WO2018163399A1 - Substrate treatment device, method for manufacturing semiconductor device, and program - Google Patents
Substrate treatment device, method for manufacturing semiconductor device, and program Download PDFInfo
- Publication number
- WO2018163399A1 WO2018163399A1 PCT/JP2017/009675 JP2017009675W WO2018163399A1 WO 2018163399 A1 WO2018163399 A1 WO 2018163399A1 JP 2017009675 W JP2017009675 W JP 2017009675W WO 2018163399 A1 WO2018163399 A1 WO 2018163399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- substrate
- rotation
- wafer
- processing chamber
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims description 42
- 239000004065 semiconductor Substances 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 230000007246 mechanism Effects 0.000 claims abstract description 43
- 239000007789 gas Substances 0.000 claims description 253
- 238000012545 processing Methods 0.000 claims description 124
- YDLQKLWVKKFPII-UHFFFAOYSA-N timiperone Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CCC(N2C(NC3=CC=CC=C32)=S)CC1 YDLQKLWVKKFPII-UHFFFAOYSA-N 0.000 claims 2
- 229950000809 timiperone Drugs 0.000 claims 2
- 235000012431 wafers Nutrition 0.000 description 139
- 239000010408 film Substances 0.000 description 111
- 238000006243 chemical reaction Methods 0.000 description 36
- 230000008569 process Effects 0.000 description 25
- 238000009826 distribution Methods 0.000 description 24
- 238000003860 storage Methods 0.000 description 19
- 239000011261 inert gas Substances 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 238000010926 purge Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000005046 Chlorosilane Substances 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- CGRVKSPUKAFTBN-UHFFFAOYSA-N N-silylbutan-1-amine Chemical compound CCCCN[SiH3] CGRVKSPUKAFTBN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BIVNKSDKIFWKFA-UHFFFAOYSA-N N-propan-2-yl-N-silylpropan-2-amine Chemical compound CC(C)N([SiH3])C(C)C BIVNKSDKIFWKFA-UHFFFAOYSA-N 0.000 description 1
- UOERHRIFSQUTET-UHFFFAOYSA-N N-propyl-N-silylpropan-1-amine Chemical compound CCCN([SiH3])CCC UOERHRIFSQUTET-UHFFFAOYSA-N 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910003697 SiBN Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910010060 TiBN Inorganic materials 0.000 description 1
- 229910010282 TiON Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- WZUCGJVWOLJJAN-UHFFFAOYSA-N diethylaminosilicon Chemical compound CCN([Si])CC WZUCGJVWOLJJAN-UHFFFAOYSA-N 0.000 description 1
- AWFPGKLDLMAPMK-UHFFFAOYSA-N dimethylaminosilicon Chemical compound CN(C)[Si] AWFPGKLDLMAPMK-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- NPEOKFBCHNGLJD-UHFFFAOYSA-N ethyl(methyl)azanide;hafnium(4+) Chemical compound [Hf+4].CC[N-]C.CC[N-]C.CC[N-]C.CC[N-]C NPEOKFBCHNGLJD-UHFFFAOYSA-N 0.000 description 1
- SRLSISLWUNZOOB-UHFFFAOYSA-N ethyl(methyl)azanide;zirconium(4+) Chemical compound [Zr+4].CC[N-]C.CC[N-]C.CC[N-]C.CC[N-]C SRLSISLWUNZOOB-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MNWRORMXBIWXCI-UHFFFAOYSA-N tetrakis(dimethylamido)titanium Chemical compound CN(C)[Ti](N(C)C)(N(C)C)N(C)C MNWRORMXBIWXCI-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
- PZKOFHKJGUNVTM-UHFFFAOYSA-N trichloro-[dichloro(trichlorosilyl)silyl]silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)[Si](Cl)(Cl)Cl PZKOFHKJGUNVTM-UHFFFAOYSA-N 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Definitions
- the present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
- JP 2010-123752 A International Publication No. 2005/088692
- An object of the present invention is to provide a technique capable of improving the in-plane uniformity of the film thickness of a formed film.
- a processing chamber for processing the substrate A substrate holder for holding the substrate in the processing chamber; A rotation mechanism for rotating the substrate holder; A controller that controls the rotation mechanism to control the rotation speed of the substrate holder,
- a technique is provided in which the control unit is configured to control the rotation mechanism such that the rotation speed of the substrate holder changes within one rotation without changing a preset time per rotation.
- FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus suitably used in an embodiment of the present invention, and is a diagram showing a processing furnace part in a cross-sectional view taken along line AA of FIG.
- the controller of the substrate processing apparatus used suitably by embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the flow of the substrate processing process in this invention.
- (A) is a figure which shows film thickness distribution when it forms into a film at the rotational speed of the to-be-processed substrate
- (B) is a figure of the to-be-processed substrate based on the film-forming tendency of (A). It is a figure which shows film thickness distribution when forming into a film so that a rotational speed may change within 1 rotation. It is a figure which shows the other Example which was made to change the rotational speed of a to-be-processed substrate within 1 rotation. It is a figure which shows the other Example which was made to change the rotational speed of a to-be-processed substrate.
- FIGS. 1 to 5 An embodiment of the present invention will be described with reference to FIGS. 1 to 5.
- the processing furnace 202 includes a heater 207 as a heating device (heating mechanism).
- the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
- the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
- a reaction tube 203 is disposed inside the heater 207 concentrically with the heater 207.
- the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened.
- a manifold (inlet flange) 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203.
- the manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203.
- An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
- the reaction tube 203 As the manifold 209 is supported by the heater base, the reaction tube 203 is installed vertically.
- a processing vessel (reaction vessel) is mainly constituted by the reaction tube 203 and the manifold 209.
- a processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. Note that the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
- nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209.
- Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
- the reaction tube 203 is provided with the two nozzles 249a and 249b and the two gas supply tubes 232a and 232b, and can supply a plurality of types of gases into the processing chamber 201. It has become.
- the nozzles 249a and 249b may be provided so as to penetrate the side wall of the reaction tube 203.
- the gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream side.
- MFC mass flow controllers
- Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively.
- the gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in order from the upstream side.
- the nozzle 249 a is placed in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper direction from the lower portion of the inner wall of the reaction tube 203. It is provided to rise upward. That is, the nozzle 249a is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in an area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. In other words, the nozzle 249 a is provided perpendicular to the surface (flat surface) of the wafer 200 on the side of the end (peripheral edge, edge) of each wafer 200 carried into the processing chamber 201.
- a gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a.
- the gas supply hole 250 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
- a plurality of gas supply holes 250 a are provided from the lower part to the upper part of the reaction tube 203.
- the nozzle 249b is provided in a buffer chamber 237 that is a gas dispersion space.
- the buffer chamber 237 is formed in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, and in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203. Are provided along the loading direction. That is, the buffer chamber 237 is formed by the buffer structure (buffer unit) 300 along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region.
- the buffer structure 300 is made of an insulating material such as quartz, and a gas supply hole 250c for supplying gas or active species to be described later is provided on a wall surface formed in an arc shape of the buffer structure 300.
- the gas supply hole 250 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
- a plurality of gas supply holes 250 c are provided from the lower part to the upper part of the reaction tube 203.
- the nozzle 249b rises upward from the lower end of the inner wall of the reaction tube 203 toward the upper side in the stacking direction of the wafer 200 at the end opposite to the end where the gas supply hole 250c of the buffer chamber 237 is provided. Is provided. That is, the nozzle 249b is provided inside the buffer structure 300, on the side of the wafer arrangement area where the wafers 200 are arranged, and in the area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. . That is, the nozzle 249 b is provided on the side of the end of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface of the wafer 200.
- a gas supply hole 250b for supplying gas is provided on the side surface of the nozzle 249b. The gas supply hole 250 b is opened to face the center of the buffer chamber 237. Similar to the gas supply hole 250c, a plurality of gas supply holes 250b are provided from the lower part to the upper part of the reaction tube 203.
- a silane source gas containing silicon (Si) as a predetermined element is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a raw material containing the predetermined element.
- the silane source gas for example, a source gas containing Si and a halogen element, that is, a halosilane source gas can be used.
- the halosilane raw material is a silane raw material having a halogen group.
- a source gas containing Si and Cl that is, a chlorosilane source gas can be used.
- a chlorosilane source gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
- a nitrogen (N) -containing gas nitriding agent, nitriding gas
- a reactant reactant having a chemical structure different from that of the raw material
- a nitrogen (N) -containing gas nitriding agent, nitriding gas
- reactant reactant having a chemical structure different from that of the raw material
- a nitrogen (N) -containing gas nitriding agent, nitriding gas
- reactant having a chemical structure different from that of the raw material
- reactant having a chemical structure different from that of the raw material
- the nitriding agent for example, ammonia (NH 3 ) gas can be used.
- NH 3 gas is used as the nitriding agent, for example, this gas is plasma-excited using a plasma source to be described later and supplied as a plasma excitation gas.
- nitrogen (N 2 ) gas as an inert gas passes through the MFC 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, and nozzles 249a and 249b, respectively. Supplied into 201.
- the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a raw material supply system as a first gas supply system.
- a reactant supply system (reactant supply system) as a second gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b.
- An inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d.
- the raw material supply system, the reactant supply system, and the inert gas supply system are also simply referred to as a gas supply system (gas supply unit).
- the nozzle 249a may be included in the raw material supply system
- the nozzle 249b may be included in the reactant supply system
- the nozzles 249a and 249b may be included in the inert gas supply system.
- two rod-shaped electrodes 269 and 270 made of a conductor and having an elongated structure are arranged along the arrangement direction of the wafer 200 from the lower part to the upper part of the reaction tube 203. It is installed. Each of the rod-shaped electrodes 269 and 270 is provided in parallel with the nozzle 249b. Each of the rod-shaped electrodes 269 and 270 is protected by being covered with an electrode protection tube 275 from the upper part to the lower part.
- One of the rod-shaped electrodes 269 and 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is grounded to the ground that is the reference potential.
- Plasma is generated in the plasma generation region 224 between the rod-shaped electrodes 269 and 270 by applying high-frequency (RF) power between the rod-shaped electrodes 269 and 270 from the high-frequency power source 273.
- the rod-shaped electrodes 269 and 270 and the electrode protection tube 275 mainly constitute a plasma source as a plasma generator (plasma generator).
- the matching device 272 and the high-frequency power source 273 may be included in the plasma source.
- the plasma source functions as a plasma excitation unit (activation mechanism) that excites (or activates) a gas into a plasma state, that is, a plasma state.
- the electrode protection tube 275 has a structure in which each of the rod-shaped electrodes 269 and 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere in the buffer chamber 237. Or it is filled with an inert gas such as N 2 gas into the electrode protection tube 275, by the interior of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism, The oxygen (O 2 ) concentration inside the electrode protection tube 275 can be reduced, and oxidation of the rod-shaped electrodes 269 and 270 can be prevented.
- an inert gas such as N 2 gas
- the reaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
- the exhaust pipe 231 is connected via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit).
- a vacuum pump 246 as a vacuum exhaust device is connected.
- the APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated,
- the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245.
- An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
- the vacuum pump 246 may be included in the exhaust system.
- the exhaust pipe 231 is not limited to being provided in the reaction pipe 203, and may be provided in the manifold 209 similarly to the nozzles 249a and 249b.
- a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209.
- the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
- an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209.
- a rotation mechanism 267 for rotating a boat 217 described later is installed on the opposite side of the seal cap 219 from the processing chamber 201.
- a rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
- the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
- the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
- the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down.
- the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201.
- a shutter 219s is provided below the manifold 209 as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
- the shutter 219s is made of a metal such as SUS, and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided.
- the opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
- a boat 217 as a substrate support is installed between a pair of upper and lower end plates (an upper end plate is also called a ceiling plate and a lower end plate is also called a bottom plate) and both end plates.
- a plurality of (three in the present embodiment) holding columns (boat columns) 217a to 217c (not shown in FIG. 1) arranged vertically are provided.
- the holding columns 217 a to 217 c are all formed in the same shape, and the holding column 217 a and the holding column 217 b, and the holding column 217 a and the holding column 217 c are 90 along the circumferential direction of the wafer 200.
- the holding pillars 217 b and the holding pillars 217 c are arranged at intervals of 180 degrees along the circumferential direction of the wafer 200. That is, the interval between the holding column 217a and the holding column 217b and the interval between the holding column 217a and the holding column 217c are arranged to be narrower than the interval between the holding column 217b and the holding column 217c.
- Each holding column 217a to 217c has a plurality of holding grooves 217d (not shown in FIG. 1) arranged at equal intervals in the longitudinal direction, and holds the wafer 200 horizontally in the same plane by facing each other at the same height. It is formed to be able to.
- the peripheral portion of the wafer 200 is inserted between the holding grooves 217d of the holding columns 217a to 217c, so that one or a plurality of, for example, 25 to 200 wafers 200 can be placed in a horizontal posture and Are aligned in the vertical direction with their centers aligned, and are supported in multiple stages. That is, they are arranged so as to be arranged at a predetermined interval.
- the boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages.
- a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203.
- the temperature in the processing chamber 201 becomes a desired temperature distribution.
- the temperature sensor 263 is provided along the inner wall of the reaction tube 203 similarly to the nozzles 249a and 249b.
- the controller 121 which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
- the RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e.
- an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
- the storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like.
- a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner.
- the process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing described later and obtain a predetermined result, and functions as a program.
- process recipes, control programs, and the like are collectively referred to simply as programs.
- the process recipe is also simply called a recipe.
- program When the term “program” is used in this specification, it may include only a recipe, only a control program, or both.
- the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
- the I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, matching unit 272, high frequency power supply 273, rotation mechanism 267, boat It is connected to an elevator 115, a shutter opening / closing mechanism 115s, and the like.
- the CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like.
- the CPU 121a is based on the control of the rotating mechanism 267, the flow adjustment operation of various gases by the MFCs 241a to 241d, the opening and closing operation of the valves 243a to 243d, the opening and closing operation of the APC valve 244 and the pressure sensor 245 so as to follow the contents of the read recipe.
- the controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer.
- an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory
- the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
- recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
- the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
- the step of supplying the DCS gas as the source gas and the step of supplying the plasma-excited NH 3 gas as the reaction gas are performed non-simultaneously, that is, without being synchronized, a predetermined number of times (one or more times).
- a silicon nitride film SiN film
- a predetermined film may be formed on the wafer 200 in advance.
- a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
- wafer When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
- wafer surface When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer.
- the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate.
- substrate is also synonymous with the term “wafer”.
- Transportation step: S1 When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
- the inside of the processing chamber 201 that is, the space where the wafer 200 exists is evacuated (reduced pressure) by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained.
- the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
- the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature.
- the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
- rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started.
- the exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
- step S ⁇ b> 3 DCS gas as a source gas is supplied to the wafer 200 in the processing chamber 201.
- the valve 243a is opened and DCS gas is caused to flow into the gas supply pipe 232a.
- the flow rate of the DCS gas is adjusted by the MFC 241a, supplied to the processing chamber 201 from the gas supply hole 250a through the nozzle 249a, and exhausted from the exhaust pipe 231.
- the valve 243c may be opened at the same time, and N 2 gas may flow into the gas supply pipe 232c.
- the flow rate of the N 2 gas supplied at this time is adjusted by the MFC 241c, supplied into the processing chamber 201 together with the DCS gas, and exhausted from the exhaust pipe 231.
- the valve 243d may be opened and N 2 gas may flow into the gas supply pipe 232d.
- the N 2 gas supplied from the nozzle 249 b is supplied into the processing chamber 201 through the gas supply pipe 232 b and the nozzle 249 b and exhausted from the exhaust pipe 231.
- the supply flow rate of DCS gas controlled by the MFC 241a is, for example, a flow rate in the range of 1 sccm to 5000 sccm, preferably 10 sccm to 2000 sccm.
- the supply flow rate of the N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of, for example, 100 sccm or more and 10,000 sccm or less.
- the pressure in the processing chamber 201 is, for example, 1 Pa or more and 2666 Pa or less, preferably 67 Pa or more and 1333 Pa.
- the supply time of the DCS gas is, for example, 1 second or more and 100 seconds or less, preferably 1 second or more and 50 seconds or less.
- the temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 is in the range of 300 ° C. or more and 600 ° C. or less.
- a Si-containing layer containing Cl is formed on the wafer 200 (surface underlayer film).
- the Si-containing layer containing Cl may be a Si layer, a DCS adsorption layer, or both of them.
- the Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
- the Si layer is a generic name including a continuous layer composed of Si, a discontinuous layer, and a Si thin film formed by overlapping these layers.
- Si constituting the Si layer includes those in which the bond with Cl is not completely broken and the bonds with H are not completely broken.
- the adsorption layer of DCS includes a discontinuous adsorption layer in addition to a continuous adsorption layer composed of DCS molecules.
- DCS molecules constituting the adsorption layer of DCS are those in which the bond between Si and Cl is partially broken, the bond in which Si and H are partially broken, and the bond in which Cl and H are partially broken Etc. are also included. That is, the DCS adsorption layer may be a DCS physical adsorption layer, a DCS chemical adsorption layer, or both of them.
- the valve 243a is closed and the supply of DCS gas into the processing chamber 201 is stopped.
- the APC valve 244 is kept open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and DCS gas and reaction by-product remaining in the processing chamber 201 and contributing to the formation of the Si-containing layer. Products and the like are excluded from the processing chamber 201 (S4).
- the supply of N 2 gas into the processing chamber 201 is maintained while the valves 243c and 243d remain open. N 2 gas acts as a purge gas. Note that step S4 may be omitted.
- inorganic halosilane source gases such as monochlorosilane gas, trichlorosilane gas, tetrachlorosilane gas, hexachlorodisilane gas, and octachlorotrisilane gas can be suitably used as the source gas.
- the raw material gases include tetrakisdimethylaminosilane gas, trisdimethylaminosilane gas, bisdimethylaminosilane gas, bistally butylaminosilane, bisdiethylaminosilane gas, dimethylaminosilane gas, diethylaminosilane gas, dipropylaminosilane gas, diisopropylaminosilane gas, butylaminosilane.
- Various aminosilane source gases such as gas and hexamethyldisilazane gas, and halogen-free inorganic silane source gases such as monosilane gas, disilane gas, and trisilane gas can be suitably used.
- a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
- the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3.
- the flow rate of the NH 3 gas is adjusted by the MFC 241b and is supplied into the buffer chamber 237 through the nozzle 249b. At this time, high frequency power is supplied between the rod-shaped electrodes 269 and 270.
- the NH 3 gas supplied into the buffer chamber 237 is excited into a plasma state, supplied as active species (NH 3 * ) into the processing chamber 201, and exhausted from the exhaust pipe 231.
- the NH 3 gas excited to a plasma state is also referred to as nitrogen plasma.
- the NH 3 gas supply flow rate controlled by the MFC 241b is, for example, a flow rate in the range of 100 sccm to 10,000 sccm.
- the high frequency power applied to the rod-shaped electrodes 269 and 270 is, for example, power within a range of 50 W or more and 1000 W or less.
- the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 100 Pa or less. By using plasma, the NH 3 gas can be activated even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone.
- the time for supplying active species obtained by plasma excitation of NH 3 gas to the wafer 200 is, for example, 1 second or more, 120 seconds or less, preferably 1 second or more, The time is within a range of 60 seconds or less.
- Other processing conditions are the same as those in S3 described above.
- the Si-containing layer formed on the wafer 200 is plasma-nitrided.
- the Si—Cl bond and Si—H bond of the Si-containing layer are cut by the energy of the plasma-excited NH 3 gas. Cl and H from which the bond with Si is cut off will be released from the Si-containing layer.
- Si in the Si-containing layer that has dangling bonds due to desorption of Cl, H, etc., bonds with N contained in the NH 3 gas, and Si—N bonds are formed. Will be formed.
- the Si-containing layer is changed (modified) into a layer containing Si and N, that is, a silicon nitride layer (SiN layer).
- step S6 After changing the Si-containing layer to the SiN layer, the valve 243b is closed and the supply of NH 3 gas is stopped. Further, the supply of high-frequency power between the rod-shaped electrodes 269 and 270 is stopped. Then, NH 3 gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step S4 (S6). Note that step S6 may be omitted.
- nitriding agent that is, N-containing gas for plasma excitation
- hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, etc.
- a gas containing these compounds, nitrogen (N 2 ) gas, or the like can be used.
- inert gas for example, various rare gases exemplified in step S4 can be used in addition to the N 2 gas.
- Predetermined number of times S7
- the above-described steps S3, S4, S5, and S6 are performed non-simultaneously in this order, that is, without being synchronized, as one cycle, and this cycle is performed a predetermined number of times (n times), that is, once or more (S7).
- n times a predetermined number of times
- a SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer 200.
- the above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the above-described process is performed until the SiN film formed by stacking the SiN layers has the desired film thickness.
- the cycle is preferably repeated multiple times.
- Unloading step: S9 Thereafter, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the manifold 209, and the processed wafer 200 is supported by the boat 217 from the lower end of the manifold 209 to the outside of the reaction tube 203. Unloading (boat unloading) is performed (S9). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is unloaded from the reaction tube 203 and then taken out from the boat 217 (wafer discharge). Note that an empty boat 217 may be carried into the processing chamber 201 after the wafer discharge.
- the boat 217 is rotated at a predetermined rotation speed by the rotation mechanism 267 during the supply of the processing gas in order to improve the uniformity of the film thickness distribution within the wafer surface. That is, by rotating the wafer 200, the gas ejected from the gas supply holes 250c formed in the wall surface of the buffer structure 300 or the gas supply holes 250a formed in the nozzle 249a is evenly applied to the wafer 200 in the circumferential direction. Since they are in contact with each other, the in-plane film thickness distribution uniformity (in-plane film thickness uniformity) can be improved.
- FIG. 5 shows an example of a film thickness distribution when the rotational speed is controlled to be constant as an example for comparison with examples described later.
- the film thickness on the left side is thicker, and the distribution is thinner from the right to the lower right.
- the uniformity of the film thickness distribution within the wafer surface is deteriorated. Therefore, in the substrate processing step in this embodiment, as shown in Examples 1 to 3 below, control is performed so as to change the rotation speed of the boat 217.
- the timing for switching the rotation speed is when the boundary of the region described in detail below is located in front of the gas supply hole of the gas supply unit.
- the film distribution distribution tendency of the thin film formed on the wafer calculated from parameters such as the type of gas used, the gas flow rate, and the processing temperature is stored in the storage device 121c or the external storage device 123 in advance. Then, based on the recorded information, the in-plane uniformity of the wafer is improved by changing the rotational speed between the thin film forming region and the thin film forming region.
- FIG. 6A and FIG. 6B show an example in which the speed at which the boat 217 is rotated in the case of using the process having the wafer deposition tendency shown in FIG. 5 is changed within one rotation. It explains using.
- the boat notch position is set as a reference (0 degree) that is the starting point of the rotation, and the boat is formed based on the wafer deposition tendency when the rotation speed is constant as shown in FIGS. 5 and 6A.
- An angular position (rotational angle) for changing the rotational speed of 217 and a rotational speed at the angular position are set. Specifically, for example, the time per rotation of the boat 217 is set to 43 seconds in advance.
- the rotation speed r1 of 0 ° to 160 ° (region A), which is the region where the film thickness on the left side tends to increase, is 1.9 rpm, and the film thickness is from the left side.
- Rotation speed r2 of 160 to 260 degrees (area B), which is a thin area on the upper right side, is 1.4 rpm, and rotation is 260 degrees to 360 degrees (area C), which is an area where the film thickness is likely to be thin on the lower right side.
- the speed r3 is set to 1.0 rpm.
- the gas supply holes 250a and 250c during the gas supply pass through the region where the film thickness tends to be thick based on the film formation tendency of the wafer when the rotation speed is constant.
- the rotational speed of the boat 217 is increased.
- the amount of gas supplied to the surface of the wafer 200 per unit rotational movement distance indicating the distance moved in the rotational direction per unit time (the amount of gas reaching the surface of the wafer 200 or the gas irradiation time) is reduced.
- the rotation speed of the boat 217 is decreased. This increases the gas supply amount per unit rotational movement distance.
- the gas contact time (gas supply time) to a predetermined region where the film thickness tends to increase on the surface of the wafer 200 is shortened, and the predetermined region where the film thickness tends to decrease. It becomes possible to lengthen the gas contact time to, and to reduce (or increase) the amount (exposure amount) of gas contact in the region. Therefore, as shown in FIG. 6B, the in-plane film thickness uniformity of the film formed on the wafer can be improved.
- the rotation speed in each region is preferably set as follows, for example. That is, the storage device 121c or the external storage device 123 has a speed range that is greater than 1 time and less than or equal to 10 times as high speed as a reference rotation speed, and a speed range that is 0.1 times or more and less than 1 time as low speed. It is preferable that the rotation speed is controlled appropriately. If the rotational speed in the high speed region is controlled to be larger than 10 times the reference rotational speed, the centrifugal force applied to the wafer 200 becomes too large and the wafer 200 placed on the boat 217 is placed.
- the self-decomposition rate changes while the supplied processing gas flows on the wafer, that is, the amount of self-decomposition is small immediately after the supply in the processing chamber, and the amount is self-decomposed on the downstream side of the wafer 200.
- the gas is supplied in an environment where the amount of gas increases (gas species, film forming temperature)
- the gas supply hole during gas supply passes through the 180 ° opposite side of the region where the film thickness tends to be thin. Is set so as to slow down the rotation speed of the wafer 200, so that the amount of gas supplied to the surface of the wafer 200 is increased in a state where the region where the film thickness of the surface of the wafer 200 tends to be thin is positioned downstream of the gas flow.
- the controller 121 controls the boat 217 to continuously perform the rotation without stopping the rotation of the boat 217 when changing the rotation speed of the boat 217.
- the controller 121 controls the boat 217 to continuously perform the rotation without stopping the rotation of the boat 217 when changing the rotation speed of the boat 217.
- the reference position that is the starting point of the rotation of the boat 217 that is, the position that becomes the outer edge of the wafer 200 facing the center holding column 217a across the center of the wafer 200 at the rotation angle of 0 degree.
- the present invention is not limited to this, and the position of the holding pillars 217b and 217c that is the outer edge of the wafer 200 facing the center of the wafer 200 may be determined as the reference position, or at least one of the holding pillars 217a to 217c.
- One wafer 200 holding position may be set as the reference position.
- the reference position may be determined by regarding the rotation shaft 255 of the rotation mechanism 267 as the center instead of the center of the wafer 200.
- the reference position that is the starting point of the rotation is not limited to being determined with respect to the positions of the holding columns 217a to 217c, and the region where the rotation speed is changed is preceded by the tendency of the film thickness distribution stored in advance. It is possible to determine and set an arbitrary boundary in the region as a reference position for rotation.
- the controller 121 controls the rotation mechanism 267 using the above-described rotation speed and angular position as parameters, and the rotation speed of the boat 217 in a preset time per rotation. Can be adjusted within one rotation, the film thickness distribution in the circumferential direction can be adjusted, and as shown in FIG. 6 (B), the distribution becomes concentric and the uniformity is improved. The throughput can be improved with a constant value.
- the time for supplying the DCS gas to the wafer 200 in step S3 is 5 seconds
- the time for supplying the purge gas to the wafer 200 in step S4 is 10 seconds
- the time for supplying the NH 3 gas to the wafer 200 in step S5 is 20 seconds.
- the time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds
- the process gas supply time is set so that the gas supply period T is 45 seconds.
- the gas supply cycle is 2 sec longer than the time required for one rotation of the wafer. Since the relative position of the gas supply nozzle does not synchronize until a considerable cycle, the in-plane film thickness uniformity can be further improved as compared with the case where the rotation position of the wafer and the relative position of the gas supply nozzle are synchronized.
- the rotation position of the wafer and the relative position of the gas supply nozzle are synchronized, the gas is supplied again at the same location, and the film formed in the wafer region located upstream of the gas flow becomes thicker each time the gas is supplied. End up. For this reason, when the wafer is originally rotated, the distribution should be concentric and the uniformity should be improved. However, the effect cannot be obtained when the rotation period of the wafer and the gas supply period are synchronized.
- the rotation period P and the gas supply period T are finely adjusted so as to satisfy the following formula (1).
- the time for which the expression (1) should be satisfied it is sufficient if the time is satisfied within the film formation time.
- the condition may be slightly weakened, for example, a time corresponding to 10 cycles (using the above symbol) If it does not synchronize (up to 10T (sec)), it is considered that the gas blowing timing is sufficiently dispersed and there is no problem in uniformity.
- the rotation speed and angle position of the boat in the thin film thickness region and other regions are arbitrarily designated, and the wafer rotation cycle and the gas supply cycle are synchronized for a considerable time. It is possible to improve the uniformity of the film thickness distribution in the wafer surface. Moreover, the rotational speed of the boat can be changed according to the number of gas supply cycles (required film thickness).
- the rotation speed for rotating the boat 217 is changed within one rotation based on the range based on the holding columns 217a to 217c holding the wafer 200. That is, the rotation speed for rotating the boat 217 is changed within one rotation based on the positions and intervals of the holding columns 217a to 217c. This is because when the boat 217 is rotated at a constant speed, the holding columns 217a to 217c of the boat 217 become shields against the flow of gas ejected, so that the in-wafer in-plane film thickness distribution is uniform. It gets worse around 217c.
- the controller 121 controls the rotation mechanism 267 using the rotation speed and the angular position as parameters, and the gas is supplied without changing the preset time per rotation.
- the controller 121 controls the rotation mechanism 267 using the rotation speed and the angular position as parameters, and the gas is supplied without changing the preset time per rotation.
- the controller 121 passes the rotation speed of the boat 217 when the gas supply holes 250a and 250c at the time of gas supply pass within the range of ⁇ 15 degrees with respect to the holding columns 217a to 217c, for example, outside the range.
- the rotation speed of the boat 217 is controlled by controlling the rotation mechanism 267 so as to be lower than the rotation speed of the boat 217.
- a position (wafer notch position in this embodiment) facing the central holding column 217a is set as a reference (0 degree).
- the angle position for changing the rotation speed of the boat 217 and the rotation speed at the angular position are set.
- the time per rotation of the boat 217 is set to 62 seconds in advance.
- the rotational speed r4 of 75 ° to 105 °, 165 ° to 195 °, and 255 ° to 285 °, which is ⁇ 15 ° from the holding column 217c, is 0.4 rpm
- the holding column 217c This is a region where the holding columns 217c have a wide interval between 0 ° to 75 ° and 285 ° to 360 ° and the rotation speed r5 is 3.0 rpm, and there is no holding column 217c, and the intervals between the holding columns 217c are narrow.
- the rotational speed r6 from 105 degrees to 165 degrees and from 195 degrees to 255 degrees is set to 1.3 rpm.
- the controller 121 controls the rotation mechanism 267 using the above-described rotation speed and angular position as parameters, and the boat 217 rotates at a preset time per rotation.
- the speed within one revolution the film thickness distribution in the circumferential direction can be adjusted, resulting in a concentric distribution, improving uniformity, and improving throughput by keeping the processing time constant. it can.
- the time for supplying the DCS gas in step S3 to the wafer 200 is 5 seconds
- the time for supplying the purge gas to the wafer 200 in step S4 is 10 seconds
- the NH 3 gas in step S5 is used.
- the time for supplying the wafer 200 is 20 seconds
- the time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds
- the gas supply period T is 45 seconds.
- the rotation speed of the boat 217 is increased when the holding columns 217a to 217c pass around the gas supply holes 250a and 250c, and the speed is reduced when passing through other regions. It may be set to be.
- the rotation speed in each region is preferably set by the setting method described in the first embodiment.
- the rotation mechanism 267 is controlled so as to change the rotation speed at which the boat 217 is rotated for each processing gas supply event, that is, for each gas supply process.
- the controller 121 controls the rotation speed for each gas supply process using the gas supply time and the angular position of the rotation mechanism 267 as parameters, and changes the speed at which the boat 217 is rotated according to the gas supply process. By doing so, the uniformity of film thickness distribution in the wafer surface is improved.
- the boat rotation speed when supplying the DCS gas in step S3 is 12 rpm
- the boat rotation speed when supplying the purge gas in steps S4 and S6 is 6 rpm
- the boat rotation speed when supplying NH 3 gas is set to 3 rpm.
- the time for supplying the DCS gas in step S3 to the wafer 200 is 5 seconds
- the time for supplying the purge gas in step S4 to the wafer 200 is 10 seconds
- the time for supplying the NH 3 gas in step S5 to the wafer 200 is 20 seconds
- the time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds
- the gas supply period T is 45 seconds.
- the time required for one rotation of the boat 217 is the same as the time during which each gas is supplied, and the same gas is continuously supplied throughout the boat 217. It will be.
- a predetermined film can be uniformly formed on the wafer 200 without worrying about the influence of the holding columns 217a to 217c.
- the wafer surface thickness distribution uniformity is improved even in a process with a small number of cycles and a process with a short supply time. Can be made.
- the present invention is not limited to such an embodiment, and the film is formed using at least two gas types.
- the configuration to be applied can be preferably applied.
- the present invention is not limited to such an aspect, and a configuration that changes at least once is preferable. It becomes possible to apply.
- the present invention is not limited to such an embodiment, and the holding columns 217a to 217c are used. It is possible to preferably apply the setting configuration based on the mounting position of the wafer 200 held by any one of the above.
- the reaction gas is converted into plasma and supplied into the processing chamber in the reaction gas supply step.
- the present invention is not limited to such an embodiment, and the configuration does not use plasma such as heat treatment. Also, it is possible to suitably apply.
- the present invention is not limited to such an embodiment, and the supply order of the raw material gas and the reactive gas may be reversed. That is, the source gas may be supplied after the reaction gas is supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
- the SiN film is formed on the wafer 200
- the present invention is not limited to such an embodiment, and a silicon oxide film (SiO film), a silicon oxycarbide film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon oxynitride film (SiON) is formed on the wafer 200.
- a Si-based oxide film such as a film
- SiBN film silicon boronitride film
- SiBCN film silicon borocarbonitride film
- borocarbonitride film SiBCN film
- the present invention can also be suitably applied when forming a Si-based nitride film such as (BCN film).
- a C-containing gas such as C 3 H 6
- an N-containing gas such as NH 3
- a B-containing gas such as BCl 3
- titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200.
- the present invention can also be suitably applied to the case where an oxide film or a nitride film containing a metal element such as a metal oxide film or a metal nitride film is formed.
- the present invention can be suitably applied to the case where a metal thin film such as a TiN film, a TiO film, a TiOC film, a TiOCN film, a TiON film, a TiBN film, or a TiBCN film is formed on the wafer 200. It becomes.
- a metal thin film such as a TiN film, a TiO film, a TiOC film, a TiOCN film, a TiON film, a TiBN film, or a TiBCN film is formed on the wafer 200. It becomes.
- tetrakis (dimethylamino) titanium gas tetrakis (ethylmethylamino) hafnium gas, tetrakis (ethylmethylamino) zirconium gas, trimethylaluminum gas, titanium tetrachloride gas, hafnium tetrachloride gas, etc.
- the reaction gas described above can be used as the reaction gas.
- the present invention can be suitably applied when a metalloid film containing a metalloid element or a metal film containing a metal element is formed.
- the processing procedure and processing conditions of these film forming processes can be the same processing procedures and processing conditions as the film forming processes shown in the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiments and modifications can be obtained.
- the recipe used for the film forming process is individually prepared according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123.
- the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content.
- the above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example.
- the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded.
- an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
- Controller 200 wafer (substrate) 201 Processing chamber 207 Heater (heating device) 217 boat (substrate holder) 217a, 217b, 217c Holding columns 232a, 232b, 232c, 232d Gas supply pipe 237 Buffer chambers 249a, 249b Nozzles 250a, 250b, 250c Gas supply holes 267 Rotating mechanism 300 Buffer structure (buffer section)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
The present invention makes it possible to improve the substrate in-plane uniformity of the thickness of a formed film. The present invention has a treatment chamber for treating a substrate, a substrate holding tool for holding the substrate in the treatment chamber, a rotation mechanism for causing the substrate holding tool to rotate, and a control unit for controlling the rotation mechanism and controlling the rotation speed of the substrate holding tool. The control unit is configured so as to control the rotation mechanism such that the rotation speed of the substrate holding tool varies within one rotation, without changing the time taken for one rotation, which is set in advance.
Description
本発明は、基板処理装置、半導体装置の製造方法及びプログラムに関する。
The present invention relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a program.
近年の半導体デバイスの高集積化・微細化に伴い、成膜対象の薄膜化が要求されており、基板面内の均一成膜が困難となっている。特に複数枚の基板を垂直多段に保持して処理する所謂縦型基板処理装置においては、基板保持具の保持柱によって成膜に影響が生じるため、例えば基板保持具の回転速度を制御したり、ガス供給タイミングを制御することで面内均一性の向上を図る方法がある(例えば特許文献1,2参照)。
In recent years, with high integration and miniaturization of semiconductor devices, it is required to reduce the thickness of a film to be formed, and uniform film formation on the substrate surface is difficult. In particular, in a so-called vertical substrate processing apparatus that processes a plurality of substrates held in a vertical multi-stage, film formation is affected by the holding pillar of the substrate holder, so for example, the rotation speed of the substrate holder is controlled, There is a method of improving the in-plane uniformity by controlling the gas supply timing (for example, see Patent Documents 1 and 2).
上述したような技術を用いた場合であっても、要求されている薄膜の面内均一性を向上させるには不十分となる場合がある。
Even when the above-described technique is used, it may be insufficient to improve the required in-plane uniformity of the thin film.
本発明の目的は、成膜した膜の膜厚の基板面内均一性を向上させることが可能な技術を提供することにある。
An object of the present invention is to provide a technique capable of improving the in-plane uniformity of the film thickness of a formed film.
本発明の一態様によれば、
基板を処理する処理室と、
前記処理室内で前記基板を保持する基板保持具と、
前記基板保持具を回転させる回転機構と、
前記回転機構を制御して前記基板保持具の回転速度を制御する制御部と、を有し、
前記制御部は、予め設定された1回転あたりの時間を変更することなく、前記基板保持具の回転速度が1回転内で変化するように前記回転機構を制御するよう構成される技術が提供される。 According to one aspect of the invention,
A processing chamber for processing the substrate;
A substrate holder for holding the substrate in the processing chamber;
A rotation mechanism for rotating the substrate holder;
A controller that controls the rotation mechanism to control the rotation speed of the substrate holder,
A technique is provided in which the control unit is configured to control the rotation mechanism such that the rotation speed of the substrate holder changes within one rotation without changing a preset time per rotation. The
基板を処理する処理室と、
前記処理室内で前記基板を保持する基板保持具と、
前記基板保持具を回転させる回転機構と、
前記回転機構を制御して前記基板保持具の回転速度を制御する制御部と、を有し、
前記制御部は、予め設定された1回転あたりの時間を変更することなく、前記基板保持具の回転速度が1回転内で変化するように前記回転機構を制御するよう構成される技術が提供される。 According to one aspect of the invention,
A processing chamber for processing the substrate;
A substrate holder for holding the substrate in the processing chamber;
A rotation mechanism for rotating the substrate holder;
A controller that controls the rotation mechanism to control the rotation speed of the substrate holder,
A technique is provided in which the control unit is configured to control the rotation mechanism such that the rotation speed of the substrate holder changes within one rotation without changing a preset time per rotation. The
本発明によれば、成膜した膜の膜厚の基板面内均一性を向上させることが可能な技術を提供することができる。
According to the present invention, it is possible to provide a technique capable of improving the in-plane uniformity of the film thickness of the formed film.
以下、本発明の一実施形態について図1から図5を参照しながら説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
(1)基板処理装置の構成
(加熱装置)
図1に示すように、処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。 (1) Configuration of substrate processing apparatus (heating device)
As shown in FIG. 1, theprocessing furnace 202 includes a heater 207 as a heating device (heating mechanism). The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. The heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas with heat.
(加熱装置)
図1に示すように、処理炉202は加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。 (1) Configuration of substrate processing apparatus (heating device)
As shown in FIG. 1, the
(処理室)
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。 (Processing room)
Areaction tube 203 is disposed inside the heater 207 concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with the upper end closed and the lower end opened. A manifold (inlet flange) 209 is disposed below the reaction tube 203 concentrically with the reaction tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), for example, and is formed in a cylindrical shape with an upper end and a lower end opened. The upper end portion of the manifold 209 is engaged with the lower end portion of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203. As the manifold 209 is supported by the heater base, the reaction tube 203 is installed vertically. A processing vessel (reaction vessel) is mainly constituted by the reaction tube 203 and the manifold 209. A processing chamber 201 is formed in the cylindrical hollow portion of the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. Note that the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO2)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属からなり、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。 (Processing room)
A
処理室201内には、ノズル249a,249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、反応管203には2本のノズル249a,249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。なお、マニホールド209を設置せず、反応管203のみを処理容器とした場合、ノズル249a,249bは反応管203の側壁を貫通するように設けられていてもよい。
In the processing chamber 201, nozzles 249a and 249b are provided so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively. As described above, the reaction tube 203 is provided with the two nozzles 249a and 249b and the two gas supply tubes 232a and 232b, and can supply a plurality of types of gases into the processing chamber 201. It has become. When the manifold 209 is not installed and only the reaction tube 203 is used as a processing container, the nozzles 249a and 249b may be provided so as to penetrate the side wall of the reaction tube 203.
ガス供給管232a,232bには、上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流側から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。
The gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b as flow rate controllers (flow rate control units) and valves 243a and 243b as opening / closing valves, respectively, in order from the upstream side. Gas supply pipes 232c and 232d for supplying an inert gas are connected to the gas supply pipes 232a and 232b on the downstream side of the valves 243a and 243b, respectively. The gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in order from the upstream side.
ノズル249aは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249aは、処理室201内へ搬入された各ウエハ200の端部(周縁部、エッジ部)の側方にウエハ200の表面(平坦面)と垂直に設けられている。ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられている。
As shown in FIG. 2, the nozzle 249 a is placed in an annular space in plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper direction from the lower portion of the inner wall of the reaction tube 203. It is provided to rise upward. That is, the nozzle 249a is provided on the side of the wafer arrangement area where the wafers 200 are arranged, in an area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. In other words, the nozzle 249 a is provided perpendicular to the surface (flat surface) of the wafer 200 on the side of the end (peripheral edge, edge) of each wafer 200 carried into the processing chamber 201. A gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a. The gas supply hole 250 a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250 a are provided from the lower part to the upper part of the reaction tube 203.
ノズル249bは、ガス分散空間であるバッファ室237内に設けられている。バッファ室237は、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、また、反応管203の内壁の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237は、ウエハ配列領域の側方のウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにバッファ構造(バッファ部)300によって形成されている。バッファ構造300は、石英などの絶縁物によって構成されており、バッファ構造300の円弧状に形成された壁面には、ガスまたは後述する活性種を供給するガス供給孔250cが設けられている。ガス供給孔250cは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250cは、反応管203の下部から上部にわたって複数設けられている。
The nozzle 249b is provided in a buffer chamber 237 that is a gas dispersion space. As shown in FIG. 2, the buffer chamber 237 is formed in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, and in a portion extending from the lower portion to the upper portion of the inner wall of the reaction tube 203. Are provided along the loading direction. That is, the buffer chamber 237 is formed by the buffer structure (buffer unit) 300 along the wafer arrangement region in a region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region. The buffer structure 300 is made of an insulating material such as quartz, and a gas supply hole 250c for supplying gas or active species to be described later is provided on a wall surface formed in an arc shape of the buffer structure 300. The gas supply hole 250 c is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250 c are provided from the lower part to the upper part of the reaction tube 203.
ノズル249bは、バッファ室237のガス供給孔250cが設けられた端部と反対側の端部に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249bは、バッファ構造300の内側であって、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249bは、処理室201内へ搬入されたウエハ200の端部の側方にウエハ200の表面と垂直に設けられている。ノズル249bの側面には、ガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは、バッファ室237の中心を向くように開口している。ガス供給孔250bは、ガス供給孔250cと同様に、反応管203の下部から上部にわたって複数設けられている。
The nozzle 249b rises upward from the lower end of the inner wall of the reaction tube 203 toward the upper side in the stacking direction of the wafer 200 at the end opposite to the end where the gas supply hole 250c of the buffer chamber 237 is provided. Is provided. That is, the nozzle 249b is provided inside the buffer structure 300, on the side of the wafer arrangement area where the wafers 200 are arranged, and in the area that horizontally surrounds the wafer arrangement area, along the wafer arrangement area. . That is, the nozzle 249 b is provided on the side of the end of the wafer 200 carried into the processing chamber 201 and perpendicular to the surface of the wafer 200. A gas supply hole 250b for supplying gas is provided on the side surface of the nozzle 249b. The gas supply hole 250 b is opened to face the center of the buffer chamber 237. Similar to the gas supply hole 250c, a plurality of gas supply holes 250b are provided from the lower part to the upper part of the reaction tube 203.
ガス供給管232aからは、所定元素を含む原料として、例えば、所定元素としてのシリコン(Si)を含むシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
From the gas supply pipe 232a, for example, a silane source gas containing silicon (Si) as a predetermined element is supplied into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a as a raw material containing the predetermined element.
シラン原料ガスとしては、例えば、Siおよびハロゲン元素を含む原料ガス、すなわち、ハロシラン原料ガスを用いることができる。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスとしては、例えば、ジクロロシラン(SiH2Cl2、略称:DCS)ガスを用いることができる。
As the silane source gas, for example, a source gas containing Si and a halogen element, that is, a halosilane source gas can be used. The halosilane raw material is a silane raw material having a halogen group. As the halosilane source gas, for example, a source gas containing Si and Cl, that is, a chlorosilane source gas can be used. As the chlorosilane source gas, for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
ガス供給管232bからは、原料とは化学構造が異なる反応体(リアクタント)として、例えば、窒素(N)含有ガス(窒化剤、窒化ガス)が、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。窒化剤としては、例えば、アンモニア(NH3)ガスを用いることができる。窒化剤としてNH3ガスを用いる場合は、例えば、後述するプラズマ源を用いてこのガスをプラズマ励起し、プラズマ励起ガスとして供給することとなる。
From the gas supply pipe 232b, for example, a nitrogen (N) -containing gas (nitriding agent, nitriding gas) as a reactant (reactant) having a chemical structure different from that of the raw material passes through the MFC 241b, the valve 243b, and the nozzle 249b. Supplied into 201. As the nitriding agent, for example, ammonia (NH 3 ) gas can be used. When NH 3 gas is used as the nitriding agent, for example, this gas is plasma-excited using a plasma source to be described later and supplied as a plasma excitation gas.
ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N2)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。
From the gas supply pipes 232c and 232d, for example, nitrogen (N 2 ) gas as an inert gas passes through the MFC 241c and 241d, valves 243c and 243d, gas supply pipes 232a and 232b, and nozzles 249a and 249b, respectively. Supplied into 201.
主に、ガス供給管232a、MFC241a、バルブ243aにより、第1のガス供給系としての原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のガス供給系としての反応体供給系(リアクタント供給系)が構成される。主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。原料供給系、反応体供給系および不活性ガス供給系を単にガス供給系(ガス供給部)とも称する。なお、原料供給系にノズル249aを、また、反応体供給系にノズル249bを含めて考えてもよいし、不活性ガス供給系にノズル249a,249bを含めて考えてもよい。
Mainly, the gas supply pipe 232a, the MFC 241a, and the valve 243a constitute a raw material supply system as a first gas supply system. A reactant supply system (reactant supply system) as a second gas supply system is mainly configured by the gas supply pipe 232b, the MFC 241b, and the valve 243b. An inert gas supply system is mainly configured by the gas supply pipes 232c and 232d, the MFCs 241c and 241d, and the valves 243c and 243d. The raw material supply system, the reactant supply system, and the inert gas supply system are also simply referred to as a gas supply system (gas supply unit). In addition, the nozzle 249a may be included in the raw material supply system, the nozzle 249b may be included in the reactant supply system, and the nozzles 249a and 249b may be included in the inert gas supply system.
(プラズマ生成部)
バッファ室237内には、図2に示すように、導電体からなり、細長い構造を有する2本の棒状電極269,270が、反応管203の下部より上部にわたりウエハ200の配列方向に沿って配設されている。棒状電極269,270のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270のいずれか一方は、整合器272を介して高周波電源273に接続され、他方は、基準電位であるアースに接地されている。高周波電源273から棒状電極269,270間に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224にプラズマが生成される。主に、棒状電極269,270、電極保護管275によりプラズマ生成器(プラズマ生成部)としてのプラズマ源が構成される。整合器272、高周波電源273をプラズマ源に含めて考えてもよい。プラズマ源は、後述するように、ガスをプラズマ励起、すなわち、プラズマ状態に励起(活性化)させるプラズマ励起部(活性化機構)として機能する。 (Plasma generator)
In thebuffer chamber 237, as shown in FIG. 2, two rod-shaped electrodes 269 and 270 made of a conductor and having an elongated structure are arranged along the arrangement direction of the wafer 200 from the lower part to the upper part of the reaction tube 203. It is installed. Each of the rod-shaped electrodes 269 and 270 is provided in parallel with the nozzle 249b. Each of the rod-shaped electrodes 269 and 270 is protected by being covered with an electrode protection tube 275 from the upper part to the lower part. One of the rod-shaped electrodes 269 and 270 is connected to the high-frequency power source 273 via the matching unit 272, and the other is grounded to the ground that is the reference potential. Plasma is generated in the plasma generation region 224 between the rod-shaped electrodes 269 and 270 by applying high-frequency (RF) power between the rod-shaped electrodes 269 and 270 from the high-frequency power source 273. The rod-shaped electrodes 269 and 270 and the electrode protection tube 275 mainly constitute a plasma source as a plasma generator (plasma generator). The matching device 272 and the high-frequency power source 273 may be included in the plasma source. As will be described later, the plasma source functions as a plasma excitation unit (activation mechanism) that excites (or activates) a gas into a plasma state, that is, a plasma state.
バッファ室237内には、図2に示すように、導電体からなり、細長い構造を有する2本の棒状電極269,270が、反応管203の下部より上部にわたりウエハ200の配列方向に沿って配設されている。棒状電極269,270のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270のいずれか一方は、整合器272を介して高周波電源273に接続され、他方は、基準電位であるアースに接地されている。高周波電源273から棒状電極269,270間に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224にプラズマが生成される。主に、棒状電極269,270、電極保護管275によりプラズマ生成器(プラズマ生成部)としてのプラズマ源が構成される。整合器272、高周波電源273をプラズマ源に含めて考えてもよい。プラズマ源は、後述するように、ガスをプラズマ励起、すなわち、プラズマ状態に励起(活性化)させるプラズマ励起部(活性化機構)として機能する。 (Plasma generator)
In the
電極保護管275は、棒状電極269,270のそれぞれをバッファ室237内の雰囲気と隔離した状態でバッファ室237内へ挿入できる構造となっている。電極保護管275の内部にN2ガス等の不活性ガスを充填しておくか、不活性ガスパージ機構を用いて電極保護管275の内部をN2ガス等の不活性ガスでパージすることで、電極保護管275の内部の酸素(O2)濃度を低減させ、棒状電極269,270の酸化を防止することができる。
The electrode protection tube 275 has a structure in which each of the rod-shaped electrodes 269 and 270 can be inserted into the buffer chamber 237 while being isolated from the atmosphere in the buffer chamber 237. Or it is filled with an inert gas such as N 2 gas into the electrode protection tube 275, by the interior of the electrode protection tube 275 is purged with an inert gas such as N 2 gas using an inert gas purge mechanism, The oxygen (O 2 ) concentration inside the electrode protection tube 275 can be reduced, and oxidation of the rod-shaped electrodes 269 and 270 can be prevented.
(排気部)
反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。 (Exhaust part)
Thereaction tube 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is connected via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure adjustment unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 activated, and further, with the vacuum pump 246 activated, The pressure in the processing chamber 201 can be adjusted by adjusting the valve opening based on the pressure information detected by the pressure sensor 245. An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245. The vacuum pump 246 may be included in the exhaust system. The exhaust pipe 231 is not limited to being provided in the reaction pipe 203, and may be provided in the manifold 209 similarly to the nozzles 249a and 249b.
反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249a,249bと同様にマニホールド209に設けてもよい。 (Exhaust part)
The
マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
Below the manifold 209, a seal cap 219 is provided as a furnace opening lid capable of airtightly closing the lower end opening of the manifold 209. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. On the upper surface of the seal cap 219, an O-ring 220b is provided as a seal member that comes into contact with the lower end of the manifold 209. On the opposite side of the seal cap 219 from the processing chamber 201, a rotation mechanism 267 for rotating a boat 217 described later is installed. A rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by moving the seal cap 219 up and down. The boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217, that is, the wafers 200 into and out of the processing chamber 201. A shutter 219s is provided below the manifold 209 as a furnace port lid that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. The shutter 219s is made of a metal such as SUS, and is formed in a disk shape. On the upper surface of the shutter 219s, an O-ring 220c as a seal member that comes into contact with the lower end of the manifold 209 is provided. The opening / closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening / closing mechanism 115s.
(基板支持具)
図1に示すように基板支持具としてのボート217は、上下で一対の端板(上部の端板を天井板、下部の端板を底板とも称する)と、両端板との間に架設されて垂直に配設された複数本(本実施の形態では3本)の保持柱(ボート柱)217a~217c(図1において不図示)とを備えている。本実施の形態において、各保持柱217a~217cは、何れも同じ形状に形成され、保持柱217aと保持柱217b、および、保持柱217aと保持柱217cは、ウエハ200の周方向に沿って90度間隔となるように配置され、保持柱217bおよび保持柱217cは、ウエハ200の周方向に沿って180度間隔となるように配置されている。すなわち、保持柱217aと保持柱217b、および、保持柱217aと保持柱217cの間隔は、保持柱217bと保持柱217cとの間隔よりも狭くなるように配置されている。各保持柱217a~217cには複数の保持溝217d(図1において不図示)が長手方向に等間隔に配置され、同一の高さで互いに対向することで同一平面内でウエハ200を水平に保持できるように形成されている。 (Substrate support)
As shown in FIG. 1, aboat 217 as a substrate support is installed between a pair of upper and lower end plates (an upper end plate is also called a ceiling plate and a lower end plate is also called a bottom plate) and both end plates. A plurality of (three in the present embodiment) holding columns (boat columns) 217a to 217c (not shown in FIG. 1) arranged vertically are provided. In the present embodiment, the holding columns 217 a to 217 c are all formed in the same shape, and the holding column 217 a and the holding column 217 b, and the holding column 217 a and the holding column 217 c are 90 along the circumferential direction of the wafer 200. The holding pillars 217 b and the holding pillars 217 c are arranged at intervals of 180 degrees along the circumferential direction of the wafer 200. That is, the interval between the holding column 217a and the holding column 217b and the interval between the holding column 217a and the holding column 217c are arranged to be narrower than the interval between the holding column 217b and the holding column 217c. Each holding column 217a to 217c has a plurality of holding grooves 217d (not shown in FIG. 1) arranged at equal intervals in the longitudinal direction, and holds the wafer 200 horizontally in the same plane by facing each other at the same height. It is formed to be able to.
図1に示すように基板支持具としてのボート217は、上下で一対の端板(上部の端板を天井板、下部の端板を底板とも称する)と、両端板との間に架設されて垂直に配設された複数本(本実施の形態では3本)の保持柱(ボート柱)217a~217c(図1において不図示)とを備えている。本実施の形態において、各保持柱217a~217cは、何れも同じ形状に形成され、保持柱217aと保持柱217b、および、保持柱217aと保持柱217cは、ウエハ200の周方向に沿って90度間隔となるように配置され、保持柱217bおよび保持柱217cは、ウエハ200の周方向に沿って180度間隔となるように配置されている。すなわち、保持柱217aと保持柱217b、および、保持柱217aと保持柱217cの間隔は、保持柱217bと保持柱217cとの間隔よりも狭くなるように配置されている。各保持柱217a~217cには複数の保持溝217d(図1において不図示)が長手方向に等間隔に配置され、同一の高さで互いに対向することで同一平面内でウエハ200を水平に保持できるように形成されている。 (Substrate support)
As shown in FIG. 1, a
そして、ウエハ200の周縁部が各保持柱217a~217cの複数の保持溝217d間にそれぞれ挿入されることにより、1枚または複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列されて多段に支持される。すなわち、所定の間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が多段に支持されている。
Then, the peripheral portion of the wafer 200 is inserted between the holding grooves 217d of the holding columns 217a to 217c, so that one or a plurality of, for example, 25 to 200 wafers 200 can be placed in a horizontal posture and Are aligned in the vertical direction with their centers aligned, and are supported in multiple stages. That is, they are arranged so as to be arranged at a predetermined interval. The boat 217 is made of a heat-resistant material such as quartz or SiC. Under the boat 217, heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages.
図2に示すように反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、ノズル249a,249bと同様に反応管203の内壁に沿って設けられている。
As shown in FIG. 2, a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution. The temperature sensor 263 is provided along the inner wall of the reaction tube 203 similarly to the nozzles 249a and 249b.
(制御装置)
図3に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 (Control device)
As shown in FIG. 3, thecontroller 121, which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been. The RAM 121b, the storage device 121c, and the I / O port 121d are configured to exchange data with the CPU 121a via the internal bus 121e. For example, an input / output device 122 configured as a touch panel or the like is connected to the controller 121.
図3に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。 (Control device)
As shown in FIG. 3, the
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
The storage device 121c includes, for example, a flash memory, an HDD (Hard Disk Drive), and the like. In the storage device 121c, a control program that controls the operation of the substrate processing apparatus, a process recipe that describes the procedure and conditions of the substrate processing described later, and the like are stored in a readable manner. The process recipe is a combination of the controller 121 that allows the controller 121 to execute each procedure in the substrate processing described later and obtain a predetermined result, and functions as a program. Hereinafter, process recipes, control programs, and the like are collectively referred to simply as programs. The process recipe is also simply called a recipe. When the term “program” is used in this specification, it may include only a recipe, only a control program, or both. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily stored.
I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、整合器272、高周波電源273、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
The I / O port 121d includes the above-described MFCs 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, matching unit 272, high frequency power supply 273, rotation mechanism 267, boat It is connected to an elevator 115, a shutter opening / closing mechanism 115s, and the like.
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、高周波電源273による棒状電極269,270への高周波印加動作等を制御するように構成されている。
The CPU 121a is configured to read out and execute a control program from the storage device 121c and to read a recipe from the storage device 121c in response to an operation command input from the input / output device 122 or the like. The CPU 121a is based on the control of the rotating mechanism 267, the flow adjustment operation of various gases by the MFCs 241a to 241d, the opening and closing operation of the valves 243a to 243d, the opening and closing operation of the APC valve 244 and the pressure sensor 245 so as to follow the contents of the read recipe. Pressure adjustment operation by APC valve 244, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, forward / reverse rotation of boat 217 by rotation mechanism 267, rotation angle and rotation speed adjustment operation, boat elevator 115 The boat 217 is lifted and lowered, and the high-frequency application operation to the rod-shaped electrodes 269 and 270 by the high-frequency power source 273 is controlled.
コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
The controller 121 installs the above-described program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as an MO, or a semiconductor memory such as a USB memory) 123 in a computer. Can be configured. The storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
(2)基板処理工程
次に、基板処理装置を使用して、半導体装置の製造工程の一工程として、ウエハ200上に薄膜を形成する工程について、図4を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。 (2) Substrate Processing Step Next, a step of forming a thin film on thewafer 200 using the substrate processing apparatus as one step of the semiconductor device manufacturing process will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
次に、基板処理装置を使用して、半導体装置の製造工程の一工程として、ウエハ200上に薄膜を形成する工程について、図4を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。 (2) Substrate Processing Step Next, a step of forming a thin film on the
ここでは、原料ガスとしてDCSガスを供給するステップと、反応ガスとしてプラズマ励起させたNH3ガスを供給するステップとを非同時に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)を形成する例について説明する。また、例えば、ウエハ200上には、予め所定の膜が形成されていてもよい。また、ウエハ200または所定の膜には予め所定のパターンが形成されていてもよい。
Here, the step of supplying the DCS gas as the source gas and the step of supplying the plasma-excited NH 3 gas as the reaction gas are performed non-simultaneously, that is, without being synchronized, a predetermined number of times (one or more times). An example in which a silicon nitride film (SiN film) is formed as a film containing Si and N on 200 will be described. For example, a predetermined film may be formed on the wafer 200 in advance. A predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
本明細書では、図4に示す成膜処理のプロセスフローを、便宜上、以下のように示すこともある。
In this specification, the process flow of the film forming process shown in FIG. 4 may be shown as follows for convenience.
(DCS→NH3
*)×n ⇒ SiN
(DCS → NH 3 * ) × n ⇒ SiN
本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
When the term “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof. When the term “wafer surface” is used in this specification, it may mean the surface of the wafer itself, or may mean the surface of a predetermined layer or the like formed on the wafer. In this specification, the phrase “form a predetermined layer on the wafer” means that the predetermined layer is directly formed on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on the substrate. In this specification, the term “substrate” is also synonymous with the term “wafer”.
(搬入ステップ:S1)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。 (Transportation step: S1)
When a plurality ofwafers 200 are loaded into the boat 217 (wafer charge), the shutter 219s is moved by the shutter opening / closing mechanism 115s, and the lower end opening of the manifold 209 is opened (shutter open). Thereafter, as shown in FIG. 1, the boat 217 that supports the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。 (Transportation step: S1)
When a plurality of
(圧力・温度調整ステップ:S2)
処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。続いて、回転機構267によるボート217およびウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。 (Pressure / temperature adjustment step: S2)
The inside of theprocessing chamber 201, that is, the space where the wafer 200 exists is evacuated (reduced pressure) by the vacuum pump 246 so that a desired pressure (degree of vacuum) is obtained. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to reach a desired temperature. At this time, the power supply to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. Subsequently, rotation of the boat 217 and the wafers 200 by the rotation mechanism 267 is started. The exhaust in the processing chamber 201 and the heating and rotation of the wafer 200 are all continuously performed at least until the processing on the wafer 200 is completed.
処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。続いて、回転機構267によるボート217およびウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。 (Pressure / temperature adjustment step: S2)
The inside of the
(成膜ステップ:S3,S4,S5,S6)
その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。 (Film formation step: S3, S4, S5, S6)
Thereafter, the film forming step is performed by sequentially executing steps S3, S4, S5, and S6.
その後、ステップS3,S4,S5,S6を順次実行することで成膜ステップを行う。 (Film formation step: S3, S4, S5, S6)
Thereafter, the film forming step is performed by sequentially executing steps S3, S4, S5, and S6.
(原料ガス供給ステップ:S3,S4)
ステップS3では、処理室201内のウエハ200に対して原料ガスとしてのDCSガスを供給する。 (Raw gas supply step: S3, S4)
In step S <b> 3, DCS gas as a source gas is supplied to thewafer 200 in the processing chamber 201.
ステップS3では、処理室201内のウエハ200に対して原料ガスとしてのDCSガスを供給する。 (Raw gas supply step: S3, S4)
In step S <b> 3, DCS gas as a source gas is supplied to the
バルブ243aを開き、ガス供給管232a内へDCSガスを流す。DCSガスは、MFC241aにより流量調整され、ノズル249aを介してガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき同時にバルブ243cを開き、ガス供給管232c内へN2ガスを流してもよい。このとき供給されるN2ガスは、MFC241cにより流量調整され、DCSガスと一緒に処理室201内へ供給され、排気管231から排気される。
The valve 243a is opened and DCS gas is caused to flow into the gas supply pipe 232a. The flow rate of the DCS gas is adjusted by the MFC 241a, supplied to the processing chamber 201 from the gas supply hole 250a through the nozzle 249a, and exhausted from the exhaust pipe 231. At this time, the valve 243c may be opened at the same time, and N 2 gas may flow into the gas supply pipe 232c. The flow rate of the N 2 gas supplied at this time is adjusted by the MFC 241c, supplied into the processing chamber 201 together with the DCS gas, and exhausted from the exhaust pipe 231.
また、ノズル249b内へのDCSガスの侵入を抑制するため、バルブ243dを開き、ガス供給管232d内へN2ガスを流してもよい。このときノズル249bより供給されたN2ガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気管231から排気される。
Further, in order to suppress the intrusion of DCS gas into the nozzle 249b, the valve 243d may be opened and N 2 gas may flow into the gas supply pipe 232d. At this time, the N 2 gas supplied from the nozzle 249 b is supplied into the processing chamber 201 through the gas supply pipe 232 b and the nozzle 249 b and exhausted from the exhaust pipe 231.
MFC241aで制御するDCSガスの供給流量は、例えば1sccm以上、5000sccm以下、好ましくは10sccm以上、2000sccm以下の範囲内の流量とする。MFC241c,241dで制御するN2ガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、例えば1Pa以上、2666Pa以下、好ましくは67Pa以上、1333Paの範囲内の圧力とする。DCSガスの供給時間は、例えば1秒以上、100秒以下、好ましくは1秒以上、50秒以下の範囲内の時間とする。ヒータ207の温度は、ウエハ200の温度が300℃以上600℃以下の範囲内の温度となるような温度に設定する。
The supply flow rate of DCS gas controlled by the MFC 241a is, for example, a flow rate in the range of 1 sccm to 5000 sccm, preferably 10 sccm to 2000 sccm. The supply flow rate of the N 2 gas controlled by the MFCs 241c and 241d is set to a flow rate in the range of, for example, 100 sccm or more and 10,000 sccm or less. The pressure in the processing chamber 201 is, for example, 1 Pa or more and 2666 Pa or less, preferably 67 Pa or more and 1333 Pa. The supply time of the DCS gas is, for example, 1 second or more and 100 seconds or less, preferably 1 second or more and 50 seconds or less. The temperature of the heater 207 is set to such a temperature that the temperature of the wafer 200 is in the range of 300 ° C. or more and 600 ° C. or less.
上述の条件下でウエハ200に対してDCSガスを供給することにより、ウエハ200(表面の下地膜)上に、Clを含むSi含有層が形成される。Clを含むSi含有層はSi層であってもよいし、DCSの吸着層であってもよいし、それらの両方を含んでいてもよい。以下、Clを含むSi含有層を単にSi含有層とも称する。
By supplying DCS gas to the wafer 200 under the above-described conditions, a Si-containing layer containing Cl is formed on the wafer 200 (surface underlayer film). The Si-containing layer containing Cl may be a Si layer, a DCS adsorption layer, or both of them. Hereinafter, the Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
Si層とは、Siにより構成される連続的な層の他、不連続な層や、これらが重なってできるSi薄膜をも含む総称である。Si層を構成するSiは、Clとの結合が完全に切れていないものや、Hとの結合が完全に切れていないものも含む。
The Si layer is a generic name including a continuous layer composed of Si, a discontinuous layer, and a Si thin film formed by overlapping these layers. Si constituting the Si layer includes those in which the bond with Cl is not completely broken and the bonds with H are not completely broken.
DCSの吸着層は、DCS分子で構成される連続的な吸着層の他、不連続な吸着層をも含む。DCSの吸着層を構成するDCS分子は、SiとClとの結合が一部切れたものや、SiとHとの結合が一部切れたもの、ClとHとの結合が一部切れたもの等も含む。すなわち、DCSの吸着層は、DCSの物理吸着層であってもよいし、DCSの化学吸着層であってもよいし、それらの両方を含んでいてもよい。
The adsorption layer of DCS includes a discontinuous adsorption layer in addition to a continuous adsorption layer composed of DCS molecules. DCS molecules constituting the adsorption layer of DCS are those in which the bond between Si and Cl is partially broken, the bond in which Si and H are partially broken, and the bond in which Cl and H are partially broken Etc. are also included. That is, the DCS adsorption layer may be a DCS physical adsorption layer, a DCS chemical adsorption layer, or both of them.
Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのDCSガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有層の形成に寄与した後のDCSガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243c,243dは開いたままとして、処理室201内へのN2ガスの供給を維持する。N2ガスはパージガスとして作用する。なお、このステップS4を省略してもよい。
After the Si-containing layer is formed, the valve 243a is closed and the supply of DCS gas into the processing chamber 201 is stopped. At this time, the APC valve 244 is kept open, and the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and DCS gas and reaction by-product remaining in the processing chamber 201 and contributing to the formation of the Si-containing layer. Products and the like are excluded from the processing chamber 201 (S4). Further, the supply of N 2 gas into the processing chamber 201 is maintained while the valves 243c and 243d remain open. N 2 gas acts as a purge gas. Note that step S4 may be omitted.
原料ガスとしては、DCSガスのほか、モノクロロシランガス、トリクロロシランガス、テトラクロロシランガス、ヘキサクロロジシランガス、オクタクロロトリシランガス等の無機系ハロシラン原料ガス等を好適に用いることができる。このほか、原料ガスとしては、テトラキスジメチルアミノシランガス、トリスジメチルアミノシランガス、ビスジメチルアミノシランガス、ビスターシャリーブチルアミノシラン、ビスジエチルアミノシランガス、ジメチルアミノシランガス、ジエチルアミノシランガス、ジプロピルアミノシランガス、ジイソプロピルアミノシランガス、ブチルアミノシランガス、ヘキサメチルジシラザンガス等の各種アミノシラン原料ガスや、モノシランガス、ジシランガス、トリシランガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。
In addition to DCS gas, inorganic halosilane source gases such as monochlorosilane gas, trichlorosilane gas, tetrachlorosilane gas, hexachlorodisilane gas, and octachlorotrisilane gas can be suitably used as the source gas. In addition, the raw material gases include tetrakisdimethylaminosilane gas, trisdimethylaminosilane gas, bisdimethylaminosilane gas, bistally butylaminosilane, bisdiethylaminosilane gas, dimethylaminosilane gas, diethylaminosilane gas, dipropylaminosilane gas, diisopropylaminosilane gas, butylaminosilane. Various aminosilane source gases such as gas and hexamethyldisilazane gas, and halogen-free inorganic silane source gases such as monosilane gas, disilane gas, and trisilane gas can be suitably used.
不活性ガスとしては、N2ガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
As the inert gas, a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas.
(反応ガス供給ステップ:S5,S6)
成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたNH3ガスを供給する(S5)。 (Reactive gas supply step: S5, S6)
After the film forming process is completed, plasma excited NH 3 gas as a reactive gas is supplied to thewafer 200 in the processing chamber 201 (S5).
成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたNH3ガスを供給する(S5)。 (Reactive gas supply step: S5, S6)
After the film forming process is completed, plasma excited NH 3 gas as a reactive gas is supplied to the
このステップでは、バルブ243b~243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。NH3ガスは、MFC241bにより流量調整され、ノズル249bを介してバッファ室237内へ供給される。このとき、棒状電極269,270間に高周波電力を供給する。バッファ室237内へ供給されたNH3ガスはプラズマ状態に励起され、活性種(NH3
*)として処理室201内へ供給され、排気管231から排気される。なお、プラズマ状態に励起されたNH3ガスを、窒素プラズマとも称する。
In this step, the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3. The flow rate of the NH 3 gas is adjusted by the MFC 241b and is supplied into the buffer chamber 237 through the nozzle 249b. At this time, high frequency power is supplied between the rod-shaped electrodes 269 and 270. The NH 3 gas supplied into the buffer chamber 237 is excited into a plasma state, supplied as active species (NH 3 * ) into the processing chamber 201, and exhausted from the exhaust pipe 231. The NH 3 gas excited to a plasma state is also referred to as nitrogen plasma.
MFC241bで制御するNH3ガスの供給流量は、例えば100sccm以上、10000sccm以下の範囲内の流量とする。棒状電極269,270に印加する高周波電力は、例えば50W以上、1000W以下の範囲内の電力とする。処理室201内の圧力は、例えば1Pa以上、100Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NH3ガスを活性化させることが可能となる。NH3ガスをプラズマ励起することにより得られた活性種をウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1秒以上、120秒以下、好ましくは1秒以上、60秒以下の範囲内の時間とする。その他の処理条件は、上述のS3と同様な処理条件とする。
The NH 3 gas supply flow rate controlled by the MFC 241b is, for example, a flow rate in the range of 100 sccm to 10,000 sccm. The high frequency power applied to the rod-shaped electrodes 269 and 270 is, for example, power within a range of 50 W or more and 1000 W or less. The pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 100 Pa or less. By using plasma, the NH 3 gas can be activated even when the pressure in the processing chamber 201 is set to such a relatively low pressure zone. The time for supplying active species obtained by plasma excitation of NH 3 gas to the wafer 200, that is, the gas supply time (irradiation time) is, for example, 1 second or more, 120 seconds or less, preferably 1 second or more, The time is within a range of 60 seconds or less. Other processing conditions are the same as those in S3 described above.
上述の条件下でウエハ200に対してNH3ガスを供給することにより、ウエハ200上に形成されたSi含有層がプラズマ窒化される。この際、プラズマ励起されたNH3ガスのエネルギーにより、Si含有層が有するSi-Cl結合、Si-H結合が切断される。Siとの結合を切り離されたCl、Hは、Si含有層から脱離することとなる。そして、Cl、H等が脱離することで未結合手(ダングリングボンド)を有することとなったSi含有層中のSiが、NH3ガスに含まれるNと結合し、Si-N結合が形成されることとなる。この反応が進行することにより、Si含有層は、SiおよびNを含む層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。
By supplying NH 3 gas to the wafer 200 under the above-described conditions, the Si-containing layer formed on the wafer 200 is plasma-nitrided. At this time, the Si—Cl bond and Si—H bond of the Si-containing layer are cut by the energy of the plasma-excited NH 3 gas. Cl and H from which the bond with Si is cut off will be released from the Si-containing layer. Then, Si in the Si-containing layer that has dangling bonds due to desorption of Cl, H, etc., bonds with N contained in the NH 3 gas, and Si—N bonds are formed. Will be formed. As this reaction proceeds, the Si-containing layer is changed (modified) into a layer containing Si and N, that is, a silicon nitride layer (SiN layer).
Si含有層をSiN層へ変化させた後、バルブ243bを閉じ、NH3ガスの供給を停止する。また、棒状電極269,270間への高周波電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するNH3ガスや反応副生成物を処理室201内から排除する(S6)。なお、このステップS6を省略してもよい。
After changing the Si-containing layer to the SiN layer, the valve 243b is closed and the supply of NH 3 gas is stopped. Further, the supply of high-frequency power between the rod-shaped electrodes 269 and 270 is stopped. Then, NH 3 gas and reaction byproducts remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure and processing conditions as in step S4 (S6). Note that step S6 may be omitted.
窒化剤、すなわち、プラズマ励起させるN含有ガスとしては、NH3ガスの他、ジアゼン(N2H2)ガス、ヒドラジン(N2H4)ガス、N3H8ガス等の窒化水素系ガスや、これらの化合物を含むガス、または、窒素(N2)ガス等を用いることができる。
As the nitriding agent, that is, N-containing gas for plasma excitation, in addition to NH 3 gas, hydrogen nitride-based gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas, etc. A gas containing these compounds, nitrogen (N 2 ) gas, or the like can be used.
不活性ガスとしては、N2ガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。
As the inert gas, for example, various rare gases exemplified in step S4 can be used in addition to the N 2 gas.
(所定回数実施:S7)
上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行う(S7)ことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。 (Predetermined number of times: S7)
The above-described steps S3, S4, S5, and S6 are performed non-simultaneously in this order, that is, without being synchronized, as one cycle, and this cycle is performed a predetermined number of times (n times), that is, once or more (S7). As a result, a SiN film having a predetermined composition and a predetermined film thickness can be formed on thewafer 200. The above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the above-described process is performed until the SiN film formed by stacking the SiN layers has the desired film thickness. The cycle is preferably repeated multiple times.
上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行う(S7)ことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。 (Predetermined number of times: S7)
The above-described steps S3, S4, S5, and S6 are performed non-simultaneously in this order, that is, without being synchronized, as one cycle, and this cycle is performed a predetermined number of times (n times), that is, once or more (S7). As a result, a SiN film having a predetermined composition and a predetermined film thickness can be formed on the
(大気圧復帰ステップ:S8)
上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのN2ガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(S8)。 (Atmospheric pressure return step: S8)
When the film forming process described above is completed, N 2 gas as an inert gas is supplied into theprocessing chamber 201 from each of the gas supply pipes 232c and 232d and exhausted from the exhaust pipe 231. As a result, the inside of the processing chamber 201 is purged with the inert gas, and the gas remaining in the processing chamber 201, reaction byproducts, and the like are removed from the processing chamber 201 (inert gas purge). Thereafter, the atmosphere in the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (S8).
上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのN2ガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(S8)。 (Atmospheric pressure return step: S8)
When the film forming process described above is completed, N 2 gas as an inert gas is supplied into the
(搬出ステップ:S9)
その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される(S9)。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。 (Unloading step: S9)
Thereafter, theseal cap 219 is lowered by the boat elevator 115 to open the lower end of the manifold 209, and the processed wafer 200 is supported by the boat 217 from the lower end of the manifold 209 to the outside of the reaction tube 203. Unloading (boat unloading) is performed (S9). After the boat unloading, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is unloaded from the reaction tube 203 and then taken out from the boat 217 (wafer discharge). Note that an empty boat 217 may be carried into the processing chamber 201 after the wafer discharge.
その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される(S9)。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。 (Unloading step: S9)
Thereafter, the
以上の成膜工程(ステップS3~ステップS7)において、ウエハ面内膜厚分布均一性を高めるために、処理ガスの供給中にボート217は回転機構267によって所定の回転速度で回転される。すなわち、ウエハ200を回転させることにより、バッファ構造300の壁面に形成されたガス供給孔250c、または、ノズル249aに形成されたガス供給孔250aから噴出したガスは、ウエハ200に周方向において均等に接触する状態になるので、ウエハ面内膜厚分布均一性(面内膜厚均一性)を向上させることができる。
In the above film forming process (steps S3 to S7), the boat 217 is rotated at a predetermined rotation speed by the rotation mechanism 267 during the supply of the processing gas in order to improve the uniformity of the film thickness distribution within the wafer surface. That is, by rotating the wafer 200, the gas ejected from the gas supply holes 250c formed in the wall surface of the buffer structure 300 or the gas supply holes 250a formed in the nozzle 249a is evenly applied to the wafer 200 in the circumferential direction. Since they are in contact with each other, the in-plane film thickness distribution uniformity (in-plane film thickness uniformity) can be improved.
次に、上述した基板処理工程においてウエハ面内膜厚分布均一性を向上させるために、ボート217の回転速度を制御する方法について以下に説明する。
Next, a method of controlling the rotation speed of the boat 217 in order to improve the in-wafer in-plane film thickness distribution uniformity in the above-described substrate processing step will be described below.
<比較例>
後述する実施例の比較対象例として、回転速度を一定に制御した場合の膜厚分布の一例を図5に示している。図5では、向かって左側の膜厚が厚く、右から右下にかけて薄い分布となっている。つまり、ボート217を一定の回転速度で回転させていると、ウエハ面内膜厚分布均一性が悪くなってしまう。そこで、本実施形態における基板処理工程においては、以下の実施例1~実施例3に示すように、ボート217の回転速度を変化させるように制御している。ここで、回転速度を切り替えるタイミングは、以下で詳述する領域の境界がガス供給部のガス供給孔の前面に位置する時である。 <Comparative example>
FIG. 5 shows an example of a film thickness distribution when the rotational speed is controlled to be constant as an example for comparison with examples described later. In FIG. 5, the film thickness on the left side is thicker, and the distribution is thinner from the right to the lower right. In other words, if theboat 217 is rotated at a constant rotational speed, the uniformity of the film thickness distribution within the wafer surface is deteriorated. Therefore, in the substrate processing step in this embodiment, as shown in Examples 1 to 3 below, control is performed so as to change the rotation speed of the boat 217. Here, the timing for switching the rotation speed is when the boundary of the region described in detail below is located in front of the gas supply hole of the gas supply unit.
後述する実施例の比較対象例として、回転速度を一定に制御した場合の膜厚分布の一例を図5に示している。図5では、向かって左側の膜厚が厚く、右から右下にかけて薄い分布となっている。つまり、ボート217を一定の回転速度で回転させていると、ウエハ面内膜厚分布均一性が悪くなってしまう。そこで、本実施形態における基板処理工程においては、以下の実施例1~実施例3に示すように、ボート217の回転速度を変化させるように制御している。ここで、回転速度を切り替えるタイミングは、以下で詳述する領域の境界がガス供給部のガス供給孔の前面に位置する時である。 <Comparative example>
FIG. 5 shows an example of a film thickness distribution when the rotational speed is controlled to be constant as an example for comparison with examples described later. In FIG. 5, the film thickness on the left side is thicker, and the distribution is thinner from the right to the lower right. In other words, if the
<実施例1>
本実施例では、使用する処理ガスのガス種やガス流量、処理温度などのパラメータから割り出したウエハ上に形成される薄膜の成膜分布傾向を予め記憶装置121cまたは外部記憶装置123に記憶させることで記録しておき、その記録した情報に基づき、薄膜が厚く形成される領域と薄く形成される領域とで回転速度を変更することで、ウエハ面内均一性を向上させる。 <Example 1>
In the present embodiment, the film distribution distribution tendency of the thin film formed on the wafer calculated from parameters such as the type of gas used, the gas flow rate, and the processing temperature is stored in thestorage device 121c or the external storage device 123 in advance. Then, based on the recorded information, the in-plane uniformity of the wafer is improved by changing the rotational speed between the thin film forming region and the thin film forming region.
本実施例では、使用する処理ガスのガス種やガス流量、処理温度などのパラメータから割り出したウエハ上に形成される薄膜の成膜分布傾向を予め記憶装置121cまたは外部記憶装置123に記憶させることで記録しておき、その記録した情報に基づき、薄膜が厚く形成される領域と薄く形成される領域とで回転速度を変更することで、ウエハ面内均一性を向上させる。 <Example 1>
In the present embodiment, the film distribution distribution tendency of the thin film formed on the wafer calculated from parameters such as the type of gas used, the gas flow rate, and the processing temperature is stored in the
以下に、図5に示した場合のウエハの成膜傾向を有するプロセスを使用する場合のボート217を回転させる速度を1回転内で変化させる例について図6(A)及び図6(B)を用いて説明する。
FIG. 6A and FIG. 6B show an example in which the speed at which the boat 217 is rotated in the case of using the process having the wafer deposition tendency shown in FIG. 5 is changed within one rotation. It explains using.
図6(A)に示されているように3本の保持柱217a~217cを有するボート217において、中央の保持柱217aのウエハ200の中心を挟んで対向するウエハ200の外縁となる位置(本実施例においてはウエハノッチ位置)を回転の始点である基準(0度)として、図5及び図6(A)に示されている回転速度が一定の場合のウエハの成膜傾向に基づいて、ボート217の回転速度を変化させる角度位置(回転角)と、その角度位置における回転速度を設定する。具体的には、例えば、ボート217の1回転当たりの時間を予め43秒と設定する。この1回転当たりの時間(43秒)を基準にして、向かって左側の膜厚の厚くなり易い領域である0度~160度(領域A)の回転速度r1を1.9rpm、左側より膜厚の薄い右上側の領域である160度~260度(領域B)の回転速度r2を1.4rpm、右下側の膜厚の薄くなり易い領域である260度~360度(領域C)の回転速度r3を1.0rpm、と設定する。
As shown in FIG. 6A, in the boat 217 having the three holding columns 217a to 217c, the position of the central holding column 217a serving as the outer edge of the wafer 200 facing the center of the wafer 200 (the book) In the embodiment, the boat notch position) is set as a reference (0 degree) that is the starting point of the rotation, and the boat is formed based on the wafer deposition tendency when the rotation speed is constant as shown in FIGS. 5 and 6A. An angular position (rotational angle) for changing the rotational speed of 217 and a rotational speed at the angular position are set. Specifically, for example, the time per rotation of the boat 217 is set to 43 seconds in advance. Based on this time per rotation (43 seconds), the rotation speed r1 of 0 ° to 160 ° (region A), which is the region where the film thickness on the left side tends to increase, is 1.9 rpm, and the film thickness is from the left side. Rotation speed r2 of 160 to 260 degrees (area B), which is a thin area on the upper right side, is 1.4 rpm, and rotation is 260 degrees to 360 degrees (area C), which is an area where the film thickness is likely to be thin on the lower right side. The speed r3 is set to 1.0 rpm.
すなわち、1回転当たりの時間を予め設定した上で、回転速度が一定の場合のウエハの成膜傾向に基づいて、ガス供給中のガス供給孔250a,250cが膜厚の厚くなり易い領域を通過する際にはボート217の回転速度を速くする。これによって、単位時間あたりに回転方向に移動する距離を示す単位回転移動距離あたりのウエハ200表面に供給されるガス供給量(ウエハ200表面へのガス到達量、または、ガス照射時間)を少なくする。また、ガス供給中のガス供給孔250a,250cが膜厚の薄くなり易い領域を通過する際にはボート217の回転速度を遅くする。これによって、単位回転移動距離あたりのガス供給量を多くする。
That is, after setting the time per rotation in advance, the gas supply holes 250a and 250c during the gas supply pass through the region where the film thickness tends to be thick based on the film formation tendency of the wafer when the rotation speed is constant. When doing so, the rotational speed of the boat 217 is increased. As a result, the amount of gas supplied to the surface of the wafer 200 per unit rotational movement distance indicating the distance moved in the rotational direction per unit time (the amount of gas reaching the surface of the wafer 200 or the gas irradiation time) is reduced. . Further, when the gas supply holes 250a and 250c during gas supply pass through a region where the film thickness tends to be thin, the rotation speed of the boat 217 is decreased. This increases the gas supply amount per unit rotational movement distance.
このように制御部121によって回転機構267を制御することで、ウエハ200表面における膜厚の厚くなり易い所定領域へのガス接触時間(ガス供給時間)を短くし、膜厚の薄くなり易い所定領域へのガス接触時間を長くすることが可能となり、当該領域においてガスが接触する量(曝露量)を少なく(または多く)することが可能となる。したがって、図6(B)に示すようにウエハ上に形成される膜の面内膜厚均一性を向上させることが可能となる。
By controlling the rotation mechanism 267 by the control unit 121 in this way, the gas contact time (gas supply time) to a predetermined region where the film thickness tends to increase on the surface of the wafer 200 is shortened, and the predetermined region where the film thickness tends to decrease. It becomes possible to lengthen the gas contact time to, and to reduce (or increase) the amount (exposure amount) of gas contact in the region. Therefore, as shown in FIG. 6B, the in-plane film thickness uniformity of the film formed on the wafer can be improved.
ここで、各領域における回転速度は、例えば以下のように設定されることが好ましい。すなわち、基準となる回転速度に対して、1倍より大きく、10倍以下となる速度範囲を高速、0.1倍以上、1倍未満となる速度範囲を低速として記憶装置121cまたは外部記憶装置123に記憶させておき、適宜回転速度を制御することが好ましい。仮に高速域の回転速度を基準となる回転速度に比べて10倍よりも大きくなるように制御した場合、ウエハ200にかかる遠心力が大きくなりすぎてしまい、ボート217に載置されているウエハ200にズレが生じたり、ボート217からウエハ200が飛び出したりしてしまう可能性が生じるだけでなく、回転振動によるウエハ200載置面とボート載置部との摩擦によりパーティクルが生じ易くなってしまう。また、低速域の回転速度を基準となる回転速度に比べて0.1倍よりも小さくなるように制御した場合、回転速度が遅くなりすぎてしまい、スループットが小さくなってしまう。
Here, the rotation speed in each region is preferably set as follows, for example. That is, the storage device 121c or the external storage device 123 has a speed range that is greater than 1 time and less than or equal to 10 times as high speed as a reference rotation speed, and a speed range that is 0.1 times or more and less than 1 time as low speed. It is preferable that the rotation speed is controlled appropriately. If the rotational speed in the high speed region is controlled to be larger than 10 times the reference rotational speed, the centrifugal force applied to the wafer 200 becomes too large and the wafer 200 placed on the boat 217 is placed. In addition to the possibility that the wafer 200 may be displaced from the boat 217 or the wafer 200 may jump out of the boat 217, particles are likely to be generated due to friction between the wafer 200 mounting surface and the boat mounting portion due to rotational vibration. In addition, when the rotation speed in the low speed region is controlled to be smaller than 0.1 times the reference rotation speed, the rotation speed becomes too slow and the throughput is reduced.
なお、供給した処理ガスがウエハ上を流れる過程で自己分解率が変化する場合、すなわち、処理室内供給直後には自己分解されている量が少なく、ウエハ200の下流側で自己分解されている量が多くなるような環境下(ガス種、成膜温度)でガスを供給する場合には、ガス供給中のガス供給孔が膜厚の薄くなり易い領域の180度反対側を通過する際にボートの回転速度を遅くなるように設定することで、ウエハ200表面の膜厚が薄くなり易い領域をガス流れの下流に位置させた状態で、ウエハ200表面に供給されるガス供給量が多くなるようにし、ガス供給中のガス供給孔が膜厚の厚くなり易い領域の180度反対側を通過する際にボートの回転速度を速くなるように設定することで、膜厚が厚くなり易い領域をガス流れの下流に位置させた状態で、ウエハ200表面に供給されるガス供給量が少なくなるように、回転機構267を制御することによって、ウエハの膜厚を均一に形成するように制御してもよい。
Note that when the self-decomposition rate changes while the supplied processing gas flows on the wafer, that is, the amount of self-decomposition is small immediately after the supply in the processing chamber, and the amount is self-decomposed on the downstream side of the wafer 200. When the gas is supplied in an environment where the amount of gas increases (gas species, film forming temperature), the gas supply hole during gas supply passes through the 180 ° opposite side of the region where the film thickness tends to be thin. Is set so as to slow down the rotation speed of the wafer 200, so that the amount of gas supplied to the surface of the wafer 200 is increased in a state where the region where the film thickness of the surface of the wafer 200 tends to be thin is positioned downstream of the gas flow. By setting the boat rotation speed to be higher when the gas supply hole during gas supply passes through the opposite side of 180 ° to the region where the film thickness tends to be thick, Downstream of the flow In a state of being location, so that the gas supply amount supplied to the wafer 200 surface is reduced, by controlling the rotation mechanism 267 may be controlled so as to form a film thickness of the wafer uniformly.
また、好ましくは、コントローラ121は、ボート217の回転速度を変更する際にはボート217の回転を停止しないで、連続して行うように制御する。回転速度の変更を連続して行うことにより、ボート217とウエハ200との擦れを抑制し、パーティクルの発生を低減することができる。また、保持溝217dからのウエハ200のずれや、落下が防止される。
Also preferably, the controller 121 controls the boat 217 to continuously perform the rotation without stopping the rotation of the boat 217 when changing the rotation speed of the boat 217. By continuously changing the rotation speed, rubbing between the boat 217 and the wafer 200 can be suppressed, and the generation of particles can be reduced. In addition, the wafer 200 is prevented from being displaced from the holding groove 217d and falling.
また、上記の内容では、ボート217の回転の始点である基準位置、すなわち、回転角度0度となる位置を中央の保持柱217aにおけるウエハ200の中心を挟んで対向するウエハ200の外縁となる位置として位置決めしたが、これに限らず、保持柱217b、217cにおけるウエハ200の中心を挟んで対向するウエハ200の外縁となる位置を基準位置として定めてもよいし、保持柱217a~217cの少なくともいずれか1つのウエハ200保持位置を基準位置としてもよい。また、本実施例のように垂直多段にウエハ200を保持する場合には、ウエハ200の中心の代わりに回転機構267の回転軸255を中心とみなすことで基準位置を定めてもよい。
Further, in the above description, the reference position that is the starting point of the rotation of the boat 217, that is, the position that becomes the outer edge of the wafer 200 facing the center holding column 217a across the center of the wafer 200 at the rotation angle of 0 degree. However, the present invention is not limited to this, and the position of the holding pillars 217b and 217c that is the outer edge of the wafer 200 facing the center of the wafer 200 may be determined as the reference position, or at least one of the holding pillars 217a to 217c. One wafer 200 holding position may be set as the reference position. Further, when the wafers 200 are held in multiple vertical stages as in this embodiment, the reference position may be determined by regarding the rotation shaft 255 of the rotation mechanism 267 as the center instead of the center of the wafer 200.
さらに、回転の始点である基準位置は、保持柱217a~217cの位置に対して決めることに限定されず、予め記憶してある膜厚分布の傾向から、回転速度を変更させる領域を先行して決定し、その領域における任意の境界を回転の基準位置と設定してもよい。
Further, the reference position that is the starting point of the rotation is not limited to being determined with respect to the positions of the holding columns 217a to 217c, and the region where the rotation speed is changed is preceded by the tendency of the film thickness distribution stored in advance. It is possible to determine and set an arbitrary boundary in the region as a reference position for rotation.
そして、図4に示す基板処理工程を用いて、コントローラ121が回転機構267を上述した回転速度と角度位置とをパラメータとして制御して、予め設定された1回転当たりの時間でボート217の回転速度を1回転内で変化させることにより、円周方向の膜厚分布を調整することができ、図6(B)に示すように、同心円状の分布となって均一性が向上し、処理時間を一定にしてスループットを向上させることができる。
Then, using the substrate processing step shown in FIG. 4, the controller 121 controls the rotation mechanism 267 using the above-described rotation speed and angular position as parameters, and the rotation speed of the boat 217 in a preset time per rotation. Can be adjusted within one rotation, the film thickness distribution in the circumferential direction can be adjusted, and as shown in FIG. 6 (B), the distribution becomes concentric and the uniformity is improved. The throughput can be improved with a constant value.
ここで、例えばステップS3におけるDCSガスをウエハ200に供給する時間を5秒、ステップS4におけるパージガスをウエハ200に供給する時間を10秒、ステップS5におけるNH3ガスをウエハ200に供給する時間を20秒、ステップS6におけるパージガスをウエハ200に供給する時間を10秒として、ガスの供給周期Tは45秒となるようにそれぞれの処理ガス供給時間を設定している。
Here, for example, the time for supplying the DCS gas to the wafer 200 in step S3 is 5 seconds, the time for supplying the purge gas to the wafer 200 in step S4 is 10 seconds, and the time for supplying the NH 3 gas to the wafer 200 in step S5 is 20 seconds. Second, the time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds, and the process gas supply time is set so that the gas supply period T is 45 seconds.
上述の実施例においては、ウエハの1回転周期:P=43sec、ガス供給周期:T=45secとなるため、ウエハが1回転に要する時間よりもガス供給周期が2sec長いので、ウエハの回転位置とガス供給ノズルの相対位置がかなりのサイクルまで同期しないため、面内膜厚均一性はウエハの回転位置とガス供給ノズルの相対位置が同期する場合に比して、より向上させることができる。ウエハの回転位置とガス供給ノズルの相対位置が同期すると、再び同一の箇所でガスを供給してしまい、その毎回ガス供給時にガス流れの上流に位置するウエハ領域に形成される膜が厚くなってしまう。このため、本来ウエハを回転させた時は同心円状の分布になって均一性が向上するはずであるが、ウエハの回転周期とガス供給周期とが同期した場合はその効果が得られない。
In the above-described embodiment, since one rotation cycle of the wafer: P = 43 sec and gas supply cycle: T = 45 sec, the gas supply cycle is 2 sec longer than the time required for one rotation of the wafer. Since the relative position of the gas supply nozzle does not synchronize until a considerable cycle, the in-plane film thickness uniformity can be further improved as compared with the case where the rotation position of the wafer and the relative position of the gas supply nozzle are synchronized. When the rotation position of the wafer and the relative position of the gas supply nozzle are synchronized, the gas is supplied again at the same location, and the film formed in the wafer region located upstream of the gas flow becomes thicker each time the gas is supplied. End up. For this reason, when the wafer is originally rotated, the distribution should be concentric and the uniformity should be improved. However, the effect cannot be obtained when the rotation period of the wafer and the gas supply period are synchronized.
したがって、本実施例では以下の数式(1)を満たすように回転周期Pとガス供給周期Tを微調整する。
|mP-nT|>≠0(n、mは自然数) (1)
(>≠0は真に0より大きいということを表し、||は絶対値を表す。)
この式(1)を満たせば、例えばガス供給サイクル中の同一のガスの供給開始タイミングが、ウエハの回転位置と同期することを防ぐことができ、均一性を改善することが可能である。 Therefore, in this embodiment, the rotation period P and the gas supply period T are finely adjusted so as to satisfy the following formula (1).
| MP-nT |> ≠ 0 (n and m are natural numbers) (1)
(> ≠ 0 indicates that it is truly greater than 0, and || indicates an absolute value.)
If this equation (1) is satisfied, for example, the supply start timing of the same gas during the gas supply cycle can be prevented from synchronizing with the rotational position of the wafer, and the uniformity can be improved.
|mP-nT|>≠0(n、mは自然数) (1)
(>≠0は真に0より大きいということを表し、||は絶対値を表す。)
この式(1)を満たせば、例えばガス供給サイクル中の同一のガスの供給開始タイミングが、ウエハの回転位置と同期することを防ぐことができ、均一性を改善することが可能である。 Therefore, in this embodiment, the rotation period P and the gas supply period T are finely adjusted so as to satisfy the following formula (1).
| MP-nT |> ≠ 0 (n and m are natural numbers) (1)
(> ≠ 0 indicates that it is truly greater than 0, and || indicates an absolute value.)
If this equation (1) is satisfied, for example, the supply start timing of the same gas during the gas supply cycle can be prevented from synchronizing with the rotational position of the wafer, and the uniformity can be improved.
なお、この式(1)が満たされるべき時間について考慮すると、もちろん成膜時間内全てで満たされれば十分であるが、条件は少し弱めてもよく、例えば10サイクル相当時間(上の記号を使うと10T(sec)まで)同期しなければ、ガス吹出しのタイミングは十分分散されて均一性的には問題はないと考えられる。
In consideration of the time for which the expression (1) should be satisfied, of course, it is sufficient if the time is satisfied within the film formation time. However, the condition may be slightly weakened, for example, a time corresponding to 10 cycles (using the above symbol) If it does not synchronize (up to 10T (sec)), it is considered that the gas blowing timing is sufficiently dispersed and there is no problem in uniformity.
すなわち、予め設定された1回転当たりの時間内で、薄膜厚領域とそれ以外の領域のボートの回転速度と角度位置を任意に指定して、ウエハの回転周期とガス供給周期とが相当時間同期しないようにすることができ、ウエハ面内膜厚分布均一性を向上させることができる。また、ガス供給サイクル数(要求膜厚)に応じて、ボートの回転速度を変化させることができる。
That is, within a preset time per rotation, the rotation speed and angle position of the boat in the thin film thickness region and other regions are arbitrarily designated, and the wafer rotation cycle and the gas supply cycle are synchronized for a considerable time. It is possible to improve the uniformity of the film thickness distribution in the wafer surface. Moreover, the rotational speed of the boat can be changed according to the number of gas supply cycles (required film thickness).
<実施例2>
本実施例では、ウエハ200を保持する保持柱217a~217cを基準とした範囲に基づいてボート217を回転させる回転速度を1回転内で変化させる。つまり、保持柱217a~217cの位置と間隔に基づいてボート217を回転させる回転速度を1回転内で変化させる。これは、ボート217が一定速度で回転していると、ボート217の保持柱217a~217cが噴出したガスの流れの遮蔽物になるために、ウエハ面内膜厚分布均一性が保持柱217a~217c周辺で悪くなる。 <Example 2>
In this embodiment, the rotation speed for rotating theboat 217 is changed within one rotation based on the range based on the holding columns 217a to 217c holding the wafer 200. That is, the rotation speed for rotating the boat 217 is changed within one rotation based on the positions and intervals of the holding columns 217a to 217c. This is because when the boat 217 is rotated at a constant speed, the holding columns 217a to 217c of the boat 217 become shields against the flow of gas ejected, so that the in-wafer in-plane film thickness distribution is uniform. It gets worse around 217c.
本実施例では、ウエハ200を保持する保持柱217a~217cを基準とした範囲に基づいてボート217を回転させる回転速度を1回転内で変化させる。つまり、保持柱217a~217cの位置と間隔に基づいてボート217を回転させる回転速度を1回転内で変化させる。これは、ボート217が一定速度で回転していると、ボート217の保持柱217a~217cが噴出したガスの流れの遮蔽物になるために、ウエハ面内膜厚分布均一性が保持柱217a~217c周辺で悪くなる。 <Example 2>
In this embodiment, the rotation speed for rotating the
そこで、本実施例においては、コントローラ121が回転機構267を回転速度と角度位置とをパラメータとして制御して、予め設定された1回転当たりの時間を変更することなく、ガスを供給しているガス供給孔250a、250cの位置と保持柱217a~217cを基準とした範囲内である角度位置に応じてボート217を回転させる速度を1回転内で変化させることにより、ウエハ面内膜厚分布均一性が保持柱217a~217c周辺で悪くなる現象を防止するものとした。
Therefore, in this embodiment, the controller 121 controls the rotation mechanism 267 using the rotation speed and the angular position as parameters, and the gas is supplied without changing the preset time per rotation. By changing the speed at which the boat 217 is rotated within one rotation in accordance with the position of the supply holes 250a and 250c and the angular position within the range based on the holding columns 217a to 217c, the film thickness distribution in the wafer surface is uniform. This prevents the phenomenon of worsening around the holding columns 217a to 217c.
すなわち、コントローラ121が、ガス供給時のガス供給孔250a、250cが保持柱217a~217cを基準として例えば±15度の範囲内を通過する場合のボート217の回転速度を、範囲外を通過する場合のボート217の回転速度に比べて低速となるように回転機構267を制御してボート217の回転速度を制御する。
That is, when the controller 121 passes the rotation speed of the boat 217 when the gas supply holes 250a and 250c at the time of gas supply pass within the range of ± 15 degrees with respect to the holding columns 217a to 217c, for example, outside the range. The rotation speed of the boat 217 is controlled by controlling the rotation mechanism 267 so as to be lower than the rotation speed of the boat 217.
例えば、図7に示されているように3本の保持柱217a~217cを有するボート217において、中央の保持柱217aに対向する位置(本実施例においてはウエハノッチ位置)を基準(0度)として、ボート217の回転速度を変化させる角度位置と、その角度位置における回転速度を設定する。具体的には、例えば、ボート217の1回転当たりの時間を予め62秒と設定する。この1回転当たりの時間を基準にして、保持柱217cから±15度である75度~105度、165度~195度、255度~285度の回転速度r4を0.4rpm、保持柱217cのない領域であって、保持柱217cの間隔の広い0度~75度及び285度~360度の回転速度r5を3.0rpm、保持柱217cのない領域であって、保持柱217cの間隔の狭い105度~165度、195度~255度の回転速度r6を1.3rpm、と設定する。
For example, as shown in FIG. 7, in a boat 217 having three holding columns 217a to 217c, a position (wafer notch position in this embodiment) facing the central holding column 217a is set as a reference (0 degree). The angle position for changing the rotation speed of the boat 217 and the rotation speed at the angular position are set. Specifically, for example, the time per rotation of the boat 217 is set to 62 seconds in advance. Based on this time per rotation, the rotational speed r4 of 75 ° to 105 °, 165 ° to 195 °, and 255 ° to 285 °, which is ± 15 ° from the holding column 217c, is 0.4 rpm, and the holding column 217c This is a region where the holding columns 217c have a wide interval between 0 ° to 75 ° and 285 ° to 360 ° and the rotation speed r5 is 3.0 rpm, and there is no holding column 217c, and the intervals between the holding columns 217c are narrow. The rotational speed r6 from 105 degrees to 165 degrees and from 195 degrees to 255 degrees is set to 1.3 rpm.
そして、図4に示す基板処理工程を用いて、コントローラ121が回転機構267を上述した回転速度と角度位置とをパラメータとして制御して、予め設定された1回転当たりの時間で、ボート217の回転速度を1回転内で変化させることにより、円周方向の膜厚分布を調整することができ、同心円状の分布になって均一性が向上し、処理時間を一定にしてスループットを向上させることができる。
Then, using the substrate processing step shown in FIG. 4, the controller 121 controls the rotation mechanism 267 using the above-described rotation speed and angular position as parameters, and the boat 217 rotates at a preset time per rotation. By changing the speed within one revolution, the film thickness distribution in the circumferential direction can be adjusted, resulting in a concentric distribution, improving uniformity, and improving throughput by keeping the processing time constant. it can.
また、上述した実施例1と同様に、例えばステップS3におけるDCSガスをウエハ200に供給する時間を5秒、ステップS4におけるパージガスをウエハ200に供給する時間を10秒、ステップS5におけるNH3ガスをウエハ200に供給する時間を20秒、ステップS6におけるパージガスをウエハ200に供給する時間を10秒として、ガスの供給周期Tを45秒とする。このようにガス供給時間を設定した場合、本実施例においては、ウエハの1回転周期:P=62sec、ガス供給周期:T=45secとなるため、ウエハが1回転に要する時間よりもガス供給周期が17sec短いので、ウエハの回転位置とガス供給ノズルの相対位置がかなりのサイクルまで同期しないため、面内膜厚均一性は向上するものとなる。
Similarly to the first embodiment, for example, the time for supplying the DCS gas in step S3 to the wafer 200 is 5 seconds, the time for supplying the purge gas to the wafer 200 in step S4 is 10 seconds, and the NH 3 gas in step S5 is used. The time for supplying the wafer 200 is 20 seconds, the time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds, and the gas supply period T is 45 seconds. When the gas supply time is set in this way, in this embodiment, since the wafer rotation cycle is P = 62 sec and the gas supply cycle is T = 45 sec, the gas supply cycle is longer than the time required for one rotation of the wafer. Since the rotation position of the wafer and the relative position of the gas supply nozzle are not synchronized until a considerable cycle, the in-plane film thickness uniformity is improved.
すなわち、保持柱217cがガス供給孔250a,250cの周辺を通過する際には、ボート217の回転速度を低速にすることにより、保持柱217a~217c周辺のガス供給量を増加させ、ウエハ面内膜厚均一性が保持柱217a~217c周辺で悪くなる現象を防止してウエハ面内膜厚均一性を向上させることができる。なお、供給するガス種によっては、保持柱217a~217cがガス供給孔250a,250cの周辺を通過する際には、ボート217の回転速度を高速にし、それ以外の領域を通過する際には低速になるように設定する場合もある。なお、各領域における回転速度は、実施例1に記載の設定方法によって設定されることが好ましい。
That is, when the holding column 217c passes around the gas supply holes 250a and 250c, by reducing the rotation speed of the boat 217, the gas supply amount around the holding columns 217a to 217c is increased and the wafer surface is increased. The phenomenon that the film thickness uniformity deteriorates around the holding columns 217a to 217c can be prevented, and the film thickness uniformity in the wafer surface can be improved. Depending on the type of gas to be supplied, the rotation speed of the boat 217 is increased when the holding columns 217a to 217c pass around the gas supply holes 250a and 250c, and the speed is reduced when passing through other regions. It may be set to be. The rotation speed in each region is preferably set by the setting method described in the first embodiment.
<実施例3>
本実施例では、処理ガスの供給イベント毎、すなわちガス供給工程毎にボート217を回転させる回転速度を変化させるよう、回転機構267を制御する。 <Example 3>
In this embodiment, therotation mechanism 267 is controlled so as to change the rotation speed at which the boat 217 is rotated for each processing gas supply event, that is, for each gas supply process.
本実施例では、処理ガスの供給イベント毎、すなわちガス供給工程毎にボート217を回転させる回転速度を変化させるよう、回転機構267を制御する。 <Example 3>
In this embodiment, the
本実施例においては、コントローラ121がガスの供給時間と回転機構267の角度位置とをパラメータとしてガス供給工程毎の回転速度を制御して、ガス供給工程に応じてボート217を回転させる速度を変化させることにより、ウエハ面内膜厚分布均一性を向上させるものである。
In this embodiment, the controller 121 controls the rotation speed for each gas supply process using the gas supply time and the angular position of the rotation mechanism 267 as parameters, and changes the speed at which the boat 217 is rotated according to the gas supply process. By doing so, the uniformity of film thickness distribution in the wafer surface is improved.
具体的には、図8に示すように例えば、ステップS3におけるDCSガスを供給する際のボート回転速度を12rpm、ステップS4,S6におけるパージガスを供給する際のボート回転速度をそれぞれ6rpm、ステップS5におけるNH3ガスを供給する際のボート回転速度を3rpmとする。また、ステップS3におけるDCSガスをウエハ200に供給する時間を5秒、ステップS4におけるパージガスをウエハ200に供給する時間を10秒、ステップS5におけるNH3ガスをウエハ200に供給する時間を20秒、ステップS6におけるパージガスをウエハ200に供給する時間を10秒としてガスの供給周期Tを45秒とする。
Specifically, as shown in FIG. 8, for example, the boat rotation speed when supplying the DCS gas in step S3 is 12 rpm, the boat rotation speed when supplying the purge gas in steps S4 and S6 is 6 rpm, and in step S5. The boat rotation speed when supplying NH 3 gas is set to 3 rpm. Further, the time for supplying the DCS gas in step S3 to the wafer 200 is 5 seconds, the time for supplying the purge gas in step S4 to the wafer 200 is 10 seconds, the time for supplying the NH 3 gas in step S5 to the wafer 200 is 20 seconds, The time for supplying the purge gas to the wafer 200 in step S6 is 10 seconds, and the gas supply period T is 45 seconds.
このように回転速度を制御することによって、ボート217が1回転するのに必要な時間が、各ガスが供給される時間と同一となり、ボート217が1回転する間中、同一ガスが供給され続けることとなる。これにより保持柱217a~217cの影響を気にすることなく、ウエハ200上に均一に所定の膜を形成することが可能となる。
By controlling the rotation speed in this way, the time required for one rotation of the boat 217 is the same as the time during which each gas is supplied, and the same gas is continuously supplied throughout the boat 217. It will be. Thus, a predetermined film can be uniformly formed on the wafer 200 without worrying about the influence of the holding columns 217a to 217c.
すなわち、本実施例によれば、ガス供給工程に応じてボート217を回転させる速度を変化させることにより、小サイクル数の工程や供給時間の短い工程においてもウエハ面内膜厚分布均一性を向上させることができる。
That is, according to the present embodiment, by changing the speed at which the boat 217 is rotated in accordance with the gas supply process, the wafer surface thickness distribution uniformity is improved even in a process with a small number of cycles and a process with a short supply time. Can be made.
なお、上記実施形態において、DCSガスとNH3ガスを供給してSiN膜を形成する例について説明したが、本発明はこのような態様に限定されず、少なくとも2つのガス種を用いて成膜する構成について、好適に適用することが可能となる。
In the above-described embodiment, an example in which the DCS gas and the NH 3 gas are supplied to form the SiN film has been described. However, the present invention is not limited to such an embodiment, and the film is formed using at least two gas types. The configuration to be applied can be preferably applied.
また、上記実施形態において、1回転当たりに少なくとも2回、ボートの回転速度を変化させる例について説明したが、本発明はこのような態様に限定されず、少なくとも1回変化させる構成について、好適に適用することが可能となる。
Further, in the above embodiment, the example in which the rotation speed of the boat is changed at least twice per one rotation has been described. However, the present invention is not limited to such an aspect, and a configuration that changes at least once is preferable. It becomes possible to apply.
また、上記実施形態において、ボート217の回転速度を変化させる角度位置を決定する基準としてウエハノッチ位置を使用する例について説明したが、本発明はこのような態様に限定されず、保持柱217a~217cのいずれか1つに保持されたウエハ200の載置位置を基準として設定構成について、好適に適用することが可能となる。
In the above embodiment, the example in which the wafer notch position is used as a reference for determining the angular position for changing the rotation speed of the boat 217 has been described. However, the present invention is not limited to such an embodiment, and the holding columns 217a to 217c are used. It is possible to preferably apply the setting configuration based on the mounting position of the wafer 200 held by any one of the above.
また、上記実施形態において、反応ガス供給工程において、反応ガスをプラズマ化して処理室内に供給する例について説明したが、本発明はこのような態様に限定されず、熱処理などのプラズマを用いない構成についても、好適に適用することが可能となる。
In the above embodiment, the example in which the reaction gas is converted into plasma and supplied into the processing chamber in the reaction gas supply step has been described. However, the present invention is not limited to such an embodiment, and the configuration does not use plasma such as heat treatment. Also, it is possible to suitably apply.
また、上記実施形態では、原料ガスを供給した後に反応ガスを供給する例について説明したが、本発明はこのような態様に限定されず、原料ガス、反応ガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後に原料ガスを供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。
In the above embodiment, the example in which the reactive gas is supplied after the raw material gas is supplied has been described. However, the present invention is not limited to such an embodiment, and the supply order of the raw material gas and the reactive gas may be reversed. That is, the source gas may be supplied after the reaction gas is supplied. By changing the supply order, the film quality and composition ratio of the formed film can be changed.
また、上記実施形態では、ウエハ200上にSiN膜を形成する例について説明した。本発明はこのような態様に限定されず、ウエハ200上に、シリコン酸化膜(SiO膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合や、ウエハ200上にシリコン炭窒化膜(SiCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン硼炭窒化膜(SiBCN膜)、硼炭窒化膜(BCN膜)等のSi系窒化膜を形成する場合にも、好適に適用可能である。これらの場合、反応ガスとしては、O含有ガスの他、C3H6等のC含有ガスや、NH3等のN含有ガスや、BCl3等のB含有ガスを用いることができる。
In the above-described embodiment, the example in which the SiN film is formed on the wafer 200 has been described. The present invention is not limited to such an embodiment, and a silicon oxide film (SiO film), a silicon oxycarbide film (SiOC film), a silicon oxycarbonitride film (SiOCN film), a silicon oxynitride film (SiON) is formed on the wafer 200. In the case of forming a Si-based oxide film such as a film), a silicon carbonitride film (SiCN film), a silicon boronitride film (SiBN film), a silicon borocarbonitride film (SiBCN film), or a borocarbonitride film. The present invention can also be suitably applied when forming a Si-based nitride film such as (BCN film). In these cases, as the reaction gas, in addition to the O-containing gas, a C-containing gas such as C 3 H 6 , an N-containing gas such as NH 3, and a B-containing gas such as BCl 3 can be used.
また、本発明は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む酸化膜や窒化膜、すなわち、金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本発明は、ウエハ200上に、TiN膜、TiO膜、TiOC膜、TiOCN膜、TiON膜、TiBN膜、TiBCN膜等の金属系薄膜を形成する場合にも、好適に適用することが可能となる。
In the present invention, titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) is formed on the wafer 200. The present invention can also be suitably applied to the case where an oxide film or a nitride film containing a metal element such as a metal oxide film or a metal nitride film is formed. That is, the present invention can be suitably applied to the case where a metal thin film such as a TiN film, a TiO film, a TiOC film, a TiOCN film, a TiON film, a TiBN film, or a TiBCN film is formed on the wafer 200. It becomes.
これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタンガス、テトラキス(エチルメチルアミノ)ハフニウムガス、テトラキス(エチルメチルアミノ)ジルコニウムガス、トリメチルアルミニウムガス、チタニウムテトラクロライドガス、ハフニウムテトラクロライドガス等を用いることができる。反応ガスとしては、上述の反応ガスを用いることができる。
In these cases, for example, as a raw material gas, tetrakis (dimethylamino) titanium gas, tetrakis (ethylmethylamino) hafnium gas, tetrakis (ethylmethylamino) zirconium gas, trimethylaluminum gas, titanium tetrachloride gas, hafnium tetrachloride gas, etc. Can be used. The reaction gas described above can be used as the reaction gas.
すなわち、本発明は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態や変形例と同様の効果が得られる。
That is, the present invention can be suitably applied when a metalloid film containing a metalloid element or a metal film containing a metal element is formed. The processing procedure and processing conditions of these film forming processes can be the same processing procedures and processing conditions as the film forming processes shown in the above-described embodiments and modifications. In these cases, the same effects as those of the above-described embodiments and modifications can be obtained.
成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。
It is preferable that the recipe used for the film forming process is individually prepared according to the processing content and stored in the storage device 121c via the telecommunication line or the external storage device 123. When starting various processes, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. As a result, thin films having various film types, composition ratios, film qualities, and film thicknesses can be formed for general use and with good reproducibility using a single substrate processing apparatus. In addition, the burden on the operator can be reduced, and various processes can be started quickly while avoiding an operation error.
上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。
The above-described recipe is not limited to a case of newly creating, but may be prepared by changing an existing recipe that has already been installed in the substrate processing apparatus, for example. When changing the recipe, the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium on which the recipe is recorded. Further, an existing recipe that has already been installed in the substrate processing apparatus may be directly changed by operating the input / output device 122 provided in the existing substrate processing apparatus.
以上、本発明の種々の典型的な実施形態及び実施例を説明してきたが、本発明はそれらの実施形態及び実施例(数値含む)に限定されず、適宜組み合わせて用いることもできる。
As described above, various typical embodiments and examples of the present invention have been described, but the present invention is not limited to these embodiments and examples (including numerical values), and can be used in appropriate combination.
121 コントローラ(制御部)
200 ウエハ(基板)
201 処理室
207 ヒータ(加熱装置)
217 ボート(基板保持具)
217a,217b,217c 保持柱
232a,232b,232c,232d ガス供給管
237 バッファ室
249a,249b ノズル
250a,250b,250c ガス供給孔
267 回転機構
300 バッファ構造(バッファ部) 121 Controller (control unit)
200 wafer (substrate)
201Processing chamber 207 Heater (heating device)
217 boat (substrate holder)
217a, 217b, 217c Holding columns 232a, 232b, 232c, 232d Gas supply pipe 237 Buffer chambers 249a, 249b Nozzles 250a, 250b, 250c Gas supply holes 267 Rotating mechanism 300 Buffer structure (buffer section)
200 ウエハ(基板)
201 処理室
207 ヒータ(加熱装置)
217 ボート(基板保持具)
217a,217b,217c 保持柱
232a,232b,232c,232d ガス供給管
237 バッファ室
249a,249b ノズル
250a,250b,250c ガス供給孔
267 回転機構
300 バッファ構造(バッファ部) 121 Controller (control unit)
200 wafer (substrate)
201
217 boat (substrate holder)
217a, 217b,
Claims (4)
- 基板を処理する処理室と、
前記処理室内で前記基板を保持する基板保持具と、
前記基板保持具を回転させる回転機構と、
前記回転機構を制御して前記基板保持具の回転速度を制御する制御部と、を有し、
前記制御部は、予め設定された1回転あたりの時間を変更することなく、前記基板保持具の回転速度が1回転内で変化するように前記回転機構を制御するよう構成される基板処理装置。 A processing chamber for processing the substrate;
A substrate holder for holding the substrate in the processing chamber;
A rotation mechanism for rotating the substrate holder;
A controller that controls the rotation mechanism to control the rotation speed of the substrate holder,
The substrate processing apparatus, wherein the control unit is configured to control the rotation mechanism such that a rotation speed of the substrate holder changes within one rotation without changing a preset time per rotation. - 前記基板保持具は、前記基板を保持するための複数の保持柱を備え、
前記制御部は、前記複数の保持柱の少なくともいずれかに前記基板の中心を挟んで対向する前記基板の外縁の位置からの回転角度によって規定される前記基板の領域のうち、所定の範囲の回転角度によって規定された領域が、前記基板に対して複数の処理ガスを供給するガス供給部の供給口の前面を通過する場合の前記回転速度を、前記所定の範囲の回転角度によって規定された領域以外の領域が前記供給口の前面を通過する場合の回転速度よりも低速となるように前記回転機構を制御するよう構成される請求項1に記載の基板処理装置。 The substrate holder includes a plurality of holding columns for holding the substrate,
The control unit rotates a predetermined range of a region of the substrate defined by a rotation angle from a position of an outer edge of the substrate opposed to at least one of the plurality of holding pillars across the center of the substrate. The region defined by the angle is defined by the rotation angle of the predetermined range when the region defined by the angle passes through the front surface of the supply port of the gas supply unit that supplies a plurality of processing gases to the substrate. 2. The substrate processing apparatus according to claim 1, wherein the rotation mechanism is controlled so as to be slower than a rotation speed when a region other than the first region passes through the front surface of the supply port. - 基板を処理する処理室と、前記処理室内で前記基板を保持する基板保持具と、前記基板保持具を回転させる回転機構と、前記回転機構を制御して前記基板保持具の回転速度を制御する制御部とを有する基板処理装置の前記処理室内へ前記基板を保持した前記基板保持具を搬入する工程と、
前記処理室内に処理ガスを供給しつつ、前記制御部により予め設定された1回転あたりの時間を変更することなく、前記基板保持具の回転速度が1回転内で変化するように前記回転機構を制御して、所定の基板処理を行う工程と、
前記処理室から前記基板保持具を搬出する工程と、
を有する半導体装置の製造方法。 A processing chamber for processing a substrate, a substrate holder for holding the substrate in the processing chamber, a rotation mechanism for rotating the substrate holder, and a rotation mechanism for controlling the rotation speed of the substrate holder. Carrying in the substrate holder holding the substrate into the processing chamber of a substrate processing apparatus having a control unit;
The rotation mechanism is set so that the rotation speed of the substrate holder changes within one rotation without changing the time per one rotation preset by the control unit while supplying the processing gas into the processing chamber. Controlling and performing predetermined substrate processing;
Unloading the substrate holder from the processing chamber;
A method for manufacturing a semiconductor device comprising: - 基板を処理する処理室と、前記処理室内で前記基板を保持する基板保持具と、前記基板保持具を回転させる回転機構と、前記回転機構を制御して前記基板保持具の回転速度を制御する制御部とを有する基板処理装置の前記処理室内へ前記基板を保持した前記基板保持具を搬入する手順と、
前記処理室内に処理ガスを供給しつつ、前記制御部により予め設定された1回転あたりの時間を変更することなく、前記基板保持具の回転速度が1回転内で変化するように前記回転機構を制御して、所定の基板処理を行う手順と、
前記処理室から前記基板保持具を搬出する手順と、
をコンピュータによって前記基板処理装置に実行させるためのプログラム。 A processing chamber for processing a substrate, a substrate holder for holding the substrate in the processing chamber, a rotation mechanism for rotating the substrate holder, and a rotation mechanism for controlling the rotation speed of the substrate holder. A procedure for carrying in the substrate holder holding the substrate into the processing chamber of a substrate processing apparatus having a control unit;
The rotation mechanism is set so that the rotation speed of the substrate holder changes within one rotation without changing the time per one rotation preset by the control unit while supplying the processing gas into the processing chamber. Control and perform a predetermined substrate processing;
A procedure for unloading the substrate holder from the processing chamber;
For causing the substrate processing apparatus to execute the program.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019504263A JPWO2018163399A1 (en) | 2017-03-10 | 2017-03-10 | Substrate processing apparatus, semiconductor device manufacturing method, and program |
PCT/JP2017/009675 WO2018163399A1 (en) | 2017-03-10 | 2017-03-10 | Substrate treatment device, method for manufacturing semiconductor device, and program |
TW107102304A TWI683347B (en) | 2017-03-10 | 2018-01-23 | Substrate processing device, manufacturing method of semiconductor device, and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/009675 WO2018163399A1 (en) | 2017-03-10 | 2017-03-10 | Substrate treatment device, method for manufacturing semiconductor device, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163399A1 true WO2018163399A1 (en) | 2018-09-13 |
Family
ID=63448454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009675 WO2018163399A1 (en) | 2017-03-10 | 2017-03-10 | Substrate treatment device, method for manufacturing semiconductor device, and program |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018163399A1 (en) |
TW (1) | TWI683347B (en) |
WO (1) | WO2018163399A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021181450A1 (en) * | 2020-03-09 | 2021-09-16 | 株式会社Kokusai Electric | Substrate treatment device, production method for semiconductor device, and program |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010123752A (en) * | 2008-11-19 | 2010-06-03 | Hitachi Kokusai Electric Inc | Substrate treatment apparatus |
JP2012054310A (en) * | 2010-08-31 | 2012-03-15 | Shin Etsu Handotai Co Ltd | Manufacturing method of epitaxial wafer, and epitaxial growth apparatus |
JP2015113766A (en) * | 2013-12-11 | 2015-06-22 | 株式会社豊田自動織機 | Variable displacement swash plate compressor |
JP2016156066A (en) * | 2015-02-25 | 2016-09-01 | 東京エレクトロン株式会社 | Film deposition apparatus, film deposition method, and storage medium |
US20160362809A1 (en) * | 2015-06-09 | 2016-12-15 | Lam Research Corporation | Apparatus and method for modulating azimuthal uniformity in electroplating |
JP2016213242A (en) * | 2015-04-30 | 2016-12-15 | 信越半導体株式会社 | Manufacturing method for epitaxial wafer and vapor growth device |
-
2017
- 2017-03-10 WO PCT/JP2017/009675 patent/WO2018163399A1/en active Application Filing
- 2017-03-10 JP JP2019504263A patent/JPWO2018163399A1/en active Pending
-
2018
- 2018-01-23 TW TW107102304A patent/TWI683347B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010123752A (en) * | 2008-11-19 | 2010-06-03 | Hitachi Kokusai Electric Inc | Substrate treatment apparatus |
JP2012054310A (en) * | 2010-08-31 | 2012-03-15 | Shin Etsu Handotai Co Ltd | Manufacturing method of epitaxial wafer, and epitaxial growth apparatus |
JP2015113766A (en) * | 2013-12-11 | 2015-06-22 | 株式会社豊田自動織機 | Variable displacement swash plate compressor |
JP2016156066A (en) * | 2015-02-25 | 2016-09-01 | 東京エレクトロン株式会社 | Film deposition apparatus, film deposition method, and storage medium |
JP2016213242A (en) * | 2015-04-30 | 2016-12-15 | 信越半導体株式会社 | Manufacturing method for epitaxial wafer and vapor growth device |
US20160362809A1 (en) * | 2015-06-09 | 2016-12-15 | Lam Research Corporation | Apparatus and method for modulating azimuthal uniformity in electroplating |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018163399A1 (en) | 2019-11-07 |
TWI683347B (en) | 2020-01-21 |
TW201903846A (en) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7464638B2 (en) | Substrate processing apparatus, plasma generating apparatus, reaction tube, plasma generating method, substrate processing method, semiconductor device manufacturing method and program | |
US9177786B2 (en) | Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium | |
US10388512B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
US11591694B2 (en) | Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium | |
US10796934B2 (en) | Substrate processing apparatus, method of manufacturing semiconductor device and electrode fixing part | |
US10774421B2 (en) | Semiconductor device manufacturing method, substrate processing apparatus and recording medium | |
US20200312632A1 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium | |
JP7166431B2 (en) | Substrate processing method, semiconductor device manufacturing method, substrate processing apparatus, and program | |
US20170283950A1 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium | |
US20200399759A1 (en) | Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium | |
WO2020053960A1 (en) | Substrate-processing device, method for manufacturing semiconductor device, and program | |
WO2018163399A1 (en) | Substrate treatment device, method for manufacturing semiconductor device, and program | |
WO2019181603A1 (en) | Substrate treatment device, method for manufacturing semiconductor device, and program | |
JP7058338B2 (en) | Substrate processing equipment, substrate holders, semiconductor device manufacturing methods and programs | |
WO2021181450A1 (en) | Substrate treatment device, production method for semiconductor device, and program | |
JP2024120206A (en) | SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, SUBSTRATE PROCESSING APPARATUS, AND PROGRAM | |
JP2020077890A (en) | Semiconductor device manufacturing method, substrate processing apparatus, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899719 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019504263 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899719 Country of ref document: EP Kind code of ref document: A1 |