WO2018159737A1 - Solid-state imaging device, method for producing solid-state imaging device, and electronic device - Google Patents
Solid-state imaging device, method for producing solid-state imaging device, and electronic device Download PDFInfo
- Publication number
- WO2018159737A1 WO2018159737A1 PCT/JP2018/007702 JP2018007702W WO2018159737A1 WO 2018159737 A1 WO2018159737 A1 WO 2018159737A1 JP 2018007702 W JP2018007702 W JP 2018007702W WO 2018159737 A1 WO2018159737 A1 WO 2018159737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- imaging device
- solid
- state imaging
- light guide
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000031700 light absorption Effects 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 abstract 3
- 238000012984 biological imaging Methods 0.000 description 37
- 230000000875 corresponding effect Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 239000006059 cover glass Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
Definitions
- the present technology relates to a solid-state imaging device, a method for manufacturing a solid-state imaging device, and an electronic device, and more particularly to a solid-state imaging device, a manufacturing method for a solid-state imaging device, and an electronic device that can prevent occurrence of flare and ghost. .
- Patent Document 1 provides a waveguide array having a cladding that absorbs light between an incident-side microlens array and an output-side microlens array as an image sensor applied to an image input device that reads a document. Is disclosed. With such a configuration, reflection of light in the waveguide can be suppressed and generation of ghosts and flares can be prevented.
- bioimaging device solid-state imaging device for bioimaging
- biometric authentication such as vein authentication
- This technology has been made in view of such a situation, and more reliably prevents the occurrence of flares and ghosts.
- a solid-state imaging device includes an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit surrounding the light guide. And a microlens for allowing the light to enter each of the light guide paths, and a light shielding portion having an opening formed corresponding to each of the microlenses, and the light shielding portion has an antireflection structure on a wall surface of the opening.
- a method of manufacturing a solid-state imaging device includes an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide path for guiding light to each of the pixels, and a light shielding body surrounding the light guide.
- the method of manufacturing a solid-state imaging device comprising: a light guide part; a microlens that enters the light into each of the light guide paths; and a light shielding part having an opening formed corresponding to each of the microlenses. Forming the opening corresponding to the step, and forming an antireflection structure on the wall surface of the opening.
- An electronic apparatus includes an image sensor including a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit including a light shielding body surrounding the light guide. And a microlens for allowing the light to enter each of the light guide paths, and a light shielding portion having an opening formed corresponding to each of the microlenses, and the light shielding portion has an antireflection structure on a wall surface of the opening.
- a solid-state imaging device is provided.
- an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit surrounding the light guide,
- a solid-state imaging device including a microlens that enters the light into each light guide and a light-shielding unit that has an opening formed corresponding to each microlens, the opening is formed corresponding to each microlens.
- the antireflection structure is formed on the wall surface of the opening.
- FIG. 1 is a schematic diagram illustrating an example of a biological imaging system according to the present technology.
- the light IR emitted from the light source 10 is reflected on a living body Fg such as a finger to be observed, and the living body imaging device 20 captures the reflected light, so that the state of the living body Fg is changed. Observed.
- the light IR emitted from the light source 10 is, for example, near infrared light having a wavelength in the range of 660 nm to 940 nm.
- the biological imaging device 20 includes an image sensor 21 and an optical system 22.
- the image sensor 21 captures an image by receiving reflected light of the light IR incident through the optical system 22.
- the image sensor 21 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, but may be configured as a CCD (Charge Coupled Device) image sensor.
- CMOS Complementary Metal Oxide Semiconductor
- CCD Charge Coupled Device
- the living body imaging device 20 captures reflected light in which the light IR emitted from the light source 10 is reflected by the living body Fg.
- the transmitted light in which the light IR emitted from the light source 10 passes through the living body Fg. You may make it image.
- FIG. 2 is a block diagram illustrating a configuration example of the image sensor 21.
- the image sensor 21 in FIG. 2 includes a pixel array 31, a vertical drive circuit 32, a horizontal drive circuit 33, and an output circuit 34.
- a plurality of pixels 41 are arranged in a matrix in the pixel array 31.
- Each pixel 41 is connected to the vertical drive circuit 32 for each row by a horizontal signal line 42, and is connected to the horizontal drive circuit 33 for each column by a vertical signal line 43.
- the vertical drive circuit 32 outputs a drive signal via the horizontal signal line 42 to drive the pixels 41 arranged in the pixel array 31 for each row.
- the horizontal drive circuit 33 performs column processing for detecting a signal level by a CDS (Correlated Double Sampling) operation from the pixel signal output from each pixel 41 of the pixel array 31 via the vertical signal line 43, and the pixel 41 performs photoelectric processing. An output signal corresponding to the charge generated by the conversion is output to the output circuit 34.
- CDS Correlated Double Sampling
- the output circuit 34 amplifies the output signal sequentially output from the horizontal drive circuit 33 to a voltage value of a predetermined level, and outputs it to a subsequent image processing circuit or the like.
- FIG. 3 is a cross-sectional view illustrating a configuration example of a conventional biological imaging device.
- FIG. 3 shows a cross-sectional view corresponding to two pixels 41 in the image sensor 21.
- a glass seal resin 52 having a thickness of about 40 to 60 ⁇ m is formed on the image sensor 21 in the biological imaging device 50A shown in FIG.
- a light guide 52 having a height of about 0.25 to 0.45 mm is formed on the glass seal resin 52.
- the light guide unit 52 includes a light guide path 52a for guiding light to each of the pixels 41 and a light shielding body 52b surrounding the light guide path 52a.
- a material for forming the light guide path 52a a material having a lower refractive index than the material for forming the light shielding body 52b is used. Thereby, reflection of the light in the light guide 52a can be suppressed.
- microlenses 53 are formed for allowing light to enter each of the light guide paths 52a.
- the microlens 53 is formed to have a diameter of 60 to 80 ⁇ m, a radius of curvature of 100 to 130 ⁇ m, and a sag amount of 5 to 6 ⁇ m, for example. Since the microlens 53 is provided corresponding to the pixel 41, it forms a microlens array corresponding to the pixel array 31.
- a cover glass layer 55 having a thickness of about 0.5 to 0.8 mm is formed on the light guide portion 52 with an air layer 54 having a thickness of about 0.12 to 0.20 mm interposed therebetween.
- the cover glass layer 55 is made of SiO 2 or the like.
- a ghost may occur when the light beam L1 serving as a ghost component enters an adjacent pixel.
- the light shielding portion 61 has a cylindrical opening formed corresponding to each of the microlenses 53.
- the light shielding portion 61 is formed to have a height of, for example, 540 ⁇ m and is configured to be integrated with the cover glass layer 55. That is, the cover glass layer 55 is formed so as to fill the opening of the light shielding part 61 on the light incident side of the light shielding part 61.
- the thickness of the cover glass layer 55 on the light incident side of the light shielding part 61 (above the upper end of the light shielding part 61 in the drawing) is, for example, 160 ⁇ m.
- flare and ghost may occur due to the light beam L1 being reflected by the wall surface of the opening of the light shielding unit 61.
- FIG. 5 is a cross-sectional view illustrating a configuration example of a biological imaging device that is a solid-state imaging device to which the present technology is applied.
- the biological imaging device 20 in FIG. 5 basically includes the same configuration as the biological imaging device 50B in FIG. 4, but includes a light shielding unit 71 instead of the light shielding unit 61.
- the light guide unit 52, the microlens 53, the cover glass layer 55, and the light shielding unit 71 correspond to the optical system 22 in the biological imaging device 20 of FIG.
- the light shielding part 71 has a cylindrical opening formed corresponding to each of the microlenses 53, similarly to the light shielding part 61. Further, the light shielding portion 71 has an antireflection structure 72 on the wall surface of the opening.
- FIG. 6 is a top view showing the structure of the light shielding portion 71. As shown in FIG. 6, the openings of the light shielding portions 71 are arranged in a matrix like the pixels 41. Although not shown, a microlens 53 is provided at the end of each opening in the depth direction.
- cross-sectional view of the biological imaging device 20 in FIG. 5 shows a cross section taken along the broken line AB shown in FIG.
- the cross-sectional view of the biological imaging device 20 shown in FIG. 7 shows a cross section taken along a broken line CD shown in FIG.
- the thickness of the light shielding portion 71 in FIG. The thickness of the wall) is thicker than the thickness of the light shielding part 71 in FIG.
- Example of antireflection structure> Here, a specific example of the antireflection structure 72 will be described.
- FIG. 8 is a diagram illustrating a first example of the antireflection structure 72.
- the diameter of each protrusion constituting the moth-eye structure is in the range of 250 to 400 nm, and the height of the protrusion is in the range of 125 to 200 nm.
- Shall. These values can be set to appropriate values according to the wavelength of the light IR emitted from the light source 10.
- FIG. 9 is a diagram illustrating a second example of the antireflection structure 72.
- the antireflection structure 72B of the light shielding part 71B shown in FIG. 9 is an antireflection film made of, for example, MgF2.
- the film thickness of the antireflection film is in the range of 150 to 250 nm. This value can be set to an appropriate value according to the wavelength of the light IR emitted from the light source 10.
- FIG. 10 is a diagram illustrating a third example of the antireflection structure 72.
- the antireflection structure 72C of the light shielding part 71C shown in FIG. 10 is a light absorption film made of a metal oxide.
- the metal oxide oxides such as Cu, Fe, Ni, and Ti are used.
- the light absorptive film has an absorptance of light having a wavelength of 1 ⁇ m of about 0.8 to 0.85.
- the thickness of the light absorption film is 30 nm or more, preferably about 50 nm. These values can be set to appropriate values according to the wavelength of the light IR emitted from the light source 10.
- a SiO 2 film 112 having a thickness of, for example, 160 ⁇ m is formed on a Si substrate 111 having a thickness of, for example, 540 ⁇ m, and a resist Rg is applied thereon.
- the resist Rg is removed with a diameter of about 250 to 260 nm.
- the SiO2 film 112 and the Si substrate 111 are etched by irradiation with SF6 gas clusters, so that the SiO2 film 112 and the Si substrate 111 are shown in FIG. For example, an opening having a diameter of 250 nm is formed.
- the antireflection structure 72 is formed on the wall surface of the opening of the Si substrate 111 (light shielding portion 71). Is formed.
- a moth-eye structure is formed by ion etching after forming a carbon film by a plasma CVD (Chemical Vapor Deposition) method.
- an antireflection film is formed by forming an MgF2 film by an RF sputtering method or a thermal CVD method.
- a vacuum deposition method or a coating method may be used for forming the MgF 2 film.
- the antireflection structure 72 is a light absorption film made of, for example, Cu oxide
- the light absorption film is formed by an RF sputtering method in an O 2 atmosphere.
- the light absorption film can be formed by heating in the air or heating in a high vacuum infrared heating furnace.
- the openings of the SiO 2 film 112 and the Si substrate 111 are filled with SiO 2 to cover the surface.
- a light shielding portion 71 configured to be integrated with the glass layer 55 is formed.
- the light source 10 and the biological imaging device 20 are configured separately. However, like the solid-state imaging device 150 illustrated in FIG. The light source 10 may be provided in the imaging device 150.
- the solid-state imaging device as described above can be applied to an electronic device that performs biological imaging.
- FIG. 15 is a block diagram illustrating a configuration example of an electronic device to which the present technology is applied.
- the electronic device 201 includes a solid-state imaging device 211 and a DSP (Digital Signal Processor) 212, and a DSP 212, a display device 213, an operation system 214, a memory 216, and a recording device via a bus 215. 217 and a power supply system 218 are connected.
- DSP Digital Signal Processor
- the solid-state imaging device 211 As the solid-state imaging device 211, the solid-state imaging device (biological imaging device 20) of the above-described embodiment is applied. In the solid-state imaging device 211, electrons are accumulated for a certain period according to the image formed on the light receiving surface via the optical system. Then, a signal corresponding to the electrons accumulated in the solid-state imaging device 211 is supplied to the DSP 212.
- the DSP 212 performs various signal processing on the signal from the solid-state imaging device 211 to acquire an image, and temporarily stores the image data in the memory 216.
- the image data stored in the memory 216 is recorded in the recording device 217 or supplied to the display device 213 to display the image.
- the operation system 214 receives various operations by the user and supplies operation signals to each block of the electronic device 201, and the power supply system 218 supplies power necessary for driving each block of the electronic device 201.
- the electronic apparatus 201 configured as described above, by applying the biological imaging device 20 as described above as the solid-state imaging device 211, it is possible to prevent the occurrence of flare and ghost, so that a higher quality image can be obtained. Imaging can be performed.
- An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix; A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and A microlens that enters the light into each of the light guides; A light shielding part having an opening formed corresponding to each of the microlenses, The light-shielding portion has an antireflection structure on a wall surface of the opening.
- the solid-state imaging device according to (1) wherein the wavelength of the light is in a range of 660 to 940 nm.
- the antireflection structure is a moth-eye structure.
- membrane is 30 nm or more.
- (11) The solid-state imaging device according to any one of (1) to (10), further including a glass layer formed on the light incident side of the light shielding portion so as to fill the opening of the light shielding portion.
- An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
- a light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and A microlens that enters the light into each of the light guides;
- a manufacturing method of a solid-state imaging device comprising: a light shielding portion having an opening formed corresponding to each of the microlenses, Forming the opening corresponding to each of the microlenses;
- a method for manufacturing a solid-state imaging device comprising: forming an antireflection structure on a wall surface of the opening.
- An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
- a light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and A microlens that enters the light into each of the light guides;
- a light shielding part having an opening formed corresponding to each of the microlenses,
- the light shielding unit includes a solid-state imaging device having an antireflection structure on a wall surface of the opening.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
The present technique relates to: a solid-state imaging device which is capable of preventing the occurrence of flare or ghost images more reliably; a method for producing a solid-state imaging device; and an electronic device. A solid-state imaging device according to the present invention is provided with: an image sensor that has a pixel array in which a plurality of pixels are arranged in a matrix form; a light guide part which has light guide paths for guiding light respectively to the pixels and light blocking bodies that surround the light guide paths; microlenses which respectively make light incident on the light guide paths; and a light blocking part which has openings that are formed to respectively correspond to the microlenses. The light blocking part is provided with anti-reflection structures on the wall surfaces of the openings. The present technique is applicable to a solid-state imaging device for bioimaging.
Description
本技術は、固体撮像装置、固体撮像装置の製造方法、および電子機器に関し、特に、フレアやゴーストの発生を防ぐことができるようにする固体撮像装置、固体撮像装置の製造方法、および電子機器に関する。
The present technology relates to a solid-state imaging device, a method for manufacturing a solid-state imaging device, and an electronic device, and more particularly to a solid-state imaging device, a manufacturing method for a solid-state imaging device, and an electronic device that can prevent occurrence of flare and ghost. .
従来、固体撮像装置においてフレアやゴーストの発生を防ぐための構成が検討されている。
Conventionally, a configuration for preventing the occurrence of flare and ghost in a solid-state imaging device has been studied.
例えば、特許文献1には、原稿を読み取る画像入力装置に適用するイメージセンサとして、入射側マイクロレンズアレイと出射側マイクロレンズアレイとの間に、光を吸収するクラッドを有する導波路アレイを設けることが開示されている。このような構成により、導波路内での光の反射が抑えられ、ゴーストやフレアの発生を防ぐことができる。
For example, Patent Document 1 provides a waveguide array having a cladding that absorbs light between an incident-side microlens array and an output-side microlens array as an image sensor applied to an image input device that reads a document. Is disclosed. With such a configuration, reflection of light in the waveguide can be suppressed and generation of ghosts and flares can be prevented.
しかしながら、特許文献1の構成では、入射側マイクロレンズアレイへの入射光や、出射側マイクロレンズアレイからの出射光の角度が数度ずれただけで、光強度や透過率が大幅に減衰してしまう。
However, in the configuration of Patent Document 1, the light intensity and the transmittance are greatly attenuated only by the deviation of the incident light to the incident side microlens array and the angle of the emitted light from the emission side microlens array. End up.
近年、静脈認証などの生体認証を行うための生体イメージング用の固体撮像装置(以下、生体イメージングデバイスという)の開発が盛んになっているが、その生体イメージングデバイスにおいても、フレアやゴーストが発生するおそれがあった。
In recent years, development of a solid-state imaging device for bioimaging (hereinafter referred to as a bioimaging device) for biometric authentication such as vein authentication has been actively performed, but flare and ghost also occur in the bioimaging device. There was a fear.
本技術は、このような状況に鑑みてなされたものであり、より確実に、フレアやゴーストの発生を防ぐようにするものである。
This technology has been made in view of such a situation, and more reliably prevents the occurrence of flares and ghosts.
本技術の固体撮像装置は、複数の画素が行列状に配列された画素アレイを有するイメージセンサと、前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、前記導光路それぞれに前記光を入射するマイクロレンズと、前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部とを備え、前記遮光部は、前記開口の壁面に反射防止構造を有する。
A solid-state imaging device according to an embodiment of the present technology includes an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit surrounding the light guide. And a microlens for allowing the light to enter each of the light guide paths, and a light shielding portion having an opening formed corresponding to each of the microlenses, and the light shielding portion has an antireflection structure on a wall surface of the opening. Have.
本技術の固体撮像装置の製造方法は、複数の画素が行列状に配列された画素アレイを有するイメージセンサと、前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、前記導光路それぞれに前記光を入射するマイクロレンズと、前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部とを備える固体撮像装置の製造方法において、前記マイクロレンズそれぞれに対応して前記開口を形成し、前記開口の壁面に反射防止構造を形成するステップを含む。
A method of manufacturing a solid-state imaging device according to an embodiment of the present technology includes an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide path for guiding light to each of the pixels, and a light shielding body surrounding the light guide. In the method of manufacturing a solid-state imaging device, comprising: a light guide part; a microlens that enters the light into each of the light guide paths; and a light shielding part having an opening formed corresponding to each of the microlenses. Forming the opening corresponding to the step, and forming an antireflection structure on the wall surface of the opening.
本技術の電子機器は、複数の画素が行列状に配列された画素アレイを有するイメージセンサと、前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、前記導光路それぞれに前記光を入射するマイクロレンズと、前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部とを備え、前記遮光部が、前記開口の壁面に反射防止構造を有する固体撮像装置を備える。
An electronic apparatus according to an embodiment of the present technology includes an image sensor including a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit including a light shielding body surrounding the light guide. And a microlens for allowing the light to enter each of the light guide paths, and a light shielding portion having an opening formed corresponding to each of the microlenses, and the light shielding portion has an antireflection structure on a wall surface of the opening. A solid-state imaging device is provided.
本技術においては、複数の画素が行列状に配列された画素アレイを有するイメージセンサと、前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、前記導光路それぞれに前記光を入射するマイクロレンズと、前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部とを備える固体撮像装置において、前記マイクロレンズそれぞれに対応して前記開口が形成され、前記開口の壁面に反射防止構造が形成される。
In the present technology, an image sensor having a pixel array in which a plurality of pixels are arranged in a matrix, a light guide for guiding light to each of the pixels, and a light guide unit surrounding the light guide, In a solid-state imaging device including a microlens that enters the light into each light guide and a light-shielding unit that has an opening formed corresponding to each microlens, the opening is formed corresponding to each microlens. The antireflection structure is formed on the wall surface of the opening.
本技術によれば、より確実に、フレアやゴーストの発生を防ぐことが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
This technology makes it possible to prevent the occurrence of flares and ghosts more reliably. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1.生体イメージングシステムの概略
2.イメージセンサの構成例
3.生体イメージングデバイスの構成例
4.反射防止構造の例
5.遮光部の製造工程
6.生体イメージングシステムの他の例
7.電子機器の構成例 1. 1. Overview of biological imaging system 2. Configuration example of image sensor 3. Configuration example of biological imaging device 4. Example of antireflection structure 5. Manufacturing process of light shielding part 6. Other examples of biological imaging systems Electronic device configuration example
2.イメージセンサの構成例
3.生体イメージングデバイスの構成例
4.反射防止構造の例
5.遮光部の製造工程
6.生体イメージングシステムの他の例
7.電子機器の構成例 1. 1. Overview of biological imaging system 2. Configuration example of image sensor 3. Configuration example of biological imaging device 4. Example of antireflection structure 5. Manufacturing process of light shielding part 6. Other examples of biological imaging systems Electronic device configuration example
<1.生体イメージングシステムの概略>
図1は、本技術に係る生体イメージングシステムの一例を示す概略図である。 <1. Overview of biological imaging system>
FIG. 1 is a schematic diagram illustrating an example of a biological imaging system according to the present technology.
図1は、本技術に係る生体イメージングシステムの一例を示す概略図である。 <1. Overview of biological imaging system>
FIG. 1 is a schematic diagram illustrating an example of a biological imaging system according to the present technology.
図1の生体イメージングシステムにおいては、光源10が発する光IRが、観察対象となる例えば指などの生体Fgに反射し、その反射光を生体イメージングデバイス20が撮像することで、生体Fgの状態が観察される。
In the living body imaging system of FIG. 1, the light IR emitted from the light source 10 is reflected on a living body Fg such as a finger to be observed, and the living body imaging device 20 captures the reflected light, so that the state of the living body Fg is changed. Observed.
光源10が発する光IRは、例えば波長が660nm乃至940nmの範囲にある近赤外光である。
The light IR emitted from the light source 10 is, for example, near infrared light having a wavelength in the range of 660 nm to 940 nm.
生体イメージングデバイス20は、イメージセンサ21および光学系22を備える。イメージセンサ21は、光学系22を介して入射した光IRの反射光を受光することで撮像を行う。イメージセンサ21は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとして構成されるものするが、CCD(Charge Coupled Device)イメージセンサとして構成されるようにしてもよい。
The biological imaging device 20 includes an image sensor 21 and an optical system 22. The image sensor 21 captures an image by receiving reflected light of the light IR incident through the optical system 22. The image sensor 21 is configured as, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, but may be configured as a CCD (Charge Coupled Device) image sensor.
なお、図1の例では、生体イメージングデバイス20が、光源10が発する光IRが生体Fgに反射した反射光を撮像するものとしたが、光源10が発する光IRが生体Fgを透過した透過光を撮像するようにしてもよい。
In the example of FIG. 1, the living body imaging device 20 captures reflected light in which the light IR emitted from the light source 10 is reflected by the living body Fg. However, the transmitted light in which the light IR emitted from the light source 10 passes through the living body Fg. You may make it image.
<2.イメージセンサの構成例>
図2は、イメージセンサ21の構成例を示すブロック図である。 <2. Example of image sensor configuration>
FIG. 2 is a block diagram illustrating a configuration example of theimage sensor 21.
図2は、イメージセンサ21の構成例を示すブロック図である。 <2. Example of image sensor configuration>
FIG. 2 is a block diagram illustrating a configuration example of the
図2のイメージセンサ21は、画素アレイ31、垂直駆動回路32、水平駆動回路33、および出力回路34を備えている。
The image sensor 21 in FIG. 2 includes a pixel array 31, a vertical drive circuit 32, a horizontal drive circuit 33, and an output circuit 34.
画素アレイ31には、複数の画素41が行列状に配列されている。それぞれの画素41は、水平信号線42により行毎に垂直駆動回路32に接続されるとともに、垂直信号線43により列毎に水平駆動回路33に接続されている。
A plurality of pixels 41 are arranged in a matrix in the pixel array 31. Each pixel 41 is connected to the vertical drive circuit 32 for each row by a horizontal signal line 42, and is connected to the horizontal drive circuit 33 for each column by a vertical signal line 43.
垂直駆動回路32は、水平信号線42を介して駆動信号を出力して、画素アレイ31に配置されている画素41を行毎に駆動する。
The vertical drive circuit 32 outputs a drive signal via the horizontal signal line 42 to drive the pixels 41 arranged in the pixel array 31 for each row.
水平駆動回路33は、垂直信号線43を介して画素アレイ31の各画素41から出力される画素信号から、CDS(Correlated Double Sampling)動作により信号レベルを検出するカラム処理を行い、画素41において光電変換により発生した電荷に応じた出力信号を出力回路34に出力する。
The horizontal drive circuit 33 performs column processing for detecting a signal level by a CDS (Correlated Double Sampling) operation from the pixel signal output from each pixel 41 of the pixel array 31 via the vertical signal line 43, and the pixel 41 performs photoelectric processing. An output signal corresponding to the charge generated by the conversion is output to the output circuit 34.
出力回路34は、水平駆動回路33から順次出力される出力信号を、所定のレベルの電圧値に増幅して、後段の画像処理回路などに出力する。
The output circuit 34 amplifies the output signal sequentially output from the horizontal drive circuit 33 to a voltage value of a predetermined level, and outputs it to a subsequent image processing circuit or the like.
<3.生体イメージングデバイスの構成例>
次に、生体イメージングデバイスの構成例について説明する。 <3. Configuration example of biological imaging device>
Next, a configuration example of the biological imaging device will be described.
次に、生体イメージングデバイスの構成例について説明する。 <3. Configuration example of biological imaging device>
Next, a configuration example of the biological imaging device will be described.
(従来の生体イメージングデバイスの構成例)
図3は、従来の生体イメージングデバイスの構成例を示す断面図である。 (Configuration example of conventional biological imaging device)
FIG. 3 is a cross-sectional view illustrating a configuration example of a conventional biological imaging device.
図3は、従来の生体イメージングデバイスの構成例を示す断面図である。 (Configuration example of conventional biological imaging device)
FIG. 3 is a cross-sectional view illustrating a configuration example of a conventional biological imaging device.
図3においては、イメージセンサ21における2つの画素41に対応する断面図が示される。
FIG. 3 shows a cross-sectional view corresponding to two pixels 41 in the image sensor 21.
図3に示される生体イメージングデバイス50Aにおいて、イメージセンサ21の上には、厚さ40乃至60μm程度のガラスシール樹脂52が形成される。ガラスシール樹脂52の上には、高さ0.25乃至0.45mm程度の導光部52が形成される。
3, a glass seal resin 52 having a thickness of about 40 to 60 μm is formed on the image sensor 21 in the biological imaging device 50A shown in FIG. On the glass seal resin 52, a light guide 52 having a height of about 0.25 to 0.45 mm is formed.
導光部52は、画素41それぞれに光を導光するための導光路52aと、導光路52aを囲む遮光体52bから構成される。導光路52aを形成する材料としては、遮光体52bを形成する材料と比較して屈折率の低いものが用いられる。これにより、導光路52a内での光の反射を抑えることができる。
The light guide unit 52 includes a light guide path 52a for guiding light to each of the pixels 41 and a light shielding body 52b surrounding the light guide path 52a. As a material for forming the light guide path 52a, a material having a lower refractive index than the material for forming the light shielding body 52b is used. Thereby, reflection of the light in the light guide 52a can be suppressed.
導光部52の上には、導光路52aそれぞれに光を入射するマイクロレンズ53が形成される。マイクロレンズ53は、例えば、直径60乃至80μm、曲率半径100乃至130μm、サグ量5乃至6μmとなるように形成される。マイクロレンズ53は、画素41に対応して設けられることから、画素アレイ31に対応したマイクロレンズアレイを構成する。
On the light guide portion 52, microlenses 53 are formed for allowing light to enter each of the light guide paths 52a. The microlens 53 is formed to have a diameter of 60 to 80 μm, a radius of curvature of 100 to 130 μm, and a sag amount of 5 to 6 μm, for example. Since the microlens 53 is provided corresponding to the pixel 41, it forms a microlens array corresponding to the pixel array 31.
導光部52のさらに上には、厚さ0.12乃至0.20mm程度の空気層54を挟んで、厚さ0.5乃至0.8mm程度のカバーガラス層55が形成される。カバーガラス層55は、SiO2などで形成される。
A cover glass layer 55 having a thickness of about 0.5 to 0.8 mm is formed on the light guide portion 52 with an air layer 54 having a thickness of about 0.12 to 0.20 mm interposed therebetween. The cover glass layer 55 is made of SiO 2 or the like.
ところが、生体イメージングデバイス50Aのような構成では、ゴースト成分となる光線L1が隣接する画素に入射することにより、ゴーストが発生するおそれがある。
However, in a configuration such as the biological imaging device 50A, a ghost may occur when the light beam L1 serving as a ghost component enters an adjacent pixel.
これに対して、図4に示される生体イメージングデバイス50Bは、遮光部61を備えている。
On the other hand, the biological imaging device 50B shown in FIG.
遮光部61は、マイクロレンズ53それぞれに対応して形成された円筒形の開口を有している。遮光部61は、例えば高さ540μmとなるように形成され、カバーガラス層55と一体となるようにして構成される。すなわち、カバーガラス層55は、遮光部61の光の入射側に、遮光部61の開口を充填するようにして形成される。カバーガラス層55の、遮光部61の光の入射側(図中、遮光部61上端より上側)の厚さは、例えば160μmとされる。
The light shielding portion 61 has a cylindrical opening formed corresponding to each of the microlenses 53. The light shielding portion 61 is formed to have a height of, for example, 540 μm and is configured to be integrated with the cover glass layer 55. That is, the cover glass layer 55 is formed so as to fill the opening of the light shielding part 61 on the light incident side of the light shielding part 61. The thickness of the cover glass layer 55 on the light incident side of the light shielding part 61 (above the upper end of the light shielding part 61 in the drawing) is, for example, 160 μm.
しかしながら、生体イメージングデバイス50Bのような構成であっても、光線L1が、遮光部61の開口の壁面で反射することにより、フレアやゴーストが発生するおそれがある。
However, even in the configuration of the biological imaging device 50B, flare and ghost may occur due to the light beam L1 being reflected by the wall surface of the opening of the light shielding unit 61.
そこで、以下においては、より確実に、フレアやゴーストの発生を防ぐ生体イメージングデバイスの構成について説明する。
Therefore, in the following, the configuration of the biological imaging device that prevents the occurrence of flare and ghost will be described more reliably.
(本技術を適用した生体イメージングデバイスの構成例)
図5は、本技術を適用した固体撮像装置である生体イメージングデバイスの構成例を示す断面図である。 (Configuration example of biological imaging device to which this technology is applied)
FIG. 5 is a cross-sectional view illustrating a configuration example of a biological imaging device that is a solid-state imaging device to which the present technology is applied.
図5は、本技術を適用した固体撮像装置である生体イメージングデバイスの構成例を示す断面図である。 (Configuration example of biological imaging device to which this technology is applied)
FIG. 5 is a cross-sectional view illustrating a configuration example of a biological imaging device that is a solid-state imaging device to which the present technology is applied.
図5の生体イメージングデバイス20は、基本的には、図4の生体イメージングデバイス50Bと同様の構成を備えるが、遮光部61に代えて、遮光部71を備えている。なお、図5の生体イメージングデバイス20において、導光部52、マイクロレンズ53、カバーガラス層55、および遮光部71は、図1の生体イメージングデバイス20における光学系22に対応する。
The biological imaging device 20 in FIG. 5 basically includes the same configuration as the biological imaging device 50B in FIG. 4, but includes a light shielding unit 71 instead of the light shielding unit 61. In the biological imaging device 20 of FIG. 5, the light guide unit 52, the microlens 53, the cover glass layer 55, and the light shielding unit 71 correspond to the optical system 22 in the biological imaging device 20 of FIG.
遮光部71は、遮光部61と同様、マイクロレンズ53それぞれに対応して形成された円筒形の開口を有する。さらに、遮光部71は、開口の壁面に反射防止構造72を有している。
The light shielding part 71 has a cylindrical opening formed corresponding to each of the microlenses 53, similarly to the light shielding part 61. Further, the light shielding portion 71 has an antireflection structure 72 on the wall surface of the opening.
図6は、遮光部71の構造を示す上面図である。図6に示されるように、遮光部71の開口は、画素41と同様、行列状に配列されている。また、図示はしないが、開口それぞれの奥行き方向の終端には、マイクロレンズ53が設けられる。
FIG. 6 is a top view showing the structure of the light shielding portion 71. As shown in FIG. 6, the openings of the light shielding portions 71 are arranged in a matrix like the pixels 41. Although not shown, a microlens 53 is provided at the end of each opening in the depth direction.
なお、図5の生体イメージングデバイス20の断面図は、図6に示される破線A-Bでの断面を示すものである。
Note that the cross-sectional view of the biological imaging device 20 in FIG. 5 shows a cross section taken along the broken line AB shown in FIG.
また、図7に示される生体イメージングデバイス20の断面図は、図6に示される破線C-Dでの断面を示すものである。図6において、破線C-D上での開口同士の間隔は、破線A-B上での開口同士の間隔と比較して大きいので、図7における遮光部71の厚さ(開口同士の間の壁の厚さ)は、図5における遮光部71の厚さと比較して厚い。
Further, the cross-sectional view of the biological imaging device 20 shown in FIG. 7 shows a cross section taken along a broken line CD shown in FIG. In FIG. 6, since the distance between the openings on the broken line CD is larger than the distance between the openings on the broken line AB, the thickness of the light shielding portion 71 in FIG. The thickness of the wall) is thicker than the thickness of the light shielding part 71 in FIG.
<4.反射防止構造の例>
ここで、反射防止構造72の具体例について説明する。 <4. Example of antireflection structure>
Here, a specific example of theantireflection structure 72 will be described.
ここで、反射防止構造72の具体例について説明する。 <4. Example of antireflection structure>
Here, a specific example of the
(例1 モスアイ構造)
図8は、反射防止構造72の第1の例を示す図である。 (Example 1 moth eye structure)
FIG. 8 is a diagram illustrating a first example of theantireflection structure 72.
図8は、反射防止構造72の第1の例を示す図である。 (Example 1 moth eye structure)
FIG. 8 is a diagram illustrating a first example of the
図8に示される遮光部71Aの反射防止構造72Aは、モスアイ構造とされる。
The anti-reflection structure 72A of the light shielding part 71A shown in FIG.
図8に示されるように、モスアイ構造を構成する突起それぞれの径(言い換えると突起同士の間隔、ピッチ)は、250乃至400nmの範囲にあり、突起の高さは、125乃至200nmの範囲にあるものとする。なお、これらの値は、光源10が発する光IRの波長に応じて、適切な値とすることができる。
As shown in FIG. 8, the diameter of each protrusion constituting the moth-eye structure (in other words, the interval between the protrusions, the pitch) is in the range of 250 to 400 nm, and the height of the protrusion is in the range of 125 to 200 nm. Shall. These values can be set to appropriate values according to the wavelength of the light IR emitted from the light source 10.
(例2 反射防止膜)
図9は、反射防止構造72の第2の例を示す図である。 (Example 2 Antireflection film)
FIG. 9 is a diagram illustrating a second example of theantireflection structure 72.
図9は、反射防止構造72の第2の例を示す図である。 (Example 2 Antireflection film)
FIG. 9 is a diagram illustrating a second example of the
図9に示される遮光部71Bの反射防止構造72Bは、例えばMgF2で構成される反射防止膜とされる。
The antireflection structure 72B of the light shielding part 71B shown in FIG. 9 is an antireflection film made of, for example, MgF2.
図9に示されるように、反射防止膜の膜厚は、150乃至250nmの範囲にあるものとする。なお、この値は、光源10が発する光IRの波長に応じて、適切な値とすることができる。
As shown in FIG. 9, the film thickness of the antireflection film is in the range of 150 to 250 nm. This value can be set to an appropriate value according to the wavelength of the light IR emitted from the light source 10.
(例3 光吸収膜)
図10は、反射防止構造72の第3の例を示す図である。 (Example 3 light absorption film)
FIG. 10 is a diagram illustrating a third example of theantireflection structure 72.
図10は、反射防止構造72の第3の例を示す図である。 (Example 3 light absorption film)
FIG. 10 is a diagram illustrating a third example of the
図10に示される遮光部71Cの反射防止構造72Cは、金属酸化物からなる光吸収膜とされる。金属酸化物としては、Cu,Fe,Ni,Tiなどの酸化物が用いられる。この場合、光吸収膜の、波長1μmの光の吸収率は0.8乃至0.85程度となる。
The antireflection structure 72C of the light shielding part 71C shown in FIG. 10 is a light absorption film made of a metal oxide. As the metal oxide, oxides such as Cu, Fe, Ni, and Ti are used. In this case, the light absorptive film has an absorptance of light having a wavelength of 1 μm of about 0.8 to 0.85.
図10に示されるように、光吸収膜の膜厚は、30nm以上、好ましくは50nm程度とする。なお、これらの値は、光源10が発する光IRの波長に応じて、適切な値とすることができる。
As shown in FIG. 10, the thickness of the light absorption film is 30 nm or more, preferably about 50 nm. These values can be set to appropriate values according to the wavelength of the light IR emitted from the light source 10.
<5.遮光部の製造工程>
次に、図11乃至図13を参照して、生体イメージングデバイス20が備える遮光部71の製造工程について説明する。 <5. Manufacturing process of light shielding part>
Next, with reference to FIG. 11 thru | or FIG. 13, the manufacturing process of the light-shieldingpart 71 with which the biological imaging device 20 is provided is demonstrated.
次に、図11乃至図13を参照して、生体イメージングデバイス20が備える遮光部71の製造工程について説明する。 <5. Manufacturing process of light shielding part>
Next, with reference to FIG. 11 thru | or FIG. 13, the manufacturing process of the light-shielding
まず、図11のAに示されるように、例えば厚さ540μmのSi基板111上に、例えば厚さ160μmのSiO2膜112が成膜され、その上にレジストRgが塗布される。
First, as shown in FIG. 11A, a SiO 2 film 112 having a thickness of, for example, 160 μm is formed on a Si substrate 111 having a thickness of, for example, 540 μm, and a resist Rg is applied thereon.
次に、図11のBに示されるように、250乃至260nm程度の径でレジストRgが除去される。
Next, as shown in FIG. 11B, the resist Rg is removed with a diameter of about 250 to 260 nm.
その後、図12のCに示されるように、SF6ガスクラスタの照射により、SiO2膜112およびSi基板111がエッチングされることで、図12のDに示されるように、SiO2膜112およびSi基板111に、例えば直径250nmの開口が形成される。
Thereafter, as shown in FIG. 12C, the SiO2 film 112 and the Si substrate 111 are etched by irradiation with SF6 gas clusters, so that the SiO2 film 112 and the Si substrate 111 are shown in FIG. For example, an opening having a diameter of 250 nm is formed.
次いで、図13のEに示されるように、残ったレジストRgが除去された後、図13のFに示されるように、Si基板111(遮光部71)の開口の壁面に、反射防止構造72が形成される。
Next, as shown in FIG. 13E, after the remaining resist Rg is removed, as shown in FIG. 13F, the antireflection structure 72 is formed on the wall surface of the opening of the Si substrate 111 (light shielding portion 71). Is formed.
例えば、反射防止構造72がモスアイ構造である場合、プラズマCVD(Chemical Vapor Deposition)法によりカーボン膜を成膜後、イオンエッチングを行うことにより、モスアイ構造が形成される。
For example, when the antireflection structure 72 has a moth-eye structure, a moth-eye structure is formed by ion etching after forming a carbon film by a plasma CVD (Chemical Vapor Deposition) method.
また、反射防止構造72が反射防止膜である場合、RFスパッタリング法や、熱CVD法によりMgF2膜を成膜することで、反射防止膜が形成される。MgF2膜の成膜に、真空蒸着法や、塗布法が用いられるようにしてもよい。
Further, when the antireflection structure 72 is an antireflection film, an antireflection film is formed by forming an MgF2 film by an RF sputtering method or a thermal CVD method. A vacuum deposition method or a coating method may be used for forming the MgF 2 film.
さらに、反射防止構造72が、例えばCu酸化物からなる光吸収膜である場合、O2雰囲気中でのRFスパッタリング法により、光吸収膜が形成される。また、Cu膜を成膜した後、大気中で加熱したり、高真空赤外線加熱炉で加熱することで、光吸収膜が形成されるようにすることもできる。
Furthermore, when the antireflection structure 72 is a light absorption film made of, for example, Cu oxide, the light absorption film is formed by an RF sputtering method in an O 2 atmosphere. In addition, after the Cu film is formed, the light absorption film can be formed by heating in the air or heating in a high vacuum infrared heating furnace.
さて、このようにして反射防止構造72が形成された後、図13のGに示されるように、SiO2膜112およびSi基板111(遮光部71)の開口を、SiO2で充填することで、カバーガラス層55と一体となるように構成された遮光部71が形成される。
Now, after the antireflection structure 72 is formed in this way, as shown in FIG. 13G, the openings of the SiO 2 film 112 and the Si substrate 111 (light-shielding portion 71) are filled with SiO 2 to cover the surface. A light shielding portion 71 configured to be integrated with the glass layer 55 is formed.
<6.生体イメージングシステムの他の例>
以上においては、図1を参照して説明したように、光源10と生体イメージングデバイス20とは、それぞれ別個に構成されるものとしたが、図14に示される固体撮像装置150のように、固体撮像装置150内に光源10が設けられるようにしてもよい。 <6. Other examples of biological imaging systems>
In the above description, as described with reference to FIG. 1, thelight source 10 and the biological imaging device 20 are configured separately. However, like the solid-state imaging device 150 illustrated in FIG. The light source 10 may be provided in the imaging device 150.
以上においては、図1を参照して説明したように、光源10と生体イメージングデバイス20とは、それぞれ別個に構成されるものとしたが、図14に示される固体撮像装置150のように、固体撮像装置150内に光源10が設けられるようにしてもよい。 <6. Other examples of biological imaging systems>
In the above description, as described with reference to FIG. 1, the
上述したような固体撮像装置は、生体イメージングを行う電子機器に適用することができる。
The solid-state imaging device as described above can be applied to an electronic device that performs biological imaging.
<7.電子機器の構成例>
図15は、本技術を適用した電子機器の構成例を示すブロック図である。 <7. Configuration example of electronic device>
FIG. 15 is a block diagram illustrating a configuration example of an electronic device to which the present technology is applied.
図15は、本技術を適用した電子機器の構成例を示すブロック図である。 <7. Configuration example of electronic device>
FIG. 15 is a block diagram illustrating a configuration example of an electronic device to which the present technology is applied.
図15に示すように、電子機器201は、固体撮像装置211、DSP(Digital Signal Processor)212を備えており、バス215を介して、DSP212、表示装置213、操作系214、メモリ216、記録装置217、および電源系218が接続されて構成される。
As illustrated in FIG. 15, the electronic device 201 includes a solid-state imaging device 211 and a DSP (Digital Signal Processor) 212, and a DSP 212, a display device 213, an operation system 214, a memory 216, and a recording device via a bus 215. 217 and a power supply system 218 are connected.
固体撮像装置211としては、上述した実施の形態の固体撮像装置(生体イメージングデバイス20)が適用される。固体撮像装置211には、光学系を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、固体撮像装置211に蓄積された電子に応じた信号がDSP212に供給される。
As the solid-state imaging device 211, the solid-state imaging device (biological imaging device 20) of the above-described embodiment is applied. In the solid-state imaging device 211, electrons are accumulated for a certain period according to the image formed on the light receiving surface via the optical system. Then, a signal corresponding to the electrons accumulated in the solid-state imaging device 211 is supplied to the DSP 212.
DSP212は、固体撮像装置211からの信号に対して各種の信号処理を施して画像を取得し、その画像のデータを、メモリ216に一時的に記憶させる。メモリ216に記憶された画像のデータは、記録装置217に記録されたり、表示装置213に供給されて画像が表示されたりする。また、操作系214は、ユーザによる各種の操作を受け付けて電子機器201の各ブロックに操作信号を供給し、電源系218は、電子機器201の各ブロックの駆動に必要な電力を供給する。
The DSP 212 performs various signal processing on the signal from the solid-state imaging device 211 to acquire an image, and temporarily stores the image data in the memory 216. The image data stored in the memory 216 is recorded in the recording device 217 or supplied to the display device 213 to display the image. The operation system 214 receives various operations by the user and supplies operation signals to each block of the electronic device 201, and the power supply system 218 supplies power necessary for driving each block of the electronic device 201.
このように構成されている電子機器201では、固体撮像装置211として、上述したような生体イメージングデバイス20を適用することにより、フレアやゴーストの発生を防ぐことができるので、より高画質な画像を撮像することが可能となる。
In the electronic apparatus 201 configured as described above, by applying the biological imaging device 20 as described above as the solid-state imaging device 211, it is possible to prevent the occurrence of flare and ghost, so that a higher quality image can be obtained. Imaging can be performed.
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
さらに、本技術は以下のような構成をとることができる。
(1)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部は、前記開口の壁面に反射防止構造を有する
固体撮像装置。
(2)
前記光の波長は、660乃至940nmの範囲にある
(1)に記載の固体撮像装置。
(3)
前記反射防止構造は、モスアイ構造である
(2)に記載の固体撮像装置。
(4)
前記モスアイ構造を構成する突起同士の間隔は、250乃至400nmの範囲にあり、前記突起の高さは、125乃至200nmの範囲にある
(3)に記載の固体撮像装置。
(5)
前記反射防止構造は、反射防止膜である
(2)に記載の固体撮像装置。
(6)
前記反射防止膜は、MgF2で構成される
(5)に記載の固体撮像装置。
(7)
前記反射防止膜の膜厚は、150乃至250nmの範囲にある
(5)または(6)に記載の固体撮像装置。
(8)
前記反射防止構造は、光吸収膜である
(2)に記載の固体撮像装置。
(9)
前記光吸収膜は、金属酸化物からなる
(8)に記載の固体撮像装置。
(10)
前記光吸収膜の膜厚は、30nm以上である
(8)または(9)に記載の固体撮像装置。
(11)
前記遮光部の前記光の入射側に、前記遮光部の前記開口を充填するように形成されたガラス層をさらに備える
(1)乃至(10)のいずれかに記載の固体撮像装置。
(12)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備える固体撮像装置の製造方法において、
前記マイクロレンズそれぞれに対応して前記開口を形成し、
前記開口の壁面に反射防止構造を形成する
ステップを含む固体撮像装置の製造方法。
(13)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部が、前記開口の壁面に反射防止構造を有する固体撮像装置
を備える電子機器。 Furthermore, this technique can take the following structures.
(1)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
The light-shielding portion has an antireflection structure on a wall surface of the opening.
(2)
The solid-state imaging device according to (1), wherein the wavelength of the light is in a range of 660 to 940 nm.
(3)
The solid-state imaging device according to (2), wherein the antireflection structure is a moth-eye structure.
(4)
The solid-state imaging device according to (3), wherein an interval between protrusions constituting the moth-eye structure is in a range of 250 to 400 nm, and a height of the protrusion is in a range of 125 to 200 nm.
(5)
The solid-state imaging device according to (2), wherein the antireflection structure is an antireflection film.
(6)
The solid-state imaging device according to (5), wherein the antireflection film is made of MgF2.
(7)
The film thickness of the antireflection film is in the range of 150 to 250 nm. (5) or (6).
(8)
The solid-state imaging device according to (2), wherein the antireflection structure is a light absorption film.
(9)
The solid-state imaging device according to (8), wherein the light absorption film is made of a metal oxide.
(10)
The film thickness of the said light absorption film | membrane is 30 nm or more. The solid-state imaging device as described in (8) or (9).
(11)
The solid-state imaging device according to any one of (1) to (10), further including a glass layer formed on the light incident side of the light shielding portion so as to fill the opening of the light shielding portion.
(12)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
In a manufacturing method of a solid-state imaging device comprising: a light shielding portion having an opening formed corresponding to each of the microlenses,
Forming the opening corresponding to each of the microlenses;
A method for manufacturing a solid-state imaging device, comprising: forming an antireflection structure on a wall surface of the opening.
(13)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
An electronic apparatus, wherein the light shielding unit includes a solid-state imaging device having an antireflection structure on a wall surface of the opening.
(1)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部は、前記開口の壁面に反射防止構造を有する
固体撮像装置。
(2)
前記光の波長は、660乃至940nmの範囲にある
(1)に記載の固体撮像装置。
(3)
前記反射防止構造は、モスアイ構造である
(2)に記載の固体撮像装置。
(4)
前記モスアイ構造を構成する突起同士の間隔は、250乃至400nmの範囲にあり、前記突起の高さは、125乃至200nmの範囲にある
(3)に記載の固体撮像装置。
(5)
前記反射防止構造は、反射防止膜である
(2)に記載の固体撮像装置。
(6)
前記反射防止膜は、MgF2で構成される
(5)に記載の固体撮像装置。
(7)
前記反射防止膜の膜厚は、150乃至250nmの範囲にある
(5)または(6)に記載の固体撮像装置。
(8)
前記反射防止構造は、光吸収膜である
(2)に記載の固体撮像装置。
(9)
前記光吸収膜は、金属酸化物からなる
(8)に記載の固体撮像装置。
(10)
前記光吸収膜の膜厚は、30nm以上である
(8)または(9)に記載の固体撮像装置。
(11)
前記遮光部の前記光の入射側に、前記遮光部の前記開口を充填するように形成されたガラス層をさらに備える
(1)乃至(10)のいずれかに記載の固体撮像装置。
(12)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備える固体撮像装置の製造方法において、
前記マイクロレンズそれぞれに対応して前記開口を形成し、
前記開口の壁面に反射防止構造を形成する
ステップを含む固体撮像装置の製造方法。
(13)
複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部が、前記開口の壁面に反射防止構造を有する固体撮像装置
を備える電子機器。 Furthermore, this technique can take the following structures.
(1)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
The light-shielding portion has an antireflection structure on a wall surface of the opening.
(2)
The solid-state imaging device according to (1), wherein the wavelength of the light is in a range of 660 to 940 nm.
(3)
The solid-state imaging device according to (2), wherein the antireflection structure is a moth-eye structure.
(4)
The solid-state imaging device according to (3), wherein an interval between protrusions constituting the moth-eye structure is in a range of 250 to 400 nm, and a height of the protrusion is in a range of 125 to 200 nm.
(5)
The solid-state imaging device according to (2), wherein the antireflection structure is an antireflection film.
(6)
The solid-state imaging device according to (5), wherein the antireflection film is made of MgF2.
(7)
The film thickness of the antireflection film is in the range of 150 to 250 nm. (5) or (6).
(8)
The solid-state imaging device according to (2), wherein the antireflection structure is a light absorption film.
(9)
The solid-state imaging device according to (8), wherein the light absorption film is made of a metal oxide.
(10)
The film thickness of the said light absorption film | membrane is 30 nm or more. The solid-state imaging device as described in (8) or (9).
(11)
The solid-state imaging device according to any one of (1) to (10), further including a glass layer formed on the light incident side of the light shielding portion so as to fill the opening of the light shielding portion.
(12)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
In a manufacturing method of a solid-state imaging device comprising: a light shielding portion having an opening formed corresponding to each of the microlenses,
Forming the opening corresponding to each of the microlenses;
A method for manufacturing a solid-state imaging device, comprising: forming an antireflection structure on a wall surface of the opening.
(13)
An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
An electronic apparatus, wherein the light shielding unit includes a solid-state imaging device having an antireflection structure on a wall surface of the opening.
10 光源, 20 生体イメージングデバイス, 21 イメージセンサ, 22 光学系, 31 画素アレイ, 41 画素, 52 導光部, 52a 導光路, 52b 遮光体, 53 マイクロレンズ, 55 カバーガラス層, 71 遮光部, 72 反射防止構造, 150 生体イメージングデバイス, 201 電子機器, 211 固体撮像装置
10 light sources, 20 biological imaging devices, 21 image sensors, 22 optical systems, 31 pixel arrays, 41 pixels, 52 light guides, 52a light guides, 52b light shields, 53 microlenses, 55 cover glass layers, 71 light shields, 72 Antireflection structure, 150 biological imaging device, 201 electronic equipment, 211 solid-state imaging device
Claims (13)
- 複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部は、前記開口の壁面に反射防止構造を有する
固体撮像装置。 An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
The light-shielding portion has an antireflection structure on a wall surface of the opening. - 前記光の波長は、660乃至940nmの範囲にある
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein a wavelength of the light is in a range of 660 to 940 nm. - 前記反射防止構造は、モスアイ構造である
請求項2に記載の固体撮像装置。 The solid-state imaging device according to claim 2, wherein the antireflection structure is a moth-eye structure. - 前記モスアイ構造を構成する突起同士の間隔は、250乃至400nmの範囲にあり、前記突起の高さは、125乃至200nmの範囲にある
請求項3に記載の固体撮像装置。 The solid-state imaging device according to claim 3, wherein an interval between protrusions constituting the moth-eye structure is in a range of 250 to 400 nm, and a height of the protrusion is in a range of 125 to 200 nm. - 前記反射防止構造は、反射防止膜である
請求項2に記載の固体撮像装置。 The solid-state imaging device according to claim 2, wherein the antireflection structure is an antireflection film. - 前記反射防止膜は、MgF2で構成される
請求項5に記載の固体撮像装置。 The solid-state imaging device according to claim 5, wherein the antireflection film is made of MgF 2. - 前記反射防止膜の膜厚は、150乃至250nmの範囲にある
請求項5に記載の固体撮像装置。 The solid-state imaging device according to claim 5, wherein a film thickness of the antireflection film is in a range of 150 to 250 nm. - 前記反射防止構造は、光吸収膜である
請求項2に記載の固体撮像装置。 The solid-state imaging device according to claim 2, wherein the antireflection structure is a light absorption film. - 前記光吸収膜は、金属酸化物からなる
請求項8に記載の固体撮像装置。 The solid-state imaging device according to claim 8, wherein the light absorption film is made of a metal oxide. - 前記光吸収膜の膜厚は、30nm以上である
請求項8に記載の固体撮像装置。 The solid-state imaging device according to claim 8, wherein a film thickness of the light absorption film is 30 nm or more. - 前記遮光部の前記光の入射側に、前記遮光部の前記開口を充填するように形成されたガラス層をさらに備える
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising a glass layer formed on the light incident side of the light shielding portion so as to fill the opening of the light shielding portion. - 複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備える固体撮像装置の製造方法において、
前記マイクロレンズそれぞれに対応して前記開口を形成し、
前記開口の壁面に反射防止構造を形成する
ステップを含む固体撮像装置の製造方法。 An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
In a manufacturing method of a solid-state imaging device comprising: a light shielding portion having an opening formed corresponding to each of the microlenses,
Forming the opening corresponding to each of the microlenses;
A method for manufacturing a solid-state imaging device, comprising: forming an antireflection structure on a wall surface of the opening. - 複数の画素が行列状に配列された画素アレイを有するイメージセンサと、
前記画素それぞれに光を導光するための導光路およびそれを囲む遮光体を有する導光部と、
前記導光路それぞれに前記光を入射するマイクロレンズと、
前記マイクロレンズそれぞれに対応して形成された開口を有する遮光部と
を備え、
前記遮光部が、前記開口の壁面に反射防止構造を有する固体撮像装置
を備える電子機器。 An image sensor having a pixel array in which a plurality of pixels are arranged in a matrix;
A light guide having a light guide for guiding light to each of the pixels and a light shielding body surrounding the light guide, and
A microlens that enters the light into each of the light guides;
A light shielding part having an opening formed corresponding to each of the microlenses,
An electronic apparatus, wherein the light shielding unit includes a solid-state imaging device having an antireflection structure on a wall surface of the opening.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040130 | 2017-03-03 | ||
JP2017-040130 | 2017-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159737A1 true WO2018159737A1 (en) | 2018-09-07 |
Family
ID=63371241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007702 WO2018159737A1 (en) | 2017-03-03 | 2018-03-01 | Solid-state imaging device, method for producing solid-state imaging device, and electronic device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159737A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113050207A (en) * | 2019-12-26 | 2021-06-29 | 天马日本株式会社 | Light direction control element, method for manufacturing the same, and imaging element |
US20220131018A1 (en) * | 2020-10-26 | 2022-04-28 | Samsung Display Co., Ltd. | Fingerprint sensor and display device including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008128912A (en) * | 2006-11-22 | 2008-06-05 | Matsushita Electric Works Ltd | Infrared detector and method of making the same |
JP2012042665A (en) * | 2010-08-18 | 2012-03-01 | Sony Corp | Optical function element and imaging device |
JP2012163756A (en) * | 2011-02-07 | 2012-08-30 | Tanaka Engineering Inc | Low reflective light shielding structure |
JP2012163850A (en) * | 2011-02-08 | 2012-08-30 | Nippon Sheet Glass Co Ltd | Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing system |
WO2016208403A1 (en) * | 2015-06-23 | 2016-12-29 | ソニー株式会社 | Image sensor and electronic device |
-
2018
- 2018-03-01 WO PCT/JP2018/007702 patent/WO2018159737A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008128912A (en) * | 2006-11-22 | 2008-06-05 | Matsushita Electric Works Ltd | Infrared detector and method of making the same |
JP2012042665A (en) * | 2010-08-18 | 2012-03-01 | Sony Corp | Optical function element and imaging device |
JP2012163756A (en) * | 2011-02-07 | 2012-08-30 | Tanaka Engineering Inc | Low reflective light shielding structure |
JP2012163850A (en) * | 2011-02-08 | 2012-08-30 | Nippon Sheet Glass Co Ltd | Erecting equal-magnification lens array plate, optical scanning unit, image reading device, and image writing system |
WO2016208403A1 (en) * | 2015-06-23 | 2016-12-29 | ソニー株式会社 | Image sensor and electronic device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113050207A (en) * | 2019-12-26 | 2021-06-29 | 天马日本株式会社 | Light direction control element, method for manufacturing the same, and imaging element |
CN113050207B (en) * | 2019-12-26 | 2024-10-18 | 天马日本株式会社 | Light direction control element, method of manufacturing the same, and imaging element |
US20220131018A1 (en) * | 2020-10-26 | 2022-04-28 | Samsung Display Co., Ltd. | Fingerprint sensor and display device including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9813679B2 (en) | Solid-state imaging apparatus with on-chip lens and micro-lens | |
US10319765B2 (en) | Imaging device having an effective pixel region, an optical black region and a dummy region each with pixels including a photoelectric converter | |
WO2021100298A1 (en) | Imaging element and imaging device | |
JP2009088450A (en) | Photoelectric conversion device, photoelectric conversion device for visible light, and image-pickup system using them | |
JP5235565B2 (en) | Imaging sensor and imaging apparatus | |
US20150098006A1 (en) | Solid-state image pickup apparatus, method of manufacturing the same, and electronic apparatus | |
US9525005B2 (en) | Image sensor device, CIS structure, and method for forming the same | |
WO2019130820A1 (en) | Imaging element and imaging device | |
WO2016052220A1 (en) | Solid-state imaging element, production method, and electronic device | |
JP2008085174A (en) | Image pickup device | |
WO2018159737A1 (en) | Solid-state imaging device, method for producing solid-state imaging device, and electronic device | |
US20160363673A1 (en) | Method of fabricating integrated digital x-ray image sensor, and integrated digital x-ray image sensor using the same | |
US20210072430A1 (en) | Solid-state imaging device, production method, and electronic apparatus | |
JP2008219613A (en) | Non-cooled infrared camera | |
TW202123442A (en) | Image sensor with reduced petal flare | |
WO2019198291A1 (en) | Imaging device and method for manufacturing imaging device | |
US20090160002A1 (en) | Image sensor and method for fabricating the same | |
WO2019215986A1 (en) | Image-capturing element, and method for manufacturing image-capturing element | |
US9723188B2 (en) | Image sensor, method of manufacturing the image sensor, and electronic device including the image sensor | |
WO2021149349A1 (en) | Imaging element and imaging device | |
US11217616B2 (en) | Image sensing device | |
JP7231546B2 (en) | Imaging element and imaging device | |
WO2016063451A1 (en) | Image pickup device and method for manufacturing same | |
WO2021177026A1 (en) | Solid-state imaging device and electronic apparatus | |
WO2021039954A1 (en) | Photoelectric conversion element, imaging element, and imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760475 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760475 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |