補償色差信号CPuvを合成して画質性能を色差信号Huvのみを用いた場合以上の画質性能とする。また、画質性能の低下のリスクが閾値以上である場合は合成比α=1として、色差信号Huvを用いるようにする。
  SDuv=α×Huv+(1-α)×CPuv  ・・・(23)
 画像処理部30-2は、補間部31-Hから出力された輝度信号SDwと信号合成部42から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 図23は、画像処理部の第2の実施の形態の動作を例示したフローチャートである。ステップST21で画像処理部30-2は前処理を行う。画像処理部30-2は、図17に例示したフローチャートの処理を行い、輝度信号SDwと色差信号Huv、輝度信号Cyと色差信号Cuvを生成してステップST22に進む。
 ステップST22で画像処理部30-2は視差検出を行う。画像処理部30-2はステップST21の前処理で生成した輝度信号Hyと輝度信号Cyを用いて視差検出を行い、視差検出結果を示す視差情報DTaを生成してステップST23に進む。
 ステップST23で画像処理部30-2は視差補償を行う。画像処理部30-2は、ステップST22で生成された視差情報DTaを用いてステップST21で生成された撮像部21-Cの視点の色差信号Cuvの視差補償を行い、撮像部21-Hの視点である視差補償色差信号CPuvを生成してステップST24に進む。
 ステップST24で画像処理部30-2は信号合成処理を行う。画像処理部30-2では、画質性能が低下しないように、色差信号Huvと視差補償色差信号CPuvを合成して色差信号SDuvを生成する。さらに、画像処理部30-2は、ステップST21の前処理で生成した輝度信号SDwと信号合成処理で生成された色差信号SDuvを表示部や記録部等へ出力する。なお、画像処理部30-2では、ステップ順に処理を行う順序処理に限らず、パイプライン処理で画素毎に順次処理を行うようにしてもよい。
 このような、第2の実施の形態によれば、画像処理部30-2では、色解像度の高い第2視点の色差信号から視差補償を行い、生成した視差補償色差信号と第2視点の色差信号よりも色解像度の低い第1視点の色差信号を、画質性能の低下のリスクに応じて画素単位で合成する処理が行われる。また、画像処理部30-2は、高解像度である第1視点の輝度信号と合成処理で生成した色差信号を表示部53や記録部56へ出力する。したがって、画像処理部30-2を用いることで、撮像部21-Hまたは撮像部21-Cで取得される撮像画よりも画質性能の高い撮像画を表示または記録できるようになる。また、画質性能の低下を生じないように画素単位で色差信号の合成する処理が行われるので色ずれや色の欠落等を画素単位で防止できる。
 <5.第3の実施の形態>
 次に、画像処理部の第3の実施の形態について説明する。第3の実施の形態では、視差検出精度を向上させることで視差補償色差信号CPuvの視差補償を高精度に行い、色差信号Huvと視差補償色差信号CPuvの撮像画単位での選択に起因する画質劣化の低減や、フォールバック判定の判定精度の向上を図る。
 図24は、画像処理部の第3の実施の形態の構成を例示している。画像処理部30-3は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36b、視差補償部37、フォールバック判定部38、信号選択部41を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-Hとフォールバック判定部38、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36b、色差信号Huvを視差検出部36bと信号選択部41へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36bとフォールバック判定部38、色差信号Cuvを視差検出部36bと視差補償部37へそれぞれ出力する。
 視差検出部36bは、輝度信号Hy,Cyおよび色差信号Huv,Cuvを用いて視差検出を行う。図25は、視差検出部の構成を例示している。視差検出部36bは、コスト算出部361,362,363、コスト統合部364、コスト最小ベクトル判定部365を有している。
 コスト算出部361,362,363は、撮像部21-Hで取得された撮像画における視差検出対象画素位置を基準とした基準画像と、撮像部21-Cで取得された撮像画における参照画像を用いてコストを算出する。
 コスト算出部361は輝度信号Hyにおける基準画像の信号と輝度信号Cyにおける参照画像の信号を用いてコスト値(例えばSAD)COSTyを算出してコスト統合部364へ出力する。コスト算出部362は色差信号Huにおける基準画像の信号と色差信号Cuにおける参照画像の信号を用いてコスト値(例えばSAD)COSTuを算出してコスト統合部364へ出力する。コスト算出部362は色差信号Hvにおける基準画像の信号と色差信号Cvにおける参照画像の信号を用いてコスト値(例えばSAD)COSTvを算出してコスト統合部364へ出力する。
 コスト統合部364は、コスト算出部361,362,363で算出されたコスト値を統合する。例えば、コスト統合部364は、コスト値の加算値を参照画像のコスト値COST(=COSTy+COSTu+COSTv)をする。
 また、コスト算出部361,362,363は、探索範囲内で参照画像を移動してコスト値を算出して、コスト統合部364は、順次移動した参照画像毎にコスト値COSTを算出して、コスト最小ベクトル判定部365へ出力する。
 コスト最小ベクトル判定部365は、基準画像に対してコスト値COSTが最小となる参照画像の位置を示すベクトル情報を視差情報DTbとして用いる。なお、コスト値はSSDを用いてもよく、ブロックマッチングに限らず他の手法を用いてもよい。
 視差補償部37は、視差検出部36bから供給された視差情報DTbに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36bで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36bから供給された視差情報DTbに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合はYUV変換部33-Hで生成された色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合は色差信号Huvを選択するように信号選択制御信号ETを生成して信号選択部41へ出力する。
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、YUV変換部33-Hで生成された色差信号HuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 画像処理部30-3は、補間部31-Hから出力された輝度信号SDwと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第3の実施の形態では、図16に示す動作を行い、ステップST2の視差検出において、上述のように、輝度信号Hy,Cyおよび色差信号Huv,Cuvを用いて視差検出を行えばよい。
 このように、画像処理部の第3の実施の形態によれば、第1の実施の形態と同様に、撮像部21-Hまたは撮像部21-Cで取得される撮像画よりも画質性能の高い撮像画を表示または記録できるようになる。また、フュージョン処理で画質性能の低下のリスクがある場合でも、画質性能の低下を防止できる。さらに、高精度な視差補償が行われるので、第1視点の色差信号と色解像度の高い視差補償色差信号が撮像画単位で選択されることに起因する画質劣化を、第1の実施の形態に比べて低減できる。また、フォールバック判定の判定精度を第1の実施の形態よりも向上させることができる。
 <6.第4の実施の形態>
 次に、画像処理部の第4の実施の形態について説明する。第4の実施の形態では、視差検出精度を向上させることで視差補償色差信号CPuvの視差補償を高精度に行うことで、色差信号Huvと視差補償色差信号CPuvの画素単位の合成処理に起因する画質劣化を低減させる。
 図26は、画像処理部の第4の実施の形態の構成を例示している。なお、上述の実施の形態との対応部分については同一符号を付している。画像処理部30-4は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36b、視差補償部37、信号合成部42を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-Hと信号合成部42、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36b、色差信号Huvを視差検出部36bと信号合成部42へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36a、色差信号Cuvを視差検出部36bと視差補償部37へそれぞれ出力する。
 視差検出部36bは、YUV変換部33-Hからの輝度信号Hy色差信号HuvとYUV変換部33-Cからの輝度信号Cyと色差信号Cuvを用いて、撮像部21-Hで取得された撮像画を基準撮像画として撮像部21-Cで取得された撮像画の視差を検出する。視差検出部36bは、視差の検出結果を示す視差情報DTbを視差補償部37へ出力する。
 視差補償部37は、視差検出部36bから供給された視差情報DTbに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号合成部42へ出力する
 信号合成部42は、画質性能が低下しないように、色差信号Huvと視差補償色差信号CPuvを合成する。
 画像処理部30-4は、補間部31-Hから出力された輝度信号SDwと信号合成部42で生成された合成後の色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第4の実施の形態では、図23に示す動作を行い、ステップST22の視差検出において、上述のように、輝度信号Hy,Cyおよび色差信号Huv,Cuvを用いて視差検出を行えばよい。
 このように、画像処理部の第4の実施の形態によれば、第2の実施の形態と同様に、撮像部21-Hまたは撮像部21-Cで取得される撮像画よりも画質性能の高い撮像画を表示または記録できるようになる。また、第1視点の色差信号と色解像度の高い視差補償色差信号との画素単位の合成処理に起因する画質劣化を、第2の実施の形態よりも低減できる。
 <7.第5の実施の形態>
 次に、画像処理部の第5の実施の形態について説明する。第5の実施の形態では、第3の実施の形態と同様に、視差検出精度を向上させることで視差補償色差信号CPuvの視差補償を高精度に行うことで、色差信号Huvと視差補償色差信号CPuvの撮像画単位の選択に起因する画質劣化の低減や、フォールバック判定の判定精度の向上を図る。また、第5の実施の形態では、輝度信号SDwを用いて視差検出を行う。
 図27は、画像処理部の第5の実施の形態の構成を例示している。画像処理部30-5は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36b、視差補償部37、フォールバック判定部38、信号選択部41を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、視差検出部36b、フォールバック判定部38、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、色差信号Huvを生成する。YUV変換部33-Hは、生成した色差信号Huvを視差検出部36bと信号選択部412へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36bとフォールバック判定部38、色差信号Cuvを視差検出部36bと視差補償部37へそれぞれ出力する。
 視差検出部36bは、輝度信号SDw,Cyおよび色差信号Huv,Cuvを用いて視差検出を行い、検出した視差を示す視差情報DTbを生成して視差補償部37とフォールバック判定部38へ出力する。
 視差補償部37は、視差検出部36bから供給された視差情報DTbに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36bで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36bから供給された視差情報DTbに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合はYUV変換部33-Hで生成された色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合は色差信号Huvを選択するように信号選択制御信号ETを生成して信号選択部41へ出力する。
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、YUV変換部33-Hで生成された色差信号HuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 画像処理部30-3は、補間部31-Hから出力された輝度信号SDwと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第5の実施の形態では、図16に示す動作を行い、ステップST2の視差検出において、上述のように、輝度信号SDw,Cyおよび色差信号Huv,Cuvを用いて視差検出を行えばよい。
 このように、画像処理部の第5の実施の形態によれば、第3の実施の形態と同様な作用効果を得ることができる。なお、第5の実施の形態では、色差信号と輝度信号も用いて視差検出を行うことから、色差信号を用いて視差検出を行う第3の実施の形態よりも、視差検出を高精度に行うことができる。
 <8.第6の実施の形態>
 次に、画像処理部の第6の実施の形態について説明する。第6の実施の形態では、第4の実施の形態と同様に、視差検出精度を向上させることで視差補償色差信号CPuvの視差補償を高精度に行うことで、色差信号Huvと視差補償色差信号CPuvの合成処理に起因する画質劣化を防止する。また、第6の実施の形態では、輝度信号SDwを用いて視差検出を行う。
 図28は、画像処理部の第6の実施の形態の構成を例示している。なお、上述の実施の形態との対応部分については同一符号を付している。画像処理部30-4は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36b、視差補償部37、信号合成部42を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、視差検出部36b、信号合成部42、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、色差信号Huvを生成する。YUV変換部33-Hは、生成した色差信号Huvを視差検出部36bと信号合成部42へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36b、色差信号Cuvを視差検出部36bと視差補償部37へそれぞれ出力する。
 視差検出部36bは、補間部31-Hからの輝度信号SDwとYUV変換部33-Hからの色差信号HuvとYUV変換部33-Cからの輝度信号Cyおよび色差信号Cuvを用いて、撮像部21-Hで取得された撮像画を基準撮像画として撮像部21-Cで取得された撮像画の視差を検出する。視差検出部36bは、視差の検出結果を示す視差情報DTbを視差補償部37へ出力する。
 視差補償部37は、視差検出部36bから供給された視差情報DTbに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号合成部42へ出力する。
 信号合成部42は、画質性能が低下しないように、色差信号Huvと視差補償色差信号CPuvを合成する。
 画像処理部30-6は、補間部31-Hから出力された輝度信号SDwと信号合成部42で生成された合成後の色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第6の実施の形態では、図23に示す動作を行い、ステップST22の視差検出において、上述のように、輝度信号SDw,Cyおよび色差信号Huv,Cuvを用いて視差検出を行えばよい。
 このように、画像処理部の第6の実施の形態によれば、第4の実施の形態と同様な作用効果を得ることができる。なお、第6の実施の形態では、色差信号と輝度信号も用いて視差検出を行うことから、色差信号を用いて視差検出を行う第4の実施の形態よりも、視差検出を高精度に行うことができる。
 <9.第7の実施の形態>
 次に、画像処理部の第7の実施の形態について説明する。上述の第1乃至第7の実施の形態では、撮像部21-Cで取得された撮像画よりも色画素が少ない撮像部21-Hで取得された撮像画の信号を用いて色差信号Huvを生成している。すなわち、撮像部21-Hで取得された撮像画は、色画素のサンプリングレートが低いため色差信号Huvに例えば偽色(エリアシングノイズ)が発生しているおそれがある。このため、第7の実施の形態では、色差信号Huvを用いて視差検出を行う場合に、偽色等によって視差検出精度が低下することを防止する。
 図29は、画像処理部の第7の実施の形態の構成を例示している。画像処理部30-7は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、周波数検出部34、コアリング処理部35、視差検出部36c、視差補償部37、フォールバック判定部38、信号選択部41を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、視差検出部36b、フォールバック判定部38、および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、色差信号Huvを生成する。YUV変換部33-Hは、生成した色差信号Huvを視差検出部36bと信号選択部412へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36bとフォールバック判定部38、色差信号Cuvを視差検出部36bと視差補償部37へそれぞれ出力する。
 周波数検出部34は、図19に示す第2の実施の形態の信号合成部42における周波数検出部421と同様な動作を行う。すなわち、周波数検出部34は、補間部31-Hで生成された輝度信号SDwを用いて、画素毎に検出対象画素がどのような周波数特性の画像における画素であるかの検出結果であるアクティビティactを算出してコアリング処理部35へ出力する。
 コアリング処理部35は、図19に示す第2の実施の形態の信号合成部42におけるコアリング処理部422と同様な動作を行う。すなわち、コアリング処理部35は、アクティビティactに応じた合成比αaを画素毎に設定する。コアリング処理部35では、アクティビティactに対する合成比αaを示すコアリングカーブが記憶されており、周波数検出部34で検出されたアクティビティactに対する合成比αaをコアリングカーブから求める。コアリング処理部35は、アクティビティactに応じた合成比αaを設定して視差検出部36cへ出力する。
 視差検出部36cは、輝度信号SDw,Cyと色差信号Huv,Cuvおよびコアリング処理部35で設定された合成比αaを用いて視差検出を行い、検出した視差を示す視差情報DTcを生成して視差補償部37とフォールバック判定部38へ出力する。視差検出部36cは、例えば図25に示す視差検出部36bと同様な構成として、コスト統合部364は、コスト算出部361,362,363で算出されたコスト値の統合を、式(24)に示すように合成比αaを用いて行う。このようにして統合コスト値に基づき視差検出を行うようにすれば、輝度信号が高域領域であるときは色差信号に基づくコストを使わないようにすることで、例えば色差信号に偽色が含まれても、偽色の影響を受けることなく視差検出を行えるようになる。
 COST =COSTy + αa×(COSTu+COSTv) ・・・(24)
 視差補償部37は、視差検出部36cから供給された視差情報DTcに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36cで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36cから供給された視差情報DTcに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合はYUV変換部33-Hで生成された色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合は色差信号Huvを選択するように信号選択制御信号ETを生成して信号選択部41へ出力する。
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、YUV変換部33-Hで生成された色差信号HuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 画像処理部30-3は、補間部31-Hから出力された輝度信号SDwと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第7の実施の形態では、図16に示す動作を行い、ステップST2の視差検出において、上述のように、輝度信号SDw,Cyと色差信号Huv,Cuvおよび合成比αaを用いて視差検出を行えばよい。
 このように、画像処理部の第7の実施の形態によれば、第5の実施の形態と同様な作用効果を得ることができる。さらに、第7の実施の形態では、画素毎に検出対象画素がどのような周波数特性の画像における画素であるかの検出結果に基づいて設定された合成比を用いて視差検出が行われることから、偽色等の影響を受けることなく視差検出を行えるようになる。
 <10.第8の実施の形態>
 次に、画像処理部の第8の実施の形態について説明する。上述の第1乃至第7の実施の形態では、撮像部21-Cで取得された撮像画よりも色画素が少ない撮像部21-Hで取得された撮像画の信号を用いて色差信号Huvを生成している。すなわち、撮像部21-Hで取得された撮像画は、色画素のサンプリングレートが低いため色差信号Huvに例えば偽色(エリアシングノイズ)が発生しているおそれがある。そこで、第8の実施の形態では、色差信号Huvの選択や色差信号Huvを用いた合成処理が行われても、色画素のサンプリングレートが低いことによる画質性能の低下を防止する。
 図30は、画像処理部の第8の実施の形態の構成を例示している。画像処理部30-8は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36a、視差補償部37、フォールバック判定部38、色画質改善部39、信号選択部41を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、フォールバック判定部38、色画質改善部39および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36a、生成した色差信号Huvを色画質改善部39へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36aとフォールバック判定部38、色差信号Cuvを視差補償部37へそれぞれ出力する。
 視差検出部36aは、輝度信号Hy,Cyを用いて視差検出を行い、検出した視差を示す視差情報DTaを生成して視差補償部37とフォールバック判定部38へ出力する。
 視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36aで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36aから供給された視差情報DTaに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合は色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合は色画質改善部39で画質改善処理が行われている画質改善色差信号HQuvを選択するように信号選択制御信号ETを生成して信号選択部41へ出力する。
 色画質改善部39は、補間部31-Hで生成された輝度信号SDwに基づきYUV変換部33-Hで生成された色差信号Huvの画質改善処理を行い、画質改善色差信号HQuvを生成して信号選択部41へ出力する。
 図31は、色画質改善部の構成を例示している。色画質改善部39は、周波数検出部391、コアリング処理部392、低域通過フィルタ393、合成処理部394を有している。
 周波数検出部391は、図19に示す第2の実施の形態の信号合成部42における周波数検出部421と同様な動作を行う。すなわち、周波数検出部391は、補間部31-Hで生成された輝度信号SDwを用いて、画素毎に検出対象画素がどのような周波数特性の画像における画素であるかの検出結果であるアクティビティactを算出してコアリング処理部392へ出力する。
 コアリング処理部392は、図19に示す第2の実施の形態の信号合成部42におけるコアリング処理部422と同様な動作を行う。すなわち、コアリング処理部392は、アクティビティactに応じた合成比αaを画素毎に設定する。コアリング処理部392では、アクティビティactに対する合成比αaを示すコアリングカーブが記憶されており、周波数検出部391で検出されたアクティビティactに対する合成比αaをコアリングカーブから求める。コアリング処理部392は、アクティビティactに応じた合成比αaを設定して合成処理部394へ出力する。
 低域通過フィルタ393は、色差信号Huvの低域通過フィルタ処理を行い、高域成分例えば偽色等の成分を除去して、フィルタ処理後の色差信号HuvLPFを合成処理部394へ出力する。
 合成処理部394は、コアリング処理部392で設定された合成比αaで色差信号Huvとフィルタ処理後の色差信号HuvLPFを合成する。式(25)(26)は、合成処理部394で行われる処理を示している。合成処理部394は、合成後である画質改善色差信号HQuvを信号選択部41へ出力する。
  HQu = (1-αa)HuLPF + αaHu  ・・・(25)
  HQv = (1-αa)HvLPF + αaHv  ・・・(26)
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、色画質改善部39から供給された画質改善色差信号HQuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 画像処理部30-8は、補間部31-Hから出力された輝度信号SDwと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第8の実施の形態では、図16に示す動作を行い、ステップST1の前処理において、上述のように、輝度信号SDwを用いて色差信号Huvの画質改善を行うようにすればよい。
 このように、画像処理部の第8の実施の形態によれば、第1の実施の形態と同様な作用効果を得ることができる。また、第8の実施の形態では、画素毎に検出対象画素がどのような周波数特性の画像における画素であるかの検出結果に基づいて第1視点の色差信号Huvの画質改善が行われるので、第1視点の色差信号の選択や合成処理が行われても、撮像部21-Hにおける色画素のサンプリングレートが低いことによる画質性能の低下を防止できる。
 <11.第9の実施の形態>
 上述の第1乃至第8の実施の形態では、色差信号に対して画質性能の低下を生じないようにフュージョン処理を行う場合について説明したが、第9の実施の形態では、輝度信号の画質性能を向上させる処理について説明する。
 図32は、画像処理部の第9の実施の形態の構成を例示している。画像処理部30-9は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36a、視差補償部37、フォールバック判定部38、信号選択部41、輝度画質改善部43を有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、フォールバック判定部38、色画質改善部39および表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36a、生成した色差信号Huvを色画質改善部39へそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36aと視差補償部37、色差信号Cuvを視差補償部37へそれぞれ出力する。
 視差検出部36aは、輝度信号Hy,Cyを用いて視差検出を行い、検出した視差を示す視差情報DTaを生成して視差補償部37とフォールバック判定部38へ出力する。
 視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36aで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 また、視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された輝度信号Cyの視差補償を行う。視差補償部37は、輝度信号Cyに対して視差検出部36aで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償輝度信号CPyを生成する。視差補償部37は、生成した視差補償輝度信号CPyを輝度画質改善部43へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36aから供給された視差情報DTaに基づき画質性能の低下のリスクを判定する。さらに、フォールバック判定部38は、画質性能の低下のリスクがない場合は色差信号Huvよりも色解像度の高い視差補償色差信号CPuvを選択して、画質性能の低下のリスクがある場合は色画質改善部39で画質改善処理が行われている画質改善色差信号HQuvを選択するように信号選択制御信号ETを生成して信号選択部41へ出力する。
 信号選択部41は、フォールバック判定部38からの信号選択制御信号ETに基づき、色画質改善部39から供給された画質改善色差信号HQuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvのいずれかを色差信号SDuvとして出力する。
 輝度画質改善部43は、補間部31-Hで生成された輝度信号SDwと視差補償部37から供給された視差補償輝度信号CPyを撮像部21-Hのノイズ強度に応じて合成して、撮像部21-Hのノイズの影響を低減して輝度画質を改善する。輝度画質改善部43は、式(27)に示すように、画素毎に輝度信号SDwと視差補償輝度信号CPyとノイズ強度σに基づいて合成比αyを算出する。また、輝度画質改善部43は、式(28)に示すように、画素毎に輝度信号SDwと視差補償輝度信号CPyを合成比αyで合成して輝度信号SDyを生成する。
Figure JPOXMLDOC01-appb-M000005
 画像処理部30-9は、輝度画質改善部43から出力された輝度信号SDyと信号選択部41から出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第9の実施の形態では、図16に示す動作を行い、ステップST3の後のタイミングで輝度信号SDwと視差補償輝度信号CPyの合成を行い、輝度画質が改善された輝度信号SDyを生成すればよい。
 このように、画像処理部の第9の実施の形態によれば、第1の実施の形態と同様な作用効果を得ることができる。また、第9の実施の形態では、輝度信号の合成処理が行われることから、第1の実施の形態に比べて輝度信号の画質性能を向上させることができる。
 <12.第10の実施の形態>
 上述の第2の実施の形態では、色差信号Huvと色解像度の高い視差補償色差信号CPuvを、画質性能の低下を生じないように輝度信号SDwに基づいて選択する場合を説明したが、第10の実施の形態では、撮像画単位のフォールバック判定結果を用いて、画質性能の低下を生じないように色差信号Huvと視差補償色差信号CPuvを合成処理する場合について説明する。
 図33は、画像処理部の第10の実施の形態の構成を例示している。画像処理部30-10は、補間部31-H、デモザイク処理部32-H、YUV変換部33-H、デモザイク処理部32-C、YUV変換部33-C、視差検出部36a、視差補償部37、フォールバック判定部38、信号合成部42aを有している。
 撮像部21-Hから出力された撮像信号PS-Hは、補間部31-Hとデモザイク処理部32-Hに入力される。また、撮像部21-Cから出力された撮像信号PS-Cは、デモザイク処理部32-Cに入力される。
 補間部31-Hは、撮像信号PS-Hを用いて補間処理を行い、赤画素や青画素の位置における白画素の画素値を算出して、輝度信号SDwを生成して、デモザイク処理部32-H、フォールバック判定部38、信号合成部42aおよび表示部53や記録部56へ出力する。
 デモザイク処理部32-Hは、撮像部21-Hから出力された撮像信号PS-Hと補間部31-Hで生成された輝度信号SDwを用いて色成分毎の画像信号を生成してYUV変換部33-Hへ出力する。デモザイク処理部32-Cは、撮像部21-Cから出力された撮像信号PS-Cを用いて、従来と同様なデモザイク処理を行い、色成分毎の画像信号を生成してYUV変換部33-Cへ出力する。
 YUV変換部33-Hは、デモザイク処理部32-Hで生成された三原色の画像信号の色空間変換を行い、輝度信号Hyと色差信号Huvを生成する。YUV変換部33-Hは、生成した輝度信号Hyを視差検出部36a、生成した色差信号Huvを信号合成部42aへそれぞれ出力する。YUV変換部33-Cは、デモザイク処理部32-Cで生成された三原色の画像信号の色空間変換を行い、輝度信号Cyと色差信号Cuvを生成する。YUV変換部33-Cは、生成した輝度信号Cyを視差検出部36aとフォールバック判定部38、色差信号Cuvを視差補償部37へそれぞれ出力する。
 視差検出部36aは、輝度信号Hy,Cyを用いて視差検出を行い、検出した視差を示す視差情報DTaを生成して視差補償部37とフォールバック判定部38へ出力する。
 視差補償部37は、視差検出部36aから供給された視差情報DTaに基づきYUV変換部33-Cで生成された色差信号Cuvの視差補償を行う。視差補償部37は、色差信号Cuvに対して視差検出部36aで生成された視差情報に基づき画素位置の移動を行い、撮像部21-Hで取得された撮像画の視点である視差補償色差信号CPuvを生成する。視差補償部37は、生成した視差補償色差信号CPuvを信号選択部41へ出力する。
 フォールバック判定部38は、補間部31-Hから供給された輝度信号SDwとYUV変換部33-Cから供給された輝度信号Cy、および視差検出部36aから供給された視差情報DTaに基づき画質性能の低下のリスクを撮像画単位で判定する。さらに、フォールバック判定部38は、判定した画質性能の低下のリスクを撮像画単位でスコア化して判別情報ESとする。図10に示すフォールバック判定部38の統合判定処理部3828は、個別判定部3821~3825から供給された個別判定結果を用いてフォールバック判定を行い、例えば画質の劣化を生じると判定された判定結果の数を判別情報ESとしてもよく、画質の劣化を生じると判定された判定結果を個々にスコア化して、各判定結果のスコア加算値を判別情報ESとしてもよい。
 信号合成部42aは、フォールバック判定部38からの判別情報ESに基づき、YUV変換部33-Hから供給された色差信号HuvまたはYUV変換部33-Cで生成されて視差補償が行われた視差補償色差信号CPuvを合成して色差信号SDuvを生成する。
 図34は、信号合成部の構成を例示している。なお、図19に示す第2の実施の形態における信号合成部42と対応する部分については同一符号を付している。
 信号合成部42aは、周波数検出部421、コアリング処理部422a、低域通過フィルタ423,424、差分算出部425、絶対値算出部426、コアリング処理部427a、合成比設定部428および合成処理部429を有している。
 周波数検出部421は、補間部31-Hで生成された輝度信号SDwを用いて、画素毎に検出対象画素がどのような周波数特性の画像における画素であるか検出して、画素毎にアクティビティactを算出してコアリング処理部422aへ出力する。
 コアリング処理部422aは、アクティビティactに応じた合成比αaをコアリングカーブに基づいて画素毎に設定する。コアリングカーブは、アクティビティactに対する合成比αaを示している。また、コアリング処理部422aは、判別情報ESに応じたコアリングカーブを用いる。コアリングカーブはコアリング処理部422aに予め記憶されていてもよく、判別情報ESに応じてコアリングカーブをコアリング処理部422aで生成してもよい。なお、判別情報ESに応じたコアリングカーブについては後述する。
 低域通過フィルタ423は色差信号Huvの低域通過フィルタ処理を行い、低域通過フィルタ424は視差補償色差信号CPuvの低域通過フィルタ処理を行うことで、それぞれの色差信号の帯域を等しくする。また、低域通過フィルタ423,424は、低域通過フィルタ処理を行うことで色差信号の偽色等のノイズ成分を除去する。低域通過フィルタ423,424は、フィルタ処理後の色差信号を差分算出部425へ出力する。
 差分算出部425は、低域通過フィルタ423から供給された低域通過フィルタ処理後の色差信号Huvと、低域通過フィルタ423から供給された低域通過フィルタ処理後の視差補償色差信号CPuvの差分を画素毎に算出して絶対値算出部426へ出力する。
 絶対値算出部426は、差分算出部425で画素毎に算出された差分絶対値absを算出してコアリング処理部427aへ出力する。
 コアリング処理部427aは、差分絶対値absに応じた合成比αbをコアリングカーブに基づいて設定する。コアリングカーブは、差分絶対値absに対する合成比αbを示している。また、コアリング処理部427aは、判別情報ESに応じたコアリングカーブを用いる。
 図35は、コアリングカーブと判別情報の関係を例示している。なお、図35の(a)と(c)はコアリング処理部422aで用いられるコアリングカーブを例示しており、図35の(b)と(d)はコアリング処理部427aで用いられるコアリングカーブを例示している。
 コアリング処理部422aは、判別情報ESに基づき画質性能の低下のリスクが高くなるに伴い閾値Tha0,Tha1を小さくして、アクティビティactに対する合成比αaが小さくなるようにする。
 また、コアリング処理部427aは、判別情報ESに基づき画質性能の低下のリスクが高くなるに伴い閾値Thb0,Thb1を大きくして、差分絶対値abs対する合成比αbが大きくなるようにする。
 合成比設定部428は、コアリング処理部422aから供給された合成比αaとコアリング処理部427aから供給された合成比αbを用いて上述の式(22)の処理を行い、合成比αa,αbのいずれか値の大きい合成比を、色差信号Huvと視差補償色差信号CPuvの合成比に設定して合成処理部429へ出力する。
 合成処理部429は、合成比設定部428で設定された合成比αを用いて上述の式(23)の演算を画素毎に行い、色差信号Huvと視差補償色差信号CPuvが合成された色差信号SDuvを生成する。
 画像処理部30-10は、補間部31-Hから出力された輝度信号SDwと信号合成部42aから出力された色差信号SDuvを、フュージョン画像の画像信号として表示部53や記録部56へ出力する。
 なお、画像処理部の第10の実施の形態では、図16に示す動作を行い、ステップST5の後のタイミングで図23のステップST24の処理を行い、ステップST5で生成された判別情報ESに応じたコアリングカーブを用いて色差信号Huvと視差補償色差信号CPuvの合成を行い、色差信号SDuvを生成すればよい。
 このように、画像処理部の第10の実施の形態によれば、第2の実施の形態と同様な作用効果を得ることができる。また、第10の実施の形態では、撮像画単位のフォールバック判定結果も用いて合成比の設定が行われるので、第1視点の色差信号と色解像度の高い視差補償色差信号との画素単位の合成処理に起因する画質劣化を、第2の実施の形態よりも効果的に防止できる。
 <13.応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、情報処理端末に限らず、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図36は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図36に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図36では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。
 ここで、図37は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図37には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。
 図36に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図36の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
 なお、図36に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。
 以上説明した車両制御システム7000において、撮像部7410,7910,7912,7914,7916,7918は、必要に応じて複数の撮像部例えば図2に示す撮像部21-H,21-Cを用いる構成とする。また、図36に示した応用例の統合制御ユニット7600に画像処理部30を設ける。このような構成とすれば、撮像部7410,7910,7912,7914,7916,7918を小型・薄型化しても画質性能の高い撮像画を取得できるので、取得した撮像画を運転支援や運転制御等に利用できる。なお、画像処理部30は、図36に示した統合制御ユニット7600のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させる。または、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。
 例えば、プログラムは記録媒体としてのハードディスクやSSD(Solid State Drive)、ROM(Read Only Memory)に予め記録しておくことができる。あるいは、プログラムはフレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、BD(Blu-Ray Disc(登録商標))、磁気ディスク、半導体メモリカード等のリムーバブル記録媒体に、一時的または永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、プログラムは、リムーバブル記録媒体からコンピュータにインストールする他、ダウンロードサイトからLAN(Local Area Network)やインターネット等のネットワークを介して、コンピュータに無線または有線で転送してもよい。コンピュータでは、そのようにして転送されてくるプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、本明細書に記載した効果はあくまで例示であって限定されるものではなく、記載されていない付加的な効果があってもよい。また、本技術は、上述した技術の実施の形態に限定して解釈されるべきではない。この技術の実施の形態は、例示という形態で本技術を開示しており、本技術の要旨を逸脱しない範囲で当業者が実施の形態の修正や代用をなし得ることは自明である。すなわち、本技術の要旨を判断するためには、請求の範囲を参酌すべきである。
 また、本技術の画像処理装置は以下のような構成も取ることができる。
 (1) 第1視点の第1撮像信号と、前記第1視点と異なる第2視点であって第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
 前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部とを備え、
 前記第1撮像信号は白画素と色成分画素を含み、前記第2撮像信号は前記第1撮像信号よりも白画素が少なく色成分画素が多い画像処理装置。
 (2) 前記画像生成部は、所定の条件を満たす場合に前記第1撮像信号と前記視差補償第2撮像信号を用いて前記カラー画像を生成して、所定の条件を満たさない場合に前記第1撮像信号から前記カラー画像を生成する(1)に記載の画像処理装置。
 (3) 前記所定の条件を満たす場合とは、前記第1撮像信号と前記視差補償第2撮像信号を用いて前記カラー画像を生成した場合に前記第1撮像信号から生成した前記カラー画像よりも画質性能の低下のリスクが閾値よりも低い場合である(2)に記載の画像処理装置。
 (4) 前記画像生成部は、前記第1撮像信号と前記視差補償第2撮像信号に基づき、前記画質性能の低下のリスクを判別して、判別したリスクに応じた合成比で前記第1撮像信号に対して前記視差補償第2撮像信号を合成する(3)に記載の画像処理装置。
 (5) 前記画像生成部は、前記第1撮像信号から第1輝度信号と第1色信号の生成と、前記第2撮像信号から第2輝度信号と第2色信号の生成と、前記第2色信号と前記視差検出部で検出された視差に基づき視差補償第2色信号の生成を行い、前記視差補償第2撮像信号を用いて前記カラー画像を生成した場合に前記第1撮像信号から生成した前記カラー画像よりも画質性能の低下を生じるリスクに応じて、前記第1色信号と前記視差補償第2色信号の何れかの選択または合成を行い、
 前記視差検出部は、前記第1輝度信号と前記第2輝度信号を用いて視差検出を行う(1)乃至(4)のいずれかに記載の画像処理装置。
 (6) 前記画像生成部は、前記リスクに応じて撮像画単位で前記第1色信号と前記視差補償第2色信号の何れかの選択または画素単位で前記第1色信号と前記視差補償第2色信号の合成を行う(5)に記載の画像処理装置。
 (7) 前記視差検出部は、前記第1輝度信号と前記第2輝度信号と前記第1色信号と前記第2色信号を用いて視差検出を行う(5)または(6)に記載の画像処理装置。
 (8) 前記第1撮像信号に基づき周波数検出を行い、検出結果に応じて前記視差検出部の制御を行う視差検出制御部を有し、
 前記視差検出部は、前記第1輝度信号と前記第2輝度信号に基づいて算出したコスト値と前記第1色信号と前記第2色信号に基づいて算出したコスト値を用いて視差検出を行い、
 前記視差検出制御部は、前記周波数検出結果に応じた合成比で前記2つのコスト値を統合した統合コスト値に基づき前記視差検出を行わせる(7)に記載の画像処理装置。
 (9) 前記画像生成部は、前記第1輝度信号に基づき周波数検出を行い、前記第1色信号に対して前記周波数検出結果に応じて画質改善処理を行う(5)乃至(8)のいずれかに記載の画像処理装置。
 (10) 前記画像生成部は、前記第2輝度信号の視差補償を行い視差補償第2輝度信号を生成して、前記第1輝度信号に前記視差補償第2輝度信号を合成して前記第1輝度信号の画質改善を行う(5)乃至(9)のいずれかに記載の画像処理装置。
 (11) 前記画像生成部は、前記第1撮像信号を生成する撮像部のノイズ強度に応じて、前記第1輝度信号と前記視差補償第2輝度信号の合成比を設定する(10)に記載の画像処理装置。
 (12) 前記画像生成部は、前記第1撮像信号における白画素信号の補間処理と、前記色成分画素の画素信号と前記補間処理が行われた白画素信号を用いたデモザイク処理とデモザイク処理後の信号に対する色空間変換によって、前記第1色信号を生成する(5)乃至(11)のいずれかに記載の画像処理装置。
 (13) 前記画像生成部は、補間処理後の白画素信号と前記色成分画素の画素信号に基づく色比と処理対象画素の白画素信号を用いて前記処理対象画素の色成分毎の画素信号を生成する(12)に記載の画像処理装置。
 (14) 前記画像生成部は、前記第1撮像信号における白画素信号の補間処理によって前記第1輝度信号を生成して、
 前記視差検出部は、前記画像生成部で白画素信号の補間処理によって生成された前記第1撮像信号を用いて視差検出を行う(5)乃至(13)のいずれかに記載の画像処理装置。
 (15) 前記第1撮像信号は、2画素×2画素の画素ブロック内において前記白画素を前記色成分画素以上に設けた信号である(1)乃至(14)のいずれかに記載の画像処理装置。
 また、本技術の撮像装置は以下のような構成も取ることができる。
 (1) 白画素と色成分画素を含む第1視点の第1撮像信号を生成する第1撮像部と、
 前記第1撮像部よりも白画素を少なくして色成分画素の割合を多くした前記第1視点と異なる第2視点の第2撮像信号を生成する第2撮像部と、
 前記第1撮像信号と前記第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
 前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部と
を備える撮像装置。
 (2) 前記第1撮像部では、2画素×2画素の画素ブロック内において前記白画素を前記色成分画素以上設けた(1)に記載の撮像装置。
 (3) 前記第1撮像部における前記色成分画素は、三原色内の二色の色成分画素である(1)または(2)に記載の撮像装置。
 (4) 前記第2撮像部は、三原色成分画素または前記三原色成分画素と白画素で構成した(1)乃至(3)のいずれかに記載の撮像装置。
 この技術の画像処理装置と画像処理方法および撮像装置では、第1視点の第1撮像信号と、第1視点と異なる第2視点であって第2撮像信号に基づき、第1視点に対する前記第2視点の視差が検出される。また、第1撮像信号と、視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像が画像生成部で生成される。さらに、第1撮像信号は白画素と色成分画素を含み、第2撮像信号は前記第1撮像信号よりも白画素が少なく色成分画素が多くされる。このように、白画素が第2撮像信号より多い第1撮像信号を基準に第2撮像信号を第1撮像信号にフュージョンするため、画質性能の低下を抑制しつつ高感度の撮像画を得ることができるようになる。したがって、低背化を保持しつつ高い画質性能が要求される機器、例えばスマートフォン等の携帯機器および車載機器等に適している。
 10・・・情報処理端末
 21,21-BW,21-CR,21-H,21-C・・・撮像部
 30,30-1~31-10・・・画像処理部
 31-H・・・補間部
 32,32-H,32-C・・・デモザイク処理部
 33-C,33-H・・・YUV変換部
 34・・・周波数検出部
 35,392,422,422a,427,427a・・・コアリング処理部
 36a,36b,36c・・・視差検出部
 37・・・視差補償部
 38・・・フォールバック判定部
 39・・・色画質改善部
 41・・・信号選択部
 42,42a・・・信号合成部
 43・・・輝度画質改善部
 51・・・センサ部
 52・・・通信部
 53・・・表示部
 54・・・タッチパネル
 55・・・操作部
 56・・・記憶部
 56・・・記録部
 60・・・制御部
 321b・・・青色補間係数算出部
 321r・・・赤色補間係数算出部
 322b・・・青成分画像生成部
 322g・・・緑成分画像生成部
 322r・・・赤成分画像生成部
 361,362,363・・・コスト算出部
 364・・・コスト統合部
 365・・・コスト最小ベクトル判定部
 381・・・画像特徴量算出部
 382・・・信号選択判定部
 391・・・周波数検出部
 393・・・低域通過フィルタ
 394・・・合成処理部
 412・・・信号選択部
 421・・・周波数検出部
 423,424・・・低域通過フィルタ
 425・・・差分算出部
 426・・・絶対値算出部
 428・・・合成比設定部
 429・・・合成処理部

Claims (20)

  1.  第1視点の第1撮像信号と、前記第1視点と異なる第2視点であって第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
     前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部とを備え、
     前記第1撮像信号は白画素と色成分画素を含み、前記第2撮像信号は前記第1撮像信号よりも白画素が少なく色成分画素が多い画像処理装置。
  2.  前記画像生成部は、所定の条件を満たす場合に前記第1撮像信号と前記視差補償第2撮像信号を用いて前記カラー画像を生成して、所定の条件を満たさない場合に前記第1撮像信号から前記カラー画像を生成する
    請求項1に記載の画像処理装置。
  3.  前記所定の条件を満たす場合とは、前記第1撮像信号と前記視差補償第2撮像信号を用いて前記カラー画像を生成した場合に前記第1撮像信号から生成した前記カラー画像よりも画質性能の低下のリスクが閾値よりも低いと判定される場合である
    請求項2に記載の画像処理装置。
  4.  前記画像生成部は、前記第1撮像信号と前記視差補償第2撮像信号に基づき、前記画質性能の低下のリスクを判別して、判別したリスクに応じた合成比で前記第1撮像信号に対して前記視差補償第2撮像信号を合成する
    請求項3に記載の画像処理装置。
  5.  前記画像生成部は、前記第1撮像信号から第1輝度信号と第1色信号の生成と、前記第2撮像信号から第2輝度信号と第2色信号の生成と、前記第2色信号と前記視差検出部で検出された視差に基づき視差補償第2色信号の生成を行い、前記視差補償第2撮像信号を用いて前記カラー画像を生成した場合に前記第1撮像信号から生成した前記カラー画像よりも画質性能の低下を生じるリスクに応じて、前記第1色信号と前記視差補償第2色信号の何れかの選択または合成を行い、
     前記視差検出部は、前記第1輝度信号と前記第2輝度信号を用いて視差検出を行う
    請求項1に記載の画像処理装置。
  6.  前記画像生成部は、前記リスクに応じて撮像画単位で前記第1色信号と前記視差補償第2色信号の何れかの選択または画素単位で前記第1色信号と前記視差補償第2色信号の合成を行う
    請求項5に記載の画像処理装置。
  7.  前記視差検出部は、前記第1輝度信号と前記第2輝度信号と前記第1色信号と前記第2色信号を用いて視差検出を行う
    請求項5に記載の画像処理装置。
  8.  前記第1撮像信号に基づき周波数検出を行い、検出結果に応じて前記視差検出部の制御を行う視差検出制御部を有し、
     前記視差検出部は、前記第1輝度信号と前記第2輝度信号に基づいて算出したコスト値と前記第1色信号と前記第2色信号に基づいて算出したコスト値を用いて視差検出を行い、
     前記視差検出制御部は、前記周波数検出結果に応じた合成比で前記2つのコスト値を統合した統合コスト値に基づき前記視差検出を行わせる
    る請求項7に記載の画像処理装置。
  9.  前記画像生成部は、前記第1輝度信号に基づき周波数検出を行い、前記第1色信号に対して前記周波数検出結果に応じて画質改善処理を行う
    請求項5に記載の画像処理装置。
  10.  前記画像生成部は、前記第2輝度信号の視差補償を行い視差補償第2輝度信号を生成して、前記第1輝度信号に前記視差補償第2輝度信号を合成して前記第1輝度信号の画質改善を行う
    請求項5に記載の画像処理装置。
  11.  前記画像生成部は、前記第1撮像信号を生成する撮像部のノイズ強度に応じて、前記第1輝度信号と前記視差補償第2輝度信号の合成比を設定する
    請求項10に記載の画像処理装置。
  12.  前記画像生成部は、前記第1撮像信号における白画素信号の補間処理と、前記色成分画素の画素信号と前記補間処理が行われた白画素信号を用いたデモザイク処理とデモザイク処理後の信号に対する色空間変換によって、前記第1色信号を生成する
    請求項5に記載の画像処理装置。
  13.  前記画像生成部は、補間処理後の白画素信号と前記色成分画素の画素信号に基づく色比と処理対象画素の白画素信号を用いて前記処理対象画素の色成分毎の画素信号を生成する
    請求項12に記載の画像処理装置。
  14.  前記画像生成部は、前記第1撮像信号における白画素信号の補間処理によって前記第1輝度信号を生成して、
     前記視差検出部は、前記画像生成部で白画素信号の補間処理によって生成された前記第1撮像信号を用いて視差検出を行う
    請求項5に記載の画像処理装置。
  15.  前記第1撮像信号は、2画素×2画素の画素ブロック内において前記白画素を前記色成分画素以上に設けた信号である
    請求項1に記載の画像処理装置。
  16.  白画素と色成分画素を含む第1視点の第1撮像信号と、前記第1撮像信号よりも白画素を少なくして色成分画素の割合を多くした前記第1視点と異なる第2視点の第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を視差検出部で検出することと、
     前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を画像生成部で生成することと
    を含む画像処理方法。
  17.  白画素と色成分画素を含む第1視点の第1撮像信号を生成する第1撮像部と、
     前記第1撮像部よりも白画素を少なくして色成分画素の割合を多くした前記第1視点と異なる第2視点の第2撮像信号を生成する第2撮像部と、
     前記第1撮像信号と前記第2撮像信号に基づき、前記第1視点に対する前記第2視点の視差を検出する視差検出部と、
     前記第1撮像信号と、前記視差検出部で検出された視差に基づいて視差補償された視差補償第2撮像信号を用いてカラー画像を生成する画像生成部と
    を備える撮像装置。
  18.  前記第1撮像部では、2画素×2画素の画素ブロック内において前記白画素を前記色成分画素以上設けた
    請求項17に記載の撮像装置。
  19.  前記第1撮像部における前記色成分画素は、三原色内の二色の色成分画素である
    請求項17に記載の撮像装置。
  20.  前記第2撮像部は、三原色成分画素または前記三原色成分画素と白画素で構成した
    請求項17に記載の撮像装置。
PCT/JP2018/000464 2017-03-27 2018-01-11 画像処理装置と画像処理方法および撮像装置 WO2018179671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880019853.6A CN110463194B (zh) 2017-03-27 2018-01-11 图像处理装置和图像处理方法以及图像捕获装置
EP18776730.6A EP3606057B1 (en) 2017-03-27 2018-01-11 Image processing device and image processing method
JP2019508592A JP7024782B2 (ja) 2017-03-27 2018-01-11 画像処理装置と画像処理方法および撮像装置
US16/488,787 US10999562B2 (en) 2017-03-27 2018-01-11 Image processing device, image processing method and imaging device capable of performing parallax compensation for captured color image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-060694 2017-03-27
JP2017060694 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018179671A1 true WO2018179671A1 (ja) 2018-10-04

Family

ID=63677775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000464 WO2018179671A1 (ja) 2017-03-27 2018-01-11 画像処理装置と画像処理方法および撮像装置

Country Status (5)

Country Link
US (1) US10999562B2 (ja)
EP (1) EP3606057B1 (ja)
JP (1) JP7024782B2 (ja)
CN (1) CN110463194B (ja)
WO (1) WO2018179671A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260597A (zh) * 2020-01-10 2020-06-09 大连理工大学 一种多波段立体相机的视差图像融合方法
WO2021039114A1 (ja) * 2019-08-29 2021-03-04 富士フイルム株式会社 撮像装置、撮像装置の動作方法、及びプログラム
CN113763295A (zh) * 2020-06-01 2021-12-07 杭州海康威视数字技术股份有限公司 图像融合方法、确定图像偏移量的方法及装置
WO2022190826A1 (ja) * 2021-03-09 2022-09-15 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3429197B1 (en) * 2016-03-09 2020-05-06 Sony Corporation Image processing apparatus, imaging apparatus, image processing method, and program
KR102648912B1 (ko) 2019-01-23 2024-03-19 삼성전자주식회사 영상 데이터를 분석하여 최종 영상 데이터를 생성하는 프로세서
CN111984852B (zh) * 2019-05-21 2024-08-13 微软技术许可有限责任公司 生成式图像获取
CN112785679B (zh) * 2021-03-15 2024-11-08 网易(杭州)网络有限公司 晶石模型的渲染方法及装置、计算机存储介质、电子设备
CN113810601B (zh) * 2021-08-12 2022-12-20 荣耀终端有限公司 终端的图像处理方法、装置和终端设备
CN114466170B (zh) * 2021-08-27 2023-10-31 锐芯微电子股份有限公司 图像处理方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151798A (ja) * 2009-12-24 2011-08-04 Sharp Corp 多眼撮像装置および多眼撮像方法
JP2011239259A (ja) * 2010-05-12 2011-11-24 Sony Corp 画像処理装置、画像処理方法及びプログラム
JP2013183353A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 画像処理装置
JP2013219525A (ja) 2012-04-06 2013-10-24 Nec Saitama Ltd 撮像装置、その制御方法及びプログラム
JP2015088824A (ja) 2013-10-29 2015-05-07 ソニー株式会社 情報処理装置、撮像装置、撮像システム、情報処理装置の制御方法、撮像装置の制御方法およびプログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825915A (en) * 1995-09-12 1998-10-20 Matsushita Electric Industrial Co., Ltd. Object detecting apparatus in which the position of a planar object is estimated by using hough transform
US6163337A (en) * 1996-04-05 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-view point image transmission method and multi-view point image display method
JP4156893B2 (ja) * 2002-09-27 2008-09-24 富士フイルム株式会社 画像処理装置、方法及びプログラム
US7773143B2 (en) * 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
JP4850281B2 (ja) * 2007-03-13 2012-01-11 オリンパス株式会社 画像信号処理装置、画像信号処理プログラム
US7544944B2 (en) * 2007-07-02 2009-06-09 Flir Systems Ab Camera and method for use with camera
US20090175535A1 (en) * 2008-01-09 2009-07-09 Lockheed Martin Corporation Improved processing of multi-color images for detection and classification
JP4513906B2 (ja) * 2008-06-27 2010-07-28 ソニー株式会社 画像処理装置、画像処理方法、プログラム及び記録媒体
JP5529424B2 (ja) * 2009-03-11 2014-06-25 ソニー株式会社 画像処理装置、画像処理方法及びコンピュータプログラム
US20130100249A1 (en) * 2010-01-06 2013-04-25 Konica Minolta Advanced Layers, Inc. Stereo camera device
US20120188409A1 (en) * 2011-01-24 2012-07-26 Andrew Charles Gallagher Camera with multiple color sensors
JP5816015B2 (ja) * 2011-07-15 2015-11-17 株式会社東芝 固体撮像装置及びカメラモジュール
US9270875B2 (en) * 2011-07-20 2016-02-23 Broadcom Corporation Dual image capture processing
JP5982751B2 (ja) * 2011-08-04 2016-08-31 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
EP2806643A1 (en) * 2012-01-16 2014-11-26 Sony Corporation Solid-state image sensor and camera system
JP5701785B2 (ja) 2012-02-03 2015-04-15 株式会社東芝 カメラモジュール
JP5409829B2 (ja) * 2012-02-17 2014-02-05 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、および、プログラム
EP2833638B1 (en) * 2012-03-29 2017-09-27 Fujifilm Corporation Image processing device, imaging device, and image processing method
JP2014078095A (ja) * 2012-10-10 2014-05-01 Sony Corp 画像処理装置、画像処理方法、及びプログラム
JP6087612B2 (ja) * 2012-12-17 2017-03-01 キヤノン株式会社 画像処理装置および画像処理方法
JP6020199B2 (ja) * 2013-01-24 2016-11-02 株式会社ソシオネクスト 画像処理装置、方法、及びプログラム、並びに撮像装置
JP2015197745A (ja) * 2014-03-31 2015-11-09 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法及びプログラム
JP2015226299A (ja) * 2014-05-30 2015-12-14 コニカミノルタ株式会社 画像入力装置
CN112492194B (zh) * 2015-03-10 2023-04-14 佳能株式会社 图像处理方法和图像处理装置
US9942474B2 (en) * 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
KR102324605B1 (ko) * 2015-05-26 2021-11-10 한국전자통신연구원 변이 영상 생성 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151798A (ja) * 2009-12-24 2011-08-04 Sharp Corp 多眼撮像装置および多眼撮像方法
JP2011239259A (ja) * 2010-05-12 2011-11-24 Sony Corp 画像処理装置、画像処理方法及びプログラム
JP2013183353A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 画像処理装置
JP2013219525A (ja) 2012-04-06 2013-10-24 Nec Saitama Ltd 撮像装置、その制御方法及びプログラム
JP2015088824A (ja) 2013-10-29 2015-05-07 ソニー株式会社 情報処理装置、撮像装置、撮像システム、情報処理装置の制御方法、撮像装置の制御方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606057A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039114A1 (ja) * 2019-08-29 2021-03-04 富士フイルム株式会社 撮像装置、撮像装置の動作方法、及びプログラム
JPWO2021039114A1 (ja) * 2019-08-29 2021-03-04
JP7289921B2 (ja) 2019-08-29 2023-06-12 富士フイルム株式会社 撮像装置、撮像装置の動作方法、及びプログラム
US11678070B2 (en) 2019-08-29 2023-06-13 Fujifilm Corporation Imaging apparatus, operation method of imaging apparatus, and program
US12052517B2 (en) 2019-08-29 2024-07-30 Fujifilm Corporation Imaging apparatus, operation method of imaging apparatus, and program
CN111260597A (zh) * 2020-01-10 2020-06-09 大连理工大学 一种多波段立体相机的视差图像融合方法
CN111260597B (zh) * 2020-01-10 2021-12-03 大连理工大学 一种多波段立体相机的视差图像融合方法
CN113763295A (zh) * 2020-06-01 2021-12-07 杭州海康威视数字技术股份有限公司 图像融合方法、确定图像偏移量的方法及装置
CN113763295B (zh) * 2020-06-01 2023-08-25 杭州海康威视数字技术股份有限公司 图像融合方法、确定图像偏移量的方法及装置
WO2022190826A1 (ja) * 2021-03-09 2022-09-15 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器

Also Published As

Publication number Publication date
JP7024782B2 (ja) 2022-02-24
CN110463194B (zh) 2022-01-25
EP3606057B1 (en) 2021-07-21
CN110463194A (zh) 2019-11-15
EP3606057A4 (en) 2020-04-22
JPWO2018179671A1 (ja) 2020-02-06
US10999562B2 (en) 2021-05-04
EP3606057A1 (en) 2020-02-05
US20200112705A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7024782B2 (ja) 画像処理装置と画像処理方法および撮像装置
US10957029B2 (en) Image processing device and image processing method
JP7014218B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
JP6977821B2 (ja) 画像処理装置と画像処理方法
US10704957B2 (en) Imaging device and imaging method
JP6816769B2 (ja) 画像処理装置と画像処理方法
JP6816768B2 (ja) 画像処理装置と画像処理方法
JP7500798B2 (ja) 固体撮像装置、補正方法、および電子装置
JPWO2017217177A1 (ja) 画像処理装置、および撮像装置、ならびに画像処理システム
WO2017043331A1 (ja) 画像処理装置、及び、画像処理方法
JP6981416B2 (ja) 画像処理装置と画像処理方法
JP2018011246A (ja) 固体撮像装置、補正方法、および電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776730

Country of ref document: EP

Effective date: 20191028