[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018168637A1 - Method for using fly ash - Google Patents

Method for using fly ash Download PDF

Info

Publication number
WO2018168637A1
WO2018168637A1 PCT/JP2018/008968 JP2018008968W WO2018168637A1 WO 2018168637 A1 WO2018168637 A1 WO 2018168637A1 JP 2018008968 W JP2018008968 W JP 2018008968W WO 2018168637 A1 WO2018168637 A1 WO 2018168637A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
ash
unburned carbon
carbon content
pcf
Prior art date
Application number
PCT/JP2018/008968
Other languages
French (fr)
Japanese (ja)
Inventor
昂平 大村
関 卓哉
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2018553169A priority Critical patent/JP6995059B2/en
Publication of WO2018168637A1 publication Critical patent/WO2018168637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method for using fly ash.
  • a large amount of coal ash which is a combustion residue of coal, is generated at coal-fired power plants, and most of the treatment depends on the cement and civil engineering fields.
  • the dependence on the cement field is large, and about 65% of the total coal ash is used as a raw material for producing cement clinker.
  • the amount of coal ash generated is expected to increase with the establishment of a new coal-fired power plant and the increase in operating rate, and there is an urgent need to expand applications other than raw materials for manufacturing cement clinker.
  • Boilers for coal-fired power plants are broadly divided into two types: pulverized coal combustion boilers and fluidized bed combustion boilers, and fly ash and clinker ash from the pulverized coal burning method.
  • Fly ash is always discharged from the layer system. Fly ash is collected from dust collectors such as electric dust collectors and bag filters, while clinker ash is collected from the bottom of the boiler, both of which are SiO 2 (silica) and Al 2.
  • the main component is O 3 (alumina).
  • fly ash is a fine spherical particle
  • clinker ash is a porous particle.
  • FBF ash In fly ash, the characteristics differ greatly between those generated from a pulverized coal-fired boiler (hereinafter sometimes referred to as PCF ash) and those generated from a fluidized bed boiler (hereinafter sometimes referred to as FBF ash).
  • PCF ash pulverized coal-fired boiler
  • FBF ash may contain CaO (Lime), anhydrous gypsum, calcium hydroxide, etc. due to the effect of desulfurization.
  • PCF ash has applications other than cement clinker manufacturing raw materials, for example, as a cement mixed material or a concrete mixed material.
  • a cement mixed material for example, as a cement mixed material or a concrete mixed material.
  • unburned carbon is used. It is desirable that the content is low, and that other properties such as fineness and chemical composition are required to satisfy a certain standard (for example, JIS A 6201), and the quality variation from lot to lot is small. It is done.
  • physical properties of FBF ash differ from those of PCF ash due to the differences in particle shape, components, and other characteristics, and they are often outside the standards for the above-mentioned cement mixed materials and concrete mixed materials. It is difficult.
  • applications that can treat a large amount of coal ash besides cement clinker production raw materials include applications as cement mixed materials and concrete mixed materials, but in coal-fired power plants, unburned carbon content is low.
  • an object of the present invention is to provide a method of using fly ash that can efficiently use fly ash having various properties as a result of operation of a coal-fired power plant as a cement mixed material or a concrete mixed material.
  • the unburned carbon content of fly ash (PCF ash) generated in a pulverized coal fired boiler is measured, and the PCF ash is separated and stored according to a preset threshold value of unburned carbon content.
  • PCF ash separated above those having a low unburned carbon content are classified into fine powder and coarse powder, and the fine powder is used as a fly ash for a cement mixture or a concrete mixture.
  • the one with a high unburned carbon content is mixed with the fly ash (FBF ash) generated in the coarse powder or fluidized bed boiler, and the obtained mixed powder is used as a cement clinker.
  • a method of using fly ash, characterized by being used as a raw material for production, is provided.
  • the unburned carbon content threshold is set in a range of 1 to 10% by mass;
  • the classification threshold for the PCF ash having a low unburned carbon content is set in a range of 20 to 150 ⁇ m. Is preferred.
  • the pulverized coal-fired boiler is provided in a coal-fired power plant, and the PCF ash generated in the pulverized coal-fired boiler is collected in a coal-fired power plant using a dust collection facility. Storing the collected PCF ash in a silo once; (4) A sampling port is provided between the dust collection facility discharge port and the silo discharge port, and the unburned carbon content is measured for the PCF ash collected from the sampling port.
  • PCF ash generated in a plurality of pulverized coal-fired boilers is received in one silo, a sampling port is provided at the lower part of the receiving silo, and the unburned carbon content of the PCF ash sampled from the sampling port is measured.
  • a sampling port is provided at the lower part of the receiving silo, and the unburned carbon content of the PCF ash sampled from the sampling port is measured.
  • emitted from a coal-fired power plant can be used efficiently for the use suitable for the property, and the fly ash which can be used as a cement mixed material and a concrete mixed material is conventionally used. It becomes possible to supply stably.
  • fly ash used in the present invention is a coal dust ash generated by burning coal-based fuel in a pulverized coal-fired boiler or fluidized bed boiler. It is a collection.
  • the above boiler is equipped with various combustion facilities, and the present invention can be applied to fly ash generated from a dust collector of a boiler equipped with any combustion facility. Since the present invention can be industrially used and has a certain level of quality, the present invention is preferably applied to fly ash collected by a dust collection facility of a coal-fired power plant.
  • fly ash (PCF ash) generated in a pulverized coal-fired boiler is classified by unburnt carbon content and by particle size (classification).
  • the generated fly ash (FBF ash) is used without being subjected to a separation process.
  • the PCF ash raw powder collected from a dust collector of a pulverized coal-fired boiler generally contains 40% by mass or more of silica (SiO 2 ), particularly 45 to 60% by mass, and 15% of alumina (Al 2 O 3 ). More than mass%, particularly 20 to 35 mass%, SiO 2 / Al 2 O 3 mass ratio is in the range of about 1.5 to 2.5, and other oxides include Fe 2 O 3 , MgO, CaO, etc. And further includes unburned carbon. Further, the particle diameter is wide, and is about 10 to 50 ⁇ m on average.
  • the unburned carbon content and particle size affect the quality of cement and concrete.
  • unburned carbon adsorbs chemicals such as AE water reducing agents contained in cement and concrete, and as a result, the workability of cement and concrete may be reduced.
  • those having a large particle size have activated carbon properties, and have a large amount of adsorbing chemicals such as chemical admixtures, which is not desirable as a cement or concrete mixture.
  • the mortar is a mixture of sand and cement paste obtained by mixing cement and water, and concrete is solidified by mixing sand (fine aggregate) and pebbles (gravel) into the cement paste. Is.
  • FBF ash generated from a fluidized bed boiler has a small effect on improving the fluidity of mortar or concrete because the particle shape is not spherical, and component fluctuations derived from other than coal (for example, Ca component fluctuations for desulfurization and coal) This causes inconveniences such as changes in reactivity when mixed with cement or concrete due to component fluctuations due to fuel co-firing.
  • FBF ash is used as a cement clinker manufacturing raw material that is fired without performing a fractionation treatment as is done for PCF ash.
  • the unburned carbon content is measured, and the PCF ash is classified into those having a large amount of unburned carbon and those having a small amount.
  • a method of reducing the unburned carbon content by heating the PCF ash to a temperature of 400 ° C. or higher is known, but when such a heat treatment is performed, the PCF ash originally has some heating conditions. The reactivity with the cement is impaired, the particles are sintered, and the fluidity of the PCF ash is also impaired. Therefore, in the present invention, the heat treatment for reducing the unburned carbon content is not performed, and the PCF ash is used in different forms depending on the unburned carbon content.
  • the method for measuring the unburned carbon content is not particularly limited, but, for example, a method of detecting CO 2 ⁇ CO gas generated by combustion with infrared rays; a method described in JIS A 6201; A method for measuring and estimating the amount of unburned carbon from the ignition raw material; or a method for calculating based on the amount of methylene blue adsorbed measured by JCAS I-61; a density specific gravity test; For example, a method for estimating the quantity. This measurement can be performed at predetermined time intervals or continuously online.
  • Threshold value for performing separation based on unburned carbon content is set in the range of 1 to 10% by mass, particularly 3 to 7% by mass.
  • an auxiliary threshold value smaller than this threshold value is set, and PCF ash having an unburned carbon content smaller than a predetermined threshold value can be further separated. That is, by appropriately mixing and using the two types of PCF ash separated by the auxiliary threshold, it is possible to reduce the variation in the unburned carbon content and effectively suppress the quality variation.
  • PCF ash with low unburned carbon content Among the PCF ash classified according to the unburned carbon content as described above, those having a small unburned carbon amount are classified and classified into coarse powder having a large particle size and fine powder having a small particle size. By such classification, fine powder having a particle size suitable for a cement mixed material or a concrete mixed material and coarse powder having a particle size not suitable for such use can be obtained. That is, the coarse powder is appropriately mixed with FBF ash and used as a raw material for producing cement clinker, and the fine powder is used as a cement mixed material or a concrete mixed material.
  • the classification threshold is usually set to a value within the range of 20 to 150 ⁇ m, particularly 20 to 75 ⁇ m.
  • the classification method is not particularly limited, and a classification method generally used for powder classification can be used.
  • Examples of usable classification methods include sieve classification and airflow classification.
  • sieve classification when sieving is employed, unburned carbon contained in fly ash is further reduced, which is preferable.
  • the threshold value when separating fly ash according to the value of the unburned carbon content can be set to a higher point, and therefore, more fly ash, It can be obtained as a mixed material of cement or concrete.
  • Table 1 below shows the loss on ignition of fine and coarse powders (the amount of unburned carbon and the amount of three types of fly ash raw powders from FA1 to FA3 when classified with a sieve having an opening of 75 ⁇ m, 45 ⁇ m, or 20 ⁇ m. Strong correlation).
  • PCF ash with high unburned carbon content Of the PCF ash separated according to the unburned carbon content, those having a large unburned carbon amount are unsuitable as cement or concrete mixed materials. Therefore, this PCF ash is mixed with the coarse powder or FBF ash obtained by the above classification and used as a raw material for producing cement clinker.
  • the PCF ash is classified according to the unburned carbon content and the particle size, and the sorted PCF ash is used as a cement or a concrete mixed material or a cement clinker production raw material according to the property.
  • An example of the flow up to this is shown in FIG.
  • a to C represent coal-fired power plant plants
  • the plants A and B include a pulverized coal-fired boiler having a pulverized dust collector A1 or a dust collector B1
  • the plant C has a fluidized bed having a dust collector C1. Has a boiler.
  • a silo A2 for storing the PCF ash collected by the dust collector A1 is disposed, but no sampling port is provided in the plant A. Accordingly, the PCF ash collected by the dust collector A1 is stored in the silo A2 and then transported to the silo D1 disposed outside the plant A.
  • a sampling port D2 is provided below the silo D1, and the unburned carbon content is measured for the collected PCF ash.
  • FIG. 1 shows an example in which PCF ash is sorted according to a threshold value a and an auxiliary threshold value b (a> b), and three separate storage silos D3, D4, and D5 are provided. That is, when the unburned carbon content of the PCF ash stored in the silo D1 is larger than the threshold value a, it is transferred to the silo D5, and the unburned carbon content is between the threshold value a and the auxiliary threshold value b. Is transferred to silo D4, and is transferred to silo D3 when the unburned carbon content is smaller than auxiliary threshold value b.
  • a sampling port B2 is provided at the discharge port of the dust collector B1 provided in the plant B, and the PCF ash collected by the dust collector B1 is sampled at the sampling port B2 to measure the unburned carbon content. Is stored in silo B3.
  • a sampling port B4 can be provided in the lower part of the silo B3.
  • the PCF ash stored in the silo B3 is sorted according to the measured threshold value of the unburned carbon content, and is transported to the separate storage silo in the same manner as the PCF ash stored in the silo D2. That is, when the threshold value a and the auxiliary threshold value b (a> b) are set, if the unburned carbon content is larger than the threshold value a, the unburned carbon content is transferred to the silo D5. When it is between the auxiliary threshold value b, it is transferred to silo D4, and when the unburned carbon content is smaller than auxiliary threshold value b, it is transferred to silo D3.
  • the FBF ash collected by the dust collector C1 provided in the plant C is once stored in the silo C2 and then transported to the silo D5. That is, the FBF ash is mixed with the PCF ash having an unburned carbon content larger than the threshold value a in the silo D5.
  • the PCF ash sorted as described above and stored in the silo D3 and the PCF ash stored in the silo D4 are mixed at a ratio such that the unburned carbon content becomes a constant value and supplied to the classification equipment D6. And separated into coarse powder and fine powder.
  • the PCF ash stored in the silo D3 and the silo D4 may be mixed directly into the classification equipment D6 and separated into fine powder and coarse powder.
  • the fine powder separated as described above is used as a cement mixture or a concrete mixture.
  • coarse powder will be used as a cement clinker manufacturing raw material, you may supply to silo D5 and mix with FBF ash.
  • a mixture of FBF ash and PCF ash stored in silo D5 is used as a raw material for producing cement clinker.
  • the method of transporting or transferring fly ash generated in various plants is not particularly limited. If there is a distance, the fly ash may be transported by truck, ship, etc., or in the same office or a nearby office. In some cases, it may be transported by a conveyor, a transport pipe or the like.
  • a mixer generally used for powder mixing can be used, or mixing can be performed in a transport process.
  • the powder mixer include a mechanical stirring type and an airflow type.
  • the mixing in the transportation process include a continuous powder transportation mixer and fluid mixing in a pneumatic feeding facility.
  • A, B, C Coal-fired power plant A1, B1, C1: Dust collection equipment B2, B4, D2: Sampling port D6: Classification equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A method for using fly ash, said method comprising: measuring the unburned carbon content of fly ash (PCF ash) generated from a pulverized coal combustion boiler; sorting the PCF ash on the basis of a preset threshold of unburned carbon content and storing the same; in the PCF ash sorted above, classifying a portion of PCF ash having a low unburned carbon content into a coarse powder and a fine powder; using the fine powder as fly ash for a cement mixing material or a concrete mixing material; in the PCF ash sorted above, mixing a portion of PCF ash having a high unburned carbon content with the coarse powder or fly ash (FBF ash) generated from a fluidized bed combustion boiler; and using the mixed powder thus obtained as a starting material for producing a cement clinker.

Description

フライアッシュの使用方法How to use fly ash
 本発明はフライアッシュの使用方法に関する。 The present invention relates to a method for using fly ash.
 石炭火力発電所では石炭の燃焼残渣である石炭灰が多量に発生し、その処理の大部分は、セメント分野や土木分野に依存している。特にセメント分野への依存は大きく、セメントクリンカー製造原料として石炭灰全体の65%程度が利用されている。 A large amount of coal ash, which is a combustion residue of coal, is generated at coal-fired power plants, and most of the treatment depends on the cement and civil engineering fields. In particular, the dependence on the cement field is large, and about 65% of the total coal ash is used as a raw material for producing cement clinker.
 一方、石炭火力発電プラントの新設や稼働率増加に伴い石炭灰発生量の増加が予測されており、セメントクリンカー製造原料以外の用途拡大を図ることが急務とされる。 On the other hand, the amount of coal ash generated is expected to increase with the establishment of a new coal-fired power plant and the increase in operating rate, and there is an urgent need to expand applications other than raw materials for manufacturing cement clinker.
 石炭火力発電プラントのボイラは、微粉炭焚きボイラ(pulverized coal combustion boiler)と流動層ボイラ(fluidized bed combustion boiler)の2つに大別され、微粉炭焚き方式からはフライアッシュとクリンカアッシュが、流動層方式からはフライアッシュが常時排出される。
 フライアッシュは、電気集塵機やバグフィルター等の集塵設備から回収されるものであり、一方、クリンカアッシュは、ボイラの底部から回収されるものであって、何れもSiO(シリカ)とAl(アルミナ)とを主成分とするものであるが、例えば、フライアッシュは球状の緻密な粒子であるのに対し、クリンカアッシュは多孔質の粒子であるため、それぞれの性状に適した処理技術、有効利用技術が求められる。
Boilers for coal-fired power plants are broadly divided into two types: pulverized coal combustion boilers and fluidized bed combustion boilers, and fly ash and clinker ash from the pulverized coal burning method. Fly ash is always discharged from the layer system.
Fly ash is collected from dust collectors such as electric dust collectors and bag filters, while clinker ash is collected from the bottom of the boiler, both of which are SiO 2 (silica) and Al 2. The main component is O 3 (alumina). For example, fly ash is a fine spherical particle, whereas clinker ash is a porous particle. Technology and effective utilization technology are required.
 フライアッシュには、微粉炭焚きボイラから発生するもの(以下、PCFアッシュと呼ぶことがある)と流動層ボイラから発生するもの(以下、FBFアッシュと呼ぶことがある)とで大きく性状が異なっており、例えば、FBFアッシュは、脱硫の影響により、CaO(Lime)、無水石膏、水酸化カルシウムなどを含んでいる場合もある。 In fly ash, the characteristics differ greatly between those generated from a pulverized coal-fired boiler (hereinafter sometimes referred to as PCF ash) and those generated from a fluidized bed boiler (hereinafter sometimes referred to as FBF ash). For example, FBF ash may contain CaO (Lime), anhydrous gypsum, calcium hydroxide, etc. due to the effect of desulfurization.
 このようなフライアッシュにおいて、PCFアッシュについては、セメントクリンカー製造原料以外の用途として、例えば、セメント混合材又はコンクリート混合材としての用途があり、このような混合材としての用途においては、未燃カーボン含有量が少ないものが望ましく、さらに粉末度や化学成分などその他の性状においても一定の規格(例えばJIS A 6201)を満足していることが要求され、かつロット毎の品質変動が小さいことが求められる。
 一方、FBFアッシュでは粒子形状や成分等の特徴の違いから物性もPCFアッシュとは異なり、上記のセメント混合材やコンクリート混合材としての規格外となることも多く、このような用途への有効利用は困難である。
In such fly ash, PCF ash has applications other than cement clinker manufacturing raw materials, for example, as a cement mixed material or a concrete mixed material. In such a mixed material, unburned carbon is used. It is desirable that the content is low, and that other properties such as fineness and chemical composition are required to satisfy a certain standard (for example, JIS A 6201), and the quality variation from lot to lot is small. It is done.
On the other hand, physical properties of FBF ash differ from those of PCF ash due to the differences in particle shape, components, and other characteristics, and they are often outside the standards for the above-mentioned cement mixed materials and concrete mixed materials. It is difficult.
 ところで、各種用途に適して性状を有するフライアッシュを発電プラントにおいて安定的に発生させるには、燃料である石炭や発電プラント運転条件を適宜のものに限定して運転すればよいが、発電プラントは発電を目的とした設備である以上、副産物であるフライアッシュの品質に重点を置いた運転は実用的でなく、現実的には困難である。 By the way, in order to stably generate fly ash having properties suitable for various applications in a power plant, it is only necessary to operate coal as a fuel or power plant operating conditions limited to appropriate ones. As long as it is a facility for power generation, operation with an emphasis on the quality of fly ash, which is a by-product, is impractical and difficult in practice.
特開2001-121084号公報JP 2001-121084 A
 上述したように、セメントクリンカー製造原料以外に多量の石炭灰を処理可能な用途としては、セメント混合材、コンクリート混合材としての用途が挙げられるが、石炭火力発電プラントにおいて、未燃カーボン含有量が少なく、粉末度や化学成分などその他の性状においても一定の基準を満たしたフライアッシュを安定的に発生させることは困難である。 As described above, applications that can treat a large amount of coal ash besides cement clinker production raw materials include applications as cement mixed materials and concrete mixed materials, but in coal-fired power plants, unburned carbon content is low. However, it is difficult to stably generate fly ash that satisfies a certain standard even in other properties such as fineness and chemical composition.
 従って、本発明の目的は、石炭火力発電プラントの運用に伴って生じる様々な性状のフライアッシュを、セメント混合材やコンクリート混合材として効率よく使用できるフライアッシュの使用方法を提供することにある。 Therefore, an object of the present invention is to provide a method of using fly ash that can efficiently use fly ash having various properties as a result of operation of a coal-fired power plant as a cement mixed material or a concrete mixed material.
 本発明によれば、微粉炭焚きボイラにて発生するフライアッシュ(PCFアッシュ)の未燃カーボン含有量を測定し、予め設定された未燃カーボン含有量の閾値によって該PCFアッシュを分別して貯蔵し、
 上記で分別されたPCFアッシュの内、未燃カーボン含有量の低いものを、微粉と粗粉とに分級し、該微粉を、セメント混合材用又はコンクリート混合材用フライアッシュとして使用し、
 上記で分別されたPCFアッシュの内、未燃カーボン含有量の高いものを、前記粗粉又は流動層ボイラにて発生するフライアッシュ(FBFアッシュ)と混合し、得られた混合粉を、セメントクリンカー製造原料として使用することを特徴とするフライアッシュの使用方法が提供される。
According to the present invention, the unburned carbon content of fly ash (PCF ash) generated in a pulverized coal fired boiler is measured, and the PCF ash is separated and stored according to a preset threshold value of unburned carbon content. ,
Among the PCF ash separated above, those having a low unburned carbon content are classified into fine powder and coarse powder, and the fine powder is used as a fly ash for a cement mixture or a concrete mixture,
Among the PCF ash separated as described above, the one with a high unburned carbon content is mixed with the fly ash (FBF ash) generated in the coarse powder or fluidized bed boiler, and the obtained mixed powder is used as a cement clinker. A method of using fly ash, characterized by being used as a raw material for production, is provided.
 本発明のフライアッシュの使用方法においては、
(1)前記未燃カーボン含有量の閾値が、1~10質量%の範囲に設定されていること、
(2)前記未燃カーボン含有量の低いPCFアッシュについてなされる分級の閾値が20~150μmの範囲に設定されていること、
が好適である。
In the method of using the fly ash of the present invention,
(1) The unburned carbon content threshold is set in a range of 1 to 10% by mass;
(2) The classification threshold for the PCF ash having a low unburned carbon content is set in a range of 20 to 150 μm.
Is preferred.
 また、本発明においては、
(3)前記微粉炭焚きボイラが石炭火力発電プラントに備えられたものであり、当該石炭火力発電プラント内にて、微粉炭焚きボイラにて発生したPCFアッシュを集塵設備で捕集し、捕集されたPCFアッシュを一旦サイロに貯蔵すること、
(4)前記集塵設備の排出口から前記サイロの排出口までの間にサンプリング口を設け、該サンプリング口から採取されたPCFアッシュについて未燃カーボン含有量の測定を行い、この測定値に基づいて、該PCFアッシュを分別貯蔵設備に移送すること、
(5)複数の微粉炭焚きボイラにて発生したPCFアッシュを一つのサイロに受け入れ、該受入サイロの下部にサンプリング口を設け、該サンプリング口から採取されたPCFアッシュについて未燃カーボン含有量の測定を行うこと、
という手段を採用することができる。
In the present invention,
(3) The pulverized coal-fired boiler is provided in a coal-fired power plant, and the PCF ash generated in the pulverized coal-fired boiler is collected in a coal-fired power plant using a dust collection facility. Storing the collected PCF ash in a silo once;
(4) A sampling port is provided between the dust collection facility discharge port and the silo discharge port, and the unburned carbon content is measured for the PCF ash collected from the sampling port. Transferring the PCF ash to a separate storage facility,
(5) PCF ash generated in a plurality of pulverized coal-fired boilers is received in one silo, a sampling port is provided at the lower part of the receiving silo, and the unburned carbon content of the PCF ash sampled from the sampling port is measured. To do the
The following means can be adopted.
 本発明によれば、石炭火力発電プラントから排出されるフライアッシュを効率よく、その性状に適した用途に用いることができ、またセメント混合材、コンクリート混合材として利用可能なフライアッシュを従来よりも安定的に供給することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the fly ash discharged | emitted from a coal-fired power plant can be used efficiently for the use suitable for the property, and the fly ash which can be used as a cement mixed material and a concrete mixed material is conventionally used. It becomes possible to supply stably.
本発明にしたがってフライアッシュが所定の用途に適用されるまでのフローの一例を示す図である。It is a figure which shows an example of a flow until a fly ash is applied for a predetermined use according to this invention.
<フライアッシュ>
 本発明において使用されるフライアッシュとは、既に述べたように、微粉炭焚きボイラ又は流動層ボイラにて石炭を主とする燃料を燃焼させた際に発生する石炭灰の内、集塵機にて捕集されたものである。
 上記のようなボイラは、種々の燃焼設備が備えており、どのような燃焼設備が備えているボイラの集塵機から発生するフライアッシュにも本発明を適用することができるが、特に大量に発生し、工業的利用が可能であり、ある程度一定の品質を有していることから、石炭火力発電所の集塵設備により捕集されたフライアッシュについて、本発明は好適に適用される。
<Fly ash>
As already described, fly ash used in the present invention is a coal dust ash generated by burning coal-based fuel in a pulverized coal-fired boiler or fluidized bed boiler. It is a collection.
The above boiler is equipped with various combustion facilities, and the present invention can be applied to fly ash generated from a dust collector of a boiler equipped with any combustion facility. Since the present invention can be industrially used and has a certain level of quality, the present invention is preferably applied to fly ash collected by a dust collection facility of a coal-fired power plant.
 本発明においては、上記のフライアッシュの内、微粉炭焚きボイラで発生したフライアッシュ(PCFアッシュ)については、未燃カーボン含有量による分別及び粒径による分別(分級)を行い、流動層ボイラで発生したフライアッシュ(FBFアッシュ)は、分別処理は行わず、使用に供される。 In the present invention, among the above fly ash, fly ash (PCF ash) generated in a pulverized coal-fired boiler is classified by unburnt carbon content and by particle size (classification). The generated fly ash (FBF ash) is used without being subjected to a separation process.
 即ち、微粉炭焚きボイラの集塵機から捕集されたPCFアッシュの原粉は、一般に、シリカ(SiO)を40質量%以上、特に45~60質量%含み、アルミナ(Al)を15質量%以上、特に20~35質量%含み、SiO/Al質量比が1.5~2.5程度の範囲にあり、その他の酸化物として、Fe、MgO、CaOなどを含んでおり、さらには未燃カーボンを含んでいる。また、その粒径は幅広く、平均すると10~50μm程度である。 That is, the PCF ash raw powder collected from a dust collector of a pulverized coal-fired boiler generally contains 40% by mass or more of silica (SiO 2 ), particularly 45 to 60% by mass, and 15% of alumina (Al 2 O 3 ). More than mass%, particularly 20 to 35 mass%, SiO 2 / Al 2 O 3 mass ratio is in the range of about 1.5 to 2.5, and other oxides include Fe 2 O 3 , MgO, CaO, etc. And further includes unburned carbon. Further, the particle diameter is wide, and is about 10 to 50 μm on average.
 しかるに、このようなPCFアッシュをセメントに混合したとき、その未燃カーボン含有量や粒径は、セメントやコンクリートの品質に影響を与える。例えば、未燃カーボン含有量が多いと、モルタルやコンクリート表面に未燃カーボンが浮き出てしまい、黒色を呈するようになり、その外観を損なうおそれがある。また、未燃カーボンが、セメントやコンクリートに含まれるAE減水剤などの薬剤を吸着し、この結果、セメントやコンクリートのワーカビリティが低下することもある。
 さらに、粒径の大きなものは活性炭的な性質を有しており、化学混和剤等の薬剤吸着量が多く、セメントやコンクリートの混合材としては、望ましいものではない。
 尚、モルタルは、セメントと水を混合して得られるセメントペーストに砂を練り込んだものであり、コンクリートは、セメントペーストに砂(細骨材)及び小石(砂利)を練り込んで固化させたものである。
However, when such PCF ash is mixed with cement, the unburned carbon content and particle size affect the quality of cement and concrete. For example, if the content of unburned carbon is large, unburned carbon will come out on the surface of mortar or concrete, resulting in a black color, which may impair the appearance. In addition, unburned carbon adsorbs chemicals such as AE water reducing agents contained in cement and concrete, and as a result, the workability of cement and concrete may be reduced.
Further, those having a large particle size have activated carbon properties, and have a large amount of adsorbing chemicals such as chemical admixtures, which is not desirable as a cement or concrete mixture.
In addition, the mortar is a mixture of sand and cement paste obtained by mixing cement and water, and concrete is solidified by mixing sand (fine aggregate) and pebbles (gravel) into the cement paste. Is.
 従って、セメントやコンクリートの混合材として使用するPCFアッシュについては、JIS或いはASTMなどにより品質規格が設けられており(JIS A-6201、ASTM C618)、本発明では、このようなPCFアッシュについては、未燃カーボン含有量による分別及び粒径による分別(分級)を行う。 Therefore, for PCF ash used as a mixture of cement and concrete, quality standards are provided by JIS or ASTM (JIS A-6201, ASTM C618). In the present invention, for such PCF ash, Sort by unburned carbon content and sort by particle size (classification).
 一方、流動層ボイラから発生するFBFアッシュは、粒子形状が球形でないことからモルタル又はコンクリートの流動性を向上させる効果が小さかったり、石炭以外に由来する成分変動(例えば脱硫用のCa成分変動や石炭以外の燃料混焼により成分変動)によってセメントやコンクリートに混合したときに反応性が変動したりするなどの不都合を生じる。 このため、本発明では、FBFアッシュについては、PCFアッシュについて行われるような分別処理は行わず、焼成が行われるセメントクリンカー製造原料として使用する。 On the other hand, FBF ash generated from a fluidized bed boiler has a small effect on improving the fluidity of mortar or concrete because the particle shape is not spherical, and component fluctuations derived from other than coal (for example, Ca component fluctuations for desulfurization and coal This causes inconveniences such as changes in reactivity when mixed with cement or concrete due to component fluctuations due to fuel co-firing. For this reason, in the present invention, FBF ash is used as a cement clinker manufacturing raw material that is fired without performing a fractionation treatment as is done for PCF ash.
<未燃カーボン含有量による分別>
 本発明においては、PCFアッシュについては、先ず未燃カーボン含有量を測定し、未燃カーボン量の多いものと少ないものとに分別する。このPCFアッシュを400℃以上の温度に加熱することにより未燃カーボン含有量を低減させる方法が知られているが、このような熱処理を行うと、加熱条件によってはPCFアッシュが本来有しているセメントとの反応性が損なわれたり、また、粒子の焼結を生じてしまい、PCFアッシュが有する流動性も損なわれてしまう。従って、本発明では、未燃カーボン含有量を低減するための熱処理は行わず、未燃カーボン含有量によって分別し、この含有量によって、異なる形態でPCFアッシュを使用する。
<Separation by unburned carbon content>
In the present invention, for PCF ash, first, the unburned carbon content is measured, and the PCF ash is classified into those having a large amount of unburned carbon and those having a small amount. A method of reducing the unburned carbon content by heating the PCF ash to a temperature of 400 ° C. or higher is known, but when such a heat treatment is performed, the PCF ash originally has some heating conditions. The reactivity with the cement is impaired, the particles are sintered, and the fluidity of the PCF ash is also impaired. Therefore, in the present invention, the heat treatment for reducing the unburned carbon content is not performed, and the PCF ash is used in different forms depending on the unburned carbon content.
 未燃カーボン含有量の測定方法は特に限定されないが、例えば、燃焼させて発生したCO・COガスを赤外線検出する方法;JIS A 6201に記載された方法で、1000℃での強熱減量を測定し、該強熱原料から未燃カーボン量を推定する方法;あるいはJCAS I-61により測定されたメチレンブルー吸着量に基づいて算出する方法;密かさ比重試験;マイクロ波を照射して未燃カーボン量を推定する方法などが挙げられる。
 この測定は、所定時間毎に行うこともできるし、オンラインで連続して実施することもできる。
The method for measuring the unburned carbon content is not particularly limited, but, for example, a method of detecting CO 2 · CO gas generated by combustion with infrared rays; a method described in JIS A 6201; A method for measuring and estimating the amount of unburned carbon from the ignition raw material; or a method for calculating based on the amount of methylene blue adsorbed measured by JCAS I-61; a density specific gravity test; For example, a method for estimating the quantity.
This measurement can be performed at predetermined time intervals or continuously online.
 未燃カーボン含有量による分別を行うための閾値としては、1~10質量%、特に3~7質量%の範囲から設定することである。この場合、この閾値よりも小さな補助閾値を設定し、所定の閾値よりも少ない未燃カーボン含有量を有するPCFアッシュを、さらに分別することもできる。即ち、補助閾値により分別された2種のPCFアッシュを適宜混合して使用することにより、未燃カーボン含有量の変動を小さくし、品質変動を有効に抑制することができる。 Threshold value for performing separation based on unburned carbon content is set in the range of 1 to 10% by mass, particularly 3 to 7% by mass. In this case, an auxiliary threshold value smaller than this threshold value is set, and PCF ash having an unburned carbon content smaller than a predetermined threshold value can be further separated. That is, by appropriately mixing and using the two types of PCF ash separated by the auxiliary threshold, it is possible to reduce the variation in the unburned carbon content and effectively suppress the quality variation.
<未燃カーボン含有量の少ないPCFアッシュ>
 上記のように未燃カーボン含有量によって分別されたPCFアッシュの内、未燃カーボン量の少ないものは分級され、粒径の大きな粗粉と粒径の小さな微粉とに分別される。
 このような分級により、セメント混合材やコンクリート混合材に適した粒度の微粉と、このような用途に適していない粒度の粗粉とが得られる。
 即ち、上記の粗粉は、適宜、FBFアッシュと混合して、セメントクリンカー製造用原料として使用され、微粉は、セメント混合材やコンクリート混合材として使用される。
<PCF ash with low unburned carbon content>
Among the PCF ash classified according to the unburned carbon content as described above, those having a small unburned carbon amount are classified and classified into coarse powder having a large particle size and fine powder having a small particle size.
By such classification, fine powder having a particle size suitable for a cement mixed material or a concrete mixed material and coarse powder having a particle size not suitable for such use can be obtained.
That is, the coarse powder is appropriately mixed with FBF ash and used as a raw material for producing cement clinker, and the fine powder is used as a cement mixed material or a concrete mixed material.
 分級の閾値は、通常、20~150μm、特に20~75μmの範囲内の値に設定される。 The classification threshold is usually set to a value within the range of 20 to 150 μm, particularly 20 to 75 μm.
 分級方法は特に限定されず、一般に粉体の分級に用いられる分級方法が使用可能である。使用可能な分級方法の一例として、篩分級、気流分級等が挙げられる。特に篩分級を採用した際には、フライアッシュに含まれる未燃カーボンが更に低減されるため好ましい。換言すれば、篩分級を採用すれば、前記未燃カーボン含有量の値によってフライアッシュを分別する際の閾値を、より高い点に設定することができ、このため、より多くのフライアッシュを、セメント或いはコンクリートの混合材として得ることができる。
 以下の表1に、FA1からFA3までの3種のフライアッシュ原粉を、75μm、45μm又は20μmの目開きの篩で分級した際の、微粉と粗粉の強熱減量(未燃カーボン量と強い相間がある)を示す。
The classification method is not particularly limited, and a classification method generally used for powder classification can be used. Examples of usable classification methods include sieve classification and airflow classification. In particular, when sieving is employed, unburned carbon contained in fly ash is further reduced, which is preferable. In other words, if sieving classification is adopted, the threshold value when separating fly ash according to the value of the unburned carbon content can be set to a higher point, and therefore, more fly ash, It can be obtained as a mixed material of cement or concrete.
Table 1 below shows the loss on ignition of fine and coarse powders (the amount of unburned carbon and the amount of three types of fly ash raw powders from FA1 to FA3 when classified with a sieve having an opening of 75 μm, 45 μm, or 20 μm. Strong correlation).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<未燃カーボン含有量の多いPCFアッシュ>
 前述した未燃カーボン含有量によって分別されたPCFアッシュの内、未燃カーボン量の多いものは、セメント或いはコンクリートの混合材として不適当である。従って、このPCFアッシュは、上記の分級により得られた粗粉或いはFBFアッシュと混合されて、セメントクリンカー製造用原料として使用される。
<PCF ash with high unburned carbon content>
Of the PCF ash separated according to the unburned carbon content, those having a large unburned carbon amount are unsuitable as cement or concrete mixed materials. Therefore, this PCF ash is mixed with the coarse powder or FBF ash obtained by the above classification and used as a raw material for producing cement clinker.
<使用までのフロー>
 上記のようにPCFアッシュについて未燃カーボン含有量による分別及び粒径による分別を行い、分別されたPCFアッシュを、その性状に応じて、セメント或いはコンクリートの混合材、またはセメントクリンカー製造原料として使用するまでのフローの一例を図1に示した。
<Flow to use>
As described above, the PCF ash is classified according to the unburned carbon content and the particle size, and the sorted PCF ash is used as a cement or a concrete mixed material or a cement clinker production raw material according to the property. An example of the flow up to this is shown in FIG.
 図1において、A~Cは、石炭火力発電所プラントを示し、プラントA及びBは、微粉集塵機A1或いは集塵機B1を有する微粉炭焚きボイラを備えており、プラントCは、集塵機C1を有する流動層ボイラを備えている。 In FIG. 1, A to C represent coal-fired power plant plants, the plants A and B include a pulverized coal-fired boiler having a pulverized dust collector A1 or a dust collector B1, and the plant C has a fluidized bed having a dust collector C1. Has a boiler.
 プラントA内には、集塵機A1で捕集されたPCFアッシュを貯留するサイロA2が配設されているが、このプラントA内には、サンプリング口は設けられていない。従って、集塵機A1で捕集されたPCFアッシュは、サイロA2に貯留された後、プラントA外に配設されているサイロD1に輸送される。このサイロD1の下部には、サンプリング口D2が設けられており、捕集されたPCFアッシュについて、未燃カーボン含有量が測定される。 In the plant A, a silo A2 for storing the PCF ash collected by the dust collector A1 is disposed, but no sampling port is provided in the plant A. Accordingly, the PCF ash collected by the dust collector A1 is stored in the silo A2 and then transported to the silo D1 disposed outside the plant A. A sampling port D2 is provided below the silo D1, and the unburned carbon content is measured for the collected PCF ash.
 従って、サイロD1に貯留されたPCFアッシュは、測定された未燃カーボン含有量の閾値に応じて分別され、分別貯蔵サイロに移送される。
 図1は、閾値a及び補助閾値b(a>b)によりPCFアッシュを分別する例であり、3つの分別貯蔵サイロD3、D4、D5が設けられている。即ち、サイロD1に貯留されたPCFアッシュの未燃カーボン含有量が閾値aよりも大きい場合には、サイロD5に移送され、未燃カーボン含有量が閾値aと補助閾値bとの間の場合には、サイロD4に移送され、未燃カーボン含有量が補助閾値bよりも小さい場合には、サイロD3に移送されることとなる。
Therefore, the PCF ash stored in the silo D1 is sorted according to the measured threshold value of the unburned carbon content and transferred to the sorted storage silo.
FIG. 1 shows an example in which PCF ash is sorted according to a threshold value a and an auxiliary threshold value b (a> b), and three separate storage silos D3, D4, and D5 are provided. That is, when the unburned carbon content of the PCF ash stored in the silo D1 is larger than the threshold value a, it is transferred to the silo D5, and the unburned carbon content is between the threshold value a and the auxiliary threshold value b. Is transferred to silo D4, and is transferred to silo D3 when the unburned carbon content is smaller than auxiliary threshold value b.
 また、プラントBが備えている集塵機B1の排出口にはサンプリング口B2が設けられており、この集塵機B1で捕集されたPCFアッシュは、サンプリング口B2でサンプリングされて未燃カーボン含有量が測定された後、サイロB3に貯留される。この場合、集塵機B1にサンプリング口B2を設ける代わりに、サイロB3の下部にサンプリング口B4を設けることもできる。 Further, a sampling port B2 is provided at the discharge port of the dust collector B1 provided in the plant B, and the PCF ash collected by the dust collector B1 is sampled at the sampling port B2 to measure the unburned carbon content. Is stored in silo B3. In this case, instead of providing the sampling port B2 in the dust collector B1, a sampling port B4 can be provided in the lower part of the silo B3.
 従って、サイロB3に貯留されたPCFアッシュは、測定された未燃カーボン含有量の閾値に応じて分別され、前述したサイロD2に貯留されたPCFアッシュと同様、分別貯蔵サイロに輸送される。
 即ち、閾値a及び補助閾値b(a>b)が設定されている場合、未燃カーボン含有量が閾値aよりも大きい場合には、サイロD5に移送され、未燃カーボン含有量が閾値aと補助閾値bとの間の場合には、サイロD4に移送され、未燃カーボン含有量が補助閾値bよりも小さい場合には、サイロD3に移送されることとなる。
Therefore, the PCF ash stored in the silo B3 is sorted according to the measured threshold value of the unburned carbon content, and is transported to the separate storage silo in the same manner as the PCF ash stored in the silo D2.
That is, when the threshold value a and the auxiliary threshold value b (a> b) are set, if the unburned carbon content is larger than the threshold value a, the unburned carbon content is transferred to the silo D5. When it is between the auxiliary threshold value b, it is transferred to silo D4, and when the unburned carbon content is smaller than auxiliary threshold value b, it is transferred to silo D3.
 さらに、プラントCが備えている集塵機C1で捕集されたFBFアッシュは、一旦サイロC2に貯留された後、サイロD5に輸送される。即ち、FBFアッシュは、サイロD5で未燃カーボン含有量が閾値aよりも大きいPCFアッシュと混合されることとなる。 Furthermore, the FBF ash collected by the dust collector C1 provided in the plant C is once stored in the silo C2 and then transported to the silo D5. That is, the FBF ash is mixed with the PCF ash having an unburned carbon content larger than the threshold value a in the silo D5.
 上記のように分別され、サイロD3に貯蔵されたPCFアッシュとサイロD4に貯蔵されたPCFアッシュとは、未燃カーボン含有量が一定の値となるような割合で混合され、分級設備D6に供給され、粗粉と微粉とに分別される。勿論、サイロD3及びサイロD4に貯蔵されたPCFアッシュを混合せず、それぞれを直接分級設備D6に供給して微粉と粗粉とに分別することも可能である。
 上記のようにして分別された微粉は、セメント混合剤或いはコンクリート混合材として使用される。また、粗粉は、セメントクリンカー製造原料として使用されることとなるが、サイロD5に供給してFBFアッシュと混合してもよい。
 サイロD5に貯留されたFBFアッシュとPCFアッシュとの混合物は、セメントクリンカー製造原料として使用される。
The PCF ash sorted as described above and stored in the silo D3 and the PCF ash stored in the silo D4 are mixed at a ratio such that the unburned carbon content becomes a constant value and supplied to the classification equipment D6. And separated into coarse powder and fine powder. Of course, the PCF ash stored in the silo D3 and the silo D4 may be mixed directly into the classification equipment D6 and separated into fine powder and coarse powder.
The fine powder separated as described above is used as a cement mixture or a concrete mixture. Moreover, although coarse powder will be used as a cement clinker manufacturing raw material, you may supply to silo D5 and mix with FBF ash.
A mixture of FBF ash and PCF ash stored in silo D5 is used as a raw material for producing cement clinker.
 上述した図1の例において、未燃カーボン含有量について、補助閾値bを設定せず、閾値aのみを設定した場合には、サイロD3は省略され、分別貯留サイロは、D4及びD5の2つとなり、これに応じて、上記と同様の操作が行われることとなる。 In the example of FIG. 1 described above, when the auxiliary threshold value b is not set for the unburned carbon content and only the threshold value a is set, the silo D3 is omitted, and the two separate storage silos are D4 and D5. In response to this, the same operation as described above is performed.
 尚、各種のプラントで発生したフライアッシュを輸送もしくは移送する方法は特に限定されず、距離がある場合にはトラック、船舶等により輸送してもよいし、同一事業所内あるいは近接事業所に存在する場合には、コンベア、輸送管等により輸送してもよい。 In addition, the method of transporting or transferring fly ash generated in various plants is not particularly limited. If there is a distance, the fly ash may be transported by truck, ship, etc., or in the same office or a nearby office. In some cases, it may be transported by a conveyor, a transport pipe or the like.
 また、2種以上のフライアッシュを混合する方法は、一般に粉体混合用に用いられる混合機を使用するか、又は輸送過程で混合することができる。例えば、粉体用の混合機は機械撹拌式、気流式などが挙げられる。また、輸送過程での混合では連続式粉体輸送混合機、空気圧送設備内での流動混合などが挙げられる。 In addition, as a method of mixing two or more kinds of fly ash, a mixer generally used for powder mixing can be used, or mixing can be performed in a transport process. For example, examples of the powder mixer include a mechanical stirring type and an airflow type. Examples of the mixing in the transportation process include a continuous powder transportation mixer and fluid mixing in a pneumatic feeding facility.
   A、B,C:石炭火力発電プラント
   A1,B1,C1:集塵設備
   B2,B4,D2:サンプリング口
   D6:分級設備
A, B, C: Coal-fired power plant A1, B1, C1: Dust collection equipment B2, B4, D2: Sampling port D6: Classification equipment

Claims (6)

  1.  微粉炭焚きボイラにて発生するフライアッシュの未燃カーボン含有量を測定し、予め設定された未燃カーボン含有量の閾値によってフライアッシュを分別して貯蔵し、
     上記で分別されたフライアッシュの内、未燃カーボン含有量の低いものを、微粉と粗粉とに分級し、該微粉を、セメント混合材用又はコンクリート混合材用フライアッシュとして使用し、
     上記で分別されたフライアッシュの内、未燃カーボン含有量の高いものを、前記粗粉又は流動層ボイラにて発生するフライアッシュと混合し、得られた混合粉を、セメントクリンカー製造原料として使用することを特徴とするフライアッシュの使用方法。
    Measure the unburned carbon content of fly ash generated in a pulverized coal-fired boiler, separate and store fly ash according to a preset threshold value of unburned carbon content,
    Among the fly ash classified above, those having a low unburned carbon content are classified into fine powder and coarse powder, and the fine powder is used as a fly ash for a cement mixture or a concrete mixture,
    Of the fly ash separated above, the one with a high unburned carbon content is mixed with the fly ash generated in the coarse powder or fluidized bed boiler, and the obtained mixed powder is used as a raw material for producing cement clinker. How to use fly ash, characterized by
  2.  前記未燃カーボン含有量の閾値が、1~10質量%の範囲に設定されている請求項1に記載のフライアッシュの使用方法。 The method for using fly ash according to claim 1, wherein a threshold value of the unburned carbon content is set in a range of 1 to 10% by mass.
  3.  前記未燃カーボン含有量の低いフライアッシュについてなされる分級の閾値が20~150μmの範囲に設定されている請求項1に記載のフライアッシュの使用方法。 The method for using fly ash according to claim 1, wherein a threshold for classification performed on the fly ash having a low unburned carbon content is set in a range of 20 to 150 µm.
  4.  前記微粉炭焚きボイラが石炭火力発電プラントに備えられたものであり、当該石炭火力発電プラント内にて、微粉炭焚きボイラにて発生したフライアッシュを集塵設備で捕集し、捕集されたフライアッシュを一旦サイロに貯蔵する請求項1に記載のフライアッシュの使用方法。 The pulverized coal-fired boiler is provided in a coal-fired power plant, and the fly ash generated in the pulverized-coal-fired boiler is collected and collected in the coal-fired power plant. The method for using fly ash according to claim 1, wherein the fly ash is once stored in a silo.
  5.  前記集塵設備の排出口から前記サイロの排出口までの間にサンプリング口を設け、該サンプリング口から採取されたフライアッシュについて未燃カーボン含有量の測定を行い、この測定値に基づいて、該フライアッシュを分別貯蔵設備に移送する請求項4に記載のフライアッシュの使用方法。 A sampling port is provided between the dust collector outlet and the silo outlet, and the unburned carbon content is measured for fly ash collected from the sampling port. The method for using fly ash according to claim 4, wherein the fly ash is transferred to a separate storage facility.
  6.  複数の微粉炭焚きボイラにて発生したフライアッシュを一つのサイロに受け入れ、該受入サイロの下部にサンプリング口を設け、該サンプリング口から採取されたフライアッシュについて未燃カーボン含有量の測定を行う請求項1記載のフライアッシュの使用方法。 A request for receiving fly ash generated in a plurality of pulverized coal-fired boilers into one silo, providing a sampling port at the bottom of the receiving silo, and measuring the unburned carbon content of the fly ash collected from the sampling port Item 3. A method of using fly ash according to item 1.
PCT/JP2018/008968 2017-03-14 2018-03-08 Method for using fly ash WO2018168637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018553169A JP6995059B2 (en) 2017-03-14 2018-03-08 How to use fly ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048734 2017-03-14
JP2017-048734 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168637A1 true WO2018168637A1 (en) 2018-09-20

Family

ID=63523518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008968 WO2018168637A1 (en) 2017-03-14 2018-03-08 Method for using fly ash

Country Status (2)

Country Link
JP (1) JP6995059B2 (en)
WO (1) WO2018168637A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010362A1 (en) * 2017-03-30 2020-01-09 Tokuyama Corporation Process for producing modified fly ash
JP2020142933A (en) * 2019-03-04 2020-09-10 太平洋セメント株式会社 Manufacturing method of cement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960115A (en) * 1982-09-27 1984-04-06 Electric Power Dev Co Ltd Disposing method of coal ash
JPH0478481A (en) * 1990-07-18 1992-03-12 Chubu Electric Power Co Inc Method and device for quality control of coal ash
JPH0741228U (en) * 1993-12-24 1995-07-21 川崎重工業株式会社 Automatic coal ash sorter
JP2002059148A (en) * 2000-08-21 2002-02-26 Taiheiyo Cement Corp Coal ash treatment/distribution combination system
JP2011526827A (en) * 2008-07-04 2011-10-20 セラグリーン カンパニー リミテッド Coal ash recycling apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853778B2 (en) 2001-12-20 2010-12-14 Intel Corporation Load/move and duplicate instructions for a processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960115A (en) * 1982-09-27 1984-04-06 Electric Power Dev Co Ltd Disposing method of coal ash
JPH0478481A (en) * 1990-07-18 1992-03-12 Chubu Electric Power Co Inc Method and device for quality control of coal ash
JPH0741228U (en) * 1993-12-24 1995-07-21 川崎重工業株式会社 Automatic coal ash sorter
JP2002059148A (en) * 2000-08-21 2002-02-26 Taiheiyo Cement Corp Coal ash treatment/distribution combination system
JP2011526827A (en) * 2008-07-04 2011-10-20 セラグリーン カンパニー リミテッド Coal ash recycling apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010362A1 (en) * 2017-03-30 2020-01-09 Tokuyama Corporation Process for producing modified fly ash
US10899663B2 (en) * 2017-03-30 2021-01-26 Tokuyama Corporation Process for producing modified fly ash
JP2020142933A (en) * 2019-03-04 2020-09-10 太平洋セメント株式会社 Manufacturing method of cement
JP7212553B2 (en) 2019-03-04 2023-01-25 太平洋セメント株式会社 Cement manufacturing method

Also Published As

Publication number Publication date
JPWO2018168637A1 (en) 2020-01-16
JP6995059B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
Stajanča et al. Environmental impacts of cement production
KR102441204B1 (en) Process for making modified fly ash
US6733583B2 (en) Process for producing a blended cement having enhanced cementitious properties capable of combination with class C fly ash
CN106966620B (en) A kind of gangue bottom ash, flyash compounding cementitious material and preparation method thereof
EP1989156A1 (en) Method and plant for drying and comminution of moist, mineral raw materials
WO2018008513A1 (en) Method of using fly ash
CN110451542A (en) A kind of technique and production system using aluminium ash production calcium aluminate powder
JP2016209868A (en) Dry separation method for volcanic ejecta sedimented mineral, dry separation apparatus for volcanic ejecta sedimented mineral, fine aggregate and volcanic glass material
WO2018168637A1 (en) Method for using fly ash
WO2018180687A1 (en) Method for reforming unburnt-carbon-containing fly ash, system for reforming unburnt-carbon-containing fly ash, and method for producing fly ash for concrete admixture
CN105585263B (en) The preparation method of clinker
KR20200130291A (en) Fly ash modification method and apparatus
CN102485318A (en) Composite admixture of desulfurized ash from dry method and fly ash and preparation method thereof
US5846313A (en) Method for regulating combustion loss of coal ash
JP6311220B2 (en) Method for producing low-temperature fired cement clinker
CN107540250B (en) Pre-separation steel slag split-phase clinker cement production process
JP6392491B1 (en) Method for producing modified fly ash
KR100415005B1 (en) A super-fine cement chain impregnate composition and manufacturing system and method of this
JP2006035123A (en) Elution lowering method of harmful elements in fly ash
Mäkelä et al. Preliminary evaluation of fly ash and lime for use as supplementary cementing materials in cold-agglomerated blast furnace briquetting
Ibrahim et al. Viability Study on Fly Ash and Bottom Ash from Combustion Waste
KR100886801B1 (en) Cement composition including fly ash manufactured from reject ash
JP2007269549A (en) Method of producing artificial aggregate
Kumar et al. Density of Concrete With Sintered Fly Ash Aggregate
JP6284752B2 (en) Powdered composition using coal ash

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768065

Country of ref document: EP

Kind code of ref document: A1