[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018159568A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2018159568A1
WO2018159568A1 PCT/JP2018/007084 JP2018007084W WO2018159568A1 WO 2018159568 A1 WO2018159568 A1 WO 2018159568A1 JP 2018007084 W JP2018007084 W JP 2018007084W WO 2018159568 A1 WO2018159568 A1 WO 2018159568A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
layer
peak
wavelength
Prior art date
Application number
PCT/JP2018/007084
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 山口
章太 早川
村田 浩一
佐々木 靖
向山 幸伸
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN201880011962.3A priority Critical patent/CN110312961B/en
Priority to KR1020197024891A priority patent/KR102315658B1/en
Priority to KR1020217036245A priority patent/KR102334202B1/en
Priority to JP2019502994A priority patent/JP7184033B2/en
Priority to CN202210536156.6A priority patent/CN114942541B/en
Priority to KR1020217033325A priority patent/KR102325038B1/en
Publication of WO2018159568A1 publication Critical patent/WO2018159568A1/en
Priority to JP2022150709A priority patent/JP7364001B2/en
Priority to JP2023170202A priority patent/JP7464185B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a polarizer protective film, a polarizing plate, and a liquid crystal display device. Specifically, the present invention relates to a liquid crystal display device in which generation of rainbow-like color spots is improved.
  • a polarizing plate used in a liquid crystal display device is usually configured by sandwiching a polarizer obtained by dyeing iodine in polyvinyl alcohol (PVA) or the like between two polarizer protective films.
  • PVA polyvinyl alcohol
  • TAC triacetyl cellulose
  • TAC films are very expensive, and polyester films have been proposed as inexpensive alternative materials (Patent Documents 1 to 3), but there is a problem that rainbow-like color spots occur.
  • the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film.
  • the transmitted light shows an interference color peculiar to retardation which is a product of birefringence and thickness of the oriented polyester film. Therefore, if a discontinuous emission spectrum such as a cold cathode tube or a hot cathode tube is used as the light source, the transmitted light intensity varies depending on the wavelength, resulting in a rainbow-like color spot (see: Proceedings of the 15th Micro Optical Conference Proceedings, No. 1) 30-31).
  • a white light source having a continuous and broad emission spectrum such as a white light emitting diode as a backlight light source, and further using an oriented polyester film having a certain retardation as a polarizer protective film.
  • Patent Document 4 White light emitting diodes have a continuous and broad emission spectrum in the visible light region. Therefore, focusing on the envelope shape of the interference color spectrum due to the transmitted light transmitted through the birefringent body, it becomes possible to obtain a spectrum similar to the emission spectrum of the light source by controlling the retardation of the oriented polyester film. It has become possible to suppress rainbow spots.
  • the emission spectrum peaks in each wavelength region of blue region (400 nm to less than 495 nm), green region (495 nm to less than 600 nm) and red region (600 nm to 780 nm or less).
  • White light-emitting diode for example, blue light-emitting diode and at least K 2 SiF 6 as a phosphor
  • a liquid crystal display device using a backlight source composed of a white light emitting diode having a fluoride phosphor such as Mn 4+ has been developed.
  • the transmission axis of the polarizer and the fast axis direction of the polyester film are usually arranged to be perpendicular to each other. Is done. This is because the polyvinyl alcohol film that is a polarizer is manufactured by longitudinal uniaxial stretching, and the polyester film that is the protective film is manufactured by longitudinal stretching and then lateral stretching, so that the polyester film orientation This is because the main axis direction is the horizontal direction, and when these long objects are bonded together to produce a polarizing plate, the fast axis of the polyester film and the transmission axis of the polarizer are usually perpendicular.
  • an oriented polyester film having a specific retardation is used as the polyester film, and, for example, a white LED composed of a light emitting element in which a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor are combined is used as a backlight light source.
  • a white LED composed of a light emitting element in which a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor are combined is used as a backlight light source.
  • an object of the present invention is to have a peak top of an emission spectrum in each wavelength region of a blue region (400 nm or more and less than 495 nm), a green region (495 nm or more and less than 600 nm), and a red region (600 nm or more and 780 nm or less).
  • a polyester film is used as a polarizer protective film in a liquid crystal display device having a backlight light source composed of a white light emitting diode having an emission spectrum having a relatively narrow half-width (less than 5 nm) in the region (600 nm or more and 780 nm or less).
  • Another object is to provide a liquid crystal display device in which rainbow spots are suppressed.
  • the representative present invention is as follows.
  • Item 1 A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
  • the backlight source has a peak top of the emission spectrum in each wavelength region of 400 nm to 495 nm, 495 nm to less than 600 nm, and 600 nm to 780 nm, and has the highest peak intensity in the wavelength region of 600 nm to 780 nm.
  • a liquid crystal display device wherein the reflectance of the laminated polyester film is 2% or less.
  • the emission spectrum of the backlight source is The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 400 nm or more and less than 495 nm is 5 nm or more, The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm is 5 nm or more, Item 2.
  • a peak top wavelength of a peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is in the range of 620 nm to 640 nm.
  • Item 3. The liquid crystal display device according to Item 1 or 2, wherein the peak top wavelength of the peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is 630 nm.
  • a polarizer protective film comprising a polyester film having a retardation of 1500 nm or more and 30000 nm or less and having an antireflection layer and / or a low reflection layer laminated on at least one surface, A polarizer protective film having a reflectance of 2% or less measured from the side on which the antireflection layer and / or the low reflection layer is laminated in any wavelength of a wavelength region of 600 nm to 780 nm.
  • Item 6. The polarizer protective film according to Item 5, wherein any one of the wavelengths is from 620 nm to 640 nm.
  • the liquid crystal display device, polarizing plate, and polarizer protective film of the present invention can ensure good visibility in which the occurrence of rainbow-like color spots is significantly suppressed at any observation angle.
  • a liquid crystal display device includes a rear module, a liquid crystal cell, and a front module in order from the backlight light source side to the image display side (viewing side).
  • the rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side.
  • the polarizing plate is disposed on the backlight source side in the rear module, and is disposed on the image display side (viewing side) in the front module.
  • the liquid crystal display device of the present invention comprises at least a backlight source and a liquid crystal cell disposed between two polarizing plates.
  • the liquid crystal display device may appropriately have other components in addition to the backlight source, the polarizing plate, and the liquid crystal cell, such as a color filter, a lens film, a diffusion sheet, and an antireflection film.
  • a brightness enhancement film may be provided between the light source side polarizing plate and the backlight light source.
  • the brightness enhancement film include a reflective polarizing plate that transmits one linearly polarized light and reflects linearly polarized light orthogonal thereto.
  • the reflective polarizing plate for example, a DBEF (Dual Brightness Enhancement Film) series brightness enhancement film manufactured by Sumitomo 3M Limited is preferably used.
  • the reflective polarizing plate is usually arranged so that the absorption axis of the reflective polarizing plate and the absorption axis of the light source side polarizing plate are parallel to each other.
  • At least one polarizing plate has a polyester film laminated on at least one surface of a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like. It is.
  • the polyester film has a specific retardation, and an antireflection layer and / or a low reflection layer is laminated on at least one surface of the polyester film. is there.
  • the antireflection layer and / or the low reflection layer may be provided on the surface opposite to the surface on which the polarizer of the polyester film is laminated, or on the surface on which the polarizer of the polyester film is laminated, Both are acceptable.
  • the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is preferably 1.53 to 1.62.
  • a film having substantially no birefringence (low retardation) as typified by a TAC film, an acrylic film, or a norbornene-based film is laminated (with a three-layer structure).
  • a polarizing plate a film is not necessarily laminated on the other surface of the polarizer (a polarizing plate having a two-layer structure).
  • the slow axes of both polyester films are substantially parallel to each other.
  • substantially parallel means that the angle formed by the two axes is ⁇ 15 ° to 15 °, preferably ⁇ 10 ° to 10 °, more preferably ⁇ 5 ° to 5 °, and still more preferably ⁇ 3 ° to It means 3 °, more preferably ⁇ 2 ° to 2 °, and still more preferably ⁇ 1 ° to 1 °.
  • any polarizer (polarizing film) used in the technical field can be appropriately selected and used.
  • typical polarizers include those obtained by dyeing a dichroic material such as iodine on a polyvinyl alcohol film or the like.
  • the polarizer is not limited to this, and may be a known and later-developed polarizer. Can be appropriately selected and used.
  • the dichroic material includes iodine, a diazo compound, a polymethine dye, and the like.
  • the polarizer can be obtained by any method.
  • a PVA film dyed with a dichroic material is uniaxially stretched in an aqueous boric acid solution, and washed and dried while maintaining the stretched state.
  • the stretching ratio of uniaxial stretching is usually about 4 to 8 times, but is not particularly limited. Other manufacturing conditions and the like can be appropriately set according to known methods.
  • the configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, as a backlight light source of a liquid crystal display device, 400 nm or more, less than 495 nm, 495 nm or more, less than 600 nm, and 600 nm or more and 750 nm or less, each having a peak top of the emission spectrum, and the half width of the peak with the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less
  • a backlight light source consisting of a white light emitting diode having an emission spectrum of less than 5 nm is preferred.
  • the upper limit of the full width at half maximum of the peak having the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less is preferably less than 5 nm, more preferably less than 4 nm, and still more preferably less than 3.5 nm.
  • the lower limit is preferably 1 nm or more, and more preferably 1.5 nm or more. It is preferable that the half width of the peak is less than 5 nm because the color gamut of the liquid crystal display device is widened. In addition, there is no lower limit of the half width of the peak, but it can be set to 1 nm. If the peak half width is less than 1 nm, the light emission efficiency may deteriorate.
  • the shape of the emission spectrum is designed from the balance between the required color gamut and the luminous efficiency.
  • the half width is the peak width (nm) at half the intensity of the peak intensity at the peak top wavelength.
  • a backlight light source having an emission spectrum having the above-described characteristics is a technology that has been attracting attention due to the recent increasing demand for color gamut expansion.
  • Conventionally used white LEDs for example, light-emitting elements that combine blue light-emitting diodes with yttrium, aluminum, and garnet yellow phosphors
  • white LEDs for example, light-emitting elements that combine blue light-emitting diodes with yttrium, aluminum, and garnet yellow phosphors
  • backlight light sources have a spectrum that can be recognized by the human eye. Only about 20% of colors can be reproduced.
  • a backlight light source having an emission spectrum having the above-described characteristics it is said that it is possible to reproduce 60% or more of colors.
  • the wavelength region of 400 nm or more and less than 495 nm is more preferably 430 nm or more and 470 nm or less.
  • the wavelength region of 495 nm or more and less than 600 nm is more preferably 510 nm or more and 560 nm or less.
  • the wavelength region of 600 nm to 780 nm is more preferably 600 nm to 700 nm, and even more preferably 610 nm to 680 mn.
  • a preferred embodiment of the wavelength region of 600 nm to 780 nm is 620 nm to 640 nm, and particularly preferably 630 nm.
  • the peak half-width at the peak top of each wavelength region of the emission spectrum from 400 nm to less than 495 nm and from 495 nm to less than 600 nm is not particularly limited, but is from 400 nm to less than 495 nm
  • the half-width of the peak having the highest peak intensity in the wavelength region is preferably 5 nm or more, and the half-width of the peak having the highest peak intensity in the wavelength region of from 495 nm to less than 600 nm is preferably 5 nm or more.
  • the upper limit of the peak half width at the peak top of each wavelength region from 400 nm to less than 495 nm and from 495 nm to less than 600 nm is Preferably it is 140 nm or less, Preferably it is 120 nm or less, Preferably it is 100 nm or less, More preferably, it is 80 nm or less, More preferably, it is 60 nm or less, More preferably, it is 50 nm or less.
  • a white light source having an emission spectrum having the above-described characteristics include a phosphor type white light emitting diode in which a blue light emitting diode and a phosphor are combined.
  • the red phosphor among the phosphors include a fluoride phosphor (also referred to as “KSF”) whose composition formula is K 2 SiF 6 : Mn 4+ , and others.
  • the Mn 4+ activated fluoride complex phosphor is a phosphor having Mn 4+ as an activator, a fluoride complex salt of an alkali metal, amine, or alkaline earth metal as a base crystal.
  • Fluoride complexes that form host crystals include those whose coordination center is a trivalent metal (B, Al, Ga, In, Y, Sc, lanthanoid), and tetravalent metal (Si, Ge, Sn, Ti, Zr, Re, Hf) and pentavalent metals (V, P, Nb, Ta), and the number of fluorine atoms coordinated around them is 5-7.
  • Mn 4+ activated fluoride complex phosphor examples include A 2 [MF 6 ]: Mn (A is one or more selected from Li, Na, K, Rb, Cs, and NH 4 ; M is Ge, Si , Sn, Ti, and Zr), E [MF 6 ]: Mn (E is one or more selected from Mg, Ca, Sr, Ba, and Zn; M is Ge, Si, Sn, Ti, And at least one selected from Zr), Ba 0.65 , Zr 0.35 F 2.70 : Mn, A 3 [ZrF 7 ]: Mn (A is Li, Na, K, Rb, Cs, and NH 4.
  • Mn 4+ activated fluoride complex phosphors is A 2 MF 6 : Mn (A is selected from Li, Na, K, Rb, Cs, and NH 4) whose base crystal is a hexafluoro complex salt of an alkali metal.
  • M is one or more selected from Ge, Si, Sn, Ti, and Zr).
  • A is preferably one or more selected from K (potassium) and Na (sodium), and M is Si (silicon) or Ti (titanium).
  • A is K (the ratio of K in the total amount of A is 99 mol% or more) and M is Si.
  • the activation element is preferably 100% Mn (manganese), but Ti, Zr, Ge, Sn, Al, Ga, B, In, Cr, in a range of less than 10 mol% with respect to the total amount of the activation element. Fe, Co, Ni, Cu, Nb, Mo, Ru, Ag, Zn, Mg, and the like may be included.
  • M is Si
  • the ratio of Mn in the total of Si and Mn is preferably in the range of 0.5 mol% to 10 mol%.
  • Mn 4+ activated fluoride complex phosphors have the chemical formula A 2 + x M y Mn z F n (A is Na and K; M is Si and Al; ⁇ 1 ⁇ x ⁇ 1 and 0.9 ⁇ y + z ⁇ 1) .1 and 0.001 ⁇ z ⁇ 0.4 and 5 ⁇ n ⁇ 7).
  • the backlight light source is preferably a white light emitting diode having a blue light emitting diode and at least a fluoride phosphor as a phosphor, and particularly preferably a fluoride having at least K 2 SiF 6 : Mn 4+ as a blue light emitting diode and a phosphor.
  • a white light emitting diode having a phosphor For example, commercially available products such as NSSW306FT, which is a white LED manufactured by Nichia Corporation, can be used.
  • the green phosphor for example, a sialon phosphor having a basic composition of ⁇ -SiAlON: Eu or the like, or a silicate phosphor having a basic composition of (Ba, Sr) 2 SiO 4 : Eu or the like. Others are exemplified.
  • the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 780 nm or less the following is considered.
  • the half width of the peak with the highest peak intensity is in the above range.
  • the half-value width is similarly in the above range for other peaks having an intensity of 70% or more of the highest peak intensity.
  • the half width of the peak having the highest peak intensity among the plurality of peaks can be used as it is.
  • the independent peak has an intensity region that is 1 ⁇ 2 of the peak intensity on both the short wavelength side and the long wavelength side of the peak. That is, when a plurality of peaks overlap and each peak does not have a region having an intensity that is 1 ⁇ 2 of the peak intensity on both sides thereof, the plurality of peaks are regarded as one peak as a whole.
  • the peak width (nm) at half the intensity of the highest peak intensity is set as the half width.
  • the point with the highest peak intensity is defined as the peak top.
  • the peak having the highest peak intensity in each of the wavelength region of 400 nm or more and less than 495 nm, the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 780 nm or less is independent from the peaks of other wavelength regions. It is preferable that the relationship is In particular, the wavelength region between the peak having the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm and the peak having the highest peak intensity in the region of 600 nm or more and 780 nm or less has a wavelength of 600 nm or more and 780 nm or less. It is preferable in terms of color clarity that there is a region that is 1/3 or less of the peak intensity of the peak having the highest peak intensity in the region.
  • the emission spectrum of the backlight light source can be measured by using a spectroscope such as Hamamatsu Photonics multi-channel spectroscope PMA-12.
  • each wavelength region of the blue region 400 nm to less than 495 nm
  • the green region (495 nm to less than 600 nm)
  • the red region 600 nm to 780 nm or less
  • a polyester film having an antireflection layer and / or a low reflection layer having a low reflectance at a wavelength and having a specific retardation is used, it is effective in suppressing rainbow spots.
  • the specific wavelength is a wavelength corresponding to the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight light source (the peak top wavelength of the peak with the highest peak intensity).
  • the present inventors are the side where the antireflection layer and / or the low reflection layer is laminated at the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight light source. It was found that when the reflectance of the polyester film on which the antireflection layer and / or the low-reflection layer was laminated was 2% or less, it was particularly effective in suppressing rainbow spots.
  • the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film.
  • One of the factors that change the polarization state may be the influence of the refractive index difference at the interface between the air layer and the oriented polyester film or the refractive index difference at the interface between the polarizer and the oriented polyester film.
  • the light passing through the polarizer and entering the oriented polyester film is linearly polarized light, and it is considered that there is no transmittance dependency on the wavelength in the state of linearly polarized light.
  • Incident light of linearly polarized light changes to elliptically polarized light or circularly polarized light by passing through the oriented polyester film.
  • the transmittance in a wavelength band with a large amount of S-polarized light component is reduced, which is considered to be one of the factors that cause rainbow-like color spots.
  • the transmittance of the red region is improved by forming a low-reflection layer and / or a low-reflection layer at a steep peak (ie, S It is considered possible to suppress the reflection of the polarization component).
  • the transmittance of the S-polarized component is improved, so the change in the transmittance of the emitted light of the oriented polyester film with respect to the incident light that has passed through the polarizer is reduced. Spots can be suppressed.
  • each wavelength region of the blue region (400 nm or more and less than 495 nm), the green region (495 nm or more and less than 600 nm), and the red region (600 nm or more and 780 nm or less) has an emission spectrum peak top.
  • a liquid crystal display device having a backlight light source composed of a white light emitting diode having a relatively narrow half-width of a peak in a region (600 nm or more and 780 nm or less) even if a polarizing plate using a polyester film is used as a polarizer protective film, It is possible to have good visibility without causing color spots.
  • a polarizer protective film made of a polyester film is laminated on at least one surface of the polarizer.
  • the polyester film used for the polarizer protective film preferably has a retardation of 1500 nm or more and 30000 nm or less. If the retardation is in the above range, it is preferable because rainbow spots tend to be reduced more easily.
  • the preferred lower limit of retardation is 3000 nm, the next preferred lower limit is 3500 nm, the more preferred lower limit is 4000 nm or 5000 nm, the still more preferred lower limit is 6000 nm or 7000 nm, and the still more preferred lower limit is 8000 nm.
  • a preferable upper limit is 30000 nm, and a polyester film having a retardation larger than this has a considerably large thickness and tends to deteriorate the handleability as an industrial material.
  • a more preferable upper limit is 15000 nm, still more preferably 12000 nm, and still more preferably 11000 nm.
  • the retardation of the present invention can be obtained by measuring the refractive index and thickness in the biaxial direction, or by using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments). it can.
  • the refractive index can be obtained by an Abbe refractometer (measurement wavelength: 589 nm).
  • the ratio (Re / Rth) of the retardation of the polyester film (Re: in-plane retardation) to the retardation in the thickness direction (Rth) is preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.8. 6 or more.
  • the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is larger, the birefringence action is more isotropic, and the occurrence of rainbow-like color spots depending on the observation angle tends to be less likely to occur.
  • the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is 2.0.
  • the ratio of the retardation to the retardation in the thickness direction (Re / Rth)
  • the upper limit is preferably 2.0.
  • the thickness direction retardation means an average of retardation obtained by multiplying two birefringences ⁇ Nxz and ⁇ Nyz by the film thickness d when the film is viewed from the cross section in the thickness direction.
  • the polyester film preferably has an NZ coefficient of 2.5 or less, more preferably 2.0 or less, still more preferably 1.8 or less, and still more preferably 1. 6 or less. And since a NZ coefficient will be 1.0 in a perfect uniaxial (uniaxial symmetry) film, the minimum of a NZ coefficient is 1.0. However, it should be noted that the mechanical strength in the direction perpendicular to the orientation direction tends to decrease significantly as the film approaches a perfect uniaxial (uniaxial symmetry) film.
  • the NZ coefficient is represented by
  • the orientation axis of the film is obtained using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), and the biaxial refractive index (Ny, Nx, where the orientation axis direction and the direction perpendicular thereto are perpendicular) Ny> Nx) and the refractive index (Nz) in the thickness direction are determined by Abbe's refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The value obtained in this manner can be substituted for
  • the Ny-Nx value of the polyester film is preferably 0.05 or more, more preferably 0.07 or more, further preferably 0.08 or more, and still more preferably. Is 0.09 or more, most preferably 0.1 or more.
  • the upper limit is not particularly defined, but in the case of a polyethylene terephthalate film, the upper limit is preferably about 1.5.
  • the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer constituting the polarizing plate is preferably in the range of 1.53 to 1.62.
  • the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer constituting the polarizing plate is preferably in the range of 1.53 to 1.62.
  • reflection at the interface between the polarizer and the polyester film can be suppressed, and rainbow-like color spots can be further suppressed.
  • it is 1.61 or less, More preferably, it is 1.60 or less, More preferably, it is 1.59 or less, More preferably, it is 1.58 or less.
  • the lower limit of the refractive index is preferably 1.53.
  • the refractive index is less than 1.53, the crystallization of the polyester film becomes insufficient, and the properties obtained by stretching such as dimensional stability, mechanical strength, and chemical resistance may be insufficient.
  • it is 1.56 or more, More preferably, it is 1.57 or more.
  • the polarizing plate In order to set the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer in the range of 1.53 or more and 1.62 or less, the polarizing plate has the transmission axis of the polarizer and the fast axis of the polyester film. It is preferable that (the slow axis and the vertical method) are substantially parallel.
  • the refractive index in the fast axis direction which is the direction perpendicular to the slow axis, can be adjusted to a low value of about 1.53 to 1.62 by stretching the polyester film in the film forming process described later.
  • the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer is set to 1.53 to 1.62.
  • substantially parallel means that the angle formed by the transmission axis of the polarizer and the fast axis of the polarizer protective film is ⁇ 15 ° to 15 °, preferably ⁇ 10 ° to 10 °, more preferably ⁇ 5 °. It means -5 °, more preferably -3 ° to 3 °, still more preferably -2 ° to 2 °, and still more preferably -1 ° to 1 °.
  • substantially parallel is substantially parallel.
  • “substantially parallel” means that the transmission axis and the fast axis are parallel to such an extent that a deviation inevitably generated when the polarizer and the protective film are bonded to each other is allowed.
  • the direction of the slow axis can be determined by measuring with a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments).
  • the refractive index in the fast axis direction of the polyester film is preferably 1.53 or more and 1.62 or less.
  • the refractive index of the polyester film in the direction parallel to the transmission axis of the child can be 1.53 or more and 1.62 or less.
  • the polarizer protective film comprising the polyester film used in the present invention can be used for both the incident light side (light source side) and the outgoing light side (viewing side) polarizing plates, but at least the outgoing light side (viewing side). It is preferable to use for the protective film of this polarizing plate.
  • the polarizer protective film made of the above polyester film is arranged on both sides, whether it is arranged on the liquid crystal side starting from the polarizer or on the outgoing light side. It may be arranged, but it is preferable that it is arranged at least on the outgoing light side.
  • the polarizer protective film made of the polyester film may be disposed on the incident light side from the polarizer, or on the liquid crystal cell side. However, it is preferable that it is disposed at least on the incident light side.
  • the polarizing plate arranged on the incident light side does not use a polarizer protective film made of a polyester film, but uses a polarizer protective film that is substantially free of birefringence (low retardation) such as a triacetyl cellulose film. It may be what you did.
  • Polyester used for the polyester film may be polyethylene terephthalate or polyethylene naphthalate, but may contain other copolymerization components. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching.
  • polyethylene terephthalate has a large intrinsic birefringence. By stretching the film, the refractive index in the fast axis direction (perpendicular to the slow axis direction) can be kept low, and it is relatively easy even if the film is thin. Therefore, it is the most suitable material.
  • the polyester film preferably has a light transmittance of 20% or less at a wavelength of 380 nm.
  • the light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays.
  • the transmittance is measured by a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
  • the ultraviolet absorber used in the present invention is a known substance.
  • the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • the organic ultraviolet absorber include benzotriazole, benzophenone, cyclic imino ester, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention. From the viewpoint of durability, benzotriazole and cyclic imino ester are particularly preferable.
  • ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
  • benzophenone ultraviolet absorbers examples include 2- [2'-hydroxy-5 '-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2' -Hydroxy-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2'-dihydroxy- 4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- ( 2'-hydroxy-3'-tert-butyl-5 -Methylphenyl) -5-chlorobenzotriazole, 2- (5-
  • cyclic imino ester UV absorbers examples include 2,2 ′-(1 , 4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazine-4-one ON, 2-phenyl-3,1-benzoxazin-4-one, etc. However, it is not particularly limited thereto.
  • additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants.
  • a polyester film does not contain a particle
  • “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
  • an antireflection layer and / or a low reflection layer on at least one surface of the polyester film that is the polarizer protective film used in the present invention.
  • the reflectance of the polyester film in which the antireflection layer and / or the low reflection layer is laminated at the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm of the emission spectrum of the backlight light source is 2%. The following is preferable.
  • the reflectance is measured from the side where the antireflection layer and / or the low reflection layer is laminated. When the reflectance exceeds 2%, it is not preferable because rainbow-like color spots are easily visible.
  • the reflectance is more preferably 1.6% or less, still more preferably 1.2% or less, and particularly preferably 1% or less.
  • the lower limit of the reflectance is not particularly set, but is 0.01%, for example.
  • a reflectance of 0% is most preferable.
  • the upper limit of the reflectance is preferably less than 1%.
  • the upper limit of the reflectance is preferably 2% or less, more preferably less than 2%, and the lower limit is preferably about 1%.
  • the reflectance can be measured by the method described in Examples described later.
  • the antireflection layer may be a single layer or a multilayer.
  • the thickness of the low refractive index layer made of a material having a lower refractive index than that of the polyester film is set to 1/4 wavelength of the light wavelength or its thickness. If formed so as to be an odd multiple, an antireflection effect can be obtained.
  • the antireflection layer is a multilayer, an antireflection effect can be obtained by alternately laminating two or more low refractive index layers and high refractive index layers and controlling the thickness of each layer as appropriate.
  • a hard coat layer can be laminated between the antireflection layers, and an antifouling layer can be formed on the hard coat layer.
  • Other antireflection layers include those using a moth-eye structure.
  • the moth-eye structure is a concavo-convex structure with a pitch smaller than the wavelength formed on the surface. With this structure, a sudden and discontinuous refractive index change at the boundary with air is changed into a continuous and gradually changing refractive index change. It is possible to change. Thereby, the light reflection in the surface of a film reduces by forming a moth eye structure in the surface.
  • JP 2001-517319 A can be referred to.
  • a dry coating method in which an antireflection layer is formed on the surface of the substrate by vapor deposition or sputtering, and an antireflection layer is formed by applying an antireflection coating solution on the surface of the substrate and drying it.
  • the composition of the antireflection layer and the formation method thereof are not particularly limited as long as the above characteristics are satisfied.
  • a conventionally known low reflection layer can be used.
  • it is formed by a method of laminating at least one metal or oxide thin film by vapor deposition or sputtering, a method of coating one or more organic thin films, or the like.
  • a polyester film or an organic thin film having a lower refractive index than that of a hard coat layer laminated on the polyester film is preferably used.
  • the antireflection layer and / or the low reflection layer may be further provided with an antiglare function. Thereby, it is possible to further suppress rainbow spots. That is, a combination of an antireflection layer and an antiglare layer, a combination of a low reflection layer and an antiglare layer, or a combination of an antireflection layer, a low reflection layer and an antiglare layer may be used. Particularly preferred is a combination of a low reflection layer and an antiglare layer.
  • the antiglare layer a conventionally known antiglare layer can be used. For example, from the viewpoint of suppressing surface reflection of the film, an embodiment in which an antiglare layer is laminated on a polyester film and then an antireflection layer or a low reflection layer is laminated is preferable.
  • the antireflection layer and the low reflection layer may be designed so that the bottom wavelength of the reflection spectrum of the polyester film on which the antireflection layer and / or the low reflection layer is laminated is in the wavelength region of 600 nm to 780 nm. .
  • the formula 2nd ⁇ b / 4 is obtained.
  • n is the refractive index of the antireflection layer or the refractive index of the low reflection layer
  • d is the thickness of the antireflection layer or the thickness of the low reflection layer
  • ⁇ b is the bottom wavelength of the reflection spectrum.
  • the following calculation can be made from the principle of thin film interference.
  • five layers a first layer, a second layer, a third layer, a fourth layer, and a fifth layer configuration.
  • An incident medium layer on the side of the first layer opposite to the side in contact with the second layer
  • the refractive index is n
  • the reflectance is r
  • the thickness is
  • d is the refractive angle
  • is the wavelength
  • the wavelength
  • the phase difference
  • the reflectivity of the lowermost layer (fifth layer) is expressed by the following equation from the equation of thin film interference.
  • the subscript numbers indicate each layer. Further, consecutive suffix numbers indicate the reflectivity between layers.
  • Delta x becomes a phase difference when the a thin film of each layer x back and forth in a V-shape in refraction angle theta x, it is calculated by the formula of [Expression 2].
  • ⁇ x is calculated by the formula [Equation 3] by using Snell's law continuously.
  • the reflectance of each layer can be obtained from the following equation. (5th to 4th layers)
  • the bottom wavelength can be designed to the target wavelength by adjusting the refractive index n and thickness d of each layer from the above equation.
  • the wavelength ⁇ p of the peak top of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight source, and the bottom of the reflection spectrum of the polyester film in which the antireflection layer and / or the low reflection layer are laminated As for the wavelength ⁇ b, the absolute value of the difference between ⁇ p and ⁇ b is preferably 30 nm or less, preferably 20 nm or less, preferably 10 nm or less, and preferably 5 nm or less.
  • the bottom wavelength of the reflection spectrum is a wavelength at which the reflectance is minimum in the reflection spectrum of 400 nm to 780 nm.
  • the polyester film preferably has an easy adhesion layer on the surface thereof.
  • the refractive index of the easy-adhesion layer can be adjusted by a known method.
  • the refractive index of the easy-adhesion layer can be easily adjusted by containing a binder resin with titanium, germanium, or other metal species.
  • the polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion with the polarizer.
  • At least one surface of the film of the present invention has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin.
  • the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer.
  • the coating solution used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin, and polyurethane resin.
  • coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982.
  • coating solutions include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
  • the easy-adhesion layer can be obtained by applying the coating solution on one or both sides of an unstretched film or a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and further stretching in the transverse direction.
  • the final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesion with the resulting polarizer may be insufficient. On the other hand, when the coating amount exceeds 0.2 g / m 2 , blocking resistance may be lowered.
  • the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
  • particles it is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 ⁇ m or less. When the average particle diameter of the particles exceeds 2 ⁇ m, the particles easily fall off from the coating layer.
  • particles to be included in the easy adhesion layer for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride,
  • examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
  • a known method can be used as a method for applying the coating solution.
  • reverse roll coating method gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc.
  • spray coating method air knife coating method, wire bar coating method, pipe doctor method, etc.
  • wire bar coating method wire bar coating method
  • pipe doctor method etc.
  • the average particle size of the above particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM) and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) Distance) is measured, and the average value is taken as the average particle diameter.
  • SEM scanning electron microscope
  • the polyester film used as a polarizer protective film can be manufactured according to a general polyester film manufacturing method.
  • the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter.
  • the method of performing heat processing is mentioned.
  • the polyester film used in the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizer protective film, it is observed from directly above the film surface. However, rainbow-like color spots are not seen, but care must be taken because rainbow-like color spots may be observed when observed from an oblique direction.
  • the longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 130 ° C, particularly preferably 90 to 120 ° C.
  • the longitudinal draw ratio is preferably 1.0 to 3.5 times, particularly preferably 1.0 to 3.0 times.
  • the transverse draw ratio is preferably 2.5 to 6.0 times, and particularly preferably 3.0 to 5.5 times.
  • the longitudinal draw ratio is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times.
  • the transverse draw ratio is preferably 1.0 to 3.5 times, and particularly preferably 1.0 to 3.0 times.
  • the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
  • the thickness unevenness of the film is small. Since the stretching temperature and the stretching ratio have a great influence on the thickness unevenness of the film, it is preferable to optimize the film forming conditions from the viewpoint of the thickness unevenness. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes very bad in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
  • the thickness unevenness of the polyester film is preferably 5% or less, more preferably 4.5% or less, still more preferably 4% or less, and particularly preferably 3% or less.
  • the stretching ratio, stretching temperature, and film thickness can be appropriately set.
  • the higher the stretching ratio, the lower the stretching temperature, and the thicker the film the higher the retardation.
  • the lower the stretching ratio, the higher the stretching temperature, and the thinner the film the lower the retardation.
  • the thickness of the polyester film is arbitrary, but is preferably in the range of 15 to 300 ⁇ m, more preferably in the range of 15 to 200 ⁇ m. Even in the case of a film having a thickness of less than 15 ⁇ m, it is possible in principle to obtain a retardation of 1500 nm or more. However, in that case, the anisotropy of the mechanical properties of the film becomes remarkable, and it becomes easy to cause tearing, tearing, etc., and the practicality as an industrial material is remarkably lowered. A particularly preferable lower limit of the thickness is 25 ⁇ m. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 300 ⁇ m, the thickness of the polarizing plate becomes too thick, which is not preferable.
  • the upper limit of the thickness is preferably 200 ⁇ m.
  • a particularly preferable upper limit of the thickness is 100 ⁇ m, which is about the same as a general TAC film.
  • Polyethylene terephthalate is preferable as the polyester used as the film substrate in order to control the retardation within the range of the present invention even in the above thickness range.
  • a method of blending the ultraviolet absorber into the polyester film a known method can be used in combination.
  • a master batch is prepared by blending the dried ultraviolet absorber and the polymer raw material in advance using a kneading extruder. It can be prepared and blended by, for example, a method of mixing a predetermined master batch and a polymer raw material during film formation.
  • the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and mix it economically.
  • a condition for producing the master batch it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
  • the polyester film has a multilayer structure of at least three layers and an ultraviolet absorber is added to the intermediate layer of the film.
  • a film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be specifically produced as follows. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film.
  • a three-layer manifold or a merging block for example, a merging block having a square merging portion
  • a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated
  • An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less. When the filter particle size of the filter medium exceeds 15 ⁇ m, removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • the biaxial refractive index (the refractive index in the slow axis direction: Ny, the fast axis (the refractive index in the direction perpendicular to the slow axis direction): Nx), and the refractive index in the thickness direction ( Nz) was determined by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
  • the biaxial refractive index anisotropy ( ⁇ Nxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), determine the slow axis direction of the film, 4 cm so that the slow axis direction is parallel to the long side of the measurement sample.
  • MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments Co., Ltd.
  • a rectangle of ⁇ 2 cm was cut out and used as a measurement sample.
  • Abbe refracts the biaxial refractive index (the refractive index in the slow axis direction: Ny, the refractive index in the direction perpendicular to the slow axis direction: Nx), and the refractive index (Nz) in the thickness direction.
  • ) of the biaxial refractive index difference was determined as a refractive index anisotropy ( ⁇ Nxy), which was obtained by a refractive index meter (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
  • the thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm.
  • Retardation (Re) was determined from the product ( ⁇ Nxy ⁇ d) of refractive index anisotropy ( ⁇ Nxy) and film thickness d (nm).
  • ) and ⁇ Nyz (
  • NZ
  • This light source had a plurality of peaks in the wavelength region of 600 nm or more and 780 nm or less, and the half-value width was evaluated at a peak near 630 nm having the highest peak intensity in this region. Moreover, the exposure time in the spectrum measurement was 20 msec.
  • the reflection spectrum was measured using the Al mirror (part number 202-35988-05) attached as a standard to the specular reflection measuring device (part number 206-14064, manufactured by Shimadzu Corporation) as the standard mirror, and a total luminous flux of 5 °.
  • the measurement was carried out by relative specular reflection at an incident angle of. In addition, the measurement was performed under the conditions of sampling pitch: 1 nm, sample mask opening size :: 5 mm ⁇ .
  • the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 to 780 nm of the emission spectrum was 630 nm. The reflectance at was determined. Moreover, the bottom wavelength was also calculated
  • the obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
  • PET (B) 10 parts by weight of the dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), and PET (A) containing no particles (inherent 90 parts by mass of a viscosity of 0.62 dl / g) was mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared.
  • the obtained polymer solution was diluted with methyl ethyl ketone to a solid content concentration of 5% by mass to obtain a fluoropolymer solution C.
  • the obtained fluoropolymer solution C was mixed as follows to obtain a low reflection layer coating solution.
  • the internal temperature of the separable flask was raised to 80 ° C., and the entire amount of the monomer solution was added to the aqueous dispersion of the vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer particles over 3 hours. Further, simultaneously with the addition of the monomer solution, the polymerization proceeded while adding 41.1 g of 1% by mass of ammonium persulfate in 7 portions every 30 minutes. Five hours after the start of the polymerization, the reaction solution was cooled to room temperature to complete the reaction, whereby an aqueous dispersion of acrylic-fluorine composite polymer particles was obtained (solid content concentration 52.0% by mass). The mass ratio of the fluoropolymer portion to the acrylic polymer portion in the obtained acrylic-fluorine composite polymer particles was 50/50.
  • the internal temperature of the separable flask was raised to 80 ° C., and the entire amount of the monomer solution was added to the aqueous dispersion of the vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer particles over 3 hours. Further, simultaneously with the addition of the monomer solution, the polymerization proceeded while adding 41.1 g of 1% by mass of ammonium persulfate in 7 portions every 30 minutes. Five hours after the start of the polymerization, the reaction solution was cooled to room temperature to complete the reaction, whereby an aqueous dispersion of acrylic-fluorine composite polymer particles was obtained (solid content concentration 52.0% by mass). The mass ratio of the fluoropolymer portion to the acrylic polymer portion in the obtained acrylic-fluorine composite polymer particles was 50/50.
  • PET protective film 1 After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. .
  • the unstretched film on which this coating layer was formed was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a relaxation treatment of 3.0% in the width direction to obtain a PET film having a film thickness of about 100 ⁇ m.
  • the coating liquid of Production Example 4 is applied to the coating surface of the PET film on which the low reflection layer is formed, and dried at 150 ° C. for 2 minutes to form a low reflection layer having a thickness of 0.1 ⁇ m, thereby protecting the polarizer. Film 1 was obtained.
  • the reflectance at a wavelength of 630 nm was 1.00%.
  • the bottom wavelength of the reflection spectrum was also 630 nm.
  • the retardation (Re) of the polarizer protective film 1 was 10300 nm
  • the retardation (Rth) in the thickness direction was 12350 nm
  • Re / Rth was 0.834
  • the NZ coefficient was 1.699.
  • PET (Polarizer protective film 2) After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. .
  • the low reflective layer was laminated so that the coating amount after drying the coating liquid of Production Example 5 was 0.09 g / m 2 on the side on which the low reflective layer of this unstretched PET film was formed by the reverse roll method.
  • the adhesion-modified coating solution of Production Example 3 was applied at 0.08 g / m 2 and then dried at 80 ° C. for 20 seconds.
  • the unstretched film on which this coating layer was formed was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a 3.0% relaxation treatment in the width direction to obtain a polarizer protective film 2 having a film thickness of about 100 ⁇ m. Obtained.
  • the retardation (Re), retardation in the thickness direction (Rth), Re / Rth, and NZ coefficient of the polarizer protective film 2 were the same as those of the polarizer protective film 1.
  • the reflectance at a wavelength of 630 nm was 2.11%.
  • the reflectance at a wavelength of 550 nm was 1.96%.
  • PET (Polarizer protective film 3) After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. .
  • the low reflective layer is formed so that the coating amount after drying the low reflective layer coating liquid of Production Example 6 is 0.108 g / m 2 on the side on which the low reflective layer of the unstretched PET film is formed by the reverse roll method.
  • the adhesion-modified coating solution of Production Example 3 was applied to 0.080 g / m 2 and then dried at 80 ° C. for 20 seconds.
  • the unstretched film on which this coating layer was formed was guided to a tenter stretching machine, and the film was guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction.
  • the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a 3.0% relaxation treatment in the width direction to obtain a polarizer protective film 3 having a film thickness of about 100 ⁇ m. Obtained.
  • the polarizer protective film 3 had retardation (Re) of 10300 nm, retardation in the thickness direction (Rth) of 12350 nm, Re / Rth of 0.834, and NZ coefficient of 1.699.
  • the reflection spectrum of the polarizer protective film 3 had a bottom wavelength of 630 nm and a reflectance at a wavelength of 630 nm of 1.71%.
  • Example 1 A polarizer protective film 1 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the fast axis of the film are perpendicular to each other, and a TAC film (Fuji Film Co., Ltd.) Manufactured and having a thickness of 80 ⁇ m) to make a polarizing plate.
  • the polarizer was laminated
  • the polarizing plate on the viewing side of REGZA 43J10X manufactured by Toshiba Corporation was replaced with the polarizing plate prepared above so that the polyester film was on the side opposite to the liquid crystal (distal), thereby producing a liquid crystal display device.
  • the direction of the transmission axis of a polarizing plate might be the same as the direction of the transmission axis of the polarizing plate before replacement.
  • Example 1 A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizer protective film 2 was used instead of the polarizer protective film 1.
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizer protective film 3 was used instead of the polarizer protective film 1.
  • Examples 1 and 2 and Comparative Example 1 were arranged side by side and the screen was visually observed in a dark place from the front and oblique directions, Examples 1 and 2 were more prone to iridescence than Comparative Example 1. Occurrence was suppressed. Further, in Examples 1 and 2, the liquid crystal display device of Example 1 was more suppressed from generating rainbow spots. Note that rainbow spots here are observed on the screen when the viewer observes the film while moving his head from an oblique direction (when observing while changing the angle from the film normal direction). It is a saddle-shaped rainbow.
  • Example 1 and 2 and Comparative Example 1 the thickness of the polyester film was 100 ⁇ m, but this was an 80 ⁇ m film (retardation (Re) was 8080 nm, retardation in the thickness direction (Rth) was 9960 nm, Re / A liquid crystal display device of Example 1 ′, Example 2 ′, and Comparative Example 1 ′ was manufactured by replacing Rth with 0.811 and NZ coefficient of 1.733).
  • the generation of rainbow spots was suppressed in the liquid crystal display device of “Acupuncture and Acupuncture Example 2”.
  • Example 1 'and Vaginal Example 2' rainbow spots were suppressed more in Example 1 'Vaginal. Note that the rainbow spots here are the wrinkles that are observed on the screen when the film is observed from an oblique direction while moving the head (when the angle from the film normal direction is changed). It is a rainbow spot.
  • Example 1 the thickness of the polyester film was 100 ⁇ m, but this was a 60 ⁇ m film (retardation (Re) was 6060 nm, and thickness direction retardation (Rth) was 7470 nm. , Re / Rth was 0.811, and the NZ coefficient was 1.733).
  • the liquid crystal display devices of Example 1 ′′, Example 2 ′′, and Comparative Example 1 ′′ were manufactured. In the liquid crystal display device of Example 1 '' and Example 2 of Example 1 ”, the generation of rainbow spots was suppressed. In Example 1 ′′ and Spider Example 2 ′′, the iris was more suppressed in Example 1 ′′. Note that the rainbow spots here are the wrinkles that are observed on the screen when the film is observed from an oblique direction while moving the head (when the angle from the film normal direction is changed). It is a rainbow spot.
  • the liquid crystal display device and the polarizing plate of the present invention can ensure good visibility in which the occurrence of rainbow-like color spots is significantly suppressed at any angle, and greatly contribute to the industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

According to the present invention, a polarizer protective film comprises a polyester film which has a retardation of 1500-30000 nm and which has an antireflection layer and/or a low reflective layer laminated on at least one surface of the polyester film, wherein the polarizer protective film has a reflectance of 2% or less at a wavelength in a wavelength region between 600 nm and 780 nm, the reflectance being measured from the side on which the antireflection layer and/or the low reflective layer is laminated.

Description

液晶表示装置Liquid crystal display
 本発明は、偏光子保護フィルム、偏光板、及び液晶表示装置に関する。詳しくは、虹状の色斑の発生が改善された液晶表示装置に関する。 The present invention relates to a polarizer protective film, a polarizing plate, and a liquid crystal display device. Specifically, the present invention relates to a liquid crystal display device in which generation of rainbow-like color spots is improved.
 液晶表示装置(LCD)に使用される偏光板は、通常ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子を2枚の偏光子保護フィルムで挟んだ構成であり、偏光子保護フィルムとしては通常トリアセチルセルロース(TAC)フィルムが用いられている。近年、LCDの薄型化に伴い、偏光板の薄層化が求められるようになっている。しかし、このために保護フィルムとして用いられているTACフィルムの厚みを薄くすると、充分な機械強度を得ることが出来ず、また透湿性が悪化するという問題が発生する。また、TACフィルムは非常に高価であり、安価な代替素材としてポリエステルフィルムが提案されているが(特許文献1~3)、虹状の色斑が発生する問題があった。 A polarizing plate used in a liquid crystal display device (LCD) is usually configured by sandwiching a polarizer obtained by dyeing iodine in polyvinyl alcohol (PVA) or the like between two polarizer protective films. In general, a triacetyl cellulose (TAC) film is used. In recent years, with the thinning of LCDs, there has been a demand for thinner polarizing plates. However, if the thickness of the TAC film used as the protective film is reduced for this purpose, sufficient mechanical strength cannot be obtained and moisture permeability deteriorates. TAC films are very expensive, and polyester films have been proposed as inexpensive alternative materials (Patent Documents 1 to 3), but there is a problem that rainbow-like color spots occur.
 偏光子の片側に複屈折性を有する配向ポリエステルフィルムを配した場合、バックライトユニット、または、偏光子から出射した直線偏光はポリエステルフィルムを通過する際に偏光状態が変化する。透過した光は配向ポリエステルフィルムの複屈折と厚さの積であるリタデーションに特有の干渉色を示す。そのため、光源として冷陰極管や熱陰極管など不連続な発光スペクトルを用いると、波長によって異なる透過光強度を示し、虹状の色斑となる(参照:第15回マイクロオプティカルカンファレンス予稿集、第30~31項)。 When an oriented polyester film having birefringence is arranged on one side of the polarizer, the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film. The transmitted light shows an interference color peculiar to retardation which is a product of birefringence and thickness of the oriented polyester film. Therefore, if a discontinuous emission spectrum such as a cold cathode tube or a hot cathode tube is used as the light source, the transmitted light intensity varies depending on the wavelength, resulting in a rainbow-like color spot (see: Proceedings of the 15th Micro Optical Conference Proceedings, No. 1) 30-31).
 上記の問題を解決する手段として、バックライト光源として白色発光ダイオードのような連続的で幅広い発光スペクトルを有する白色光源を用い、更に偏光子保護フィルムとして一定のリタデーションを有する配向ポリエステルフィルムを用いることが提案されている(特許文献4)。白色発光ダイオードでは、可視光領域において連続的で幅広い発光スペクトルを有する。そのため、複屈折体を透過した透過光による干渉色スペクトルの包絡線形状に着目すると、配向ポリエステルフィルムのレタデーションを制御することで、光源の発光スペクトルと相似なスペクトルを得ることが可能となり、これにより虹斑を抑制することが可能となった。 As means for solving the above problems, it is possible to use a white light source having a continuous and broad emission spectrum such as a white light emitting diode as a backlight light source, and further using an oriented polyester film having a certain retardation as a polarizer protective film. It has been proposed (Patent Document 4). White light emitting diodes have a continuous and broad emission spectrum in the visible light region. Therefore, focusing on the envelope shape of the interference color spectrum due to the transmitted light transmitted through the birefringent body, it becomes possible to obtain a spectrum similar to the emission spectrum of the light source by controlling the retardation of the oriented polyester film. It has become possible to suppress rainbow spots.
特開2002-116320号公報JP 2002-116320 A 特開2004-219620号公報JP 2004-219620 A 特開2004-205773号公報JP 2004-205773 A WO2011/162198WO2011 / 162198
 近年の液晶表示装置の色域拡大要求の高まりから、青色領域(400nm以上495nm未満)、緑色領域(495nm以上600nm未満)及び赤色領域(600nm以上780nm以下)の各波長領域にそれぞれ発光スペクトルのピークトップを有し、赤色領域(600nm以上780nm以下)におけるピークの半値幅が比較的狭い(5nm未満)発光スペクトルを有する白色発光ダイオード(例えば、青色発光ダイオードと、蛍光体として少なくとも KSiF:Mn4+等のフッ化物蛍光体とを有する白色発光ダイオード等)からなるバックライト光源を使用した液晶表示装置が開発されている。 Due to the recent increase in color gamut demand for liquid crystal display devices, the emission spectrum peaks in each wavelength region of blue region (400 nm to less than 495 nm), green region (495 nm to less than 600 nm) and red region (600 nm to 780 nm or less). White light-emitting diode (for example, blue light-emitting diode and at least K 2 SiF 6 as a phosphor) having a top and having an emission spectrum with a relatively narrow half-width (less than 5 nm) in the red region (600 nm to 780 nm or less) A liquid crystal display device using a backlight source composed of a white light emitting diode having a fluoride phosphor such as Mn 4+ has been developed.
 偏光子保護フィルムとしてポリエステルフィルムを用いた偏光板を用いて液晶表示装置を工業的に生産する場合、偏光子の透過軸とポリエステルフィルムの進相軸の方向は、通常互いに垂直になるように配置される。これは、偏光子であるポリビニルアルコールフィルムは、縦一軸延伸をして製造されるところ、その保護フィルムであるポリエステルフィルムは、縦延伸した後、横延伸をして製造されるため、ポリエステルフィルム配向主軸方向は横方向となり、これらの長尺物を貼り合わせて偏光板が製造されると、ポリエステルフィルムの進相軸と偏光子の透過軸は通常垂直方向となるためである。この場合、ポリエステルフィルムとして特定のリタデーションを有する配向ポリエステルフィルムを用い、バックライト光源として例えば、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色LEDに代表される、連続的で幅広い発光スペクトルを有する光源を用いることにより、虹状の色斑は大幅に改善されるものの、赤色領域(600nm以上780nm以下)におけるピークの半値幅が比較的狭い(5nm未満)発光スペクトルを有する白色発光ダイオードからなるバックライト光源を用いた場合、依然として虹斑が生じるという新たな課題が存在することを発見した。 When industrially producing a liquid crystal display device using a polarizing plate using a polyester film as a polarizer protective film, the transmission axis of the polarizer and the fast axis direction of the polyester film are usually arranged to be perpendicular to each other. Is done. This is because the polyvinyl alcohol film that is a polarizer is manufactured by longitudinal uniaxial stretching, and the polyester film that is the protective film is manufactured by longitudinal stretching and then lateral stretching, so that the polyester film orientation This is because the main axis direction is the horizontal direction, and when these long objects are bonded together to produce a polarizing plate, the fast axis of the polyester film and the transmission axis of the polarizer are usually perpendicular. In this case, an oriented polyester film having a specific retardation is used as the polyester film, and, for example, a white LED composed of a light emitting element in which a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor are combined is used as a backlight light source. By using a light source having a continuous and broad emission spectrum, the rainbow-like color spot is greatly improved, but the half-width of the peak in the red region (600 nm to 780 nm or less) is relatively narrow (less than 5 nm). It has been found that there is still a new problem that rainbow spots still occur when using a backlight light source consisting of a white light emitting diode having a spectrum.
 すなわち、本発明の課題は、青色領域(400nm以上495nm未満)、緑色領域(495nm以上600nm未満)及び赤色領域(600nm以上780nm以下)の各波長領域にそれぞれ発光スペクトルのピークトップを有し、赤色領域(600nm以上780nm以下)におけるピークの半値幅が比較的狭い(5nm未満)発光スペクトルを有する白色発光ダイオードからなるバックライト光源を有する液晶表示装置において、偏光子保護フィルムとしてポリエステルフィルムを用いた場合にも、虹斑が抑制された液晶表示装置を提供することである。 That is, an object of the present invention is to have a peak top of an emission spectrum in each wavelength region of a blue region (400 nm or more and less than 495 nm), a green region (495 nm or more and less than 600 nm), and a red region (600 nm or more and 780 nm or less). When a polyester film is used as a polarizer protective film in a liquid crystal display device having a backlight light source composed of a white light emitting diode having an emission spectrum having a relatively narrow half-width (less than 5 nm) in the region (600 nm or more and 780 nm or less). Another object is to provide a liquid crystal display device in which rainbow spots are suppressed.
 代表的な本発明は、以下の通りである。
項1.
 バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配置された液晶セルを有する液晶表示装置であって、
 前記バックライト光源は、400nm以上495nm未満、495nm以上600nm未満及び600nm以上780nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有し、かつ、600nm以上780nm以下の波長領域における最もピーク強度の高いピーク(600nm以上780nm以下の波長領域におけるピークトップが最も高いピーク)の半値幅が5nm未満である発光スペクトルを有する白色発光ダイオードであり、
 前記偏光板のうち少なくとも一方の偏光板は、偏光子の少なくとも一方の面にポリエステルフィルムが積層されたものであり、
 前記ポリエステルフィルムは、1500nm以上30000nm以下のリタデーションを有し、
 前記ポリエステルフィルムは、少なくとも一方の面に反射防止層及び/又は低反射層が積層されており、
 前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長における、反射防止層及び/又は低反射層が積層された側から測定した、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射率が2%以下であることを特徴とする液晶表示装置。
項2.
 前記バックライト光源の発光スペクトルは、
 400nm以上495nm未満の波長領域における最もピーク強度の高いピークの半値幅が5nm以上であり、
 495nm以上600nm未満の波長領域における最もピーク強度の高いピークの半値幅が5nm以上である、
項1に記載の液晶表示装置。
項3.
 前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長が、620nm以上640nm以下にある、項1又は2に記載の液晶表示装置。
項4.
 前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長が630nmである、項1又は2に記載の液晶表示装置。
項5.
 1500nm以上30000nm以下のリタデーションを有し、少なくとも一方の面に反射防止層及び/又は低反射層が積層されたポリエステルフィルムからなる偏光子保護フィルムであって、
 波長600nm以上780nm以下の波長領域のいずれかの波長における、反射防止層及び/又は低反射層が積層された側から測定した反射率が2%以下である、偏光子保護フィルム。
項6.
 前記いずれかの波長が620nm以上640nm以下にある、項5に記載の偏光子保護フィルム。
項7.
 前記いずれかの波長が630nmである、項5に記載の偏光子保護フィルム。
項8.
 偏光子の少なくとも一方の面に項5~7のいずれかに記載の偏光子保護フィルムが積層された偏光板。
The representative present invention is as follows.
Item 1.
A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
The backlight source has a peak top of the emission spectrum in each wavelength region of 400 nm to 495 nm, 495 nm to less than 600 nm, and 600 nm to 780 nm, and has the highest peak intensity in the wavelength region of 600 nm to 780 nm. A white light emitting diode having an emission spectrum in which a half width of a peak (the peak with the highest peak top in a wavelength region of 600 nm or more and 780 nm or less) is less than 5 nm;
At least one polarizing plate among the polarizing plates is obtained by laminating a polyester film on at least one surface of a polarizer,
The polyester film has a retardation of 1500 nm or more and 30000 nm or less,
The polyester film has an antireflection layer and / or a low reflection layer laminated on at least one surface,
The antireflection layer and / or the low reflection layer measured from the side where the antireflection layer and / or the low reflection layer are laminated at the peak top wavelength of the peak having the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less. A liquid crystal display device, wherein the reflectance of the laminated polyester film is 2% or less.
Item 2.
The emission spectrum of the backlight source is
The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 400 nm or more and less than 495 nm is 5 nm or more,
The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm is 5 nm or more,
Item 2. A liquid crystal display device according to item 1.
Item 3.
Item 3. The liquid crystal display device according to item 1 or 2, wherein a peak top wavelength of a peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is in the range of 620 nm to 640 nm.
Item 4.
Item 3. The liquid crystal display device according to Item 1 or 2, wherein the peak top wavelength of the peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is 630 nm.
Item 5.
A polarizer protective film comprising a polyester film having a retardation of 1500 nm or more and 30000 nm or less and having an antireflection layer and / or a low reflection layer laminated on at least one surface,
A polarizer protective film having a reflectance of 2% or less measured from the side on which the antireflection layer and / or the low reflection layer is laminated in any wavelength of a wavelength region of 600 nm to 780 nm.
Item 6.
Item 6. The polarizer protective film according to Item 5, wherein any one of the wavelengths is from 620 nm to 640 nm.
Item 7.
Item 6. The polarizer protective film according to Item 5, wherein any one of the wavelengths is 630 nm.
Item 8.
A polarizing plate in which the polarizer protective film according to any one of Items 5 to 7 is laminated on at least one surface of the polarizer.
 本発明の液晶表示装置、偏光板、及び偏光子保護フィルムは、いずれの観察角度においても虹状の色斑の発生が有意に抑制された良好な視認性を確保することができる。 The liquid crystal display device, polarizing plate, and polarizer protective film of the present invention can ensure good visibility in which the occurrence of rainbow-like color spots is significantly suppressed at any observation angle.
 一般に、液晶表示装置は、バックライト光源側から画像を表示する側(視認側)に向かう順に、後面モジュール、液晶セルおよび前面モジュールから構成されている。後面モジュールおよび前面モジュールは、一般に、透明基板と、その液晶セル側表面に形成された透明導電膜と、その反対側に配置された偏光板とから構成されている。ここで、偏光板は、後面モジュールでは、バックライト光源側に配置され、前面モジュールでは、画像を表示する側(視認側)に配置されている。 Generally, a liquid crystal display device includes a rear module, a liquid crystal cell, and a front module in order from the backlight light source side to the image display side (viewing side). The rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side. Here, the polarizing plate is disposed on the backlight source side in the rear module, and is disposed on the image display side (viewing side) in the front module.
 本発明の液晶表示装置は少なくとも、バックライト光源と、2つの偏光板の間に配され
た液晶セルとを構成部材とする。
The liquid crystal display device of the present invention comprises at least a backlight source and a liquid crystal cell disposed between two polarizing plates.
 また、液晶表示装置は、バックライト光源、偏光板、液晶セル以外に他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。光源側偏光板とバックライト光源の間に、輝度向上フィルムを設けてもよい。輝度向上フィルムとしては、例えば、一方の直線偏光を透過し、それと直交する直線偏光を反射する反射型偏光板が挙げられる。反射型偏光板としては、例えば、住友スリーエム株式会社製のDBEF(登録商標)(Dual Brightness Enhancement Film)シリーズの輝度向上フィルムが好適に用いられる。なお、反射型偏光板は、通常、反射型偏光板の吸収軸と光源側偏光板の吸収軸とが平行になるように配置される。 Further, the liquid crystal display device may appropriately have other components in addition to the backlight source, the polarizing plate, and the liquid crystal cell, such as a color filter, a lens film, a diffusion sheet, and an antireflection film. A brightness enhancement film may be provided between the light source side polarizing plate and the backlight light source. Examples of the brightness enhancement film include a reflective polarizing plate that transmits one linearly polarized light and reflects linearly polarized light orthogonal thereto. As the reflective polarizing plate, for example, a DBEF (Dual Brightness Enhancement Film) series brightness enhancement film manufactured by Sumitomo 3M Limited is preferably used. The reflective polarizing plate is usually arranged so that the absorption axis of the reflective polarizing plate and the absorption axis of the light source side polarizing plate are parallel to each other.
 液晶表示装置内に配置される2つの偏光板のうち、少なくとも一方の偏光板は、ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子の少なくとも一方の面にポリエステルフィルムが積層されたものである。本発明においては、虹状の色斑を抑制する観点から、ポリエステルフィルムは特定のリタデーションを有し、ポリエステルフィルムの少なくとも一方の面に、反射防止層及び/又は低反射層が積層されたものである。反射防止層及び/又は低反射層は、ポリエステルフィルムの偏光子を積層する面とは反対側の面に設けてもよいし、ポリエステルフィルムの偏光子を積層する面に設けてもよいし、その両方であっても構わない。ポリエステルフィルムの偏光子を積層する面とは反対側の面に反射防止層及び/又は低反射層を設けることが好ましい。また、反射防止層及び/又は低反射層と、ポリエステルフィルムとの間には、他の層(例えば易接着層、ハードコート層、防眩層、帯電防止層、防汚層等)が存在してもよい。より虹状の色斑を抑制する観点から、偏光子の透過軸と平行な方向の、前記ポリエステルフィルムの屈折率は、1.53~1.62であることが好ましい。偏光子の他方の面には、TACフィルムやアクリルフィルム、ノルボルネン系フィルムに代表されるような複屈折が実質的に無い(リタデーションの低い)フィルムが積層されることが好ましいが(3層構成の偏光板)、必ずしも偏光子の他方の面にフィルムが積層される必要はない(2層構成の偏光板)。なお、偏光子の両側の保護フィルムとしてポリエステルフィルムが用いられる場合、両方のポリエステルフィルムの遅相軸は互いに略平行であることが好ましい。ここで略平行であるとは、二軸によって形成される角が、-15°~15°、好ましくは-10°~10°、より好ましく-5°~5°、更に好ましくは-3°~3°、より更に好ましくは-2°~2°、一層好ましくは-1°~1°であることを意味する。 Of the two polarizing plates arranged in the liquid crystal display device, at least one polarizing plate has a polyester film laminated on at least one surface of a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like. It is. In the present invention, from the viewpoint of suppressing rainbow-like color spots, the polyester film has a specific retardation, and an antireflection layer and / or a low reflection layer is laminated on at least one surface of the polyester film. is there. The antireflection layer and / or the low reflection layer may be provided on the surface opposite to the surface on which the polarizer of the polyester film is laminated, or on the surface on which the polarizer of the polyester film is laminated, Both are acceptable. It is preferable to provide an antireflection layer and / or a low reflection layer on the surface of the polyester film opposite to the surface on which the polarizer is laminated. In addition, there are other layers (for example, an easy adhesion layer, a hard coat layer, an antiglare layer, an antistatic layer, an antifouling layer, etc.) between the antireflection layer and / or the low reflection layer and the polyester film. May be. From the viewpoint of suppressing rainbow-like color spots, the refractive index of the polyester film in the direction parallel to the transmission axis of the polarizer is preferably 1.53 to 1.62. On the other surface of the polarizer, it is preferable that a film having substantially no birefringence (low retardation) as typified by a TAC film, an acrylic film, or a norbornene-based film is laminated (with a three-layer structure). A polarizing plate), a film is not necessarily laminated on the other surface of the polarizer (a polarizing plate having a two-layer structure). In addition, when a polyester film is used as a protective film on both sides of the polarizer, it is preferable that the slow axes of both polyester films are substantially parallel to each other. Here, “substantially parallel” means that the angle formed by the two axes is −15 ° to 15 °, preferably −10 ° to 10 °, more preferably −5 ° to 5 °, and still more preferably −3 ° to It means 3 °, more preferably −2 ° to 2 °, and still more preferably −1 ° to 1 °.
 偏光子は、当該技術分野において使用される任意の偏光子(偏光フィルム)を適宜選択して使用することができる。代表的な偏光子としては、ポリビニルアルコールフィルム等にヨウ素等の二色性材料を染着させたものを挙げることができるが、これに限定されるものではなく、公知及び今後開発され得る偏光子を適宜選択して用いることができる。 As the polarizer, any polarizer (polarizing film) used in the technical field can be appropriately selected and used. Examples of typical polarizers include those obtained by dyeing a dichroic material such as iodine on a polyvinyl alcohol film or the like. However, the polarizer is not limited to this, and may be a known and later-developed polarizer. Can be appropriately selected and used.
 PVAフィルムは、市販品を用いることができ、例えば、「クラレビニロン((株)クラレ製)」、「トーセロビニロン(東セロ(株)製)]、「日合ビニロン(日本合成化学(株)製)]等を用いることができる。二色性材料としてはヨウ素、ジアゾ化合物、ポリメチン染料等を挙げることができる。 Commercially available products can be used as the PVA film. For example, “Kuraray Vinylon (manufactured by Kuraray Co., Ltd.)”, “Tosero Vinylon (manufactured by Toh Cello Co., Ltd.)”, “Nichigo Vinylon (Nippon Synthetic Chemical Co., Ltd.) The dichroic material includes iodine, a diazo compound, a polymethine dye, and the like.
 偏光子は、任意の手法で得ることができ、例えば、PVAフィルムを二色性材料で染着させたものをホウ酸水溶液中で一軸延伸し、延伸状態を保ったまま洗浄及び乾燥を行うことにより得ることができる。一軸延伸の延伸倍率は、通常4~8倍程度であるが特に制限されない。他の製造条件等は公知の手法に従って適宜設定することができる。 The polarizer can be obtained by any method. For example, a PVA film dyed with a dichroic material is uniaxially stretched in an aqueous boric acid solution, and washed and dried while maintaining the stretched state. Can be obtained. The stretching ratio of uniaxial stretching is usually about 4 to 8 times, but is not particularly limited. Other manufacturing conditions and the like can be appropriately set according to known methods.
 バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わないが、本発明では、液晶表示装置のバックライト光源として、400nm以上495nm未満、495nm以上600nm未満、及び600nm以上750nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有し、かつ、600nm以上780nm以下の波長領域における最もピーク強度の高いピークの半値幅が5nm未満である発光スペクトルを有する白色発光ダイオードからなるバックライト光源が好ましい。600nm以上780nm以下の波長領域における最も高いピーク強度を有するピークの半値幅の上限は5nm未満が好ましく、より好ましくは4nm未満、さらに好ましくは3.5nm未満である。下限は1nm以上が好ましく、より好ましくは1.5nm以上である。ピークの半値幅が5nm未満であると、液晶表示装置の色域が広がるため好ましい。また、ピークの半値幅の下限は特に無いが、1nmと設定することができる。ピーク半値幅が1nm未満であると、発光効率が悪くなるおそれがある。要求される色域と発光効率のバランスから発光スペクトルの形状が設計される。なお、ここで、半値幅とは、ピークトップの波長におけるピーク強度の、1/2の強度におけるピーク幅(nm)のことである。 The configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, as a backlight light source of a liquid crystal display device, 400 nm or more, less than 495 nm, 495 nm or more, less than 600 nm, and 600 nm or more and 750 nm or less, each having a peak top of the emission spectrum, and the half width of the peak with the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less A backlight light source consisting of a white light emitting diode having an emission spectrum of less than 5 nm is preferred. The upper limit of the full width at half maximum of the peak having the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less is preferably less than 5 nm, more preferably less than 4 nm, and still more preferably less than 3.5 nm. The lower limit is preferably 1 nm or more, and more preferably 1.5 nm or more. It is preferable that the half width of the peak is less than 5 nm because the color gamut of the liquid crystal display device is widened. In addition, there is no lower limit of the half width of the peak, but it can be set to 1 nm. If the peak half width is less than 1 nm, the light emission efficiency may deteriorate. The shape of the emission spectrum is designed from the balance between the required color gamut and the luminous efficiency. Here, the half width is the peak width (nm) at half the intensity of the peak intensity at the peak top wavelength.
 上述した特徴を持つ発光スペクトルを有するバックライト光源のLCDへの適用は、近年の色域拡大要求の高まりから注目されている技術である。従来から使用されている白色LED(例えば、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子)をバックライト光源として使用するLEDでは、人間の目が認識可能なスペクトルの20%程度しか色を再現することが出来ない。これに対し上述した特徴を持つ発光スペクトルを有するバックライト光源を用いた場合、60%以上の色を再現することが可能になると言われている。 Application of a backlight light source having an emission spectrum having the above-described characteristics to an LCD is a technology that has been attracting attention due to the recent increasing demand for color gamut expansion. Conventionally used white LEDs (for example, light-emitting elements that combine blue light-emitting diodes with yttrium, aluminum, and garnet yellow phosphors) as backlight light sources have a spectrum that can be recognized by the human eye. Only about 20% of colors can be reproduced. On the other hand, when a backlight light source having an emission spectrum having the above-described characteristics is used, it is said that it is possible to reproduce 60% or more of colors.
 前記400nm以上495nm未満の波長領域は、より好ましくは430nm以上470nm以下である。前記495nm以上600nm未満の波長領域は、より好ましくは510nm以上560nm以下である。前記600nm以上780nm以下の波長領域は、より好ましくは600nm以上700nm以下であり、さらにより好ましくは610nm以上680mn以下である。前記600nm以上780nm以下の波長領域の好ましい一態様としては、620nm以上640nm以下であり、特に好ましくは630nmである。 The wavelength region of 400 nm or more and less than 495 nm is more preferably 430 nm or more and 470 nm or less. The wavelength region of 495 nm or more and less than 600 nm is more preferably 510 nm or more and 560 nm or less. The wavelength region of 600 nm to 780 nm is more preferably 600 nm to 700 nm, and even more preferably 610 nm to 680 mn. A preferred embodiment of the wavelength region of 600 nm to 780 nm is 620 nm to 640 nm, and particularly preferably 630 nm.
 発光スペクトルの400nm以上495nm未満、495nm以上600nm未満の各波長領域のピークトップにおけるピーク半値幅(各波長領域における最も高いピーク強度を有するピークの半値幅)は、特に限定されないが、400nm以上495nm未満の波長領域における最も高いピーク強度を有するピークの半値幅が5nm以上であることが好ましく、495nm以上600nm未満の波長領域における最も高いピーク強度を有するピークの半値幅が5nm以上であることが好ましい。適正な色域を確保する観点から、400nm以上495nm未満、495nm以上600nm未満の各波長領域のピークトップにおけるピーク半値幅(各波長領域における最も高いピーク強度を有するピークの半値幅)の上限は、好ましくは140nm以下であり、好ましくは120nm以下であり、好ましくは100nm以下であり、より好ましくは80nm以下であり、さらに好ましくは60nm以下であり、よりさらに好ましくは50nm以下である。 The peak half-width at the peak top of each wavelength region of the emission spectrum from 400 nm to less than 495 nm and from 495 nm to less than 600 nm (the half width of the peak having the highest peak intensity in each wavelength region) is not particularly limited, but is from 400 nm to less than 495 nm The half-width of the peak having the highest peak intensity in the wavelength region is preferably 5 nm or more, and the half-width of the peak having the highest peak intensity in the wavelength region of from 495 nm to less than 600 nm is preferably 5 nm or more. From the viewpoint of securing an appropriate color gamut, the upper limit of the peak half width at the peak top of each wavelength region from 400 nm to less than 495 nm and from 495 nm to less than 600 nm (the half width of the peak having the highest peak intensity in each wavelength region) is Preferably it is 140 nm or less, Preferably it is 120 nm or less, Preferably it is 100 nm or less, More preferably, it is 80 nm or less, More preferably, it is 60 nm or less, More preferably, it is 50 nm or less.
 上述した特徴を持つ発光スペクトルを有する白色光源として、具体的には、例えば、青色発光ダイオードと蛍光体を組み合わせた蛍光体方式の白色発光ダイオードが挙げられる。前記蛍光体のうち赤色蛍光体としては、例えば組成式がKSiF:Mn4+であるフッ化物蛍光体(「KSF」ともいう)、その他が例示される。Mn4+付活フッ化物錯体蛍光体は、Mn4+を付活剤、アルカリ金属、アミンまたはアルカリ土類金属のフッ化物錯体塩を母体結晶とする蛍光体である。母体結晶を形成するフッ化物錯体には、配位中心が3価金属(B、Al、Ga、In、Y、Sc、ランタノイド)のもの、4価金属(Si、Ge、Sn、Ti、Zr、Re、Hf)のもの、5価金属(V、P、Nb、Ta)のものがあり、その周りに配位するフッ素原子の数は5~7である。 Specific examples of a white light source having an emission spectrum having the above-described characteristics include a phosphor type white light emitting diode in which a blue light emitting diode and a phosphor are combined. Examples of the red phosphor among the phosphors include a fluoride phosphor (also referred to as “KSF”) whose composition formula is K 2 SiF 6 : Mn 4+ , and others. The Mn 4+ activated fluoride complex phosphor is a phosphor having Mn 4+ as an activator, a fluoride complex salt of an alkali metal, amine, or alkaline earth metal as a base crystal. Fluoride complexes that form host crystals include those whose coordination center is a trivalent metal (B, Al, Ga, In, Y, Sc, lanthanoid), and tetravalent metal (Si, Ge, Sn, Ti, Zr, Re, Hf) and pentavalent metals (V, P, Nb, Ta), and the number of fluorine atoms coordinated around them is 5-7.
 Mn4+付活フッ化物錯体蛍光体の好適例としては、A[MF]:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上;MはGe、Si、Sn、Ti、及びZrから選ばれる一種以上)、E[MF]:Mn(EはMg、Ca、Sr、Ba、及びZnから選ばれる一種以上;MはGe、Si、Sn、Ti、及びZrから選ばれる一種以上)、Ba0.65、Zr0.352.70:Mn、A[ZrF]:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上)、A[MF]:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上;MはAl、Ga、及びInから選ばれる一種以上)、A[MF]:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上;MはAl、Ga、及びInから選ばれる一種以上)、Zn[MF]:Mn(MはAl、Ga、及びInから選ばれる一種以上)、A[In]:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上)などがある。 Preferable examples of the Mn 4+ activated fluoride complex phosphor include A 2 [MF 6 ]: Mn (A is one or more selected from Li, Na, K, Rb, Cs, and NH 4 ; M is Ge, Si , Sn, Ti, and Zr), E [MF 6 ]: Mn (E is one or more selected from Mg, Ca, Sr, Ba, and Zn; M is Ge, Si, Sn, Ti, And at least one selected from Zr), Ba 0.65 , Zr 0.35 F 2.70 : Mn, A 3 [ZrF 7 ]: Mn (A is Li, Na, K, Rb, Cs, and NH 4. One or more selected), A 2 [MF 5 ]: Mn (A is one or more selected from Li, Na, K, Rb, Cs, and NH 4 ; M is one or more selected from Al, Ga, and In) , A 3 [MF 6 ]: Mn (A is Li, Na, K, Rb, One or more selected from Cs and NH 4 ; M is one or more selected from Al, Ga and In), Zn 2 [MF 7 ]: Mn (M is one or more selected from Al, Ga and In), A [In 2 F 7 ]: Mn (A is one or more selected from Li, Na, K, Rb, Cs, and NH 4 ).
 好ましいMn4+付活フッ化物錯体蛍光体のひとつは、アルカリ金属のヘキサフルオロ錯体塩を母体結晶とするAMF:Mn(AはLi、Na、K、Rb、Cs、及びNHから選ばれる一種以上;MはGe、Si、Sn、Ti、及びZrから選ばれる一種以上)である。中でも好ましいのは、AがK(カリウム)及びNa(ナトリウム)から選ばれる1種以上、MがSi(ケイ素)またはTi(チタン)であるものである。その中でも特に、AがKであり(A全量に占めるKの比率が99モル%以上)、MがSiであるものが好ましい。付活元素はMn(マンガン)が100%であることが望ましいが、付活元素の全量に対し10モル%未満の範囲でTi、Zr、Ge、Sn、Al、Ga、B、In、Cr、Fe、Co、Ni、Cu、Nb、Mo、Ru、Ag、Zn、及びMgなどが含まれていてもよい。MがSiの場合、SiとMnとの合計におけるMnの割合は、0.5モル%~10モル%の範囲内であることが望ましい。他の好ましいMn4+付活フッ化物錯体蛍光体として、化学式A2+xMn(AはNaおよびK;MはSiおよびAl;-1≦x≦1かつ0.9≦y+z≦1.1かつ0.001≦z≦0.4かつ5≦n≦7)で表されるものが挙げられる。 One of the preferable Mn 4+ activated fluoride complex phosphors is A 2 MF 6 : Mn (A is selected from Li, Na, K, Rb, Cs, and NH 4) whose base crystal is a hexafluoro complex salt of an alkali metal. M is one or more selected from Ge, Si, Sn, Ti, and Zr). Among them, A is preferably one or more selected from K (potassium) and Na (sodium), and M is Si (silicon) or Ti (titanium). Among them, particularly preferred are those in which A is K (the ratio of K in the total amount of A is 99 mol% or more) and M is Si. The activation element is preferably 100% Mn (manganese), but Ti, Zr, Ge, Sn, Al, Ga, B, In, Cr, in a range of less than 10 mol% with respect to the total amount of the activation element. Fe, Co, Ni, Cu, Nb, Mo, Ru, Ag, Zn, Mg, and the like may be included. When M is Si, the ratio of Mn in the total of Si and Mn is preferably in the range of 0.5 mol% to 10 mol%. Other preferred Mn 4+ activated fluoride complex phosphors have the chemical formula A 2 + x M y Mn z F n (A is Na and K; M is Si and Al; −1 ≦ x ≦ 1 and 0.9 ≦ y + z ≦ 1) .1 and 0.001 ≦ z ≦ 0.4 and 5 ≦ n ≦ 7).
 バックライト光源には、青色発光ダイオードと蛍光体として少なくともフッ化物蛍光体とを有する白色発光ダイオードが好ましく、特に好ましくは、青色発光ダイオードと蛍光体として少なくともKSiF:Mn4+であるフッ化物蛍光体とを有する白色発光ダイオードである。例えば、日亜化学工業株式会社製の白色LEDであるNSSW306FT等の市販品を用いることができる。 The backlight light source is preferably a white light emitting diode having a blue light emitting diode and at least a fluoride phosphor as a phosphor, and particularly preferably a fluoride having at least K 2 SiF 6 : Mn 4+ as a blue light emitting diode and a phosphor. A white light emitting diode having a phosphor. For example, commercially available products such as NSSW306FT, which is a white LED manufactured by Nichia Corporation, can be used.
 また、前記蛍光体のうち緑色蛍光体としては、例えばβ-SiAlON:Eu等を基本組成とするサイアロン系蛍光体、(Ba,Sr)SiO:Eu等を基本組成とするシリケート系蛍光体、その他が例示される。 Among the phosphors, as the green phosphor, for example, a sialon phosphor having a basic composition of β-SiAlON: Eu or the like, or a silicate phosphor having a basic composition of (Ba, Sr) 2 SiO 4 : Eu or the like. Others are exemplified.
 なお、400nm以上495nm未満の波長領域、495nm以上600nm未満の波長領域、又は600nm以上780nm以下の波長領域のいずれかの波長領域において、複数のピークが存在する場合は以下の様に考える。
 複数のピークが、それぞれ独立したピークである場合、最もピーク強度の高いピークの半値幅が上記範囲であることが好ましい。さらに、最も高いピーク強度の70%以上の強度を有する他のピークについても、同様に半値幅が上記範囲になることがより好ましい態様である。
 複数のピークが重なった形状を有する一個の独立したピークについては、複数のピークのうち最もピーク強度の高いピークの半値幅をそのまま測定できる場合には、その半値幅を用いる。ここで、独立したピークとは、ピークの短波長側、長波長側の両方にピーク強度の1/2になる強度の領域を有するものである。すなわち、複数のピークが重なり、個々のピークがその両側にピーク強度の1/2になる強度の領域を有さない場合は、その複数のピークを全体として一個のピークと見なす。この様な、複数のピークが重なった形状を有する一個のピークは、その中の最も高いピーク強度の、1/2の強度におけるピークの幅(nm)を半値幅とする。
 なお、複数のピークのうち、最もピーク強度の高い点をピークトップとする。
 なお、400nm以上495nm未満の波長領域、495nm以上600nm未満の波長領域、又は600nm以上780nm以下の波長領域のそれぞれの波長領域における最も高いピーク強度を持つピークは他の波長領域のピークとはお互い独立した関係にあることが好ましい。特に、495nm以上600nm未満の波長領域で最も高いピーク強度を持つピークと、600nm以上780nm以下の領域で最も高いピーク強度を持つピークとの間の波長領域には、強度が600nm以上780nm以下の波長領域の最も高いピーク強度を持つピークのピーク強度の1/3以下になる領域が存在することが色彩の鮮明性の面で好ましい。
In the case where a plurality of peaks are present in any one of the wavelength region of 400 nm or more and less than 495 nm, the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 780 nm or less, the following is considered.
When a plurality of peaks are independent peaks, it is preferable that the half width of the peak with the highest peak intensity is in the above range. Furthermore, it is a more preferable aspect that the half-value width is similarly in the above range for other peaks having an intensity of 70% or more of the highest peak intensity.
For one independent peak having a shape in which a plurality of peaks are overlapped, the half width of the peak having the highest peak intensity among the plurality of peaks can be used as it is. Here, the independent peak has an intensity region that is ½ of the peak intensity on both the short wavelength side and the long wavelength side of the peak. That is, when a plurality of peaks overlap and each peak does not have a region having an intensity that is ½ of the peak intensity on both sides thereof, the plurality of peaks are regarded as one peak as a whole. In such a peak having a shape in which a plurality of peaks are overlapped, the peak width (nm) at half the intensity of the highest peak intensity is set as the half width.
Of the plurality of peaks, the point with the highest peak intensity is defined as the peak top.
The peak having the highest peak intensity in each of the wavelength region of 400 nm or more and less than 495 nm, the wavelength region of 495 nm or more and less than 600 nm, or the wavelength region of 600 nm or more and 780 nm or less is independent from the peaks of other wavelength regions. It is preferable that the relationship is In particular, the wavelength region between the peak having the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm and the peak having the highest peak intensity in the region of 600 nm or more and 780 nm or less has a wavelength of 600 nm or more and 780 nm or less. It is preferable in terms of color clarity that there is a region that is 1/3 or less of the peak intensity of the peak having the highest peak intensity in the region.
 バックライト光源の発光スペクトルは、浜松ホトニクス製 マルチチャンネル分光器 PMA-12等の分光器を用いることにより測定が可能である。 The emission spectrum of the backlight light source can be measured by using a spectroscope such as Hamamatsu Photonics multi-channel spectroscope PMA-12.
 本発明者らは鋭意検討した結果、上述したバックライト光源のように、青色領域(400nm以上495nm未満)、緑色領域(495nm以上600nm未満)及び赤色領域(600nm以上780nm以下)の各波長領域にそれぞれ発光スペクトルのピークトップを有し、赤色領域(600nm以上780nm以下)におけるピークの半値幅が比較的狭い白色発光ダイオードからなるバックライト光源を有する液晶表示装置において、偏光子保護フィルムとして、特定の波長における反射率の低い反射防止層及び/又は低反射層を有し、特定のリタデーションを有するポリエステルフィルムを用いれば虹斑の抑制に効果があることを見出した。ここで、特定の波長とは、バックライト光源の発光スペクトルにおいて、600nm以上780nm以下の波長領域における最もピーク強度の高いピークに対応する波長(最もピーク強度の高いピークのピークトップの波長)である。すなわち、本発明者らは、バックライト光源の発光スペクトルにおいて600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長において、反射防止層及び/又は低反射層が積層された側から測定した、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射率が2%以下であると、特に、虹斑抑制に効果があることを見出した。 As a result of intensive studies, the present inventors have found that each wavelength region of the blue region (400 nm to less than 495 nm), the green region (495 nm to less than 600 nm), and the red region (600 nm to 780 nm or less), as in the backlight light source described above. In a liquid crystal display device having a backlight source composed of a white light emitting diode each having a peak top of an emission spectrum and a peak half-width in a red region (600 nm or more and 780 nm or less) being relatively narrow, It has been found that if a polyester film having an antireflection layer and / or a low reflection layer having a low reflectance at a wavelength and having a specific retardation is used, it is effective in suppressing rainbow spots. Here, the specific wavelength is a wavelength corresponding to the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight light source (the peak top wavelength of the peak with the highest peak intensity). . That is, the present inventors are the side where the antireflection layer and / or the low reflection layer is laminated at the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight light source. It was found that when the reflectance of the polyester film on which the antireflection layer and / or the low-reflection layer was laminated was 2% or less, it was particularly effective in suppressing rainbow spots.
 偏光子の片側に配向ポリエステルフィルムを配した場合、バックライトユニット、または、偏光子から出射した直線偏光はポリエステルフィルムを通過する際に偏光状態が変化する。偏光状態が変化する要因の一つに、空気層と配向ポリエステルフィルムとの界面の屈折率差、または偏光子と配向ポリエステルフィルムとの界面の屈折率差が影響している可能性が考えられる。配向ポリエステルフィルムに入射した直線偏光が、各界面を通過する際に、界面間の屈折率差により光の一部が反射される。
 偏光子を通過し、配向ポリエステルフィルムに入射する光は直線偏光であり、直線偏光の状態では波長に対する透過率依存性は無いと考えられる。直線偏光の入射光は配向ポリエステルフィルムを通過することで楕円偏光や円偏光に変化する。位相差δは、δ=2π×Re/λ(Re:レタデーション,λ:波長)で表され、波長λにより位相差δが異なる。つまり光の波長λによって、直線偏光、楕円偏光、円偏光の変化サイクルが異なるため、配向ポリエステルフィルムを出射する際の偏光状態が波長によって異なると考えられる。配向ポリエステルフィルムから視認側に出射される際は、入射面に対して平行なP偏光成分よりも垂直なS偏光成分が反射されやすく、法線からの視認角度が大きくなるにつれてこの差(P偏光成分とS偏光成分の差)は大きくなる傾向がある。偏光度が異なる各波長の光は、反射されやすいS偏光の影響がそれぞれ異なるため、界面を通過する際に各透過率が変化する。界面を通過する際にS偏光成分が多い波長帯の透過率が低下することとなり、これが虹状の色斑が発生する要因の一つとなっていると考えられる。特に600nm以上780nm以下の赤色領域で急峻なピークを持つ場合、波長による透過率変化が大きいため、色斑が出やすくなる。薄膜干渉を利用すると任意の波長の界面反射を抑えることができるため、急峻なピークにおける反射率の低い反射防止層及び/又は低反射層を形成することで赤色領域の透過率を向上(すなわちS偏光成分の反射を抑えること)が可能になると考えられる。急峻なピークを有する赤色領域において、S偏光成分の透過率が向上するため、偏光子を通過した入射光に対して配向ポリエステルフィルムの出射光の透過率変化が少なくなることで、虹状の色斑を抑えることができる。
When the oriented polyester film is disposed on one side of the polarizer, the polarization state of the linearly polarized light emitted from the backlight unit or the polarizer changes when passing through the polyester film. One of the factors that change the polarization state may be the influence of the refractive index difference at the interface between the air layer and the oriented polyester film or the refractive index difference at the interface between the polarizer and the oriented polyester film. When the linearly polarized light incident on the oriented polyester film passes through each interface, a part of the light is reflected by the difference in refractive index between the interfaces.
The light passing through the polarizer and entering the oriented polyester film is linearly polarized light, and it is considered that there is no transmittance dependency on the wavelength in the state of linearly polarized light. Incident light of linearly polarized light changes to elliptically polarized light or circularly polarized light by passing through the oriented polyester film. The phase difference δ is expressed by δ = 2π × Re / λ (Re: retardation, λ: wavelength), and the phase difference δ varies depending on the wavelength λ. That is, since the change cycle of linearly polarized light, elliptically polarized light, and circularly polarized light differs depending on the wavelength λ of light, it is considered that the polarization state when exiting the oriented polyester film differs depending on the wavelength. When emitted from the oriented polyester film to the viewer side, the S-polarized component perpendicular to the P-polarized component parallel to the incident surface is more easily reflected, and this difference (P-polarized light) increases as the viewing angle from the normal increases. The difference between the component and the S-polarized component) tends to increase. Since light of each wavelength having different degrees of polarization has different influences of S-polarized light that is easily reflected, each transmittance changes when passing through the interface. When passing through the interface, the transmittance in a wavelength band with a large amount of S-polarized light component is reduced, which is considered to be one of the factors that cause rainbow-like color spots. In particular, when there is a steep peak in the red region of 600 nm or more and 780 nm or less, color variation tends to occur because the transmittance change due to wavelength is large. Since thin-film interference can be used to suppress interface reflection at any wavelength, the transmittance of the red region is improved by forming a low-reflection layer and / or a low-reflection layer at a steep peak (ie, S It is considered possible to suppress the reflection of the polarization component). In the red region with a steep peak, the transmittance of the S-polarized component is improved, so the change in the transmittance of the emitted light of the oriented polyester film with respect to the incident light that has passed through the polarizer is reduced. Spots can be suppressed.
 以上のように、本発明では青色領域(400nm以上495nm未満)、緑色領域(495nm以上600nm未満)及び赤色領域(600nm以上780nm以下)の各波長領域にそれぞれ発光スペクトルのピークトップを有し、赤色領域(600nm以上780nm以下)におけるピークの半値幅が比較的狭い白色発光ダイオードからなるバックライト光源を有する液晶表示装置において、偏光子保護フィルムとしてポリエステルフィルムを使用した偏光板を用いても、虹状の色斑が発生せずに、良好な視認性を有することが可能となる。 As described above, in the present invention, each wavelength region of the blue region (400 nm or more and less than 495 nm), the green region (495 nm or more and less than 600 nm), and the red region (600 nm or more and 780 nm or less) has an emission spectrum peak top. In a liquid crystal display device having a backlight light source composed of a white light emitting diode having a relatively narrow half-width of a peak in a region (600 nm or more and 780 nm or less), even if a polarizing plate using a polyester film is used as a polarizer protective film, It is possible to have good visibility without causing color spots.
 本発明の偏光板には、偏光子の少なくとも一方の面に、ポリエステルフィルムからなる偏光子保護フィルムを積層する。偏光子保護フィルムに用いられるポリエステルフィルムは1500nm以上30000nm以下のリタデーションを有することが好ましい。リタデーションが上記範囲にあれば、より虹斑が低減しやすくなる傾向にあり好ましい。好ましいリタデーションの下限値は3000nm、次に好ましい下限値は3500nm、より好ましい下限値は4000nm又は5000nm、更に好ましい下限値は6000nm又は7000nm、より更に好ましい下限値は8000nmである。好ましい上限は30000nmであり、これ以上のリタデーションを有するポリエステルフィルムでは厚みが相当大きくなり、工業材料としての取り扱い性が低下する傾向にある。より好ましい上限は15000nmであり、さらに好ましくは12000nm、より更に好ましくは11000nmである。 In the polarizing plate of the present invention, a polarizer protective film made of a polyester film is laminated on at least one surface of the polarizer. The polyester film used for the polarizer protective film preferably has a retardation of 1500 nm or more and 30000 nm or less. If the retardation is in the above range, it is preferable because rainbow spots tend to be reduced more easily. The preferred lower limit of retardation is 3000 nm, the next preferred lower limit is 3500 nm, the more preferred lower limit is 4000 nm or 5000 nm, the still more preferred lower limit is 6000 nm or 7000 nm, and the still more preferred lower limit is 8000 nm. A preferable upper limit is 30000 nm, and a polyester film having a retardation larger than this has a considerably large thickness and tends to deteriorate the handleability as an industrial material. A more preferable upper limit is 15000 nm, still more preferably 12000 nm, and still more preferably 11000 nm.
 なお、本発明のリタデーションは、2軸方向の屈折率と厚みを測定して求めることもできるし、KOBRA-21ADH(王子計測機器株式会社)といった市販の自動複屈折測定装置を用いて求めることもできる。なお、屈折率は、アッベの屈折率計(測定波長589nm)によって求めることができる。 The retardation of the present invention can be obtained by measuring the refractive index and thickness in the biaxial direction, or by using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments). it can. The refractive index can be obtained by an Abbe refractometer (measurement wavelength: 589 nm).
 ポリエステルフィルムのリタデーション(Re:面内リタデーション)と厚さ方向のリタデーション(Rth)との比(Re/Rth)は、好ましくは0.2以上、より好ましくは0.5以上、さらに好ましくは0.6以上である。上記リタデーションと厚さ方向リタデーションの比(Re/Rth)が大きいほど、複屈折の作用は等方性を増し、観察角度による虹状の色斑の発生が生じ難くなる傾向にある。完全な1軸性(1軸対称)フィルムでは上記リタデーションと厚さ方向リタデーションの比(Re/Rth)は2.0となることから、上記リタデーションと厚さ方向リタデーションの比(Re/Rth)の上限は2.0が好ましい。なお、厚さ方向位相差は、フィルムを厚さ方向断面から見たときの2つの複屈折△Nxz、△Nyzにそれぞれフィルム厚さdを掛けて得られる位相差の平均を意味する。 The ratio (Re / Rth) of the retardation of the polyester film (Re: in-plane retardation) to the retardation in the thickness direction (Rth) is preferably 0.2 or more, more preferably 0.5 or more, and still more preferably 0.8. 6 or more. As the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is larger, the birefringence action is more isotropic, and the occurrence of rainbow-like color spots depending on the observation angle tends to be less likely to occur. In a complete uniaxial (uniaxial symmetry) film, the ratio of the retardation to the retardation in the thickness direction (Re / Rth) is 2.0. Therefore, the ratio of the retardation to the retardation in the thickness direction (Re / Rth) The upper limit is preferably 2.0. The thickness direction retardation means an average of retardation obtained by multiplying two birefringences ΔNxz and ΔNyz by the film thickness d when the film is viewed from the cross section in the thickness direction.
 より虹状の色斑を抑制する観点から、ポリエステルフィルムのNZ係数が2.5以下であることが好ましく、より好ましくは2.0以下、さらに好ましくは1.8以下、よりさらに好ましくは1.6以下である。そして、完全な一軸性(一軸対称)フィルムではNZ係数は1.0となるため、NZ係数の下限は1.0である。しかし、完全な一軸性(一軸対称)フィルムに近づくにつれ配向方向と直行する方向の機械的強度が著しく低下する傾向があるため留意する必用がある。 From the viewpoint of suppressing rainbow-like color spots, the polyester film preferably has an NZ coefficient of 2.5 or less, more preferably 2.0 or less, still more preferably 1.8 or less, and still more preferably 1. 6 or less. And since a NZ coefficient will be 1.0 in a perfect uniaxial (uniaxial symmetry) film, the minimum of a NZ coefficient is 1.0. However, it should be noted that the mechanical strength in the direction perpendicular to the orientation direction tends to decrease significantly as the film approaches a perfect uniaxial (uniaxial symmetry) film.
 NZ係数は、|Ny-Nz|/|Ny-Nx|で表され、ここでNyは遅相軸方向の屈折率、Nxは遅相軸と直交する方向の屈折率(進相軸方向の屈折率)、Nzは厚み方向の屈折率を表す。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いてフィルムの配向軸を求め、配向軸方向とこれに直交する方向の二軸の屈折率(Ny、Nx、但しNy>Nx)、及び厚み方向の屈折率(Nz)をアッベの屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求める。こうして求めた値を、|Ny-Nz|/|Ny-Nx|に代入してNZ係数を求めることができる。 The NZ coefficient is represented by | Ny−Nz | / | Ny−Nx |, where Ny is the refractive index in the slow axis direction, and Nx is the refractive index in the direction perpendicular to the slow axis (the refractive index in the fast axis direction). Index) and Nz represent the refractive index in the thickness direction. The orientation axis of the film is obtained using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), and the biaxial refractive index (Ny, Nx, where the orientation axis direction and the direction perpendicular thereto are perpendicular) Ny> Nx) and the refractive index (Nz) in the thickness direction are determined by Abbe's refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The value obtained in this manner can be substituted for | Ny−Nz | / | Ny−Nx | to obtain the NZ coefficient.
 また、より虹状の色斑を抑制する観点から、ポリエステルフィルムのNy-Nxの値は、0.05以上が好ましく、より好ましくは0.07以上、さらに好ましくは0.08以上、よりさらに好ましくは0.09以上、最も好ましくは0.1以上である。上限は特に定めないが、ポリエチレンテレフタレート系フィルムの場合には上限は1.5程度が好ましい。 Further, from the viewpoint of suppressing iridescent color spots, the Ny-Nx value of the polyester film is preferably 0.05 or more, more preferably 0.07 or more, further preferably 0.08 or more, and still more preferably. Is 0.09 or more, most preferably 0.1 or more. The upper limit is not particularly defined, but in the case of a polyethylene terephthalate film, the upper limit is preferably about 1.5.
 本発明においてより好ましい態様としては、偏光板を構成する偏光子の透過軸方向と平行な方向の、ポリエステルフィルムの屈折率を、1.53以上1.62以下の範囲とすることが好ましい。これにより、偏光子とポリエステルフィルムとの界面における反射を抑制し、虹状の色斑をより抑制することが可能となる。好ましくは1.61以下であり、より好ましくは1.60以下であり、更に好ましくは1.59以下であり、より更に好ましくは1.58以下である。 In a more preferred embodiment of the present invention, the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer constituting the polarizing plate is preferably in the range of 1.53 to 1.62. Thereby, reflection at the interface between the polarizer and the polyester film can be suppressed, and rainbow-like color spots can be further suppressed. Preferably it is 1.61 or less, More preferably, it is 1.60 or less, More preferably, it is 1.59 or less, More preferably, it is 1.58 or less.
 一方、屈折率の下限値は1.53が好ましい。屈折率が1.53未満になると、ポリエステルフィルムの結晶化が不十分となり、寸法安定性、力学強度、耐薬品性等の延伸により得られる特性が不十分となるおそれがある。好ましくは1.56以上、より好ましくは1.57以上である。 On the other hand, the lower limit of the refractive index is preferably 1.53. When the refractive index is less than 1.53, the crystallization of the polyester film becomes insufficient, and the properties obtained by stretching such as dimensional stability, mechanical strength, and chemical resistance may be insufficient. Preferably it is 1.56 or more, More preferably, it is 1.57 or more.
 偏光子の透過軸方向と平行な方向の、ポリエステルフィルムの屈折率を1.53以上1.62以下の範囲に設定するには、偏光板は、偏光子の透過軸とポリエステルフィルムの進相軸(遅相軸と垂直方法)とが略平行であることが好ましい。ポリエステルフィルムは後述する製膜工程における延伸処理により、遅相軸と垂直な方向である進相軸方向の屈折率を1.53~1.62程度と低く調節することができる。ポリエステルフィルムの進相軸方向と偏光子の透過軸方向を略平行とすることで、偏光子の透過軸方向と平行な方向のポリエステルフィルムの屈折率を1.53~1.62に設定することができる。ここで略平行であるとは、偏光子の透過軸と偏光子保護フィルムの進相軸とがなす角が、-15°~15°、好ましくは-10°~10°、より好ましく-5°~5°、更に好ましくは-3°~3°、より更に好ましくは-2°~2°、一層好ましくは-1°~1°であることを意味する。好ましい一実施形態において、略平行とは実質的に平行である。ここで実質的に平行であるとは、偏光子と保護フィルムとを張り合わせる際に不可避的に生じるずれを許容する程度に透過軸と進相軸とが平行であることを意味する。遅相軸の方向は、分子配向計(例えば、王子計測器株式会社製、MOA-6004型分子配向計)で測定して求めることができる。 In order to set the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer in the range of 1.53 or more and 1.62 or less, the polarizing plate has the transmission axis of the polarizer and the fast axis of the polyester film. It is preferable that (the slow axis and the vertical method) are substantially parallel. The refractive index in the fast axis direction, which is the direction perpendicular to the slow axis, can be adjusted to a low value of about 1.53 to 1.62 by stretching the polyester film in the film forming process described later. By setting the fast axis direction of the polyester film and the transmission axis direction of the polarizer to be substantially parallel, the refractive index of the polyester film in the direction parallel to the transmission axis direction of the polarizer is set to 1.53 to 1.62. Can do. Here, “substantially parallel” means that the angle formed by the transmission axis of the polarizer and the fast axis of the polarizer protective film is −15 ° to 15 °, preferably −10 ° to 10 °, more preferably −5 °. It means -5 °, more preferably -3 ° to 3 °, still more preferably -2 ° to 2 °, and still more preferably -1 ° to 1 °. In a preferred embodiment, substantially parallel is substantially parallel. Here, “substantially parallel” means that the transmission axis and the fast axis are parallel to such an extent that a deviation inevitably generated when the polarizer and the protective film are bonded to each other is allowed. The direction of the slow axis can be determined by measuring with a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments).
 すなわち、ポリエステルフィルムの進相軸方向の屈折率は1.53以上1.62以下が好ましく、偏光子の透過軸とポリエステルフィルムの進相軸とを略平行となるように積層することで、偏光子の透過軸と平行な方向の、ポリエステルフィルムの屈折率を1.53以上1.62以下とすることができる。 That is, the refractive index in the fast axis direction of the polyester film is preferably 1.53 or more and 1.62 or less. By laminating the transmission axis of the polarizer and the fast axis of the polyester film so as to be substantially parallel, The refractive index of the polyester film in the direction parallel to the transmission axis of the child can be 1.53 or more and 1.62 or less.
 本発明に用いられるポリエステルフィルムからなる偏光子保護フィルムは、入射光側(光源側)と出射光側(視認側)の両方の偏光板に用いることができるが、少なくとも出射光側(視認側)の偏光板の保護フィルムに用いることが好ましい。
 出射光側に配置される偏光板については、上記ポリエステルフィルムからなる偏光子保護フィルムは、その偏光子を起点として液晶側に配置されても、出射光側に配置されていても、両側に配置されていてもよいが、少なくとも出射光側に配置されていることが好ましい。
 入射光側に配される偏光板においても、上記ポリエステルフィルムからなる偏光子保護フィルムは、その偏光子を起点として入射光側に配置していても、液晶セル側に配置していても、両側に配置されていても良いが、少なくとも入射光側に配置されていることが好ましい態様である。また、入射光側に配される偏光板は、ポリエステルフィルムからなる偏光子保護フィルムは使用せず、トリアセチルセルロースフィルム等の複屈折が実質的にない(リタデーションの低い)偏光子保護フィルムを使用したものであってもよい。
The polarizer protective film comprising the polyester film used in the present invention can be used for both the incident light side (light source side) and the outgoing light side (viewing side) polarizing plates, but at least the outgoing light side (viewing side). It is preferable to use for the protective film of this polarizing plate.
About the polarizing plate arranged on the outgoing light side, the polarizer protective film made of the above polyester film is arranged on both sides, whether it is arranged on the liquid crystal side starting from the polarizer or on the outgoing light side. It may be arranged, but it is preferable that it is arranged at least on the outgoing light side.
Even in the polarizing plate arranged on the incident light side, the polarizer protective film made of the polyester film may be disposed on the incident light side from the polarizer, or on the liquid crystal cell side. However, it is preferable that it is disposed at least on the incident light side. Moreover, the polarizing plate arranged on the incident light side does not use a polarizer protective film made of a polyester film, but uses a polarizer protective film that is substantially free of birefringence (low retardation) such as a triacetyl cellulose film. It may be what you did.
 ポリエステルフィルムに用いられるポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートを用いることができるが、他の共重合成分を含んでも構わない。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。特に、ポリエチレンテレフタレートは固有複屈折が大きく、フィルムを延伸することで進相軸(遅相軸方向と垂直)方向の屈折率を低く抑えることができること、及びフィルムの厚みが薄くても比較的容易に大きなリタデーションが得られることから、最も好適な素材である。 Polyester used for the polyester film may be polyethylene terephthalate or polyethylene naphthalate, but may contain other copolymerization components. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching. In particular, polyethylene terephthalate has a large intrinsic birefringence. By stretching the film, the refractive index in the fast axis direction (perpendicular to the slow axis direction) can be kept low, and it is relatively easy even if the film is thin. Therefore, it is the most suitable material.
 また、ヨウ素色素などの光学機能性色素の劣化を抑制することを目的として、ポリエステルフィルムは、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。なお、透過率は、フィルムの平面に対して垂直方法に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。 Also, for the purpose of suppressing deterioration of optical functional dyes such as iodine dyes, the polyester film preferably has a light transmittance of 20% or less at a wavelength of 380 nm. The light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays. The transmittance is measured by a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
 ポリエステルフィルムの波長380nmの透過率を20%以下にするためには、紫外線吸収剤の種類、濃度、及びフィルムの厚みを適宜調節することが望ましい。本発明で使用される紫外線吸収剤は公知の物質である。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられるが本発明の規定する吸光度の範囲であれば特に限定されない。耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、より紫外線吸収効果を改善することができる。 In order to reduce the transmittance of the polyester film at a wavelength of 380 nm to 20% or less, it is desirable to appropriately adjust the type, concentration, and film thickness of the ultraviolet absorber. The ultraviolet absorber used in the present invention is a known substance. Examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Examples of the organic ultraviolet absorber include benzotriazole, benzophenone, cyclic imino ester, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention. From the viewpoint of durability, benzotriazole and cyclic imino ester are particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
 ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤としては例えば2-[2’-ヒドロキシ-5’ -(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’ -ヒドロキシ-5’ -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’ -ヒドロキシ-5’ -(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(5-クロロ(2H)-ベンゾトリアゾール-2-イル)-4-メチル-6-(tert-ブチル)フェノール、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールなどが挙げられる。環状イミノエステル系紫外線吸収剤としては例えば2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オンなどが挙げられる。しかし特にこれらに限定されるものではない。 Examples of benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, and acrylonitrile ultraviolet absorbers include 2- [2'-hydroxy-5 '-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2' -Hydroxy-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2'-dihydroxy- 4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- ( 2'-hydroxy-3'-tert-butyl-5 -Methylphenyl) -5-chlorobenzotriazole, 2- (5-chloro (2H) -benzotriazol-2-yl) -4-methyl-6- (tert-butyl) phenol, 2,2'-methylenebis (4 -(1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, etc. Examples of cyclic imino ester UV absorbers include 2,2 ′-(1 , 4-phenylene) bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazine-4-one ON, 2-phenyl-3,1-benzoxazin-4-one, etc. However, it is not particularly limited thereto.
 また、紫外線吸収剤以外に、本発明の効果を妨げない範囲で、触媒以外の各種の添加剤を含有させることも好ましい様態である。添加剤として、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。 In addition to the ultraviolet absorber, it is also preferable to include various additives other than the catalyst as long as the effects of the present invention are not hindered. Examples of additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants. Moreover, in order to show high transparency, it is also preferable that a polyester film does not contain a particle | grain substantially. “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
 本発明に用いられる偏光子保護フィルムであるポリエステルフィルムの少なくとも一方の表面には、反射防止層及び/又は低反射層を設けることが好ましい。
 前記バックライト光源の発光スペクトルの600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長における、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射率が2%以下であることが好ましい。なお、反射率は、反射防止層及び/又は低反射層が積層された側から測定したものである。反射率が2%を超えると、虹状の色斑が視認されやすくなることから好ましくない。反射率は、より好ましくは1.6%以下であり、更に好ましくは1.2%以下、特に好ましくは1%以下である。反射率の下限は特に設定されないが、例えば、0.01%である。反射率0%が最も好ましい。反射防止層を積層する場合、前記反射率の上限は1%未満が好ましい。低反射層を積層する場合、前記反射率の上限は2%以下が好ましく、より好ましくは2%未満であり、下限は1%程度が好ましい。反射率の測定は、後述する実施例に記載の方法で行うことができる。
It is preferable to provide an antireflection layer and / or a low reflection layer on at least one surface of the polyester film that is the polarizer protective film used in the present invention.
The reflectance of the polyester film in which the antireflection layer and / or the low reflection layer is laminated at the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm of the emission spectrum of the backlight light source is 2%. The following is preferable. The reflectance is measured from the side where the antireflection layer and / or the low reflection layer is laminated. When the reflectance exceeds 2%, it is not preferable because rainbow-like color spots are easily visible. The reflectance is more preferably 1.6% or less, still more preferably 1.2% or less, and particularly preferably 1% or less. The lower limit of the reflectance is not particularly set, but is 0.01%, for example. A reflectance of 0% is most preferable. When laminating an antireflection layer, the upper limit of the reflectance is preferably less than 1%. When laminating a low reflection layer, the upper limit of the reflectance is preferably 2% or less, more preferably less than 2%, and the lower limit is preferably about 1%. The reflectance can be measured by the method described in Examples described later.
 反射防止層は単層であっても多層であっても良く、単層の場合にはポリエステルフィルムより低屈折率の材料からなる低屈折率層の厚さを光波長の1/4波長あるいはその奇数倍になるように形成すれば、反射防止効果が得られる。また、反射防止層が多層の場合には、低屈折率層と高屈折率層を交互に2層以上にし、かつ各層の厚さを適宜制御して積層すれば、反射防止効果が得られる。また、必要に応じて反射防止層の間にハードコート層を積層すること、及びハードコート層の上に防汚層を形成することもできる。 The antireflection layer may be a single layer or a multilayer. In the case of a single layer, the thickness of the low refractive index layer made of a material having a lower refractive index than that of the polyester film is set to 1/4 wavelength of the light wavelength or its thickness. If formed so as to be an odd multiple, an antireflection effect can be obtained. When the antireflection layer is a multilayer, an antireflection effect can be obtained by alternately laminating two or more low refractive index layers and high refractive index layers and controlling the thickness of each layer as appropriate. Further, if necessary, a hard coat layer can be laminated between the antireflection layers, and an antifouling layer can be formed on the hard coat layer.
 反射防止層としては、他にもモスアイ構造を利用したものが挙げられる。モスアイ構造とは、表面に形成された波長より小さなピッチの凹凸構造であり、この構造により、空気との境界部における急激で不連続な屈折率変化を、連続的で漸次推移する屈折率変化に変えることを可能とするものである。これにより、モスアイ構造を表面に形成することで、フィルムの表面における光反射が減少する。例えば、特表2001-517319号公報を参照することができる。 Other antireflection layers include those using a moth-eye structure. The moth-eye structure is a concavo-convex structure with a pitch smaller than the wavelength formed on the surface. With this structure, a sudden and discontinuous refractive index change at the boundary with air is changed into a continuous and gradually changing refractive index change. It is possible to change. Thereby, the light reflection in the surface of a film reduces by forming a moth eye structure in the surface. For example, JP 2001-517319 A can be referred to.
 反射防止膜を形成する方法としては、基材表面に蒸着やスパッタリング法により反射防止層を形成するドライコーティング法、基材表面に反射防止用塗布液を塗布し乾燥させて反射防止層を形成するウェットコーティング法、あるいは両方を併用する方法が挙げられる。本発明においては、反射防止層の組成やその形成方法については、上記特性を満足すれば特に限定されない。 As a method for forming the antireflection film, a dry coating method in which an antireflection layer is formed on the surface of the substrate by vapor deposition or sputtering, and an antireflection layer is formed by applying an antireflection coating solution on the surface of the substrate and drying it. A wet coating method, or a method using both in combination. In the present invention, the composition of the antireflection layer and the formation method thereof are not particularly limited as long as the above characteristics are satisfied.
 低反射層は、従来公知のものを使用することができる。例えば、金属または酸化物の薄膜を、蒸着法やスパッタ法によって少なくとも1層以上積層する方法や、有機薄膜を一層あるいは複数層コーティングする方法等によって形成される。低反射層としては、ポリエステルフィルム若しくはポリエステルフィルム上に積層するハードコート層等よりも低屈折率である有機薄膜を一層コーティングしたものが好ましく用いられる。 A conventionally known low reflection layer can be used. For example, it is formed by a method of laminating at least one metal or oxide thin film by vapor deposition or sputtering, a method of coating one or more organic thin films, or the like. As the low reflection layer, a polyester film or an organic thin film having a lower refractive index than that of a hard coat layer laminated on the polyester film is preferably used.
 反射防止層及び/又は低反射層には、さらに防眩機能が付与されていてもよい。これにより、さらに虹斑を抑制することができる。すなわち、反射防止層と防眩層の組合せ、低反射層と防眩層の組合せ、反射防止層と低反射層と防眩層の組合せであってもよい。特に好ましくは、低反射層と防眩層の組合せである。防眩層としては、従来公知の防眩層を用いることができる。例えば、フィルムの表面反射を抑える観点からは、ポリエステルフィルムに防眩層を積層した後、反射防止層又は低反射層を積層する態様が好ましい。 The antireflection layer and / or the low reflection layer may be further provided with an antiglare function. Thereby, it is possible to further suppress rainbow spots. That is, a combination of an antireflection layer and an antiglare layer, a combination of a low reflection layer and an antiglare layer, or a combination of an antireflection layer, a low reflection layer and an antiglare layer may be used. Particularly preferred is a combination of a low reflection layer and an antiglare layer. As the antiglare layer, a conventionally known antiglare layer can be used. For example, from the viewpoint of suppressing surface reflection of the film, an embodiment in which an antiglare layer is laminated on a polyester film and then an antireflection layer or a low reflection layer is laminated is preferable.
バックライト光源の発光スペクトルにおいて600nm以上780nm以下の波長領域における最もピーク強度の高いピーク位置における、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射率を小さくする一つの方法として、例えば、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射スペクトルのボトム波長が600nm以上780nm以下の波長領域となるように、反射防止層、低反射層を設計することが挙げられる。 As one method for reducing the reflectance of the polyester film in which the antireflection layer and / or the low reflection layer is laminated at the peak position having the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight source, For example, the antireflection layer and the low reflection layer may be designed so that the bottom wavelength of the reflection spectrum of the polyester film on which the antireflection layer and / or the low reflection layer is laminated is in the wavelength region of 600 nm to 780 nm. .
 反射防止層及び/又は低反射層の反射スペクトルのボトム波長を600nm以上780nm以下にするには、例えば、反射防止層や低反射層が単層の場合には、2nd=λb/4の式を満たすように、反射防止層、低反射層の厚みを調整すればよい。ここで、nは反射防止層の屈折率又は低反射層の屈折率、dは反射防止層の厚み又は低反射層の厚み、λbは反射スペクトルのボトム波長を示す。 In order to set the bottom wavelength of the reflection spectrum of the antireflection layer and / or the low reflection layer to 600 nm or more and 780 nm or less, for example, when the antireflection layer or the low reflection layer is a single layer, the formula 2nd = λb / 4 is obtained. What is necessary is just to adjust the thickness of an antireflection layer and a low reflection layer so that it may satisfy | fill. Here, n is the refractive index of the antireflection layer or the refractive index of the low reflection layer, d is the thickness of the antireflection layer or the thickness of the low reflection layer, and λb is the bottom wavelength of the reflection spectrum.
 反射防止層、低反射層が多層の場合も薄膜干渉の原理から次のように計算できる。例えば5層(第1層、第2層、第3層、第4層、第5層の5層構成。第1層の第2層と接する側とは反対側には入射媒質層(in)が存在する。また、第5層の第4層と接する側とは反対側には出射媒質層(out)が存在する)を例にとると、屈折率をnとし、反射率をr、厚みをd、屈折角をθ、波長をλ、位相差をΔとすると、最下層(第5層)の反射率は薄膜干渉の式から次式で示される。添え数字は各層を示す。また反射率の連続する添え数字は各層間の反射率を示す。
(第5層)
Even when the antireflection layer and the low reflection layer are multi-layered, the following calculation can be made from the principle of thin film interference. For example, five layers (a first layer, a second layer, a third layer, a fourth layer, and a fifth layer configuration. An incident medium layer (in) on the side of the first layer opposite to the side in contact with the second layer) In the case of an exit medium layer (out) on the opposite side of the fifth layer that contacts the fourth layer), the refractive index is n, the reflectance is r, and the thickness is Where d is the refractive angle, θ is the wavelength, λ is the wavelength, and Δ is the phase difference, the reflectivity of the lowermost layer (fifth layer) is expressed by the following equation from the equation of thin film interference. The subscript numbers indicate each layer. Further, consecutive suffix numbers indicate the reflectivity between layers.
(5th layer)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Δxは、各層xの薄膜内を屈折角θxでV字型に往復した時の位相差となり、[数2]の式で計算される。
Figure JPOXMLDOC01-appb-M000002
Delta x becomes a phase difference when the a thin film of each layer x back and forth in a V-shape in refraction angle theta x, it is calculated by the formula of [Expression 2].
Figure JPOXMLDOC01-appb-M000002
 θxはスネルの法則を連続的に用いることで、[数3]の式で計算される。
Figure JPOXMLDOC01-appb-M000003
θ x is calculated by the formula [Equation 3] by using Snell's law continuously.
Figure JPOXMLDOC01-appb-M000003
 一般に多層膜反射を計算する場合は、複数ある境界面からの反射光を位相を考慮しながら足し合わせることで計算できるため、各層の反射率は次式から得られる。
(第5層~第4層)
In general, when calculating the multilayer film reflection, it can be calculated by adding the reflected light from a plurality of boundary surfaces in consideration of the phase. Therefore, the reflectance of each layer can be obtained from the following equation.
(5th to 4th layers)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(第5層~第3層) (5th to 3rd layers)
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
(第5層~第2層) (5th to 2nd layers)
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
(第5層~第1層)
 5層全体での反射率は以下の式で得られる。
(5th to 1st layers)
The reflectivity of the entire five layers is obtained by the following formula.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 反射率の添え数字の足し算は各層間の合算の反射率を示す。上式から各層の屈折率nや厚みdを調整することで目的の波長にボトム波長を設計することができる。 添 え Addition of the number attached to the reflectance indicates the total reflectance between the layers. The bottom wavelength can be designed to the target wavelength by adjusting the refractive index n and thickness d of each layer from the above equation.
 バックライト光源の発光スペクトルにおいて600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長λpと、前記反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射スペクトルのボトム波長λbは、λpとλbとの差の絶対値が、30nm以下であることが好ましく、20nm以下であることが好ましく、10nm以下であることが好ましく、5nm以下であることが好ましい。なお、反射スペクトルのボトム波長とは、400nm~780nmの反射スペクトルにおいて反射率が最小となる波長である。 The wavelength λp of the peak top of the peak with the highest peak intensity in the wavelength region of 600 nm to 780 nm in the emission spectrum of the backlight source, and the bottom of the reflection spectrum of the polyester film in which the antireflection layer and / or the low reflection layer are laminated As for the wavelength λb, the absolute value of the difference between λp and λb is preferably 30 nm or less, preferably 20 nm or less, preferably 10 nm or less, and preferably 5 nm or less. The bottom wavelength of the reflection spectrum is a wavelength at which the reflectance is minimum in the reflection spectrum of 400 nm to 780 nm.
 反射防止層又は低反射層を設けるに際して、ポリエステルフィルムはその表面に易接着層を有することが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、反射防止層又は低反射層の屈折率とポリエステルフィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやゲルマニウム、その他の金属種を含有させることで容易に調整することができる。 When the antireflection layer or the low reflection layer is provided, the polyester film preferably has an easy adhesion layer on the surface thereof. At this time, from the viewpoint of suppressing interference due to reflected light, it is preferable to adjust the refractive index of the easy-adhesion layer so that it is close to the geometric mean of the refractive index of the antireflection layer or the low reflection layer and the refractive index of the polyester film. The refractive index of the easy-adhesion layer can be adjusted by a known method. For example, the refractive index of the easy-adhesion layer can be easily adjusted by containing a binder resin with titanium, germanium, or other metal species.
 ポリエステルフィルムには、偏光子との接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。 The polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion with the polarizer.
 本発明においては、偏光子との接着性を改良のために、本発明のフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。本発明の易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。 In the present invention, in order to improve the adhesion to the polarizer, at least one surface of the film of the present invention has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin. Is preferred. Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer. The coating solution used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin, and polyurethane resin. Examples of these coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982. Examples thereof include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
 易接着層は、前記塗布液を未延伸フィルム又は縦方向の1軸延伸フィルムの片面または両面に塗布した後、100~150℃で乾燥し、さらに横方向に延伸して得ることができる。最終的な易接着層の塗布量は、0.05~0.2g/mに管理することが好ましい。塗布量が0.05g/m未満であると、得られる偏光子との接着性が不十分となる場合がある。一方、塗布量が0.2g/mを超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に易接着層を設ける場合は、両面の易接着層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The easy-adhesion layer can be obtained by applying the coating solution on one or both sides of an unstretched film or a uniaxially stretched film in the longitudinal direction, drying at 100 to 150 ° C., and further stretching in the transverse direction. The final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is less than 0.05 g / m 2 , the adhesion with the resulting polarizer may be insufficient. On the other hand, when the coating amount exceeds 0.2 g / m 2 , blocking resistance may be lowered. When providing an easily bonding layer on both surfaces of a polyester film, the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
 易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを超えると、粒子が被覆層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組合せて添加することもできる。 It is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 μm or less. When the average particle diameter of the particles exceeds 2 μm, the particles easily fall off from the coating layer. As particles to be included in the easy adhesion layer, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, Examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
 また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。 Further, as a method for applying the coating solution, a known method can be used. For example, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc. can be mentioned. Or it can carry out in combination.
 なお、上記の粒子の平均粒径の測定は下記方法により行う。粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を平均粒径とする。 The average particle size of the above particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM) and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) Distance) is measured, and the average value is taken as the average particle diameter.
 偏光子保護フィルムとして使用するポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、ロールの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理を施す方法が挙げられる。 The polyester film used as a polarizer protective film can be manufactured according to a general polyester film manufacturing method. For example, the polyester resin is melted and the non-oriented polyester extruded and formed into a sheet shape is stretched in the longitudinal direction by utilizing the speed difference of the roll at a temperature equal to or higher than the glass transition temperature, and then stretched in the transverse direction by a tenter. The method of performing heat processing is mentioned.
 本発明で使用するポリエステルフィルムは一軸延伸フィルムであっても、二軸延伸フィルムであってもかまわないが、二軸延伸フィルムを偏光子保護フィルムとして用いた場合、フィルム面の真上から観察しても虹状の色斑が見られないが、斜め方向から観察した時に虹状の色斑が観察される場合があるので注意が必要である。 The polyester film used in the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizer protective film, it is observed from directly above the film surface. However, rainbow-like color spots are not seen, but care must be taken because rainbow-like color spots may be observed when observed from an oblique direction.
 ポリエステルフィルムの製膜条件を具体的に説明すると、縦延伸温度、横延伸温度は80~130℃が好ましく、特に好ましくは90~120℃である。遅相軸がTD方向になるようにフィルムを配向させるには、縦延伸倍率は1.0~3.5倍が好ましく、特に好ましくは1.0倍~3.0倍である。また、横延伸倍率は2.5~6.0倍が好ましく、特に好ましくは3.0~5.5倍である。遅相軸がMD方向となるようにフィルムを配向させるには、縦延伸倍率は2.5倍~6.0倍が好ましく、特に好ましくは3.0~5.5倍である。また、横延伸倍率は1.0倍~3.5倍が好ましく、特に好ましくは1.0倍~3.0倍である。
 ポリエステルフィルムの進相軸方向の屈折率やリタデーションを上記範囲に制御するためには、縦延伸倍率と横延伸倍率の比率を制御することが好ましい。リタデーションを高くするためには、縦横の延伸倍率の差を大きくすることが好ましい。また、延伸温度を低く設定することも、ポリエステルフィルムの進相軸方向の屈折率を低くし、リタデーションを高くする上では好ましい対応である。続く熱処理においては、処理温度は100~250℃が好ましく、特に好ましくは180~245℃である。
The film forming conditions of the polyester film will be specifically described. The longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 130 ° C, particularly preferably 90 to 120 ° C. In order to orient the film so that the slow axis is in the TD direction, the longitudinal draw ratio is preferably 1.0 to 3.5 times, particularly preferably 1.0 to 3.0 times. The transverse draw ratio is preferably 2.5 to 6.0 times, and particularly preferably 3.0 to 5.5 times. In order to orient the film so that the slow axis is in the MD direction, the longitudinal draw ratio is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times. The transverse draw ratio is preferably 1.0 to 3.5 times, and particularly preferably 1.0 to 3.0 times.
In order to control the refractive index and retardation in the fast axis direction of the polyester film within the above range, it is preferable to control the ratio between the longitudinal draw ratio and the transverse draw ratio. In order to increase the retardation, it is preferable to increase the difference between the vertical and horizontal stretch ratios. Setting the stretching temperature low is also a preferable measure for reducing the refractive index in the fast axis direction of the polyester film and increasing the retardation. In the subsequent heat treatment, the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
 フィルム内でのリタデーションの変動を抑制する為には、フィルムの厚み斑が小さいことが好ましい。延伸温度、延伸倍率はフィルムの厚み斑に大きな影響を与えることから、厚み斑の観点からも製膜条件の最適化を行うことが好ましい。特にリタデーションを高くするために縦延伸倍率を低くすると、縦厚み斑が悪くなることがある。縦厚み斑は延伸倍率のある特定の範囲で非常に悪くなる領域があることから、この範囲を外したところで製膜条件を設定することが望ましい。 In order to suppress the fluctuation of retardation in the film, it is preferable that the thickness unevenness of the film is small. Since the stretching temperature and the stretching ratio have a great influence on the thickness unevenness of the film, it is preferable to optimize the film forming conditions from the viewpoint of the thickness unevenness. In particular, if the longitudinal stretching ratio is lowered to increase the retardation, the longitudinal thickness unevenness may be deteriorated. Since there is a region where the vertical thickness unevenness becomes very bad in a specific range of the draw ratio, it is desirable to set the film forming conditions outside this range.
 ポリエステルフィルムの厚み斑は5%以下であることが好ましく、4.5%以下であることがさらに好ましく、4%以下であることがよりさらに好ましく、3%以下であることが特に好ましい。 The thickness unevenness of the polyester film is preferably 5% or less, more preferably 4.5% or less, still more preferably 4% or less, and particularly preferably 3% or less.
 前述のように、ポリエステルフィルムのリタデーションを特定範囲に制御する為には、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行なうことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。但し、フィルムの厚みを厚くすると、厚さ方向位相差が大きくなりやすい。そのため、フィルム厚みは後述の範囲に適宜設定することが望ましい。また、リタデーションの制御に加えて、加工に必要な物性等を勘案して最終的な製膜条件を設定することが望ましい。 As described above, in order to control the retardation of the polyester film within a specific range, the stretching ratio, stretching temperature, and film thickness can be appropriately set. For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the higher the retardation. Conversely, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the lower the retardation. However, when the thickness of the film is increased, the thickness direction retardation tends to increase. Therefore, it is desirable to set the film thickness appropriately within the range described below. In addition to controlling the retardation, it is desirable to set final film forming conditions in consideration of physical properties necessary for processing.
 ポリエステルフィルムの厚みは任意であるが、15~300μmの範囲が好ましく、より好ましくは15~200μmの範囲である。15μmを下回る厚みのフィルムでも、原理的には1500nm以上のリタデーションを得ることは可能である。しかし、その場合にはフィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する。特に好ましい厚みの下限は25μmである。一方、偏光子保護フィルムの厚みの上限は、300μmを超えると偏光板の厚みが厚くなりすぎてしまい好ましくない。偏光子保護フィルムとしての実用性の観点からは厚みの上限は200μmが好ましい。特に好ましい厚みの上限は一般的なTACフィルムと同等程度の100μmである。上記厚み範囲においてもリタデーションを本発明の範囲に制御するために、フィルム基材として用いるポリエステルはポリエチレンテレフタレートが好適である。 The thickness of the polyester film is arbitrary, but is preferably in the range of 15 to 300 μm, more preferably in the range of 15 to 200 μm. Even in the case of a film having a thickness of less than 15 μm, it is possible in principle to obtain a retardation of 1500 nm or more. However, in that case, the anisotropy of the mechanical properties of the film becomes remarkable, and it becomes easy to cause tearing, tearing, etc., and the practicality as an industrial material is remarkably lowered. A particularly preferable lower limit of the thickness is 25 μm. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 300 μm, the thickness of the polarizing plate becomes too thick, which is not preferable. From the viewpoint of practicality as a polarizer protective film, the upper limit of the thickness is preferably 200 μm. A particularly preferable upper limit of the thickness is 100 μm, which is about the same as a general TAC film. Polyethylene terephthalate is preferable as the polyester used as the film substrate in order to control the retardation within the range of the present invention even in the above thickness range.
 また、ポリエステルフィルムに紫外線吸収剤を配合する方法としては、公知の方法を組み合わせて採用し得るが、例えば予め混練押出機を用い、乾燥させた紫外線吸収剤とポリマー原料とをブレンドしマスターバッチを作製しておき、フィルム製膜時に所定の該マスターバッチとポリマー原料を混合する方法などによって配合することができる。 In addition, as a method of blending the ultraviolet absorber into the polyester film, a known method can be used in combination. For example, a master batch is prepared by blending the dried ultraviolet absorber and the polymer raw material in advance using a kneading extruder. It can be prepared and blended by, for example, a method of mixing a predetermined master batch and a polymer raw material during film formation.
 この時マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために5~30質量%の濃度にするのが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエステル原料の融点以上、290℃以下の温度で1~15分間で押し出すのが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。押し出し温度1分以下では紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。 At this time, the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and mix it economically. As a condition for producing the master batch, it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
 また、ポリエステルフィルムを少なくとも3層以上の多層構造とし、フィルムの中間層に紫外線吸収剤を添加することが好ましい。中間層に紫外線吸収剤を含む3層構造のフィルムは、具体的には次のように作製することができる。外層用としてポリエステルのペレット単独、中間層用として紫外線吸収剤を含有したマスターバッチとポリエステルのペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、2台以上の押出機、3層のマニホールドまたは合流ブロック(例えば角型合流部を有する合流ブロック)を用いて、両外層を構成するフィルム層、中間層を構成するフィルム層を積層し、口金から3層のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。なお、本発明では、光学欠点の原因となる、原料のポリエステル中に含まれている異物を除去するため、溶融押し出しの際に高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率95%)は、15μm以下が好ましい。濾材の濾過粒子サイズが15μmを超えると、20μm以上の異物の除去が不十分となりやすい。 It is also preferable that the polyester film has a multilayer structure of at least three layers and an ultraviolet absorber is added to the intermediate layer of the film. A film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be specifically produced as follows. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film. That is, using two or more extruders, a three-layer manifold or a merging block (for example, a merging block having a square merging portion), a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated, An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll. In the present invention, it is preferable to perform high-precision filtration during melt extrusion in order to remove foreign substances contained in the raw material polyester, which cause optical defects. The filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 μm or less. When the filter particle size of the filter medium exceeds 15 μm, removal of foreign matters of 20 μm or more tends to be insufficient.
 以下、実施例を参照して本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、以下の実施例における物性の評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all included in the technical scope of the present invention. In addition, the evaluation method of the physical property in the following examples is as follows.
(1)ポリエステルフィルムの屈折率
 分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:Ny,進相軸(遅相軸方向と直交する方向の屈折率):Nx)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めた。
(1) Refractive index of polyester film Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments), the slow axis direction of the film is obtained, and the slow axis direction is the long side of the sample for measurement. A 4 cm × 2 cm rectangle was cut out so as to be parallel to each other and used as a measurement sample. About this sample, the biaxial refractive index (the refractive index in the slow axis direction: Ny, the fast axis (the refractive index in the direction perpendicular to the slow axis direction): Nx), and the refractive index in the thickness direction ( Nz) was determined by an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
(2)リタデーション(Re)
 リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|Nx-Ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:Ny,遅相軸方向と直交する方向の屈折率:Nx)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|Nx-Ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。
(2) Retardation (Re)
Retardation is a parameter defined by the product (ΔNxy × d) of the biaxial refractive index anisotropy (ΔNxy = | Nx−Ny |) on the film and the film thickness d (nm). Yes, it is a scale showing optical isotropy and anisotropy. The biaxial refractive index anisotropy (ΔNxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), determine the slow axis direction of the film, 4 cm so that the slow axis direction is parallel to the long side of the measurement sample. A rectangle of × 2 cm was cut out and used as a measurement sample. For this sample, Abbe refracts the biaxial refractive index (the refractive index in the slow axis direction: Ny, the refractive index in the direction perpendicular to the slow axis direction: Nx), and the refractive index (Nz) in the thickness direction. The absolute value (| Nx−Ny |) of the biaxial refractive index difference was determined as a refractive index anisotropy (ΔNxy), which was obtained by a refractive index meter (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm). The thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Retardation (Re) was determined from the product (ΔNxy × d) of refractive index anisotropy (ΔNxy) and film thickness d (nm).
(3)厚さ方向リタデーション(Rth)
 厚さ方向リタデーションとは、フィルム厚さ方向断面から見たときの2つの複屈折△Nxz(=|Nx-Nz|)、△Nyz(=|Ny-Nz|)にそれぞれフィルム厚さdを掛けて得られるリタデーションの平均を示すパラメーターである。リタデーションの測定と同様の方法でNx、Ny、Nzとフィルム厚みd(nm)を求め、(△Nxz×d)と(△Nyz×d)との平均値を算出して厚さ方向リタデーション(Rth)を求めた。
(3) Thickness direction retardation (Rth)
Thickness direction retardation is obtained by multiplying two birefringences ΔNxz (= | Nx−Nz |) and ΔNyz (= | Ny−Nz |) by film thickness d when viewed from the cross section in the film thickness direction. It is a parameter which shows the average of retardation obtained. Thickness direction retardation (Rth) is obtained by calculating Nx, Ny, Nz and film thickness d (nm) in the same manner as the measurement of retardation, and calculating the average value of (ΔNxz × d) and (ΔNyz × d). )
(4)NZ係数
 上記(1)により得られた、Ny、Nx、Nzの値を式:NZ=|Ny-Nz|/|Ny-Nx|に代入してNZ係数を求めた。
(4) NZ Coefficient The NZ coefficient was obtained by substituting the values of Ny, Nx, and Nz obtained in (1) above into the formula: NZ = | Ny−Nz | / | Ny−Nx |.
 (5)バックライト光源の発光スペクトルの測定
 各実施例で使用する液晶表示装置には、東芝社製のREGZA 43J10Xを用いた。この液晶表示装置のバックライト光源(白色発光ダイオード)の発光スペクトルを、浜松ホトニクス製 マルチチャンネル分光器 PMA-12を用いて測定したところ、450nm、535nm、630nm付近にピークトップを有する発光スペクトルが観察された。各ピークトップの半値幅(各波長領域における最も高いピーク強度を有するピークの半値幅)は、それぞれ450nmのピークが17nm、535nmのピークが45nm、630nmのピークが2nmであった。なお、この光源では600nm以上780nm以下の波長領域に複数のピークを有したが、この領域で最もピーク強度の高い630nm付近のピークで半値幅を評価した。また、スペクトル測定の際の露光時間は20msecとした。
(5) Measurement of emission spectrum of backlight source REGZA 43J10X manufactured by Toshiba was used for the liquid crystal display device used in each example. When the emission spectrum of the backlight source (white light emitting diode) of this liquid crystal display device was measured using a multi-channel spectrometer PMA-12 manufactured by Hamamatsu Photonics, an emission spectrum having peak tops in the vicinity of 450 nm, 535 nm, and 630 nm was observed. It was done. The half width of each peak top (the half width of the peak having the highest peak intensity in each wavelength region) was 17 nm for the peak at 450 nm, 45 nm for the peak at 535 nm, and 2 nm for the peak at 630 nm, respectively. This light source had a plurality of peaks in the wavelength region of 600 nm or more and 780 nm or less, and the half-value width was evaluated at a peak near 630 nm having the highest peak intensity in this region. Moreover, the exposure time in the spectrum measurement was 20 msec.
(6)反射スペクトルの測定(反射率の評価)
 得られた偏光子保護フィルムから任意の位置でA4サイズに切り出し、低反射層(又は反射防止層)を積層した面とは反対の基材面に耐水サンドペーパーで均一にキズをつけた後、黒マジックインキ(登録商標)を塗り、さらに黒テープ(日東電工製ビニルテープNo.21黒)を貼ることで低反射層(又は反射防止層)の反対面の反射を無くしたサンプルを作製した。作製したサンプルは島津製作所(株)製の分光光度計UV-3150を用いて低反射層(又は反射防止層)の400~800nmにおける反射スペクトルを測定した。反射スペクトル測定条件は、鏡面反射測定装置(島津製作所(株)製 部品番号206-14064)に標準で添付されたAl蒸着ミラー(部品番号202-35988-05)を基準ミラーとし、全光束5°の入射角で相対鏡面反射で実施した。その他、サンプリングピッチ:1nm、試料マスクの開口寸法::5mmφの条件で測定した。(5)バックライト光源の発光スペクトルの測定結果より、発光スペクトルの600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長は630nmであったので、得られた反射スペクトルから630nmにおける反射率を求めた。また、偏光子保護フィルム1についてはボトム波長も求めた。
(6) Measurement of reflection spectrum (evaluation of reflectance)
After cutting into A4 size at an arbitrary position from the obtained polarizer protective film, the surface of the substrate opposite to the surface on which the low reflection layer (or antireflection layer) is laminated is uniformly scratched with water-resistant sandpaper, Black magic ink (registered trademark) was applied, and a black tape (Nitto Denko vinyl tape No. 21 black) was applied to prepare a sample in which the reflection of the opposite surface of the low reflection layer (or antireflection layer) was eliminated. For the prepared sample, the reflection spectrum at 400 to 800 nm of the low reflection layer (or antireflection layer) was measured using a spectrophotometer UV-3150 manufactured by Shimadzu Corporation. The reflection spectrum was measured using the Al mirror (part number 202-35988-05) attached as a standard to the specular reflection measuring device (part number 206-14064, manufactured by Shimadzu Corporation) as the standard mirror, and a total luminous flux of 5 °. The measurement was carried out by relative specular reflection at an incident angle of. In addition, the measurement was performed under the conditions of sampling pitch: 1 nm, sample mask opening size :: 5 mmφ. (5) From the measurement result of the emission spectrum of the backlight source, the peak top wavelength of the peak with the highest peak intensity in the wavelength region of 600 to 780 nm of the emission spectrum was 630 nm. The reflectance at was determined. Moreover, the bottom wavelength was also calculated | required about the polarizer protective film 1. FIG.
(製造例1-ポリエステルA)
 エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部およびエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、及びトリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
(Production Example 1-Polyester A)
When the temperature of the esterification reactor was raised to 200 ° C., 86.4 parts by mass of terephthalic acid and 64.6 parts by mass of ethylene glycol were charged and 0.017 parts by mass of antimony trioxide as a catalyst while stirring. 0.064 parts by mass of magnesium acetate tetrahydrate and 0.16 parts by mass of triethylamine were charged. Next, the pressure was raised and the pressure esterification reaction was carried out under the conditions of gauge pressure 0.34 MPa and 240 ° C., then the esterification reaction can was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC over 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and after 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。) After completion of the polycondensation reaction, it is filtered through a NASRON filter with a 95% cut diameter of 5 μm, extruded into a strand from a nozzle, and cooled and solidified using cooling water that has been filtered (pore diameter: 1 μm or less) in advance. And cut into pellets. The obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
(製造例2-ポリエステルB)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、及び粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た。(以後、PET(B)と略す。)
(Production Example 2-Polyester B)
10 parts by weight of the dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), and PET (A) containing no particles (inherent 90 parts by mass of a viscosity of 0.62 dl / g) was mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
(製造例3-接着性改質塗布液の調整)
 常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、及びノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
(Production Example 3-Adjustment of Adhesive Modification Coating Solution)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared. Next, 51.4 parts by weight of water, 38 parts by weight of isopropyl alcohol, 5 parts by weight of n-butyl cellosolve, and 0.06 parts by weight of a nonionic surfactant were mixed and then heated and stirred. After adding 5 parts by mass of the above water-dispersible sulfonic acid metal base-containing copolymer polyester resin and continuing to stir until the resin is no longer agglomerated, the resin aqueous dispersion is cooled to room temperature, and the solid content concentration is 5.0% by mass. A uniform water-dispersible copolymerized polyester resin solution was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin solution was mixed with 99.46 parts by mass of the silicia 310. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain an adhesive modified coating solution.
(製造例4-低反射層塗布液の調整)
 2,2,2-トリフルオロエチルアクリレート(45質量部)、パーフルオロオクチルエチルアクリレート(45質量部)、アクリル酸(10質量部)、アゾイソブチロニトリル(1.5質量部)、及びメチルエチルケトン(200質量部)を反応容器に仕込み、窒素雰囲気下80℃で7時間反応させて、重量平均分子量20000のポリマーのメチルエチルケトン溶液を得た。得られたポリマー溶液を、メチルエチルケトンで固形分濃度5質量%まで希釈し、フッ素ポリマー溶液Cを得た。得られたフッ素ポリマー溶液Cを、以下のように混合して、低反射層塗布液を得た。
(Production Example 4-Preparation of coating solution for low reflection layer)
2,2,2-trifluoroethyl acrylate (45 parts by mass), perfluorooctylethyl acrylate (45 parts by mass), acrylic acid (10 parts by mass), azoisobutyronitrile (1.5 parts by mass), and methyl ethyl ketone (200 parts by mass) was charged into a reaction vessel and reacted at 80 ° C. for 7 hours under a nitrogen atmosphere to obtain a methyl ethyl ketone solution of a polymer having a weight average molecular weight of 20000. The obtained polymer solution was diluted with methyl ethyl ketone to a solid content concentration of 5% by mass to obtain a fluoropolymer solution C. The obtained fluoropolymer solution C was mixed as follows to obtain a low reflection layer coating solution.
  ・フッ素ポリマー溶液C             44質量部
  ・1,10-ビス(2,3-エポキシプロポキシ)
- 2,2,3,3,4,4,5,5,6,6,7,7 ,
8,8,9,9 - ヘキサデカフルオロデカン
(共栄社化学製、フルオライトFE-16)    1質量部
  ・トリフェニルホスフィン           0.1質量部
  ・メチルエチルケトン              19質量部
・ 44 parts by mass of fluoropolymer solution C ・ 1,10-bis (2,3-epoxypropoxy)
-2,2,3,3,4,4,5,5,6,6,7,7,
8,8,9,9-hexadecafluorodecane (Kyoeisha Chemicals, Fluorite FE-16) 1 part by mass ・ Triphenylphosphine 0.1 part by mass ・ Methyl ethyl ketone 19 parts by mass
(製造例5-低反射層塗布液の調整)
 ビニリデンフルオライド系重合体粒子として、ビニリデンフルオライド/テトラフルオロエチレン/クロロトリフルオロエチレン共重合体(=72.1/14.9/13(モル%))の粒子の水性分散液(固形分濃度45.5質量%)571.4gを2Lガラス製セパラブルフラスコに入れ、乳化剤としてニューコール707SF(日本乳化剤(株)製)37.1gと、水59.3gを加えて十分に混合して水性分散液を調整した。
(Production Example 5-Preparation of coating solution for low reflection layer)
An aqueous dispersion (solid content concentration) of vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer (= 72.1 / 14.9 / 13 (mol%)) as vinylidene fluoride polymer particles. 45.5% by mass) 571.4 g was placed in a 2 L glass separable flask, and 37.1 g of New Coal 707SF (manufactured by Nippon Emulsifier Co., Ltd.) as an emulsifier and 59.3 g of water were added and mixed well to form an aqueous solution. The dispersion was adjusted.
 つぎに1Lガラス製フラスコに、メチルメタクリレート208.1g、n-ブチルアクリレート44.9g、及びアクリル酸7.0gを加え、モノマー溶液を調整した。 Next, 208.1 g of methyl methacrylate, 44.9 g of n-butyl acrylate, and 7.0 g of acrylic acid were added to a 1 L glass flask to prepare a monomer solution.
 セパラブルフラスコの内温を80℃まで昇温し、モノマー溶液の全量を前記ビニリデンフルオライド/テトラフルオロエチレン/クロロトリフルオロエチレン共重合体粒子の水分散液に3時間かけて添加した。また、モノマー溶液の添加と同時に1質量%の過硫酸アンモニウム41.1gを30分ごとに7回に分けて添加しながら重合を進めた。重合開始から5時間後に反応溶液を室温まで冷却して反応を終了し、アクリル-フッ素複合重合体粒子の水性分散体を得た(固形分濃度52.0質量%)。得られたアクリル―フッ素複合重合体粒子におけるフッ素重合体部分とアクリル重合体部分の質量比は50/50であった。 The internal temperature of the separable flask was raised to 80 ° C., and the entire amount of the monomer solution was added to the aqueous dispersion of the vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer particles over 3 hours. Further, simultaneously with the addition of the monomer solution, the polymerization proceeded while adding 41.1 g of 1% by mass of ammonium persulfate in 7 portions every 30 minutes. Five hours after the start of the polymerization, the reaction solution was cooled to room temperature to complete the reaction, whereby an aqueous dispersion of acrylic-fluorine composite polymer particles was obtained (solid content concentration 52.0% by mass). The mass ratio of the fluoropolymer portion to the acrylic polymer portion in the obtained acrylic-fluorine composite polymer particles was 50/50.
 前記アクリル-フッ素複合重合体粒子水分散液を8.08質量部、水61.47質量部、イソプロピルアルコール20.00質量部、オキサゾリン架橋剤WS-700を8.40質量部(日本触媒製エポクロス製)、コロイダルシリカ粒子スノーテックスST-ZLを1.75質量部(日産化学工業製)、及びシリコン系界面活性剤を0.30質量部加えて撹拌し、低反射層塗布液を得た。 8.08 parts by mass of the acrylic-fluorine composite polymer particle aqueous dispersion, 61.47 parts by mass of water, 20.00 parts by mass of isopropyl alcohol, and 8.40 parts by mass of the oxazoline crosslinking agent WS-700 (Epocross made by Nippon Shokubai Co., Ltd.) Manufactured), 1.75 parts by mass of colloidal silica particle Snowtex ST-ZL (manufactured by Nissan Chemical Industries, Ltd.) and 0.30 parts by mass of a silicon surfactant were added and stirred to obtain a low reflection layer coating solution.
(製造例6- 低反射層塗布液の調整)
 ビニリデンフルオライド系重合体粒子として、ビニリデンフルオライド/テトラフルオロエチレン/クロロトリフルオロエチレン共重合体(=72.1/14.9/13(モル%))の粒子の水性分散液(固形分濃度45.5質量%)571.4gを2Lガラス製セパラブルフラスコに入れ、乳化剤としてニューコール707SF(日本乳化剤(株)製)37.1gと、水59.3gを加えて十分に混合して水性分散液を調整した。
(Production Example 6-Preparation of coating solution for low reflective layer)
An aqueous dispersion (solid content concentration) of vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer (= 72.1 / 14.9 / 13 (mol%)) as vinylidene fluoride polymer particles. 45.5% by mass) 571.4 g was placed in a 2 L glass separable flask, and 37.1 g of New Coal 707SF (manufactured by Nippon Emulsifier Co., Ltd.) as an emulsifier and 59.3 g of water were added and mixed well to form an aqueous solution. The dispersion was adjusted.
 つぎに1Lガラス製フラスコに、メチルメタクリレート208.1g、n-ブチルアクリレート44.9g、及びアクリル酸7.0gを加え、モノマー溶液を調整した。 Next, 208.1 g of methyl methacrylate, 44.9 g of n-butyl acrylate, and 7.0 g of acrylic acid were added to a 1 L glass flask to prepare a monomer solution.
 セパラブルフラスコの内温を80℃まで昇温し、モノマー溶液の全量を前記ビニリデンフルオライド/テトラフルオロエチレン/クロロトリフルオロエチレン共重合体粒子の水分散液に3時間かけて添加した。また、モノマー溶液の添加と同時に1質量%の過硫酸アンモニウム41.1gを30分ごとに7回に分けて添加しながら重合を進めた。重合開始から5時間後に反応溶液を室温まで冷却して反応を終了し、アクリル-フッ素複合重合体粒子の水性分散体を得た(固形分濃度52.0質量%)。得られたアクリル―フッ素複合重合体粒子におけるフッ素重合体部分とアクリル重合体部分の質量比は50/50であった。 The internal temperature of the separable flask was raised to 80 ° C., and the entire amount of the monomer solution was added to the aqueous dispersion of the vinylidene fluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer particles over 3 hours. Further, simultaneously with the addition of the monomer solution, the polymerization proceeded while adding 41.1 g of 1% by mass of ammonium persulfate in 7 portions every 30 minutes. Five hours after the start of the polymerization, the reaction solution was cooled to room temperature to complete the reaction, whereby an aqueous dispersion of acrylic-fluorine composite polymer particles was obtained (solid content concentration 52.0% by mass). The mass ratio of the fluoropolymer portion to the acrylic polymer portion in the obtained acrylic-fluorine composite polymer particles was 50/50.
 前記アクリル-フッ素複合重合体粒子水分散液を12.12質量部、水61.47質量部、イソプロピルアルコール20.00質量部、オキサゾリン架橋剤WS-700を2.80質量部(日本触媒製エポクロス製)、コロイダルシリカ粒子スノーテックスST-ZLを1.75質量部(日産化学工業製)、及びシリコン系界面活性剤を0.30質量部加えて撹拌し、低反射層塗布液を得た。 12.12 parts by mass of the acrylic-fluorine composite polymer particle aqueous dispersion, 61.47 parts by mass of water, 20.00 parts by mass of isopropyl alcohol, and 2.80 parts by mass of the oxazoline crosslinking agent WS-700 (Epocross made by Nippon Shokubai Co., Ltd.) Manufactured), 1.75 parts by mass of colloidal silica particle Snowtex ST-ZL (manufactured by Nissan Chemical Industries, Ltd.) and 0.30 parts by mass of a silicon surfactant were added and stirred to obtain a low reflection layer coating solution.
(偏光子保護フィルム1)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 1)
After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. . After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法によりこの未延伸PETフィルムの、後に低反射層を形成する面とは反対側に製造例3の接着性改質塗布液を0.08g/mになるように塗布した後、80℃で20秒間乾燥した。 Next, after applying the adhesive property-modified coating solution of Production Example 3 to 0.08 g / m 2 on the opposite side of the surface of the unstretched PET film, which will later form a low reflection layer, by the reverse roll method. And dried at 80 ° C. for 20 seconds.
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、10秒間で処理し、さらに幅方向に3.0%の緩和処理を行い、フィルム厚み約100μmのPETフィルムを得た。 The unstretched film on which this coating layer was formed was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a relaxation treatment of 3.0% in the width direction to obtain a PET film having a film thickness of about 100 μm.
 前記PETフィルムの低反射層を形成する側の塗布面に、製造例4の塗布液を塗布し、150℃で2分間乾燥し、膜厚0.1μmの低反射層を形成し、偏光子保護フィルム1を得た。 The coating liquid of Production Example 4 is applied to the coating surface of the PET film on which the low reflection layer is formed, and dried at 150 ° C. for 2 minutes to form a low reflection layer having a thickness of 0.1 μm, thereby protecting the polarizer. Film 1 was obtained.
 偏光子保護フィルム1の反射スペクトルを測定したところ、波長630nmにおける反射率は1.00%であった。なお、反射スペクトルのボトム波長も630nmであった。また、偏光子保護フィルム1のリタデーション(Re)は10300nm、厚さ方向のリタデーション(Rth)は12350nm、Re/Rthは0.834、NZ係数は1.699であった。 When the reflection spectrum of the polarizer protective film 1 was measured, the reflectance at a wavelength of 630 nm was 1.00%. The bottom wavelength of the reflection spectrum was also 630 nm. Moreover, the retardation (Re) of the polarizer protective film 1 was 10300 nm, the retardation (Rth) in the thickness direction was 12350 nm, Re / Rth was 0.834, and the NZ coefficient was 1.699.
(偏光子保護フィルム2)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 2)
After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. . After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法によりこの未延伸PETフィルムの低反射層を形成する側に製造例5の塗布液を乾燥後の塗布量が0.09g/mになるように、低反射層を積層した面とは反対側に製造例3の接着性改質塗布液を0.08g/mになるように塗布した後、80℃で20秒間乾燥した。 Subsequently, the low reflective layer was laminated so that the coating amount after drying the coating liquid of Production Example 5 was 0.09 g / m 2 on the side on which the low reflective layer of this unstretched PET film was formed by the reverse roll method. On the opposite side of the surface, the adhesion-modified coating solution of Production Example 3 was applied at 0.08 g / m 2 and then dried at 80 ° C. for 20 seconds.
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、10秒間で処理し、さらに幅方向に3.0%の緩和処理を行い、フィルム厚み約100μmの偏光子保護フィルム2を得た。 The unstretched film on which this coating layer was formed was guided to a tenter stretching machine, guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a 3.0% relaxation treatment in the width direction to obtain a polarizer protective film 2 having a film thickness of about 100 μm. Obtained.
 偏光子保護フィルム2のリタデーション(Re)、厚さ方向のリタデーション(Rth)、Re/Rth、NZ係数は、偏光子保護フィルム1と同じであった。
偏光子保護フィルム2の反射スペクトルを測定したところ、波長630nmにおける反射率は2.11%であった。波長550nmにおける反射率は1.96%であった。
The retardation (Re), retardation in the thickness direction (Rth), Re / Rth, and NZ coefficient of the polarizer protective film 2 were the same as those of the polarizer protective film 1.
When the reflection spectrum of the polarizer protective film 2 was measured, the reflectance at a wavelength of 630 nm was 2.11%. The reflectance at a wavelength of 550 nm was 1.96%.
(偏光子保護フィルム3)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 3)
After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. . After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法によりこの未延伸PETフィルムの低反射層を形成する側に製造例6の低反射層塗布液を乾燥後の塗布量が0.108g/mになるように、低反射層を積層した面とは反対側に製造例3の接着性改質塗布液を0.080g/mになるように塗布した後、80℃で20秒間乾燥した。 Next, the low reflective layer is formed so that the coating amount after drying the low reflective layer coating liquid of Production Example 6 is 0.108 g / m 2 on the side on which the low reflective layer of the unstretched PET film is formed by the reverse roll method. On the side opposite to the surface on which the film was laminated, the adhesion-modified coating solution of Production Example 3 was applied to 0.080 g / m 2 and then dried at 80 ° C. for 20 seconds.
 この塗布層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、10秒間で処理し、さらに幅方向に3.0%の緩和処理を行い、フィルム厚み約100μmの偏光子保護フィルム3を得た。
 偏光子保護フィルム3は、リタデーション(Re)が10300nm、厚さ方向のリタデーション(Rth)が12350nm、Re/Rthが0.834、NZ係数が1.699であった。
 また、偏光子保護フィルム3の反射スペクトルは、ボトム波長が630nmであり、波長630nmにおける反射率は1.71%であった。
The unstretched film on which this coating layer was formed was guided to a tenter stretching machine, and the film was guided to a hot air zone at a temperature of 125 ° C. while being gripped by a clip, and stretched 4.0 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 10 seconds, and further subjected to a 3.0% relaxation treatment in the width direction to obtain a polarizer protective film 3 having a film thickness of about 100 μm. Obtained.
The polarizer protective film 3 had retardation (Re) of 10300 nm, retardation in the thickness direction (Rth) of 12350 nm, Re / Rth of 0.834, and NZ coefficient of 1.699.
The reflection spectrum of the polarizer protective film 3 had a bottom wavelength of 630 nm and a reflectance at a wavelength of 630 nm of 1.71%.
(実施例1)
 PVAとヨウ素からなる偏光子の片側に偏光子保護フィルム1を偏光子の透過軸とフィルムの進相軸が垂直になるように貼り付け、その反対の面にTACフィルム(富士フイルム(株)社製、厚み80μm)を貼り付けて偏光板を作成した。なお、偏光子保護フィルムの低反射層が積層されていない面に、偏光子を積層して偏光板を作成した。
東芝社製のREGZA 43J10Xの視認側の偏光板を、ポリエステルフィルムが液晶とは反対側(遠位)となるように上記で作成した偏光板に置き換えて、液晶表示装置を作成した。なお、偏光板の透過軸の方向が、置き換え前の偏光板の透過軸の方向と同一となるよう置き換えた。
Example 1
A polarizer protective film 1 is attached to one side of a polarizer composed of PVA and iodine so that the transmission axis of the polarizer and the fast axis of the film are perpendicular to each other, and a TAC film (Fuji Film Co., Ltd.) Manufactured and having a thickness of 80 μm) to make a polarizing plate. In addition, the polarizer was laminated | stacked on the surface in which the low reflection layer of a polarizer protective film was not laminated | stacked, and the polarizing plate was created.
The polarizing plate on the viewing side of REGZA 43J10X manufactured by Toshiba Corporation was replaced with the polarizing plate prepared above so that the polyester film was on the side opposite to the liquid crystal (distal), thereby producing a liquid crystal display device. In addition, it replaced so that the direction of the transmission axis of a polarizing plate might be the same as the direction of the transmission axis of the polarizing plate before replacement.
(比較例1)
 実施例1において、偏光子保護フィルム1の代わりに、偏光子保護フィルム2を用いた以外は同様にして、液晶表示装置を作成した。
(Comparative Example 1)
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizer protective film 2 was used instead of the polarizer protective film 1.
(実施例2)
 実施例1において、偏光子保護フィルム1の代わりに、偏光子保護フィルム3を用いた以外は同様にして、液晶表示装置を作成した。
(Example 2)
A liquid crystal display device was produced in the same manner as in Example 1 except that the polarizer protective film 3 was used instead of the polarizer protective film 1.
 実施例1、及び2、並びに比較例1の液晶表示装置を並べて、正面及び斜め方向から暗所で画面を目視観察したところ、実施例1や2のほうが、比較例1よりも、虹斑の発生が抑制されていた。また、実施例1と2では、実施例1の液晶表示装置がほうが虹斑の発生が抑制されていた。なお、ここでいう虹斑とは、フィルムを斜め方向から、視認者が頭を動かしながら観察したときに(フィルム法線方向からの角度を変えながら観察したときに)、画面上に観察される靄状の虹斑のことである。 When the liquid crystal display devices of Examples 1 and 2 and Comparative Example 1 were arranged side by side and the screen was visually observed in a dark place from the front and oblique directions, Examples 1 and 2 were more prone to iridescence than Comparative Example 1. Occurrence was suppressed. Further, in Examples 1 and 2, the liquid crystal display device of Example 1 was more suppressed from generating rainbow spots. Note that rainbow spots here are observed on the screen when the viewer observes the film while moving his head from an oblique direction (when observing while changing the angle from the film normal direction). It is a saddle-shaped rainbow.
 実施例1、及び2、並びに比較例1は全てポリエステルフィルムの厚みが100μmであったが、これを80μmのフィルム(リタデーション(Re)は8080nm、厚さ方向のリタデーション(Rth)は9960nm、Re/Rthは0.811、NZ係数は1.733)に置き換えて実施例1’、 実施例2’、比較例1’の液晶表示装置を製造したところ、同様に比較例1’よりも実施例1’ や 実施例2’の液晶表示装置のほうが虹斑の発生が抑制されていた。実施例1’と 実施例2’では、実施例1’ のほうがより虹斑が抑制されていた。なお、ここでいう虹斑とは、フィルムを斜め方向から、頭を動かしながら観察したときに(フィルム法線方向からの角度を変えながら観察したときに)、画面上に観察される靄状の虹斑のことである。 In Examples 1 and 2 and Comparative Example 1, the thickness of the polyester film was 100 μm, but this was an 80 μm film (retardation (Re) was 8080 nm, retardation in the thickness direction (Rth) was 9960 nm, Re / A liquid crystal display device of Example 1 ′, Example 2 ′, and Comparative Example 1 ′ was manufactured by replacing Rth with 0.811 and NZ coefficient of 1.733). The generation of rainbow spots was suppressed in the liquid crystal display device of “Acupuncture and Acupuncture Example 2”. In Example 1 'and Vaginal Example 2', rainbow spots were suppressed more in Example 1 'Vaginal. Note that the rainbow spots here are the wrinkles that are observed on the screen when the film is observed from an oblique direction while moving the head (when the angle from the film normal direction is changed). It is a rainbow spot.
 また、実施例1、及び2、並びに比較例1は、全てポリエステルフィルムの厚みが100μmであったが、これを60μmのフィルム(リタデーション(Re)は6060nm、厚さ方向のリタデーション(Rth)は7470nm、Re/Rthは0.811、NZ係数は1.733)に置き換えた実施例1’’、 実施例2’’、比較例1’’の液晶表示装置を製造したところ、同様に比較例1’’よりも実施例1’’ や 実施例2’’の液晶表示装置のほうが虹斑の発生が抑制されていた。実施例1’’と 実施例2’’では、実施例1’’ のほうがより虹斑が抑制されていた。なお、ここでいう虹斑とは、フィルムを斜め方向から、頭を動かしながら観察したときに(フィルム法線方向からの角度を変えながら観察したときに)、画面上に観察される靄状の虹斑のことである。 In Examples 1 and 2, and Comparative Example 1, the thickness of the polyester film was 100 μm, but this was a 60 μm film (retardation (Re) was 6060 nm, and thickness direction retardation (Rth) was 7470 nm. , Re / Rth was 0.811, and the NZ coefficient was 1.733). The liquid crystal display devices of Example 1 ″, Example 2 ″, and Comparative Example 1 ″ were manufactured. In the liquid crystal display device of Example 1 '' and Example 2 of Example 1 ”, the generation of rainbow spots was suppressed. In Example 1 ″ and Spider Example 2 ″, the iris was more suppressed in Example 1 ″. Note that the rainbow spots here are the wrinkles that are observed on the screen when the film is observed from an oblique direction while moving the head (when the angle from the film normal direction is changed). It is a rainbow spot.
 本発明の液晶表示装置及び偏光板は、いずれの角度においても虹状の色斑の発生が有意に抑制された良好な視認性を確保することができ、産業界への寄与は大きい。 The liquid crystal display device and the polarizing plate of the present invention can ensure good visibility in which the occurrence of rainbow-like color spots is significantly suppressed at any angle, and greatly contribute to the industry.

Claims (8)

  1.  バックライト光源、2つの偏光板、及び前記2つの偏光板の間に配置された液晶セルを有する液晶表示装置であって、
     前記バックライト光源は、400nm以上495nm未満、495nm以上600nm未満及び600nm以上780nm以下の各波長領域にそれぞれ発光スペクトルのピークトップを有し、かつ、600nm以上780nm以下の波長領域における最もピーク強度の高いピークの半値幅が5nm未満である発光スペクトルを有する白色発光ダイオードであり、
     前記偏光板のうち少なくとも一方の偏光板は、偏光子の少なくとも一方の面にポリエステルフィルムが積層されたものであり、
     前記ポリエステルフィルムは、1500nm以上30000nm以下のリタデーションを有し、
     前記ポリエステルフィルムは、少なくとも一方の面に反射防止層及び/又は低反射層が積層されており、
     前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長における、反射防止層及び/又は低反射層が積層された側から測定した、反射防止層及び/又は低反射層が積層されたポリエステルフィルムの反射率が2%以下であることを特徴とする液晶表示装置。
    A liquid crystal display device having a backlight light source, two polarizing plates, and a liquid crystal cell disposed between the two polarizing plates,
    The backlight source has a peak top of the emission spectrum in each wavelength region of 400 nm to 495 nm, 495 nm to less than 600 nm, and 600 nm to 780 nm, and has the highest peak intensity in the wavelength region of 600 nm to 780 nm. A white light-emitting diode having an emission spectrum with a peak half-width less than 5 nm,
    At least one polarizing plate among the polarizing plates is obtained by laminating a polyester film on at least one surface of a polarizer,
    The polyester film has a retardation of 1500 nm or more and 30000 nm or less,
    The polyester film has an antireflection layer and / or a low reflection layer laminated on at least one surface,
    The antireflection layer and / or the low reflection layer measured from the side where the antireflection layer and / or the low reflection layer are laminated at the peak top wavelength of the peak having the highest peak intensity in the wavelength region of 600 nm or more and 780 nm or less. A liquid crystal display device, wherein the reflectance of the laminated polyester film is 2% or less.
  2.  前記バックライト光源の発光スペクトルは、
     400nm以上495nm未満の波長領域における最もピーク強度の高いピークの半値幅が5nm以上であり、
     495nm以上600nm未満の波長領域における最もピーク強度の高いピークの半値幅が5nm以上である、
    請求項1に記載の液晶表示装置。
    The emission spectrum of the backlight source is
    The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 400 nm or more and less than 495 nm is 5 nm or more,
    The full width at half maximum of the peak with the highest peak intensity in the wavelength region of 495 nm or more and less than 600 nm is 5 nm or more,
    The liquid crystal display device according to claim 1.
  3.  前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長が、620nm以上640nm以下の領域にある、請求項1又は2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein a peak top wavelength of a peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is in a region of 620 nm to 640 nm.
  4.  前記600nm以上780nm以下の波長領域における最もピーク強度の高いピークのピークトップの波長が630nmである、請求項1又は2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein a peak top wavelength of a peak having the highest peak intensity in the wavelength region of 600 nm to 780 nm is 630 nm.
  5.  1500nm以上30000nm以下のリタデーションを有し、少なくとも一方の面に反射防止層及び/又は低反射層が積層されたポリエステルフィルムからなる偏光子保護フィルムであって、
     波長600nm以上780nm以下の波長領域のいずれかの波長における、反射防止層及び/又は低反射層が積層された側から測定した反射率が2%以下である、偏光子保護フィルム。
    A polarizer protective film comprising a polyester film having a retardation of 1500 nm or more and 30000 nm or less and having an antireflection layer and / or a low reflection layer laminated on at least one surface,
    A polarizer protective film having a reflectance of 2% or less measured from the side on which the antireflection layer and / or the low reflection layer is laminated in any wavelength of a wavelength region of 600 nm to 780 nm.
  6.  前記いずれかの波長が620nm以上640nm以下の領域にある請求項5に記載の偏光子保護フィルム。 The polarizer protective film according to claim 5, wherein any one of the wavelengths is in a region of 620 nm or more and 640 nm or less.
  7.  前記いずれかの波長が630nmである、請求項5に記載の偏光子保護フィルム。 The polarizer protective film according to claim 5, wherein any one of the wavelengths is 630 nm.
  8.  偏光子の少なくとも一方の面に請求項5~7のいずれかに記載の偏光子保護フィルムが積層された偏光板。 A polarizing plate in which the polarizer protective film according to any one of claims 5 to 7 is laminated on at least one surface of the polarizer.
PCT/JP2018/007084 2017-02-28 2018-02-27 Liquid crystal display device WO2018159568A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880011962.3A CN110312961B (en) 2017-02-28 2018-02-27 Liquid crystal display device having a plurality of pixel electrodes
KR1020197024891A KR102315658B1 (en) 2017-02-28 2018-02-27 liquid crystal display
KR1020217036245A KR102334202B1 (en) 2017-02-28 2018-02-27 Liquid crystal display device
JP2019502994A JP7184033B2 (en) 2017-02-28 2018-02-27 liquid crystal display
CN202210536156.6A CN114942541B (en) 2017-02-28 2018-02-27 Liquid crystal display device having a light shielding layer
KR1020217033325A KR102325038B1 (en) 2017-02-28 2018-02-27 Liquid crystal display device
JP2022150709A JP7364001B2 (en) 2017-02-28 2022-09-21 liquid crystal display device
JP2023170202A JP7464185B2 (en) 2017-02-28 2023-09-29 Liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017037204 2017-02-28
JP2017-037204 2017-02-28
JP2018011670 2018-01-26
JP2018-011670 2018-01-26

Publications (1)

Publication Number Publication Date
WO2018159568A1 true WO2018159568A1 (en) 2018-09-07

Family

ID=63370856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007084 WO2018159568A1 (en) 2017-02-28 2018-02-27 Liquid crystal display device

Country Status (5)

Country Link
JP (3) JP7184033B2 (en)
KR (2) KR102315658B1 (en)
CN (2) CN110312961B (en)
TW (1) TWI776857B (en)
WO (1) WO2018159568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241589A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Base material film for surface protection film of image display device equipped with fingerprint authentication sensor, surface protection film, and image display device
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
WO2023182128A1 (en) * 2022-03-23 2023-09-28 東洋紡株式会社 Image display device having camera under image display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184033B2 (en) * 2017-02-28 2022-12-06 東洋紡株式会社 liquid crystal display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233114A (en) * 2006-03-02 2007-09-13 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display
JP2008537803A (en) * 2005-04-15 2008-09-25 日東電工株式会社 UV absorbing layer for polarizing plate
JP2014044389A (en) * 2011-12-28 2014-03-13 Toyobo Co Ltd Liquid crystal display device, polarizing plate and polarizer protection film
JP2015094903A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Manufacturing method of image display device, and selection method of light-emitting device and color filter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341163B2 (en) 2000-10-10 2009-10-07 コニカミノルタホールディングス株式会社 Polarizing plate protective film, polarizing plate using the same, manufacturing method, and liquid crystal display device
JP2004205773A (en) 2002-12-25 2004-07-22 Konica Minolta Holdings Inc Polarizing plate and its manufacturing method, and liquid crystal display device using the same
JP4352705B2 (en) 2003-01-14 2009-10-28 コニカミノルタホールディングス株式会社 Polarizing plate protective film, polarizing plate and liquid crystal display device using the same
JP2005146172A (en) * 2003-11-18 2005-06-09 Nichia Chem Ind Ltd Light emitter and phosphor for light emitter
JP4543776B2 (en) * 2004-06-24 2010-09-15 住友化学株式会社 Retardation plate and composite polarizing plate, manufacturing method thereof, and liquid crystal display device
JP2007199522A (en) 2006-01-27 2007-08-09 Nippon Zeon Co Ltd Method of manufacturing optical laminated body
JP4991735B2 (en) * 2006-09-28 2012-08-01 シャープ株式会社 Liquid crystal display panel and liquid crystal display device
US20080116468A1 (en) * 2006-11-22 2008-05-22 Gelcore Llc LED backlight using discrete RGB phosphors
JP4878582B2 (en) * 2007-07-03 2012-02-15 富士フイルム株式会社 Polarizing plate protective film, and polarizing plate and liquid crystal display device using the same
JP2010008863A (en) 2008-06-30 2010-01-14 Konica Minolta Opto Inc Antireflective film, polarizing plate using the same and image display device
JP5026538B2 (en) * 2010-02-08 2012-09-12 株式会社ジャパンディスプレイイースト Display device
US9798189B2 (en) 2010-06-22 2017-10-24 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
CN103547961B (en) * 2011-05-18 2017-07-14 东洋纺株式会社 Liquid crystal display device, Polarizer and polaroid protective film
WO2014171394A1 (en) * 2013-04-15 2014-10-23 シャープ株式会社 Illumination device, illumination apparatus, and display method
TWI645962B (en) * 2013-08-09 2019-01-01 住友化學股份有限公司 Optically anisotropic sheet
JP6155993B2 (en) * 2013-09-05 2017-07-05 日亜化学工業株式会社 Method for selecting combination of color filter and light emitting device, and method for manufacturing image display device
KR20150035065A (en) * 2013-09-27 2015-04-06 삼성전자주식회사 display device including the fluoride phosphor
KR20150135935A (en) * 2014-05-26 2015-12-04 우리이앤엘 주식회사 Display device
KR102690508B1 (en) * 2014-11-25 2024-07-30 도요보 가부시키가이샤 Liquid crystal display device and polarizing plate
KR102501923B1 (en) * 2015-07-16 2023-02-23 도요보 가부시키가이샤 Liquid crystal display device and polarizing plate
JP7184033B2 (en) 2017-02-28 2022-12-06 東洋紡株式会社 liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537803A (en) * 2005-04-15 2008-09-25 日東電工株式会社 UV absorbing layer for polarizing plate
JP2007233114A (en) * 2006-03-02 2007-09-13 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display
JP2014044389A (en) * 2011-12-28 2014-03-13 Toyobo Co Ltd Liquid crystal display device, polarizing plate and polarizer protection film
JP2015094903A (en) * 2013-11-13 2015-05-18 日亜化学工業株式会社 Manufacturing method of image display device, and selection method of light-emitting device and color filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
WO2020241589A1 (en) * 2019-05-31 2020-12-03 東洋紡株式会社 Base material film for surface protection film of image display device equipped with fingerprint authentication sensor, surface protection film, and image display device
JPWO2020241589A1 (en) * 2019-05-31 2021-09-13 東洋紡株式会社 Base film for surface protective film of image display device with fingerprint authentication sensor, surface protective film and image display device
JP7081676B2 (en) 2019-05-31 2022-06-07 東洋紡株式会社 Base film for surface protective film of image display device with fingerprint authentication sensor, surface protective film and image display device
WO2023182128A1 (en) * 2022-03-23 2023-09-28 東洋紡株式会社 Image display device having camera under image display panel

Also Published As

Publication number Publication date
CN114942541A (en) 2022-08-26
JP7464185B2 (en) 2024-04-09
JP2022180530A (en) 2022-12-06
CN110312961B (en) 2022-05-10
TWI776857B (en) 2022-09-11
CN114942541B (en) 2023-06-16
KR20210129252A (en) 2021-10-27
JP7184033B2 (en) 2022-12-06
CN110312961A (en) 2019-10-08
JPWO2018159568A1 (en) 2019-12-19
JP7364001B2 (en) 2023-10-18
KR20190117562A (en) 2019-10-16
KR102315658B1 (en) 2021-10-21
JP2023171449A (en) 2023-12-01
TW201841768A (en) 2018-12-01
KR102325038B1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2016084729A1 (en) Liquid crystal display device and polarizing plate
JP7464185B2 (en) Liquid crystal display device
WO2013080949A1 (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP7331886B2 (en) Liquid crystal display device and polarizing plate
JP2017167331A (en) Liquid crystal display device
WO2013080948A1 (en) Liquid crystal display device, polarizing plate, and polarizer protective film
KR102307182B1 (en) liquid crystal display
JP7347615B2 (en) Liquid crystal display device and polarizing plate
KR102334202B1 (en) Liquid crystal display device
JP2018028612A (en) Liquid crystal display device
JP2018028611A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502994

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761899

Country of ref document: EP

Kind code of ref document: A1