[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018159511A1 - Railroad car vibration damping device - Google Patents

Railroad car vibration damping device Download PDF

Info

Publication number
WO2018159511A1
WO2018159511A1 PCT/JP2018/006867 JP2018006867W WO2018159511A1 WO 2018159511 A1 WO2018159511 A1 WO 2018159511A1 JP 2018006867 W JP2018006867 W JP 2018006867W WO 2018159511 A1 WO2018159511 A1 WO 2018159511A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
actuator
side chamber
valve
estimated
Prior art date
Application number
PCT/JP2018/006867
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 小川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018159511A1 publication Critical patent/WO2018159511A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes

Definitions

  • the present invention relates to an improvement in a railcar vibration damping device.
  • a rail vehicle includes a double-acting actuator interposed between a vehicle body and front and rear carriages, an acceleration sensor that detects acceleration in the front and rear of the vehicle body, and a controller that controls the actuator.
  • a railcar damping device that suppresses vibration in the left-right direction is provided.
  • the controller obtains a control force to be generated by the actuator based on the acceleration detected by the acceleration sensor, and the actuator is connected to the vehicle body.
  • the thrust of the vibration is exerted to suppress the vibration of the vehicle body (see, for example, Patent Document 1).
  • the actuator in the above-described railcar vibration damping device is an electro-hydraulic cylinder, which is extended and contracted by pressure oil supplied to the cylinder from a pump driven by a motor.
  • an open-loop control that controls the thrust of the actuator by adjusting the pressure in the cylinder with a variable relief valve while supplying the pressure oil into the cylinder by rotating the pump at a constant speed with a motor. Is going.
  • ⁇ Closed loop control requires detection of actuator thrust.
  • a method of directly detecting the thrust using a load sensor or a method using a pressure sensor for detecting the pressure in the cylinder can be considered, but it is not common to use a load sensor. In any case, since a sensor is required, there is a problem that the system becomes expensive.
  • an object of the present invention is to provide an inexpensive railway vehicle vibration damping device that can obtain a high vibration damping effect.
  • the railcar damping device of the present invention includes an actuator that can be expanded and contracted by supplying a working liquid from a pump driven by a motor, and an estimation unit that estimates the thrust of the actuator from the current of the motor. And a controller for controlling the actuator by feeding back the estimated thrust estimated by the estimation unit.
  • closed loop control that feeds back thrust can be performed without using a sensor that detects the load of the actuator or the pressure in the cylinder in controlling the actuator.
  • FIG. 1 is a cross-sectional view of a railway vehicle on which the railway vehicle vibration damping device according to the first embodiment is mounted.
  • FIG. 2 is a detailed view of an example of the actuator.
  • FIG. 3 is a control block diagram of a controller in the railcar damping device of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the motor torque and the actual thrust of the actuator.
  • FIG. 5 is a control block diagram in a modified example of the controller of the railcar vibration damping device of the first exemplary embodiment.
  • FIG. 6 is a control block diagram in another modified example of the controller of the railcar vibration damping device of the first exemplary embodiment.
  • FIG. 7 is a control block diagram of a controller in the railcar vibration damping device of the second embodiment.
  • FIG. 8 is a diagram illustrating the frequency characteristics of the filter in the correction unit.
  • the railcar damping device V1 according to the first embodiment is used as a damping device for the vehicle body B of the railcar, and is operated from a pump 12 driven by a motor 15 as shown in FIGS.
  • An actuator A that can be expanded and contracted by supplying liquid and a controller C1 that controls the actuator A are provided.
  • the actuator A is connected to a pin P suspended below the vehicle body B, and is interposed between the vehicle body B and the carriage T in parallel.
  • the carriage T rotatably holds the wheel W, and a suspension spring S called a pillow spring is interposed between the vehicle body B and the carriage T, and the vehicle body B is elastically supported. Movement of the vehicle body B in the lateral direction relative to the carriage T is allowed.
  • These actuators A are basically configured to suppress vibration in the horizontal and lateral directions with respect to the vehicle traveling direction of the vehicle body B by active control by the controller C1.
  • the controller C1 obtains the target thrust Fref to be generated by the actuator A based on the acceleration ⁇ in the horizontal and horizontal direction with respect to the vehicle traveling direction of the vehicle body B detected by the acceleration sensor 40, and applies each actuator A according to the target thrust Fref. Gives a command to generate thrust. In this way, the railcar vibration damping device V1 causes the actuator A to exert the target thrust Fref to suppress the lateral vibration of the vehicle body B.
  • One actuator A or a plurality of actuators A may be provided for the carriage T.
  • all the actuators A may be controlled by the controller C1, or a controller C1 may be provided for each actuator A.
  • the actuator A includes a cylinder 2 connected to one of a vehicle body B and a carriage T of a railway vehicle, a piston 3 slidably inserted into the cylinder 2, Rod 4 connected to the other of the vehicle body B and the carriage T and the piston 3, a tank 7 for storing the working liquid, and the working liquid can be sucked up from the tank 7 and supplied to the rod side chamber 5.
  • a pump 12, a motor 15 that drives the pump 12, and a hydraulic circuit HC that controls the switching of the expansion and contraction of the actuator A and the thrust are configured as a single rod type actuator.
  • the rod side chamber 5 and the piston side chamber 6 are filled with working oil as working liquid
  • the tank 7 is filled with gas in addition to working oil.
  • other liquids may be used as the working liquid.
  • the hydraulic circuit HC includes a first on-off valve 9 as a switching valve provided in the first passage 8 that communicates the rod side chamber 5 and the piston side chamber 6, and a second passage 10 that communicates the piston side chamber 6 and the tank 7.
  • a second opening / closing valve 11 as a switching valve provided, and a variable relief valve 22 capable of changing the valve opening pressure provided in the discharge passage 21 connecting the rod side chamber 5 and the tank 7 are provided.
  • the cylinder 2 has a cylindrical shape, the right end in FIG. 2 is closed by a lid 13, and an annular rod guide 14 is attached to the left end in FIG.
  • a rod 4 that is movably inserted into the cylinder 2 is slidably inserted into the rod guide 14.
  • One end of the rod 4 protrudes outside the cylinder 2, and the other end in the cylinder 2 is connected to a piston 3 that is slidably inserted into the cylinder 2.
  • the space between the outer periphery of the rod guide 14 and the cylinder 2 is sealed by a seal member (not shown), whereby the inside of the cylinder 2 is maintained in a sealed state.
  • the rod-side chamber 5 and the piston-side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with hydraulic oil as described above.
  • the rod 4 has a cross-sectional area that is 1 ⁇ 2 of the cross-sectional area of the piston 3, and the pressure-receiving area of the piston 3 on the rod-side chamber 5 side is 1 ⁇ 2 of the pressure-receiving area on the piston-side chamber 6 side. It is like that. Therefore, when the pressure in the rod side chamber 5 is the same during the extension operation and during the contraction operation, the thrust generated in both expansion and contraction becomes equal, and the amount of hydraulic oil with respect to the displacement amount of the actuator A becomes the same in both expansion and contraction.
  • the actuator A when the actuator A is extended, the rod side chamber 5 and the piston side chamber 6 are in communication with each other. Then, the pressures in the rod side chamber 5 and the piston side chamber 6 become equal, and the actuator A generates a thrust obtained by multiplying the pressure receiving area difference between the rod side chamber 5 side and the piston side chamber 6 side in the piston 3 by the pressure. On the contrary, when the actuator A is contracted, the communication between the rod side chamber 5 and the piston side chamber 6 is cut off and the piston side chamber 6 is connected to the tank 7. Then, the actuator A generates a thrust obtained by multiplying the pressure in the rod side chamber 5 by the pressure receiving area of the piston 3 on the rod side chamber 5 side.
  • the thrust generated by the actuator A is a value obtained by multiplying a half of the cross-sectional area of the piston 3 by the pressure in the rod side chamber 5 in both expansion and contraction. Therefore, when the thrust of the actuator A is controlled, the pressure in the rod side chamber 5 may be controlled for both the extension operation and the contraction operation. Further, in the actuator A of the present example, the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to one half of the pressure receiving area on the piston side chamber 6 side. Since the pressure in the rod side chamber 5 is the same on the contraction side, the control is simplified. In addition, since the amount of hydraulic oil with respect to the amount of displacement is the same, there is an advantage that the responsiveness is the same on both sides of expansion and contraction.
  • the lid 4 that closes the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown), and this actuator A is interposed between the vehicle body B and the carriage T in the railway vehicle. Can be disguised.
  • the rod side chamber 5 and the piston side chamber 6 communicate with each other through a first passage 8, and a first opening / closing valve 9 is provided in the middle of the first passage 8.
  • the first passage 8 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
  • the first on-off valve 9 is an electromagnetic on-off valve.
  • the first on-off valve 9 is opened to connect the rod-side chamber 5 and the piston-side chamber 6, and the first on-off passage 8 is shut off to connect to the rod-side chamber 5. And a blocking position for disconnecting communication with the piston side chamber 6. And this 1st on-off valve 9 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
  • the second on-off valve 11 is an electromagnetic on-off valve, which opens the second passage 10 to communicate the piston side chamber 6 and the tank 7, and shuts off the second passage 10 to connect the piston side chamber 6 and the tank. 7 and a shut-off position that cuts off communication with 7. And this 2nd on-off valve 11 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
  • the pump 12 is a gear pump that is controlled by the controller C1 and is driven by a motor 15 that rotates at a predetermined rotational speed, and discharges hydraulic oil only in one direction.
  • the discharge port of the pump 12 communicates with the rod side chamber 5 through the supply passage 16 and the suction port communicates with the tank 7.
  • the pump 12 sucks hydraulic oil from the tank 7 and Hydraulic oil is supplied to the side chamber 5.
  • the pump 12 is controlled to rotate at a constant rotational speed, and only discharges hydraulic oil in one direction, and there is no rotation direction switching operation. There is nothing. Further, since the rotation direction of the pump 12 is always the same direction, even the motor 15 that is a drive source for driving the pump 12 does not require high responsiveness to rotation switching, and the motor 15 is also inexpensive. Can be used. A check valve 17 that prevents the backflow of hydraulic oil from the rod side chamber 5 to the pump 12 is provided in the supply passage 16. The motor 15 is driven by receiving power supply from an inverter circuit (not shown) controlled by the controller C1.
  • the hydraulic circuit HC of the present example includes the discharge passage 21 that connects the rod side chamber 5 and the tank 7, and the variable relief valve 22 that can change the valve opening pressure provided in the middle of the discharge passage 21. It has.
  • variable relief valve 22 is a proportional electromagnetic relief valve, and the valve opening pressure can be adjusted according to the supplied current. When the current reaches the maximum, the valve opening pressure is minimized and the supply of current is reduced. Otherwise, the valve opening pressure is maximized.
  • the discharge passage 21 and the variable relief valve 22 when the discharge passage 21 and the variable relief valve 22 are provided, when the actuator A is expanded and contracted, the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22, and the thrust of the actuator A can be increased. It can be controlled by the current supplied to the variable relief valve 22.
  • sensors necessary for adjusting the thrust force of the actuator A are not necessary, and it is not necessary to highly control the motor 15 for adjusting the discharge flow rate of the pump 12. . Therefore, the railcar damping device V1 is inexpensive, and a robust system can be constructed in terms of hardware and software.
  • the actuator A can exhibit a damping force only in one of expansion and contraction. Therefore, for example, when the direction in which the damping force is exerted is the direction in which the vehicle body B is vibrated by the vibration of the bogie T of the railway vehicle, the actuator A is provided with a one-effect damper so that no damping force is generated in such a direction. And can function. Therefore, since this actuator A can easily realize semi-active control based on Karnop's Skyhook theory, it can also function as a semi-active damper.
  • any variable relief valve that can adjust the valve opening pressure is proportional. It is not limited to an electromagnetic relief valve.
  • variable relief valve 22 regardless of whether the first on-off valve 9 and the second on-off valve 11 are open or closed, the actuator A has an excessive input in the expansion / contraction direction, and the pressure in the rod side chamber 5 exceeds the valve opening pressure.
  • the discharge passage 21 is opened.
  • the variable relief valve 22 discharges the pressure in the rod side chamber 5 to the tank 7 when the pressure in the rod side chamber 5 becomes equal to or higher than the valve opening pressure, so that the pressure in the cylinder 2 is prevented from becoming excessive. To protect the entire system of the actuator A. Therefore, if the discharge passage 21 and the variable relief valve 22 are provided, the system can be protected.
  • the hydraulic circuit HC in the actuator A of this example includes a rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 to the rod side chamber 5, and the tank 7 to the piston side chamber 6.
  • a suction passage 19 that allows only the flow of hydraulic oil toward the head is provided. Therefore, when the actuator A expands and contracts while the first on-off valve 9 and the second on-off valve 11 are closed, hydraulic oil is pushed out from the cylinder 2. Since the variable relief valve 22 provides resistance to the flow of hydraulic oil discharged from the cylinder 2, the actuator A of the present example is in a state where the first on-off valve 9 and the second on-off valve 11 are closed. Functions as a uniflow type damper.
  • the rectifying passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5. It is set as a one-way passage. Further, the suction passage 19 communicates between the tank 7 and the piston side chamber 6, and a check valve 19 a is provided in the middle to allow only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. Is set to The rectifying passage 18 can be integrated into the first passage 8 when the shut-off position of the first on-off valve 9 is a check valve, and the suction passage 19 is also the first when the shut-off position of the second on-off valve 11 is a check valve. It can be concentrated in two passages 10.
  • the actuator A configured as described above, even if the first on-off valve 9 and the second on-off valve 11 are both in the shut-off position, the rod side chamber 5, the piston side chamber 6 in the rectifying passage 18, the suction passage 19, and the discharge passage 21. And the tank 7 is made to communicate with a rosary chain.
  • the rectifying passage 18, the suction passage 19, and the discharge passage 21 are set as one-way passages. Therefore, when the actuator A expands or contracts due to an external force, the hydraulic oil is always discharged from the cylinder 2 and returned to the tank 7 through the discharge passage 21, and the hydraulic oil that is not sufficient in the cylinder 2 passes from the tank 7 to the cylinder through the suction passage 19 2 is supplied. Since the variable relief valve 22 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 2 to the valve opening pressure, the actuator A functions as a passive uniflow type damper.
  • each of the first on-off valve 9 and the second on-off valve 11 takes the shut-off position, and the variable relief valve 22 has the maximum valve opening pressure. Functions as a fixed pressure control valve. Therefore, during such a failure, the actuator A automatically functions as a passive damper.
  • the controller C1 basically rotates the motor 15 to rotationally drive the pump 12 at a predetermined number of rotations, and hydraulic oil enters the cylinder 2. Supply. And let the 1st on-off valve 9 be a communicating position, and let the 2nd on-off valve 11 be a cutoff position. In this way, the rod side chamber 5 and the piston side chamber 6 are in communication with each other, and hydraulic oil is supplied to both of them from the pump 12, the piston 3 is pushed to the left in FIG. 2, and the actuator A generates thrust in the extension direction. Demonstrate.
  • variable relief valve 22 When the pressure in the rod side chamber 5 and the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 7 through the discharge passage 21. Therefore, the pressure in the rod side chamber 5 and the piston side chamber 6 is controlled by the valve opening pressure of the variable relief valve 22 determined by the current applied to the variable relief valve 22.
  • the actuator A then extends in the direction of extension of the value obtained by multiplying the pressure receiving area difference between the piston side chamber 6 side and the rod side chamber 5 side of the piston 3 by the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22. Demonstrate thrust.
  • the controller C1 rotates the motor 15 and supplies the hydraulic oil from the pump 12 into the rod side chamber 5, while the first on-off valve 9 is turned on.
  • the shut-off position is set, and the second on-off valve 11 is set to the communication position.
  • the piston side chamber 6 and the tank 7 are brought into communication with each other and the hydraulic oil is supplied to the rod side chamber 5 from the pump 12, so that the piston 3 is pushed rightward in FIG. Demonstrate thrust.
  • the actuator A contracts by multiplying the pressure receiving area of the piston 3 on the rod side chamber 5 side by the pressure in the rod side chamber 5 controlled by the variable relief valve 22. Demonstrate direction thrust.
  • the motor 15 that rotationally drives the pump 12 outputs a torque corresponding to the pressure in the rod side chamber 5. . That is, the torque output from the motor 15 is proportional to the pressure in the rod side chamber 5, and if the output torque of the motor 15 is known, the pressure in the rod side chamber 5 can be estimated. As described above, the actuator A exerts a thrust according to the pressure in the rod side chamber 5 regardless of whether it extends or contracts. Therefore, if the output torque of the motor 15 is known, the thrust exerted by the actuator A Can be estimated.
  • first on-off valve 9 and the second on-off valve 11 function as switching valves for switching the expansion / contraction direction when the actuator A exerts thrust.
  • the actuator A of this example not only functions as an actuator, but also functions as a damper only by opening and closing the first on-off valve 9 and the second on-off valve 11 regardless of the driving state of the motor 15. Further, when switching the actuator A from the actuator to the damper, there is no troublesome and steep switching operation of the first on-off valve 9 and the second on-off valve 11, so that a system with high responsiveness and reliability can be provided.
  • the actuator A of this example is set to a single rod type, it is easier to secure a stroke length than the double rod type actuator, and the total length of the actuator is shortened. Mountability is improved.
  • the hydraulic oil supplied from the pump 12 and the flow of hydraulic oil by the expansion and contraction operation pass through the rod side chamber 5 and the piston side chamber 6 in order, and finally return to the tank 7. Therefore, even if gas is mixed into the rod side chamber 5 or the piston side chamber 6, the actuator A is automatically discharged to the tank 7 by the expansion / contraction operation, so that it is possible to prevent deterioration of the response of thrust generation. Therefore, when manufacturing the actuator A, it is not necessary to assemble in troublesome oil or in a vacuum environment, and advanced degassing of hydraulic oil is not required, improving productivity and reducing manufacturing cost. it can.
  • the configuration of the actuator A is not limited to the above.
  • a switching valve capable of communicating with the pump by selecting one of the expansion side chamber and the pressure side chamber of the cylinder is provided between the cylinder and the pump. It is also possible to adopt a configuration such as providing. Even in such a configuration, the pressure of the pressure in the room to which the pump supplies hydraulic oil is received, so that the thrust of the actuator A can be estimated from the output torque of the motor driving the pump.
  • the controller C1 of the present example the target thrust Fref to be output by the actuator A based on the acceleration ⁇ in the horizontal and horizontal direction with respect to the vehicle traveling direction of the vehicle body B detected by the acceleration sensor 40.
  • a target thrust calculation unit 41 that calculates the thrust
  • an estimation unit 42 that estimates the thrust of the actuator A from the current of the motor 15, and a command voltage corresponding to the current applied to the variable relief valve 22 from the deviation ⁇ between the target thrust Fref and the estimated thrust Fm
  • a relief valve control unit 43 for obtaining V
  • a motor control unit 44 for driving and controlling the motor 15 at a predetermined rotational speed
  • a relief valve driving unit 45 for driving the variable relief valve 22 based on the command voltage V
  • an on-off valve drive unit 46 for driving and controlling the valve 9 and the second on-off valve 11.
  • the target thrust calculation unit 41 processes the acceleration with a bandpass filter that removes steady acceleration, drift components, and noise during curve running included in the acceleration ⁇ detected by the acceleration sensor 40, and the target thrust that the actuator A should exert Find Fref.
  • the target thrust calculation unit 41 is an H ⁇ controller, and obtains a target thrust Fref that indicates the thrust to be output by the actuator A in order to suppress the vibration of the vehicle body B from the acceleration ⁇ .
  • the target thrust Fref is given a positive or negative sign depending on the direction, and the sign indicates the direction of the thrust to be output to the actuator A.
  • the motor control unit 44 monitors the number of rotations of the motor 15, feeds back the number of rotations of the motor 15 (speed feedback), and controls the motor 15 to rotationally drive the pump 12 at the predetermined number of rotations described above. To do. More specifically, the motor control unit 44 generates a current command to be given to the motor 15 from the deviation between the target rotational speed of the motor 15 and the actual rotational speed of the motor 15 for rotating the pump 12 at a predetermined rotational speed. Then, the motor 15 is controlled. Thus, the motor control unit 44 controls the motor 15 so that the rotation speed of the motor 15 becomes the target rotation speed.
  • the estimation unit 42 estimates the thrust exerted by the actuator A and obtains the estimated thrust Fm. Specifically, the estimation unit 42 first detects the current flowing through the motor 15 and estimates the magnitude of the thrust of the actuator A from this current. As described above, since the pump 12 receives the pressure resistance in the rod side chamber 5, the torque of the motor 15 and the thrust of the actuator A are in a substantially proportional relationship. The torque of the motor 15 is obtained from the current flowing through the motor 15 from the TI characteristics of the motor 15. Therefore, the magnitude of the thrust of the actuator A can be obtained from the current flowing through the motor 15.
  • the torque of the motor 15 and the actual thrust of the actuator A are measured, and the relationship between the torque of the motor 15 and the actual thrust of the actuator A is grasped in advance as shown in FIG. Then, if this relationship is formulated or mapped, the torque can be obtained from the current flowing through the motor 15 and the magnitude of the thrust of the actuator A can be easily estimated from the obtained torque.
  • an approximate expression may be obtained using a least square method and the approximate expression may be used as an expression.
  • the reason why the thrust of the actuator A is not exerted unless the torque of the motor 15 becomes t1 or more is due to friction of the actuator A, the pump 12 and the motor 15.
  • the magnitude of the thrust exerted by the actuator A can be obtained from the current flowing through the motor 15, but it is necessary to determine whether the direction of the thrust of the actuator A is the expansion direction or the contraction direction.
  • the estimation unit 42 determines whether the direction in which the actuator A should exert the thrust is the expansion direction or the contraction direction from the sign of the target thrust Fref obtained by the target thrust calculation unit 41. That is, the polarity is determined.
  • the numerical value indicates the magnitude of the thrust of the actuator A
  • the sign indicates the polarity that is the direction of the thrust of the actuator A
  • the estimation unit 42 performs polarity determination using the sign.
  • the target thrust Fref when the actuator A exerts a thrust in the extension direction, the target thrust Fref takes a positive value. Conversely, when the actuator A exerts a thrust in the contraction direction, the target thrust Fref takes a negative value. It is set as follows.
  • the estimation unit 42 obtains the magnitude of the thrust of the actuator A from the current of the motor 15, performs polarity determination from the sign of the target thrust Fref, estimates the thrust, and obtains the estimated thrust Fm. Therefore, for example, when the magnitude of the thrust of the actuator A obtained from the current of the motor 15 is a, the estimation unit 42 estimates the estimated thrust Fm as + a when the polarity is positive and indicates the extension direction, and the polarity Is minus and indicates the contraction direction, the estimated thrust Fm is estimated as -a.
  • the target thrust Fref takes a negative value when the actuator A exerts a thrust in the extension direction, and the target thrust Fref takes a positive value when the actuator A exerts a thrust in the contraction direction. Also good.
  • the relief valve control unit 43 obtains the command voltage V from the deviation ⁇ between the target thrust Fref obtained by the target thrust computing unit 41 and the estimated thrust Fm.
  • the relief valve control unit 43 is a proportional compensator, and includes a deviation calculation unit 43a that calculates a deviation ⁇ between the target thrust Fref and the estimated thrust Fm, and an absolute value processing unit 43b that performs absolute value processing on the deviation ⁇ . And a gain multiplier 43c that multiplies the absolute value processed deviation
  • the command voltage calculation unit 43d previously stores a relationship between the thrust of the actuator A and the voltage to be applied to the relief valve drive unit 45 for realizing this thrust as a map or a mathematical expression. Therefore, the command voltage calculation unit 43d obtains the command voltage V to the relief valve drive unit 45 by using the above-described map or mathematical expression and using the value
  • the relief valve drive unit 45 includes a driver circuit that drives the variable relief valve 22, and receives a command voltage V input from the relief valve control unit 43, and changes the current corresponding to the command voltage V to the variable relief valve 22. Supply to the relief valve 22.
  • the relief valve drive unit 45 controls the valve opening pressure of the variable relief valve 22 by adjusting the current supplied to the variable relief valve 22 according to the command voltage V.
  • the on-off valve driver 46 determines the polarity in the expansion / contraction direction of the actuator A from the sign of the target thrust Fref obtained by the target thrust calculator 41, and drives and controls the first on-off valve 9 and the second on-off valve 11.
  • the on-off valve drive unit 46 drives the first on-off valve 9 and the second on-off valve 11 to place the first on-off valve 9 in the communication position.
  • the two on-off valve 11 is set to the cutoff position.
  • the on-off valve drive unit 46 drives the first on-off valve 9 and the second on-off valve 11 to turn off the first on-off valve 9 in the cutoff position.
  • the second on-off valve 11 is set to the communication position.
  • the target thrust calculation unit 41, the estimation unit 42, and the relief valve control unit 43 in the controller C1 are not illustrated as hardware resources, but specifically, for example, A for capturing a signal output from the acceleration sensor 40.
  • a D / D converter a storage device such as a ROM (Read Only Memory) in which a program used for controlling the actuator A by taking the output value of the acceleration sensor 40 is stored, and based on the program
  • a processing device such as a CPU (Central Processing Unit) that executes the processing, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU. It can be realized by execution.
  • the railcar damping device V1 includes the actuator A that can be expanded and contracted by supplying hydraulic oil from the pump 12 driven by the motor 15, and the actuator A based on the current of the motor 15. And a controller C1 that controls the actuator A by feeding back the estimated thrust Fm estimated by the estimation unit 42.
  • the controller C1 obtains the target thrust Fref based on the acceleration ⁇ detected by the acceleration sensor 40, estimates the thrust of the actuator A based on the current flowing through the motor 15, and feeds back the estimated thrust Fm for closed loop control.
  • the actuator A can be controlled.
  • the estimated thrust Fm is fed back without using a sensor for detecting the load of the actuator A or the pressure in the cylinder 2 when controlling the actuator A. Closed loop control can be implemented.
  • the thrust of the actuator A can follow the target thrust Fref even if there is an input of a disturbance, so that a high vibration damping effect is obtained.
  • the system is inexpensive because it is not necessary to install a sensor for detecting the load of the actuator A or the pressure in the cylinder 2 in the closed loop control. As described above, according to the railcar damping device V1 of the present invention, a high damping effect can be obtained and the system can be inexpensive in damping the vehicle body B of the railcar.
  • tuning work is troublesome because the open-loop control requires accuracy of the valve opening pressure of the variable relief valve 22, but in the closed-loop control, the estimated thrust of the actuator A is reduced. Since the valve opening pressure of the variable relief valve 22 is automatically adjusted by feedback, the tuning operation of the valve opening pressure of the variable relief valve 22 becomes very easy.
  • the estimation unit 42 determines the polarity of the actuator A based on the target thrust Fref of the actuator A, the thrust of the actuator A can be estimated even when the rotation direction of the motor 15 is only one direction.
  • the configuration of the actuator A is a configuration in which a bidirectional discharge type pump is provided in the middle of a passage communicating the extension side chamber and the pressure side chamber of the cylinder, the rotation direction of the motor is switched to extend and contract the actuator A. It comes to switch.
  • the estimation unit 42 can also determine the polarity from the current flowing through the motor, so that the estimated thrust Fm can be obtained only from the current.
  • the actuator A may be configured, and the estimation unit 42 may estimate the thrust of the actuator A from only the current flowing through the motor to obtain the estimated thrust Fm.
  • the estimation unit 42 determines the polarity of the actuator A based on the target thrust Fref of the actuator A, the motor 15 that is rotationally driven only in one direction by the actuator A can be used, and the expansion / contraction direction of the actuator A can be switched. Even in this case, the thrust easily follows the target thrust Fref.
  • the highly responsive actuator A can be used.
  • a higher vibration damping effect can be obtained.
  • the target thrust Fref obtained by the target thrust calculation unit 41 is used for polarity determination, but the estimation unit 42 operates the first on-off valve 9 and the second on-off valve 11 as switching valves.
  • the polarity may be determined from the opening / closing states of the first opening / closing valve 9 and the second opening / closing valve 11.
  • the polarity of the actuator A can be determined from the opening / closing states of the first opening / closing valve 9 and the second opening / closing valve 11. Therefore, when determining the polarity of the actuator A, as shown in FIG. 5, the estimation unit 42 monitors the excitation states of the first on-off valve 9 and the second on-off valve 11 that are switching valves or determines the operation status of both by the excitation signal. The thrust of the actuator A may be estimated by grasping and determining the polarity. When the first on-off valve 9 and the second on-off valve 11 have a means for sensing their own position, the estimation unit 42 includes the first on-off valve 9 and the switching valve from the position obtained from the means.
  • the operation status of the second on-off valve 11 may be grasped and the polarity may be determined.
  • the estimation unit 42 may perform polarity determination based on the operation state of the switching valve.
  • the relief valve control unit 43 is estimated to be an absolute value processing unit 43e that performs absolute value processing of the target thrust Fref instead of the absolute value processing unit 43b that performs absolute value processing of the deviation ⁇ .
  • An absolute value processing unit 43f that performs absolute value processing on the thrust Fm may be provided.
  • the deviation calculator 43a calculates a deviation ⁇ between the absolute value processed target thrust
  • the relief valve control unit 43 includes only a proportional path that multiplies the proportional gain K by the deviation ⁇ and performs only proportional compensation. And a configuration in which a differential path is added.
  • the railcar damping device V1 of this example includes a cylinder 2, a piston 3, a rod 4, a tank 7, a pump 12 that supplies hydraulic oil to the rod side chamber 5, and a motor 15 that drives the pump 12.
  • a first on-off valve 9 provided in a first passage 8 that communicates the rod-side chamber 5 and the piston-side chamber 6, and a second on-off valve 11 provided in a second passage 10 that communicates the piston-side chamber 6 and the tank 7.
  • the variable relief valve 22 that can change the valve opening pressure provided in the discharge passage 21 connecting the rod side chamber 5 and the tank 7 and the rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5.
  • the railcar damping device V2 of the second embodiment differs from the railcar damping device V1 of the first embodiment in the configuration of the controller C2.
  • the controller C2 is a correction unit 50 that corrects the estimated thrust Fm based on the frequency of the target thrust Fref in the configuration of the controller C1 in the first embodiment. It becomes the composition which added.
  • the pump 12 of the actuator A in this example is a gear pump.
  • the gear pump rotates while the two gears are engaged with each other and discharges the hydraulic oil from the discharge port while sucking the hydraulic oil from the intake port.
  • the engagement resistance between the gears changes due to the backlash.
  • the motor 15 that drives the pump 12 is controlled by the motor control unit 44 so as to rotate at a constant speed at the predetermined rotation speed described above. Therefore, although the pump 12 rotates at a constant speed at a predetermined rotation speed, the torque itself varies while the motor 15 rotates at a constant speed because the meshing resistance of the gears changes. This torque fluctuation appears periodically with the rotation of the pump 12.
  • the estimated thrust Fm of the actuator A estimated by the estimation unit 42 also pulsates in the same manner, so that the obtained estimated thrust Fm also fluctuates so as to wave. Therefore, for example, even when the target thrust Fref takes a constant value, the deviation ⁇ also varies because the estimated thrust Fm varies.
  • the value of the proportional gain K is set high, the thrust of the actuator A can easily follow the target thrust Fref.
  • the command voltage V obtained by the influence of the fluctuation of the estimated thrust Fm is greatly waved. The thrust that is actually output by the actuator A in the form of a waveform also varies greatly.
  • the fluctuation of the thrust force of the actuator A gives extra vibration to the vehicle body B, which can be a cause of deterioration of riding comfort.
  • riding comfort is deteriorated unless the value of the proportional gain K is kept low.
  • the deterioration of riding comfort becomes significant when the target thrust Fref is low frequency, and does not become a problem when the target thrust Fref is high frequency.
  • the railway vehicle vibration damping device V2 includes a correction unit 50 that corrects the estimated thrust Fm.
  • the correction unit 50 includes a filter 50a that filters the estimated thrust Fm obtained by the estimation unit 42, and a gain multiplication unit 50b that multiplies the estimated thrust Fm filtered by the filter 50a by a gain Ky.
  • the filter 50a is a filter having a characteristic that the gain increases as the frequency of the target thrust Fref obtained by the target thrust calculator 41 increases.
  • the characteristic of the filter 50a is that the maximum value of the gain is 0 dB and the minimum value is ⁇ 6 dB. The characteristic is set to converge to -6 dB when the frequency becomes asymptotic to a lower frequency.
  • the gain Ky that the gain multiplication unit 50b multiplies the estimated thrust Fm after the filtering is set to a constant of 1 or less.
  • the correction unit 50 corrects the numerical value excluding the sign of the estimated thrust Fm according to the frequency. Further, when the frequency of the target thrust Fref is 10 Hz or more, the correction unit 50 outputs a value close to a value obtained by multiplying the estimated thrust Fm by the gain Ky.
  • the numerical value excluding the sign of the estimated thrust Fm is corrected to be small, so that the estimated thrust Fm estimated by the estimation unit 42 fluctuates so as to wave due to the structure of the pump 12. However, the wave height of this fluctuation is corrected to be small.
  • the numerical value excluding the sign of the estimated thrust Fm input to the relief valve control unit 43 is the actual value when the frequency of the target thrust Fref is a low frequency less than 10 Hz. Since the value is smaller than the numerical value of the thrust of the actuator A, the deviation ⁇ obtained by the deviation calculating unit 43a becomes large. However, the value of the proportional gain K multiplied by the deviation ⁇ by the gain multiplication unit 43c in the relief valve control unit 43 is set to a value smaller than that of the first embodiment in accordance with the increase in the deviation ⁇ . .
  • the proportional gain is set so that the thrust follows the target thrust Fref without causing the command voltage V to be excessive. Both K and gain Ky are tuned.
  • the correction unit 50 when the frequency of the target thrust Fref is a low frequency of less than 10 Hz, the fluctuation of the estimated thrust Fm after the correction can be suppressed.
  • the thrust of A can be made to follow the target thrust Fref with high accuracy.
  • the command voltage V becomes excessive when the correction unit 50 corrects the numerical value excluding the sign of the estimated thrust Fm to increase the deviation ⁇ .
  • the correction unit 50 outputs a value obtained by multiplying the estimated thrust Fm estimated by the estimation unit 42 by the gain Ky. There is no significant difference from the corrected estimated thrust Fm. Therefore, the estimated thrust Fm input to the relief valve control unit 43 is a value close to the thrust actually output by the actuator A.
  • the target thrust Fref is a high frequency
  • the fluctuation due to the influence of the structure of the pump 12 of the estimated thrust Fm estimated by the estimation unit 42 has little adverse effect on the control in the controller C2. From the above, even when the frequency of the target thrust Fref is a high frequency of 10 Hz or more, the command voltage V is prevented from becoming excessive, and the thrust of the actuator A can follow the target thrust Fref with high accuracy.
  • the railcar damping device V2 includes the correction unit 50 that corrects the estimated thrust Fm based on the frequency of the target thrust Fref, and thus uses a gear pump for the pump 12. Even so, the driving force of the actuator A can be made to follow the target thrust Fref in the entire frequency range of the target thrust Fref, so that the riding comfort in the vehicle can be further improved.
  • the railcar damping device V2 in the second embodiment not only the operational effect of the railcar damping device V1 in the first embodiment is exhibited, but also the riding comfort in the vehicle is more effective. Can be improved. Further, when the correction unit 50 is configured as described above, the correction unit 50 corrects the estimated thrust Fm without performing processing that causes a time delay, so that it is not necessary to cause deterioration in control performance.
  • the relief valve control unit 43 includes only a proportional path by multiplying the deviation ⁇ by the proportional gain K and performs only the proportional compensation.
  • the integration path or the integration path And a configuration in which a differential path is added.
  • the frequency characteristics of the gain in the filter 50a in the correction unit 50 may be any characteristics in which the gain increases as the frequency of the target thrust Fref increases.
  • the degree of change according to the minimum and maximum values of the gain and the gain frequency can be appropriately changed so as to be suitable for damping the vehicle body B of the railway vehicle.
  • the railcar vibration damping device V2 in the second embodiment includes a proportional path that multiplies the proportional gain K by the deviation ⁇ , and is therefore proportional to the gain Ky when the correction unit 50 corrects the estimated thrust Fm. Tuning of the two gains K can be performed, and the riding comfort of the vehicle can be further effectively improved by causing the thrust of the actuator A to follow the target thrust Fref with high accuracy in the entire frequency range of the target thrust Fref.
  • the correction unit 50 may be a low-pass filter, and the estimated thrust Fm estimated due to the influence of the structure of the pump 12 may fluctuate so as to wave. In this way, since the vibration component of the estimated thrust Fm can be removed, the proportional gain K does not need to be set small, and the thrust of the actuator A can be controlled so as not to be vibrational, thereby improving riding comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vibration Prevention Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This railroad car vibration damping device (V1) comprises: an actuator (A) which can be expanded and contracted by hydraulic fluid supplied from a pump (12) that is driven by a motor (15); and a controller (C1) which has an estimation unit (42) for estimating the thrust of the actuator (A) from the current of the motor (15), and which feeds back the estimation thrust (Fm) estimated by the estimation unit (42) and controls the actuator (A).

Description

鉄道車両用制振装置Vibration control device for railway vehicles
 本発明は、鉄道車両用制振装置の改良に関する。 The present invention relates to an improvement in a railcar vibration damping device.
 鉄道車両には、車体と前後の台車との間に介装された複動型のアクチュエータと、車体の前後の加速度を検知する加速度センサと、アクチュエータを制御するコントローラを備えて、車体の進行方向に対して左右方向の振動を抑制する鉄道車両用制振装置が設けられる場合がある。 A rail vehicle includes a double-acting actuator interposed between a vehicle body and front and rear carriages, an acceleration sensor that detects acceleration in the front and rear of the vehicle body, and a controller that controls the actuator. In some cases, a railcar damping device that suppresses vibration in the left-right direction is provided.
 このような鉄道車両用制振装置では、たとえばJP2013-1304Aに開示されているように、コントローラは、加速度センサで検知した加速度に基づいて、アクチュエータが発生すべき制御力を求め、アクチュエータに車体の振動を抑制する推力を発揮させて車体の振動を抑制する(たとえば、特許文献1参照)。 In such a railway vehicle vibration damping device, as disclosed in JP2013-1304A, for example, the controller obtains a control force to be generated by the actuator based on the acceleration detected by the acceleration sensor, and the actuator is connected to the vehicle body. The thrust of the vibration is exerted to suppress the vibration of the vehicle body (see, for example, Patent Document 1).
 前述の鉄道車両用制振装置におけるアクチュエータは、電動油圧シリンダとされており、モータで駆動されるポンプからシリンダに供給される圧油によって、伸縮作動するようになっている。 The actuator in the above-described railcar vibration damping device is an electro-hydraulic cylinder, which is extended and contracted by pressure oil supplied to the cylinder from a pump driven by a motor.
 そして、鉄道車両用制振装置では、モータでポンプを一定回転させてシリンダ内へ圧油を供給しつつ、シリンダ内の圧力を可変リリーフ弁によって調節してアクチュエータの推力を制御する開ループ制御を行っている。 In a railcar vibration damping device, an open-loop control that controls the thrust of the actuator by adjusting the pressure in the cylinder with a variable relief valve while supplying the pressure oil into the cylinder by rotating the pump at a constant speed with a motor. Is going.
 しかしながら、開ループ制御では、たとえば、外力によりアクチュエータが伸縮して生じる流量変動等といった外乱の影響でアクチュエータの推力を狙い通りに制御できない場合がある。よって、より高い制振効果を得たい場合には、アクチュエータの推力を観測し、推力をフィードバックする閉ループ制御を行う必要がある。 However, in the open loop control, there is a case where the thrust of the actuator cannot be controlled as intended due to the influence of a disturbance such as a flow rate fluctuation caused by the expansion and contraction of the actuator due to an external force. Therefore, in order to obtain a higher vibration damping effect, it is necessary to perform closed loop control in which the thrust of the actuator is observed and the thrust is fed back.
 閉ループ制御には、アクチュエータの推力の検知が必要である。推力を検知するには、ロードセンサを用いて直接的に推力を検知するか、シリンダ内の圧力を検知する圧力センサを利用する方法が考えられるが、ロードセンサを用いるのは一般的ではないし、いずれにせよセンサが必要となるので、システムが高価となる問題がある。 閉 Closed loop control requires detection of actuator thrust. In order to detect the thrust, a method of directly detecting the thrust using a load sensor or a method using a pressure sensor for detecting the pressure in the cylinder can be considered, but it is not common to use a load sensor. In any case, since a sensor is required, there is a problem that the system becomes expensive.
 そこで、本発明は、高い制振効果が得られ、かつ、安価な鉄道車両用制振装置の提供を目的としている。 Therefore, an object of the present invention is to provide an inexpensive railway vehicle vibration damping device that can obtain a high vibration damping effect.
 そのため、本発明の鉄道車両用制振装置は、モータで駆動されるポンプからの作動液体の供給により伸縮可能なアクチュエータと、前記モータの電流から前記アクチュエータの推力を推定する推定部を有して、前記推定部が推定した推定推力をフィードバックして前記アクチュエータを制御するコントローラとを備えている。このように構成された鉄道車両用制振装置では、アクチュエータの制御にあたり、アクチュエータの荷重やシリンダ内の圧力を検知するセンサを用いずとも、推力をフィードバックする閉ループ制御を実施できる。 Therefore, the railcar damping device of the present invention includes an actuator that can be expanded and contracted by supplying a working liquid from a pump driven by a motor, and an estimation unit that estimates the thrust of the actuator from the current of the motor. And a controller for controlling the actuator by feeding back the estimated thrust estimated by the estimation unit. In the railcar damping device configured as described above, closed loop control that feeds back thrust can be performed without using a sensor that detects the load of the actuator or the pressure in the cylinder in controlling the actuator.
図1は、第一の実施の形態における鉄道車両用制振装置を搭載した鉄道車両の断面である。FIG. 1 is a cross-sectional view of a railway vehicle on which the railway vehicle vibration damping device according to the first embodiment is mounted. 図2は、アクチュエータの一例の詳細図である。FIG. 2 is a detailed view of an example of the actuator. 図3は、第一の実施の形態の鉄道車両用制振装置におけるコントローラの制御ブロック図である。FIG. 3 is a control block diagram of a controller in the railcar damping device of the first embodiment. 図4は、モータのトルクとアクチュエータの実際の推力との関係を示した図である。FIG. 4 is a diagram showing the relationship between the motor torque and the actual thrust of the actuator. 図5は、第一の実施の形態の鉄道車両用制振装置のコントローラの一変形例における制御ブロック図である。FIG. 5 is a control block diagram in a modified example of the controller of the railcar vibration damping device of the first exemplary embodiment. 図6は、第一の実施の形態の鉄道車両用制振装置のコントローラの他の変形例における制御ブロック図である。FIG. 6 is a control block diagram in another modified example of the controller of the railcar vibration damping device of the first exemplary embodiment. 図7は、第二の実施の形態の鉄道車両用制振装置におけるコントローラの制御ブロック図である。FIG. 7 is a control block diagram of a controller in the railcar vibration damping device of the second embodiment. 図8は、補正部におけるフィルタの周波数特性を示した図である。FIG. 8 is a diagram illustrating the frequency characteristics of the filter in the correction unit.
 <第一の実施の形態>
第一の実施の形態の鉄道車両用制振装置V1は、鉄道車両の車体Bの制振装置として使用され、図1および図2に示すように、モータ15で駆動されるポンプ12からの作動液体の供給により伸縮可能なアクチュエータAと、アクチュエータAを制御するコントローラC1とを備えて構成されている。
<First embodiment>
The railcar damping device V1 according to the first embodiment is used as a damping device for the vehicle body B of the railcar, and is operated from a pump 12 driven by a motor 15 as shown in FIGS. An actuator A that can be expanded and contracted by supplying liquid and a controller C1 that controls the actuator A are provided.
 アクチュエータAは、詳細には、鉄道車両の場合、車体Bの下方に垂下されるピンPに連結され、車体Bと台車Tとの間で対を成して並列に介装されている。台車Tは、車輪Wを回転自在に保持しており、車体Bと台車Tとの間には、枕ばねと称される懸架ばねSが介装され、車体Bが弾性支持されることにより、台車Tに対する車体Bの横方向への移動が許容されている。 In detail, in the case of a railway vehicle, the actuator A is connected to a pin P suspended below the vehicle body B, and is interposed between the vehicle body B and the carriage T in parallel. The carriage T rotatably holds the wheel W, and a suspension spring S called a pillow spring is interposed between the vehicle body B and the carriage T, and the vehicle body B is elastically supported. Movement of the vehicle body B in the lateral direction relative to the carriage T is allowed.
 そして、これらのアクチュエータAは、基本的には、コントローラC1によるアクティブ制御で車体Bの車両進行方向に対して水平横方向の振動を抑制するようになっている。 These actuators A are basically configured to suppress vibration in the horizontal and lateral directions with respect to the vehicle traveling direction of the vehicle body B by active control by the controller C1.
 コントローラC1は、加速度センサ40が検知する車体Bの車両進行方向に対して水平横方向の加速度αに基づいて、アクチュエータAが発生すべき目標推力Frefを求め、各アクチュエータAに目標推力Fref通りの推力を発生させる指令を与える。このようにして、鉄道車両用制振装置V1は、アクチュエータAに目標推力Frefを発揮させて車体Bの前記横方向の振動を抑制する。 The controller C1 obtains the target thrust Fref to be generated by the actuator A based on the acceleration α in the horizontal and horizontal direction with respect to the vehicle traveling direction of the vehicle body B detected by the acceleration sensor 40, and applies each actuator A according to the target thrust Fref. Gives a command to generate thrust. In this way, the railcar vibration damping device V1 causes the actuator A to exert the target thrust Fref to suppress the lateral vibration of the vehicle body B.
 つづいて、アクチュエータAの具体的な構成について説明する。なお、アクチュエータAは、台車Tに対して一つ設けられても、複数設けられていてもよい。アクチュエータAが複数設けられる場合、コントローラC1で全部のアクチュエータAを制御してもよいし、アクチュエータA毎にコントローラC1を設けてもよい。 Next, a specific configuration of the actuator A will be described. One actuator A or a plurality of actuators A may be provided for the carriage T. When a plurality of actuators A are provided, all the actuators A may be controlled by the controller C1, or a controller C1 may be provided for each actuator A.
 アクチュエータAは、本例では図2に示すように、鉄道車両の車体Bと台車Tの一方に連結されるシリンダ2と、シリンダ2内に摺動自在に挿入されるピストン3と、シリンダ2内に挿入されて車体Bと台車Tの他方とピストン3とに連結されるロッド4と、作動液体を貯留するタンク7と、タンク7から作動液体を吸い上げてロッド側室5へ作動液体を供給可能なポンプ12と、ポンプ12を駆動するモータ15と、アクチュエータAの伸縮の切換と推力を制御する液圧回路HCとを備えており、片ロッド型のアクチュエータとして構成されている。 In this example, as shown in FIG. 2, the actuator A includes a cylinder 2 connected to one of a vehicle body B and a carriage T of a railway vehicle, a piston 3 slidably inserted into the cylinder 2, Rod 4 connected to the other of the vehicle body B and the carriage T and the piston 3, a tank 7 for storing the working liquid, and the working liquid can be sucked up from the tank 7 and supplied to the rod side chamber 5. A pump 12, a motor 15 that drives the pump 12, and a hydraulic circuit HC that controls the switching of the expansion and contraction of the actuator A and the thrust are configured as a single rod type actuator.
 また、前記ロッド側室5とピストン側室6には、本例では、作動液体として作動油が充填されるとともに、タンク7には、作動油の他に気体が充填されている。なお、タンク7内は、特に、気体を圧縮して充填して加圧状態とする必要は無い。また、作動液体は、作動油以外にも他の液体を利用してもよい。 Further, in this example, the rod side chamber 5 and the piston side chamber 6 are filled with working oil as working liquid, and the tank 7 is filled with gas in addition to working oil. In addition, it is not necessary to compress and fill the inside of the tank 7 with a gas in particular. In addition to the working oil, other liquids may be used as the working liquid.
 液圧回路HCは、ロッド側室5とピストン側室6とを連通する第一通路8に設けた切換弁としての第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10に設けた切換弁としての第二開閉弁11と、ロッド側室5とタンク7とを接続する排出通路21に設けた開弁圧を変更可能な可変リリーフ弁22とを備えている。 The hydraulic circuit HC includes a first on-off valve 9 as a switching valve provided in the first passage 8 that communicates the rod side chamber 5 and the piston side chamber 6, and a second passage 10 that communicates the piston side chamber 6 and the tank 7. A second opening / closing valve 11 as a switching valve provided, and a variable relief valve 22 capable of changing the valve opening pressure provided in the discharge passage 21 connecting the rod side chamber 5 and the tank 7 are provided.
 そして、基本的には、第一開閉弁9で第一通路8を連通状態とし、第二開閉弁11を閉じてポンプ12を駆動すると、アクチュエータAが伸長し、第二開閉弁11で第二通路10を連通状態とし、第一開閉弁9を閉じてポンプ12を駆動すると、アクチュエータAが収縮する。 Basically, when the first opening / closing valve 9 is in communication with the first passage 8, the second opening / closing valve 11 is closed and the pump 12 is driven, the actuator A extends, and the second opening / closing valve 11 causes the second opening / closing valve 11 to When the passage 10 is in a communicating state, the first on-off valve 9 is closed and the pump 12 is driven, the actuator A contracts.
 以下、アクチュエータAの各部について詳細に説明する。シリンダ2は筒状であって、その図2中右端は蓋13によって閉塞され、図2中左端には環状のロッドガイド14が取り付けられている。また、前記ロッドガイド14内には、シリンダ2内に移動自在に挿入されるロッド4が摺動自在に挿入されている。このロッド4は、一端をシリンダ2外へ突出させており、シリンダ2内の他端をシリンダ2内に摺動自在に挿入されるピストン3に連結している。 Hereinafter, each part of the actuator A will be described in detail. The cylinder 2 has a cylindrical shape, the right end in FIG. 2 is closed by a lid 13, and an annular rod guide 14 is attached to the left end in FIG. A rod 4 that is movably inserted into the cylinder 2 is slidably inserted into the rod guide 14. One end of the rod 4 protrudes outside the cylinder 2, and the other end in the cylinder 2 is connected to a piston 3 that is slidably inserted into the cylinder 2.
 なお、ロッドガイド14の外周とシリンダ2との間は図示を省略したシール部材によってシールされており、これによりシリンダ2内は密閉状態に維持されている。そして、シリンダ2内にピストン3によって区画されるロッド側室5とピストン側室6には、前述のように作動油が充填されている。 The space between the outer periphery of the rod guide 14 and the cylinder 2 is sealed by a seal member (not shown), whereby the inside of the cylinder 2 is maintained in a sealed state. The rod-side chamber 5 and the piston-side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with hydraulic oil as described above.
 また、このアクチュエータAの場合、ロッド4の断面積をピストン3の断面積の二分の一にして、ピストン3のロッド側室5側の受圧面積がピストン側室6側の受圧面積の二分の一となるようになっている。よって、伸長作動時と収縮作動時とでロッド側室5の圧力を同じにすると、伸縮の双方で発生される推力が等しくなり、アクチュエータAの変位量に対する作動油量も伸縮両側で同じとなる。 In the case of this actuator A, the rod 4 has a cross-sectional area that is ½ of the cross-sectional area of the piston 3, and the pressure-receiving area of the piston 3 on the rod-side chamber 5 side is ½ of the pressure-receiving area on the piston-side chamber 6 side. It is like that. Therefore, when the pressure in the rod side chamber 5 is the same during the extension operation and during the contraction operation, the thrust generated in both expansion and contraction becomes equal, and the amount of hydraulic oil with respect to the displacement amount of the actuator A becomes the same in both expansion and contraction.
 詳しくは、アクチュエータAを伸長作動させる場合、ロッド側室5とピストン側室6を連通させた状態とする。すると、ロッド側室5内とピストン側室6内の圧力が等しくなり、アクチュエータAは、ピストン3におけるロッド側室5側とピストン側室6側の受圧面積差に前記圧力を乗じた推力を発生する。反対に、アクチュエータAを収縮作動させる場合、ロッド側室5とピストン側室6との連通を断ちピストン側室6をタンク7に連通させた状態とする。すると、アクチュエータAは、ロッド側室5内の圧力とピストン3におけるロッド側室5側の受圧面積を乗じた推力を発生する。 Specifically, when the actuator A is extended, the rod side chamber 5 and the piston side chamber 6 are in communication with each other. Then, the pressures in the rod side chamber 5 and the piston side chamber 6 become equal, and the actuator A generates a thrust obtained by multiplying the pressure receiving area difference between the rod side chamber 5 side and the piston side chamber 6 side in the piston 3 by the pressure. On the contrary, when the actuator A is contracted, the communication between the rod side chamber 5 and the piston side chamber 6 is cut off and the piston side chamber 6 is connected to the tank 7. Then, the actuator A generates a thrust obtained by multiplying the pressure in the rod side chamber 5 by the pressure receiving area of the piston 3 on the rod side chamber 5 side.
 要するに、アクチュエータAの発生推力は伸縮の双方でピストン3の断面積の二分の一にロッド側室5の圧力を乗じた値となるのである。したがって、このアクチュエータAの推力を制御する場合、伸長作動、収縮作動共に、ロッド側室5の圧力を制御すればよい。また、本例のアクチュエータAでは、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しているので、伸縮両側で同じ推力を発生する場合に伸長側と収縮側でロッド側室5の圧力が同じとなるので制御が簡素となる。加えて、変位量に対する作動油量も同じとなるので伸縮両側で応答性が同じとなる利点がある。なお、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しない場合にあっても、ロッド側室5の圧力でアクチュエータAの伸縮両側の推力を制御できる点は変わらない。 In short, the thrust generated by the actuator A is a value obtained by multiplying a half of the cross-sectional area of the piston 3 by the pressure in the rod side chamber 5 in both expansion and contraction. Therefore, when the thrust of the actuator A is controlled, the pressure in the rod side chamber 5 may be controlled for both the extension operation and the contraction operation. Further, in the actuator A of the present example, the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to one half of the pressure receiving area on the piston side chamber 6 side. Since the pressure in the rod side chamber 5 is the same on the contraction side, the control is simplified. In addition, since the amount of hydraulic oil with respect to the amount of displacement is the same, there is an advantage that the responsiveness is the same on both sides of expansion and contraction. In addition, even when the pressure receiving area on the rod side chamber 5 side of the piston 3 is not set to ½ of the pressure receiving area on the piston side chamber 6 side, the thrust on both sides of the actuator A can be controlled by the pressure of the rod side chamber 5. Will not change.
 戻って、ロッド4の図2中左端とシリンダ2の右端を閉塞する蓋13とには、図示しない取付部を備えており、このアクチュエータAを鉄道車両における車体Bと台車Tとの間に介装できるようになっている。 Returning, the lid 4 that closes the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown), and this actuator A is interposed between the vehicle body B and the carriage T in the railway vehicle. Can be disguised.
 そして、ロッド側室5とピストン側室6とは、第一通路8によって連通されており、この第一通路8の途中には、第一開閉弁9が設けられている。この第一通路8は、シリンダ2外でロッド側室5とピストン側室6とを連通しているが、ピストン3に設けられてもよい。 The rod side chamber 5 and the piston side chamber 6 communicate with each other through a first passage 8, and a first opening / closing valve 9 is provided in the middle of the first passage 8. The first passage 8 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
 第一開閉弁9は、電磁開閉弁とされており、第一通路8を開放してロッド側室5とピストン側室6とを連通する連通ポジションと、第一通路8を遮断してロッド側室5とピストン側室6との連通を断つ遮断ポジションとを備えている。そして、この第一開閉弁9は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 The first on-off valve 9 is an electromagnetic on-off valve. The first on-off valve 9 is opened to connect the rod-side chamber 5 and the piston-side chamber 6, and the first on-off passage 8 is shut off to connect to the rod-side chamber 5. And a blocking position for disconnecting communication with the piston side chamber 6. And this 1st on-off valve 9 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
 つづいて、ピストン側室6とタンク7とは、第二通路10によって連通されており、この第二通路10の途中には、第二開閉弁11が設けられている。第二開閉弁11は、電磁開閉弁とされており、第二通路10を開放してピストン側室6とタンク7とを連通する連通ポジションと、第二通路10を遮断してピストン側室6とタンク7との連通を断つ遮断ポジションとを備えている。そして、この第二開閉弁11は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 Subsequently, the piston side chamber 6 and the tank 7 are communicated with each other by a second passage 10, and a second opening / closing valve 11 is provided in the middle of the second passage 10. The second on-off valve 11 is an electromagnetic on-off valve, which opens the second passage 10 to communicate the piston side chamber 6 and the tank 7, and shuts off the second passage 10 to connect the piston side chamber 6 and the tank. 7 and a shut-off position that cuts off communication with 7. And this 2nd on-off valve 11 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
 ポンプ12は、コントローラC1に制御されて所定の回転数で回転するモータ15によって駆動され、一方向のみに作動油を吐出するギヤポンプとされている。そして、ポンプ12の吐出口は供給通路16によってロッド側室5へ連通されるとともに吸込口はタンク7に通じていて、ポンプ12は、モータ15によって駆動されるとタンク7から作動油を吸込んでロッド側室5へ作動油を供給する。 The pump 12 is a gear pump that is controlled by the controller C1 and is driven by a motor 15 that rotates at a predetermined rotational speed, and discharges hydraulic oil only in one direction. The discharge port of the pump 12 communicates with the rod side chamber 5 through the supply passage 16 and the suction port communicates with the tank 7. When driven by the motor 15, the pump 12 sucks hydraulic oil from the tank 7 and Hydraulic oil is supplied to the side chamber 5.
 前述のようにポンプ12は、一定の回転数で回転するように制御され、一方向のみに作動油を吐出するのみで回転方向の切換動作がないので、回転切換時に吐出量が変化するといった問題は皆無である。さらに、ポンプ12の回転方向が常に同一方向であるので、ポンプ12を駆動する駆動源であるモータ15にあっても回転切換に対する高い応答性が要求されず、その分、モータ15も安価なものを使用できる。なお、供給通路16の途中には、ロッド側室5からポンプ12への作動油の逆流を阻止する逆止弁17が設けられている。なお、モータ15は、コントローラC1によって制御される図示しないインバータ回路から電力供給を受けて駆動される。 As described above, the pump 12 is controlled to rotate at a constant rotational speed, and only discharges hydraulic oil in one direction, and there is no rotation direction switching operation. There is nothing. Further, since the rotation direction of the pump 12 is always the same direction, even the motor 15 that is a drive source for driving the pump 12 does not require high responsiveness to rotation switching, and the motor 15 is also inexpensive. Can be used. A check valve 17 that prevents the backflow of hydraulic oil from the rod side chamber 5 to the pump 12 is provided in the supply passage 16. The motor 15 is driven by receiving power supply from an inverter circuit (not shown) controlled by the controller C1.
 さらに、本例の液圧回路HCは、前述したように、ロッド側室5とタンク7とを接続する排出通路21と、排出通路21の途中に設けた開弁圧を変更可能な可変リリーフ弁22を備えている。 Further, as described above, the hydraulic circuit HC of the present example includes the discharge passage 21 that connects the rod side chamber 5 and the tank 7, and the variable relief valve 22 that can change the valve opening pressure provided in the middle of the discharge passage 21. It has.
 可変リリーフ弁22は、本例では、比例電磁リリーフ弁とされており、供給される電流に応じて開弁圧を調節でき、前記電流が最大となると開弁圧を最小とし、電流の供給がないと開弁圧を最大とするようになっている。 In this example, the variable relief valve 22 is a proportional electromagnetic relief valve, and the valve opening pressure can be adjusted according to the supplied current. When the current reaches the maximum, the valve opening pressure is minimized and the supply of current is reduced. Otherwise, the valve opening pressure is maximized.
 このように、排出通路21と可変リリーフ弁22とを設けると、アクチュエータAを伸縮作動させる際に、ロッド側室5内の圧力を可変リリーフ弁22の開弁圧に調節でき、アクチュエータAの推力を可変リリーフ弁22へ供給する電流で制御できる。排出通路21と可変リリーフ弁22とを設けると、アクチュエータAの推力を調節するために必要なセンサ類が不要となり、ポンプ12の吐出流量の調節のためにモータ15を高度に制御する必要もなくなる。よって、鉄道車両用制振装置V1が安価となり、ハードウェア的にもソフトウェア的にも堅牢なシステムを構築できる。 As described above, when the discharge passage 21 and the variable relief valve 22 are provided, when the actuator A is expanded and contracted, the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22, and the thrust of the actuator A can be increased. It can be controlled by the current supplied to the variable relief valve 22. When the discharge passage 21 and the variable relief valve 22 are provided, sensors necessary for adjusting the thrust force of the actuator A are not necessary, and it is not necessary to highly control the motor 15 for adjusting the discharge flow rate of the pump 12. . Therefore, the railcar damping device V1 is inexpensive, and a robust system can be constructed in terms of hardware and software.
 なお、第一開閉弁9を開いて第二開閉弁11を閉じる場合或いは第一開閉弁9を閉じて第二開閉弁11を開く場合、ポンプ12の駆動状況に関わらず、外力からの振動入力に対して伸長或いは収縮のいずれか一方にのみアクチュエータAが減衰力を発揮できる。よって、たとえば、減衰力を発揮する方向が鉄道車両の台車Tの振動により車体Bを加振する方向である場合、そのような方向には減衰力を出さないようにアクチュエータAを片効きのダンパと機能させ得る。よって、このアクチュエータAは、カルノップのスカイフック理論に基づくセミアクティブ制御を容易に実現できるため、セミアクティブダンパとしても機能できる。 When the first on-off valve 9 is opened and the second on-off valve 11 is closed, or when the first on-off valve 9 is closed and the second on-off valve 11 is opened, vibration input from an external force is applied regardless of the driving state of the pump 12. On the other hand, the actuator A can exhibit a damping force only in one of expansion and contraction. Therefore, for example, when the direction in which the damping force is exerted is the direction in which the vehicle body B is vibrated by the vibration of the bogie T of the railway vehicle, the actuator A is provided with a one-effect damper so that no damping force is generated in such a direction. And can function. Therefore, since this actuator A can easily realize semi-active control based on Karnop's Skyhook theory, it can also function as a semi-active damper.
 なお、可変リリーフ弁22に与える電流で開弁圧を比例的に変化させる比例電磁リリーフ弁を用いると開弁圧の制御が簡単となるが、開弁圧を調節できる可変リリーフ弁であれば比例電磁リリーフ弁に限定されない。 The use of a proportional electromagnetic relief valve that proportionally changes the valve opening pressure with the current applied to the variable relief valve 22 makes it easy to control the valve opening pressure. However, any variable relief valve that can adjust the valve opening pressure is proportional. It is not limited to an electromagnetic relief valve.
 そして、可変リリーフ弁22は、第一開閉弁9および第二開閉弁11の開閉状態に関わらず、アクチュエータAに伸縮方向の過大な入力があって、ロッド側室5の圧力が開弁圧を超える状態となると、排出通路21を開放する。このように、可変リリーフ弁22は、ロッド側室5の圧力が開弁圧以上となると、ロッド側室5内の圧力をタンク7へ排出するので、シリンダ2内の圧力が過大となるのを防止してアクチュエータAのシステム全体を保護する。よって、排出通路21と可変リリーフ弁22を設けると、システムの保護も可能となる。 In the variable relief valve 22, regardless of whether the first on-off valve 9 and the second on-off valve 11 are open or closed, the actuator A has an excessive input in the expansion / contraction direction, and the pressure in the rod side chamber 5 exceeds the valve opening pressure. When the state is reached, the discharge passage 21 is opened. As described above, the variable relief valve 22 discharges the pressure in the rod side chamber 5 to the tank 7 when the pressure in the rod side chamber 5 becomes equal to or higher than the valve opening pressure, so that the pressure in the cylinder 2 is prevented from becoming excessive. To protect the entire system of the actuator A. Therefore, if the discharge passage 21 and the variable relief valve 22 are provided, the system can be protected.
 なお、本例のアクチュエータAにおける液圧回路HCには、前述の構成に加えて、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19を備えている。よって、第一開閉弁9および第二開閉弁11が閉弁する状態でアクチュエータAが伸縮すると、シリンダ2内から作動油が押し出される。そして、シリンダ2内から排出された作動油の流れに対して可変リリーフ弁22が抵抗を与えるので、第一開閉弁9および第二開閉弁11が閉弁する状態では、本例のアクチュエータAはユニフロー型のダンパとして機能する。 In addition to the above-described configuration, the hydraulic circuit HC in the actuator A of this example includes a rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 to the rod side chamber 5, and the tank 7 to the piston side chamber 6. A suction passage 19 that allows only the flow of hydraulic oil toward the head is provided. Therefore, when the actuator A expands and contracts while the first on-off valve 9 and the second on-off valve 11 are closed, hydraulic oil is pushed out from the cylinder 2. Since the variable relief valve 22 provides resistance to the flow of hydraulic oil discharged from the cylinder 2, the actuator A of the present example is in a state where the first on-off valve 9 and the second on-off valve 11 are closed. Functions as a uniflow type damper.
 より詳細には、整流通路18は、ピストン側室6とロッド側室5とを連通しており、途中に逆止弁18aが設けられ、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。さらに、吸込通路19は、タンク7とピストン側室6とを連通しており、途中に逆止弁19aが設けられ、タンク7からピストン側室6へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。なお、整流通路18は、第一開閉弁9の遮断ポジションを逆止弁とすると第一通路8に集約でき、吸込通路19についても、第二開閉弁11の遮断ポジションを逆止弁とすると第二通路10に集約できる。 More specifically, the rectifying passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5. It is set as a one-way passage. Further, the suction passage 19 communicates between the tank 7 and the piston side chamber 6, and a check valve 19 a is provided in the middle to allow only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. Is set to The rectifying passage 18 can be integrated into the first passage 8 when the shut-off position of the first on-off valve 9 is a check valve, and the suction passage 19 is also the first when the shut-off position of the second on-off valve 11 is a check valve. It can be concentrated in two passages 10.
 このように構成されたアクチュエータAでは、第一開閉弁9と第二開閉弁11がともに遮断ポジションを採っても、整流通路18、吸込通路19および排出通路21で、ロッド側室5、ピストン側室6およびタンク7を数珠繋ぎに連通させる。また、整流通路18、吸込通路19および排出通路21は、一方通行の通路に設定されている。よって、アクチュエータAが外力によって伸縮すると、シリンダ2から必ず作動油が排出されて排出通路21を介してタンク7へ戻され、シリンダ2で足りなくなる作動油は吸込通路19を介してタンク7からシリンダ2内へ供給される。この作動油の流れに対して前記可変リリーフ弁22が抵抗となってシリンダ2内の圧力を開弁圧に調節するので、アクチュエータAは、パッシブなユニフロー型のダンパとして機能する。 In the actuator A configured as described above, even if the first on-off valve 9 and the second on-off valve 11 are both in the shut-off position, the rod side chamber 5, the piston side chamber 6 in the rectifying passage 18, the suction passage 19, and the discharge passage 21. And the tank 7 is made to communicate with a rosary chain. The rectifying passage 18, the suction passage 19, and the discharge passage 21 are set as one-way passages. Therefore, when the actuator A expands or contracts due to an external force, the hydraulic oil is always discharged from the cylinder 2 and returned to the tank 7 through the discharge passage 21, and the hydraulic oil that is not sufficient in the cylinder 2 passes from the tank 7 to the cylinder through the suction passage 19 2 is supplied. Since the variable relief valve 22 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 2 to the valve opening pressure, the actuator A functions as a passive uniflow type damper.
 また、アクチュエータAの各機器への通電が不能となるようなフェール時には、第一開閉弁9と第二開閉弁11のそれぞれが遮断ポジションを採り、可変リリーフ弁22は、開弁圧が最大に固定された圧力制御弁として機能する。よって、このようなフェール時には、アクチュエータAは、自動的に、パッシブダンパとして機能する。 In addition, at the time of failure that prevents the actuator A from being energized, each of the first on-off valve 9 and the second on-off valve 11 takes the shut-off position, and the variable relief valve 22 has the maximum valve opening pressure. Functions as a fixed pressure control valve. Therefore, during such a failure, the actuator A automatically functions as a passive damper.
 つづいて、アクチュエータAに所望の伸長方向の推力を発揮させる場合、コントローラC1は、基本的には、モータ15を回転させてポンプ12を所定の回転数で回転駆動し、シリンダ2内へ作動油を供給する。そして、第一開閉弁9を連通ポジションとし、第二開閉弁11を遮断ポジションとする。このようにすると、ロッド側室5とピストン側室6とが連通状態におかれて両者にポンプ12から作動油が供給され、ピストン3が図2中左方へ押されアクチュエータAは伸長方向の推力を発揮する。ロッド側室5内およびピストン側室6内の圧力が可変リリーフ弁22の開弁圧を上回ると、可変リリーフ弁22が開弁して作動油が排出通路21を介してタンク7へ排出される。よって、ロッド側室5内およびピストン側室6内の圧力は、可変リリーフ弁22に与える電流で決まる可変リリーフ弁22の開弁圧にコントロールされる。そして、アクチュエータAは、ピストン3におけるピストン側室6側とロッド側室5側の受圧面積差に可変リリーフ弁22によってコントロールされるロッド側室5内およびピストン側室6内の圧力を乗じた値の伸長方向の推力を発揮する。 Subsequently, when causing the actuator A to exert a desired thrust in the extending direction, the controller C1 basically rotates the motor 15 to rotationally drive the pump 12 at a predetermined number of rotations, and hydraulic oil enters the cylinder 2. Supply. And let the 1st on-off valve 9 be a communicating position, and let the 2nd on-off valve 11 be a cutoff position. In this way, the rod side chamber 5 and the piston side chamber 6 are in communication with each other, and hydraulic oil is supplied to both of them from the pump 12, the piston 3 is pushed to the left in FIG. 2, and the actuator A generates thrust in the extension direction. Demonstrate. When the pressure in the rod side chamber 5 and the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 7 through the discharge passage 21. Therefore, the pressure in the rod side chamber 5 and the piston side chamber 6 is controlled by the valve opening pressure of the variable relief valve 22 determined by the current applied to the variable relief valve 22. The actuator A then extends in the direction of extension of the value obtained by multiplying the pressure receiving area difference between the piston side chamber 6 side and the rod side chamber 5 side of the piston 3 by the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22. Demonstrate thrust.
 これに対して、アクチュエータAに所望の収縮方向の推力を発揮させる場合、コントローラC1は、モータ15を回転させてポンプ12からロッド側室5内へ作動油を供給しつつ、第一開閉弁9を遮断ポジションとし、第二開閉弁11を連通ポジションとする。このようにすると、ピストン側室6とタンク7が連通状態におかれるとともにロッド側室5にポンプ12から作動油が供給されるので、ピストン3が図2中右方へ押されアクチュエータAは収縮方向の推力を発揮する。そして、前述と同様に、可変リリーフ弁22の電流を調節すると、アクチュエータAは、ピストン3におけるロッド側室5側の受圧面積と可変リリーフ弁22にコントロールされるロッド側室5内の圧力を乗じた収縮方向の推力を発揮する。 On the other hand, when causing the actuator A to exert a thrust in a desired contraction direction, the controller C1 rotates the motor 15 and supplies the hydraulic oil from the pump 12 into the rod side chamber 5, while the first on-off valve 9 is turned on. The shut-off position is set, and the second on-off valve 11 is set to the communication position. As a result, the piston side chamber 6 and the tank 7 are brought into communication with each other and the hydraulic oil is supplied to the rod side chamber 5 from the pump 12, so that the piston 3 is pushed rightward in FIG. Demonstrate thrust. As described above, when the current of the variable relief valve 22 is adjusted, the actuator A contracts by multiplying the pressure receiving area of the piston 3 on the rod side chamber 5 side by the pressure in the rod side chamber 5 controlled by the variable relief valve 22. Demonstrate direction thrust.
 ここで、ポンプ12における作動油を押し出すギヤは、ロッド側室5内の圧力に応じた抵抗を受けるため、ポンプ12を回転駆動するモータ15は、ロッド側室5内の圧力に見合ったトルクを出力する。つまり、モータ15が出力するトルクは、ロッド側室5内の圧力に比例する関係にあり、モータ15の出力トルクが分かれば、ロッド側室5内の圧力を推定できる。そして、前述したように、アクチュエータAは、伸長する場合も収縮する場合も、ロッド側室5内の圧力に応じた推力を発揮するので、モータ15の出力トルクが分かれば、アクチュエータAが発揮する推力を推定できる。 Here, since the gear for pushing out the hydraulic oil in the pump 12 receives resistance according to the pressure in the rod side chamber 5, the motor 15 that rotationally drives the pump 12 outputs a torque corresponding to the pressure in the rod side chamber 5. . That is, the torque output from the motor 15 is proportional to the pressure in the rod side chamber 5, and if the output torque of the motor 15 is known, the pressure in the rod side chamber 5 can be estimated. As described above, the actuator A exerts a thrust according to the pressure in the rod side chamber 5 regardless of whether it extends or contracts. Therefore, if the output torque of the motor 15 is known, the thrust exerted by the actuator A Can be estimated.
 また、前述したところから理解できるように、第一開閉弁9と第二開閉弁11は、アクチュエータAが推力を発揮する際の伸縮方向を切換える切換弁として機能している。 Further, as can be understood from the above description, the first on-off valve 9 and the second on-off valve 11 function as switching valves for switching the expansion / contraction direction when the actuator A exerts thrust.
 なお、本例のアクチュエータAにあっては、アクチュエータとして機能するのみならず、モータ15の駆動状況に関わらず、第一開閉弁9と第二開閉弁11の開閉のみでダンパとしても機能できる。また、アクチュエータAをアクチュエータからダンパへ切換える際に、面倒かつ急峻な第一開閉弁9と第二開閉弁11の切換動作を伴わないので、応答性および信頼性が高いシステムを提供できる。 Note that the actuator A of this example not only functions as an actuator, but also functions as a damper only by opening and closing the first on-off valve 9 and the second on-off valve 11 regardless of the driving state of the motor 15. Further, when switching the actuator A from the actuator to the damper, there is no troublesome and steep switching operation of the first on-off valve 9 and the second on-off valve 11, so that a system with high responsiveness and reliability can be provided.
 また、本例のアクチュエータAにあっては、片ロッド型に設定されているので、両ロッド型のアクチュエータに比較してストローク長を確保しやすく、アクチュエータの全長が短くなって、鉄道車両への搭載性が向上する。 In addition, since the actuator A of this example is set to a single rod type, it is easier to secure a stroke length than the double rod type actuator, and the total length of the actuator is shortened. Mountability is improved.
 本例のアクチュエータAにおけるポンプ12からの作動油供給および伸縮作動による作動油の流れは、ロッド側室5、ピストン側室6を順に通過して最終的にタンク7へ還流するようになっている。そのため、ロッド側室5あるいはピストン側室6内に気体が混入しても、アクチュエータAの伸縮作動によって自立的にタンク7へ排出されるので、推力発生の応答性の悪化を阻止できる。したがって、アクチュエータAの製造にあたって、面倒な油中での組立や真空環境下での組立を強いられず、作動油の高度な脱気も不要となるので、生産性が向上するとともに製造コストを低減できる。さらに、ロッド側室5あるいはピストン側室6内に気体が混入しても、気体は、アクチュエータAの伸縮作動によって自立的にタンク7へ排出されるので、性能回復のためのメンテナンスを頻繁に行う必要もなくなり、保守面における労力とコスト負担を軽減できる。 In the actuator A of this example, the hydraulic oil supplied from the pump 12 and the flow of hydraulic oil by the expansion and contraction operation pass through the rod side chamber 5 and the piston side chamber 6 in order, and finally return to the tank 7. Therefore, even if gas is mixed into the rod side chamber 5 or the piston side chamber 6, the actuator A is automatically discharged to the tank 7 by the expansion / contraction operation, so that it is possible to prevent deterioration of the response of thrust generation. Therefore, when manufacturing the actuator A, it is not necessary to assemble in troublesome oil or in a vacuum environment, and advanced degassing of hydraulic oil is not required, improving productivity and reducing manufacturing cost. it can. Furthermore, even if gas is mixed in the rod side chamber 5 or the piston side chamber 6, the gas is automatically discharged to the tank 7 by the expansion / contraction operation of the actuator A. Therefore, it is necessary to frequently perform maintenance for performance recovery. The maintenance labor and cost burden can be reduced.
 なお、アクチュエータAの構成は、以上に限定されるものではなく、たとえば、シリンダとポンプとの間に、ポンプをシリンダの伸側室と圧側室のいずれか一方を選択して連通可能な切換弁を設けるといった構成の採用も可能である。このような構成としても、ポンプが作動油を供給している室内の圧力の抵抗を受けるので、ポンプを駆動するモータの出力トルクからアクチュエータAの推力を推定できる。 The configuration of the actuator A is not limited to the above. For example, a switching valve capable of communicating with the pump by selecting one of the expansion side chamber and the pressure side chamber of the cylinder is provided between the cylinder and the pump. It is also possible to adopt a configuration such as providing. Even in such a configuration, the pressure of the pressure in the room to which the pump supplies hydraulic oil is received, so that the thrust of the actuator A can be estimated from the output torque of the motor driving the pump.
 つづいて、本例のコントローラC1は、図3に示すように、加速度センサ40が検知する車体Bの車両進行方向に対して水平横方向の加速度αに基づいてアクチュエータAが出力すべき目標推力Frefを求める目標推力演算部41と、モータ15の電流からアクチュエータAの推力を推定する推定部42と、目標推力Frefと推定推力Fmとの偏差εから可変リリーフ弁22へ与える電流に応じた指令電圧Vを求めるリリーフ弁制御部43と、モータ15を所定の回転数で駆動制御するモータ制御部44と、指令電圧Vに基づいて可変リリーフ弁22を駆動するリリーフ弁駆動部45と、第一開閉弁9、第二開閉弁11を駆動制御する開閉弁駆動部46とを備えている。 Subsequently, as shown in FIG. 3, the controller C1 of the present example, the target thrust Fref to be output by the actuator A based on the acceleration α in the horizontal and horizontal direction with respect to the vehicle traveling direction of the vehicle body B detected by the acceleration sensor 40. A target thrust calculation unit 41 that calculates the thrust, an estimation unit 42 that estimates the thrust of the actuator A from the current of the motor 15, and a command voltage corresponding to the current applied to the variable relief valve 22 from the deviation ε between the target thrust Fref and the estimated thrust Fm A relief valve control unit 43 for obtaining V, a motor control unit 44 for driving and controlling the motor 15 at a predetermined rotational speed, a relief valve driving unit 45 for driving the variable relief valve 22 based on the command voltage V, and a first opening / closing And an on-off valve drive unit 46 for driving and controlling the valve 9 and the second on-off valve 11.
 目標推力演算部41は、加速度センサ40が検知する加速度αに含まれる曲線走行時の定常加速度、ドリフト成分やノイズを除去するバンドパスフィルタで加速度を処理して、アクチュエータAが発揮すべき目標推力Frefを求める。目標推力演算部41は、本例では、H∞制御器とされており、加速度αから車体Bの振動を抑制するためにアクチュエータAが出力すべき推力を指示する目標推力Frefを求める。なお、目標推力Frefは、方向により正負の符号が付されており、符号はアクチュエータAに出力させるべき推力の方向を示す。 The target thrust calculation unit 41 processes the acceleration with a bandpass filter that removes steady acceleration, drift components, and noise during curve running included in the acceleration α detected by the acceleration sensor 40, and the target thrust that the actuator A should exert Find Fref. In this example, the target thrust calculation unit 41 is an H∞ controller, and obtains a target thrust Fref that indicates the thrust to be output by the actuator A in order to suppress the vibration of the vehicle body B from the acceleration α. The target thrust Fref is given a positive or negative sign depending on the direction, and the sign indicates the direction of the thrust to be output to the actuator A.
 モータ制御部44は、モータ15の回転数を監視しており、モータ15の回転数をフィードバック(速度フィードバック)して、ポンプ12を前述した所定の回転数で回転駆動するようにモータ15を制御する。より詳細には、モータ制御部44は、ポンプ12を所定の回転数で回転させるためのモータ15の目標回転数とモータ15の実際の回転数との偏差からモータ15へ与える電流指令を生成して、モータ15を制御する。このように、モータ制御部44は、モータ15の回転数が目標回転数となるようにモータ15を制御する。 The motor control unit 44 monitors the number of rotations of the motor 15, feeds back the number of rotations of the motor 15 (speed feedback), and controls the motor 15 to rotationally drive the pump 12 at the predetermined number of rotations described above. To do. More specifically, the motor control unit 44 generates a current command to be given to the motor 15 from the deviation between the target rotational speed of the motor 15 and the actual rotational speed of the motor 15 for rotating the pump 12 at a predetermined rotational speed. Then, the motor 15 is controlled. Thus, the motor control unit 44 controls the motor 15 so that the rotation speed of the motor 15 becomes the target rotation speed.
 推定部42は、アクチュエータAが発揮している推力を推定し、推定推力Fmを求める。具体的には、まず、推定部42は、モータ15に流れる電流を検知して、この電流からアクチュエータAの推力の大きさを推定する。前述のように、ポンプ12がロッド側室5内の圧力の抵抗を受ける関係にあるため、モータ15のトルクとアクチュエータAの推力とは、ほぼ比例関係にある。モータ15のトルクは、モータ15のTI特性からモータ15に流れる電流から求められる。よって、モータ15に流れる電流からアクチュエータAの推力の大きさを求め得る。本例では、モータ15のトルクとアクチュエータAの実際の推力を計測して、図4に示すように、モータ15のトルクとアクチュエータAの実際の推力との関係を予め把握しておく。そして、この関係を数式化するか、或いは、マップ化しておけば、モータ15に流れる電流からトルクを求め、求めたトルクから容易にアクチュエータAの推力の大きさを推定できる。数式化に際しては、たとえば、最小二乗法等を用いて近似式を得て、この近似式を数式として用いればよい。なお、図4で、モータ15のトルクがt1以上とならないとアクチュエータAの推力が発揮されないのは、アクチュエータA、ポンプ12およびモータ15の摩擦に起因している。このようにして、アクチュエータAが発揮する推力の大きさは、モータ15に流れる電流から求め得るが、アクチュエータAの推力の方向が伸長方向なのか収縮方向なのかを判定する必要がある。 The estimation unit 42 estimates the thrust exerted by the actuator A and obtains the estimated thrust Fm. Specifically, the estimation unit 42 first detects the current flowing through the motor 15 and estimates the magnitude of the thrust of the actuator A from this current. As described above, since the pump 12 receives the pressure resistance in the rod side chamber 5, the torque of the motor 15 and the thrust of the actuator A are in a substantially proportional relationship. The torque of the motor 15 is obtained from the current flowing through the motor 15 from the TI characteristics of the motor 15. Therefore, the magnitude of the thrust of the actuator A can be obtained from the current flowing through the motor 15. In this example, the torque of the motor 15 and the actual thrust of the actuator A are measured, and the relationship between the torque of the motor 15 and the actual thrust of the actuator A is grasped in advance as shown in FIG. Then, if this relationship is formulated or mapped, the torque can be obtained from the current flowing through the motor 15 and the magnitude of the thrust of the actuator A can be easily estimated from the obtained torque. In formulating, for example, an approximate expression may be obtained using a least square method and the approximate expression may be used as an expression. In FIG. 4, the reason why the thrust of the actuator A is not exerted unless the torque of the motor 15 becomes t1 or more is due to friction of the actuator A, the pump 12 and the motor 15. Thus, the magnitude of the thrust exerted by the actuator A can be obtained from the current flowing through the motor 15, but it is necessary to determine whether the direction of the thrust of the actuator A is the expansion direction or the contraction direction.
 そこで、推定部42は、目標推力演算部41が求めた目標推力Frefの符号からアクチュエータAが推力を発揮すべき方向が伸長方向なのか或いは収縮方向なのかを判定する。つまり、極性を判定する。目標推力Frefは、数値がアクチュエータAの推力の大きさを、符号がアクチュエータAの推力の方向である極性を指示しており、推定部42は、符号を用いて極性判定を行う。本例では、アクチュエータAに伸長方向の推力を発揮させる場合、目標推力Frefが正の値をとり、反対に、アクチュエータAに収縮方向の推力を発揮させる場合、目標推力Frefが負の値をとるように設定してある。このように、推定部42は、モータ15の電流からアクチュエータAの推力の大きさを求め、目標推力Frefの符号から極性判定を行って、推力を推定して推定推力Fmを求める。よって、推定部42は、たとえば、モータ15の電流から求めたアクチュエータAの推力の大きさがaである場合、極性がプラスで伸長方向を示していると推定推力Fmを+aと推定し、極性がマイナスで収縮方向を示していると推定推力Fmを-aと推定する。なお、アクチュエータAに伸長方向の推力を発揮させる場合に目標推力Frefが負の値をとり、アクチュエータAに収縮方向の推力を発揮させる場合に目標推力Frefが正の値をとるように設定してもよい。 Therefore, the estimation unit 42 determines whether the direction in which the actuator A should exert the thrust is the expansion direction or the contraction direction from the sign of the target thrust Fref obtained by the target thrust calculation unit 41. That is, the polarity is determined. In the target thrust Fref, the numerical value indicates the magnitude of the thrust of the actuator A, and the sign indicates the polarity that is the direction of the thrust of the actuator A, and the estimation unit 42 performs polarity determination using the sign. In this example, when the actuator A exerts a thrust in the extension direction, the target thrust Fref takes a positive value. Conversely, when the actuator A exerts a thrust in the contraction direction, the target thrust Fref takes a negative value. It is set as follows. In this way, the estimation unit 42 obtains the magnitude of the thrust of the actuator A from the current of the motor 15, performs polarity determination from the sign of the target thrust Fref, estimates the thrust, and obtains the estimated thrust Fm. Therefore, for example, when the magnitude of the thrust of the actuator A obtained from the current of the motor 15 is a, the estimation unit 42 estimates the estimated thrust Fm as + a when the polarity is positive and indicates the extension direction, and the polarity Is minus and indicates the contraction direction, the estimated thrust Fm is estimated as -a. The target thrust Fref takes a negative value when the actuator A exerts a thrust in the extension direction, and the target thrust Fref takes a positive value when the actuator A exerts a thrust in the contraction direction. Also good.
 リリーフ弁制御部43は、目標推力演算部41が求めた目標推力Frefと推定推力Fmとの偏差εから指令電圧Vを求める。本例では、リリーフ弁制御部43は、比例補償器とされており、目標推力Frefと推定推力Fmとの偏差εを求める偏差演算部43aと、偏差εを絶対値処理する絶対値処理部43bと、絶対値処理された偏差|ε|に比例ゲインKを乗じるゲイン乗算部43cと、ゲイン乗算部43cが求めた値|ε|Kからリリーフ弁駆動部45へ与える指令電圧Vを求める指令電圧演算部43dとを備えている。指令電圧演算部43dは、予め、アクチュエータAの推力とこの推力を実現するためのリリーフ弁駆動部45へ与えるべき電圧との関係をマップ或いは数式として保有している。よって、指令電圧演算部43dは、前述のマップ或いは数式を利用し、値|ε|Kをパラメータとしてリリーフ弁駆動部45への指令電圧Vを求める。 The relief valve control unit 43 obtains the command voltage V from the deviation ε between the target thrust Fref obtained by the target thrust computing unit 41 and the estimated thrust Fm. In this example, the relief valve control unit 43 is a proportional compensator, and includes a deviation calculation unit 43a that calculates a deviation ε between the target thrust Fref and the estimated thrust Fm, and an absolute value processing unit 43b that performs absolute value processing on the deviation ε. And a gain multiplier 43c that multiplies the absolute value processed deviation | ε | by a proportional gain K, and a command voltage for obtaining a command voltage V to be applied to the relief valve drive unit 45 from a value | ε | K obtained by the gain multiplier 43c. And an arithmetic unit 43d. The command voltage calculation unit 43d previously stores a relationship between the thrust of the actuator A and the voltage to be applied to the relief valve drive unit 45 for realizing this thrust as a map or a mathematical expression. Therefore, the command voltage calculation unit 43d obtains the command voltage V to the relief valve drive unit 45 by using the above-described map or mathematical expression and using the value | ε | K as a parameter.
 リリーフ弁駆動部45は、可変リリーフ弁22を駆動するドライバ回路を備えており、リリーフ弁制御部43から指令電圧Vの入力を受けて、可変リリーフ弁22へ指令電圧Vに応じた電流を可変リリーフ弁22へ供給する。このようにリリーフ弁駆動部45は、可変リリーフ弁22へ供給する電流を指令電圧Vに応じて調節して、可変リリーフ弁22の開弁圧を制御する。 The relief valve drive unit 45 includes a driver circuit that drives the variable relief valve 22, and receives a command voltage V input from the relief valve control unit 43, and changes the current corresponding to the command voltage V to the variable relief valve 22. Supply to the relief valve 22. Thus, the relief valve drive unit 45 controls the valve opening pressure of the variable relief valve 22 by adjusting the current supplied to the variable relief valve 22 according to the command voltage V.
 開閉弁駆動部46は、目標推力演算部41が求めた目標推力Frefの符号からアクチュエータAの伸縮方向である極性を判定して、第一開閉弁9と第二開閉弁11を駆動制御する。目標推力Frefが指示するアクチュエータAの極性が伸長方向である場合、開閉弁駆動部46は、第一開閉弁9と第二開閉弁11を駆動して、第一開閉弁9を連通ポジションとし第二開閉弁11を遮断ポジションとする。他方、目標推力Frefが指示するアクチュエータAの極性が収縮方向である場合、開閉弁駆動部46は、第一開閉弁9と第二開閉弁11を駆動して、第一開閉弁9を遮断ポジションとし第二開閉弁11を連通ポジションとする。 The on-off valve driver 46 determines the polarity in the expansion / contraction direction of the actuator A from the sign of the target thrust Fref obtained by the target thrust calculator 41, and drives and controls the first on-off valve 9 and the second on-off valve 11. When the polarity of the actuator A indicated by the target thrust Fref is in the extending direction, the on-off valve drive unit 46 drives the first on-off valve 9 and the second on-off valve 11 to place the first on-off valve 9 in the communication position. The two on-off valve 11 is set to the cutoff position. On the other hand, when the polarity of the actuator A indicated by the target thrust Fref is in the contraction direction, the on-off valve drive unit 46 drives the first on-off valve 9 and the second on-off valve 11 to turn off the first on-off valve 9 in the cutoff position. The second on-off valve 11 is set to the communication position.
 なお、コントローラC1における目標推力演算部41、推定部42およびリリーフ弁制御部43は、ハードウェア資源としては、図示はしないが具体的にはたとえば、加速度センサ40が出力する信号を取り込むためのA/D変換器と、加速度センサ40の出力値を取り込んでアクチュエータAを制御するのに必要な処理に使用されるプログラムが格納されるROM(Read Only Memory)等の記憶装置と、前記プログラムに基づいた処理を実行するCPU(Central Processing Unit)等の演算装置と、前記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置とを備えて構成されればよく、CPUの前記プログラムの実行により実現できる。 Note that the target thrust calculation unit 41, the estimation unit 42, and the relief valve control unit 43 in the controller C1 are not illustrated as hardware resources, but specifically, for example, A for capturing a signal output from the acceleration sensor 40. A D / D converter, a storage device such as a ROM (Read Only Memory) in which a program used for controlling the actuator A by taking the output value of the acceleration sensor 40 is stored, and based on the program And a processing device such as a CPU (Central Processing Unit) that executes the processing, and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU. It can be realized by execution.
 前述のように、第一の実施の形態の鉄道車両用制振装置V1は、モータ15で駆動されるポンプ12からの作動油の供給により伸縮可能なアクチュエータAと、モータ15の電流からアクチュエータAの推力を推定する推定部42とを有して推定部42が推定した推定推力FmをフィードバックしてアクチュエータAを制御するコントローラC1を備えている。 As described above, the railcar damping device V1 according to the first embodiment includes the actuator A that can be expanded and contracted by supplying hydraulic oil from the pump 12 driven by the motor 15, and the actuator A based on the current of the motor 15. And a controller C1 that controls the actuator A by feeding back the estimated thrust Fm estimated by the estimation unit 42.
 よって、コントローラC1は、加速度センサ40で検知した加速度αに基づいて目標推力Frefを求め、モータ15に流れる電流に基づいてアクチュエータAの推力を推定して推定推力Fmをフィードバックして、閉ループ制御にてアクチュエータAを制御できる。 Therefore, the controller C1 obtains the target thrust Fref based on the acceleration α detected by the acceleration sensor 40, estimates the thrust of the actuator A based on the current flowing through the motor 15, and feeds back the estimated thrust Fm for closed loop control. Thus, the actuator A can be controlled.
 このように、本発明の鉄道車両用制振装置V1にあっては、アクチュエータAの制御にあたり、アクチュエータAの荷重やシリンダ2内の圧力を検知するセンサを用いずとも、推定推力Fmをフィードバックする閉ループ制御を実施できる。 Thus, in the railcar vibration damping device V1 of the present invention, the estimated thrust Fm is fed back without using a sensor for detecting the load of the actuator A or the pressure in the cylinder 2 when controlling the actuator A. Closed loop control can be implemented.
 よって、本発明の鉄道車両用制振装置V1によれば、外乱の入力があってもアクチュエータAの推力を目標推力Frefに追従させ得るので、高い制振効果が得られる。さらに、本発明の鉄道車両用制振装置V1によれば、閉ループ制御にあたり、アクチュエータAの荷重やシリンダ2内の圧力を検知するセンサの設置も要しないのでシステムが安価となる。以上より、本発明の鉄道車両用制振装置V1によれば、鉄道車両の車体Bの制振にあたって、高い制振効果が得られるとともに、システムも安価となる。また、鉄道車両用制振装置V1によれば、開ループ制御では可変リリーフ弁22の開弁圧の精度が要求されるのでチューニング作業が面倒であったが、閉ループ制御ではアクチュエータAの推定推力のフィードバックによって可変リリーフ弁22の開弁圧が自動的に調整されるので可変リリーフ弁22の開弁圧のチューニング作業が非常に容易となる。 Therefore, according to the railway vehicle vibration damping device V1 of the present invention, the thrust of the actuator A can follow the target thrust Fref even if there is an input of a disturbance, so that a high vibration damping effect is obtained. Further, according to the railcar damping device V1 of the present invention, the system is inexpensive because it is not necessary to install a sensor for detecting the load of the actuator A or the pressure in the cylinder 2 in the closed loop control. As described above, according to the railcar damping device V1 of the present invention, a high damping effect can be obtained and the system can be inexpensive in damping the vehicle body B of the railcar. Further, according to the railcar damping device V1, tuning work is troublesome because the open-loop control requires accuracy of the valve opening pressure of the variable relief valve 22, but in the closed-loop control, the estimated thrust of the actuator A is reduced. Since the valve opening pressure of the variable relief valve 22 is automatically adjusted by feedback, the tuning operation of the valve opening pressure of the variable relief valve 22 becomes very easy.
 また、推定部42は、アクチュエータAの目標推力Frefに基づいて、アクチュエータAの極性を判定するので、モータ15の回転方向を一方向のみとするような場合でも、アクチュエータAの推力を推定できる。なお、アクチュエータAの構成がシリンダの伸側室と圧側室とを連通する通路の途中に双方向吐出型のポンプを設けた構成となっている場合、モータの回転方向を切換えてアクチュエータAの伸縮を切換えるようになる。このような構成のアクチュエータAの場合、推定部42は、モータに流れる電流から極性判定も行えるので、前記電流のみから推定推力Fmを求め得る。このようにアクチュエータAを構成し、推定部42がモータに流れる電流のみからアクチュエータAの推力を推定して推定推力Fmを求めてもよいが、モータが双方向に回転する場合、モータの回転方向が切換わる際に慣性の影響もあって、アクチュエータAの伸縮方向の切換わりにおいて推力が目標推力Frefに追従しづらくなる。よって、推定部42がアクチュエータAの目標推力Frefに基づいてアクチュエータAの極性を判定する場合、アクチュエータAに一方向へのみ回転駆動されるモータ15の使用が可能となり、アクチュエータAの伸縮方向の切換わりに際しても推力が目標推力Frefに追従しやすくなる。以上より、推定部42がアクチュエータAの目標推力Frefに基づいてアクチュエータAの伸縮方向である極性を判定する本例の鉄道車両用制振装置V1によれば、高応答のアクチュエータAの使用が可能となって、より高い制振効果が得られる。 Further, since the estimation unit 42 determines the polarity of the actuator A based on the target thrust Fref of the actuator A, the thrust of the actuator A can be estimated even when the rotation direction of the motor 15 is only one direction. When the configuration of the actuator A is a configuration in which a bidirectional discharge type pump is provided in the middle of a passage communicating the extension side chamber and the pressure side chamber of the cylinder, the rotation direction of the motor is switched to extend and contract the actuator A. It comes to switch. In the case of the actuator A having such a configuration, the estimation unit 42 can also determine the polarity from the current flowing through the motor, so that the estimated thrust Fm can be obtained only from the current. Thus, the actuator A may be configured, and the estimation unit 42 may estimate the thrust of the actuator A from only the current flowing through the motor to obtain the estimated thrust Fm. However, when the motor rotates in both directions, the rotation direction of the motor Since there is an influence of inertia when switching, the thrust becomes difficult to follow the target thrust Fref when the actuator A is switched in the expansion / contraction direction. Therefore, when the estimation unit 42 determines the polarity of the actuator A based on the target thrust Fref of the actuator A, the motor 15 that is rotationally driven only in one direction by the actuator A can be used, and the expansion / contraction direction of the actuator A can be switched. Even in this case, the thrust easily follows the target thrust Fref. As described above, according to the railcar vibration damping device V1 of this example in which the estimation unit 42 determines the polarity in the expansion / contraction direction of the actuator A based on the target thrust Fref of the actuator A, the highly responsive actuator A can be used. Thus, a higher vibration damping effect can be obtained.
 なお、前述したところでは、極性判定に目標推力演算部41が求めた目標推力Frefを利用しているが、推定部42は、切換弁としての第一開閉弁9および第二開閉弁11の動作状況、本例では、第一開閉弁9および第二開閉弁11の開閉状況から極性を判定してもよい。開閉弁駆動部46は、アクチュエータAを伸長させる場合、第一開閉弁9へ電流供給し、第二開閉弁11へは電流供給しない。また、開閉弁駆動部46は、アクチュエータAを収縮させる場合、第一開閉弁9へは電流供給せず、第二開閉弁11へ電流供給する。このように、本例では、第一開閉弁9および第二開閉弁11の開閉状況からアクチュエータAの極性を判定できる。よって、アクチュエータAの極性判定に際して、図5に示すように、推定部42は、切換弁である第一開閉弁9および第二開閉弁11の励磁状態を監視または励磁信号により両者の動作状況を把握し、極性判定を行ってアクチュエータAの推力を推定してもよい。第一開閉弁9および第二開閉弁11が自身のポジションをセンシングする手段を有している場合には、推定部42は、前記手段から得られるポジションから切換弁である第一開閉弁9および第二開閉弁11の動作状況を把握し、極性判定を行ってもよい。要するに、推定部42は、切換弁の動作状況に基づいて極性判定を行ってもよいのである。このように鉄道車両用制振装置V1が構成される場合、アクチュエータAの伸縮方向を正確に把握できるので、アクチュエータAの推力を正確に推定できる。また、この場合も、アクチュエータAに一方向へのみ回転駆動されるモータ15の使用が可能となるから、高応答のアクチュエータAの使用が可能となって、より高い制振効果が得られる。 In the above description, the target thrust Fref obtained by the target thrust calculation unit 41 is used for polarity determination, but the estimation unit 42 operates the first on-off valve 9 and the second on-off valve 11 as switching valves. In the situation, in this example, the polarity may be determined from the opening / closing states of the first opening / closing valve 9 and the second opening / closing valve 11. When the actuator A is extended, the on-off valve driving unit 46 supplies current to the first on-off valve 9 and does not supply current to the second on-off valve 11. Further, when the actuator A is contracted, the on-off valve driving unit 46 does not supply current to the first on-off valve 9 but supplies current to the second on-off valve 11. Thus, in this example, the polarity of the actuator A can be determined from the opening / closing states of the first opening / closing valve 9 and the second opening / closing valve 11. Therefore, when determining the polarity of the actuator A, as shown in FIG. 5, the estimation unit 42 monitors the excitation states of the first on-off valve 9 and the second on-off valve 11 that are switching valves or determines the operation status of both by the excitation signal. The thrust of the actuator A may be estimated by grasping and determining the polarity. When the first on-off valve 9 and the second on-off valve 11 have a means for sensing their own position, the estimation unit 42 includes the first on-off valve 9 and the switching valve from the position obtained from the means. The operation status of the second on-off valve 11 may be grasped and the polarity may be determined. In short, the estimation unit 42 may perform polarity determination based on the operation state of the switching valve. When the railcar damping device V1 is configured in this way, the expansion / contraction direction of the actuator A can be accurately grasped, so that the thrust of the actuator A can be accurately estimated. Also in this case, since the motor 15 that is rotationally driven only in one direction by the actuator A can be used, the highly responsive actuator A can be used, and a higher vibration damping effect can be obtained.
 なお、図6に示すように、リリーフ弁制御部43は、偏差εを絶対値処理する絶対値処理部43bの代わりに、目標推力Frefを絶対値処理する絶対値処理部43eと推定された推定推力Fmを絶対値処理する絶対値処理部43fを備える構成とされてもよい。偏差演算部43aでは、絶対値処理された目標推力|Fref|と絶対値処理された推定推力|Fm|との偏差εを演算して、ゲイン乗算部43cと指令電圧演算部43dとでその後の処理を行えばよい。 As shown in FIG. 6, the relief valve control unit 43 is estimated to be an absolute value processing unit 43e that performs absolute value processing of the target thrust Fref instead of the absolute value processing unit 43b that performs absolute value processing of the deviation ε. An absolute value processing unit 43f that performs absolute value processing on the thrust Fm may be provided. The deviation calculator 43a calculates a deviation ε between the absolute value processed target thrust | Fref | and the absolute value processed estimated force | Fm |, and the gain multiplier 43c and the command voltage calculator 43d thereafter What is necessary is just to process.
 また、前述したところでは、リリーフ弁制御部43は、比例ゲインKを偏差εに乗じる比例パスのみを備えて比例補償のみを行うようになっているが、比例パスに加えて積分パス或いは積分パスと微分パスを追加した構成を備えていてもよい。 In addition, as described above, the relief valve control unit 43 includes only a proportional path that multiplies the proportional gain K by the deviation ε and performs only proportional compensation. And a configuration in which a differential path is added.
 さらに、本例の鉄道車両用制振装置V1は、シリンダ2と、ピストン3と、ロッド4と、タンク7と、ロッド側室5へ作動油を供給するポンプ12と、ポンプ12を駆動するモータ15と、ロッド側室5とピストン側室6とを連通する第一通路8に設けた第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10に設けた第二開閉弁11と、ロッド側室5とタンク7とを接続する排出通路21に設けた開弁圧を変更可能な可変リリーフ弁22と、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19とを備えている。このように構成された鉄道車両用制振装置V1では、ポンプ12が停止されていても、アクチュエータAがスカイフックセミアクティブダンパとして機能するので、ポンプ12の停止中も制振効果が失われない。 Further, the railcar damping device V1 of this example includes a cylinder 2, a piston 3, a rod 4, a tank 7, a pump 12 that supplies hydraulic oil to the rod side chamber 5, and a motor 15 that drives the pump 12. A first on-off valve 9 provided in a first passage 8 that communicates the rod-side chamber 5 and the piston-side chamber 6, and a second on-off valve 11 provided in a second passage 10 that communicates the piston-side chamber 6 and the tank 7. The variable relief valve 22 that can change the valve opening pressure provided in the discharge passage 21 connecting the rod side chamber 5 and the tank 7 and the rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5. And a suction passage 19 that allows only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. In the railcar damping device V1 configured in this way, even if the pump 12 is stopped, the actuator A functions as a skyhook semi-active damper, so that the damping effect is not lost even when the pump 12 is stopped. .
 <第二の実施の形態>
第二の実施の形態の鉄道車両用制振装置V2は、図7に示すように、第一の実施の形態の鉄道車両用制振装置V1とは、コントローラC2における構成が異なっている。第二の実施の形態の鉄道車両用制振装置V2では、コントローラC2は、第一の実施の形態におけるコントローラC1の構成に、目標推力Frefの周波数に基づいて推定推力Fmを補正する補正部50を加えた構成となっている。
<Second Embodiment>
As shown in FIG. 7, the railcar damping device V2 of the second embodiment differs from the railcar damping device V1 of the first embodiment in the configuration of the controller C2. In the railcar vibration damping device V2 of the second embodiment, the controller C2 is a correction unit 50 that corrects the estimated thrust Fm based on the frequency of the target thrust Fref in the configuration of the controller C1 in the first embodiment. It becomes the composition which added.
 前述したように、本例におけるアクチュエータAのポンプ12は、ギヤポンプである。ギヤポンプは、二つのギヤが噛み合いながら回転して作動油を吸込口から吸込みつつ吐出口から吐出するようになっているが、バックラッシがある関係でギヤ同士の噛み合いの抵抗が変化する。他方、ポンプ12を駆動するモータ15は、モータ制御部44によって前述の所定の回転数で等速回転するように制御されている。よって、ポンプ12は、所定の回転数で等速回転するのであるが、ギヤ同士の噛み合いの抵抗が変化するために、モータ15は等速回転しつつもトルク自体は変動する。このトルク変動は、ポンプ12の回転とともに周期的に表れる。 As described above, the pump 12 of the actuator A in this example is a gear pump. The gear pump rotates while the two gears are engaged with each other and discharges the hydraulic oil from the discharge port while sucking the hydraulic oil from the intake port. However, the engagement resistance between the gears changes due to the backlash. On the other hand, the motor 15 that drives the pump 12 is controlled by the motor control unit 44 so as to rotate at a constant speed at the predetermined rotation speed described above. Therefore, although the pump 12 rotates at a constant speed at a predetermined rotation speed, the torque itself varies while the motor 15 rotates at a constant speed because the meshing resistance of the gears changes. This torque fluctuation appears periodically with the rotation of the pump 12.
 したがって、モータ制御部44からモータ15へ供給される電流も変動するので、推定部42で推定するアクチュエータAの推定推力Fmも同様に脈動するので、得られる推定推力Fmも波打つように変動する。よって、たとえば、目標推力Frefが一定値を採る場合にあっても、推定推力Fmが変動するので偏差εも変動する。比例ゲインKの値を高く設定すると、アクチュエータAの推力が目標推力Frefに追従しやすくなるのであるが、そのようにすると、推定推力Fmの変動の影響で得られる指令電圧Vも大きく波打った波形となってアクチュエータAが実際に出力する推力も大きく変動してしまう。このアクチュエータAの推力の変動は、車体Bに余計な振動を与えるので、乗心地を劣化させる一因となり得る。このように、制御性の観点から比例ゲインKを高くしたい要望があるものの、比例ゲインKの値を低く抑えないと、乗心地が劣化してしまう。乗心地の劣化は、目標推力Frefが低周波である場合に顕著となり、高周波である場合には然程問題にならない。 Therefore, since the current supplied from the motor control unit 44 to the motor 15 also fluctuates, the estimated thrust Fm of the actuator A estimated by the estimation unit 42 also pulsates in the same manner, so that the obtained estimated thrust Fm also fluctuates so as to wave. Therefore, for example, even when the target thrust Fref takes a constant value, the deviation ε also varies because the estimated thrust Fm varies. When the value of the proportional gain K is set high, the thrust of the actuator A can easily follow the target thrust Fref. However, the command voltage V obtained by the influence of the fluctuation of the estimated thrust Fm is greatly waved. The thrust that is actually output by the actuator A in the form of a waveform also varies greatly. The fluctuation of the thrust force of the actuator A gives extra vibration to the vehicle body B, which can be a cause of deterioration of riding comfort. As described above, although there is a demand to increase the proportional gain K from the viewpoint of controllability, riding comfort is deteriorated unless the value of the proportional gain K is kept low. The deterioration of riding comfort becomes significant when the target thrust Fref is low frequency, and does not become a problem when the target thrust Fref is high frequency.
 そこで、第二の実施の形態の鉄道車両用制振装置V2では、推定推力Fmを補正する補正部50を備えている。補正部50は、推定部42が求めた推定推力Fmを濾波するフィルタ50aと、フィルタ50aで濾波した推定推力FmにゲインKyを乗じるゲイン乗算部50bとを備えている。 Therefore, the railway vehicle vibration damping device V2 according to the second embodiment includes a correction unit 50 that corrects the estimated thrust Fm. The correction unit 50 includes a filter 50a that filters the estimated thrust Fm obtained by the estimation unit 42, and a gain multiplication unit 50b that multiplies the estimated thrust Fm filtered by the filter 50a by a gain Ky.
 フィルタ50aは、図8に示すように、目標推力演算部41が求めた目標推力Frefの周波数が高くなるとゲインが高くなる特性を持つフィルタである。フィルタ50aの特性は、ゲインの最大値を0dB、最小値を-6dBとして、目標推力Frefの周波数が10Hz以上となると0dBに漸近してより高周波となると0dBに収束し、1Hz以下となると-6dBに漸近しより低周波となると-6dBに収束する特性に設定してある。また、ゲイン乗算部50bが濾波後の推定推力Fmに乗じるゲインKyは、1以下の定数に設定されている。 As shown in FIG. 8, the filter 50a is a filter having a characteristic that the gain increases as the frequency of the target thrust Fref obtained by the target thrust calculator 41 increases. The characteristic of the filter 50a is that the maximum value of the gain is 0 dB and the minimum value is −6 dB. The characteristic is set to converge to -6 dB when the frequency becomes asymptotic to a lower frequency. The gain Ky that the gain multiplication unit 50b multiplies the estimated thrust Fm after the filtering is set to a constant of 1 or less.
 よって、補正部50は、目標推力Frefの周波数が10Hz未満であると、周波数に応じて推定推力Fmの符号を除く数値が小さくなるように補正される。また、補正部50は、目標推力Frefの周波数が10Hz以上の場合には、推定推力FmにゲインKyを乗じた値に近い値を出力するようになる。目標推力Frefの周波数が10Hz以下である場合、推定推力Fmの符号を除く数値が小さく補正されるので、推定部42が推定した推定推力Fmがポンプ12の構造の影響で波打つように変動してもこの変動分の波高は小さく補正される。 Therefore, when the frequency of the target thrust Fref is less than 10 Hz, the correction unit 50 corrects the numerical value excluding the sign of the estimated thrust Fm according to the frequency. Further, when the frequency of the target thrust Fref is 10 Hz or more, the correction unit 50 outputs a value close to a value obtained by multiplying the estimated thrust Fm by the gain Ky. When the frequency of the target thrust Fref is 10 Hz or less, the numerical value excluding the sign of the estimated thrust Fm is corrected to be small, so that the estimated thrust Fm estimated by the estimation unit 42 fluctuates so as to wave due to the structure of the pump 12. However, the wave height of this fluctuation is corrected to be small.
 このように補正部50が推定推力Fmを補正すると、目標推力Frefの周波数が10Hz未満の低周波の場合には、リリーフ弁制御部43に入力される推定推力Fmの符号を除く数値が実際のアクチュエータAの推力の数値よりも小さくなるので、偏差演算部43aで求める偏差εは大きくなる。しかしながら、リリーフ弁制御部43におけるゲイン乗算部43cが偏差εに乗じる比例ゲインKの値は、偏差εが大きくなる分に見合って第一の実施の形態のそれよりも小さな値に設定してある。目標推力Frefの周波数が10Hz以下でフィルタ50aにおけるゲインが小さくなって偏差εが大きくなっても、指令電圧Vが過大とならずにアクチュエータAを推力が目標推力Frefに追従するように、比例ゲインKとゲインKyの双方をチューニングしてある。 When the correction unit 50 corrects the estimated thrust Fm in this way, the numerical value excluding the sign of the estimated thrust Fm input to the relief valve control unit 43 is the actual value when the frequency of the target thrust Fref is a low frequency less than 10 Hz. Since the value is smaller than the numerical value of the thrust of the actuator A, the deviation ε obtained by the deviation calculating unit 43a becomes large. However, the value of the proportional gain K multiplied by the deviation ε by the gain multiplication unit 43c in the relief valve control unit 43 is set to a value smaller than that of the first embodiment in accordance with the increase in the deviation ε. . Even when the frequency of the target thrust Fref is 10 Hz or less and the gain in the filter 50a decreases and the deviation ε increases, the proportional gain is set so that the thrust follows the target thrust Fref without causing the command voltage V to be excessive. Both K and gain Ky are tuned.
 このように、補正部50を設けると、目標推力Frefの周波数が10Hz未満の低周波の場合には、補正後の推定推力Fmの変動が抑えられるため、指令電圧Vの変動も抑制され、アクチュエータAの推力を目標推力Frefに高精度で追従させ得る。 As described above, when the correction unit 50 is provided, when the frequency of the target thrust Fref is a low frequency of less than 10 Hz, the fluctuation of the estimated thrust Fm after the correction can be suppressed. The thrust of A can be made to follow the target thrust Fref with high accuracy.
 他方、目標推力Frefの周波数が10Hz以上の高周波の場合には、補正部50が推定推力Fmの符号を除く数値を小さく補正して偏差εが大きくなると、指令電圧Vが過大となってしまう。しかしながら、目標推力Frefの周波数が10Hz以上の高周波の場合には、補正部50は、推定部42が推定した推定推力FmにゲインKyを乗じた値を出力するようになるので、推定推力Fmと補正後の推定推力Fmとに差が然程生じないようになる。よって、リリーフ弁制御部43に入力される推定推力Fmは、実際にアクチュエータAが出力している推力に近い値となる。目標推力Frefが高周波である場合、推定部42で推定する推定推力Fmのポンプ12の構造の影響による変動がコントローラC2における制御に与える悪影響が少ない。以上から、目標推力Frefの周波数が10Hz以上の高周波となっても、指令電圧Vが過大となるのが防止されて、アクチュエータAの推力を目標推力Frefに高精度で追従させ得る。 On the other hand, when the frequency of the target thrust Fref is a high frequency of 10 Hz or more, the command voltage V becomes excessive when the correction unit 50 corrects the numerical value excluding the sign of the estimated thrust Fm to increase the deviation ε. However, when the frequency of the target thrust Fref is a high frequency of 10 Hz or higher, the correction unit 50 outputs a value obtained by multiplying the estimated thrust Fm estimated by the estimation unit 42 by the gain Ky. There is no significant difference from the corrected estimated thrust Fm. Therefore, the estimated thrust Fm input to the relief valve control unit 43 is a value close to the thrust actually output by the actuator A. When the target thrust Fref is a high frequency, the fluctuation due to the influence of the structure of the pump 12 of the estimated thrust Fm estimated by the estimation unit 42 has little adverse effect on the control in the controller C2. From the above, even when the frequency of the target thrust Fref is a high frequency of 10 Hz or more, the command voltage V is prevented from becoming excessive, and the thrust of the actuator A can follow the target thrust Fref with high accuracy.
 以上のように、第二の実施の形態における鉄道車両用制振装置V2は、目標推力Frefの周波数に基づいて推定推力Fmを補正する補正部50を備えているので、ポンプ12にギヤポンプを使用しても、目標推力Frefの全周波数域でアクチュエータAの推力を目標推力Frefに追従させて、車両における乗心地をより一層向上できる。 As described above, the railcar damping device V2 according to the second embodiment includes the correction unit 50 that corrects the estimated thrust Fm based on the frequency of the target thrust Fref, and thus uses a gear pump for the pump 12. Even so, the driving force of the actuator A can be made to follow the target thrust Fref in the entire frequency range of the target thrust Fref, so that the riding comfort in the vehicle can be further improved.
 よって、第二の実施の形態における鉄道車両用制振装置V2によれば、第一の実施の形態における鉄道車両用制振装置V1の作用効果を奏するだけでなく、車両における乗心地をより効果的に向上できる。また、補正部50が前述のように構成されると、補正部50は、時間遅れが生じる処理を行わずに推定推力Fmを補正するので、制御性能の悪化を招かずにすむ。 Therefore, according to the railcar damping device V2 in the second embodiment, not only the operational effect of the railcar damping device V1 in the first embodiment is exhibited, but also the riding comfort in the vehicle is more effective. Can be improved. Further, when the correction unit 50 is configured as described above, the correction unit 50 corrects the estimated thrust Fm without performing processing that causes a time delay, so that it is not necessary to cause deterioration in control performance.
 なお、前述したところでは、リリーフ弁制御部43は、比例ゲインKを偏差εに乗じる比例パスのみを備えて比例補償のみを行うようになっているが、比例パスに加えて積分パス或いは積分パスと微分パスを追加した構成を備えていてもよい。また、補正部50におけるフィルタ50aにおけるゲインの周波数特性は、目標推力Frefの周波数が高くなるとゲインが高くなる特性であればよいが、ゲインの最小値と最大値、ゲインの周波数に応じた変化度合等の設定については鉄道車両の車体Bの制振に適するように適宜変更が可能である。 As described above, the relief valve control unit 43 includes only a proportional path by multiplying the deviation ε by the proportional gain K and performs only the proportional compensation. However, in addition to the proportional path, the integration path or the integration path And a configuration in which a differential path is added. Further, the frequency characteristics of the gain in the filter 50a in the correction unit 50 may be any characteristics in which the gain increases as the frequency of the target thrust Fref increases. However, the degree of change according to the minimum and maximum values of the gain and the gain frequency. These settings can be appropriately changed so as to be suitable for damping the vehicle body B of the railway vehicle.
 また、第二の実施の形態における鉄道車両用制振装置V2は、比例ゲインKを偏差εに乗じる比例パスを備えているので、補正部50で推定推力Fmを補正する際のゲインKyと比例ゲインKの二つのゲインのチューニングが可能であり、目標推力Frefの全周波数域でアクチュエータAの推力を高精度に目標推力Frefに追従させて車両における乗心地をより一層効果的に向上できる。 Further, the railcar vibration damping device V2 in the second embodiment includes a proportional path that multiplies the proportional gain K by the deviation ε, and is therefore proportional to the gain Ky when the correction unit 50 corrects the estimated thrust Fm. Tuning of the two gains K can be performed, and the riding comfort of the vehicle can be further effectively improved by causing the thrust of the actuator A to follow the target thrust Fref with high accuracy in the entire frequency range of the target thrust Fref.
 なお、補正部50をローパスフィルタとして、ポンプ12の構造の影響で推定される推定推力Fmが波打つように変動するのをローパスフィルタ処理してもよい。このようにすれば、推定推力Fmの振動成分を除去できるので、比例ゲインKを小さく設定せずともよく、アクチュエータAの推力を振動的にならないように制御でき乗心地を向上できる。 Note that the correction unit 50 may be a low-pass filter, and the estimated thrust Fm estimated due to the influence of the structure of the pump 12 may fluctuate so as to wave. In this way, since the vibration component of the estimated thrust Fm can be removed, the proportional gain K does not need to be set small, and the thrust of the actuator A can be controlled so as not to be vibrational, thereby improving riding comfort.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but modifications, changes, and changes can be made without departing from the scope of the claims.
 本願は、2017年3月3日に日本国特許庁に出願された特願2017-040420に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-040420 filed with the Japan Patent Office on March 3, 2017, the entire contents of which are incorporated herein by reference.

Claims (8)

  1.  鉄道車両用制振装置であって、
     モータで駆動されるポンプからの作動液体の供給により伸縮可能なアクチュエータと、
     前記モータの電流から前記アクチュエータの推力を推定する推定部とを有して、前記推定部が推定した推定推力をフィードバックして前記アクチュエータを制御するコントローラとを備えた
     鉄道車両用制振装置。
    A railway vehicle damping device,
    An actuator that can be expanded and contracted by supplying a working liquid from a pump driven by a motor;
    And a controller for controlling the actuator by feeding back the estimated thrust estimated by the estimation unit, and a controller for controlling the actuator by feeding back the estimated thrust estimated by the estimation unit.
  2.  請求項1に記載の鉄道車両用制振装置であって、
     加速度センサをさらに備え、
     前記コントローラは、前記加速度センサが検知した加速度に基づいて前記アクチュエータの目標推力を求め、
     前記推定部は、前記目標推力に基づいて、前記アクチュエータの伸縮方向である極性を判定する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    An acceleration sensor,
    The controller obtains a target thrust of the actuator based on the acceleration detected by the acceleration sensor,
    The said estimation part determines the polarity which is the expansion-contraction direction of the said actuator based on the said target thrust.
  3.  請求項1に記載の鉄道車両用制振装置であって、
     前記アクチュエータは、伸縮方向を切換える切換弁を有し、
     前記推定部は、前記切換弁の動作状況に基づいて、前記アクチュエータの伸縮方向である極性を判定する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    The actuator has a switching valve for switching the expansion and contraction direction,
    The said estimation part determines the polarity which is the expansion-contraction direction of the said actuator based on the operation condition of the said switching valve.
  4.  請求項2に記載の鉄道車両用制振装置であって、
     前記目標推力の周波数に基づいて、前記推定推力を補正する補正部を備えた
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 2,
    A railcar vibration control device comprising a correction unit that corrects the estimated thrust based on the frequency of the target thrust.
  5.  請求項3に記載の鉄道車両用制振装置であって、
     加速度センサをさらに備え、
     前記コントローラは、前記加速度センサが検知した加速度に基づいて前記アクチュエータの目標推力を求め、
     前記目標推力の周波数に基づいて、前記推定推力を補正する補正部を備えた
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 3,
    An acceleration sensor,
    The controller obtains a target thrust of the actuator based on the acceleration detected by the acceleration sensor,
    A railcar vibration control device comprising a correction unit that corrects the estimated thrust based on the frequency of the target thrust.
  6.  請求項5に記載の鉄道車両用制振装置であって、
     前記コントローラは、前記目標推力と前記推定推力の偏差が入力される比例パスを有し、
     前記補正部は、前記目標推力の周波数が高くなるとゲインが高くなる特性を持つフィルタで前記推定推力を処理して前記推定推力を補正する
     鉄道車両用制振装置。
    The vibration damping device for a railway vehicle according to claim 5,
    The controller has a proportional path to which a deviation between the target thrust and the estimated thrust is input,
    The railroad vehicle vibration damping device that corrects the estimated thrust by processing the estimated thrust with a filter having a characteristic that gain increases as the frequency of the target thrust increases.
  7.  請求項5に記載の鉄道車両用制振装置であって、
     前記補正部は、前記推定推力をローパスフィルタ処理する
     鉄道車両用制振装置。
    The vibration damping device for a railway vehicle according to claim 5,
    The said correction | amendment part is a vibration suppression device for rail vehicles which carries out the low-pass filter process of the said estimated thrust.
  8.  請求項1に記載の鉄道車両用制振装置であって、
     前記アクチュエータは、
     シリンダと、
     前記シリンダ内に摺動自在に挿入されるピストンと、
     前記シリンダ内に挿入されて前記ピストンに連結されるロッドと、
     前記シリンダ内に前記ピストンで区画したロッド側室とピストン側室と、
     タンクと、
     前記タンクから作動液体を吸い上げて前記ロッド側室へ作動液体を供給可能な前記ポンプと、
     前記ポンプを駆動する前記モータと、
     前記ロッド側室と前記ピストン側室とを連通する第一通路に設けた第一開閉弁と、
     前記ピストン側室と前記タンクとを連通する第二通路に設けた第二開閉弁と、
     前記ロッド側室と前記タンクとを接続する排出通路に設けた可変リリーフ弁と、
     前記ピストン側室から前記ロッド側室へ向かう作動油の流れのみを許容する整流通路と、
     前記タンクから前記ピストン側室へ向かう作動油の流れのみを許容する吸込通路とを備えた
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    The actuator is
    A cylinder,
    A piston slidably inserted into the cylinder;
    A rod inserted into the cylinder and connected to the piston;
    A rod side chamber and a piston side chamber partitioned by the piston in the cylinder;
    A tank,
    The pump capable of sucking the working liquid from the tank and supplying the working liquid to the rod side chamber;
    The motor for driving the pump;
    A first on-off valve provided in a first passage communicating the rod side chamber and the piston side chamber;
    A second on-off valve provided in a second passage communicating the piston side chamber and the tank;
    A variable relief valve provided in a discharge passage connecting the rod side chamber and the tank;
    A rectifying passage that allows only the flow of hydraulic oil from the piston side chamber toward the rod side chamber;
    A railcar damping device comprising: a suction passage that allows only a flow of hydraulic oil from the tank toward the piston side chamber.
PCT/JP2018/006867 2017-03-03 2018-02-26 Railroad car vibration damping device WO2018159511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-040420 2017-03-03
JP2017040420A JP6924043B2 (en) 2017-03-03 2017-03-03 Vibration damping device for railway vehicles

Publications (1)

Publication Number Publication Date
WO2018159511A1 true WO2018159511A1 (en) 2018-09-07

Family

ID=63370759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006867 WO2018159511A1 (en) 2017-03-03 2018-02-26 Railroad car vibration damping device

Country Status (2)

Country Link
JP (1) JP6924043B2 (en)
WO (1) WO2018159511A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193982B2 (en) * 2018-03-28 2022-12-21 Kyb株式会社 Vibration damping device for railway vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184017A (en) * 2010-03-11 2011-09-22 Kyb Co Ltd Vibration damping device for railroad vehicle
JP2013001306A (en) * 2011-06-20 2013-01-07 Kyb Co Ltd Damper for railway rolling stock
JP2013189088A (en) * 2012-03-14 2013-09-26 Kyb Co Ltd Damping device for railroad vehicle
JP2017022948A (en) * 2015-07-15 2017-01-26 Kyb株式会社 Actuator control device and actuator unit
JP6231634B1 (en) * 2016-09-09 2017-11-15 Kyb株式会社 Vibration control device for railway vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665696A (en) * 1979-10-31 1981-06-03 Sanki Eng Co Ltd Disposal of waste solution and installation therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184017A (en) * 2010-03-11 2011-09-22 Kyb Co Ltd Vibration damping device for railroad vehicle
JP2013001306A (en) * 2011-06-20 2013-01-07 Kyb Co Ltd Damper for railway rolling stock
JP2013189088A (en) * 2012-03-14 2013-09-26 Kyb Co Ltd Damping device for railroad vehicle
JP2017022948A (en) * 2015-07-15 2017-01-26 Kyb株式会社 Actuator control device and actuator unit
JP6231634B1 (en) * 2016-09-09 2017-11-15 Kyb株式会社 Vibration control device for railway vehicles

Also Published As

Publication number Publication date
JP6924043B2 (en) 2021-08-25
JP2018144599A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US9476436B2 (en) Actuator
WO2012165471A1 (en) Railway car vibration control device
WO2016072511A1 (en) Suspension device and suspension control device
WO2012176761A1 (en) Railcar damping device
CA2878144C (en) Actuator
WO2012176762A1 (en) Railcar damping device
WO2018042750A1 (en) Semiactive damper
WO2019188954A1 (en) Railway vehicle vibration suppressing device
JP5486367B2 (en) Actuator unit
JP5662880B2 (en) Vibration control device for railway vehicles
JP5427071B2 (en) Vibration control device for railway vehicles
JP5427072B2 (en) Vibration control device for railway vehicles
WO2018159511A1 (en) Railroad car vibration damping device
JP5427073B2 (en) Vibration control device for railway vehicles
WO2018139224A1 (en) Railway car vibration control device
JP6018675B2 (en) Vibration control device for railway vehicles
WO2018029911A1 (en) Railcar damping device
WO2018139227A1 (en) Steady acceleration detection device and vibration control device for railroad vehicle
JP6374999B2 (en) Vibration control device for railway vehicles
JP7193982B2 (en) Vibration damping device for railway vehicle
WO2018020757A1 (en) Damping device for railway vehicle
CN110316210B (en) Vibration damping device for railway vehicle
JP5391119B2 (en) Actuator unit
WO2019171912A1 (en) Railway vehicle vibration suppressing device
WO2019187432A1 (en) Railroad car vibration damping device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761538

Country of ref document: EP

Kind code of ref document: A1