WO2018159321A1 - Ejector module - Google Patents
Ejector module Download PDFInfo
- Publication number
- WO2018159321A1 WO2018159321A1 PCT/JP2018/005440 JP2018005440W WO2018159321A1 WO 2018159321 A1 WO2018159321 A1 WO 2018159321A1 JP 2018005440 W JP2018005440 W JP 2018005440W WO 2018159321 A1 WO2018159321 A1 WO 2018159321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- evaporator
- ejector
- nozzle
- pressure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/02—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
- F04F5/04—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/46—Arrangements of nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
Definitions
- the present disclosure relates to an ejector module applied to an ejector refrigeration cycle.
- an ejector type refrigeration cycle which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known.
- the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector.
- the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
- Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle.
- the evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
- the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector.
- the second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor.
- the first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector.
- the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion that cannot change the passage cross-sectional area of the refrigerant passage as the nozzle portion of the ejector. For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
- Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is disclosed that a variable nozzle portion configured to be able to change the passage sectional area of the refrigerant passage may be employed.
- variable throttle mechanism when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required.
- a variable nozzle portion is adopted as the nozzle portion of the ejector.
- an object of the present disclosure is to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
- An ejector module includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, a first evaporator that evaporates the refrigerant, and evaporates the refrigerant.
- the present invention is applicable to an ejector refrigeration cycle having a second evaporator that flows out to the suction side of the compressor.
- the ejector module includes a nozzle portion that decompresses and injects some of the refrigerant that has flowed out of the radiator, a decompression portion that decompresses another portion of the refrigerant that has flowed out of the radiator, and an injection from the nozzle.
- the refrigerant inlet side of the first evaporator is connected to the throttle-side outlet for allowing the refrigerant to flow out from the decompression unit, and the refrigerant outlet side of the first evaporator is connected to the refrigerant suction port so that the refrigerant flows out from the pressure boosting unit.
- a refrigerant inlet side of the second evaporator is connected to the ejector side outlet.
- the central axis of the displacement direction in which the decompression side drive unit displaces the decompression side valve body is defined as the decompression side center axis, and when viewed from the decompression side center axis direction, the central axis of the decompression side drive unit and the nozzle unit Is an ejector module arranged in a superposition.
- the ejector module since the ejector module includes the pressure reducing portion, the pressure reducing side valve body portion, and the pressure reducing side driving portion, a variable throttle mechanism can be configured.
- the throttle opening of the variable throttle mechanism can be changed according to the load fluctuation of the applied ejector refrigeration cycle. And according to load fluctuation
- the ejector module includes a nozzle part, a body part, and a booster part, an ejector can be formed, and the ejector and the variable throttle mechanism can be integrated.
- the decompression side drive unit having a relatively large physique and the ejector formed in the shape extending in the axial direction can be arranged while being shifted in the direction of the decompression side central axis. Accordingly, the part constituting the main body of the variable aperture mechanism and the part constituting the ejector can be arranged close to each other. As a result, the increase in size of the ejector module as a whole can be suppressed.
- an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector refrigeration cycle. Furthermore, specifically, by making the pressure-reduction-side central axis and the central axis of the nozzle portion into a torsional positional relationship, it is easy to bring the part constituting the main body of the variable throttle mechanism close to the part constituting the ejector.
- the ejector module includes a nozzle portion that decompresses and injects some of the refrigerant that has flowed out of the radiator, and depressurizes another portion of the refrigerant that has flowed out of the radiator.
- a decompression unit that causes the refrigerant to be sucked from the outside by a suction action of the jet refrigerant ejected from the nozzle, and a refrigerant mixture sucked from the jet refrigerant and the refrigerant sucked from the refrigerant suction port.
- a pressure increasing part for increasing pressure a nozzle side valve body part for changing the passage sectional area of the nozzle part, a nozzle side driving part for displacing the nozzle side valve body part, and a pressure reducing side valve body part for changing the passage sectional area of the pressure reducing part And a pressure reducing side driving part for displacing the pressure reducing side valve body part.
- the refrigerant inlet side of the first evaporator is connected to the throttle-side outlet for allowing the refrigerant to flow out from the decompression unit, and the refrigerant outlet side of the first evaporator is connected to the refrigerant suction port so that the refrigerant flows out from the pressure boosting unit.
- a refrigerant inlet side of the second evaporator is connected to the ejector side outlet.
- the central axis in the displacement direction in which the nozzle-side drive unit displaces the nozzle-side valve body is defined as the nozzle-side central axis
- the central axis in the displacement direction in which the decompression-side drive unit displaces the decompression-side valve body is defined as the decompression-side central axis.
- a variable throttle mechanism can be configured. Moreover, since the nozzle part, the nozzle side valve body part, and the nozzle side drive part are provided, a variable nozzle part can be comprised.
- the throttle opening of the variable throttle mechanism and the passage cross-sectional area of the nozzle portion can be changed according to the load fluctuation of the applied ejector refrigeration cycle. And according to load fluctuation
- an ejector including a variable nozzle unit can be configured. And an ejector and a variable aperture mechanism can be integrated.
- the drive unit corresponding to one central axis and the other central axis are arranged in an overlapping manner, so the entire ejector module The increase in size can be suppressed.
- the decompression side driving unit and the nozzle side driving unit which are relatively large in size, can be arranged while being shifted in any central axis direction. Accordingly, the part constituting the main body of the variable aperture mechanism and the part constituting the main body of the ejector can be arranged close to each other. As a result, the increase in size of the ejector module as a whole can be suppressed.
- the nozzle-side central axis and the pressure-reducing side central axis are in a torsional positional relationship, so that the portion constituting the main body of the variable throttle mechanism (16) and the portion constituting the main body of the ejector can be easily brought close to each other.
- the ejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG.
- This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
- the ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
- HFC refrigerant specifically, R134a
- the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
- various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from an air conditioning control device (not shown), and either an AC motor or a DC motor may be adopted.
- the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
- the radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
- the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b.
- the condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense.
- the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
- the cooling fan 12c is an electric blower whose number of rotations (amount of blown air) is controlled by a control voltage output from the air conditioning control device.
- a high-pressure inlet 21 a side provided in a body part (body part) 21 of the ejector module 20 is connected to the refrigerant outlet of the receiver part 12 b of the radiator 12.
- the ejector module 20 is obtained by integrating (in other words, modularizing) the cycle constituent devices surrounded by the broken lines in FIG. More specifically, the ejector module 20 is obtained by integrating the branching section 14, the ejector 15, the variable aperture mechanism 16, and the like.
- the branch portion 14 branches the flow of the refrigerant that has flowed out of the radiator 12, causes one of the branched refrigerant to flow out to the nozzle portion 51 side of the ejector 15, and the other branched refrigerant flows to the inlet side of the variable throttle mechanism 16. Fulfills the function of draining
- the branch portion 14 is formed by connecting a plurality of refrigerant passages formed inside the body portion 21 of the ejector module 20.
- the ejector 15 includes a nozzle portion 51 that decompresses and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Furthermore, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from outside by the suction action of the refrigerant injected from the nozzle portion 51. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
- the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle part 51 and the refrigerant sucked from the refrigerant suction port 21b formed in the body part 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant.
- the ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later.
- the nozzle part 51 of the ejector 15 is comprised so that a passage cross-sectional area can be changed.
- the variable throttle mechanism 16 has a throttle passage 20a that depressurizes the other refrigerant branched by the branching section 14.
- the variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a.
- the variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
- FIGS. 2 to 5 The up and down arrows in FIGS. 2 to 4 indicate the up and down directions in a state where the ejector refrigeration cycle 10 is mounted on the vehicle air conditioner.
- FIG. 2 is a cross-sectional view taken along the line II-II in FIGS. 4 and 5
- FIG. 3 is a cross-sectional view taken along the line III-III in FIGS. 4 is a view in the direction of arrow IV in FIG.
- FIG. 5 is a view in the direction of arrow V in FIG.
- the refrigerant flow direction in the ejector 15 shown in the overall configuration diagram of FIG. 1 is different from the refrigerant flow direction in the ejector 15 shown in FIGS. It has become.
- the body part 21 is formed by combining a plurality of structural members made of metal (in this embodiment, made of aluminum).
- the body portion 21 forms the outer shell of the ejector module 20 and functions as a housing that accommodates components such as the ejector 15 and the variable throttle mechanism 16 therein.
- the body part 21 may be formed of resin.
- the body portion 21 is provided with a plurality of refrigerant inlets and outlets such as a high pressure inlet 21a, a refrigerant suction port 21b, a throttle side outlet 21d, a low pressure inlet 21e, and a low pressure outlet 21f. Further, an ejector side outlet 21c is provided at the most downstream part of the refrigerant flow of a diffuser portion 52 of the ejector 15 described later, which is fixed to the body portion 21.
- the high-pressure inlet 21 a is a refrigerant inlet through which the refrigerant flowing out from the refrigerant outlet of the receiver 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14.
- the refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant that has flowed out of the first evaporator 17.
- the suction refrigerant sucked from the refrigerant suction port 21 b merges with the jet refrigerant jetted from the nozzle portion 51. Accordingly, the refrigerant passage through which the suction refrigerant sucked from the refrigerant suction port 21b is circulated and merged with the injection refrigerant is the suction-side passage 20b.
- the ejector-side outlet 21c is a refrigerant outlet that causes the refrigerant whose pressure has been increased by the diffuser portion 52 to flow out to the inlet side of the second evaporator 18.
- the throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
- the low-pressure inlet 21e is a refrigerant inlet through which the refrigerant that has flowed out of the second evaporator 18 flows, as shown in FIG.
- the low-pressure outlet 21 f is a refrigerant outlet that allows the refrigerant flowing from the low-pressure inlet 21 e to flow out to the suction port side of the compressor 11. Therefore, the refrigerant passage from the low pressure inlet 21e to the low pressure outlet 21f is the outflow side passage 20c.
- the high-pressure inlet 21a and the low-pressure outlet 21f are open in the same direction on the same plane.
- the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction.
- the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d are open on the same plane.
- the refrigerant inlet / outlet opening in the same direction means that the refrigerant inflow / outflow directions coincide with each other.
- the ejector 15 includes a nozzle portion 51, a refrigerant suction port 21b and a suction side passage 20b formed in the body portion 21, a diffuser portion 52, a needle valve 53, a nozzle side drive mechanism 54, and the like. It is configured.
- the nozzle portion 51 is an isentropic decompression of the refrigerant in the refrigerant passage formed therein and injects it. As shown in FIG. 2, the nozzle portion 51 is formed of a substantially cylindrical metal (in this embodiment, stainless alloy or brass) that tapers in the refrigerant flow direction. The nozzle part 51 is fixed to the body part 21 by means such as press fitting.
- a throat portion having the smallest refrigerant passage area is formed, and further, the refrigerant passage area gradually increases from the throat portion toward the refrigerant injection port for injecting the refrigerant.
- a divergent section is provided. That is, the nozzle part 51 is configured as a Laval nozzle.
- the nozzle unit 51 is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the speed of sound during normal operation of the ejector refrigeration cycle 10.
- an inlet hole through which one refrigerant branched by the branch portion 14 flows into the refrigerant passage is formed.
- the suction side passage 20b described above is formed so as to guide the suction refrigerant to the space on the outer peripheral side of the nozzle portion 51 so that the refrigerant suction port 21b and the refrigerant injection port of the nozzle portion 51 communicate with each other.
- the diffuser unit 52 is a pressure increasing unit that increases the pressure of the mixed refrigerant.
- the diffuser part 52 is formed of a cylindrical metal (in this embodiment, aluminum).
- the diffuser portion 52 of the present embodiment is fixed to the body portion 21 by means such as press fitting.
- the diffuser portion 52 may be formed integrally with the same member as the body portion 21.
- the refrigerant passage formed in the diffuser portion 52 has a substantially truncated cone shape in which the passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow.
- the kinetic energy of the mixed refrigerant flowing through the diffuser part 52 is converted into pressure energy by such a passage shape.
- the diffuser portion 52 protrudes from the body portion 21 toward the downstream side of the refrigerant flow. Therefore, the ejector side outlet 21c formed in the most downstream portion of the refrigerant flow of the diffuser portion 52 is a plane different from the refrigerant suction port 21b, the throttle side outlet 21d, and the low pressure inlet 21e, as shown in FIGS. Open on top.
- the needle valve 53 is a nozzle-side valve body portion that changes the cross-sectional area of the refrigerant passage formed inside the nozzle portion 51.
- the needle valve 53 is formed in a needle shape (or a shape combining a conical shape, a cylindrical shape, etc.).
- the central axis of the needle valve 53 is arranged coaxially with the central axis of the nozzle part 51 and the central axis of the refrigerant passage of the diffuser part 52.
- the needle valve 53 changes the cross-sectional area of the refrigerant passage of the nozzle portion 51 by being displaced in the central axis direction. Further, the nozzle part 51 can be closed by bringing the needle valve 53 into contact with the throat part of the nozzle part 51.
- the nozzle side drive mechanism 54 is a nozzle side drive unit that displaces the needle valve 53 in the central axis direction of the nozzle unit 51.
- the nozzle side drive mechanism 54 is configured by a mechanical mechanism.
- the nozzle-side drive mechanism 54 has a nozzle-side deformable member (specifically, a nozzle-side diaphragm 54b) that deforms according to the temperature and pressure of the refrigerant that has flowed out of the second evaporator 18.
- a side temperature sensing part 54a is provided. Then, by transmitting the deformation of the diaphragm 54b to the needle valve 53, the needle valve 53 is displaced.
- the nozzle-side diaphragm 54b forms an enclosed space 54c in which a temperature-sensitive medium whose pressure changes with temperature change is enclosed in the nozzle-side temperature sensing portion 54a.
- the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
- the nozzle side temperature sensing portion 54a is disposed in a space formed in the body portion 21 and communicating with the outflow side passage 20c. For this reason, the pressure of the temperature-sensitive medium in the enclosed space 54c changes according to the temperature of the low-pressure refrigerant (that is, the refrigerant that has flowed out of the second evaporator 18) that flows through the outflow side passage 20c. And the diaphragm 54b deform
- the diaphragm 54b is formed of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in this embodiment, a circular metal thin plate made of stainless steel (SUS304) is adopted as the diaphragm 54b.
- a part of the diaphragm 54b is fixed to the body portion 21, and the needle valve 53 is fixed to a case that forms an enclosed space 54c together with the diaphragm 54b.
- the nozzle side drive mechanism 54 can displace the needle valve 53 according to the degree of superheat of the refrigerant that has flowed out of the second evaporator 18. Therefore, the nozzle side drive mechanism 54 of the present embodiment is configured so that the superheat degree of the refrigerant on the outlet side of the second evaporator 18 approaches a predetermined nozzle side reference superheat degree (specifically, 1 ° C.). Is displaced.
- a predetermined nozzle side reference superheat degree specifically, 1 ° C.
- the nozzle side drive mechanism 54 has a coil spring that is an elastic member that applies a load on the side on which the needle valve 53 reduces the passage sectional area of the nozzle portion 51 to the nozzle side temperature sensing portion 54a.
- the nozzle-side reference superheat degree can be adjusted by changing the load of the coil spring.
- the nozzle-side drive mechanism 54 defines the center axis in the displacement direction for displacing the needle valve 53 as the nozzle-side center axis CL1
- the nozzle-side center axis CL1 is the center axis of the nozzle portion 51 and the center of the needle valve 53.
- the axis coincides with the central axis of the diffuser portion 52.
- variable throttle mechanism 16 includes a throttle passage 20a, a throttle valve 61, a pressure reducing side drive mechanism 62, and the like.
- the throttle passage 20a is a decompression section that decompresses the other refrigerant branched by the branch section 14 by reducing the passage cross-sectional area.
- the throttle passage 20a is formed in a rotating body shape such as a columnar shape or a truncated cone shape.
- the decompression part of this embodiment is formed integrally with the body part 21.
- an orifice formed as a separate member with respect to the body portion 21 may be adopted as the pressure reducing portion and fixed to the body portion 21 by means such as press fitting.
- the throttle valve 61 is formed in a spherical shape, and is a pressure-reducing valve body portion that changes the cross-sectional area (that is, the throttle opening) of the throttle passage 20a by being displaced in the central axis direction of the throttle passage 20a. Furthermore, the throttle passage 20a can be closed by bringing the throttle valve 61 into contact with the outlet of the throttle passage 20a.
- the pressure reducing side driving mechanism 62 is a pressure reducing side driving unit that displaces the throttle valve 61 in the central axis direction of the throttle passage 20a.
- the decompression side drive mechanism 62 is configured by a mechanical mechanism similar to the nozzle side drive mechanism 54.
- the decompression-side drive mechanism 62 includes a decompression-side deformation member (specifically, a decompression-side diaphragm 62b) that deforms according to the temperature and pressure of the refrigerant that has flowed out of the first evaporator 17.
- a side temperature sensing part 62a is provided. Then, by transmitting the deformation of the diaphragm 62b to the throttle valve 61, the throttle valve 61 is displaced.
- a part of the decompression side temperature sensing unit 62a is disposed in the suction side passage 20b. Further, in the pressure reducing side drive mechanism 62 of the present embodiment, the displacement of the diaphragm 62 b is transmitted to the throttle valve 61 via the operating rod 63.
- the operating rod 63 is formed in a cylindrical shape extending in the displacement direction of the throttle valve 61.
- the decompression side drive mechanism 62 can displace the throttle valve 61 according to the degree of superheat of the refrigerant flowing out from the first evaporator 17. Therefore, the nozzle-side drive mechanism 54 of the present embodiment has the throttle valve 61 so that the degree of superheat of the outlet-side refrigerant of the first evaporator 17 approaches a predetermined decompression-side reference superheat degree (specifically, 0 ° C.). Is displaced. That is, the nozzle side drive mechanism 54 of this embodiment displaces the throttle valve 61 so that the outlet side refrigerant of the first evaporator 17 becomes a saturated gas phase refrigerant.
- a predetermined decompression-side reference superheat degree specifically, 0 ° C.
- the decompression-side reference superheat degree can also be adjusted by changing the load of the coil spring, which is an elastic member that applies a load to the throttle valve 61, similarly to the nozzle-side reference superheat degree.
- the pressure reducing side drive mechanism 62 defines the central axis in the displacement direction for displacing the throttle valve 61 as the pressure reducing side central axis CL2
- the pressure reducing side central axis CL2 is the center axis of the throttle passage 20a and the center of the operating rod 63. Coincides with the axis.
- the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, and one of the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 is in the direction of the central axis.
- the drive unit corresponding to one central axis and the other central axis are arranged in an overlapping manner.
- the nozzle side drive mechanism 54 when viewed from the direction of the nozzle side central axis CL1, the nozzle side drive mechanism 54 occupying the area indicated by the point hatching in FIG. 4 and the pressure reduction side central axis CL2 are arranged so as to overlap. Yes. Further, as shown in FIG. 5, when viewed from the direction of the pressure-reducing central axis CL2, the pressure-reducing driving mechanism 62 and the nozzle-side central axis CL1 occupying the region indicated by the point hatching in FIG. Yes.
- the torsional positional relationship means a positional relationship in which two straight lines are not parallel and do not intersect.
- the angle formed by the nozzle side central axis CL1 and the pressure reducing side central axis CL2 that is, the angle formed by the vector of the nozzle side central axis CL1 and the vector of the pressure reducing side central axis CL2 is 90 °.
- the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 52 of the ejector 15). It is a heat-absorbing heat exchanger that cools blown air by exchanging heat with the low-pressure refrigerant that has flowed out of the air and evaporating the low-pressure refrigerant to exhibit an endothermic effect.
- the blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device.
- the refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
- the first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16).
- This is an endothermic heat exchanger that cools blown air by evaporating the refrigerant to exhibit an endothermic effect.
- the refrigerant outlet of the first evaporator 17 is connected to the refrigerant suction port 21 b side of the ejector module 20.
- first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured.
- each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes.
- a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
- the first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member.
- the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17.
- they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
- the first evaporator 17 and the second evaporator 18 integrated with the refrigerant inlets and outlets 21b to 21e of the ejector module 20 are connected using a dedicated collective pipe 19. .
- a plurality of metal refrigerant pipes or plate members of the collective pipe 19 are integrated by a joining means such as brazing.
- the collective pipe 19 has first to fourth connection passages 19a to 19d.
- the first connection passage 19 a is a refrigerant passage that connects the throttle-side outlet 21 d of the ejector module 20 and the refrigerant inlet of the first evaporator 17.
- the second connection passage 19b is a refrigerant passage that connects the refrigerant outlet of the first evaporator 17 and the refrigerant suction port 21b.
- the third connection passage 19c is a refrigerant passage that connects the refrigerant inlet of the second evaporator 18 of the ejector side outlet 21c.
- the fourth connection passage 19d is a refrigerant passage that connects the refrigerant outlet of the second evaporator 18 and the low-pressure inlet 21e.
- part which protruded from the body part 21 of the diffuser part 52 is accommodated in the 3rd connection channel
- the diffuser part 52 is formed so as to be accommodated in the collective pipe 19 by protruding from the body part 21.
- the ejector module 20 is integrated with the first evaporator 17 and the second evaporator 18 via the collecting pipe 19. That is, in the present embodiment, the ejector module 20, the collecting pipe 19, the first evaporator 17 and the second evaporator 18 are integrated as an evaporator unit 200.
- An air conditioning control device (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of the various controlled devices 11, 12c, 18a and the like is controlled.
- the air conditioning control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of the air blown out from the first evaporator 17.
- Sensor groups such as an evaporator temperature sensor for detecting (evaporator temperature) are connected, and detection values of these air conditioning sensor groups are input.
- an operation panel (not shown) is connected to the input side of the air conditioning control device, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device.
- an air conditioning operation switch that requests air conditioning
- a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
- the air conditioning control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured.
- a configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device.
- operation of the compressor 11 comprises the discharge capability control part.
- the air conditioning control device operates the compressor 11, the cooling fan 12c, the blower 18a, and the like.
- the compressor 11 sucks the refrigerant, compresses it, and discharges it.
- the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
- the refrigerant flowing into the radiator 12 is condensed by exchanging heat with the outside air blown from the cooling fan 12c in the condensing unit 12a.
- the refrigerant cooled by the condensing unit 12a is gas-liquid separated by the receiver unit 12b.
- the liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20.
- the refrigerant that has flowed into the ejector module 20 is branched at the branching section 14.
- One of the branched refrigerant flows into the nozzle portion 51 of the ejector 15 and is isentropically decompressed and injected.
- coolant which flowed out from the 1st evaporator 17 is attracted
- the nozzle side drive mechanism 54 determines that the degree of superheat of the refrigerant flowing through the outflow side passage 20c (in other words, the outlet side refrigerant of the second evaporator 18) is the nozzle side reference superheat degree (specifically, 1 ° C.).
- the needle valve 53 is displaced so as to approach.
- the injection refrigerant injected from the nozzle part 51 and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser part 52 of the ejector 15.
- the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
- the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases.
- the refrigerant whose pressure has been increased in the diffuser section 52 flows out from the ejector side outlet 21c.
- the refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18 through the third connection passage 19c of the collecting pipe 19.
- the refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled.
- the refrigerant that has flowed out of the second evaporator 18 is sucked into the compressor 11 through the fourth connection passage 19d of the collecting pipe 19 and the outflow side passage 20c of the ejector module 20, and is compressed again.
- the other refrigerant branched by the branching section 14 flows into the throttle passage 20a of the variable throttle mechanism 16 and is decompressed in an enthalpy manner.
- the decompression side drive mechanism 62 has a superheat degree of the suction side passage 20b (in other words, an outlet side refrigerant of the first evaporator 17) having a decompression side reference superheat degree (specifically, 0 ° C.).
- the throttle valve 61 is displaced so as to approach.
- the refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d.
- the refrigerant that has flowed out of the throttle-side outlet 21d flows into the first evaporator 17 through the first connection passage 19a of the collecting pipe 19.
- the refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled.
- the refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b through the second connection passage 19b of the collecting pipe 19.
- the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
- the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 52 of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
- COP coefficient of performance
- the refrigerant evaporation pressure in the second evaporator 18 is set to the refrigerant pressure increased by the diffuser unit 52, and the refrigerant evaporation pressure in the first evaporator 17 is set by the nozzle unit 51.
- a low refrigerant pressure immediately after depressurization can be achieved. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
- the ejector 15 having the variable nozzle portion constituted by the nozzle portion 51, the needle valve 53, the nozzle side drive mechanism 54, and the like, the throttle passage 20a, the throttle valve 61, the decompression side drive.
- a variable diaphragm mechanism 16 constituted by a mechanism 62 or the like is provided.
- the flow rate of the refrigerant flowing into the nozzle portion 51 and the variable throttle are changed by changing the passage sectional area of the nozzle portion 51 of the ejector 15 and the throttle opening of the variable throttle mechanism 16 according to the load fluctuation of the ejector refrigeration cycle 10.
- the flow rate of the refrigerant flowing into the mechanism 16 can be adjusted appropriately.
- the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
- the ejector refrigeration cycle 10 as a whole is integrated. It can aim for miniaturization and productivity improvement.
- the ejector 15 having the variable nozzle portion and the variable throttle mechanism 16 require a driving device (in this embodiment, the nozzle side driving mechanism 54 and the pressure reducing side driving mechanism 62) for changing the passage cross-sectional area or the throttle opening. It becomes.
- a driving device in this embodiment, the nozzle side driving mechanism 54 and the pressure reducing side driving mechanism 62
- Such a drive device is relatively large in size as compared with the needle valve 53, the throttle valve 61, and the like. For this reason, it becomes difficult to obtain the downsizing effect of the ejector module 20 as a whole.
- the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 are viewed from one central axis direction.
- the drive unit corresponding to one central axis and the other central axis are arranged so as to overlap.
- the decompression side driving mechanism 62 and the nozzle side driving mechanism 54 having relatively large physique can be arranged while being shifted in the direction of any of the central axes CL1 and CL2. Therefore, the main body portion (that is, the portion excluding the decompression side driving mechanism 62) of the variable throttle mechanism 16 and the main body portion of the ejector 15 (that is, the portion excluding the nozzle side driving mechanism 54) can be arranged close to each other.
- the main body of the variable throttle mechanism 16 does not interfere with the pressure-reducing side driving mechanism 62 and the nozzle-side driving mechanism 54. And the main body of the ejector 15 can be brought close to each other effectively. Therefore, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not increased in size even if the passage cross-sectional area can be changed.
- the outflow side passage 20c is formed in the body portion 21, and a part of the nozzle side temperature sensing portion 54a of the nozzle side drive mechanism 54 communicates with the outflow side passage 20c. Is placed inside.
- the nozzle side temperature sensing part 54a and the outflow side passage 20c can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the outflow side passage 20c can be accurately transmitted to the nozzle side temperature sensing portion 54a without causing an increase in the size of the ejector module 20.
- the suction side passage 20b is formed in the body portion 21, and a part of the pressure reduction side temperature sensing portion 62a of the pressure reduction side drive mechanism 62 is disposed in the suction side passage 20b. ing.
- the decompression side temperature sensing part 62a and the suction side passage 20b can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the suction side passage 20b can be accurately transmitted to the decompression side temperature sensing unit 62a without causing an increase in the size of the ejector module 20.
- the decompression side drive mechanism 62 displaces the throttle valve 61 so that the degree of superheat of the outlet side refrigerant of the first evaporator 17 approaches 0 ° C. According to this, it can suppress that the dryness of the refrigerant
- the ejector type refrigeration cycle 10 by adopting the collective pipe 19 having an appropriate shape according to the relative positional relationship between the ejector module 20 and the second evaporator 18, the ejector type refrigeration cycle 10 is further increased. Can be miniaturized.
- the high pressure inlet 21a and the low pressure outlet 21f of the body portion 21 are opened in the same direction. Further, the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction.
- the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d connected to the integrated first evaporator 17 and second evaporator 18 open in the same direction. Therefore, it is easy to connect the ejector module 20 to the first evaporator 17 and the second evaporator 18.
- the ejector module 20 of the present embodiment functions as a joint part (connecting part) of the evaporator unit 200, it is possible to improve the assembling property to the ejector refrigeration cycle 10. Thereby, the productivity as the ejector-type refrigeration cycle 10 as a whole can be further improved.
- the nozzle portion 51 of the ejector 15 of the present embodiment is a fixed nozzle portion whose passage sectional area does not change.
- 6 and 7 correspond to FIGS. 2 and 5 described in the first embodiment, respectively. 6 and 7, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
- the positional relationship between the ejector 15 and the variable aperture mechanism 16 is substantially the same as in the first embodiment. That is, the central axis CL of the nozzle portion 51 and the decompression side central axis CL2 are in a twisted positional relationship, and when viewed from the decompression side central axis CL2, the decompression side drive occupying the region indicated by the point hatching in FIG.
- the mechanism 62 and the central axis CL of the nozzle portion 51 are arranged so as to overlap. As shown in FIG. 7, the central axis CL of the nozzle portion 51 is positioned within the range of the vertical cross section of the pressure reducing side driving mechanism 62 and the pressure reducing side central axis CL2.
- variable throttle mechanism 16 is connected to the other refrigerant outlet side of the branch portion 14, by adjusting the throttle opening of the variable throttle mechanism 16, the flow rate of the refrigerant flowing into the throttle passage 20a, And both the refrigerant
- the decompression side drive mechanism 62 having a relatively large physique and the ejector 15 formed in a shape extending in the axial direction can be arranged while being shifted in the direction of the decompression side central axis CL2. Therefore, the main body (that is, the portion excluding the decompression side drive mechanism 62) of the variable aperture mechanism 16 and the ejector 15 can be disposed close to each other.
- the main body portion of the variable throttle mechanism 16 does not interfere with the pressure reducing side drive mechanism 62 and the ejector 15. And the ejector 15 can be brought close to each other effectively. Therefore, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
- the needle valve 53 and the nozzle-side drive mechanism 54 are abolished. Therefore, it is only necessary to adjust the passage sectional area of the throat portion of the nozzle portion 51 in advance. It is difficult to appropriately adjust the degree of superheat of the outlet side refrigerant of the one evaporator 17.
- the gas-phase refrigerant separated by separating the gas-liquid of the low-pressure refrigerant between the low-pressure outlet 21f of the ejector module 20 and the suction port of the compressor 11 is used as the compressor. You may arrange
- FIG. 8 is a drawing corresponding to FIG. 2 described in the first embodiment.
- the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, as in the first embodiment, and the nozzle-side central axis CL1 and the pressure-reducing side central axis When viewed from the direction of one central axis of CL2, the drive unit corresponding to one central axis and the other central axis are superposed.
- FIG. 9 is a drawing corresponding to FIG. 3 described in the first embodiment.
- the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, as in the first embodiment, and the nozzle-side central axis CL1 and the pressure-reducing side central axis When viewed from the direction of one central axis of CL2, the drive unit corresponding to one central axis and the other central axis are superposed.
- the ejector side outlet 21c is opened in the same direction as the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d as compared with the first embodiment, and the body portion 21 is opened on the same plane of the outer surface.
- the ejector side outlet 21c is arranged in the same plane as the other refrigerant inlets / outlets 21b to 21d, so that the assembling property of the ejector refrigeration cycle 10 can be improved.
- the ejector-type refrigeration cycle 10a is applied to the vehicle air conditioner 1, and functions to cool or heat the air blown into the passenger compartment that is the air-conditioning target space.
- the ejector refrigeration cycle 10a is configured to be capable of switching between a cooling mode refrigerant circuit, a dehumidifying heating mode refrigerant circuit, and a heating mode refrigerant circuit.
- the cooling mode is an operation mode in which cooling of the vehicle interior is performed by blowing out the cooled blown air into the vehicle interior.
- the heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior.
- the dehumidifying heating mode is an operation mode in which dehumidifying heating in the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior.
- cooling mode is shown with the white arrow.
- the flow of the refrigerant in the refrigerant circuit in the heating mode is indicated by black arrows.
- the flow of the refrigerant in the refrigerant circuit in the dehumidifying and heating mode is indicated by hatched arrows.
- the radiator 12 having only the condensing part described in the first embodiment is employed. Furthermore, in this embodiment, the heat radiator 12 is arrange
- the refrigerant outlet of the radiator 12 is connected to the inlet side of the first three-way joint 22a having three inlets and outlets communicating with each other.
- a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
- the three-way joint functions as a branching portion that branches the refrigerant flow by using one of the three inlets and outlets as an inlet and the remaining two as outlets.
- the three-way joint functions as a merging portion that merges the two refrigerant flows by using two of the three inflow / outflow ports as inflow ports and the remaining one as the outflow port.
- the ejector refrigeration cycle 10a includes second to fourth three-way joints 22b to 22d.
- the basic configuration of the second to fourth three-way joints 22b to 22d is the same as that of the first three-way joint 22a.
- One inlet of the second three-way joint 22b is connected to one outlet of the first three-way joint 22a via a heating expansion valve 23.
- the other inflow side of the second three-way joint 22b is connected to the other outflow port of the first three-way joint 22a via the first on-off valve 24a.
- the refrigerant inlet side of the outdoor heat exchanger 25 is connected to the outlet of the second three-way joint 22b.
- the heating expansion valve 23 is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the radiator 12 at least in the heating mode.
- the heating expansion valve 23 is an electric variable throttle mechanism that includes a valve body that can change the throttle opening and an electric actuator that changes the opening of the valve body. The operation of the heating expansion valve 23 is controlled by a control signal (control pulse) output from the air conditioning control device.
- the first on-off valve 24a is an electromagnetic valve that opens and closes a bypass passage that connects the other outlet of the first three-way joint 22a and the other inlet of the second three-way joint 22b. Further, the ejector refrigeration cycle 10a includes a second on-off valve 24b as will be described later. The basic configuration of the second on-off valve 24b is the same as that of the first three-way joint 22a. The operations of the first and second on-off valves 24a and 24b are controlled by a control voltage output from the air conditioning control device.
- the pressure loss that occurs when the refrigerant passes through the first on-off valve 24a is extremely small compared to the pressure loss that occurs when the refrigerant passes through the heating expansion valve 23. Therefore, when the first on-off valve 24a is open, the refrigerant that has flowed from the radiator 12 into the first three-way joint 22a hardly flows out to the heating expansion valve 23 side, but flows out to the first on-off valve 24a side. To do.
- the outdoor heat exchanger 25 is a heat exchanger for exchanging heat between the refrigerant flowing out of the heating expansion valve 23 and the outside air blown from the outside air fan 25a.
- the outdoor heat exchanger 25 is disposed on the front side in the vehicle bonnet.
- the outdoor heat exchanger 25 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant decompressed by the heating expansion valve 23 at least in the heating mode.
- the outside air fan 25a is an electric blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device.
- the inlet of the third three-way joint 22c is connected to the refrigerant outlet of the outdoor heat exchanger 25.
- the refrigerant inlet side of the evaporator unit 200 (that is, the high pressure inlet 21a side of the ejector module 20) is connected to one outlet of the third three-way joint 22c.
- One inlet of the fourth three-way joint 22d is connected to the refrigerant outlet of the evaporator unit 200 (that is, the low pressure outlet 21f of the ejector module 20).
- the other inflow port of the fourth three-way joint 22d is connected to the other outflow port of the third three-way joint 22c through the second on-off valve 24b.
- the inlet side of the accumulator 26 is connected to the outlet of the fourth three-way joint 22d.
- the accumulator 26 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle.
- the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 26.
- the maximum passage cross-sectional area A1 when the decompression side drive mechanism 621 displaces the throttle valve 61 to fully open the throttle passage 20a is the high pressure inlet 21a. Is set to be equal to or larger than the minimum passage cross-sectional area A2 (A1 ⁇ A2) of the refrigerant passage (in other words, the refrigerant passage on the upstream side of the restriction passage 20a) from the throttle passage 20a.
- FIG. 12 is a drawing corresponding to FIG. 9 described in the fourth embodiment.
- the pressure loss that occurs when the refrigerant passes through the throttle passage 20a that is fully open is extremely small compared to the pressure loss that occurs when the refrigerant passes through the nozzle portion 51 of the ejector module 20. Accordingly, when the throttle passage 20a is fully open, the refrigerant that has flowed into the high pressure inlet 21a of the ejector module 20 hardly flows out from the branch portion 14 to the nozzle portion 51 side, and almost the entire flow rate is from the branch portion 14. It flows out to the throttle passage 20a side.
- the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
- the indoor air conditioning unit 30 is for blowing out the blown air whose temperature has been adjusted by the ejector refrigeration cycle 10a to an appropriate location in the passenger compartment.
- the indoor air conditioning unit 30 includes a blower 18 a, an evaporator unit 200, a radiator 12, and the like in an air passage formed inside a casing 31 that forms an outer shell thereof.
- the casing 31 forms an air passage for blown air to be blown into the vehicle interior, and is formed of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent in strength.
- An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
- the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed.
- the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
- a blower 18 a is arranged on the downstream side of the blown air flow of the inside / outside air switching device 33. Furthermore, the evaporator unit 200 and the radiator 12 are arranged in this order with respect to the flow of the blown air on the downstream side of the blower air flow of the blower 18a. That is, the evaporator unit 200 is arranged on the upstream side of the blower air flow with respect to the radiator 12.
- a cold air bypass passage 35 is formed in which the blown air that has passed through the evaporator unit 200 is caused to bypass the radiator 12 and flow downstream.
- An air mix door 34 that adjusts the air volume ratio with the air volume that passes through the passage 35 is disposed.
- a mixing space for mixing the blast air heated by the radiator 12 and the blast air that has passed through the cold air bypass passage 35 and is not heated by the radiator 12 is provided. It has been. Furthermore, the opening hole which blows off the blowing air (air-conditioning wind) mixed in the mixing space in the vehicle interior at the most downstream part of the blowing air flow of the casing 31 is arranged.
- the opening hole As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
- the face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior.
- the foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger.
- the defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
- These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
- the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the radiator 12 and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is also adjusted.
- the air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
- a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
- a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
- These face doors, foot doors, and defroster doors constitute an air outlet mode switching device that switches an air outlet from which air-conditioned air is blown.
- the face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are rotated in conjunction with each other.
- the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
- cooling, heating, and dehumidifying heating can be performed in the passenger compartment. Accordingly, in the ejector refrigeration cycle 10a, the operation in the cooling mode, the heating mode, and the dehumidifying heating mode can be switched. Switching between these operation modes is performed by executing an air conditioning control program stored in the air conditioning control device.
- the refrigerant circuit is switched based on the target blowing temperature TAO and the outside air temperature Tam of the blown air blown into the vehicle interior. More specifically, the heating mode ⁇ the dehumidifying heating mode ⁇ the cooling mode is switched in this order as the target blowing temperature TAO or the outside air temperature Tam increases. Below, the operation
- (A) Cooling mode In the cooling mode, the air conditioning control device fully closes the heating expansion valve 23, opens the first on-off valve 24a, closes the second on-off valve 24b, and in the throttle passage 20a of the ejector module 20.
- the operation of the decompression side drive mechanism 621 is controlled so that the refrigerant decompression action is exhibited.
- the air conditioning control device refers to the control map stored in advance in the air conditioning control device based on the target blowing temperature TAO, and the target evaporator temperature TEO of the blown air blown from the evaporator unit 200. To decide. Then, the operation of the compressor 11 is controlled so that the evaporator temperature of the first evaporator 17 of the evaporator unit 200 approaches the target evaporator temperature TEO.
- the target evaporator temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Further, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the first evaporator 17 and the second evaporator 18 can be suppressed.
- the air conditioning control device displaces the air mix door 34 so that the air passage on the radiator 12 side is fully closed and the cold air bypass passage 35 side is fully opened.
- the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
- the air mix door 34 fully closes the ventilation path on the radiator 12 side, the high-pressure refrigerant flowing into the radiator 12 flows out of the radiator 12 without radiating heat to the blown air.
- the high-pressure refrigerant that has flowed out of the radiator 12 flows into the outdoor heat exchanger 25 through the first on-off valve 24a.
- the high-pressure refrigerant that has flowed into the outdoor heat exchanger 25 exchanges heat with the outside air blown by the outside air fan 25a, dissipates heat, and condenses.
- the refrigerant condensed in the outdoor heat exchanger 25 flows into the evaporator unit 200 (specifically, the high pressure inlet 21a of the ejector module 20).
- the refrigerant flowing into the ejector module 20 absorbs heat from the blown air and evaporates in the first evaporator 17 and the second evaporator 18 as in the first embodiment.
- the refrigerant that has flowed out of the evaporator unit 200 (specifically, the low-pressure outlet 21f of the ejector module 20) flows into the accumulator 26.
- the gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
- a refrigeration cycle is configured in which the outdoor heat exchanger 25 functions as a radiator and the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 function as an evaporator. Is done. Therefore, in the cooling mode, the vehicle interior can be cooled by blowing the blown air cooled by the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 into the vehicle interior.
- the air-conditioning control device sets the heating expansion valve 23 to a throttled state that exerts a refrigerant decompression action, closes the first on-off valve 24a, opens the second on-off valve 24b, and sets the ejector module 20
- the operation of the decompression side drive mechanism 621 is controlled so as to close the throttle passage 20a.
- the air conditioning control device determines the target condenser pressure PCO of the high-pressure refrigerant flowing into the radiator 12 with reference to the control map stored in the air conditioning control device in advance based on the target outlet temperature TAO. To do. Then, the operation of the compressor 11 is controlled so that the pressure of the high-pressure refrigerant flowing into the radiator 12 approaches the target condenser pressure PCO.
- the target condenser pressure PCO is determined to increase as the target outlet temperature TAO increases.
- the air conditioning control device displaces the air mix door 34 so that the ventilation path on the radiator 12 side is fully opened and the cold air bypass path 35 side is fully closed.
- the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
- the air mix door 34 fully opens the ventilation path on the radiator 12 side
- the high-pressure refrigerant flowing into the radiator 12 radiates heat by exchanging heat with the blown air.
- the refrigerant flowing out of the radiator 12 flows into the heating expansion valve 23 and is decompressed.
- the low-pressure refrigerant decompressed by the heating expansion valve 23 flows into the outdoor heat exchanger 25.
- the low-pressure refrigerant that has flowed into the outdoor heat exchanger 25 absorbs heat from the outside air blown by the outside air fan 25a and evaporates. Since the second on-off valve 24b is opened, the refrigerant evaporated in the outdoor heat exchanger 25 hardly flows into the evaporator unit 200 side (specifically, the ejector module 20 side), and the second on-off valve It flows into the accumulator 26 through 24b. The gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
- a refrigeration cycle is configured in which the radiator 12 functions as a radiator and the outdoor heat exchanger 25 functions as an evaporator. Therefore, in the heating mode, the vehicle interior can be heated by blowing the blown air heated by the radiator 12 into the vehicle interior.
- (C) Dehumidifying Heating Mode In the dehumidifying heating mode, the air conditioning control device places the heating expansion valve 23 in the throttle state, closes the first on-off valve 24a, closes the second on-off valve 24b, and opens the throttle passage 20a of the ejector module 20.
- the operation of the decompression side drive mechanism 621 is controlled so as to be fully opened.
- the air conditioning control device controls the operation of the compressor 11 as in the cooling mode. For this reason, also in dehumidification heating mode, the refrigerant
- the air conditioning control device displaces the air mix door 34 so that the ventilation path on the radiator 12 side is fully opened and the cold air bypass path 35 side is fully closed.
- the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12.
- the air mix door 34 fully opens the ventilation path on the radiator 12 side
- the high-pressure refrigerant flowing into the radiator 12 radiates heat by exchanging heat with the blown air.
- the refrigerant flowing out of the radiator 12 flows into the heating expansion valve 23 and is decompressed.
- the low-pressure refrigerant decompressed by the heating expansion valve 23 flows into the outdoor heat exchanger 25.
- the low-pressure refrigerant that has flowed into the outdoor heat exchanger 25 absorbs heat from the outside air blown by the outside air fan 25a and evaporates.
- the refrigerant evaporated in the outdoor heat exchanger 25 flows into the evaporator unit 200 (specifically, the high pressure inlet 21a of the ejector module 20) because the second on-off valve 24b is closed.
- the refrigerant that has flowed into the evaporator unit 200 flows into the throttle passage 20a side with almost no flow into the nozzle portion 51 side because the throttle passage 20a is fully open. Then, the refrigerant flows in the order of the first evaporator 17 ⁇ the refrigerant suction port 21 b of the ejector 15 ⁇ the diffuser portion 52 of the ejector 15 ⁇ the second evaporator 18. At this time, the refrigerant absorbs heat from the blown air in the first evaporator 17 and the second evaporator 18 and further evaporates.
- the refrigerant that has flowed out of the evaporator unit 200 (specifically, the low-pressure outlet 21f of the ejector module 20) flows into the accumulator 26.
- the gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
- a refrigeration cycle in which the radiator 12 functions as a radiator and the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 function as an evaporator is configured. Is done. Therefore, in the dehumidifying heating mode, the blown air cooled and dehumidified by the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 is reheated by the radiator 12 and blown out into the passenger compartment. Dehumidification heating in the passenger compartment can be performed.
- the heat that the refrigerant has absorbed from the outside air in the outdoor heat exchanger 25 and the heat that the refrigerant has absorbed from the blown air in the first evaporator 17 and the second evaporator 18 are used as heat sources. Blowing air is reheated. Therefore, in order to improve the heating capability of the blown air in the dehumidifying heating mode, it is necessary to increase the heat absorption amount of the refrigerant in the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18.
- the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 form a refrigerant circuit connected in series in this order with respect to the refrigerant flow. For this reason, the refrigerant evaporation temperature in the outdoor heat exchanger 25 cannot be made lower than the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18.
- the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18 are lowered within a range in which frost formation can be suppressed. Furthermore, it is effective to make the refrigerant evaporation temperature in the outdoor heat exchanger 25 close to the refrigerant evaporation temperature of the first evaporator 17 and the second evaporator 18.
- the maximum passage sectional area A1 when the throttle passage 20a is fully opened is set to be equal to or larger than the minimum passage sectional area A2 of the refrigerant passage on the upstream side of the throttle passage 20a.
- the refrigerant evaporation temperature in the outdoor heat exchanger 25 can be brought close to the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18.
- the ejector that is switched to the refrigerant circuit in which the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 are connected in series to the refrigerant flow. It becomes possible to apply to a type refrigeration cycle. This is effective in that the range of the ejector refrigeration cycle to which the ejector module 20 can be applied can be expanded.
- the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycle 10 mounted on a vehicle, but the application of the ejector module 20 is not limited thereto.
- the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
- the ejector module 20 including the variable aperture mechanism 16 and the ejector 15 having the variable nozzle portion has been described.
- the ejector module 20 is not limited to this.
- at least one passage sectional area of the throttle passage 20a and the nozzle portion 51 is used. Should just be configured to be changeable.
- variable throttle mechanism 16 may be employed, and the ejector 15 having the fixed nozzle portion may be employed.
- the throttle valve 61 and the pressure reducing side drive mechanism 62 may be eliminated from the first embodiment. That is, instead of the variable aperture mechanism 16, a fixed aperture may be employed, and an ejector 15 having a variable nozzle portion may be employed.
- the nozzle side temperature sensing portion 54a is disposed in the space communicating with the outflow side passage 20c. However, at least a part of the nozzle side temperature sensing portion 54a is disposed in the outflow side passage 20c. May be. Furthermore, although an example in which a part of the decompression side drive mechanism 62 is disposed in the suction side passage 20b has been described, the decompression side drive mechanism 62 may be disposed in a space communicating with the suction side passage 20b.
- the diffuser unit 52 is accommodated in the collective pipe 19 .
- at least a part of the diffuser unit 52 is disposed in the second evaporator 18 (for example, collective distribution). May be accommodated in a tank for use.
- Each component device constituting the ejector refrigeration cycle 10, 10a is not limited to that disclosed in the above-described embodiment.
- an electric compressor is employed as the compressor 11
- the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
- An engine driven compressor may be employed.
- the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
- radiator 12 including only the condensing unit may be employed.
- first evaporator 17 and the second evaporator 18 are configured integrally.
- first evaporator 17 and the second evaporator 18 may be configured separately.
- different refrigerant target fluids may be cooled in different temperature zones.
- the heating expansion valve 23 and the first on-off valve 24a are employed.
- the heating expansion valve 23 the refrigerant decompression action is achieved by fully opening the valve opening degree.
- the 1st on-off valve 24a, the 1st, 2nd three-way joint 22a, 22b can be abolished.
- R134a is adopted as the refrigerant
- the refrigerant is not limited to this.
- R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
- a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
- the example in which the operation of the decompression side drive mechanism 621 is controlled so that the throttle passage 20a of the ejector module 20 is fully opened in the dehumidifying heating mode has been described.
- the operation of is not limited to this.
- the operation of the decompression side drive mechanism 621 may be controlled so that the throttle passage 20a is in a throttled state under operating conditions that can sufficiently ensure the heating capacity of the blower air in the radiator 12.
- the means and components disclosed in each of the above embodiments may be appropriately combined within a practicable range.
- the nozzle side driving mechanism 541 described in the third embodiment and the pressure reducing side driving mechanism 621 described in the fourth embodiment may be simultaneously employed.
- the ejector module 20 having the electric variable aperture mechanism 16 and the electric variable nozzle portion may be used.
- the example in which the evaporator unit 200 using the ejector module 20 described in the fourth embodiment is applied to the ejector refrigeration cycle 10a has been described.
- the first to third embodiments are described.
- the evaporator unit 200 using the ejector module 20 described in the above may be applied.
- a refrigerant having a relatively high dryness for example, a dryness of 0.5 or more
- the decompression-side drive mechanism 62 is set so that the throttle passage 20a is fully opened. Adjust the operation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
In the combining of an ejector (15) having a variable nozzle part and a variable throttle mechanism (16) as an ejector module (20), a central axis of a displacement direction in which a nozzle-side drive mechanism (54) of the ejector (15) having the variable nozzle part displaces a needle valve (53) is defined as a nozzle-side central axis CL1, a central axis of a displacement direction in which a depressurization-side drive mechanism (62) of the variable throttle mechanism (16) displaces a throttle valve (61) is defined as a depressurization-side central axis CL2, and the nozzle-side central axis CL1 and the depressurization-side drive mechanism (62) have a twisted positional relationship with each other. In addition, when viewed from one central axis among the nozzle-side central axis CL1 and the depressurization-side drive mechanism (62), a drive part corresponding to the one central axis is arranged so as to overlap with the other central axis.
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年3月2日に出願された日本特許出願2017-039252号及び2017年6月21日に出願された日本特許出願2017-121448号を基にしている。
This application includes Japanese Patent Application No. 2017-039252 filed on Mar. 2, 2017 and Japanese Patent Application No. 2017- filed on Jun. 21, 2017, the disclosures of which are incorporated herein by reference. Based on 121448.
本開示は、エジェクタ式冷凍サイクルに適用されるエジェクタモジュールに関する。
The present disclosure relates to an ejector module applied to an ejector refrigeration cycle.
従来、冷媒減圧装置としてエジェクタを備える冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。
Conventionally, an ejector type refrigeration cycle, which is a refrigeration cycle apparatus including an ejector as a refrigerant decompression device, is known. In this type of ejector-type refrigeration cycle, the pressure of the refrigerant sucked into the compressor can be made higher than the refrigerant evaporation pressure in the evaporator by the pressurizing action of the ejector. Thereby, in an ejector type refrigeration cycle, the power consumption of a compressor can be reduced and the coefficient of performance (COP) of a cycle can be improved.
さらに、特許文献1には、エジェクタ式冷凍サイクルに適用される蒸発器ユニットが開示されている。この特許文献1の蒸発器ユニットは、エジェクタ式冷凍サイクルの構成機器のうち、分岐部、エジェクタ、固定絞り、第1蒸発器、第2蒸発器等を一体化(換言すると、ユニット化あるいはモジュール化)させたものである。
Furthermore, Patent Document 1 discloses an evaporator unit applied to an ejector refrigeration cycle. The evaporator unit disclosed in Patent Document 1 includes a branching unit, an ejector, a fixed throttle, a first evaporator, a second evaporator, and the like among components constituting an ejector refrigeration cycle (in other words, unitized or modularized). ).
より詳細には、分岐部は、放熱器から流出した高圧冷媒の流れを分岐して、エジェクタのノズル部側および固定絞り側へ流出させる。第2蒸発器は、エジェクタのディフューザ部から流出した冷媒を空調対象空間へ送風される送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒を圧縮機の吸入口側へ流出させる。第1蒸発器は、固定絞りにて減圧された冷媒を第2蒸発器通過後の送風空気と熱交換させて蒸発させる熱交換器であり、蒸発させた冷媒をエジェクタの冷媒吸引口側へ流出させる。
More specifically, the branch part branches the flow of the high-pressure refrigerant that has flowed out of the radiator, and flows it out to the nozzle part side and the fixed throttle side of the ejector. The second evaporator is a heat exchanger that evaporates the refrigerant flowing out from the diffuser portion of the ejector by exchanging heat with the blown air blown into the air-conditioning target space and evaporates the evaporated refrigerant to the suction port side of the compressor. Let The first evaporator is a heat exchanger that evaporates the refrigerant decompressed by the fixed throttle by heat exchange with the blown air that has passed through the second evaporator, and flows the evaporated refrigerant to the refrigerant suction port side of the ejector. Let
特許文献1の蒸発器ユニットでは、上記の如く、サイクル構成機器の一部を一体化させることによって、適用されたエジェクタ式冷凍サイクル全体としての小型化、および生産性の向上を図っている。
In the evaporator unit of Patent Document 1, as described above, a part of the cycle component equipment is integrated to reduce the size and productivity of the applied ejector refrigeration cycle as a whole.
ところが、特許文献1の蒸発器ユニットでは、固定絞りを採用し、さらに、エジェクタのノズル部として冷媒通路の通路断面積を変更することのできない固定ノズル部を採用している。このため、適用されたエジェクタ式冷凍サイクルに負荷変動が生じて、ノズル部へ流入する冷媒流量が変化すると、エジェクタのエネルギ変換効率が低下してしまうことがある。
However, the evaporator unit of Patent Document 1 employs a fixed throttle, and further employs a fixed nozzle portion that cannot change the passage cross-sectional area of the refrigerant passage as the nozzle portion of the ejector. For this reason, when load fluctuation occurs in the applied ejector refrigeration cycle and the flow rate of the refrigerant flowing into the nozzle portion changes, the energy conversion efficiency of the ejector may decrease.
従って、エジェクタ式冷凍サイクルに負荷変動が生じると、エジェクタが充分な昇圧作用を発揮できなくなってしまうことや、エジェクタの吸引作用が低下して蒸発器に適切な流量の冷媒を供給できなくなってしまうことがある。その結果、特許文献1の蒸発器ユニットでは、エジェクタ式冷凍サイクルに負荷変動が生じると、上述したCOP向上効果を充分に得ることができなくなってしまう。
Therefore, when a load change occurs in the ejector refrigeration cycle, the ejector cannot exhibit a sufficient boosting action, or the suction action of the ejector is reduced, and an appropriate flow rate of refrigerant cannot be supplied to the evaporator. Sometimes. As a result, in the evaporator unit of Patent Document 1, when the load fluctuation occurs in the ejector refrigeration cycle, the above-described COP improvement effect cannot be obtained sufficiently.
これに対して、特許文献1には、固定絞りに代えて通路断面積(すなわち、絞り開度)を変更可能に構成された可変絞り機構を採用してもよいこと、並びに、エジェクタのノズル部として冷媒通路の通路断面積を変更可能に構成された可変ノズル部を採用してもよいことが開示されている。
On the other hand, Patent Document 1 may adopt a variable throttle mechanism configured to be able to change the passage cross-sectional area (that is, the throttle opening degree) instead of the fixed throttle, and the nozzle portion of the ejector. It is disclosed that a variable nozzle portion configured to be able to change the passage sectional area of the refrigerant passage may be employed.
しかしながら、固定絞りに代えて可変絞り機構を採用すると、絞り開度を変化させるための駆動装置が必要となる。このことは、エジェクタのノズル部として可変ノズル部を採用した場合も同様である。
However, when a variable throttle mechanism is used instead of the fixed throttle, a drive device for changing the throttle opening is required. The same applies to the case where a variable nozzle portion is adopted as the nozzle portion of the ejector.
この種の駆動装置は、比較的体格が大きい。このため、可変絞り機構あるいは可変ノズル部を有するエジェクタを含む構成機器を一体化させたユニット(あるいは、モジュール)は、大型化しやすい。その結果、構成機器を一体化したことによるエジェクタ式冷凍サイクル全体としての小型化効果が損なわれてしまう。
This type of drive is relatively large. For this reason, a unit (or module) in which constituent devices including a variable throttle mechanism or an ejector having a variable nozzle portion are integrated is likely to be large. As a result, the downsizing effect of the ejector refrigeration cycle as a whole due to the integration of the components is impaired.
本開示は、上記点に鑑み、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することを目的とする。
In view of the above points, an object of the present disclosure is to provide an ejector module configured such that the cross-sectional area of the passage can be changed without increasing the size of the applied ejector refrigeration cycle.
本開示の第1特徴例によるエジェクタモジュールは、冷媒を圧縮して吐出する圧縮機、圧縮機から吐出された冷媒を放熱させる放熱器、冷媒を蒸発させる第1蒸発器、および冷媒を蒸発させて圧縮機の吸入側へ流出させる第2蒸発器を有するエジェクタ式冷凍サイクルに適用可能である。エジェクタモジュールは、放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射するノズル部と、放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる減圧部と、ノズルから噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口が形成されたボデー部と、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部と、減圧部の通路断面積を変化させる減圧側弁体部と、減圧側弁体部を変位させる減圧側駆動部と、を備える。
An ejector module according to a first feature example of the present disclosure includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, a first evaporator that evaporates the refrigerant, and evaporates the refrigerant. The present invention is applicable to an ejector refrigeration cycle having a second evaporator that flows out to the suction side of the compressor. The ejector module includes a nozzle portion that decompresses and injects some of the refrigerant that has flowed out of the radiator, a decompression portion that decompresses another portion of the refrigerant that has flowed out of the radiator, and an injection from the nozzle. A body part formed with a refrigerant suction port for sucking the refrigerant from the outside by the suction action of the injected refrigerant, a pressure increasing part for increasing the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port, and a pressure reducing part A pressure reducing side valve body portion that changes the passage cross-sectional area, and a pressure reducing side drive portion that displaces the pressure reducing side valve body portion.
さらに、減圧部から冷媒を流出させる絞り側出口には、第1蒸発器の冷媒入口側が接続され、冷媒吸引口には、第1蒸発器の冷媒出口側が接続され、昇圧部から冷媒を流出させるエジェクタ側出口には、第2蒸発器の冷媒入口側が接続される。また、減圧側駆動部が減圧側弁体部を変位させる変位方向の中心軸を減圧側中心軸と定義し、減圧側中心軸方向から見たときに、減圧側駆動部とノズル部の中心軸が重合配置されているエジェクタモジュールである。
Further, the refrigerant inlet side of the first evaporator is connected to the throttle-side outlet for allowing the refrigerant to flow out from the decompression unit, and the refrigerant outlet side of the first evaporator is connected to the refrigerant suction port so that the refrigerant flows out from the pressure boosting unit. A refrigerant inlet side of the second evaporator is connected to the ejector side outlet. Further, the central axis of the displacement direction in which the decompression side drive unit displaces the decompression side valve body is defined as the decompression side center axis, and when viewed from the decompression side center axis direction, the central axis of the decompression side drive unit and the nozzle unit Is an ejector module arranged in a superposition.
これによれば、エジェクタモジュールは、減圧部、減圧側弁体部、および減圧側駆動部を備えているので、可変絞り機構を構成することができる。
According to this, since the ejector module includes the pressure reducing portion, the pressure reducing side valve body portion, and the pressure reducing side driving portion, a variable throttle mechanism can be configured.
従って、適用されたエジェクタ式冷凍サイクルの負荷変動に応じて、可変絞り機構の絞り開度を変化させることができる。そして、負荷変動に応じて、可変絞り機構へ流入する冷媒流量、およびノズル部へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高いCOPを発揮させることができる。
Therefore, the throttle opening of the variable throttle mechanism can be changed according to the load fluctuation of the applied ejector refrigeration cycle. And according to load fluctuation | variation, the refrigerant | coolant flow volume which flows in into a variable throttle mechanism, and the refrigerant | coolant flow volume which flows in into a nozzle part can be adjusted appropriately. As a result, a high COP can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
さらに、エジェクタモジュールは、ノズル部、ボデー部、昇圧部を備えているので、エジェクタを構成することができ、エジェクタと可変絞り機構とを一体化させることができる。
Furthermore, since the ejector module includes a nozzle part, a body part, and a booster part, an ejector can be formed, and the ejector and the variable throttle mechanism can be integrated.
この際、減圧側中心軸方向から見たときに、減圧側駆動部とノズル部の中心軸が重合配置されているので、エジェクタモジュール全体としての大型化を抑制することができる。
At this time, since the central axis of the decompression side drive unit and the nozzle unit is overlapped when viewed from the decompression side central axis direction, it is possible to suppress an increase in size of the ejector module as a whole.
より詳細には、このような配置によれば、比較的体格が大きい減圧側駆動部と軸方向に延びる形状に形成されるエジェクタとを、減圧側中心軸方向にずらして配置することができる。従って、可変絞り機構の本体を構成する部位とエジェクタを構成する部位とを近づけて配置することができる。その結果、エジェクタモジュール全体としての大型化を抑制することができる。
More specifically, according to such an arrangement, the decompression side drive unit having a relatively large physique and the ejector formed in the shape extending in the axial direction can be arranged while being shifted in the direction of the decompression side central axis. Accordingly, the part constituting the main body of the variable aperture mechanism and the part constituting the ejector can be arranged close to each other. As a result, the increase in size of the ejector module as a whole can be suppressed.
よって、適用されたエジェクタ式冷凍サイクルの大型化を招くことなく、通路断面積を変更可能に構成されたエジェクタモジュールを提供することができる。さらに、具体的には、減圧側中心軸とノズル部の中心軸とを、ねじれの位置関係とすることで、可変絞り機構の本体を構成する部位とエジェクタを構成する部位とを近づけやすい。
Therefore, it is possible to provide an ejector module configured such that the passage cross-sectional area can be changed without increasing the size of the applied ejector refrigeration cycle. Furthermore, specifically, by making the pressure-reduction-side central axis and the central axis of the nozzle portion into a torsional positional relationship, it is easy to bring the part constituting the main body of the variable throttle mechanism close to the part constituting the ejector.
本開示の第2特徴例によるエジェクタモジュールは、放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射するノズル部と、放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる減圧部と、ノズルから噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口が形成されたボデー部と、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部と、ノズル部の通路断面積を変化させるノズル側弁体部と、ノズル側弁体部を変位させるノズル側駆動部と、減圧部の通路断面積を変化させる減圧側弁体部と、減圧側弁体部を変位させる減圧側駆動部と、を備える。
The ejector module according to the second feature example of the present disclosure includes a nozzle portion that decompresses and injects some of the refrigerant that has flowed out of the radiator, and depressurizes another portion of the refrigerant that has flowed out of the radiator. A decompression unit that causes the refrigerant to be sucked from the outside by a suction action of the jet refrigerant ejected from the nozzle, and a refrigerant mixture sucked from the jet refrigerant and the refrigerant sucked from the refrigerant suction port. A pressure increasing part for increasing pressure, a nozzle side valve body part for changing the passage sectional area of the nozzle part, a nozzle side driving part for displacing the nozzle side valve body part, and a pressure reducing side valve body part for changing the passage sectional area of the pressure reducing part And a pressure reducing side driving part for displacing the pressure reducing side valve body part.
さらに、減圧部から冷媒を流出させる絞り側出口には、第1蒸発器の冷媒入口側が接続され、冷媒吸引口には、第1蒸発器の冷媒出口側が接続され、昇圧部から冷媒を流出させるエジェクタ側出口には、第2蒸発器の冷媒入口側が接続される。ノズル側駆動部がノズル側弁体部を変位させる変位方向の中心軸をノズル側中心軸と定義し、減圧側駆動部が減圧側弁体部を変位させる変位方向の中心軸を減圧側中心軸と定義し、ノズル側中心軸および減圧側中心軸のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部(すなわち、一方の中心軸方向へ弁体部を変位させる駆動部)と他方の中心軸が重合配置されている。
Further, the refrigerant inlet side of the first evaporator is connected to the throttle-side outlet for allowing the refrigerant to flow out from the decompression unit, and the refrigerant outlet side of the first evaporator is connected to the refrigerant suction port so that the refrigerant flows out from the pressure boosting unit. A refrigerant inlet side of the second evaporator is connected to the ejector side outlet. The central axis in the displacement direction in which the nozzle-side drive unit displaces the nozzle-side valve body is defined as the nozzle-side central axis, and the central axis in the displacement direction in which the decompression-side drive unit displaces the decompression-side valve body is defined as the decompression-side central axis. And when viewed from the central axis direction of one of the nozzle side central axis and the pressure reducing side central axis, the drive unit corresponding to one central axis (that is, the valve body part is displaced in the direction of one central axis) The drive unit) and the other central axis are arranged in a superposed manner.
上記エジェクタモジュールは、減圧部、減圧側弁体部、および減圧側駆動部を備えているので、可変絞り機構を構成することができる。また、ノズル部、ノズル側弁体部、およびノズル側駆動部を備えているので、可変ノズル部を構成することができる。
Since the ejector module includes a pressure reducing portion, a pressure reducing side valve body portion, and a pressure reducing side driving portion, a variable throttle mechanism can be configured. Moreover, since the nozzle part, the nozzle side valve body part, and the nozzle side drive part are provided, a variable nozzle part can be comprised.
従って、適用されたエジェクタ式冷凍サイクルの負荷変動に応じて、可変絞り機構の絞り開度、およびノズル部の通路断面積を変化させることができる。そして、負荷変動に応じて、可変絞り機構へ流入する冷媒流量、およびノズル部へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクルに高いCOPを発揮させることができる。
Therefore, the throttle opening of the variable throttle mechanism and the passage cross-sectional area of the nozzle portion can be changed according to the load fluctuation of the applied ejector refrigeration cycle. And according to load fluctuation | variation, the refrigerant | coolant flow volume which flows in into a variable throttle mechanism, and the refrigerant | coolant flow volume which flows in into a nozzle part can be adjusted appropriately. As a result, a high COP can be exhibited in the ejector refrigeration cycle regardless of load fluctuations.
さらに、ノズル部、ノズル側弁体部、ノズル側駆動部、ボデー部、昇圧部を備えているので、可変ノズル部を備えるエジェクタを構成することができる。そして、エジェクタと可変絞り機構とを一体化させることができる。
Furthermore, since the nozzle unit, the nozzle side valve body unit, the nozzle side drive unit, the body unit, and the booster unit are provided, an ejector including a variable nozzle unit can be configured. And an ejector and a variable aperture mechanism can be integrated.
この際、ノズル側中心軸および減圧側中心軸のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部と他方の中心軸が重合配置されているので、エジェクタモジュール全体としての大型化を抑制することができる。
At this time, when viewed from one central axis direction of the nozzle side central axis and the decompression side central axis, the drive unit corresponding to one central axis and the other central axis are arranged in an overlapping manner, so the entire ejector module The increase in size can be suppressed.
より詳細には、このような配置によれば、比較的体格が大きい減圧側駆動部とノズル側駆動部とを、いずれかの中心軸方向にずらして配置することができる。従って、可変絞り機構の本体を構成する部位とエジェクタの本体を構成する部位とを近づけて配置することができる。その結果、エジェクタモジュール全体としての大型化を抑制することができる。
More specifically, according to such an arrangement, the decompression side driving unit and the nozzle side driving unit, which are relatively large in size, can be arranged while being shifted in any central axis direction. Accordingly, the part constituting the main body of the variable aperture mechanism and the part constituting the main body of the ejector can be arranged close to each other. As a result, the increase in size of the ejector module as a whole can be suppressed.
すなわち、さらに、ノズル側中心軸と減圧側中心軸とを、ねじれの位置関係とすることで、可変絞り機構(16)の本体を構成する部位とエジェクタの本体を構成する部位とを近づけやすい。
That is, the nozzle-side central axis and the pressure-reducing side central axis are in a torsional positional relationship, so that the portion constituting the main body of the variable throttle mechanism (16) and the portion constituting the main body of the ejector can be easily brought close to each other. *
(第1実施形態)
図1~図5を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。 (First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. Theejector module 20 of the present embodiment is applied to an ejector refrigeration cycle 10 that is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression device, as shown in the overall configuration diagram of FIG. This ejector-type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is a space to be cooled. Therefore, the fluid to be cooled in the ejector refrigeration cycle 10 is blown air.
図1~図5を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタモジュール20は、図1の全体構成図に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、冷却対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。 (First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The
エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は冷媒とともにサイクルを循環している。
The ejector refrigeration cycle 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure of the cycle does not exceed the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant. A part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで圧縮して吐出するものである。より具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
Among the constituent devices of the ejector refrigeration cycle 10, the compressor 11 sucks the refrigerant and compresses and discharges it until it becomes a high-pressure refrigerant. More specifically, the compressor 11 of the present embodiment is an electric compressor that is configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、図示しない空調制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。
As this compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from an air conditioning control device (not shown), and either an AC motor or a DC motor may be adopted.
圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧側冷媒と冷却ファン12cから送風された車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat dissipation heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown from the cooling fan 12c. is there.
より具体的には、放熱器12は、凝縮部12aおよびレシーバ部12bを有する、いわゆるレシーバ一体型の凝縮器として構成されている。凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12cから送風された外気とを熱交換させて、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。
More specifically, the radiator 12 is configured as a so-called receiver-integrated condenser having a condensing part 12a and a receiver part 12b. The condensing unit 12a is a heat exchanging unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense. . The receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
冷却ファン12cは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。
The cooling fan 12c is an electric blower whose number of rotations (amount of blown air) is controlled by a control voltage output from the air conditioning control device.
放熱器12のレシーバ部12bの冷媒出口には、エジェクタモジュール20のボデー部(body部)21に設けられた高圧入口21a側が接続されている。エジェクタモジュール20は、図1の破線で囲まれたサイクル構成機器を一体化(換言すると、モジュール化)させたものである。より具体的には、エジェクタモジュール20は、分岐部14、エジェクタ15、可変絞り機構16等を一体化させたものである。
A high-pressure inlet 21 a side provided in a body part (body part) 21 of the ejector module 20 is connected to the refrigerant outlet of the receiver part 12 b of the radiator 12. The ejector module 20 is obtained by integrating (in other words, modularizing) the cycle constituent devices surrounded by the broken lines in FIG. More specifically, the ejector module 20 is obtained by integrating the branching section 14, the ejector 15, the variable aperture mechanism 16, and the like.
分岐部14は、放熱器12から流出した冷媒の流れを分岐し、分岐された一方の冷媒をエジェクタ15のノズル部51側へ流出させ、分岐された他方の冷媒を可変絞り機構16の入口側へ流出させる機能を果たす。分岐部14は、エジェクタモジュール20のボデー部21の内部に形成された複数の冷媒通路を接続することによって形成されている。
The branch portion 14 branches the flow of the refrigerant that has flowed out of the radiator 12, causes one of the branched refrigerant to flow out to the nozzle portion 51 side of the ejector 15, and the other branched refrigerant flows to the inlet side of the variable throttle mechanism 16. Fulfills the function of draining The branch portion 14 is formed by connecting a plurality of refrigerant passages formed inside the body portion 21 of the ejector module 20.
エジェクタ15は、分岐部14にて分岐された一方の冷媒を減圧させて噴射するノズル部51を有し、冷媒減圧装置としての機能を果たす。さらに、エジェクタ15は、ノズル部51から噴射された噴射冷媒の吸引作用によって、外部から冷媒を吸引して循環させる冷媒循環装置としての機能を果たす。より具体的には、エジェクタ15は、後述する第1蒸発器17から流出した冷媒を吸引する。
The ejector 15 includes a nozzle portion 51 that decompresses and injects one of the refrigerants branched at the branching portion 14, and functions as a refrigerant decompression device. Furthermore, the ejector 15 functions as a refrigerant circulation device that sucks and circulates the refrigerant from outside by the suction action of the refrigerant injected from the nozzle portion 51. More specifically, the ejector 15 sucks the refrigerant that has flowed out of the first evaporator 17 described later.
これに加えて、エジェクタ15は、ノズル部51から噴射された噴射冷媒とボデー部21に形成された冷媒吸引口21bから吸引された吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換して、混合冷媒を昇圧させるエネルギ変換装置としての機能を果たす。エジェクタ15は、昇圧させた冷媒を後述する第2蒸発器18の冷媒入口側へ流出させる。また、エジェクタ15のノズル部51は、通路断面積を変更可能に構成されている。
In addition, the ejector 15 converts the kinetic energy of the mixed refrigerant of the refrigerant injected from the nozzle part 51 and the refrigerant sucked from the refrigerant suction port 21b formed in the body part 21 into pressure energy. It functions as an energy conversion device that boosts the pressure of the mixed refrigerant. The ejector 15 causes the pressurized refrigerant to flow out to the refrigerant inlet side of the second evaporator 18 described later. Moreover, the nozzle part 51 of the ejector 15 is comprised so that a passage cross-sectional area can be changed.
可変絞り機構16は、分岐部14にて分岐された他方の冷媒を減圧させる絞り通路20aを有している。可変絞り機構16は、絞り通路20aの通路断面積(すなわち、絞り開度)を変更可能に構成されている。可変絞り機構16は、減圧させた冷媒を第1蒸発器17の冷媒入口側へ流出させる。
The variable throttle mechanism 16 has a throttle passage 20a that depressurizes the other refrigerant branched by the branching section 14. The variable throttle mechanism 16 is configured to be able to change the passage cross-sectional area (that is, the throttle opening) of the throttle passage 20a. The variable throttle mechanism 16 causes the decompressed refrigerant to flow out to the refrigerant inlet side of the first evaporator 17.
次に、図1に加えて、図2~図5を用いて、エジェクタモジュール20の詳細構成を説明する。図2~図4における上下の各矢印は、エジェクタ式冷凍サイクル10を車両用空調装置に搭載した状態における上下の各方向を示している。このことは、以下の図面でも同様である。図2は、図4、図5のII-II断面図であり、図3は、図4、図5のIII-III断面図である。図4は、図2の矢印IV方向の矢視図である。図5は、図2の矢印V方向の矢視図である。
Next, a detailed configuration of the ejector module 20 will be described with reference to FIGS. 2 to 5 in addition to FIG. The up and down arrows in FIGS. 2 to 4 indicate the up and down directions in a state where the ejector refrigeration cycle 10 is mounted on the vehicle air conditioner. The same applies to the following drawings. 2 is a cross-sectional view taken along the line II-II in FIGS. 4 and 5, and FIG. 3 is a cross-sectional view taken along the line III-III in FIGS. 4 is a view in the direction of arrow IV in FIG. FIG. 5 is a view in the direction of arrow V in FIG.
なお、図示の簡略化および説明の明確化のため、図1の全体構成図に示したエジェクタ15における冷媒流れ方向と、図2、図5等に示されるエジェクタ15における冷媒流れ方向は、異なる方向となっている。
For simplification of illustration and clarification of explanation, the refrigerant flow direction in the ejector 15 shown in the overall configuration diagram of FIG. 1 is different from the refrigerant flow direction in the ejector 15 shown in FIGS. It has become.
ボデー部21は、金属製(本実施形態では、アルミニウム製)の複数の構成部材を組み合わせることによって形成されている。ボデー部21は、エジェクタモジュール20の外殻を形成するとともに、内部にエジェクタ15、可変絞り機構16等の構成部材を収容するハウジングとしての機能を果たす。ボデー部21は、樹脂にて形成されていてもよい。
The body part 21 is formed by combining a plurality of structural members made of metal (in this embodiment, made of aluminum). The body portion 21 forms the outer shell of the ejector module 20 and functions as a housing that accommodates components such as the ejector 15 and the variable throttle mechanism 16 therein. The body part 21 may be formed of resin.
ボデー部21の内部には、各種の冷媒通路20a~20cが形成されている。ボデー部21には、高圧入口21a、冷媒吸引口21b、絞り側出口21d、低圧入口21e、および低圧出口21fといった複数の冷媒出入口が設けられている。さらに、ボデー部21に固定された後述するエジェクタ15のディフューザ部52の冷媒流れ最下流部には、エジェクタ側出口21cが設けられている。
Various coolant passages 20a to 20c are formed in the body portion 21. The body portion 21 is provided with a plurality of refrigerant inlets and outlets such as a high pressure inlet 21a, a refrigerant suction port 21b, a throttle side outlet 21d, a low pressure inlet 21e, and a low pressure outlet 21f. Further, an ejector side outlet 21c is provided at the most downstream part of the refrigerant flow of a diffuser portion 52 of the ejector 15 described later, which is fixed to the body portion 21.
高圧入口21aは、図3に示すように、放熱器12のレシーバ部12bの冷媒出口から流出した冷媒をエジェクタモジュール20の内部へ流入させる冷媒入口である。従って、高圧入口21aは、分岐部14の冷媒入口となる。
As shown in FIG. 3, the high-pressure inlet 21 a is a refrigerant inlet through which the refrigerant flowing out from the refrigerant outlet of the receiver 12 b of the radiator 12 flows into the ejector module 20. Accordingly, the high-pressure inlet 21 a serves as a refrigerant inlet for the branch portion 14.
冷媒吸引口21bは、図3に示すように、第1蒸発器17から流出した冷媒を吸引する冷媒入口である。冷媒吸引口21bから吸引された吸引冷媒は、ノズル部51から噴射された噴射冷媒と合流する。従って、冷媒吸引口21bから吸引された吸引冷媒を流通させて、噴射冷媒と合流させる冷媒通路は、吸引側通路20bである。
As shown in FIG. 3, the refrigerant suction port 21 b is a refrigerant inlet that sucks the refrigerant that has flowed out of the first evaporator 17. The suction refrigerant sucked from the refrigerant suction port 21 b merges with the jet refrigerant jetted from the nozzle portion 51. Accordingly, the refrigerant passage through which the suction refrigerant sucked from the refrigerant suction port 21b is circulated and merged with the injection refrigerant is the suction-side passage 20b.
エジェクタ側出口21cは、ディフューザ部52にて昇圧された冷媒を第2蒸発器18の入口側へ流出させる冷媒出口である。絞り側出口21dは、図3に示すように、可変絞り機構16にて減圧された冷媒を、第1蒸発器17の入口側へ流出させる冷媒出口である。
The ejector-side outlet 21c is a refrigerant outlet that causes the refrigerant whose pressure has been increased by the diffuser portion 52 to flow out to the inlet side of the second evaporator 18. As shown in FIG. 3, the throttle-side outlet 21 d is a refrigerant outlet that allows the refrigerant decompressed by the variable throttle mechanism 16 to flow out to the inlet side of the first evaporator 17.
低圧入口21eは、図2に示すように、第2蒸発器18から流出した冷媒を流入させる冷媒入口である。低圧出口21fは、図2に示すように、低圧入口21eから流入した冷媒を、圧縮機11の吸入口側へ流出させる冷媒出口である。従って、低圧入口21eから低圧出口21fへ至る冷媒通路は、流出側通路20cである。
The low-pressure inlet 21e is a refrigerant inlet through which the refrigerant that has flowed out of the second evaporator 18 flows, as shown in FIG. As shown in FIG. 2, the low-pressure outlet 21 f is a refrigerant outlet that allows the refrigerant flowing from the low-pressure inlet 21 e to flow out to the suction port side of the compressor 11. Therefore, the refrigerant passage from the low pressure inlet 21e to the low pressure outlet 21f is the outflow side passage 20c.
さらに、高圧入口21aと低圧出口21fは、図2~図4に示すように、同一平面上で同一方向に開口している。エジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dは、同一方向に開口している。低圧入口21e、冷媒吸引口21b、および絞り側出口21dは、同一平面上で開口している。ここで、冷媒出入口が同一方向に開口しているとは、冷媒の流入出方向が一致していることを意味している。
Furthermore, as shown in FIGS. 2 to 4, the high-pressure inlet 21a and the low-pressure outlet 21f are open in the same direction on the same plane. The ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction. The low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d are open on the same plane. Here, the refrigerant inlet / outlet opening in the same direction means that the refrigerant inflow / outflow directions coincide with each other.
エジェクタ15は、図2、図3に示すように、ノズル部51、ボデー部21に形成された冷媒吸引口21bおよび吸引側通路20b、ディフューザ部52、ニードル弁53、ノズル側駆動機構54等によって構成されている。
2 and 3, the ejector 15 includes a nozzle portion 51, a refrigerant suction port 21b and a suction side passage 20b formed in the body portion 21, a diffuser portion 52, a needle valve 53, a nozzle side drive mechanism 54, and the like. It is configured.
ノズル部51は、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させて噴射するものである。ノズル部51は、図2に示すように、冷媒の流れ方向に向かって先細る略円筒状の金属(本実施形態では、ステンレス合金または真鍮)で形成されている。ノズル部51は、圧入等の手段によりボデー部21に固定されている。
The nozzle portion 51 is an isentropic decompression of the refrigerant in the refrigerant passage formed therein and injects it. As shown in FIG. 2, the nozzle portion 51 is formed of a substantially cylindrical metal (in this embodiment, stainless alloy or brass) that tapers in the refrigerant flow direction. The nozzle part 51 is fixed to the body part 21 by means such as press fitting.
ノズル部51の内部に形成された冷媒通路には、冷媒通路面積が最も縮小した喉部が形成され、さらに、この喉部から冷媒を噴射する冷媒噴射口へ向かって冷媒通路面積が徐々に拡大する末広部が設けられている。つまり、ノズル部51は、ラバールノズルとして構成されている。
In the refrigerant passage formed inside the nozzle portion 51, a throat portion having the smallest refrigerant passage area is formed, and further, the refrigerant passage area gradually increases from the throat portion toward the refrigerant injection port for injecting the refrigerant. A divergent section is provided. That is, the nozzle part 51 is configured as a Laval nozzle.
さらに、本実施形態では、ノズル部51として、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部51を先細ノズルで構成してもよい。
Furthermore, in the present embodiment, the nozzle unit 51 is set such that the flow rate of the injected refrigerant injected from the refrigerant injection port is equal to or higher than the speed of sound during normal operation of the ejector refrigeration cycle 10. Of course, you may comprise the nozzle part 51 by a tapered nozzle.
ノズル部51の筒状側面には、分岐部14にて分岐された一方の冷媒を冷媒通路へ流入させる入口穴が形成されている。また、前述した吸引側通路20bは、吸引冷媒をノズル部51の外周側の空間に導いて、冷媒吸引口21bとノズル部51の冷媒噴射口とを連通させるように形成されている。
In the cylindrical side surface of the nozzle portion 51, an inlet hole through which one refrigerant branched by the branch portion 14 flows into the refrigerant passage is formed. The suction side passage 20b described above is formed so as to guide the suction refrigerant to the space on the outer peripheral side of the nozzle portion 51 so that the refrigerant suction port 21b and the refrigerant injection port of the nozzle portion 51 communicate with each other.
ディフューザ部52は、混合冷媒を昇圧させる昇圧部である。ディフューザ部52は、円筒状の金属(本実施形態では、アルミニウム)で形成されている。本実施形態のディフューザ部52は、圧入等の手段によりボデー部21に固定されている。もちろん、ディフューザ部52をボデー部21と同一の部材で一体的に形成してもよい。
The diffuser unit 52 is a pressure increasing unit that increases the pressure of the mixed refrigerant. The diffuser part 52 is formed of a cylindrical metal (in this embodiment, aluminum). The diffuser portion 52 of the present embodiment is fixed to the body portion 21 by means such as press fitting. Of course, the diffuser portion 52 may be formed integrally with the same member as the body portion 21.
ディフューザ部52の内部に形成された冷媒通路は、通路断面積が冷媒流れ下流側に向かって徐々に拡大する略円錐台形状に形成されている。ディフューザ部52では、このような通路形状によって、ディフューザ部52を流通する混合冷媒の運動エネルギが圧力エネルギに変換される。
The refrigerant passage formed in the diffuser portion 52 has a substantially truncated cone shape in which the passage cross-sectional area gradually increases toward the downstream side of the refrigerant flow. In the diffuser part 52, the kinetic energy of the mixed refrigerant flowing through the diffuser part 52 is converted into pressure energy by such a passage shape.
また、ディフューザ部52は、ボデー部21から冷媒流れ下流側に向かって突出している。このため、ディフューザ部52の冷媒流れ最下流部に形成されるエジェクタ側出口21cは、図2、図3に示すように、冷媒吸引口21b、絞り側出口21d、および低圧入口21eとは異なる平面上で開口している。
Further, the diffuser portion 52 protrudes from the body portion 21 toward the downstream side of the refrigerant flow. Therefore, the ejector side outlet 21c formed in the most downstream portion of the refrigerant flow of the diffuser portion 52 is a plane different from the refrigerant suction port 21b, the throttle side outlet 21d, and the low pressure inlet 21e, as shown in FIGS. Open on top.
ニードル弁53は、ノズル部51の内部に形成された冷媒通路の通路断面積を変化させるノズル側弁体部である。
The needle valve 53 is a nozzle-side valve body portion that changes the cross-sectional area of the refrigerant passage formed inside the nozzle portion 51.
ニードル弁53は、針状(あるいは、円錐形状、円柱形状等を組み合わせた形状)に形成されている。ニードル弁53の中心軸は、ノズル部51の中心軸、およびディフューザ部52の冷媒通路の中心軸と同軸上に配置されている。ニードル弁53は、中心軸方向に変位することによって、ノズル部51の冷媒通路の通路断面積を変化させる。さらに、ニードル弁53を、ノズル部51の喉部に当接させることによって、ノズル部51を閉塞させることもできる。
The needle valve 53 is formed in a needle shape (or a shape combining a conical shape, a cylindrical shape, etc.). The central axis of the needle valve 53 is arranged coaxially with the central axis of the nozzle part 51 and the central axis of the refrigerant passage of the diffuser part 52. The needle valve 53 changes the cross-sectional area of the refrigerant passage of the nozzle portion 51 by being displaced in the central axis direction. Further, the nozzle part 51 can be closed by bringing the needle valve 53 into contact with the throat part of the nozzle part 51.
ノズル側駆動機構54は、ニードル弁53をノズル部51の中心軸方向に変位させるノズル側駆動部である。ノズル側駆動機構54は、機械的機構で構成されている。
The nozzle side drive mechanism 54 is a nozzle side drive unit that displaces the needle valve 53 in the central axis direction of the nozzle unit 51. The nozzle side drive mechanism 54 is configured by a mechanical mechanism.
より具体的には、ノズル側駆動機構54は、第2蒸発器18から流出した冷媒の温度および圧力に応じて変形するノズル側変形部材(具体的には、ノズル側のダイヤフラム54b)を有するノズル側感温部54aを備えている。そして、このダイヤフラム54bの変形をニードル弁53に伝達することによって、ニードル弁53を変位させる。
More specifically, the nozzle-side drive mechanism 54 has a nozzle-side deformable member (specifically, a nozzle-side diaphragm 54b) that deforms according to the temperature and pressure of the refrigerant that has flowed out of the second evaporator 18. A side temperature sensing part 54a is provided. Then, by transmitting the deformation of the diaphragm 54b to the needle valve 53, the needle valve 53 is displaced.
ノズル側のダイヤフラム54bは、ノズル側感温部54aにおいて温度変化に伴って圧力変化する感温媒体が封入される封入空間54cを形成している。本実施形態では、感温媒体として、エジェクタ式冷凍サイクル10を循環する冷媒を主成分とするものを採用している。
The nozzle-side diaphragm 54b forms an enclosed space 54c in which a temperature-sensitive medium whose pressure changes with temperature change is enclosed in the nozzle-side temperature sensing portion 54a. In the present embodiment, the temperature-sensitive medium is mainly composed of a refrigerant circulating in the ejector refrigeration cycle 10.
ノズル側感温部54aは、ボデー部21に形成されて流出側通路20cに連通する空間に配置されている。このため、封入空間54c内の感温媒体の圧力は、流出側通路20cを流通する低圧冷媒(すなわち、第2蒸発器18から流出した冷媒)の温度に応じて変化する。そして、ダイヤフラム54bは、流出側通路20cを流通する低圧冷媒の圧力と封入空間54c内の感温媒体の圧力との圧力差に応じて変形する。
The nozzle side temperature sensing portion 54a is disposed in a space formed in the body portion 21 and communicating with the outflow side passage 20c. For this reason, the pressure of the temperature-sensitive medium in the enclosed space 54c changes according to the temperature of the low-pressure refrigerant (that is, the refrigerant that has flowed out of the second evaporator 18) that flows through the outflow side passage 20c. And the diaphragm 54b deform | transforms according to the pressure difference of the pressure of the low pressure refrigerant | coolant which distribute | circulates the outflow side channel | path 20c, and the pressure of the temperature sensitive medium in the enclosure space 54c.
従って、ダイヤフラム54bは弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。そこで、本実施形態では、ダイヤフラム54bとして、ステンレス(SUS304)製の円形状の金属薄板を採用している。
Therefore, it is desirable that the diaphragm 54b is formed of a material that is rich in elasticity and excellent in pressure resistance and airtightness. Therefore, in this embodiment, a circular metal thin plate made of stainless steel (SUS304) is adopted as the diaphragm 54b.
さらに、本実施形態のノズル側駆動機構54では、ダイヤフラム54bの一部がボデー部21に固定されており、ニードル弁53がダイヤフラム54bとともに封入空間54cを形成するケースに固定されている。
Furthermore, in the nozzle side drive mechanism 54 of the present embodiment, a part of the diaphragm 54b is fixed to the body portion 21, and the needle valve 53 is fixed to a case that forms an enclosed space 54c together with the diaphragm 54b.
従って、流出側通路20cを流通する低圧冷媒の温度(過熱度)が上昇すると、封入空間54c内の感温媒体の飽和圧力が上昇し、封入空間54c内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が大きくなる。これにより、ダイヤフラム54bは、封入空間54cが膨らむ側に変形する。その結果、ニードル弁53がノズル部51の通路断面積を拡大させる側(すなわち、喉部から離れる側)に変位する。
Therefore, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the outflow side passage 20c rises, the saturation pressure of the temperature sensitive medium in the enclosed space 54c rises, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 54c. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c increases. Thereby, the diaphragm 54b deform | transforms into the side by which the enclosure space 54c swells. As a result, the needle valve 53 is displaced to the side that enlarges the passage cross-sectional area of the nozzle portion 51 (that is, the side away from the throat).
一方、流出側通路20cを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間54c内の感温媒体の飽和圧力が低下し、封入空間54c内の感温媒体の圧力から流出側通路20cを流通する低圧冷媒の圧力を減算した圧力差が小さくなる。これにより、ダイヤフラム54bは、封入空間54cが縮まる側に変形する。その結果、ニードル弁53がノズル部51の通路断面積を縮小させる側(すなわち、喉部へ近づく側)に変位する。
On the other hand, when the temperature (degree of superheat) of the low-pressure refrigerant flowing through the outflow side passage 20c decreases, the saturation pressure of the temperature sensitive medium in the enclosed space 54c decreases, and the outflow side passage from the pressure of the temperature sensitive medium in the enclosed space 54c. The pressure difference obtained by subtracting the pressure of the low-pressure refrigerant flowing through 20c becomes small. Thereby, the diaphragm 54b deform | transforms into the side in which the enclosure space 54c shrinks. As a result, the needle valve 53 is displaced to the side that reduces the cross-sectional area of the nozzle portion 51 (that is, the side that approaches the throat).
つまり、ノズル側駆動機構54は、第2蒸発器18から流出した冷媒の過熱度に応じて、ニードル弁53を変位させることができる。そこで、本実施形態のノズル側駆動機構54は、第2蒸発器18出口側冷媒の過熱度が予め定めたノズル側基準過熱度(具体的には、1℃)に近づくように、ニードル弁53を変位させる。
That is, the nozzle side drive mechanism 54 can displace the needle valve 53 according to the degree of superheat of the refrigerant that has flowed out of the second evaporator 18. Therefore, the nozzle side drive mechanism 54 of the present embodiment is configured so that the superheat degree of the refrigerant on the outlet side of the second evaporator 18 approaches a predetermined nozzle side reference superheat degree (specifically, 1 ° C.). Is displaced.
なお、ノズル側駆動機構54は、ノズル側感温部54aに対してニードル弁53がノズル部51の通路断面積を縮小させる側の荷重をかける弾性部材であるコイルバネを有している。ノズル側基準過熱度は、このコイルバネの荷重を変更することによって、調整することができる。
The nozzle side drive mechanism 54 has a coil spring that is an elastic member that applies a load on the side on which the needle valve 53 reduces the passage sectional area of the nozzle portion 51 to the nozzle side temperature sensing portion 54a. The nozzle-side reference superheat degree can be adjusted by changing the load of the coil spring.
ここで、ノズル側駆動機構54が、ニードル弁53を変位させる変位方向の中心軸をノズル側中心軸CL1と定義すると、ノズル側中心軸CL1は、ノズル部51の中心軸、ニードル弁53の中心軸、ディフューザ部52の中心軸と一致している。
Here, if the nozzle-side drive mechanism 54 defines the center axis in the displacement direction for displacing the needle valve 53 as the nozzle-side center axis CL1, the nozzle-side center axis CL1 is the center axis of the nozzle portion 51 and the center of the needle valve 53. The axis coincides with the central axis of the diffuser portion 52.
可変絞り機構16は、図3に示すように、絞り通路20a、絞り弁61、減圧側駆動機構62等によって構成されている。
As shown in FIG. 3, the variable throttle mechanism 16 includes a throttle passage 20a, a throttle valve 61, a pressure reducing side drive mechanism 62, and the like.
絞り通路20aは、通路断面積を縮小させることによって、分岐部14にて分岐された他方の冷媒を減圧させる減圧部である。絞り通路20aは、円柱形状や円錐台形状等の回転体形状に形成されている。本実施形態の減圧部は、ボデー部21と一体的に形成されている。もちろん、減圧部として、ボデー部21に対して別部材で形成されたオリフィスを採用して、圧入等の手段によってボデー部21に固定してもよい。
The throttle passage 20a is a decompression section that decompresses the other refrigerant branched by the branch section 14 by reducing the passage cross-sectional area. The throttle passage 20a is formed in a rotating body shape such as a columnar shape or a truncated cone shape. The decompression part of this embodiment is formed integrally with the body part 21. Of course, an orifice formed as a separate member with respect to the body portion 21 may be adopted as the pressure reducing portion and fixed to the body portion 21 by means such as press fitting.
絞り弁61は、球状に形成されており、絞り通路20aの中心軸方向に変位することによって、絞り通路20aの通路断面積(すなわち、絞り開度)を変化させる減圧側弁体部である。さらに、絞り弁61を絞り通路20aの出口部に当接させることによって、絞り通路20aを閉塞させることもできる。
The throttle valve 61 is formed in a spherical shape, and is a pressure-reducing valve body portion that changes the cross-sectional area (that is, the throttle opening) of the throttle passage 20a by being displaced in the central axis direction of the throttle passage 20a. Furthermore, the throttle passage 20a can be closed by bringing the throttle valve 61 into contact with the outlet of the throttle passage 20a.
減圧側駆動機構62は、絞り弁61を絞り通路20aの中心軸方向に変位させる減圧側駆動部である。減圧側駆動機構62は、ノズル側駆動機構54と同様の機械的機構で構成されている。
The pressure reducing side driving mechanism 62 is a pressure reducing side driving unit that displaces the throttle valve 61 in the central axis direction of the throttle passage 20a. The decompression side drive mechanism 62 is configured by a mechanical mechanism similar to the nozzle side drive mechanism 54.
より具体的には、減圧側駆動機構62は、第1蒸発器17から流出した冷媒の温度および圧力に応じて変形する減圧側変形部材(具体的には、減圧側のダイヤフラム62b)を有する減圧側感温部62aを備えている。そして、このダイヤフラム62bの変形を絞り弁61に伝達することによって、絞り弁61を変位させる。
More specifically, the decompression-side drive mechanism 62 includes a decompression-side deformation member (specifically, a decompression-side diaphragm 62b) that deforms according to the temperature and pressure of the refrigerant that has flowed out of the first evaporator 17. A side temperature sensing part 62a is provided. Then, by transmitting the deformation of the diaphragm 62b to the throttle valve 61, the throttle valve 61 is displaced.
減圧側駆動機構62では、減圧側感温部62aの一部が、吸引側通路20b内に配置されている。さらに、本実施形態の減圧側駆動機構62では、ダイヤフラム62bの変位が作動棒63を介して絞り弁61に伝達される。作動棒63は、絞り弁61の変位方向に延びる円柱状に形成されている。
In the decompression side drive mechanism 62, a part of the decompression side temperature sensing unit 62a is disposed in the suction side passage 20b. Further, in the pressure reducing side drive mechanism 62 of the present embodiment, the displacement of the diaphragm 62 b is transmitted to the throttle valve 61 via the operating rod 63. The operating rod 63 is formed in a cylindrical shape extending in the displacement direction of the throttle valve 61.
そして、吸引側通路20bを流通する低圧冷媒の温度(過熱度)が上昇すると、減圧側駆動機構62の封入空間62c内の感温媒体の飽和圧力が上昇し、封入空間62c内の感温媒体の圧力から吸引側通路20bを流通する低圧冷媒の圧力の圧力差が大きくなる。これにより、ダイヤフラム62bが変形すると、絞り弁61が絞り通路20aの絞り開度を拡大させる側に変位する。
When the temperature (superheat degree) of the low-pressure refrigerant flowing through the suction side passage 20b rises, the saturation pressure of the temperature sensitive medium in the enclosed space 62c of the decompression side drive mechanism 62 rises, and the temperature sensitive medium in the enclosed space 62c. The pressure difference between the pressures of the low-pressure refrigerant flowing through the suction side passage 20b increases. As a result, when the diaphragm 62b is deformed, the throttle valve 61 is displaced to the side of increasing the throttle opening of the throttle passage 20a.
一方、吸引側通路20bを流通する低圧冷媒の温度(過熱度)が低下すると、封入空間62c内の感温媒体の飽和圧力が低下し、封入空間62c内の感温媒体の圧力から吸引側通路20bを流通する低圧冷媒の圧力の圧力差が小さくなる。これにより、ダイヤフラム62bが変形すると、絞り弁61が絞り通路20aの絞り開度を縮小させる側に変位する。
On the other hand, when the temperature (superheat degree) of the low-pressure refrigerant flowing through the suction side passage 20b is lowered, the saturation pressure of the temperature sensitive medium in the enclosed space 62c is lowered, and the suction side passage is determined from the pressure of the temperature sensitive medium in the enclosed space 62c. The pressure difference of the pressure of the low-pressure refrigerant flowing through 20b is reduced. Thus, when the diaphragm 62b is deformed, the throttle valve 61 is displaced to the side that reduces the throttle opening of the throttle passage 20a.
つまり、減圧側駆動機構62は、第1蒸発器17から流出した冷媒の過熱度に応じて、絞り弁61を変位させることができる。そこで、本実施形態のノズル側駆動機構54は、第1蒸発器17の出口側冷媒の過熱度が予め定めた減圧側基準過熱度(具体的には、0℃)に近づくように絞り弁61を変位させる。すなわち、本実施形態のノズル側駆動機構54は、第1蒸発器17の出口側冷媒が飽和気相冷媒となるように絞り弁61を変位させる。
That is, the decompression side drive mechanism 62 can displace the throttle valve 61 according to the degree of superheat of the refrigerant flowing out from the first evaporator 17. Therefore, the nozzle-side drive mechanism 54 of the present embodiment has the throttle valve 61 so that the degree of superheat of the outlet-side refrigerant of the first evaporator 17 approaches a predetermined decompression-side reference superheat degree (specifically, 0 ° C.). Is displaced. That is, the nozzle side drive mechanism 54 of this embodiment displaces the throttle valve 61 so that the outlet side refrigerant of the first evaporator 17 becomes a saturated gas phase refrigerant.
なお、減圧側基準過熱度についても、ノズル側基準過熱度と同様に、絞り弁61に荷重をかける弾性部材であるコイルバネの荷重を変化させることによって、調整することができる。
Note that the decompression-side reference superheat degree can also be adjusted by changing the load of the coil spring, which is an elastic member that applies a load to the throttle valve 61, similarly to the nozzle-side reference superheat degree.
ここで、減圧側駆動機構62が、絞り弁61を変位させる変位方向の中心軸を減圧側中心軸CL2と定義すると、減圧側中心軸CL2は、絞り通路20aの中心軸、作動棒63の中心軸と一致している。
Here, if the pressure reducing side drive mechanism 62 defines the central axis in the displacement direction for displacing the throttle valve 61 as the pressure reducing side central axis CL2, the pressure reducing side central axis CL2 is the center axis of the throttle passage 20a and the center of the operating rod 63. Coincides with the axis.
さらに、本実施形態のエジェクタモジュール20では、ノズル側中心軸CL1と減圧側中心軸CL2がねじれの位置関係となっており、ノズル側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部と他方の中心軸が重合配置されている。
Furthermore, in the ejector module 20 of the present embodiment, the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, and one of the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 is in the direction of the central axis. When viewed from the above, the drive unit corresponding to one central axis and the other central axis are arranged in an overlapping manner.
例えば、図4に示すように、ノズル側中心軸CL1方向から見たときに、図4の点ハッチングで示す領域を占めるノズル側駆動機構54と減圧側中心軸CL2が重合するように配置されている。また、図5に示すように、減圧側中心軸CL2方向から見たときに、図5の点ハッチングで示す領域を占める減圧側駆動機構62とノズル側中心軸CL1が重合するように配置されている。
For example, as shown in FIG. 4, when viewed from the direction of the nozzle side central axis CL1, the nozzle side drive mechanism 54 occupying the area indicated by the point hatching in FIG. 4 and the pressure reduction side central axis CL2 are arranged so as to overlap. Yes. Further, as shown in FIG. 5, when viewed from the direction of the pressure-reducing central axis CL2, the pressure-reducing driving mechanism 62 and the nozzle-side central axis CL1 occupying the region indicated by the point hatching in FIG. Yes.
なお、ねじれの位置関係とは、2本の直線が平行ではなく、かつ、交わらないように配置された位置関係を意味している。さらに、本実施形態では、ノズル側中心軸CL1と減圧側中心軸CL2がなす角度、すなわちノズル側中心軸CL1のベクトルと減圧側中心軸CL2のベクトルがなす角度が、90°となっている。
Note that the torsional positional relationship means a positional relationship in which two straight lines are not parallel and do not intersect. Furthermore, in the present embodiment, the angle formed by the nozzle side central axis CL1 and the pressure reducing side central axis CL2, that is, the angle formed by the vector of the nozzle side central axis CL1 and the vector of the pressure reducing side central axis CL2 is 90 °.
次に、図1に示す第2蒸発器18は、送風機18aから車室内へ向けて送風された送風空気とエジェクタモジュール20のエジェクタ側出口21c(すなわち、エジェクタの15のディフューザ部52の冷媒出口)から流出した低圧冷媒とを熱交換させ、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。
Next, the second evaporator 18 shown in FIG. 1 includes the blown air blown from the blower 18a toward the vehicle interior and the ejector side outlet 21c of the ejector module 20 (that is, the refrigerant outlet of the diffuser portion 52 of the ejector 15). It is a heat-absorbing heat exchanger that cools blown air by exchanging heat with the low-pressure refrigerant that has flowed out of the air and evaporating the low-pressure refrigerant to exhibit an endothermic effect.
送風機18aは、空調制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。第2蒸発器18の冷媒出口には、エジェクタモジュール20の低圧入口21e側が接続されている。
The blower 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device. The refrigerant outlet of the second evaporator 18 is connected to the low pressure inlet 21 e side of the ejector module 20.
第1蒸発器17は、第2蒸発器18を通過した送風空気とエジェクタモジュール20の絞り側出口21d(すなわち、可変絞り機構16の冷媒出口)から流出した低圧冷媒とを熱交換させ、この低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する吸熱用熱交換器である。第1蒸発器17の冷媒出口には、エジェクタモジュール20の冷媒吸引口21b側が接続されている。
The first evaporator 17 exchanges heat between the blown air that has passed through the second evaporator 18 and the low-pressure refrigerant that has flowed out from the throttle-side outlet 21d of the ejector module 20 (that is, the refrigerant outlet of the variable throttle mechanism 16). This is an endothermic heat exchanger that cools blown air by evaporating the refrigerant to exhibit an endothermic effect. The refrigerant outlet of the first evaporator 17 is connected to the refrigerant suction port 21 b side of the ejector module 20.
また、本実施形態の第1蒸発器17および第2蒸発器18は、一体的に構成されている。具体的には、第1蒸発器17および第2蒸発器18は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。
Further, the first evaporator 17 and the second evaporator 18 of the present embodiment are integrally configured. Specifically, each of the first evaporator 17 and the second evaporator 18 includes a plurality of tubes that circulate the refrigerant, and a collection or distribution of refrigerants that are arranged on both ends of the plurality of tubes and circulate through the tubes. And a so-called tank-and-tube heat exchanger having a pair of collective distribution tanks.
そして、第1蒸発器17および第2蒸発器18の集合分配用タンクを同一部材にて形成することによって、第1蒸発器17および第2蒸発器18を一体化させている。この際、本実施形態では、第2蒸発器18が第1蒸発器17に対して送風空気流れ上流側に配置されるように、第1蒸発器17および第2蒸発器18を送風空気流れに対して直列に配置している。従って、送風空気は図1の二点鎖線で描いた矢印で示すように流れる。
The first evaporator 17 and the second evaporator 18 are integrated by forming the collective distribution tank of the first evaporator 17 and the second evaporator 18 with the same member. At this time, in the present embodiment, the first evaporator 17 and the second evaporator 18 are changed to the blown air flow so that the second evaporator 18 is arranged on the upstream side of the blower air flow with respect to the first evaporator 17. In contrast, they are arranged in series. Accordingly, the blown air flows as shown by the arrows drawn by the two-dot chain line in FIG.
さらに、本実施形態では、エジェクタモジュール20の各冷媒出入口21b~21eと一体化された第1蒸発器17および第2蒸発器18との間を、専用の集合配管19を用いて接続している。集合配管19の複数の金属製の冷媒配管、あるいはプレート部材をろう付け等の接合手段によって一体化させたものである。集合配管19は、第1~第4接続通路19a~19dを有している。
Furthermore, in the present embodiment, the first evaporator 17 and the second evaporator 18 integrated with the refrigerant inlets and outlets 21b to 21e of the ejector module 20 are connected using a dedicated collective pipe 19. . A plurality of metal refrigerant pipes or plate members of the collective pipe 19 are integrated by a joining means such as brazing. The collective pipe 19 has first to fourth connection passages 19a to 19d.
第1接続通路19aは、エジェクタモジュール20の絞り側出口21dと第1蒸発器17の冷媒入口とを接続する冷媒通路である。第2接続通路19bは、第1蒸発器17の冷媒出口と冷媒吸引口21bとを接続する冷媒通路である。第3接続通路19cは、エジェクタ側出口21cの第2蒸発器18の冷媒入口とを接続する冷媒通路である。第4接続通路19dは、第2蒸発器18の冷媒出口と低圧入口21eとを接続する冷媒通路である。
The first connection passage 19 a is a refrigerant passage that connects the throttle-side outlet 21 d of the ejector module 20 and the refrigerant inlet of the first evaporator 17. The second connection passage 19b is a refrigerant passage that connects the refrigerant outlet of the first evaporator 17 and the refrigerant suction port 21b. The third connection passage 19c is a refrigerant passage that connects the refrigerant inlet of the second evaporator 18 of the ejector side outlet 21c. The fourth connection passage 19d is a refrigerant passage that connects the refrigerant outlet of the second evaporator 18 and the low-pressure inlet 21e.
さらに、本実施形態では、図1に示すように、ディフューザ部52のボデー部21から突出した部位を第3接続通路19c内に収容している。換言すると、ディフューザ部52は、ボデー部21から突出していることによって、集合配管19内に収容可能に形成されている。
Furthermore, in this embodiment, as shown in FIG. 1, the site | part which protruded from the body part 21 of the diffuser part 52 is accommodated in the 3rd connection channel | path 19c. In other words, the diffuser part 52 is formed so as to be accommodated in the collective pipe 19 by protruding from the body part 21.
このため、エジェクタモジュール20は、集合配管19を介して、第1蒸発器17および第2蒸発器18に一体化されている。つまり、本実施形態では、エジェクタモジュール20、集合配管19、第1蒸発器17および第2蒸発器18が、蒸発器ユニット200として一体化されている。
For this reason, the ejector module 20 is integrated with the first evaporator 17 and the second evaporator 18 via the collecting pipe 19. That is, in the present embodiment, the ejector module 20, the collecting pipe 19, the first evaporator 17 and the second evaporator 18 are integrated as an evaporator unit 200.
次に、本実施形態のエジェクタ式冷凍サイクル10の電気制御部について説明する。図示しない空調制御装置は、CPU、ROM、RAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、12c、18a等の作動を制御する。
Next, the electric control unit of the ejector refrigeration cycle 10 of this embodiment will be described. An air conditioning control device (not shown) is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on a control program stored in the ROM, and is connected to the output side. The operation of the various controlled devices 11, 12c, 18a and the like is controlled.
また、空調制御装置には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、第1蒸発器17から吹き出される吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ等のセンサ群が接続され、これらの空調用センサ群の検出値が入力される。
Further, the air conditioning control device includes an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the temperature of the air blown out from the first evaporator 17. Sensor groups such as an evaporator temperature sensor for detecting (evaporator temperature) are connected, and detection values of these air conditioning sensor groups are input.
さらに、空調制御装置の入力側には、図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が空調制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
Furthermore, an operation panel (not shown) is connected to the input side of the air conditioning control device, and operation signals from various operation switches provided on the operation panel are input to the air conditioning control device. As various operation switches provided on the operation panel, an air conditioning operation switch that requests air conditioning, a vehicle interior temperature setting switch that sets the vehicle interior temperature, and the like are provided.
なお、本実施形態の空調制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、空調制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、本実施形態では、圧縮機11の作動を制御する構成が、吐出能力制御部を構成している。
Note that the air conditioning control device of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured. A configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device. For example, in this embodiment, the structure which controls the action | operation of the compressor 11 comprises the discharge capability control part.
次に、上記構成における本実施形態のエジェクタ式冷凍サイクル10の作動について説明する。操作パネルの空調作動スイッチが投入(ON)されると、空調制御装置が、圧縮機11、冷却ファン12c、送風機18a等を作動させる。
Next, the operation of the ejector refrigeration cycle 10 of the present embodiment having the above configuration will be described. When the air conditioning operation switch on the operation panel is turned on (ON), the air conditioning control device operates the compressor 11, the cooling fan 12c, the blower 18a, and the like.
これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。圧縮機11から吐出された高温高圧冷媒は、放熱器12へ流入する。放熱器12へ流入した冷媒は、凝縮部12aにて冷却ファン12cから送風された外気と熱交換して凝縮する。凝縮部12aにて冷却された冷媒は、レシーバ部12bにて気液分離される。
Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it. The high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. The refrigerant flowing into the radiator 12 is condensed by exchanging heat with the outside air blown from the cooling fan 12c in the condensing unit 12a. The refrigerant cooled by the condensing unit 12a is gas-liquid separated by the receiver unit 12b.
レシーバ部12bにて分離された液相冷媒は、エジェクタモジュール20の高圧入口21aへ流入する。エジェクタモジュール20の内部へ流入した冷媒は、分岐部14にて分岐される。分岐された一方の冷媒は、エジェクタ15のノズル部51へ流入して等エントロピ的に減圧されて噴射される。そして、この噴射冷媒の吸引作用によって、第1蒸発器17から流出した冷媒が、冷媒吸引口21bから吸引される。
The liquid phase refrigerant separated by the receiver unit 12b flows into the high-pressure inlet 21a of the ejector module 20. The refrigerant that has flowed into the ejector module 20 is branched at the branching section 14. One of the branched refrigerant flows into the nozzle portion 51 of the ejector 15 and is isentropically decompressed and injected. And the refrigerant | coolant which flowed out from the 1st evaporator 17 is attracted | sucked from the refrigerant | coolant suction port 21b by the suction effect | action of this injection refrigerant | coolant.
この際、ノズル側駆動機構54は、流出側通路20cを流通する冷媒(換言すると、第2蒸発器18出口側冷媒)の過熱度が、ノズル側基準過熱度(具体的には、1℃)に近づくように、ニードル弁53を変位させる。
At this time, the nozzle side drive mechanism 54 determines that the degree of superheat of the refrigerant flowing through the outflow side passage 20c (in other words, the outlet side refrigerant of the second evaporator 18) is the nozzle side reference superheat degree (specifically, 1 ° C.). The needle valve 53 is displaced so as to approach.
ノズル部51から噴射された噴射冷媒および冷媒吸引口21bから吸引された吸引冷媒は、エジェクタ15のディフューザ部52へ流入する。ディフューザ部52では、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部52にて昇圧された冷媒は、エジェクタ側出口21cから流出する。
The injection refrigerant injected from the nozzle part 51 and the suction refrigerant sucked from the refrigerant suction port 21b flow into the diffuser part 52 of the ejector 15. In the diffuser part 52, the velocity energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant increases. The refrigerant whose pressure has been increased in the diffuser section 52 flows out from the ejector side outlet 21c.
エジェクタ側出口21cから流出した冷媒は、集合配管19の第3接続通路19cを介して、第2蒸発器18へ流入する。第2蒸発器18へ流入した冷媒は、送風機18aによって送風された送風空気から吸熱して蒸発する。これにより、送風機18aによって送風された送風空気が冷却される。
The refrigerant that has flowed out of the ejector side outlet 21c flows into the second evaporator 18 through the third connection passage 19c of the collecting pipe 19. The refrigerant flowing into the second evaporator 18 absorbs heat from the blown air blown by the blower 18a and evaporates. Thereby, the blowing air blown by the blower 18a is cooled.
第2蒸発器18から流出した冷媒は、集合配管19の第4接続通路19d、およびエジェクタモジュール20の流出側通路20cを介して、圧縮機11へ吸入されて再び圧縮される。
The refrigerant that has flowed out of the second evaporator 18 is sucked into the compressor 11 through the fourth connection passage 19d of the collecting pipe 19 and the outflow side passage 20c of the ejector module 20, and is compressed again.
一方、分岐部14にて分岐された他方の冷媒は、可変絞り機構16の絞り通路20aへ流入して等エンタルピ的に減圧される。この際、減圧側駆動機構62は、吸引側通路20bを流通する(換言すると、第1蒸発器17の出口側冷媒)の過熱度が、減圧側基準過熱度(具体的には、0℃)に近づくように、絞り弁61を変位させる。可変絞り機構16にて減圧された冷媒は、絞り側出口21dから流出する。
On the other hand, the other refrigerant branched by the branching section 14 flows into the throttle passage 20a of the variable throttle mechanism 16 and is decompressed in an enthalpy manner. At this time, the decompression side drive mechanism 62 has a superheat degree of the suction side passage 20b (in other words, an outlet side refrigerant of the first evaporator 17) having a decompression side reference superheat degree (specifically, 0 ° C.). The throttle valve 61 is displaced so as to approach. The refrigerant decompressed by the variable throttle mechanism 16 flows out from the throttle-side outlet 21d.
絞り側出口21dから流出した冷媒は、集合配管19の第1接続通路19aを介して、第1蒸発器17へ流入する。第1蒸発器17へ流入した冷媒は、第2蒸発器18通過後の送風空気から吸熱して蒸発する。これにより、第2蒸発器18通過後の送風空気がさらに冷却される。第1蒸発器17から流出した冷媒は、集合配管19の第2接続通路19bを介して、冷媒吸引口21bから吸引される。
The refrigerant that has flowed out of the throttle-side outlet 21d flows into the first evaporator 17 through the first connection passage 19a of the collecting pipe 19. The refrigerant flowing into the first evaporator 17 absorbs heat from the blown air after passing through the second evaporator 18 and evaporates. Thereby, the blown air after passing through the second evaporator 18 is further cooled. The refrigerant flowing out from the first evaporator 17 is sucked from the refrigerant suction port 21b through the second connection passage 19b of the collecting pipe 19.
以上の如く、本実施形態のエジェクタ式冷凍サイクル10によれば、第1蒸発器17および第2蒸発器18にて、車室内へ送風される送風空気を冷却することができる。
As described above, according to the ejector refrigeration cycle 10 of the present embodiment, the blown air blown into the vehicle compartment can be cooled by the first evaporator 17 and the second evaporator 18.
さらに、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18下流側の冷媒、すなわちエジェクタ15のディフューザ部52にて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
Furthermore, in the ejector refrigeration cycle 10 of the present embodiment, the refrigerant on the downstream side of the second evaporator 18, that is, the refrigerant whose pressure has been increased by the diffuser portion 52 of the ejector 15 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced and the coefficient of performance (COP) of the cycle is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator is equal to the suction refrigerant pressure. Can be improved.
また、本実施形態のエジェクタ式冷凍サイクル10では、第2蒸発器18における冷媒蒸発圧力をディフューザ部52にて昇圧された冷媒圧力とし、第1蒸発器17における冷媒蒸発圧力をノズル部51にて減圧された直後の低い冷媒圧力とすることができる。従って、各蒸発器における冷媒蒸発温度と送風空気との温度差を確保して、送風空気を効率的に冷却することができる。
In the ejector refrigeration cycle 10 of the present embodiment, the refrigerant evaporation pressure in the second evaporator 18 is set to the refrigerant pressure increased by the diffuser unit 52, and the refrigerant evaporation pressure in the first evaporator 17 is set by the nozzle unit 51. A low refrigerant pressure immediately after depressurization can be achieved. Therefore, the temperature difference between the refrigerant evaporation temperature and the blown air in each evaporator can be secured and the blown air can be efficiently cooled.
また、本実施形態のエジェクタモジュール20では、ノズル部51、ニードル弁53、ノズル側駆動機構54等によって構成される可変ノズル部を有するエジェクタ15、並びに、絞り通路20a、絞り弁61、減圧側駆動機構62等によって構成される可変絞り機構16を備えている。
Further, in the ejector module 20 of the present embodiment, the ejector 15 having the variable nozzle portion constituted by the nozzle portion 51, the needle valve 53, the nozzle side drive mechanism 54, and the like, the throttle passage 20a, the throttle valve 61, the decompression side drive. A variable diaphragm mechanism 16 constituted by a mechanism 62 or the like is provided.
従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、エジェクタ15のノズル部51の通路断面積、および可変絞り機構16の絞り開度を変化させて、ノズル部51へ流入する冷媒流量および可変絞り機構16へ流入する冷媒流量を適切に調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクル10に高いCOPを発揮させることができる。
Therefore, the flow rate of the refrigerant flowing into the nozzle portion 51 and the variable throttle are changed by changing the passage sectional area of the nozzle portion 51 of the ejector 15 and the throttle opening of the variable throttle mechanism 16 according to the load fluctuation of the ejector refrigeration cycle 10. The flow rate of the refrigerant flowing into the mechanism 16 can be adjusted appropriately. As a result, the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
さらに、本実施形態のエジェクタモジュール20では、サイクル構成機構のうち、分岐部14、可変ノズル部を有するエジェクタ15、および可変絞り機構16を一体化させているので、エジェクタ式冷凍サイクル10全体としての小型化、および生産性の向上を狙うことができる。
Furthermore, in the ejector module 20 of the present embodiment, since the branch portion 14, the ejector 15 having the variable nozzle portion, and the variable throttle mechanism 16 are integrated in the cycle constituting mechanism, the ejector refrigeration cycle 10 as a whole is integrated. It can aim for miniaturization and productivity improvement.
ところが、可変ノズル部を有するエジェクタ15および可変絞り機構16では、通路断面積あるいは絞り開度を変化させるための駆動装置(本実施形態では、ノズル側駆動機構54および減圧側駆動機構62)が必要となる。このような駆動装置は、ニードル弁53や絞り弁61等と比較して、比較的体格が大きい。このため、上述したエジェクタモジュール20全体としての小型化効果を得にくくなってしまう。
However, the ejector 15 having the variable nozzle portion and the variable throttle mechanism 16 require a driving device (in this embodiment, the nozzle side driving mechanism 54 and the pressure reducing side driving mechanism 62) for changing the passage cross-sectional area or the throttle opening. It becomes. Such a drive device is relatively large in size as compared with the needle valve 53, the throttle valve 61, and the like. For this reason, it becomes difficult to obtain the downsizing effect of the ejector module 20 as a whole.
これに対して、本実施形態のエジェクタモジュール20によれば、可変絞り機構16とエジェクタ15とを一体化させる際に、ノズル側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たとき、一方の中心軸に対応する駆動部と他方の中心軸が重合するように配置している。
On the other hand, according to the ejector module 20 of the present embodiment, when the variable throttle mechanism 16 and the ejector 15 are integrated, the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 are viewed from one central axis direction. When viewed, the drive unit corresponding to one central axis and the other central axis are arranged so as to overlap.
このような配置によれば、比較的体格が大きい減圧側駆動機構62とノズル側駆動機構54とを、いずれかの中心軸CL1、CL2方向にずらして配置することができる。従って、可変絞り機構16の本体部(すなわち、減圧側駆動機構62を除く部位)とエジェクタ15の本体部(すなわち、ノズル側駆動機構54を除く部位)とを近づけて配置することができる。
According to such arrangement, the decompression side driving mechanism 62 and the nozzle side driving mechanism 54 having relatively large physique can be arranged while being shifted in the direction of any of the central axes CL1 and CL2. Therefore, the main body portion (that is, the portion excluding the decompression side driving mechanism 62) of the variable throttle mechanism 16 and the main body portion of the ejector 15 (that is, the portion excluding the nozzle side driving mechanism 54) can be arranged close to each other.
さらに、ノズル側中心軸CL1と減圧側中心軸CL2が、ねじれの位置関係となっているので、減圧側駆動機構62とノズル側駆動機構54とを互いに干渉させることなく、可変絞り機構16の本体部とエジェクタ15の本体部とを効果的に近づけることができる。従って、本実施形態のエジェクタモジュール20によれば、通路断面積を変更可能に構成されていても、適用されたエジェクタ式冷凍サイクル10の大型化を招くことがない。
Furthermore, since the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 are in a twisted positional relationship, the main body of the variable throttle mechanism 16 does not interfere with the pressure-reducing side driving mechanism 62 and the nozzle-side driving mechanism 54. And the main body of the ejector 15 can be brought close to each other effectively. Therefore, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not increased in size even if the passage cross-sectional area can be changed.
また、本実施形態のエジェクタモジュール20では、ボデー部21に、流出側通路20cが形成されており、ノズル側駆動機構54のノズル側感温部54aの一部が流出側通路20cに連通する空間内に配置されている。
Further, in the ejector module 20 of the present embodiment, the outflow side passage 20c is formed in the body portion 21, and a part of the nozzle side temperature sensing portion 54a of the nozzle side drive mechanism 54 communicates with the outflow side passage 20c. Is placed inside.
これによれば、ノズル側感温部54aと流出側通路20cとを近づけることができる。従って、エジェクタモジュール20の大型化を招くことなく、流出側通路20cを流通する冷媒の温度および圧力を、ノズル側感温部54aに精度良く伝達することができる。
According to this, the nozzle side temperature sensing part 54a and the outflow side passage 20c can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the outflow side passage 20c can be accurately transmitted to the nozzle side temperature sensing portion 54a without causing an increase in the size of the ejector module 20.
また、本実施形態のエジェクタモジュール20では、ボデー部21に、吸引側通路20bが形成されており、減圧側駆動機構62の減圧側感温部62aの一部が吸引側通路20b内に配置されている。
Further, in the ejector module 20 of the present embodiment, the suction side passage 20b is formed in the body portion 21, and a part of the pressure reduction side temperature sensing portion 62a of the pressure reduction side drive mechanism 62 is disposed in the suction side passage 20b. ing.
これによれば、減圧側感温部62aと吸引側通路20bとを近づけることができる。従って、エジェクタモジュール20の大型化を招くことなく、吸引側通路20bを流通する冷媒の温度および圧力を、減圧側感温部62aに精度良く伝達することができる。
According to this, the decompression side temperature sensing part 62a and the suction side passage 20b can be brought close to each other. Therefore, the temperature and pressure of the refrigerant flowing through the suction side passage 20b can be accurately transmitted to the decompression side temperature sensing unit 62a without causing an increase in the size of the ejector module 20.
また、本実施形態のエジェクタモジュール20では、減圧側駆動機構62が、第1蒸発器17の出口側冷媒の過熱度が0℃に近づくように、絞り弁61を変位させる。これによれば、第1蒸発器17から流出する冷媒の乾き度が過度に低下して、冷媒吸引口21bから乾き度の低い気液二相冷媒が吸引されてしまうことを抑制することができる。従って、エジェクタ15の昇圧性能の低下を抑制することができる。
Further, in the ejector module 20 of the present embodiment, the decompression side drive mechanism 62 displaces the throttle valve 61 so that the degree of superheat of the outlet side refrigerant of the first evaporator 17 approaches 0 ° C. According to this, it can suppress that the dryness of the refrigerant | coolant which flows out out of the 1st evaporator 17 falls too much, and the gas-liquid two-phase refrigerant | coolant with a low dryness will be attracted | sucked from the refrigerant | coolant suction opening 21b. . Accordingly, it is possible to suppress a decrease in the boosting performance of the ejector 15.
さらに、第1蒸発器17出口側の冷媒の過熱度が過度に上昇してしまうことを抑制し、第1蒸発器17にて冷却された送風空気に温度分布が生じてしまうことを抑制することができる。このことは、本実施形態のエジェクタ式冷凍サイクル10のように、第1蒸発器17を第2蒸発器18の空気流れ下流側に配置する構成では、エジェクタ式冷凍サイクル10全体として送風空気の温度分布を抑制しやすいという点で有効である。
Furthermore, it suppresses that the superheat degree of the refrigerant | coolant of the 1st evaporator 17 exit side raises too much, and suppresses that temperature distribution arises in the ventilation air cooled with the 1st evaporator 17. Can do. This is because, in the configuration in which the first evaporator 17 is arranged on the downstream side of the air flow of the second evaporator 18 as in the ejector refrigeration cycle 10 of the present embodiment, the temperature of the blown air as the entire ejector refrigeration cycle 10. This is effective in that the distribution is easily suppressed.
また、本実施形態のエジェクタモジュール20では、ディフューザ部52の少なくとも一部が、ボデー部21から突出しており、集合配管19の内部に収容されている。これによれば、エジェクタ式冷凍サイクル10における、エジェクタモジュール20と第2蒸発器18の相対位置関係に応じて、適切な形状の集合配管19を採用することで、より一層、エジェクタ式冷凍サイクル10の小型化を図ることができる。
Further, in the ejector module 20 of the present embodiment, at least a part of the diffuser portion 52 protrudes from the body portion 21 and is accommodated inside the collective piping 19. According to this, in the ejector type refrigeration cycle 10, by adopting the collective pipe 19 having an appropriate shape according to the relative positional relationship between the ejector module 20 and the second evaporator 18, the ejector type refrigeration cycle 10 is further increased. Can be miniaturized.
また、本実施形態のエジェクタモジュール20では、ボデー部21の高圧入口21aおよび低圧出口21fが、同一方向に開口している。また、エジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dが、同一方向に開口している。
Further, in the ejector module 20 of the present embodiment, the high pressure inlet 21a and the low pressure outlet 21f of the body portion 21 are opened in the same direction. Further, the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d open in the same direction.
これによれば、一体化された第1蒸発器17および第2蒸発器18に接続されるエジェクタ側出口21c、低圧入口21e、冷媒吸引口21b、および絞り側出口21dが、同一方向に開口しているので、エジェクタモジュール20を、第1蒸発器17および第2蒸発器18に接続しやすい。
According to this, the ejector side outlet 21c, the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d connected to the integrated first evaporator 17 and second evaporator 18 open in the same direction. Therefore, it is easy to connect the ejector module 20 to the first evaporator 17 and the second evaporator 18.
さらに、本実施形態のエジェクタモジュール20は、蒸発器ユニット200のジョイント部(接続部)としての機能を果たすので、エジェクタ式冷凍サイクル10への組み付け性を向上させることができる。これにより、より一層、エジェクタ式冷凍サイクル10全体としての生産性を向上させることができる。
Furthermore, since the ejector module 20 of the present embodiment functions as a joint part (connecting part) of the evaporator unit 200, it is possible to improve the assembling property to the ejector refrigeration cycle 10. Thereby, the productivity as the ejector-type refrigeration cycle 10 as a whole can be further improved.
(第2実施形態)
本実施形態では、第1実施形態に対して、図6、図7に示すように、エジェクタ15のニードル弁53、およびノズル側駆動機構54を廃止した例を説明する。 (Second Embodiment)
In the present embodiment, an example in which theneedle valve 53 and the nozzle-side drive mechanism 54 of the ejector 15 are abolished will be described as shown in FIGS. 6 and 7 with respect to the first embodiment.
本実施形態では、第1実施形態に対して、図6、図7に示すように、エジェクタ15のニードル弁53、およびノズル側駆動機構54を廃止した例を説明する。 (Second Embodiment)
In the present embodiment, an example in which the
つまり、本実施形態のエジェクタ15のノズル部51は、通路断面積が変化しない固定ノズル部である。なお、図6、図7は、それぞれ第1実施形態で説明した図2、図5に対応する図面である。図6、図7では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
That is, the nozzle portion 51 of the ejector 15 of the present embodiment is a fixed nozzle portion whose passage sectional area does not change. 6 and 7 correspond to FIGS. 2 and 5 described in the first embodiment, respectively. 6 and 7, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
図6、図7から明らかなように、本実施形態のエジェクタモジュール20では、エジェクタ15および可変絞り機構16の位置関係が、実質的に第1実施形態と同様となっている。つまり、ノズル部51の中心軸CLと減圧側中心軸CL2がねじれの位置関係となっており、減圧側中心軸CL2方向から見たときに、図7の点ハッチングで示す領域を占める減圧側駆動機構62とノズル部51の中心軸CLが重合するように配置されている。図7に示されたように、ノズル部51の中心軸CLが、減圧側駆動機構62の減圧側中心軸CL2と垂直断面の範囲内に位置されている。
6 and 7, in the ejector module 20 of the present embodiment, the positional relationship between the ejector 15 and the variable aperture mechanism 16 is substantially the same as in the first embodiment. That is, the central axis CL of the nozzle portion 51 and the decompression side central axis CL2 are in a twisted positional relationship, and when viewed from the decompression side central axis CL2, the decompression side drive occupying the region indicated by the point hatching in FIG. The mechanism 62 and the central axis CL of the nozzle portion 51 are arranged so as to overlap. As shown in FIG. 7, the central axis CL of the nozzle portion 51 is positioned within the range of the vertical cross section of the pressure reducing side driving mechanism 62 and the pressure reducing side central axis CL2.
その他のエジェクタモジュール20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
Other configurations and operations of the ejector module 20 and the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, the same effects as those of the first embodiment can be obtained also in the ejector refrigeration cycle 10 of the present embodiment.
より詳細には、可変絞り機構16は、分岐部14の他方の冷媒出口側に接続されているので、可変絞り機構16の絞り開度を調整することによって、絞り通路20aへ流入する冷媒流量、およびノズル部51へ流入する冷媒流量の双方を調整することができる。その結果、負荷変動によらずエジェクタ式冷凍サイクル10に高いCOPを発揮させることができる。
More specifically, since the variable throttle mechanism 16 is connected to the other refrigerant outlet side of the branch portion 14, by adjusting the throttle opening of the variable throttle mechanism 16, the flow rate of the refrigerant flowing into the throttle passage 20a, And both the refrigerant | coolant flow rates which flow in into the nozzle part 51 can be adjusted. As a result, the ejector refrigeration cycle 10 can exhibit a high COP regardless of load fluctuations.
さらに、本実施形態のエジェクタモジュール20では、可変絞り機構16とエジェクタ15とを一体化させる際に、減圧側中心軸CL2方向から見たときに、減圧側駆動機構62とノズル部51の中心軸CLが重合するように配置している。
Further, in the ejector module 20 of the present embodiment, when the variable throttle mechanism 16 and the ejector 15 are integrated, the central axis of the decompression side drive mechanism 62 and the nozzle portion 51 when viewed from the decompression side central axis CL2 direction. It arrange | positions so that CL may superpose | polymerize.
このような配置によれば、比較的体格が大きい減圧側駆動機構62と軸方向に延びる形状に形成されるエジェクタ15とを、減圧側中心軸CL2方向にずらして配置することができる。従って、可変絞り機構16の本体部(すなわち、減圧側駆動機構62を除く部位)とエジェクタ15とを近づけて配置することができる。
According to such an arrangement, the decompression side drive mechanism 62 having a relatively large physique and the ejector 15 formed in a shape extending in the axial direction can be arranged while being shifted in the direction of the decompression side central axis CL2. Therefore, the main body (that is, the portion excluding the decompression side drive mechanism 62) of the variable aperture mechanism 16 and the ejector 15 can be disposed close to each other.
さらに、ノズル部51の中心軸CLと減圧側中心軸CL2が、ねじれの位置関係となっているので、減圧側駆動機構62とエジェクタ15とを互いに干渉させることなく、可変絞り機構16の本体部とエジェクタ15とを効果的に近づけることができる。従って、本実施形態のエジェクタモジュール20によれば、通路断面積を変更可能に構成されていても適用されたエジェクタ式冷凍サイクル10の大型化を招くことがない。
Further, since the central axis CL of the nozzle portion 51 and the pressure reducing side central axis CL2 are in a twisted positional relationship, the main body portion of the variable throttle mechanism 16 does not interfere with the pressure reducing side drive mechanism 62 and the ejector 15. And the ejector 15 can be brought close to each other effectively. Therefore, according to the ejector module 20 of the present embodiment, the applied ejector refrigeration cycle 10 is not enlarged even if the passage cross-sectional area is configured to be changeable.
ここで、本実施形態のエジェクタモジュール20では、ニードル弁53、およびノズル側駆動機構54を廃止しているので、予めノズル部51の喉部の通路断面積を調整しておくことだけでは、第1蒸発器17の出口側冷媒の過熱度を適切に調整しにくい。
Here, in the ejector module 20 of the present embodiment, the needle valve 53 and the nozzle-side drive mechanism 54 are abolished. Therefore, it is only necessary to adjust the passage sectional area of the throat portion of the nozzle portion 51 in advance. It is difficult to appropriately adjust the degree of superheat of the outlet side refrigerant of the one evaporator 17.
そこで、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタモジュール20の低圧出口21fと圧縮機11の吸入口との間に、低圧冷媒の気液を分離して分離された気相冷媒を圧縮機11の吸入口へ流出させるアキュムレータを配置してもよい。
Therefore, in the ejector refrigeration cycle 10 of the present embodiment, the gas-phase refrigerant separated by separating the gas-liquid of the low-pressure refrigerant between the low-pressure outlet 21f of the ejector module 20 and the suction port of the compressor 11 is used as the compressor. You may arrange | position the accumulator which flows out into the 11 inlets.
(第3実施形態)
本実施形態では、第1実施形態に対して、ノズル側駆動部として、図8に示すように、ステッピングモータ等のアクチュエータを有する電動式のノズル側駆動機構541を採用している。ノズル側駆動機構541は、空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。なお、図8は、第1実施形態で説明した図2に対応する図面である。 (Third embodiment)
In the present embodiment, as shown in FIG. 8, an electric nozzle-side drive mechanism 541 having an actuator such as a stepping motor is employed as the nozzle-side drive unit as compared with the first embodiment. The operation of the nozzle side drive mechanism 541 is controlled by a control signal (control pulse) output from the air conditioning control device. FIG. 8 is a drawing corresponding to FIG. 2 described in the first embodiment.
本実施形態では、第1実施形態に対して、ノズル側駆動部として、図8に示すように、ステッピングモータ等のアクチュエータを有する電動式のノズル側駆動機構541を採用している。ノズル側駆動機構541は、空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。なお、図8は、第1実施形態で説明した図2に対応する図面である。 (Third embodiment)
In the present embodiment, as shown in FIG. 8, an electric nozzle-
さらに、本実施形態のエジェクタモジュール20では、第1実施形態と同様に、ノズル側中心軸CL1と減圧側中心軸CL2がねじれの位置関係となっており、ノズル側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部と他方の中心軸が重合配置されている。
Further, in the ejector module 20 of the present embodiment, the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, as in the first embodiment, and the nozzle-side central axis CL1 and the pressure-reducing side central axis When viewed from the direction of one central axis of CL2, the drive unit corresponding to one central axis and the other central axis are superposed.
その他のエジェクタモジュール20の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタモジュール20のように、ノズル側駆動部の形式を変更しても、第1実施形態と同様の効果を得ることができる。
Other configurations and operations of the ejector module 20 are the same as those in the first embodiment. Therefore, even if the type of the nozzle side drive unit is changed as in the ejector module 20 of the present embodiment, the same effect as that of the first embodiment can be obtained.
(第4実施形態)
本実施形態では、第1実施形態に対して、減圧側駆動部として、図9に示すように、ステッピングモータ等のアクチュエータを有する電動式の減圧側駆動機構621を採用している。減圧側駆動機構621は、空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。なお、図9は、第1実施形態で説明した図3に対応する図面である。 (Fourth embodiment)
In the present embodiment, as shown in FIG. 9, an electric pressure-reducingside driving mechanism 621 having an actuator such as a stepping motor is employed as the pressure-reducing side driving unit as compared with the first embodiment. The operation of the decompression side drive mechanism 621 is controlled by a control signal (control pulse) output from the air conditioning control device. FIG. 9 is a drawing corresponding to FIG. 3 described in the first embodiment.
本実施形態では、第1実施形態に対して、減圧側駆動部として、図9に示すように、ステッピングモータ等のアクチュエータを有する電動式の減圧側駆動機構621を採用している。減圧側駆動機構621は、空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。なお、図9は、第1実施形態で説明した図3に対応する図面である。 (Fourth embodiment)
In the present embodiment, as shown in FIG. 9, an electric pressure-reducing
さらに、本実施形態のエジェクタモジュール20では、第1実施形態と同様に、ノズル側中心軸CL1と減圧側中心軸CL2がねじれの位置関係となっており、ノズル側中心軸CL1および減圧側中心軸CL2のうち一方の中心軸方向から見たときに、一方の中心軸に対応する駆動部と他方の中心軸が重合配置されている。
Further, in the ejector module 20 of the present embodiment, the nozzle-side central axis CL1 and the pressure-reducing side central axis CL2 have a twisted positional relationship, as in the first embodiment, and the nozzle-side central axis CL1 and the pressure-reducing side central axis When viewed from the direction of one central axis of CL2, the drive unit corresponding to one central axis and the other central axis are superposed.
その他のエジェクタモジュール20の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタモジュール20のように、減圧側駆動部の形式を変更しても、第1実施形態と同様の効果を得ることができる。
Other configurations and operations of the ejector module 20 are the same as those in the first embodiment. Therefore, even if the type of the decompression side drive unit is changed as in the ejector module 20 of the present embodiment, the same effect as that of the first embodiment can be obtained.
(第5実施形態)
本実施形態では、第1実施形態に対して、図10に示すように、エジェクタ側出口21cを、低圧入口21e、冷媒吸引口21b、および絞り側出口21dと同一方向に開口させるとともに、ボデー部21の外表面の同一平面上で開口させている。 (Fifth embodiment)
In the present embodiment, as shown in FIG. 10, theejector side outlet 21c is opened in the same direction as the low pressure inlet 21e, the refrigerant suction port 21b, and the throttle side outlet 21d as compared with the first embodiment, and the body portion 21 is opened on the same plane of the outer surface.
本実施形態では、第1実施形態に対して、図10に示すように、エジェクタ側出口21cを、低圧入口21e、冷媒吸引口21b、および絞り側出口21dと同一方向に開口させるとともに、ボデー部21の外表面の同一平面上で開口させている。 (Fifth embodiment)
In the present embodiment, as shown in FIG. 10, the
その他のエジェクタモジュール20の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタモジュール20においても、第1実施形態と同様の効果を得ることができる。さらに、本実施形態のように、エジェクタ側出口21cを、他の冷媒出入口21b~21dと同一平面状に配置することで、エジェクタ式冷凍サイクル10の組み付け性を向上させることができる。
Other configurations and operations of the ejector module 20 are the same as those in the first embodiment. Therefore, also in the ejector module 20 of this embodiment, the effect similar to 1st Embodiment can be acquired. Further, as shown in the present embodiment, the ejector side outlet 21c is arranged in the same plane as the other refrigerant inlets / outlets 21b to 21d, so that the assembling property of the ejector refrigeration cycle 10 can be improved.
(第6実施形態)
本実施形態では、第4実施形態で説明したエジェクタモジュール20を用いた蒸発器ユニット200を、図11の全体構成図に示すエジェクタ式冷凍サイクル10aに適用した例を説明する。 (Sixth embodiment)
In the present embodiment, an example in which theevaporator unit 200 using the ejector module 20 described in the fourth embodiment is applied to the ejector refrigeration cycle 10a illustrated in the overall configuration diagram of FIG. 11 will be described.
本実施形態では、第4実施形態で説明したエジェクタモジュール20を用いた蒸発器ユニット200を、図11の全体構成図に示すエジェクタ式冷凍サイクル10aに適用した例を説明する。 (Sixth embodiment)
In the present embodiment, an example in which the
エジェクタ式冷凍サイクル10aは、車両用空調装置1に適用されており、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。エジェクタ式冷凍サイクル10aは、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、および暖房モードの冷媒回路を切り替え可能に構成されている。
The ejector-type refrigeration cycle 10a is applied to the vehicle air conditioner 1, and functions to cool or heat the air blown into the passenger compartment that is the air-conditioning target space. The ejector refrigeration cycle 10a is configured to be capable of switching between a cooling mode refrigerant circuit, a dehumidifying heating mode refrigerant circuit, and a heating mode refrigerant circuit.
車両用空調装置1において、冷房モードは、冷却された送風空気を車室内へ吹き出すことによって車室内の冷房を行う運転モードである。暖房モードは、加熱された送風空気を車室内へ吹き出すことによって車室内の暖房を行う運転モードである。除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
In the vehicle air conditioner 1, the cooling mode is an operation mode in which cooling of the vehicle interior is performed by blowing out the cooled blown air into the vehicle interior. The heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior. The dehumidifying heating mode is an operation mode in which dehumidifying heating in the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior.
なお、図11では、冷房モードの冷媒回路における冷媒の流れを白抜き矢印で示している。暖房モードの冷媒回路における冷媒の流れを黒塗り矢印で示している。除湿暖房モードの冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示している。
In addition, in FIG. 11, the flow of the refrigerant | coolant in the refrigerant circuit of the air_conditioning | cooling mode is shown with the white arrow. The flow of the refrigerant in the refrigerant circuit in the heating mode is indicated by black arrows. The flow of the refrigerant in the refrigerant circuit in the dehumidifying and heating mode is indicated by hatched arrows.
また、エジェクタ式冷凍サイクル10aでは、放熱器12として、第1実施形態で説明した凝縮部のみを有するものを採用している。さらに、本実施形態では、放熱器12を、後述する室内空調ユニット30のケーシング31内に配置している。従って、本実施形態の放熱器12は、室内凝縮器と表現することができる。
In the ejector refrigeration cycle 10a, the radiator 12 having only the condensing part described in the first embodiment is employed. Furthermore, in this embodiment, the heat radiator 12 is arrange | positioned in the casing 31 of the indoor air conditioning unit 30 mentioned later. Therefore, the radiator 12 of this embodiment can be expressed as an indoor condenser.
放熱器12の冷媒出口には、互いに連通する3つの流入出口を有する第1三方継手22aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。
The refrigerant outlet of the radiator 12 is connected to the inlet side of the first three-way joint 22a having three inlets and outlets communicating with each other. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
三方継手は、3つの流入出口のうち、1つを流入口とし、残余の2つを流出口として用いることで、冷媒の流れを分岐する分岐部として機能する。また、三方継手は、3つの流入出口のうち、2つを流入口とし、残余の1つを流出口として用いることで、2つの冷媒の流れを合流させる合流部として機能する。
The three-way joint functions as a branching portion that branches the refrigerant flow by using one of the three inlets and outlets as an inlet and the remaining two as outlets. In addition, the three-way joint functions as a merging portion that merges the two refrigerant flows by using two of the three inflow / outflow ports as inflow ports and the remaining one as the outflow port.
さらに、エジェクタ式冷凍サイクル10aは、後述するように、第2~第4三方継手22b~22dを備えている。これらの第2~第4三方継手22b~22dの基本的構成は、第1三方継手22aと同様である。
Furthermore, as will be described later, the ejector refrigeration cycle 10a includes second to fourth three-way joints 22b to 22d. The basic configuration of the second to fourth three-way joints 22b to 22d is the same as that of the first three-way joint 22a.
第1三方継手22aの一方の流出口には、暖房用膨張弁23を介して、第2三方継手22bの一方の流入口側が接続されている。第1三方継手22aの他方の流出口には、第1開閉弁24aを介して、第2三方継手22bの他方の流入口側が接続されている。第2三方継手22bの流出口には、室外熱交換器25の冷媒入口側が接続されている。
One inlet of the second three-way joint 22b is connected to one outlet of the first three-way joint 22a via a heating expansion valve 23. The other inflow side of the second three-way joint 22b is connected to the other outflow port of the first three-way joint 22a via the first on-off valve 24a. The refrigerant inlet side of the outdoor heat exchanger 25 is connected to the outlet of the second three-way joint 22b.
暖房用膨張弁23は、少なくとも暖房モード時に、放熱器12から流出した高圧冷媒を減圧させる減圧装置である。暖房用膨張弁23は、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。暖房用膨張弁23は、空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。
The heating expansion valve 23 is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the radiator 12 at least in the heating mode. The heating expansion valve 23 is an electric variable throttle mechanism that includes a valve body that can change the throttle opening and an electric actuator that changes the opening of the valve body. The operation of the heating expansion valve 23 is controlled by a control signal (control pulse) output from the air conditioning control device.
第1開閉弁24aは、第1三方継手22aの他方の流出口と第2三方継手22bの他方の流入口とを接続する迂回通路を開閉する電磁弁である。さらに、エジェクタ式冷凍サイクル10aは、後述するように、第2開閉弁24bを備えている。第2開閉弁24bの基本的構成は、第1三方継手22aと同様である。第1、第2開閉弁24a、24bは、空調制御装置から出力される制御電圧によって、その作動が制御される。
The first on-off valve 24a is an electromagnetic valve that opens and closes a bypass passage that connects the other outlet of the first three-way joint 22a and the other inlet of the second three-way joint 22b. Further, the ejector refrigeration cycle 10a includes a second on-off valve 24b as will be described later. The basic configuration of the second on-off valve 24b is the same as that of the first three-way joint 22a. The operations of the first and second on-off valves 24a and 24b are controlled by a control voltage output from the air conditioning control device.
ここで、冷媒が第1開閉弁24aを通過する際に生じる圧力損失は、冷媒が暖房用膨張弁23を通過する際に生じる圧力損失と比較して極めて小さい。従って、第1開閉弁24aが開いている際に、放熱器12から第1三方継手22aへ流入した冷媒は、殆ど暖房用膨張弁23側へ流出することなく、第1開閉弁24a側へ流出する。
Here, the pressure loss that occurs when the refrigerant passes through the first on-off valve 24a is extremely small compared to the pressure loss that occurs when the refrigerant passes through the heating expansion valve 23. Therefore, when the first on-off valve 24a is open, the refrigerant that has flowed from the radiator 12 into the first three-way joint 22a hardly flows out to the heating expansion valve 23 side, but flows out to the first on-off valve 24a side. To do.
室外熱交換器25は、暖房用膨張弁23から流出した冷媒と外気ファン25aから送風された外気とを熱交換させる熱交換器である。室外熱交換器25は、車両ボンネット内の前方側に配置されている。
The outdoor heat exchanger 25 is a heat exchanger for exchanging heat between the refrigerant flowing out of the heating expansion valve 23 and the outside air blown from the outside air fan 25a. The outdoor heat exchanger 25 is disposed on the front side in the vehicle bonnet.
室外熱交換器25は、少なくとも冷房モード時に、高圧冷媒を放熱させる放熱器として機能し、少なくとも暖房モード時には、暖房用膨張弁23にて減圧された低圧冷媒を蒸発させる蒸発器として機能する。外気ファン25aは、空調制御装置から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動送風機である。
The outdoor heat exchanger 25 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant decompressed by the heating expansion valve 23 at least in the heating mode. The outside air fan 25a is an electric blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device.
室外熱交換器25の冷媒出口には、第3三方継手22cの流入口が接続されている。第3三方継手22cの一方の流出口には、蒸発器ユニット200の冷媒入口側(すなわち、エジェクタモジュール20の高圧入口21a側)が接続されている。蒸発器ユニット200の冷媒出口(すなわち、エジェクタモジュール20の低圧出口21f)には、第4三方継手22dの一方の流入口が接続されている。
The inlet of the third three-way joint 22c is connected to the refrigerant outlet of the outdoor heat exchanger 25. The refrigerant inlet side of the evaporator unit 200 (that is, the high pressure inlet 21a side of the ejector module 20) is connected to one outlet of the third three-way joint 22c. One inlet of the fourth three-way joint 22d is connected to the refrigerant outlet of the evaporator unit 200 (that is, the low pressure outlet 21f of the ejector module 20).
第3三方継手22cの他方の流出口には、第2開閉弁24bを介して、第4三方継手22dの他方の流入口が接続されている。第4三方継手22dの流出口には、アキュムレータ26の入口側が接続されている。アキュムレータ26は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。アキュムレータ26の気相冷媒出口には、圧縮機11の吸入口側が接続されている。
The other inflow port of the fourth three-way joint 22d is connected to the other outflow port of the third three-way joint 22c through the second on-off valve 24b. The inlet side of the accumulator 26 is connected to the outlet of the fourth three-way joint 22d. The accumulator 26 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 26.
また、本実施形態のエジェクタモジュール20では、図12に示すように、減圧側駆動機構621が絞り弁61を変位させて絞り通路20aを全開とした際の最大通路断面積A1が、高圧入口21aから絞り通路20aへ至る冷媒通路(換言すると、絞り通路20aよりも上流側の冷媒通路)の最小通路断面積A2以上(A1≧A2)に設定されている。なお、図12は、第4実施形態で説明した図9に対応する図面である。
Further, in the ejector module 20 of the present embodiment, as shown in FIG. 12, the maximum passage cross-sectional area A1 when the decompression side drive mechanism 621 displaces the throttle valve 61 to fully open the throttle passage 20a is the high pressure inlet 21a. Is set to be equal to or larger than the minimum passage cross-sectional area A2 (A1 ≧ A2) of the refrigerant passage (in other words, the refrigerant passage on the upstream side of the restriction passage 20a) from the throttle passage 20a. FIG. 12 is a drawing corresponding to FIG. 9 described in the fourth embodiment.
このため、冷媒が全開となっている絞り通路20aを通過する際に生じる圧力損失は、冷媒がエジェクタモジュール20のノズル部51を通過する際に生じる圧力損失と比較して極めて小さい。従って、絞り通路20aが全開となっている際に、エジェクタモジュール20の高圧入口21aへ流入した冷媒は、殆ど分岐部14からノズル部51側へ流出することなく、ほぼ全流量が分岐部14から絞り通路20a側へ流出する。
For this reason, the pressure loss that occurs when the refrigerant passes through the throttle passage 20a that is fully open is extremely small compared to the pressure loss that occurs when the refrigerant passes through the nozzle portion 51 of the ejector module 20. Accordingly, when the throttle passage 20a is fully open, the refrigerant that has flowed into the high pressure inlet 21a of the ejector module 20 hardly flows out from the branch portion 14 to the nozzle portion 51 side, and almost the entire flow rate is from the branch portion 14. It flows out to the throttle passage 20a side.
その他のエジェクタ式冷凍サイクル10aの構成は、第1実施形態のエジェクタ式冷凍サイクル10と同様である。
Other configurations of the ejector refrigeration cycle 10a are the same as those of the ejector refrigeration cycle 10 of the first embodiment.
次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。室内空調ユニット30は、エジェクタ式冷凍サイクル10aによって温度調整された送風空気を車室内の適切な箇所へ吹き出すためのものである。
Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. The indoor air conditioning unit 30 is for blowing out the blown air whose temperature has been adjusted by the ejector refrigeration cycle 10a to an appropriate location in the passenger compartment.
室内空調ユニット30は、図11に示すように、その外殻を形成するケーシング31の内部に形成される空気通路に、送風機18a、蒸発器ユニット200、放熱器12等を収容したものである。
As shown in FIG. 11, the indoor air conditioning unit 30 includes a blower 18 a, an evaporator unit 200, a radiator 12, and the like in an air passage formed inside a casing 31 that forms an outer shell thereof.
ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて成形されている。ケーシング31の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置33が配置されている。
The casing 31 forms an air passage for blown air to be blown into the vehicle interior, and is formed of a resin (specifically, polypropylene) having a certain degree of elasticity and excellent in strength. An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
内外気切替装置33の送風空気流れ下流側には、送風機18aが配置されている。さらに、送風機18aの送風空気流れ下流側には、蒸発器ユニット200および放熱器12が、送風空気の流れに対して、この順に配置されている。つまり、蒸発器ユニット200は、放熱器12に対して、送風空気流れ上流側に配置されている。
A blower 18 a is arranged on the downstream side of the blown air flow of the inside / outside air switching device 33. Furthermore, the evaporator unit 200 and the radiator 12 are arranged in this order with respect to the flow of the blown air on the downstream side of the blower air flow of the blower 18a. That is, the evaporator unit 200 is arranged on the upstream side of the blower air flow with respect to the radiator 12.
また、ケーシング31内には、蒸発器ユニット200を通過した送風空気を、放熱器12を迂回させて下流側へ流す冷風バイパス通路35が形成されている。
Further, in the casing 31, a cold air bypass passage 35 is formed in which the blown air that has passed through the evaporator unit 200 is caused to bypass the radiator 12 and flow downstream.
蒸発器ユニット200の送風空気流れ下流側であって、かつ、放熱器12の送風空気流れ上流側には、蒸発器ユニット200通過後の送風空気のうち、放熱器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整するエアミックスドア34が配置されている。
On the downstream side of the blower air flow of the evaporator unit 200 and on the upstream side of the blower air flow of the radiator 12, of the blown air that has passed through the evaporator unit 200, the amount of air passing through the radiator 12 and the cold air bypass An air mix door 34 that adjusts the air volume ratio with the air volume that passes through the passage 35 is disposed.
放熱器12の送風空気流れ下流側には、放熱器12にて加熱された送風空気と冷風バイパス通路35を通過して放熱器12にて加熱されていない送風空気とを混合させる混合空間が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を、車室内へ吹き出す開口穴が配置されている。
On the downstream side of the blast air flow of the radiator 12, a mixing space for mixing the blast air heated by the radiator 12 and the blast air that has passed through the cold air bypass passage 35 and is not heated by the radiator 12 is provided. It has been. Furthermore, the opening hole which blows off the blowing air (air-conditioning wind) mixed in the mixing space in the vehicle interior at the most downstream part of the blowing air flow of the casing 31 is arranged.
この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior. The foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
従って、エアミックスドア34が、放熱器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。
Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the radiator 12 and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is also adjusted.
エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
The air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成するものである。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
These face doors, foot doors, and defroster doors constitute an air outlet mode switching device that switches an air outlet from which air-conditioned air is blown. The face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are rotated in conjunction with each other. The operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1では、車室内の冷房、暖房、および除湿暖房を行うことができる。これに応じて、エジェクタ式冷凍サイクル10aでは、冷房モード、暖房モード、および除湿暖房モードの運転を切り替えることができる。これらの運転モードの切り替えは、空調制御装置に記憶された空調制御プログラムが実行されることによって行われる。
Next, the operation of this embodiment in the above configuration will be described. In the vehicle air conditioner 1 of the present embodiment, cooling, heating, and dehumidifying heating can be performed in the passenger compartment. Accordingly, in the ejector refrigeration cycle 10a, the operation in the cooling mode, the heating mode, and the dehumidifying heating mode can be switched. Switching between these operation modes is performed by executing an air conditioning control program stored in the air conditioning control device.
この空調制御プログラムでは、車室内へ吹き出される送風空気の目標吹出温度TAOおよび外気温Tamに基づいて、冷媒回路を切り替える。より具体的には、目標吹出温度TAOあるいは外気温Tamの上昇に伴って、暖房モード→除湿暖房モード→冷房モードの順に切り替える。以下に、各運転モードの作動について説明する。
In this air conditioning control program, the refrigerant circuit is switched based on the target blowing temperature TAO and the outside air temperature Tam of the blown air blown into the vehicle interior. More specifically, the heating mode → the dehumidifying heating mode → the cooling mode is switched in this order as the target blowing temperature TAO or the outside air temperature Tam increases. Below, the operation | movement of each operation mode is demonstrated.
(a)冷房モード
冷房モードでは、空調制御装置が、暖房用膨張弁23を全閉状態とし、第1開閉弁24aを開き、第2開閉弁24bを閉じ、エジェクタモジュール20の絞り通路20aにて冷媒減圧作用が発揮されるように減圧側駆動機構621の作動を制御する。 (A) Cooling mode In the cooling mode, the air conditioning control device fully closes theheating expansion valve 23, opens the first on-off valve 24a, closes the second on-off valve 24b, and in the throttle passage 20a of the ejector module 20. The operation of the decompression side drive mechanism 621 is controlled so that the refrigerant decompression action is exhibited.
冷房モードでは、空調制御装置が、暖房用膨張弁23を全閉状態とし、第1開閉弁24aを開き、第2開閉弁24bを閉じ、エジェクタモジュール20の絞り通路20aにて冷媒減圧作用が発揮されるように減圧側駆動機構621の作動を制御する。 (A) Cooling mode In the cooling mode, the air conditioning control device fully closes the
これにより、冷房モードのエジェクタ式冷凍サイクル10aでは、図11の白抜き矢印に示すように、圧縮機11(→放熱器12)→第1開閉弁24a→室外熱交換器25→蒸発器ユニット200→アキュムレータ26→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
Thereby, in the ejector refrigeration cycle 10a in the cooling mode, as indicated by the white arrow in FIG. 11, the compressor 11 (→ the radiator 12) → the first on-off valve 24a → the outdoor heat exchanger 25 → the evaporator unit 200 A refrigeration cycle in which refrigerant circulates in the order of accumulator 26 → compressor 11 is configured.
このサイクル構成で、空調制御装置は、目標吹出温度TAOに基づいて、予め空調制御装置に記憶されている制御マップを参照して、蒸発器ユニット200から吹き出される送風空気の目標蒸発器温度TEOを決定する。そして、蒸発器ユニット200の第1蒸発器17の蒸発器温度が、目標蒸発器温度TEOに近づくように、圧縮機11の作動を制御する。
With this cycle configuration, the air conditioning control device refers to the control map stored in advance in the air conditioning control device based on the target blowing temperature TAO, and the target evaporator temperature TEO of the blown air blown from the evaporator unit 200. To decide. Then, the operation of the compressor 11 is controlled so that the evaporator temperature of the first evaporator 17 of the evaporator unit 200 approaches the target evaporator temperature TEO.
この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOを低下させるように決定する。さらに、目標蒸発器温度TEOは、第1蒸発器17および第2蒸発器18の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。
In this control map, the target evaporator temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Further, the target evaporator temperature TEO is determined to be a value within a range (specifically, 1 ° C. or higher) in which frost formation of the first evaporator 17 and the second evaporator 18 can be suppressed.
また、空調制御装置は、放熱器12側の通風路を全閉とし、冷風バイパス通路35側が全開となるようにエアミックスドア34を変位させる。
In addition, the air conditioning control device displaces the air mix door 34 so that the air passage on the radiator 12 side is fully closed and the cold air bypass passage 35 side is fully opened.
従って、冷房モードでは、圧縮機11から吐出された高圧冷媒が放熱器12へ流入する。冷房モードでは、エアミックスドア34が放熱器12側の通風路を全閉としているので、放熱器12へ流入した高圧冷媒は、送風空気に放熱することなく、放熱器12から流出する。放熱器12から流出した高圧冷媒は、第1開閉弁24aを介して、室外熱交換器25へ流入する。
Therefore, in the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. In the cooling mode, since the air mix door 34 fully closes the ventilation path on the radiator 12 side, the high-pressure refrigerant flowing into the radiator 12 flows out of the radiator 12 without radiating heat to the blown air. The high-pressure refrigerant that has flowed out of the radiator 12 flows into the outdoor heat exchanger 25 through the first on-off valve 24a.
室外熱交換器25へ流入した高圧冷媒は、外気ファン25aによって送風された外気と熱交換し、放熱して凝縮する。室外熱交換器25にて凝縮した冷媒は、蒸発器ユニット200(具体的には、エジェクタモジュール20の高圧入口21a)へ流入する。エジェクタモジュール20へ流入した冷媒は、第1実施形態と同様に、第1蒸発器17および第2蒸発器18にて送風空気から吸熱して蒸発する。
The high-pressure refrigerant that has flowed into the outdoor heat exchanger 25 exchanges heat with the outside air blown by the outside air fan 25a, dissipates heat, and condenses. The refrigerant condensed in the outdoor heat exchanger 25 flows into the evaporator unit 200 (specifically, the high pressure inlet 21a of the ejector module 20). The refrigerant flowing into the ejector module 20 absorbs heat from the blown air and evaporates in the first evaporator 17 and the second evaporator 18 as in the first embodiment.
蒸発器ユニット200(具体的には、エジェクタモジュール20の低圧出口21f)から流出した冷媒は、アキュムレータ26へ流入する。そして、アキュムレータ26にて分離された気相冷媒が圧縮機11に吸入される。
The refrigerant that has flowed out of the evaporator unit 200 (specifically, the low-pressure outlet 21f of the ejector module 20) flows into the accumulator 26. The gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
つまり、冷房モードのエジェクタ式冷凍サイクル10aでは、室外熱交換器25を放熱器として機能させ、蒸発器ユニット200の第1蒸発器17および第2蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。従って、冷房モードでは、蒸発器ユニット200の第1蒸発器17および第2蒸発器18にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
That is, in the ejector refrigeration cycle 10a in the cooling mode, a refrigeration cycle is configured in which the outdoor heat exchanger 25 functions as a radiator and the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 function as an evaporator. Is done. Therefore, in the cooling mode, the vehicle interior can be cooled by blowing the blown air cooled by the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 into the vehicle interior.
(b)暖房モード
暖房モードでは、空調制御装置が、暖房用膨張弁23を冷媒減圧作用を発揮する絞り状態とし、第1開閉弁24aを閉じ、第2開閉弁24bを開き、エジェクタモジュール20の絞り通路20aを閉塞させるように減圧側駆動機構621の作動を制御する。 (B) Heating mode In the heating mode, the air-conditioning control device sets theheating expansion valve 23 to a throttled state that exerts a refrigerant decompression action, closes the first on-off valve 24a, opens the second on-off valve 24b, and sets the ejector module 20 The operation of the decompression side drive mechanism 621 is controlled so as to close the throttle passage 20a.
暖房モードでは、空調制御装置が、暖房用膨張弁23を冷媒減圧作用を発揮する絞り状態とし、第1開閉弁24aを閉じ、第2開閉弁24bを開き、エジェクタモジュール20の絞り通路20aを閉塞させるように減圧側駆動機構621の作動を制御する。 (B) Heating mode In the heating mode, the air-conditioning control device sets the
これにより、暖房モードのエジェクタ式冷凍サイクル10aでは、図11の黒塗り矢印に示すように、圧縮機11→放熱器12→暖房用膨張弁23→室外熱交換器25→第2開閉弁24b→アキュムレータ26→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
As a result, in the ejector refrigeration cycle 10a in the heating mode, as indicated by the black arrows in FIG. 11, the compressor 11, the radiator 12, the heating expansion valve 23, the outdoor heat exchanger 25, the second on-off valve 24b, A refrigeration cycle in which the refrigerant circulates in the order of accumulator 26 → compressor 11 is configured.
このサイクル構成で、空調制御装置は、目標吹出温度TAOに基づいて、予め空調制御装置に記憶されている制御マップを参照して、放熱器12へ流入する高圧冷媒の目標凝縮器圧力PCOを決定する。そして、放熱器12へ流入する高圧冷媒の圧力が、目標凝縮器圧力PCOに近づくように、圧縮機11の作動を制御する。
With this cycle configuration, the air conditioning control device determines the target condenser pressure PCO of the high-pressure refrigerant flowing into the radiator 12 with reference to the control map stored in the air conditioning control device in advance based on the target outlet temperature TAO. To do. Then, the operation of the compressor 11 is controlled so that the pressure of the high-pressure refrigerant flowing into the radiator 12 approaches the target condenser pressure PCO.
この制御マップでは、目標吹出温度TAOの上昇に伴って、目標凝縮器圧力PCOを上昇させるように決定する。
In this control map, the target condenser pressure PCO is determined to increase as the target outlet temperature TAO increases.
また、空調制御装置は、放熱器12側の通風路を全開とし、冷風バイパス通路35側が全閉となるようにエアミックスドア34を変位させる。
Also, the air conditioning control device displaces the air mix door 34 so that the ventilation path on the radiator 12 side is fully opened and the cold air bypass path 35 side is fully closed.
従って、暖房モードでは、圧縮機11から吐出された高圧冷媒が放熱器12へ流入する。暖房モードでは、エアミックスドア34が放熱器12側の通風路を全開としているので、放熱器12へ流入した高圧冷媒は、送風空気と熱交換して放熱する。放熱器12から流出した冷媒は、暖房用膨張弁23へ流入して減圧される。暖房用膨張弁23にて減圧された低圧冷媒は、室外熱交換器25へ流入する。
Therefore, in the heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. In the heating mode, since the air mix door 34 fully opens the ventilation path on the radiator 12 side, the high-pressure refrigerant flowing into the radiator 12 radiates heat by exchanging heat with the blown air. The refrigerant flowing out of the radiator 12 flows into the heating expansion valve 23 and is decompressed. The low-pressure refrigerant decompressed by the heating expansion valve 23 flows into the outdoor heat exchanger 25.
室外熱交換器25へ流入した低圧冷媒は、外気ファン25aによって送風された外気から吸熱して蒸発する。室外熱交換器25にて蒸発した冷媒は、第2開閉弁24bが開いているので、蒸発器ユニット200側(具体的には、エジェクタモジュール20側)へ殆ど流入することなく、第2開閉弁24bを介してアキュムレータ26へ流入する。そして、アキュムレータ26にて分離された気相冷媒が圧縮機11に吸入される。
The low-pressure refrigerant that has flowed into the outdoor heat exchanger 25 absorbs heat from the outside air blown by the outside air fan 25a and evaporates. Since the second on-off valve 24b is opened, the refrigerant evaporated in the outdoor heat exchanger 25 hardly flows into the evaporator unit 200 side (specifically, the ejector module 20 side), and the second on-off valve It flows into the accumulator 26 through 24b. The gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
つまり、暖房モードのエジェクタ式冷凍サイクル10aでは、放熱器12を放熱器として機能させ、室外熱交換器25を蒸発器として機能させる冷凍サイクルが構成される。従って、暖房モードでは、放熱器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
That is, in the ejector refrigeration cycle 10a in the heating mode, a refrigeration cycle is configured in which the radiator 12 functions as a radiator and the outdoor heat exchanger 25 functions as an evaporator. Therefore, in the heating mode, the vehicle interior can be heated by blowing the blown air heated by the radiator 12 into the vehicle interior.
(c)除湿暖房モード
除湿暖房モードでは、空調制御装置が、暖房用膨張弁23を絞り状態とし、第1開閉弁24aを閉じ、第2開閉弁24bを閉じ、エジェクタモジュール20の絞り通路20aが全開となるように減圧側駆動機構621の作動を制御する。 (C) Dehumidifying Heating Mode In the dehumidifying heating mode, the air conditioning control device places theheating expansion valve 23 in the throttle state, closes the first on-off valve 24a, closes the second on-off valve 24b, and opens the throttle passage 20a of the ejector module 20. The operation of the decompression side drive mechanism 621 is controlled so as to be fully opened.
除湿暖房モードでは、空調制御装置が、暖房用膨張弁23を絞り状態とし、第1開閉弁24aを閉じ、第2開閉弁24bを閉じ、エジェクタモジュール20の絞り通路20aが全開となるように減圧側駆動機構621の作動を制御する。 (C) Dehumidifying Heating Mode In the dehumidifying heating mode, the air conditioning control device places the
これにより、除湿暖房モードのエジェクタ式冷凍サイクル10aでは、図11の斜線ハッチング付き矢印に示すように、圧縮機11→放熱器12→暖房用膨張弁23→室外熱交換器25→蒸発器ユニット200→アキュムレータ26→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
Thus, in the ejector refrigeration cycle 10a in the dehumidifying heating mode, as indicated by the hatched arrows in FIG. 11, the compressor 11 → the radiator 12 → the heating expansion valve 23 → the outdoor heat exchanger 25 → the evaporator unit 200 A refrigeration cycle in which refrigerant circulates in the order of accumulator 26 → compressor 11 is configured.
このサイクル構成で、空調制御装置は、冷房モードと同様に、圧縮機11の作動を制御する。このため、除湿暖房モードにおいても、第1蒸発器17および第2蒸発器18における冷媒蒸発温度は1℃以上に設定される。
In this cycle configuration, the air conditioning control device controls the operation of the compressor 11 as in the cooling mode. For this reason, also in dehumidification heating mode, the refrigerant | coolant evaporation temperature in the 1st evaporator 17 and the 2nd evaporator 18 is set to 1 degreeC or more.
また、空調制御装置は、放熱器12側の通風路を全開とし、冷風バイパス通路35側が全閉となるようにエアミックスドア34を変位させる。
Also, the air conditioning control device displaces the air mix door 34 so that the ventilation path on the radiator 12 side is fully opened and the cold air bypass path 35 side is fully closed.
従って、除湿暖房モードでは、圧縮機11から吐出された高圧冷媒が放熱器12へ流入する。除湿暖房モードでは、エアミックスドア34が放熱器12側の通風路を全開としているので、放熱器12へ流入した高圧冷媒は、送風空気と熱交換して放熱する。放熱器12から流出した冷媒は、暖房用膨張弁23へ流入して減圧される。暖房用膨張弁23にて減圧された低圧冷媒は、室外熱交換器25へ流入する。
Therefore, in the dehumidifying heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12. In the dehumidifying and heating mode, since the air mix door 34 fully opens the ventilation path on the radiator 12 side, the high-pressure refrigerant flowing into the radiator 12 radiates heat by exchanging heat with the blown air. The refrigerant flowing out of the radiator 12 flows into the heating expansion valve 23 and is decompressed. The low-pressure refrigerant decompressed by the heating expansion valve 23 flows into the outdoor heat exchanger 25.
室外熱交換器25へ流入した低圧冷媒は、外気ファン25aによって送風された外気から吸熱して蒸発する。室外熱交換器25にて蒸発した冷媒は、第2開閉弁24bが閉じているので、蒸発器ユニット200(具体的には、エジェクタモジュール20の高圧入口21a)へ流入する。
The low-pressure refrigerant that has flowed into the outdoor heat exchanger 25 absorbs heat from the outside air blown by the outside air fan 25a and evaporates. The refrigerant evaporated in the outdoor heat exchanger 25 flows into the evaporator unit 200 (specifically, the high pressure inlet 21a of the ejector module 20) because the second on-off valve 24b is closed.
蒸発器ユニット200へ流入した冷媒は、絞り通路20aが全開となっているので、ノズル部51側へ殆ど流入することなく、絞り通路20a側へ流入する。そして、第1蒸発器17→エジェクタ15の冷媒吸引口21b→エジェクタ15のディフューザ部52→第2蒸発器18の順に流れる。この際、冷媒は、第1蒸発器17および第2蒸発器18にて送風空気から吸熱してさらに蒸発する。
The refrigerant that has flowed into the evaporator unit 200 flows into the throttle passage 20a side with almost no flow into the nozzle portion 51 side because the throttle passage 20a is fully open. Then, the refrigerant flows in the order of the first evaporator 17 → the refrigerant suction port 21 b of the ejector 15 → the diffuser portion 52 of the ejector 15 → the second evaporator 18. At this time, the refrigerant absorbs heat from the blown air in the first evaporator 17 and the second evaporator 18 and further evaporates.
蒸発器ユニット200(具体的には、エジェクタモジュール20の低圧出口21f)から流出した冷媒は、アキュムレータ26へ流入する。そして、アキュムレータ26にて分離された気相冷媒が圧縮機11に吸入される。
The refrigerant that has flowed out of the evaporator unit 200 (specifically, the low-pressure outlet 21f of the ejector module 20) flows into the accumulator 26. The gas-phase refrigerant separated by the accumulator 26 is sucked into the compressor 11.
つまり、除湿暖房モードのエジェクタ式冷凍サイクル10aでは、放熱器12を放熱器として機能させ、室外熱交換器25、第1蒸発器17および第2蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。従って、除湿暖房モードでは、蒸発器ユニット200の第1蒸発器17および第2蒸発器18にて冷却されて除湿された送風空気を放熱器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
That is, in the ejector type refrigeration cycle 10a in the dehumidifying and heating mode, a refrigeration cycle in which the radiator 12 functions as a radiator and the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 function as an evaporator is configured. Is done. Therefore, in the dehumidifying heating mode, the blown air cooled and dehumidified by the first evaporator 17 and the second evaporator 18 of the evaporator unit 200 is reheated by the radiator 12 and blown out into the passenger compartment. Dehumidification heating in the passenger compartment can be performed.
ここで、除湿暖房モードでは、室外熱交換器25にて冷媒が外気から吸熱した熱、並びに、第1蒸発器17および第2蒸発器18にて冷媒が送風空気から吸熱した熱を熱源として、送風空気の再加熱を行っている。従って、除湿暖房モード時の送風空気の加熱能力を向上させるためには、室外熱交換器25、第1蒸発器17および第2蒸発器18における冷媒の吸熱量を増加させる必要がある。
Here, in the dehumidifying heating mode, the heat that the refrigerant has absorbed from the outside air in the outdoor heat exchanger 25 and the heat that the refrigerant has absorbed from the blown air in the first evaporator 17 and the second evaporator 18 are used as heat sources. Blowing air is reheated. Therefore, in order to improve the heating capability of the blown air in the dehumidifying heating mode, it is necessary to increase the heat absorption amount of the refrigerant in the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18.
さらに、除湿暖房モードでは、室外熱交換器25、第1蒸発器17および第2蒸発器18が、冷媒流れに対して、この順で直列的に接続された冷媒回路となる。このため、室外熱交換器25における冷媒蒸発温度を、第1蒸発器17および第2蒸発器18の冷媒蒸発温度よりも低くすることはできない。
Furthermore, in the dehumidifying and heating mode, the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 form a refrigerant circuit connected in series in this order with respect to the refrigerant flow. For this reason, the refrigerant evaporation temperature in the outdoor heat exchanger 25 cannot be made lower than the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18.
従って、エジェクタ式冷凍サイクル10aにおいて、除湿暖房モード時の加熱能力を向上させるためには、第1蒸発器17および第2蒸発器18の冷媒蒸発温度を着霜を抑制可能な範囲で低下させる。さらに、室外熱交換器25における冷媒蒸発温度を、第1蒸発器17および第2蒸発器18の冷媒蒸発温度に近づけることが有効である。
Therefore, in the ejector-type refrigeration cycle 10a, in order to improve the heating capability in the dehumidifying heating mode, the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18 are lowered within a range in which frost formation can be suppressed. Furthermore, it is effective to make the refrigerant evaporation temperature in the outdoor heat exchanger 25 close to the refrigerant evaporation temperature of the first evaporator 17 and the second evaporator 18.
そこで、本実施形態のエジェクタモジュール20では、絞り通路20aを全開とした際の最大通路断面積A1を、絞り通路20aよりも上流側の冷媒通路の最小通路断面積A2以上に設定している。
Therefore, in the ejector module 20 of the present embodiment, the maximum passage sectional area A1 when the throttle passage 20a is fully opened is set to be equal to or larger than the minimum passage sectional area A2 of the refrigerant passage on the upstream side of the throttle passage 20a.
これによれば、冷媒が全開となっている絞り通路20aを通過する際に生じる圧力損失の増加を抑制することができる。従って、室外熱交換器25における冷媒蒸発温度を、第1蒸発器17および第2蒸発器18の冷媒蒸発温度に近づけることができる。その結果、室外熱交換器25における吸熱量が低下してしまうことを抑制し、送風空気を再加熱する際の加熱能力の低下を抑制することができる。
According to this, it is possible to suppress an increase in pressure loss that occurs when the refrigerant passes through the throttle passage 20a that is fully open. Therefore, the refrigerant evaporation temperature in the outdoor heat exchanger 25 can be brought close to the refrigerant evaporation temperatures of the first evaporator 17 and the second evaporator 18. As a result, it is possible to suppress a decrease in the heat absorption amount in the outdoor heat exchanger 25, and it is possible to suppress a decrease in the heating capacity when reheating the blown air.
以上の如く、本実施形態のエジェクタモジュール20によれば、室外熱交換器25、第1蒸発器17および第2蒸発器18が冷媒流れに対して直列的に接続される冷媒回路に切り替えられるエジェクタ式冷凍サイクルに適用することが可能となる。このことは、エジェクタモジュール20を適用可能なエジェクタ式冷凍サイクルの範囲を拡大することができるという点で有効である。
As described above, according to the ejector module 20 of the present embodiment, the ejector that is switched to the refrigerant circuit in which the outdoor heat exchanger 25, the first evaporator 17, and the second evaporator 18 are connected in series to the refrigerant flow. It becomes possible to apply to a type refrigeration cycle. This is effective in that the range of the ejector refrigeration cycle to which the ejector module 20 can be applied can be expanded.
(他の実施形態)
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
(1)上述の各実施形態では、本開示に係るエジェクタモジュール20を車両に搭載されるエジェクタ式冷凍サイクル10に適用した例を説明したが、エジェクタモジュール20の適用はこれに限定されない。例えば、定置型の空調装置、冷温保存庫等に用いられるエジェクタ式冷凍サイクルに適用してもよい。
(1) In each of the above-described embodiments, the example in which the ejector module 20 according to the present disclosure is applied to the ejector refrigeration cycle 10 mounted on a vehicle has been described, but the application of the ejector module 20 is not limited thereto. For example, the present invention may be applied to an ejector-type refrigeration cycle used in a stationary air conditioner, a cold / hot storage, or the like.
(2)上述の第1実施形態では、可変絞り機構16、および可変ノズル部を有するエジェクタ15を備えるエジェクタモジュール20について説明したが、エジェクタモジュール20はこれに限定されない。エジェクタ式冷凍サイクル10の負荷変動に応じて、絞り通路20aおよびノズル部51へ流入する冷媒流量を適切な流量に近づけるためには、絞り通路20aおよびノズル部51のうち、少なくとも一方の通路断面積が変更可能に構成されていればよい。
(2) In the first embodiment described above, the ejector module 20 including the variable aperture mechanism 16 and the ejector 15 having the variable nozzle portion has been described. However, the ejector module 20 is not limited to this. In order to bring the flow rate of the refrigerant flowing into the throttle passage 20a and the nozzle portion 51 close to an appropriate flow rate in accordance with the load fluctuation of the ejector refrigeration cycle 10, at least one passage sectional area of the throttle passage 20a and the nozzle portion 51 is used. Should just be configured to be changeable.
従って、第2実施形態で説明したように、可変絞り機構16を採用するとともに、固定ノズル部を有するエジェクタ15を採用してもよい。さらに、第1実施形態に対して、絞り弁61、減圧側駆動機構62を廃止してもよい。つまり、可変絞り機構16に代えて固定絞りを採用するとともに、可変ノズル部を有するエジェクタ15を採用してもよい。
Therefore, as described in the second embodiment, the variable throttle mechanism 16 may be employed, and the ejector 15 having the fixed nozzle portion may be employed. Furthermore, the throttle valve 61 and the pressure reducing side drive mechanism 62 may be eliminated from the first embodiment. That is, instead of the variable aperture mechanism 16, a fixed aperture may be employed, and an ejector 15 having a variable nozzle portion may be employed.
また、第1実施形態では、ノズル側感温部54aを流出側通路20cに連通する空間に配置した例を説明したが、ノズル側感温部54aの少なくとも一部を流出側通路20c内に配置してもよい。さらに、減圧側駆動機構62の一部を吸引側通路20b内に配置した例を説明したが、減圧側駆動機構62を吸引側通路20bに連通する空間に配置してもよい。
In the first embodiment, the nozzle side temperature sensing portion 54a is disposed in the space communicating with the outflow side passage 20c. However, at least a part of the nozzle side temperature sensing portion 54a is disposed in the outflow side passage 20c. May be. Furthermore, although an example in which a part of the decompression side drive mechanism 62 is disposed in the suction side passage 20b has been described, the decompression side drive mechanism 62 may be disposed in a space communicating with the suction side passage 20b.
また、第1実施形態では、ディフューザ部52の少なくとも一部を集合配管19の内部に収容した例を説明したが、ディフューザ部52の少なくとも一部を第2蒸発器18の内部(例えば、集合分配用タンク内)に収容してもよい。
In the first embodiment, an example in which at least a part of the diffuser unit 52 is accommodated in the collective pipe 19 has been described. However, at least a part of the diffuser unit 52 is disposed in the second evaporator 18 (for example, collective distribution). May be accommodated in a tank for use.
(3)エジェクタ式冷凍サイクル10、10aを構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
(3) Each component device constituting the ejector refrigeration cycle 10, 10a is not limited to that disclosed in the above-described embodiment.
例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。
For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like. An engine driven compressor may be employed. Furthermore, as an engine-driven compressor, the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
また、上述の第1~第5実施形態では、放熱器12として、レシーバ一体型の凝縮器を採用した例を説明したが、さらに、レシーバ部12bから流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。この他にも、第6実施形態で説明したように凝縮部のみからなる放熱器12を採用してもよい。
In the first to fifth embodiments described above, an example in which a receiver-integrated condenser is employed as the radiator 12 has been described. Further, supercooling that supercools the liquid-phase refrigerant that has flowed out of the receiver unit 12b is described. You may employ | adopt what is called a subcool type | mold condenser comprised with a part. In addition, as described in the sixth embodiment, the radiator 12 including only the condensing unit may be employed.
また、上述の実施形態では、第1蒸発器17および第2蒸発器18を一体的に構成した例を説明したが、第1蒸発器17および第2蒸発器18を別体で構成してもよい。そして、第1蒸発器17および第2蒸発器18にて、異なる冷媒対象流体を異なる温度帯で冷却するようにしてもよい。
In the above-described embodiment, the example in which the first evaporator 17 and the second evaporator 18 are configured integrally has been described. However, the first evaporator 17 and the second evaporator 18 may be configured separately. Good. In the first evaporator 17 and the second evaporator 18, different refrigerant target fluids may be cooled in different temperature zones.
また、上述の第6実施形態では、暖房用膨張弁23および第1開閉弁24aを採用した例を説明したが、暖房用膨張弁23として、弁開度を全開にすることで冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有するものを採用してもよい。これによれば、第1開閉弁24a、第1、第2三方継手22a、22bを廃止することができる。
Further, in the sixth embodiment described above, an example in which the heating expansion valve 23 and the first on-off valve 24a are employed has been described. However, as the heating expansion valve 23, the refrigerant decompression action is achieved by fully opening the valve opening degree. You may employ | adopt the thing which has the full open function which functions as a mere refrigerant path almost without exhibiting, and the fully closed function which obstruct | occludes a refrigerant path by making a valve opening degree full close. According to this, the 1st on-off valve 24a, the 1st, 2nd three-way joint 22a, 22b can be abolished.
また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
In the above-described embodiment, the example in which R134a is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
(4)上述の第6実施形態では、除湿暖房モード時に、エジェクタモジュール20の絞り通路20aが全開となるように減圧側駆動機構621の作動を制御した例を説明したが、減圧側駆動機構621の作動はこれに限定されない。例えば、放熱器12における送風空気の加熱能力が充分に確保できる運転条件では、絞り通路20aが絞り状態となるように減圧側駆動機構621の作動を制御してもよい。
(4) In the above-described sixth embodiment, the example in which the operation of the decompression side drive mechanism 621 is controlled so that the throttle passage 20a of the ejector module 20 is fully opened in the dehumidifying heating mode has been described. The operation of is not limited to this. For example, the operation of the decompression side drive mechanism 621 may be controlled so that the throttle passage 20a is in a throttled state under operating conditions that can sufficiently ensure the heating capacity of the blower air in the radiator 12.
(5)また、上記各実施形態に開示された手段や構成要素は、実施可能な範囲で適宜組み合わせてもよい。例えば、第1、第5実施形態のエジェクタモジュール20において、第3実施形態で説明したノズル側駆動機構541と第4実施形態で説明した減圧側駆動機構621とを同時に採用してもよい。換言すると、電動式の可変絞り機構16および電動式の可変ノズル部を有するエジェクタモジュール20であってもよい。
(5) Further, the means and components disclosed in each of the above embodiments may be appropriately combined within a practicable range. For example, in the ejector module 20 of the first and fifth embodiments, the nozzle side driving mechanism 541 described in the third embodiment and the pressure reducing side driving mechanism 621 described in the fourth embodiment may be simultaneously employed. In other words, the ejector module 20 having the electric variable aperture mechanism 16 and the electric variable nozzle portion may be used.
また、第6実施形態では、第4実施形態で説明したエジェクタモジュール20を用いた蒸発器ユニット200を、エジェクタ式冷凍サイクル10aに適用した例を説明したが、もちろん、第1~第3実施形態で説明したエジェクタモジュール20を用いた蒸発器ユニット200を適用してもよい。この場合は、エジェクタモジュール20の高圧入口21aへ比較的乾き度の高い冷媒(例えば、乾き度0.5以上)が流入した際に、絞り通路20aが全開となるように減圧側駆動機構62の作動を調整しておけばよい。
In the sixth embodiment, the example in which theevaporator unit 200 using the ejector module 20 described in the fourth embodiment is applied to the ejector refrigeration cycle 10a has been described. Of course, the first to third embodiments are described. The evaporator unit 200 using the ejector module 20 described in the above may be applied. In this case, when a refrigerant having a relatively high dryness (for example, a dryness of 0.5 or more) flows into the high-pressure inlet 21a of the ejector module 20, the decompression-side drive mechanism 62 is set so that the throttle passage 20a is fully opened. Adjust the operation.
In the sixth embodiment, the example in which the
Claims (10)
- 冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された冷媒を放熱させる放熱器(12)、冷媒を蒸発させる第1蒸発器(17)、および冷媒を蒸発させて前記圧縮機の吸入側へ流出させる第2蒸発器(18)を有するエジェクタ式冷凍サイクル(10)に適用されるエジェクタモジュールであって、
前記放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射するノズル部(51)と、
前記放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる減圧部(20a)と、
前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)が形成されたボデー部(21)と、
前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(52)と、
前記減圧部の通路断面積を変化させる減圧側弁体部(61)と、
前記減圧側弁体部を変位させる減圧側駆動部(62、621)と、を備え、
前記減圧部から冷媒を流出させる絞り側出口(21d)には、前記第1蒸発器の冷媒入口側が接続され、
前記冷媒吸引口には、前記第1蒸発器の冷媒出口側が接続され、
前記昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、前記第2蒸発器の冷媒入口側が接続され、
前記減圧側駆動部が前記減圧側弁体部を変位させる変位方向の中心軸を減圧側中心軸(CL2)と定義し、前記減圧側中心軸(CL2)方向から見たときに、前記減圧側駆動部と前記ノズル部の中心軸(CL)が重合配置されているエジェクタモジュール。 The compressor (11) that compresses and discharges the refrigerant, the radiator (12) that dissipates the refrigerant discharged from the compressor, the first evaporator (17) that evaporates the refrigerant, and the compressor that evaporates the refrigerant An ejector module applied to an ejector refrigeration cycle (10) having a second evaporator (18) that flows out to the suction side of the machine,
A nozzle part (51) for depressurizing and injecting a part of the refrigerant flowing out of the radiator;
A decompression section (20a) for decompressing another part of the refrigerant flowing out of the radiator;
A body part (21) formed with a refrigerant suction port (21b) for sucking the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle part;
A pressure increasing unit (52) for increasing the pressure of the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port;
A pressure reducing side valve body portion (61) for changing a passage sectional area of the pressure reducing portion;
A pressure reducing side driving part (62, 621) for displacing the pressure reducing side valve body part,
A refrigerant inlet side of the first evaporator is connected to the throttle side outlet (21d) for allowing the refrigerant to flow out from the decompression unit,
A refrigerant outlet side of the first evaporator is connected to the refrigerant suction port;
A refrigerant inlet side of the second evaporator is connected to an ejector side outlet (21c) for allowing the refrigerant to flow out from the pressure increasing unit,
A central axis in a displacement direction in which the decompression side drive unit displaces the decompression side valve body is defined as a decompression side center axis (CL2), and when viewed from the decompression side center axis (CL2) direction, the decompression side An ejector module in which the drive unit and the central axis (CL) of the nozzle unit are arranged in an overlapping manner. - 前記減圧側中心軸(CL2)と前記ノズル部の中心軸(CL)は、ねじれの位置関係となっている請求項1に記載のエジェクタモジュール。 The ejector module according to claim 1, wherein the decompression side central axis (CL2) and the central axis (CL) of the nozzle portion are in a torsional positional relationship.
- 冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された冷媒を放熱させる放熱器(12)、冷媒を蒸発させる第1蒸発器(17)、および冷媒を蒸発させる前記圧縮機の吸入側へ流出させる第2蒸発器(18)を有するエジェクタ式冷凍サイクル(10)に適用されるエジェクタモジュールであって、
前記放熱器から流出した冷媒のうち一部の冷媒を減圧させて噴射するノズル部(51)と、
前記放熱器から流出した冷媒のうち別の一部の冷媒を減圧させる減圧部(20a)と、
前記ノズル部から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(21b)が形成されたボデー部(21)と、
前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(52)と、
前記ノズル部の通路断面積を変化させるノズル側弁体部(53)と、
前記ノズル側弁体部を変位させるノズル側駆動部(54、541)と、
前記減圧部の通路断面積を変化させる減圧側弁体部(61)と、
前記減圧側弁体部を変位させる減圧側駆動部(62、621)と、を備え、
前記減圧部から冷媒を流出させる絞り側出口(21d)には、前記第1蒸発器の冷媒入口側が接続され、
前記冷媒吸引口には、前記第1蒸発器の冷媒出口側が接続され、
前記昇圧部から冷媒を流出させるエジェクタ側出口(21c)には、前記第2蒸発器の冷媒入口側が接続され、
前記ノズル側駆動部が前記ノズル側弁体部を変位させる変位方向の中心軸をノズル側中心軸(CL1)と定義し、前記減圧側駆動部が前記減圧側弁体部を変位させる変位方向の中心軸を減圧側中心軸(CL2)と定義し、
前記ノズル側中心軸(CL1)および前記減圧側中心軸(CL2)のうち一方の中心軸方向から見たときに、前記一方の中心軸に対応する駆動部と他方の中心軸が重合配置されているエジェクタモジュール。 The compressor (11) that compresses and discharges the refrigerant, the radiator (12) that dissipates the refrigerant discharged from the compressor, the first evaporator (17) that evaporates the refrigerant, and the compressor that evaporates the refrigerant An ejector module applied to an ejector-type refrigeration cycle (10) having a second evaporator (18) that flows out to the suction side of
A nozzle part (51) for depressurizing and injecting a part of the refrigerant flowing out of the radiator;
A decompression section (20a) for decompressing another part of the refrigerant flowing out of the radiator;
A body part (21) formed with a refrigerant suction port (21b) for sucking the refrigerant from the outside by the suction action of the jetted refrigerant jetted from the nozzle part;
A pressure increasing unit (52) for increasing the pressure of the mixed refrigerant of the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port;
A nozzle side valve body portion (53) for changing a passage cross-sectional area of the nozzle portion;
A nozzle side drive section (54, 541) for displacing the nozzle side valve body section;
A pressure reducing side valve body portion (61) for changing a passage sectional area of the pressure reducing portion;
A pressure reducing side driving part (62, 621) for displacing the pressure reducing side valve body part,
A refrigerant inlet side of the first evaporator is connected to the throttle side outlet (21d) for allowing the refrigerant to flow out from the decompression unit,
A refrigerant outlet side of the first evaporator is connected to the refrigerant suction port;
A refrigerant inlet side of the second evaporator is connected to an ejector side outlet (21c) for allowing the refrigerant to flow out from the pressure increasing unit,
A central axis in a displacement direction in which the nozzle side drive unit displaces the nozzle side valve body portion is defined as a nozzle side central axis (CL1), and the pressure reduction side drive unit in a displacement direction in which the pressure reduction side valve body portion is displaced. Define the central axis as the decompression side central axis (CL2),
When viewed from the direction of one central axis of the nozzle side central axis (CL1) and the decompression side central axis (CL2), the driving unit corresponding to the one central axis and the other central axis are arranged in an overlapping manner. Ejector module. - 前記ノズル側中心軸(CL1)と前記減圧側中心軸(CL2)は、ねじれの位置関係となっている請求項3に記載のエジェクタモジュール。 The ejector module according to claim 3, wherein the nozzle side central axis (CL1) and the pressure reducing side central axis (CL2) are in a torsional positional relationship.
- 前記ボデー部には、前記第2蒸発器から流出した冷媒を流通させる流出側通路(20c)が形成されており、
前記ノズル側駆動部は、前記第2蒸発器から流出した冷媒の温度および圧力に応じて変形するノズル側変形部材(54b)を有するノズル側感温部(54a)を備えており、
前記ノズル側感温部の少なくとも一部は、前記流出側通路内あるいは前記流出側通路に連通する空間内に配置されている請求項3または4に記載のエジェクタモジュール。 The body part is formed with an outflow side passage (20c) through which the refrigerant that has flowed out of the second evaporator flows.
The nozzle side drive unit includes a nozzle side temperature sensing part (54a) having a nozzle side deformation member (54b) that deforms according to the temperature and pressure of the refrigerant flowing out of the second evaporator,
5. The ejector module according to claim 3, wherein at least a part of the nozzle side temperature sensing unit is disposed in the outflow side passage or in a space communicating with the outflow side passage. - 前記ボデー部には、前記第1蒸発器から流出した冷媒を流通させる吸引側通路(20b)が形成されており、
前記減圧側駆動部(62)は、前記第1蒸発器から流出した冷媒の温度および圧力に応じて変形する減圧側変形部材(62b)を有する減圧側感温部(62a)を備えており、
前記減圧側感温部の少なくとも一部は、前記吸引側通路内あるいは前記吸引側通路に連通する空間内に配置されている請求項1ないし5のいずれか1つに記載のエジェクタモジュール。 The body part is formed with a suction side passage (20b) for circulating the refrigerant flowing out of the first evaporator,
The decompression side drive unit (62) includes a decompression side temperature sensing unit (62a) having a decompression side deformation member (62b) that deforms according to the temperature and pressure of the refrigerant flowing out of the first evaporator,
6. The ejector module according to claim 1, wherein at least a part of the decompression-side temperature sensing unit is disposed in the suction-side passage or in a space communicating with the suction-side passage. - 前記減圧側駆動部は、前記第1蒸発器の出口側冷媒の過熱度が0℃に近づくように、前記減圧側弁体部を変位させるものである請求項1ないし6のいずれか1つに記載のエジェクタモジュール。 7. The pressure reduction side drive unit is configured to displace the pressure reduction side valve body so that the degree of superheat of the outlet side refrigerant of the first evaporator approaches 0 ° C. 7. The ejector module described.
- 前記昇圧部の少なくとも一部は、前記ボデー部から突出していることによって、前記第2蒸発器の内部あるいは前記第2蒸発器に接続された配管(19)の内部に収容可能に形成されている請求項1ないし7のいずれか1つに記載のエジェクタモジュール。 At least a part of the boosting part protrudes from the body part so that it can be accommodated in the second evaporator or in the pipe (19) connected to the second evaporator. The ejector module according to claim 1.
- 前記ボデー部には、前記放熱器から流出した冷媒を流入させる高圧入口(21a)、前記第2蒸発器から流出した冷媒を前記圧縮機の吸入口側へ導く流出側通路(20c)、前記流出側通路へ冷媒を流入させる低圧入口(21e)、および前記流出側通路から冷媒を流出させる低圧出口(21f)が形成されており、
前記高圧入口、および前記低圧出口は、同一方向に開口しており、
前記エジェクタ側出口、前記低圧入口、前記冷媒吸引口、および前記絞り側出口は、同一方向に開口している請求項1ないし8のいずれか1つに記載のエジェクタモジュール。 The body portion has a high-pressure inlet (21a) through which the refrigerant flowing out from the radiator flows in, an outflow side passage (20c) for guiding the refrigerant flowing out from the second evaporator to the suction port side of the compressor, and the outflow A low-pressure inlet (21e) for allowing the refrigerant to flow into the side passage, and a low-pressure outlet (21f) for letting the refrigerant flow out of the outflow-side passage,
The high pressure inlet and the low pressure outlet are open in the same direction,
The ejector module according to claim 1, wherein the ejector side outlet, the low pressure inlet, the refrigerant suction port, and the throttle side outlet are open in the same direction. - 前記ボデー部には、前記放熱器から流出した冷媒を流入させる高圧入口(21a)が形成されており、
前記減圧側駆動部が前記減圧側弁体部を変位させた際の前記減圧部の最大通路断面積(A1)は、前記高圧入口から前記減圧部へ至る冷媒通路の最小通路断面積(A2)以上になっている請求項1ないし9のいずれか1つに記載のエジェクタモジュール。
The body portion is formed with a high-pressure inlet (21a) through which the refrigerant flowing out of the radiator flows.
The maximum passage sectional area (A1) of the decompression unit when the decompression side drive unit displaces the decompression side valve body part is the minimum passage sectional area (A2) of the refrigerant passage from the high pressure inlet to the decompression unit. The ejector module according to any one of claims 1 to 9, which is configured as described above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880014731.8A CN110382880B (en) | 2017-03-02 | 2018-02-16 | Injector assembly |
DE112018001092.9T DE112018001092B4 (en) | 2017-03-02 | 2018-02-16 | Ejector module |
US16/557,685 US11480197B2 (en) | 2017-03-02 | 2019-08-30 | Ejector module |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-039252 | 2017-03-02 | ||
JP2017039252 | 2017-03-02 | ||
JP2017-121448 | 2017-06-21 | ||
JP2017121448A JP6780590B2 (en) | 2017-03-02 | 2017-06-21 | Ejector module |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/557,685 Continuation US11480197B2 (en) | 2017-03-02 | 2019-08-30 | Ejector module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159321A1 true WO2018159321A1 (en) | 2018-09-07 |
Family
ID=63370001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005440 WO2018159321A1 (en) | 2017-03-02 | 2018-02-16 | Ejector module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018159321A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4060257A4 (en) * | 2019-11-15 | 2022-11-16 | Mitsubishi Electric Corporation | Air conditioning device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303851A (en) * | 2007-06-11 | 2008-12-18 | Denso Corp | Two-stage pressure-reduction ejector and ejector refrigerating cycle |
JP2009300028A (en) * | 2008-06-16 | 2009-12-24 | Nippon Soken Inc | Ejector type refrigerating cycle |
JP2010019133A (en) * | 2008-07-09 | 2010-01-28 | Denso Corp | Ejector and heat pump cycle device |
-
2018
- 2018-02-16 WO PCT/JP2018/005440 patent/WO2018159321A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008303851A (en) * | 2007-06-11 | 2008-12-18 | Denso Corp | Two-stage pressure-reduction ejector and ejector refrigerating cycle |
JP2009300028A (en) * | 2008-06-16 | 2009-12-24 | Nippon Soken Inc | Ejector type refrigerating cycle |
JP2010019133A (en) * | 2008-07-09 | 2010-01-28 | Denso Corp | Ejector and heat pump cycle device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4060257A4 (en) * | 2019-11-15 | 2022-11-16 | Mitsubishi Electric Corporation | Air conditioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10500925B2 (en) | Refrigeration cycle device | |
JP5780166B2 (en) | Heat pump cycle | |
US6834514B2 (en) | Ejector cycle | |
US10132526B2 (en) | Ejector refrigeration cycle | |
US10378795B2 (en) | Ejector and ejector refrigeration cycle | |
US11480197B2 (en) | Ejector module | |
WO2018198609A1 (en) | Ejector refrigeration cycle | |
WO2017212820A1 (en) | Ejector refrigeration cycle device | |
JP6717234B2 (en) | Ejector module | |
JP6720934B2 (en) | Ejector module | |
WO2018159321A1 (en) | Ejector module | |
JP6547698B2 (en) | Ejector type refrigeration cycle | |
WO2017217142A1 (en) | Refrigeration cycle device | |
JP6459807B2 (en) | Ejector refrigeration cycle | |
WO2018159323A1 (en) | Ejector module and evaporator unit | |
JP7031482B2 (en) | Ejector refrigeration cycle and flow control valve | |
JP7135583B2 (en) | refrigeration cycle equipment | |
WO2019155805A1 (en) | Ejector refrigeration cycle, and flow rate adjustment valve | |
JP4835296B2 (en) | Ejector refrigeration cycle | |
CN107076470B (en) | Ejector type refrigeration cycle device | |
WO2016031157A1 (en) | Ejector-type refrigeration cycle | |
WO2019017167A1 (en) | Ejector-type refrigeration cycle | |
JP6717276B2 (en) | Ejector module | |
JP7119785B2 (en) | Ejector refrigeration cycle and ejector module | |
WO2019155806A1 (en) | Ejector-type refrigeration cycle, and ejector module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760334 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760334 Country of ref document: EP Kind code of ref document: A1 |