WO2018164449A1 - 파워 릴레이 어셈블리 - Google Patents
파워 릴레이 어셈블리 Download PDFInfo
- Publication number
- WO2018164449A1 WO2018164449A1 PCT/KR2018/002637 KR2018002637W WO2018164449A1 WO 2018164449 A1 WO2018164449 A1 WO 2018164449A1 KR 2018002637 W KR2018002637 W KR 2018002637W WO 2018164449 A1 WO2018164449 A1 WO 2018164449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- support plate
- heat dissipation
- power relay
- relay assembly
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H45/00—Details of relays
- H01H45/02—Bases; Casings; Covers
- H01H45/04—Mounting complete relay or separate parts of relay on a base or inside a case
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H45/00—Details of relays
- H01H45/12—Ventilating; Cooling; Heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/02—Bases; Casings; Covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/12—Ventilating; Cooling; Heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/16—Magnetic circuit arrangements
- H01H50/18—Movable parts of magnetic circuits, e.g. armature
- H01H50/20—Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
- H01H50/22—Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil wherein the magnetic circuit is substantially closed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G5/00—Installations of bus-bars
Definitions
- the present invention relates to a power relay assembly, and more particularly to a power relay assembly that can be used, for example, in an electric vehicle.
- An electric vehicle is a general term for a car that runs on electricity.
- electric vehicles are classified into electric vehicles (EVs) driven only by electricity and hybrid electric vehicles (HEVs) using electricity and fossil fuels.
- EVs electric vehicles
- HEVs hybrid electric vehicles
- a power relay assembly is placed between a high voltage battery and a motor. Such a power relay assembly serves to selectively supply power of a high voltage battery.
- the power relay assembly includes a main relay, a precharge relay, a precharge resistor, and the like, and the above components are electrically connected to each other through a busbar. do.
- the main relay supplies or disconnects power between the high voltage battery and the motor, and the precharge relay and precharge resistors prevent damage to the device by the initial current.
- Busbars are low-impedance and high-current conductors that can connect two or more circuits individually or to several equivalence points within a system.
- the power relay assembly is installed in a trunk or cabin room for connection with a high voltage battery installed in the trunk. Therefore, it is necessary to secure heat dissipation performance and electromagnetic shielding performance of the main relay or precharge relay to prevent performance degradation and damage caused by heat, and to prevent malfunction and damage by electromagnetic waves.
- the present invention has been made in view of the above, and an object thereof is to provide a power relay assembly capable of simultaneously securing heat radiation performance and electromagnetic shielding function.
- At least one electric element is mounted on one surface, the support plate comprising a plastic material having heat dissipation and insulation; At least one bus bar electrically connected to the electric element; And an electromagnetic shielding unit for shielding electromagnetic waves generated from the electric element.
- the electromagnetic shield may be a plate-like metal member embedded in the support plate, the metal member may be electrically connected to the ground via a cable.
- the electromagnetic shielding portion may be a shielding coating layer having electrical conductivity.
- the shielding coating layer may be formed on the inner surface of the cover to prevent the external exposure of the busbar.
- the support plate may include a first plate made of a plastic material having insulation and heat dissipation, and a second plate made of a plastic material having non-insulation and heat dissipation and including a conductive filler. It may include, wherein the electromagnetic shield may be the second plate.
- the busbar may be embedded in the support plate.
- the busbar may be disposed such that at least a part of the portion embedded in the support plate is in contact with a support plate portion made of a plastic material having heat dissipation and insulation.
- the present invention it is possible to prevent the malfunction and damage of the electronic component by the electromagnetic wave by adding the heat dissipation to the support plate to prevent performance degradation due to heat and damage to the components in advance, and shield the electromagnetic wave through the electromagnetic shielding portion.
- FIG. 1 is a schematic diagram showing a power relay assembly according to an embodiment of the present invention
- FIG. 2 is a view showing a state in which the electrical elements are removed in Figure 1, showing the arrangement of the busbar,
- FIG. 3 is a view showing a state in which the first plate, the second plate and the third plate in Figure 2,
- FIG. 4 is a cross-sectional view taken along the line B-B of FIG.
- 5 to 7 is a view showing a case in which the electromagnetic shielding portion is provided with a metal member in the power relay assembly according to an embodiment of the present invention, a cross-sectional view showing various forms of the support plate viewed from the same direction as FIG.
- FIG. 8 conceptually illustrates a case in which the metal member of FIG. 4 is connected to ground
- FIG. 9 and 10 are views showing another form of the electromagnetic shielding portion in the power relay assembly according to an embodiment of the present invention, the cross-sectional view seen from the same direction as in FIG.
- FIG. 11 is a cross-sectional view of the cover applicable to the power relay assembly according to the embodiment of the present invention viewed from the same direction as the AA direction of FIG. 1, illustrating an electromagnetic wave shielding portion formed as a shielding coating layer on an inner surface of the cover.
- FIG. 12 is a cross-sectional view showing a bus bar that can be applied to a power relay assembly according to an embodiment of the present invention, showing a case where a coating layer is formed on a surface thereof;
- FIG. 13 is a schematic diagram showing a state in which a power relay assembly according to an embodiment of the present invention is mounted on a case of an electric vehicle, and
- FIG. 14 is a schematic diagram illustrating a state in which a power relay assembly according to an embodiment of the present invention is mounted to a case of an electric vehicle and sealed through one cover.
- Power relay assembly 100 is to supply power to the drive control unit for controlling the driving voltage by blocking or connecting the high voltage current supplied from the battery, as shown in Figure 1 the support plate 110, at least one electrical element 10, 20, 30, bus bar 120, cover 130, and an electromagnetic shielding portion.
- the support plate 110 may be in the form of a plate having a predetermined area, and may fix the at least one electric element 10, 20, 30 and the bus bar 120 electrically connecting them.
- At this time, at least a portion of the support plate 110 may have both heat dissipation and insulation.
- the support plate 110 may serve to support the electrical elements 10, 20, 30 and the busbars 120 having heat dissipation, and the heat dissipation portion may be formed by the support plate 110. It can release heat generated during operation.
- the support plate 110 may prevent an electrical short between the bus bar 120 and the electrical devices 10, 20, and 30 having an insulating property.
- the support plate 110 may be formed of a plastic material. According to an embodiment of the present invention, the support plate 110 may be formed of a plastic material having at least a part of heat dissipation and insulation, and the busbar ( A portion of 120 may be fixed to contact each other with the above-mentioned heat dissipation and insulation.
- the support plate 110 may be formed of a plastic material having a part of heat dissipation and insulation, but is not limited thereto, and the support plate 110 may be made of a plastic material of heat dissipation and insulation. .
- the bus bar 120 may electrically connect at least one electric element 10, 20, 30 mounted on one surface of the support plate 110.
- the busbar 120 may be formed of a conductor having a low impedance and a high current capacity, and serves to distribute power to several points by connecting two or more electric elements individually or by connecting several isometry points. Can be done.
- Such a bus bar 120 may be provided in the form of a plate-shaped bar having a predetermined length.
- the bus bar 120 may have a shape in which a part of the entire length is bent one time or a plurality of times so that the bus bar 120 may be easily fastened with the electric elements 10, 20, 30.
- the overall shape of the bus bar 120 is not limited thereto, and may be appropriately changed according to the arrangement position of the electric elements 10, 20, 30 to be connected to each other.
- bus bar 120 may be provided in plurality. In this way, at least some of the plurality of busbars 120 may be connected to plus and minus terminals of the battery, plus and minus terminals of the inverter, respectively, and the plurality of electric elements 10, 20, and 30 may be connected to the battery.
- the high voltage current supplied from the controller can be cut off or connected to the drive control unit.
- the bus bar 120 may be fixed in a state in which at least a portion of the bus bar 120 is in contact with the support plate 110, and a portion of the bus bar 120 which is in contact with the support plate 110 may be the support plate ( 110 may be a portion having heat dissipation.
- the power relay assembly 100 when the power relay assembly 100 is operated according to an embodiment of the present invention, heat generated from the electric elements 10, 20, 30 and / or busbars 120 may be transferred to the support plate 110. It may be discharged to the outside through the heat dissipation portion of the support plate 110 through the bus bar 120 in contact. For this reason, the power relay assembly 100 according to the embodiment of the present invention can prevent the performance degradation and the damage of the components due to heat in advance.
- one side of the bus bar 120 may be fixed to one surface of the support plate 110, but at least a part of the bus bar 120 may be embedded in the support plate 110.
- the bus bar 120 may include a first portion 121, a second portion 122, and a third portion 123.
- the first portion 121 may be a portion that is completely embedded in the support plate 110
- the third portion 123 may be a portion exposed to the outside of the support plate 110
- the second portion 122 may be a portion fixed through the support plate 110 while connecting the first portion 121 and the third portion 123.
- the first part 121 of the bus bar 120 has the heat dissipation property and the insulation property. It may be embedded in the support plate 110 to contact the portion made of a plastic material having a. Detailed description thereof will be described later.
- the bus bar 120 may be formed of a conductor having a low impedance and a high current capacity as described above.
- the bus bar 120 may be made of a metal material such as copper or aluminum.
- the bus bar 120 when the bus bar 120 is made of an aluminum material, the bus bar 120 may have a form in which a heat dissipation coating layer (C) is coated on a surface as shown in FIG. 12, and the heat dissipation coating layer (C). It may be the same as the protective coating layer 150 including an insulating heat dissipation filler to be described later. That is, the bus bar 120 made of aluminum may have a lighter weight than the bus bar 120 made of copper. This is because aluminum has a specific gravity smaller than copper due to the characteristics of the material. Accordingly, the power relay assembly using the material of the bus bar 120 as aluminum may have a much lighter weight than the power relay assembly using copper as the material of the bus bar 120.
- the bus bar 120 when the bus bar 120 is made of aluminum, the bus bar 120 may be formed with a heat dissipation coating layer C including an insulating heat dissipation filler on the surface of the bus bar 120 to compensate for the heat dissipation performance.
- a heat dissipation coating layer C including an insulating heat dissipation filler on the surface of the bus bar 120 to compensate for the heat dissipation performance.
- the bar is made of copper, it is possible to realize an equivalent heat dissipation performance while minimizing the increased thickness.
- the power relay assembly using the material of the bus bar 120 as aluminum may be implemented in a lighter weight than the power relay assembly using copper as the material of the bus bar 120, and the production cost may be reduced.
- a bus bar made of aluminum should be manufactured to a thickness of approximately 1.5 times to achieve an equivalent heat dissipation performance as compared to a bus bar made of a copper material having the same shape.
- the heat dissipation coating layer (C) including the insulating heat dissipation filler is formed on the surface of the bus bar, that is, the heat dissipation coating layer (C) made of aluminum and the insulating heat dissipation filler (C) on the surface is formed of copper material Compared with a bus bar made of, even though the thickness is approximately 1.3 times, it is possible to achieve the same level of heat dissipation performance.
- the material of the bus bar 120 is not limited thereto, and any conductor having a low impedance and a high current capacity may be used without limitation.
- the cover 130 prevents the electric elements 10, 20, 30 and the busbars 120 protruding from one surface of the support plate 110 from being exposed to the outside, thereby preventing the electric elements 10, 20 from the external environment. And 30) and the busbar 120 may be protected.
- the cover 130 may be fastened directly with the support plate 110 or may be fastened with a bracket not shown separately provided at the edge of the support plate 110.
- the cover 130 may have an enclosure shape, one side of which is open.
- the cover 130 is not limited thereto, and the cover 130 may be formed as a single member, or a plurality of components may be assembled with each other to form a single enclosure.
- the cover 130 may be a method of covering one support plate 110 as shown in Figs. 1 and 13, a plurality of support plates 110 disposed adjacent to each other as shown in FIG. ) May be covered by a single cover 130 at the same time.
- the cover 130 may be made of a general plastic material having insulation, but at least a portion thereof may be made of a plastic material having heat dissipation and insulation similar to the support plate 110.
- the electromagnetic shielding part can prevent the malfunction and damage of the electronic component by the electromagnetic wave. Accordingly, the power relay assembly 100 according to an embodiment of the present invention prevents performance degradation due to heat and damage to components through the support plate 110 to which heat dissipation is added, but also by electromagnetic waves through the electromagnetic shield. Problems such as malfunction and damage of electronic components can also be prevented.
- Such an electromagnetic shield may be provided on the support plate 110 or may be provided on the cover 130 side.
- the electromagnetic shielding portion may be a plate-shaped metal member 140 embedded in the support plates (110, 210), as shown in FIGS.
- the metal member 140 may be a sheet-like plate material, or may be a metal mesh.
- the metal member 140 may be embedded in a portion of the support plates 110 and 210 made of a plastic material having insulation and heat dissipation to prevent electrical shorts.
- the metal member 140 may be integrally formed with a portion made of a plastic material having insulation and heat dissipation among the support plates 110 and 210 through insert injection molding.
- the support plates 110 and 210 illustrated in FIGS. 4 to 7 are made of plastic, mechanical strength may be improved while implementing the electromagnetic shielding function through the metal member 140.
- the support plates 110 and 210 are made of an injection molding, the support plates 110 and 210 may be implemented to have a thin thickness by improving mechanical strength through the metal member 140.
- the metal member 140 may be used without limitation when the metal material having a predetermined thermal conductivity.
- the metal member 140 may be an alloy including one metal selected from the group consisting of aluminum, magnesium, iron, titanium, and copper or at least one metal selected.
- the metal member 140 may be embedded in the support plates 110 and 210 so that the front surface is completely surrounded by a portion made of a plastic material having insulation and heat dissipation.
- 5 and 7 may be disposed on the bottom of the support plates (110, 210) so that one surface is exposed to the outside while contacting the portion made of a plastic material having insulation and heat dissipation.
- the metal member 140 when the metal member 140 is integrated with the support plates 110 and 210 by insert injection, the metal member 140 has an interface with portions of the support plates 110 and 210 made of a plastic material having insulation and heat dissipation. It can be surface treated so as not to be spaced apart. Through this, the support plates 110 and 210 may increase the bonding force between the metal member 140 and a portion made of a plastic material having insulation and heat dissipation.
- the metal member 140 may have a nano-sized microgroove in a predetermined pattern on at least one surface thereof in order to improve a bonding force with a portion made of a plastic material having insulation and heat dissipation.
- the support plates 110 and 210 include a metal member 140 functioning as an electromagnetic shield
- the metal member 140 of the bus bar 120 at least partially in contact with the support plates 110 and 210. It may be arranged to maintain a predetermined distance d from the end.
- the separation distance d between the metal member 140 and the portion 121 of the bus bar 120 contacting the support plates 110 and 210 may have a spacing of 1 mm or more. This is to satisfy the required withstand voltage while maintaining insulation.
- the metal member 140 may be a plate-shaped metal plate having a predetermined area as described above.
- the metal member 140 is not limited thereto, and may be provided as a rod having a predetermined aspect ratio.
- the metal member 140 may have a closed loop shaped edge such as a square or a circle, and may have a mesh type in which a plurality of wires or bars are spaced at predetermined intervals inside the edge.
- a plurality of wires or bars disposed inside the edge may be arranged to form a parallel structure, a grid structure, a honeycomb structure, and various structures in which they are combined.
- the support plates 110 and 210 include a metal member 140 functioning as an electromagnetic shield
- the metal member 140 may be connected to an earth terminal through a cable.
- the metal member 140 having the front surface embedded in the support plate 110 may be connected to an earth terminal through a cable. Accordingly, the electromagnetic wave absorbed through the metal member 140 may further increase the electromagnetic shielding performance by moving to the ground side through the cable and the ground terminal.
- the metal member 140 is connected to the ground terminal via a cable to improve electromagnetic shielding performance.
- the present invention is not limited thereto, and the electromagnetic wave absorbed through the metal member 140 is externally provided. It should be noted that any form that can be discharged can be used without limitation.
- FIG. 4 is shown as being connected to the ground terminal via a cable, the present invention is not limited thereto, and the support plates 110 and 210 shown in FIGS. 5 to 7 may be applied in the same manner. .
- the electromagnetic shield may be implemented in the form shown in FIGS. 9 and 10. That is, in the present embodiment, the electromagnetic shielding part may implement the electromagnetic shielding function by part of the support plate 310 including an electrically conductive component.
- the support plate 310 may include a plate-shaped first plate 312 and the second plate 314 stacked on each other.
- the first plate 312 may be made of a plastic material having heat dissipation and insulation
- the second plate 314 may be made of a plastic material having heat dissipation and non-insulation.
- the second plate 314 may include an electrically conductive filler to implement an electromagnetic shielding function.
- the second plate 314 may form part of the support plate 310 and at the same time may serve as an electromagnetic shield.
- the first plate 312 may have a form in which an insulating heat dissipation filler is dispersed in a polymer matrix so as to have heat dissipation and insulation
- the second plate 314 may include a heat dissipating filler and an electrically conductive filler in the polymer matrix. It may be in dispersed form.
- first plate 312 and the second plate 314 may be an injection molding formed by injection molding
- the support plate 310 is the first plate 312 and the second plate ( 314 may be in an integrated form.
- the bus bar 120 may be disposed to contact the first plate 312 having heat dissipation and insulation properties of the support plate 310.
- the bus bar 120 may be partially embedded in the first plate 312 as shown in FIG. 9, and one surface of the bus bar 120 may be formed as shown in FIG. 10. It may be fixed in contact with one surface.
- the support plate 310 may prevent electrical short by contacting and fixing the first plate 312 having insulation even when a part of the bus bar 120 is fixed in a contacted state.
- the second plate 314 may smoothly absorb and block electromagnetic waves.
- the polymer matrix constituting the first plate 312 and the second plate 314 may be used without limitation when implemented as a polymer compound capable of injection molding without inhibiting the dispersibility of the heat dissipation filler.
- the adhesiveness between the dissimilar materials is not limited and may be used without limitation as long as the material can realize good adhesiveness.
- the polymer matrix may be a known thermoplastic polymer compound
- the thermoplastic polymer compound is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK) ), Polyphenylene oxide (PPO), polyethersulfone (PES), polyetherimide (PEI), and one compound selected from the group consisting of polyimide, or two or more kinds of mixtures or copolymers.
- the insulating heat dissipation filler included in the first plate 312 may be used without any limitation as long as the insulating heat dissipation filler simultaneously has insulation and heat dissipation.
- the insulating heat-radiating filler is selected from the group consisting of magnesium oxide, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, silicon carbide and manganese oxide It may include one or more.
- the insulating heat dissipating filler may be porous or non-porous, and may be a core shell type filler having a known conductive heat dissipating filler such as carbon-based or metal as a core and an insulating component surrounding the core.
- the surface may be modified with functional groups such as silane group, amino group, amine group, hydroxy group, carboxyl group, etc. to improve the wettability and the like and improve the interfacial bonding force with the polymer matrix.
- the electrically conductive filler included in the second plate 314 may be used without limitation in the case of a known electrically conductive filler.
- the electrically conductive filler may include at least one of at least one metal and an electrically conductive polymer compound selected from the group consisting of aluminum, nickel, copper, silver, gold, chromium, platinum, titanium alloys, and stainless steel. .
- the electrically conductive polymer compound is polythiophene, poly (3,4-ethylenedioxythiophene), polyaniline, polyacetylene, polydiene 1 selected from the group consisting of acetylene, poly (thiophenevinylene), polyfluorene and poly (3,4-ethylenedioxythiophene) (PEDOT): polystyrenesulfonate (PSS) It may include more than one species.
- the first plate 312 and the second plate 314 are illustrated as having the same shape, but the present invention is not limited thereto.
- the first plate 312 and the second plate 314 are not limited thereto. May be implemented in such a way that the edge side of the second plate 314 surrounds the edge of the first plate 312, and the first plate 312 and the second plate 314 are stacked on each other. At the same time, the edge side of the first plate 312 may be embodied in such a manner as to surround the edge of the second plate 314.
- the electromagnetic shielding part may be provided on one surface of the cover 130 as shown in FIG. 11. That is, in the present exemplary embodiment, the electromagnetic shielding part may be a shielding coating layer 240 having electrical conductivity to shield electromagnetic waves and formed to a predetermined thickness on the inner surface of the cover 130, and the shielding coating layer 240 may be electrically conductive. It may be a polymer resin layer containing a filler or a deposition layer on which a metal material is deposited.
- the polymer resin layer containing the electrically conductive filler may be in the form of a conductive filler dispersed in a known thermosetting polymer compound or a thermoplastic polymer compound.
- the electrically conductive filler may include any one or more of at least one metal and an electrically conductive polymer compound selected from the group consisting of aluminum, nickel, copper, silver, gold, chromium, platinum, titanium alloys and stainless steel.
- the electrically conductive polymer compound is polythiophene, poly (3,4-ethylenedioxythiophene), polyaniline, polyacetylene, polydiene 1 selected from the group consisting of acetylene, poly (thiophenevinylene), polyfluorene and poly (3,4-ethylenedioxythiophene) (PEDOT): polystyrenesulfonate (PSS) It may include more than one species.
- the deposition layer may be applied without limitation as long as it is a metal material that can be deposited, such as aluminum, nickel, copper, silver, gold, chromium, platinum, titanium alloys, and stainless steel.
- the shielding coating layer 240 may be formed only on the inner surface of the cover 130, but is not limited thereto and may be applied to the outer surface of the cover 130, the cover 130 of the It may be applied to both the inner and outer surfaces.
- the shielding coating layer 240 may be locally formed on a portion of the cover 130 or may be formed on the entire area of the cover 130.
- the shielding coating layer 240 may be a metal thin film layer in which a thin metal plate is attached via an adhesive layer in addition to an application layer or a deposition layer.
- the support plates 110 and 210 may be implemented in various ways.
- the support plate 110 may include a plate-shaped first plate 111, a second plate 112, and a third plate 113 as shown in FIGS. 1 to 5.
- the first plate 111, the second plate 112, and the third plate 113 may be sequentially stacked, and the first plate 111, the second plate 112, and the third plate ( At least the first plate 111 of the 113 may be formed of a plastic material having heat dissipation and insulation.
- the second plate 112 and the third plate 113 may include a first portion 121 embedded in the support plate 110 of the bus bar 120. And placement holes 114a and 114b having a shape corresponding to the second portion 122, wherein the placement holes 114a and 114b are the second plate 112 and the third plate 113. Each can be formed through.
- the shapes of the placement holes 114a and 114b may be appropriately changed according to the shapes of the first portion 121 and the second portion 122 of the busbar 120 embedded in the support plate 110. Can be.
- the heat generated during the operation of the electrical elements 10, 20, 30 and the busbars 120 may be transferred to the first plate 111 having heat dissipation and then transferred to the outside.
- the bus bar 120 may be fixed by the second plate 112 and the third plate 113 in a state in which the second portion 122 is embedded in the support plate 110.
- the first plate 111, the second plate 112 and the third plate 113 which are sequentially stacked may be attached to each other via an adhesive member (not shown).
- the adhesive member may be a general adhesive member, but preferably, a heat radiation adhesive member including a thermally conductive filler may be used.
- the first plate 111, the second plate 112 and the third plate 113 may be attached to each other via a known heat transfer material (not shown) such as Tim.
- the first plate 111, the second plate 112, and the third plate 113 may be sequentially stacked and fixed through a fastening member (not shown) such as a bolt member.
- the first plate 111 is a plastic material having heat dissipation and insulation
- the second plate 112 and the third plate 113 may be made of a general plastic material having insulation.
- the heat transferred to the first plate 111 having heat dissipation through the bus bar 120 may be the second plate 112 and / or the third plate stacked on the first plate 111.
- the heat transfer in the vertical direction may be blocked. Accordingly, the heat transferred to the first plate 111 may be blocked from being transferred to the electric elements 10, 20, and 30 through the second plate 112 and / or the third plate 113. .
- the heat generated from the bus bar 120 may increase the heat dissipation performance by allowing the heat dissipation path to be concentrated toward the first plate 111.
- the power relay assembly 100 is natural in the lower side of the case 1 in a state in which one or a plurality is disposed inside the case 1 of the enclosure shape as shown in Figs.
- the power relay assembly 100 has heat generated by the electrical elements 10, 20, 30 and / or busbars 120 directly contacting the case 1.
- the first plate 111 By being concentrated in contact with the first plate 111 can be more efficiently radiated heat.
- the support plate 110 when the support plate 110 is separated into the first plate 111, the second plate 112 and the third plate 113, the second plate 112 and the third plate 113 is Like the first plate 111, it may be made of a plastic material having heat dissipation and insulation. That is, the support plate 110 may be made of a plastic material having a heat dissipation as a whole. In this case, the support plate 110 may increase heat dissipation performance by increasing the overall heat capacity as compared with the case where only the first plate 111 is made of a plastic material having heat dissipation and insulation.
- the support plate 210 may be an injection molding formed of a resin formation composition having heat dissipation and insulation as shown in FIG. 6.
- the support plate 210 may be made of a plastic material having a heat dissipation and an insulating property as a whole, and the bus bar 120 may be formed integrally with the support plate 210.
- the bus bar 120 may be integrated with the support plate 210 in a form in which at least a portion of the bus bar 120 is embedded in the resin forming composition in the process of molding the support plate 210 through the insert molding using the resin forming composition.
- the first portion 121 and the second portion 122 may be embedded in the support plate 210.
- the support plate 210 of the present embodiment is separated into the first plate 111, the second plate 112, and the third plate 113, as described above, and the first plate 111, the first plate 111, and the third plate 113, respectively.
- the second plate 112 and the third plate 113 can increase the overall heat capacity to further increase the heat dissipation performance, and the cumbersome assembly process is omitted. Productivity can be increased.
- the plastic having a heat dissipation and insulation used to configure the above-described support plates (110, 210) may be a form in which an insulating heat dissipation filler is dispersed in a polymer matrix.
- the polymer matrix may be used without limitation when it is implemented as a polymer compound capable of injection molding without impairing the dispersibility of the heat dissipation filler.
- the polymer matrix may be a known thermoplastic polymer compound, the thermoplastic polymer compound is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK) ), Polyphenylene oxide (PPO), polyethersulfone (PES), polyetherimide (PEI), and one compound selected from the group consisting of polyimide, or two or more kinds of mixtures or copolymers.
- the thermoplastic polymer compound is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK) ), Polyphenylene oxide (PPO), polyethersulfone (PES), polyetherimide (PEI), and one compound
- the insulating heat dissipating filler may be used without any limitation as long as it has both insulating and heat dissipating properties.
- the insulating heat-radiating filler is selected from the group consisting of magnesium oxide, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, silicon carbide and manganese oxide It may include one or more.
- the insulating heat dissipating filler may be porous or non-porous, and may be a core shell type filler having a known conductive heat dissipating filler such as carbon-based or metal as a core and an insulating component surrounding the core.
- the surface may be modified with functional groups such as silane group, amino group, amine group, hydroxy group, carboxyl group, etc. to improve the wettability and the like and improve the interfacial bonding force with the polymer matrix.
- the present invention is not limited thereto, and the plastic having insulation and heat dissipation may be used without limitation.
- bus bar 120 may be at least partially embedded in the support plates 110 and 210 as described above.
- the bus bar 120 extends from the end of the first portion 121 and the first portion 121 embedded in the support plates 110 and 210. And extension portions 122 and 123.
- extension portions 122 and 123 may have a second portion 122 and an end portion of the second portion 122 extending from the end portion of the first portion 121 in the thickness direction of the support plates 110 and 210. It may include a third portion 123 extending from the protruding outward of the support plates (110, 210), the second portion 122 is embedded in the support plates (110, 210) together with the first portion (121). Can be.
- first plate 121 and the second portion 122 embedded in the support plates 110 and 210 are the first plate 111, the second plate 112 and the third plate ( When 113 is implemented in a stacked form, it may be disposed in the placement holes 114a and 114b formed through the second plate 112 and the third plate 113.
- the first portion 121 embedded in the support plate 110 may be covered by the third plate 113 in an upper surface thereof in a state where the bottom surface thereof is in contact with the first plate 111.
- the first plate 111, the second plate 112, and the third plate 113 may be fixed through the second plate 112 and the third plate 113.
- the bus bar 120 may be fixed to the support plate 110 even without using a separate fixing member.
- first portion 121 of the first portion 121 and the second portion 122 embedded in the support plate 110 is directly connected to the first plate 111 made of a plastic material having heat dissipation and insulation. It may be arranged to contact.
- the bus bar 120 when the bus bar 120 is entirely made of a plastic material having heat dissipation and insulation, the bus bar 120 may have at least a part of the resin forming composition in an insert molding process using a resin forming composition. Insert molding may be performed in a state in which the first part 121 and the second part 122 may be embedded in the support plate 210.
- extension part 122 and 123 may be plural in number.
- bus bar 120 may have a shape in which one surface is fixed to one surface of the support plate 210 as illustrated in FIG. 10, and the bus bar 120 may be supported in FIGS. 4 to 8.
- the plate 110 may be fixed to one surface exposed in the same manner as in FIG. 10.
- the first part 121 and the second part 122 of the bus bar 120 embedded in the support plates 110 and 210 may be embedded.
- a known heat transfer material (not shown) may be interposed on the outer surface of the silver. Such a heat transfer material can smoothly transfer the heat present in the bus bar 120 to the support plates 110 and 210 having heat dissipation.
- the power relay assembly 100 may further include a protective coating layer 150.
- the protective coating layer 150 may be applied to cover all of the outer surfaces of the support plates 110 and 210 and the busbars 120.
- the protective coating layer 150 may also cover all of the outer surfaces of the electric elements (10, 20, 30) mounted on one surface of the support plates (110, 210).
- the application position of the protective coating layer 150 is not limited thereto, and may be applied only to the outer surfaces of the support plates 110 and 210, or may be applied only to the outer surfaces of the busbars 120.
- the protective coating layer 150 may prevent scratches due to physical stimuli applied to the surfaces of the support plates 110 and 210 and the busbars 120, and further improve surface insulation.
- the protective coating layer 150 may serve to prevent the separation of the insulating heat dissipation filler located on the surface when the support plates 110 and 210 are made of plastics in which the insulating heat dissipation filler is dispersed.
- the protective coating layer 150 may be implemented with a known thermosetting polymer compound or a thermoplastic polymer compound.
- the thermosetting polymer compound may be one compound selected from the group consisting of epoxy, urethane, ester, and polyimide resins, or two or more mixtures or copolymers.
- the thermoplastic polymer compound is polyamide, polyester, polyketone, liquid crystal polymer, polyolefin, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenylene oxide (PPO), polyether sulfone (PES) ), One compound selected from the group consisting of polyetherimide (PEI) and polyimide, or mixtures or copolymers of two or more thereof.
- the protective coating layer 150 may be applied to the outer surface of the support plates 110 and 210 may prevent the heat transferred to the support plate 110 side to be discharged to the outside.
- the protective coating layer 150 applied to the present invention may further include an insulating heat dissipation filler to improve the heat radiation characteristics to the outside.
- the insulating heat dissipation filler may be used without limitation in the case of a known insulating heat dissipation filler.
- the protective coating layer 150 may include an insulating heat dissipation filler dispersed in the polymer matrix to have both heat dissipation and insulation at the same time as the support plates 110 and 210 described above.
- the insulating heat dissipation filler included in the protective coating layer 150 may be the same type as the insulating heat dissipation filler included in the support plates 110 and 210 or may be used in a different kind.
- the plurality of electrical elements 10, 20, and 30 may be mounted on one surface of the support plates 110, 210, and 310, and may be electrically connected to each other through the bus bar 120. Through this, the electric elements 10, 20, and 30 may serve to block or connect the high voltage current supplied from the battery to the driving control unit.
- the electric devices 10, 20, and 30 may be main relays, precharge relays, precharge resistors, battery current sensors, main fuses, etc., and may be connected to each other through the busbar 120 or a cable (not shown). Can be electrically connected.
- the plurality of busbars 120 may be electrically connected through circuit patterns (not shown) formed on the support plates 110, 210, and 310.
- the electric devices 10, 20, 30 drive the motor in the drive controller by supplying power to a drive controller (not shown) that controls the drive voltage by cutting off or connecting the high voltage current supplied from the battery. It can generate a control signal for.
- the driving controller may generate a control signal for driving the motor, and the driving of the motor may be controlled by controlling the inverter and the converter through the control signal.
- the main relay is connected and the precharge relay is blocked, so that the power of the battery may be applied to the inverter through the main circuit.
- the main relay when the vehicle is off, the main relay is cut off, and the connection between the battery and the inverter is blocked, thereby preventing the battery voltage from being transferred to the motor through the inverter. At this time, when the main relay is in a disconnected state, the capacitor connected to the inverter may be discharged.
- the charging of the capacitor may be started by applying the precharge relay to the inverter while the voltage of the battery is dropped by the precharge resistor. Then, when the capacitor is sufficiently charged, the main relay is connected and at the same time the precharge relay is cut off so that the voltage of the battery can be applied to the inverter.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
파워 릴레이 어셈블리가 제공된다. 본 발명의 예시적인 실시예에 따른 파워 릴레이 어셈블리는 적어도 하나의 전기소자가 일면에 장착되며, 방열성 및 절연성을 갖는 플라스틱 재질을 포함하는 지지플레이트; 상기 전기소자와 전기적으로 연결되는 적어도 하나의 부스바; 및 상기 전기소자에서 발생하는 전자파를 차폐하기 위한 전자파 차폐부;를 포함한다.
Description
본 발명은 파워 릴레이 어셈블리에 관한 것으로, 보다 구체적으로는 예컨데 전기 자동차에 사용될 수 있는 파워 릴레이 어셈블리에 관한 것이다.
전기 자동차는 전기를 사용하여 주행하는 자동차의 총칭이다. 통상적으로 전기 자동차는 전기만으로 운행되는 전기 자동차(Electric Vehicle, EV)와, 전기와 화석 연료를 사용하는 하이브리드 전기 자동차(Hybrid Electric Vehicle, HEV) 등으로 구분된다.
전기 자동차는 고전압 배터리와 모터 사이에 파워 릴레이 어셈블리(Power Relay Assembly)가 위치된다. 이와 같은 파워 릴레이 어셈블리는 고전압 배터리의 전원을 선택적으로 공급하는 역할을 한다.
즉, 파워 릴레이 어셈블리는 메인 릴레이(main relay), 프리차지 릴레이(pre-charge relay), 및 프리차지 레지스터(Pre-charge resistor) 등을 포함하며, 상술한 부품들은 부스바를 매개로 서로 전기적으로 연결된다.
메인 릴레이는 고전압 배터리와 모터 사이에서 전원을 공급 또는 차단하고, 프리 차지 릴레이 및 프리차지 레지스터는 초기 전류에 의한 장치의 손상을 방지한다.
그리고 부스바는 낮은 임피던스와 높은 전류용량을 갖는 도체로, 2개 이상의 회로를 개별적으로 연결하거나 한 시스템 내의 여러 등량점을 연결할 수 있다.
통상적으로 파워 릴레이 어셈블리는, 트렁크(trunk)에 설치되는 고전압 배터리와의 연결을 위하여 트렁크나 캐빈룸(cabine room)에 설치된다. 따라서 메인 릴레이나 프리차지 릴레이의 방열 성능 및 전자파 차폐 성능을 확보하여 열에 의한 성능저하 및 손상을 방지할 뿐만 아니라, 전자파에 의한 오작동 및 손상을 방지할 필요가 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 방열 성능과 함께 전자파 차폐 기능을 동시에 확보할 수 있는 파워 릴레이 어셈블리를 제공하는데 그 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은, 적어도 하나의 전기소자가 일면에 장착되며, 방열성 및 절연성을 갖는 플라스틱 재질을 포함하는 지지플레이트; 상기 전기소자와 전기적으로 연결되는 적어도 하나의 부스바; 및 상기 전기소자에서 발생하는 전자파를 차폐하기 위한 전자파 차폐부;를 포함하는 파워 릴레이 어셈블리를 제공한다
또한, 상기 전자파 차폐부는 상기 지지플레이트에 매립되는 판상의 금속부재일 수 있고, 상기 금속부재는 케이블을 매개로 접지와 전기적으로 연결될 수 있다.
다른 예로써, 상기 전자파 차폐부는 전기전도성을 갖는 차폐코팅층일 수 있다. 이와 같은 경우, 상기 차폐코팅층은 상기 부스바의 외부 노출을 방지하기 위한 커버의 내면에 형성될 수 있다.
또 다른 예로써, 상기 지지플레이트는 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 제1플레이트와, 비절연성 및 방열성을 갖고 전도성 필러를 포함된 플라스틱 재질로 이루어져 상기 제1플레이트의 일면에 적층되는 제2플레이트를 포함할 수 있고, 상기 전자파 차폐부는 상기 제2플레이트일 수 있다.
또한, 상기 부스바는 적어도 일부가 상기 지지플레이트에 매립될 수 있다. 이와 같은 경우, 상기 부스바는 상기 지지플레이트에 매립되는 부분 중 적어도 일부가 상기 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 지지플레이트 부분과 접하도록 배치될 수 있다.
본 발명에 의하면, 지지플레이트에 방열성을 부가하여 열에 의한 성능저하 및 부품의 손상을 미연에 방지함과 동시에 전자파 차폐부를 통해 전자파를 차폐함으로써 전자파에 의한 전자부품의 오작동 및 손상을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리를 나타낸 개략도,
도 2는 도 1에서 전기소자들이 제거된 상태를 나타낸 도면으로서, 부스바의 배치관계를 나타낸 도면,
도 3은 도 2에서 제1판, 제2판 및 제3판이 분리된 상태를 나타낸 도면,
도 4는 도 2의 B-B 방향단면도,
도 5 내지 도 7은 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리에서 전자파 차폐부가 금속부재로 구비되는 경우를 나타낸 도면으로서, 도 4와 동일한 방향에서 바라본 지지플레이트의 다양한 형태를 나타낸 단면도,
도 8은 도 4의 금속부재가 접지와 연결된 경우를 개념적으로 나타낸 도면,
도 9 및 도 10은 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리에서 전자파 차폐부의 다른 형태를 나타낸 도면으로서, 도 4와 동일한 방향에서 바라본 단면도,
도 11은 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리에 적용될 수 있는 커버의 단면을 도 1의 A-A방향과 동일한 방향에서 바라본 단면도로서, 전자파 차폐부가 커버의 내면에 차폐코팅층으로 형성되는 경우를 나타낸 도면,
도 12는 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리에 적용될 수 있는 부스바를 나타낸 단면도로서, 표면에 코팅층이 형성된 경우를 나타낸 도면,
도 13은 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리가 전기 자동차의 케이스에 장착된 상태를 나타낸 개략도, 그리고,
도 14는 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리가 전기 자동차의 케이스에 장착되고 하나의 커버를 통해 밀봉된 상태를 나타낸 개략도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)는 배터리로부터 공급된 고전압전류를 차단 또는 연결하여 구동전압을 제어하는 구동제어부에 전력을 공급하기 위한 것으로, 도 1에 도시된 바와 같이 지지플레이트(110), 적어도 하나의 전기소자(10,20,30), 부스바(120), 커버(130) 및 전자파 차폐부를 포함할 수 있다.
상기 지지플레이트(110)는 소정의 면적을 갖는 판상의 형태일 수 있으며, 상기 적어도 하나의 전기소자(10,20,30) 및 이들을 전기적으로 연결하는 부스바(120)를 고정할 수 있다.
이때, 상기 지지플레이트(110)는 적어도 일부가 방열성과 절연성을 함께 가질 수 있다.
즉, 상기 지지플레이트(110)는 방열성을 가지는 부분이 상기 전기소자(10,20,30) 및 부스바(120)를 지지하는 역할을 수행할 수 있으며, 상기 방열성을 가지는 부분은 상기 전기소자의 작동시 발생되는 열을 방출할 수 있다. 또한, 상기 지지플레이트(110)는 절연성을 가지는 부분이 상기 부스바(120) 및 전기소자(10,20,30)들 간의 전기적인 쇼트를 방지할 수 있다.
상기 지지플레이트(110)는 플라스틱 재질로 형성될 수 있는데, 본 발명의 일 실시예에 따르면, 상기 지지플레이트(110)는 적어도 일부가 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수 있으며, 상기 부스바(120)의 일부는 상기한 방열성 및 절연성을 갖는 부분과 서로 접촉하도록 고정될 수 있다.
이처럼, 상기 지지플레이트(110)는 일부가 방열성 및 절연성을 갖는 플라스틱 재질로 형성될 수도 있으나, 이를 한정하는 것은 아니며, 상기 지지플레이트(110)는 전체가 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수도 있다.
상기 부스바(120)는 상기 지지플레이트(110)의 일면에 장착되는 적어도 하나의 전기소자(10,20,30)를 전기적으로 연결할 수 있다.
이를 위해, 상기 부스바(120)는 낮은 임피던스와 높은 전류용량을 갖는 도체로 형성될 수 있으며, 2개 이상의 전기소자들을 개별적으로 연결하거나 여러 등량점을 연결하여 여러 지점으로 전원을 분배하는 역할을 수행할 수 있다.
이와 같은 부스바(120)는 소정의 길이를 갖는 판상의 바 형태로 구비될 수 있다. 또한, 상기 부스바(120)는 상기 전기소자(10,20,30)와 용이하게 체결될 수 있도록 전체길이 중 일부의 길이가 1회 또는 복수 회 절곡된 형태일 수 있다. 그러나 상기 부스바(120)의 전체형상을 이에 한정하는 것은 아니며 서로 연결하고자 하는 전기소자(10,20,30)의 배치위치에 따라 적절하게 변경될 수 있다.
또한, 상기 부스바(120)는 복수 개로 구비될 수 있다. 이를 통해, 상기 복수 개의 부스바(120) 중 적어도 일부는 배터리의 플러스 단자 및 마이너스 단자, 인버터의 플러스 단자 및 마이너스 단자 등과 각각 연결될 수 있으며, 상기 복수 개의 전기소자(10,20,30)는 배터리로부터 공급된 고전압전류를 구동제어부 측으로 차단하거나 연결할 수 있다.
이때, 상기 부스바(120)는 적어도 일부가 상기 지지플레이트(110)에 접촉된 상태로 고정될 수 있으며, 상기 부스바(120) 중 상기 지지플레이트(110)에 접촉된 부분은 상기 지지플레이트(110) 중 방열성을 가지는 부분일 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)의 작동시 상기 전기소자(10,20,30) 및/또는 부스바(120)에서 발생된 열은 상기 지지플레이트(110)에 접촉된 부스바(120)를 통해 상기 지지플레이트(110)의 방열성을 갖는 부분을 통해 외부로 방출될 수 있다. 이로 인해, 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)는 열에 의한 성능저하 및 부품의 손상을 미연에 방지할 수 있다.
이때, 상기 부스바(120)는 일면이 상기 지지플레이트(110)의 일면에 고정된 형태일 수도 있으나, 상기 부스바(120)는 전체 길이 중 적어도 일부가 상기 지지플레이트(110)에 매립될 수 있다. 일례로, 상기 부스바(120)는 제1부분(121), 제2부분(122) 및 제3부분(123)을 포함할 수 있다.
여기서, 상기 제1부분(121)은 지지플레이트(110)의 내부에 완전히 매립되는 부분일 수 있고, 상기 제3부분(123)은 상기 지지플레이트(110)의 외부로 노출되는 부분일 수 있으며, 상기 제2부분(122)은 상기 제1부분(121) 및 제3부분(123)을 연결하면서 상기 지지플레이트(110)를 통해 고정된 부분일 수 있다.
만일, 상기 지지플레이트(110)의 내부 및/또는 일부가 상기 방열성 및 절연성을 가지는 플라스틱 재질로 형성된 부분을 포함하는 경우, 상기 부스바(120)의 제1부분(121)은 상기한 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 부분과 접촉하도록 상기 지지플레이트(110)의 내부에 매립될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
한편, 상기 부스바(120)는 상술한 바와 같이 낮은 임피던스와 높은 전류용량을 갖는 도체로 형성될 수 있다. 구체적인 일례로써, 상기 부스바(120)는 구리나 알루미늄과 같은 금속재질로 이루어질 수 있다.
여기서, 상기 부스바(120)가 알루미늄 재질로 이루어진 경우, 상기 부스바(120)는 도 12에 도시된 바와 같이 방열코팅층(C)이 표면에 도포된 형태일 수 있으며, 상기 방열코팅층(C)은 후술할 절연성 방열필러를 포함하는 보호코팅층(150)과 동일한 것일 수 있다. 즉, 알루미늄 재질로 이루어진 부스바(120)는 구리 재질로 이루어진 부스바(120)에 비하여 가벼운 무게를 가질 수 있다. 이는, 재료의 특성상 알루미늄이 구리보다 상대적으로 비중이 작기 때문이다. 이에 따라, 상기 부스바(120)의 재질을 알루미늄으로 사용한 파워 릴레이 어셈블리는 상기 부스바(120)의 재질로 구리를 사용한 파워 릴레이 어셈블리보다 매우 가벼운 중량을 가질 수 있다.
반면, 재료의 특성상 알루미늄이 구리보다 상대적으로 열전도도가 작기 때문에 동일한 사이즈로 제작되는 경우 방열성능이 떨어질 수 있으며, 동등한 수준의 방열성능을 구현하기 위해서는 부스바의 두께를 두껍게 제작해야하는 단점이 있다.
본 발명에서는 이러한 문제점을 해결하기 위하여 상기 부스바(120)가 알루미늄 재질로 이루어진 경우 부스바(120)의 표면에 절연성 방열필러를 포함하는 방열코팅층(C)을 형성하여 방열성능을 보완함으로써 상기 부스바가 구리재질로 이루어진 경우에 비하여 증가되는 두께를 최소화하면서도 동등 수준의 방열성능을 구현할 수 있다.
이에 따라, 상기 부스바(120)의 재질을 알루미늄으로 사용한 파워 릴레이 어셈블리는 상기 부스바(120)의 재질로 구리를 사용한 파워 릴레이 어셈블리에 비하여 경량화로 구현할 수 있으며, 생산 원가를 절감할 수 있다.
비제한적인 예로써, 알루미늄 재질로 이루어진 부스바는 동일한 형상을 갖는 구리재질로 이루어진 부스바에 비하여 동등 수준의 방열성능을 구현하기 위해서는 대략 1.5배의 두께로 제작되어야 한다. 그러나 상기 부스바의 표면에 절연성 방열필러를 포함하는 방열코팅층(C)이 형성되는 경우, 즉, 알루미늄 재질로 이루어지고 표면에 절연성 방열필러를 포함하는 방열코팅층(C)이 형성된 부스바는 구리재질로 이루어진 부스바와 비교할 때 대략 1.3배의 두께를 갖더라도 동등 수준의 방열성능을 구현할 수 있다.
그러나 상기 부스바(120)의 재질을 이에 한정하는 것은 아니며, 낮은 임피던스와 높은 전류용량을 갖는 도체라면 제한없이 사용될 수 있다.
상기 커버(130)는 상기 지지플레이트(110)의 일면에 돌출되는 전기소자(10,20,30) 및 부스바(120)가 외부로 노출되는 것을 방지함으로써 외부환경으로부터 상기 전기소자(10,20,30) 및 부스바(120)를 보호할 수 있다.
이와 같은 커버(130)는 상기 지지플레이트(110)와 직접 체결될 수도 있고 상기 지지플레이트(110)의 테두리 측에 별도로 구비되는 미도시된 브라켓과 체결되는 방식일 수도 있다. 더불어, 상기 커버(130)는 일측이 개방된 함체 형상일 수 있다.
그러나 상기 커버(130)를 이를 한정하는 것은 아니며, 상기 커버(130)는 하나의 부재로 형성될 수도 있고, 복수 개의 부품들이 서로 조립되어 하나의 함체를 구성하는 것도 가능할 수 있다. 더불어, 상기 커버(130)는 도 1 및 도 13에 도시된 바와 같이 하나의 지지플레이트(110)를 덮는 방식일 수도 있고, 도 14에 도시된 바와 같이 서로 인접하게 배치된 복수 개의 지지플레이트(110)들을 하나의 커버(130)를 통해 동시에 덮는 형태일 수도 있다.
또한, 상기 커버(130)는 절연성을 갖는 일반 플라스틱 재질로 이루어질 수 있지만, 적어도 일부가 상기 지지플레이트(110)와 마찬가지로 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수 있다.
상기 전자파 차폐부는 전자파에 의한 전자부품의 오작동 및 손상을 방지할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)는 방열성이 부가된 지지플레이트(110)를 통해 열에 의한 성능저하 및 부품의 손상을 미연에 방지하면서도 상기 전자파 차폐부를 통해 전자파에 의한 전자부품의 오작동 및 손상과 같은 문제도 함께 방지할 수 있다.
이와 같은 전자파 차폐부는 상기 지지플레이트(110)에 구비될 수도 있고, 상기 커버(130) 측에 구비될 수도 있다.
구체적인 일례로써, 상기 전자파 차폐부는 도 4 내지 도 7에 도시된 바와 같이 지지플레이트(110,210)에 매립된 판상의 금속부재(140)일 수 있다.
이때, 상기 금속부재(140)는 시트형상의 판재일 수도 있고, 금속망체일 수도 있다.
이와 같은 금속부재(140)는 전기적인 쇼트를 방지할 수 있도록 지지플레이트(110,210) 중 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분에 매립될 수 있다. 일례로, 상기 금속부재(140)는 인서트 사출 성형을 통해 상기 지지플레이트(110,210) 중 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분과 일체화된 형태일 수 있다.
이에 따라, 도 4 내지 도 7에 도시된 지지플레이트(110,210)들은 플라스틱 재질로 이루어진다 하더라도 상기 금속부재(140)를 통해 전자파 차폐기능을 구현하면서도 기계적 강도가 향상될 수 있다. 더불어, 상기 지지플레이트(110,210)들은 사출물로 이루어진다 하더라도 상기 금속부재(140)를 통해 기계적 강도가 향상될 수 있음으로써 얇은 두께로 구현될 수 있다.
본 발명에서, 상기 금속부재(140)는 소정의 열전도도를 갖는 금속재질인 경우 제한 없이 사용될 수 있다. 비제한적인 예로써, 상기 금속부재(140)는 알루미늄, 마그네슘, 철, 티타늄 및 구리로 이루어진 군에서 선택된 1종의 금속 또는 선택된 적어도 1종의 금속이 포함된 합금일 수 있다.
이와 같은 금속부재(140)는 도 4 및 도 6에 도시된 바와 같이 전면이 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분에 의해 완전히 둘러싸이도록 상기 지지플레이트(110,210)의 내부에 매립될 수 있고, 도 5 및 도 7에 도시된 바와 같이 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분과 접하면서 일면이 외부로 노출되도록 상기 지지플레이트(110,210)의 저면에 배치될 수도 있다.
한편, 상기 금속부재(140)가 상기 지지플레이트(110,210)들과 인서트 사출을 통해 일체화되는 경우, 상기 금속부재(140)는 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 지지플레이트(110,210) 부분과의 계면이 이격되지 않도록 표면처리 될 수 있다. 이를 통해, 상기 지지플레이트(110,210)들은 상기 금속부재(140)와 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분의 결합력을 높일 수 있다. 대안으로, 상기 금속부재(140)는 상기 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 부분과의 접합력을 향상시키기 위하여 적어도 일면에 나노 사이즈의 미세홈이 소정의 패턴으로 형성될 수도 있다.
한편, 상기 지지플레이트(110,210)들이 전자파 차폐부로서 기능하는 금속부재(140)를 포함하는 경우, 상기 금속부재(140)는 상기 지지플레이트(110,210)에 적어도 일부가 접촉되는 부스바(120)의 단부로부터 소정의 간격(d)을 유지하도록 배치될 수 있다.
구체적인 일례로써, 상기 금속부재(140)와 부스바(120) 중 상기 지지플레이트(110,210)에 접촉되는 부분(121) 사이의 이격거리(d)는 1mm 이상의 간격을 가질 수 있다. 이는, 절연성을 유지하면서도 요구되는 내전압성을 충족시키기 위함이다.
본 발명에서, 상기 금속부재(140)는 상술한 바와 같이 소정의 면적을 갖는 판상의 금속판일 수 있다. 그러나, 상기 금속부재(140)를 이에 한정하는 것은 아니며, 소정의 종횡비를 갖는 봉형으로 구비될 수도 있다. 더불어, 상기 금속부재(140)는 사각 또는 원형 등과 같은 폐루프 형태의 테두리를 갖추고 상기 테두리의 내측에 복수 개의 와이어 또는 바가 소정의 간격으로 이격배치된 메쉬형(mesh type)일 수도 있다. 상기 금속부재(140)가 메쉬형인 경우 상기 테두리의 내부에 배치되는 복수 개의 와이어 또는 바는 평행구조, 격자구조, 허니컴 구조 및 이들이 상호 조합된 다양한 구조를 형성하도록 배치될 수 있다.
한편, 상기 지지플레이트(110,210)들이 전자파 차폐부로서 기능하는 금속부재(140)를 포함하는 경우, 상기 금속부재(140)는 케이블을 매개로 접지단자(earth terminal)와 연결될 수 있다.
일례로, 도 8에 도시된 바와 같이 상기 지지플레이트(110)에 전면이 매립된 금속부재(140)는 케이블을 매개로 접지단자(earth terminal)와 연결될 수 있다. 이에 따라, 상기 금속부재(140)를 통해 흡수된 전자파는 상기 케이블 및 접지단자를 통해 그라운드 측으로 이동함으로써 전자파 차폐 성능을 더욱 높일 수 있다. 도면과 설명에는, 전자파 차폐성능을 향상시키기 위하여 상기 금속부재(140)가 케이블을 매개로 접지단자와 연결되는 것으로 설명하였지만 이에 한정하는 것은 아니며, 상기 금속부재(140)를 통해 흡수된 전자파를 외부로 배출할 수 있는 형태라면 제한 없이 사용될 수 있음을 밝혀둔다. 더불어, 도면에는 도 4에 도시된 형태가 케이블을 매개로 접지단자와 연결되는 것으로 도시하였지만 이에 한정하는 것은 아니며, 도 5 내지 도 7에 도시된 지지플레이트(110,210)들 역시 동일한 방식이 적용될 수 있다.
다른 예로써, 상기 전자파 차폐부는 도 9 및 도 10에 도시된 형태로 구현될 수 있다. 즉, 본 실시예에서 상기 전자파 차폐부는 지지플레이트(310)의 일부가 전기전도성 성분을 포함함으로써 전자파 차폐 기능을 구현할 수 있다.
이를 위해, 상기 지지플레이트(310)는 서로 적층되는 판상의 제1플레이트(312) 및 제2플레이트(314)를 포함할 수 있다. 이때, 상기 제1플레이트(312)는 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수 있고, 상기 제2플레이트(314)는 방열성 및 비절연성을 갖는 플라스틱 재질로 이루어질 수 있다. 더불어, 상기 제2플레이트(314)는 전자파 차폐 기능을 구현할 수 있도록 전기전도성 필러를 포함할 수 있다.
이와 같은 경우, 상기 제2플레이트(314)는 지지플레이트(310)의 일부를 구성함과 동시에 전자파 차폐부의 역할을 동시에 수행할 수 있다.
구체적으로, 상기 제1플레이트(312)는 방열성 및 절연성을 가질 수 있도록 고분자매트릭스에 절연성 방열필러가 분산된 형태일 수 있으며, 상기 제2플레이트(314)는 고분자매트릭스에 방열성 필러 및 전기전도성 필러가 분산된 형태일 수 있다.
이때, 상기 제1플레이트(312) 및 제2플레이트(314)는 사출성형을 통해 형성된 사출물일 수 있으며, 상기 지지플레이트(310)는 이종사출을 통해 상기 제1플레이트(312) 및 제2플레이트(314)가 일체화된 형태일 수 있다.
이와 같은 경우, 상기 부스바(120)는 상기 지지플레이트(310) 중 방열성 및 절연성을 갖는 제1플레이트(312)에 접촉되도록 배치될 수 있다.
즉, 상기 부스바(120)는 도 9에 도시된 바와 같이 일부가 상기 제1플레이트(312)의 내부에 매립될 수도 있고, 도 10에 도시된 바와 같이 일면이 상기 제1플레이트(312)의 일면에 접촉된 상태로 고정될 수도 있다.
이에 따라, 본 실시예에서의 지지플레이트(310)는 상기 부스바(120)의 일부가 접촉된 상태로 고정되더라도 절연성을 갖는 제1플레이트(312)에 접촉 및 고정됨으로써 전기적인 쇼트를 방지할 수 있으며, 상기 제2플레이트(314)를 통해 전자파를 원활하게 흡수 및 차단할 수 있다.
여기서, 상기 제1플레이트(312) 및 제2플레이트(314)를 구성하는 고분자매트릭스는 방열필러의 분산성을 저해하지 않으면서도 사출성형이 가능한 고분자화합물로 구현된 경우 제한 없이 사용될 수 있다. 더불어, 이종재질간에 접착성이 제한되지 않고 양호한 접착성을 구현할 수 있는 재질이라면 제한없이 사용될 수 있다.
구체적인 일례로써, 상기 고분자매트릭스는 공지된 열가소성 고분자화합물일 수 있으며, 상기 열가소성 고분자화합물은 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종의 화합물, 또는 2종 이상의 혼합물 또는 코폴리머일 수 있다.
또한, 상기 제1플레이트(312)에 포함되는 절연성 방열필러는 절연성 및 방열성을 동시에 가지는 것이라면 제한 없이 모두 사용될 수 있다. 구체적인 일례로써, 상기 절연성 방열필러는 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 실리콘카바이드 및 산화망간으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이때, 상기 절연성 방열필러는 다공질이거나 비다공질일 수 있으며, 카본계, 금속 등의 공지된 전도성 방열필러를 코어로 하고 절연성 성분이 상기 코어를 둘러싸는 코어쉘 타입의 필러일 수도 있다. 더하여, 상기 절연성 방열필러의 경우 젖음성 등을 향상시켜 고분자매트릭스와의 계면 접합력을 향상시킬 수 있도록 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질된 것일 수도 있다.
더불어, 상기 제2플레이트(314)에 포함되는 전기전도성 필러는 공지된 전기전도성 필러의 경우 제한 없이 사용될 수 있다. 일례로, 상기 전기전도성 필러는 알루미늄, 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸로 이루어진 군에서 선택된 1종 이상의 금속 및 전기전도성 고분자 화합물 중 어느 하나 이상을 포함할 수 있다. 이때, 상기 전기전도성 고분자화합물은 폴리티오펜(polythiophene), 폴리(3,4-에틸렌디옥시티오펜)(poly(3,4-ethylenedioxythiophene)), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리디아세틸렌(polydiacetylene), 폴리티오펜비닐렌(poly(thiophenevinylene)), 폴리플러렌(polyfluorene) 및 폴리(3,4-에틸렌디옥시티오펜)(PEDOT):폴리스티렌설포네이트(PSS)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 실시예의 경우, 도면에는 상기 제1플레이트(312) 및 제2플레이트(314)가 동일한 형상으로 구비되는 것으로 도시하였지만 이에 한정하는 것은 아니며, 상기 제1플레이트(312) 및 제2플레이트(314)가 상호 적층되면서 상기 제2플레이트(314)의 테두리 측이 상기 제1플레이트(312)의 테두리를 감싸는 방식으로 구현될 수도 있으며, 상기 제1플레이트(312) 및 제2플레이트(314)가 상호 적층되면서 상기 제1플레이트(312)의 테두리 측이 상기 제2플레이트(314)의 테두리를 감싸는 방식으로 구현될 수도 있음을 밝혀둔다.
또 다른 예로써, 상기 전자파 차폐부는 도 11에 도시된 바와 같이 상기 커버(130)의 일면에 구비될 수도 있다. 즉, 본 실시예에서 전자파 차폐부는 전자파를 차폐할 수 있도록 전기전도성을 갖추고 커버(130)의 내면에 소정의 두께로 형성되는 차폐코팅층(240)일 수 있으며, 상기 차폐코팅층(240)은 전기전도성 필러가 포함된 고분자 수지층이거나 금속물질이 증착된 증착층일 수 있다.
여기서, 상기 전기전도성 필러가 포함된 고분자 수지층은 공지된 열경화성 고분자화합물 또는 열가소성 고분자화합물에 전기전도성 필러가 분산된 형태일 수 있다. 또한, 상기 전기전도성 필러는 알루미늄, 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸로 이루어진 군에서 선택된 1종 이상의 금속 및 전기전도성 고분자 화합물 중 어느 하나 이상을 포함할 수 있다. 이때, 상기 전기전도성 고분자화합물은 폴리티오펜(polythiophene), 폴리(3,4-에틸렌디옥시티오펜)(poly(3,4-ethylenedioxythiophene)), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리디아세틸렌(polydiacetylene), 폴리티오펜비닐렌(poly(thiophenevinylene)), 폴리플러렌(polyfluorene) 및 폴리(3,4-에틸렌디옥시티오펜)(PEDOT):폴리스티렌설포네이트(PSS)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
더불어, 상기 증착층은 알루미늄, 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸 등과 같이 증착이 가능한 금속물질이라면 제한없이 적용될 수 있다.
본 실시예의 경우, 상기 차폐코팅층(240)은 상기 커버(130)의 내부면에만 형성될 수도 있으나 이에 한정하는 것은 아니며 상기 커버(130)의 외부면에 도포될 수도 있고, 상기 커버(130)의 내부면 및 외부면에 모두 도포될 수도 있다. 더불어, 상기 차폐코팅층(240)은 상기 커버(130)의 일부 면적에 국부적으로 형성될 수도 있고, 상기 커버(130)의 전체면적에 형성될 수도 있다.
더하여, 상기 차폐코팅층(240)은 도포층이나 증착층 이외에 박판의 금속판이 접착층을 매개로 부착된 금속박막층일 수도 있다.
한편, 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)는 상기 전자파 차폐부가 판상의 금속부재(140)로 구현되는 경우, 상기 지지플레이트(110,210)는 다양한 방식으로 구현될 수 있다.
일례로, 상기 지지플레이트(110)는 도 1 내지 도 5에 도시된 바와 같이 판상의 제1판(111), 제2판(112) 및 제3판(113)을 포함할 수 있다. 이때, 상기 제1판(111), 제2판(112) 및 제3판(113)은 순차적으로 적층될 수 있으며, 상기 제1판(111), 제2판(112) 및 제3판(113) 중 적어도 제1판(111)은 방열성 및 절연성을 갖는 플라스틱 재질로 형성될 수 있다.
이와 같은 경우, 상기 제2판(112) 및 제3판(113)은 도 2 및 도 3에 도시된 바와 같이 상기 부스바(120) 중 지지플레이트(110)에 매립되는 제1부분(121) 및 제2부분(122)과 대응되는 형상의 배치공(114a)(114b)을 포함할 수 있으며, 상기 배치공(114a)(114b)은 상기 제2판(112) 및 제3판(113)에 각각 관통형성될 수 있다. 이때, 상기 배치공(114a)(114b)의 형상은 상기 지지플레이트(110)에 매립되는 부스바(120)의 제1부분(121) 및 제2부분(122)의 형상에 따라 적절하게 변경될 수 있다.
이로 인해, 상기 전기소자(10,20,30) 및 부스바(120)의 작동시 발생된 열은 방열성을 갖는 제1판(111) 측으로 전달된 후 외부로 전달될 수 있다. 더불어, 상기 부스바(120)는 제2부분(122)이 지지플레이트(110)에 매립된 상태에서 제2판(112) 및 제3판(113)에 의해 고정될 수 있다. 이를 통해, 본 실시예에 따른 파워 릴레이 어셈블리(100)는 상기 부스바(120)를 지지플레이트(110)에 고정하기 위한 별도의 고정부재가 불필요하므로 효율적인 공간사용이 가능하며 조립작업을 단순화시킬 수 있다.
여기서, 순차적으로 적층되는 제1판(111), 제2판(112) 및 제3판(113)은 점착부재(미도시)를 매개로 서로 부착될 수 있다. 이때, 상기 점착부재는 일반적인 점착부재가 사용될 수도 있으나 바람직하게는 열전도성 필러가 포함된 방열 점착부재가 사용될 수 있다. 또한, 상기 제1판(111), 제2판(112) 및 제3판(113)은 Tim과 같은 공지의 열전달물질(미도시)을 매개로 서로 부착될 수도 있다. 더불어, 상기 제1판(111), 제2판(112) 및 제3판(113)은 순차적으로 적층된 후 볼트부재와 같은 체결부재(미도시)를 매개로 고정된 형태일 수도 있다.
한편, 상기 지지플레이트(110)가 제1판(111), 제2판(112) 및 제3판(113)으로 분리형성되는 경우, 상기 제1판(111)은 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수 있고, 상기 제2판(112) 및 제3판(113)은 절연성을 갖는 일반적인 플라스틱 재질로 이루어질 수 있다.
이와 같은 경우, 상기 부스바(120)를 통해 방열성을 갖는 제1판(111) 측으로 전달된 열은 상기 제1판(111)의 상부에 적층된 제2판(112) 및/또는 제3판(113)을 통해 수직방향으로의 열전달이 차단될 수 있다. 이에 따라, 상기 제1판(111)으로 전달된 열이 제2판(112) 및/또는 제3판(113)을 통해 상기 전기소자(10,20,30) 측으로 전달되는 것이 차단될 수 있다.
이로 인해, 상기 부스바(120)에서 발생된 열은 열방출 경로가 제1판(111) 측으로 집중될 수 있음으로써 방열 성능을 높일 수 있다.
더불어, 본 발명에 따른 파워 릴레이 어셈블리(100)가 도 13 및 도 14에 도시된 바와 같이 함체 형상의 케이스(1) 내부에 하나 또는 복수 개가 배치된 상태에서 상기 케이스(1)의 하부측에 자연 대류 또는 강제 대류 방식을 통해 외기가 접촉하는 경우, 상기 파워 릴레이 어셈블리(100)는 전기소자(10,20,30) 및/또는 부스바(120)에서 발생된 열이 상기 케이스(1)와 직접 접하는 제1판(111)으로 집중될 수 있음으로써 보다 효율적으로 방열될 수 있다.
한편, 상기 지지플레이트(110)가 제1판(111), 제2판(112) 및 제3판(113)으로 분리형성되는 경우, 상기 제2판(112) 및 제3판(113)은 상기 제1판(111)과 마찬가지로 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수도 있다. 즉, 상기 지지플레이트(110)는 전체가 방열성을 갖는 플라스틱 재질로 이루어질 수 있다. 이와 같은 경우, 상기 지지플레이트(110)는 제1판(111)만 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 경우에 비하여 전체적인 열용량이 증가됨으로써 방열성능이 높아질 수 있다.
대안으로, 상기 지지플레이트(210)는 도 6에 도시된 바와 같이 방열성 및 절연성을 갖는 수지형성조성물로 형성된 사출물일 수 있다.
즉, 상기 지지플레이트(210)는 전체가 방열성 및 절연성을 갖는 플라스틱 재질로 이루어질 수 있으며, 상기 부스바(120)는 상기 지지플레이트(210)와 일체로 형성된 형태일 수 있다. 여기서, 상기 부스바(120)는 상기 수지형성조성물을 이용한 인서트 몰딩을 통하여 지지플레이트(210)를 성형하는 과정에서 적어도 일부가 상기 수지형성조성물에 매립된 형태로 지지플레이트(210)와 일체화될 수 있으며, 상기 제1부분(121) 및 제2부분(122)이 상기 지지플레이트(210)에 매립된 형태일 수 있다.
이에 따라, 본 실시예의 지지플레이트(210)는 앞서 설명한 바와 같이 상기 제1판(111), 제2판(112) 및 제3판(113)으로 분리형성되고 상기 제1판(111), 제2판(112) 및 제3판(113)이 모두 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 지지플레이트(110)와 마찬가지로 전체적인 열용량을 증가시켜 방열성능을 더욱 높일 수 있으며, 번거로운 조립공정이 생략되므로 작업생산성을 높일 수 있다.
한편, 상술한 지지플레이트(110,210)를 구성하기 위하여 사용되는 방열성 및 절연성을 갖는 플라스틱은 고분자매트릭스에 절연성 방열필러가 분산된 형태일 수 있다.
일례로, 상기 고분자매트릭스는 방열필러의 분산성을 저해하지 않으면서도 사출성형이 가능한 고분자화합물로 구현된 경우 제한 없이 사용될 수 있다. 구체적인 일례로써, 상기 고분자매트릭스는 공지된 열가소성 고분자화합물일 수 있으며, 상기 열가소성 고분자화합물은 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종의 화합물, 또는 2종 이상의 혼합물 또는 코폴리머일 수 있다.
또한, 상기 절연성 방열필러는 절연성 및 방열성을 동시에 가지는 것이라면 제한 없이 모두 사용될 수 있다. 구체적인 일례로써, 상기 절연성 방열필러는 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 실리콘카바이드 및 산화망간으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
더불어, 상기 절연성 방열필러는 다공질이거나 비다공질일 수 있으며, 카본계, 금속 등의 공지된 전도성 방열필러를 코어로 하고 절연성 성분이 상기 코어를 둘러싸는 코어쉘 타입의 필러일 수도 있다.
더하여, 상기 절연성 방열필러의 경우 젖음성 등을 향상시켜 고분자매트릭스와의 계면 접합력을 향상시킬 수 있도록 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질된 것일 수도 있다.
그러나 본 발명에 사용될 수 있는 절연성 및 방열성을 갖는 플라스틱을 이에 한정하는 것은 아니며 절연성과 방열성을 동시에 갖는 플라스틱이라면 제한없이 모두 사용될 수 있음을 밝혀둔다.
한편, 상기 부스바(120)는 상술한 바와 같이 적어도 일부가 지지플레이트(110,210)에 매립될 수 있다.
구체적으로, 상기 부스바(120)는, 도 4 내지 도 8에 도시된 바와 같이, 상기 지지플레이트(110,210)에 매립되는 제1부분(121)과, 상기 제1부분(121)의 단부로부터 연장되는 연장부분(122,123)을 포함할 수 있다.
또한, 상기 연장부분(122,123)은 전체길이 중 상기 제1부분(121)의 단부로부터 상기 지지플레이트(110,210)의 두께방향으로 연장되는 제2부분(122)과 상기 제2부분(122)의 단부로부터 연장되어 상기 지지플레이트(110,210)의 외측으로 돌출되는 제3부분(123)을 포함할 수 있으며, 상기 제2부분(122)은 상기 제1부분(121)과 함께 지지플레이트(110,210)에 매립될 수 있다.
여기서, 상기 지지플레이트(110,210)에 매립되는 제1부분(121) 및 제2부분(122)은 상기 지지플레이트(110)가 제1판(111), 제2판(112) 및 제3판(113)이 적층된 형태로 구현되는 경우 상기 제2판(112) 및 제3판(113)에 관통형성되는 배치공(114a,114b)에 배치될 수 있다.
이에 따라, 상기 지지플레이트(110)에 매립된 제1부분(121)은 저면이 상기 제1판(111)에 접촉된 상태에서 상면이 상기 제3판(113)에 의해 덮힐 수 있으며, 상기 제1판(111), 제2판(112) 및 제3판(113)이 고정결합되는 경우 상기 제2판(112) 및 제3판(113)을 통해 고정될 수 있다. 이로 인해, 상기 부스바(120)는 별도의 고정부재를 사용하지 않더라도 상기 지지플레이트(110)에 고정될 수 있다.
또한, 상기 지지플레이트(110)에 매립되는 제1부분(121) 및 제2부분(122) 중 적어도 제1부분(121)은 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 제1판(111)과 직접 접촉하도록 배치될 수 있다.
대안으로, 상술한 바와 같이 상기 부스바(120)는 전체가 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 경우, 상기 부스바(120)는 수지형성조성물을 이용한 인서트 몰딩과정에서 적어도 일부가 상기 수지형성조성물에 매립된 상태에서 인서트 몰딩이 수행됨으로써 상기 제1부분(121) 및 제2부분(122)이 상기 지지플레이트(210)에 매립된 형태일 수 있다.
도면에는 상기 제1부분(121)으로부터 연장되는 연장부분(122,123)이 하나인 것으로 도시하였지만 이에 한정하는 것은 아니며, 상기 연장부분(122,123)은 복수 개일 수도 있다.
또한, 상기 부스바(120)는 도 10에 도시된 바와 같이 일면이 상기 지지플레이트(210)의 일면에 고정된 형태일 수도 있으며, 상기 부스바(120)는 도 4 내지 도 8에 도시된 지지플레이트(110)에서도 도 10과 동일한 방식으로 노출되는 일면에 고정될 수 있다.
더불어, 상기 부스바(120)의 일부가 상기 지지플레이트(110,210)에 매립되는 경우, 상기 지지플레이트(110,210)에 매립되는 부스바(120)의 제1부분(121) 및 제2부분(122)은 외면에 공지의 열전달물질(미도시)이 개재될 수 있다. 이와 같은 열전달물질은 상기 부스바(120)에 존재하는 열을 방열성을 갖는 지지플레이트(110,210) 측으로 원활하게 전달할 수 있다.
한편, 본 발명의 일 실시예에 따른 파워 릴레이 어셈블리(100)는 보호코팅층(150)을 더 포함할 수 있다.
상기 보호코팅층(150)은 도 4에 도시된 바와 같이 상기 지지플레이트(110,210) 및 부스바(120)의 외부면을 모두 덮도록 도포될 수 있다. 더불어, 상기 보호코팅층(150)은 상기 지지플레이트(110,210)의 일면에 장착되는 전기소자들(10,20,30)의 외부면 역시 모두 덮을 수 있다. 그러나 상기 보호코팅층(150)의 도포 위치를 이를 한정하는 것은 아니며, 지지플레이트(110,210)의 외부면에만 도포될 수도 있고, 부스바(120)의 외부면에만 도포되는 것도 가능할 수 있다.
이와 같은 보호코팅층(150)은 지지플레이트(110,210) 및 부스바(120)의 표면에 가해지는 물리적 자극으로 인한 스크래치 등을 방지할 수 있으며, 표면의 절연성을 더욱 향상시킬 수 있다.
또한, 상기 보호코팅층(150)은 상기 지지플레이트(110,210)가 절연성 방열필러가 분산된 플라스틱으로 이루어진 경우 표면에 위치한 절연성 방열필러의 이탈을 방지하는 역할을 수행할 수도 있다.
일례로, 상기 보호코팅층(150)은 공지된 열경화성 고분자화합물 또는 열가소성 고분자화합물로 구현될 수 있다. 상기 열경화성 고분자화합물은 에폭시계, 우레탄계, 에스테르계 및 폴리이미드계 수지로 이루어진 군에서 선택된 1종의 화합물, 또는 2종 이상의 혼합물 또는 코폴리머일 수 있다. 또한, 상기 열가소성 고분자화합물은 폴리아미드, 폴리에스테르, 폴리케톤, 액정고분자, 폴리올레핀, 폴리페닐렌설파이드(PPS), 폴리에테르에테르케톤(PEEK), 폴리페닐렌옥사이드(PPO), 폴리에테르술폰(PES), 폴리에테르이미드(PEI) 및 폴리이미드로 이루어진 군에서 선택된 1종의 화합물, 또는 2종 이상의 혼합물 또는 코폴리머일 수 있으나 이에 제한되는 것은 아니다.
한편, 상기 보호코팅층(150)은 상기 지지플레이트(110,210)의 외부면에 도포됨으로써 상기 지지플레이트(110) 측으로 전달된 열이 외부로 방출되는 것을 방해할 수 있다. 이를 해결하기 위하여, 본 발명에 적용되는 보호코팅층(150)은 외부로의 열 방사특성을 향상시킬 수 있도록 절연성 방열필러를 더 포함할 수도 있다. 상기 절연성 방열필러는 공지된 절연성 방열필러의 경우 제한 없이 사용될 수 있다.
일례로, 상기 보호코팅층(150)은 상술한 지지플레이트(110,210)와 마찬가지로 방열성 및 절연성을 동시에 갖도록 고분자매트릭스에 분산되는 절연성 방열필러를 포함할 수 있다.
이때, 상기 보호코팅층(150)에 포함된 절연성 방열필러는 상기 지지플레이트(110,210)에 포함된 절연성 방열필러와 동일한 종류가 사용될 수도 있고 상이한 종류가 사용될 수도 있다.
상기 복수 개의 전기소자(10,20,30)는 상기 지지플레이트(110,210,310)의 일면에 장착될 수 있으며, 상기 부스바(120)를 매개로 서로 전기적으로 연결될 수 있다. 이를 통해, 상기 전기소자(10,20,30)는 배터리로부터 공급된 고전압전류를 구동제어부 측으로 차단하거나 연결하는 역할을 수행할 수 있다.
이와 같은 전기소자들(10,20,30)은 메인 릴레이, 프리차지 릴레이, 프리차지 레지스터, 배터리 전류센서, 메인퓨즈 등일 수 있으며, 상기 부스바(120)나 케이블(미도시)을 매개로 서로 전기적으로 연결될 수 있다. 또한, 상기 복수 개의 부스바(120)들은 상기 지지플레이트(110,210,310)에 형성되는 회로패턴(미도시)들을 통해 전기적으로 연결될 수도 있다.
이를 통해, 상기 전기소자들(10,20,30)은 배터리로부터 공급된 고전압전류를 차단 또는 연결하여 구동전압을 제어하는 구동제어부(미도시) 측에 전력을 공급함으로써 상기 구동제어부에서 모터를 구동하기 위한 제어신호를 생성할 수 있다. 이때, 상기 구동제어부는 모터 구동을 위한 제어신호를 생성할 수 있으며, 제어신호를 통해 인버터 및 컨버터를 제어함으로써 모터의 구동이 제어될 수 있다.
일례로, 차량의 운전시에는 메인 릴레이가 접속상태가 되고, 프리 차지 릴레이가 차단되므로 메인 회로를 통하여 배터리의 전력이 인버터로 인가될 수 있다.
또한, 차량의 off 시에는 메인 릴레이가 차단상태가 되고, 배터리와 인버터의 접속이 차단됨으로써 배터리 전압이 인버터를 통해 모터로 전달되는 것이 방지될 수 있다. 이때, 상기 메인 릴레이가 차단 상태인 경우에는 인버터에 접속된 콘덴서가 방전될 수 있다.
이후, 차량을 다시 운전하는 경우에는 프리 차지 릴레이가 접속되어 배터리의 전압이 프리 차지 저항에 의해 강하된 상태로 인버터에 인가됨으로써 콘덴서의 충전이 개시될 수 있다. 그런 다음, 콘덴서가 충분히 충전되면 메인 릴레이가 접속됨과 동시에 프리 차지 릴레이가 차단됨으로써 배터리의 전압이 인버터에 인가될 수 있다.
이와 같은 전기소자의 작동은 공지의 내용이므로 상세한 설명은 생략하기로 한다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
Claims (15)
- 적어도 하나의 전기소자가 일면에 장착되며, 방열성 및 절연성을 갖는 플라스틱 재질을 포함하는 지지플레이트;상기 전기소자와 전기적으로 연결되는 적어도 하나의 부스바; 및상기 전기소자에서 발생하는 전자파를 차폐하기 위한 전자파 차폐부;를 포함하는 파워 릴레이 어셈블리.
- 제 1항에 있어서,상기 전자파 차폐부는 상기 지지플레이트에 매립되는 판상의 금속부재인 파워 릴레이 어셈블리.
- 제 2항에 있어서,상기 금속부재는 상기 지지플레이트의 내부에 완전히 매립되도록 배치되는 파워 릴레이 어셈블리.
- 제 2항에 있어서,상기 금속부재는 일면이 외부로 노출되도록 상기 지지플레이트의 일면에 고정되는 파워 릴레이 어셈블리.
- 제 2항에 있어서,상기 금속부재는 상기 부스바 중 지지플레이트에 매립 또는 접촉되는 부분으로부터 1mm 이상의 간격을 갖도록 상기 지지플레이트에 배치되는 파워 릴레이 어셈블리.
- 제 2항에 있어서,상기 금속부재의 표면에는 상기 지지플레이트와의 접합력을 향상시키기 위한 미세홈이 형성된 파워 릴레이 어셈블리.
- 제 2항에 있어서,상기 금속부재는 케이블을 매개로 접지와 전기적으로 연결되는 파워 릴레이 어셈블리.
- 제 1항에 있어서,상기 파워 릴레이 어셈블리는,상기 부스바의 외부 노출을 방지하기 위한 적어도 하나의 커버를 더 포함하고,상기 전자파 차폐부는 전기전도성을 갖추고 상기 커버의 내면에 소정의 두께로 형성되는 차폐코팅층인 파워 릴레이 어셈블리.
- 제 8항에 있어서,상기 차폐코팅층은 전기전도성 필러를 함유한 고분자 수지가 도포된 도포층이거나 금속물질이 증착된 증착층인 파워 릴레이 어셈블리.
- 제 1항에 있어서,상기 지지플레이트는 절연성 및 방열성을 갖는 플라스틱 재질로 이루어진 제1플레이트와, 비절연성 및 방열성을 갖고 전도성 필러를 포함된 플라스틱 재질로 이루어져 상기 제1플레이트의 일면에 적층되는 제2플레이트를 포함하고,상기 전자파 차폐부는 상기 제2플레이트인 파워 릴레이 어셈블리.
- 제 1항에 있어서,상기 부스바는 적어도 일부가 상기 지지플레이트에 매립되는 파워 릴레이 어셈블리.
- 제 11항에 있어서,상기 부스바는 상기 지지플레이트에 매립되는 부분 중 적어도 일부가 상기 방열성 및 절연성을 갖는 플라스틱 재질로 이루어진 지지플레이트 부분과 접하도록 배치되는 파워 릴레이 어셈블리.
- 제 11항에 있어서,상기 지지플레이트는 상기 부스바의 제1부분의 일면이 면접하는 제1판과, 상기 지지플레이트에 매립되는 부스바의 일부와 대응되는 형상의 배치공이 형성되어 상기 제1판의 일면에 순차적으로 적층되는 제2판 및 제3판을 포함하는 파워 릴레이 어셈블리.
- 제 13항에 있어서,상기 제1판, 제2판 및 제3판 중 적어도 제1판은 방열성 및 절연성을 갖는 플라스틱으로 이루어지는 파워 릴레이 어셈블리.
- 제 11항에 있어서,상기 지지플레이트는 방열성 및 절연성을 갖는 수지형성조성물이 인서트 몰딩을 통해 형성되어 상기 부스바의 일부가 매립된 상태로 일체화되는 파워 릴레이 어셈블리.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18764722.7A EP3594984B1 (en) | 2017-03-06 | 2018-03-06 | Power relay assembly |
JP2019546797A JP6913967B2 (ja) | 2017-03-06 | 2018-03-06 | パワーリレーアセンブリー |
CN201880011379.2A CN110291608B (zh) | 2017-03-06 | 2018-03-06 | 一种功率继电器组件 |
US16/486,643 US11420572B2 (en) | 2017-03-06 | 2018-03-06 | Power relay assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0028393 | 2017-03-06 | ||
KR20170028393 | 2017-03-06 | ||
KR1020180025986A KR102119594B1 (ko) | 2017-03-06 | 2018-03-05 | 파워 릴레이 어셈블리 |
KR10-2018-0025986 | 2018-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018164449A1 true WO2018164449A1 (ko) | 2018-09-13 |
Family
ID=63448778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002637 WO2018164449A1 (ko) | 2017-03-06 | 2018-03-06 | 파워 릴레이 어셈블리 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018164449A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170596A (zh) * | 2018-11-21 | 2021-07-23 | 株式会社自动网络技术研究所 | 电路结构体 |
WO2021157206A1 (ja) * | 2020-02-03 | 2021-08-12 | 株式会社デンソー | 電力変換装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110001013A (ko) * | 2009-06-29 | 2011-01-06 | 한국단자공업 주식회사 | 전원 연결 박스 |
KR20110078990A (ko) * | 2009-12-31 | 2011-07-07 | 한국단자공업 주식회사 | 전원연결박스 |
KR101278229B1 (ko) * | 2012-04-24 | 2013-06-24 | 이응재 | 2차전지 팩키지용 통합모듈 장치 |
KR20130136240A (ko) * | 2012-06-04 | 2013-12-12 | 주식회사 아모그린텍 | 전도성 점착 테이프 및 그 제조방법 |
KR20140095320A (ko) * | 2013-01-24 | 2014-08-01 | 엘지전자 주식회사 | 파워릴레이 어셈블리 및 이를 포함한 배터리팩 모듈 |
-
2018
- 2018-03-06 WO PCT/KR2018/002637 patent/WO2018164449A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110001013A (ko) * | 2009-06-29 | 2011-01-06 | 한국단자공업 주식회사 | 전원 연결 박스 |
KR20110078990A (ko) * | 2009-12-31 | 2011-07-07 | 한국단자공업 주식회사 | 전원연결박스 |
KR101278229B1 (ko) * | 2012-04-24 | 2013-06-24 | 이응재 | 2차전지 팩키지용 통합모듈 장치 |
KR20130136240A (ko) * | 2012-06-04 | 2013-12-12 | 주식회사 아모그린텍 | 전도성 점착 테이프 및 그 제조방법 |
KR20140095320A (ko) * | 2013-01-24 | 2014-08-01 | 엘지전자 주식회사 | 파워릴레이 어셈블리 및 이를 포함한 배터리팩 모듈 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3594984A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113170596A (zh) * | 2018-11-21 | 2021-07-23 | 株式会社自动网络技术研究所 | 电路结构体 |
CN113170596B (zh) * | 2018-11-21 | 2024-06-11 | 株式会社自动网络技术研究所 | 电路结构体 |
WO2021157206A1 (ja) * | 2020-02-03 | 2021-08-12 | 株式会社デンソー | 電力変換装置 |
JP2021125926A (ja) * | 2020-02-03 | 2021-08-30 | 株式会社デンソー | 電力変換装置 |
JP7180625B2 (ja) | 2020-02-03 | 2022-11-30 | 株式会社デンソー | 電力変換装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018111001A1 (ko) | 파워 릴레이 어셈블리 | |
KR102119594B1 (ko) | 파워 릴레이 어셈블리 | |
KR101991917B1 (ko) | 모터 차량들을 위한 회로 배치 및 회로 배치의 이용 | |
WO2019117514A1 (ko) | 버스바 어셈블리를 포함하는 배터리 모듈 | |
US20170346143A1 (en) | Cooling device and process | |
WO2019182216A1 (ko) | 양면냉각형 파워 모듈 및 그의 제조 방법 | |
WO2018164449A1 (ko) | 파워 릴레이 어셈블리 | |
KR102411445B1 (ko) | 파워 릴레이 어셈블리 | |
WO2021096224A1 (ko) | 퓨즈 소자, 플렉서블 배선기판 및 배터리팩 | |
WO2019017593A1 (ko) | 파워 릴레이 어셈블리 | |
WO2016076452A1 (ko) | 이종 재료 케이스 내장형 커패시터, 및 커패시터 igbt 인버터 하우징 결합체 | |
JP7303010B2 (ja) | フィルタコンデンサの短絡装置、短絡方法 | |
WO2021261832A1 (ko) | 회로 기판 어셈블리 제조 방법, 이에 의해 제조된 회로 기판 어셈블리 및 이를 구비하는 전기 자동차 | |
WO2023075200A1 (ko) | 패턴 퓨즈 및 이의 제조방법 | |
WO2023013897A1 (ko) | 모터 및 제어 장치 | |
WO2023158140A1 (ko) | 개구부를 포함하는 패턴 퓨즈 및 이를 포함하는 전지모듈 | |
WO2021141325A1 (ko) | Hv 와이어 어셈블리를 포함하는 배터리 팩 및 상기 배터리 팩의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764722 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019546797 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018764722 Country of ref document: EP Effective date: 20191007 |