[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018158976A1 - 表面被覆切削工具およびその製造方法 - Google Patents

表面被覆切削工具およびその製造方法 Download PDF

Info

Publication number
WO2018158976A1
WO2018158976A1 PCT/JP2017/025247 JP2017025247W WO2018158976A1 WO 2018158976 A1 WO2018158976 A1 WO 2018158976A1 JP 2017025247 W JP2017025247 W JP 2017025247W WO 2018158976 A1 WO2018158976 A1 WO 2018158976A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
unit phase
cutting tool
rich layer
coated cutting
Prior art date
Application number
PCT/JP2017/025247
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
保樹 城戸
今村 晋也
幸治 倉持
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to US16/489,292 priority Critical patent/US11130181B2/en
Priority to CN201780087569.8A priority patent/CN110382146B/zh
Priority to EP17898796.2A priority patent/EP3590638B1/en
Priority to JP2019502437A priority patent/JP6667713B2/ja
Priority to KR1020197024752A priority patent/KR20190112036A/ko
Publication of WO2018158976A1 publication Critical patent/WO2018158976A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/02Thread-cutting tools; Die-heads without means for adjustment
    • B23G5/06Taps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/347Carbon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening

Definitions

  • the present invention relates to a surface-coated cutting tool and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2017-037377, a Japanese patent application filed on February 28, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 JP-T-2008-545063 discloses a member having a Ti 1-x Al x N coating as a surface covering member.
  • This Ti 1-x Al x N coating has a stoichiometric coefficient of 0.75 ⁇ x ⁇ 0.93, has a lattice constant a of 0.412 to 0.405 nm, and a single-phase cubic NaCl structure.
  • the Ti 1-x Al x N film is formed by a CVD (Chemical Vapor Deposition) method.
  • a hot wall type containing a substrate AlCl 3, TiCl 4, a first gas mixture consisting of H 2 and Ar, a second gas consisting of NH 3 and N 2
  • a first gas mixture consisting of H 2 and Ar
  • a second gas consisting of NH 3 and N 2
  • crystals of Ti 1-x Al x N are grown.
  • the film formed by this method has a higher Al content in the film than a Ti 1-x Al x N film produced by a known PVD method. For this reason, the surface covering member having the coating has high oxidation resistance and high hardness, and can exhibit excellent wear resistance at high temperatures.
  • Patent Document 2 JP 2014-129562 A discloses a surface covering member.
  • a hard coating layer is formed on the surface covering member by a CVD method.
  • the hard coating layer includes hard particles, and the hard particles are a multilayer structure in which an AlTiN layer having a relatively high atomic ratio of Ti having an NaCl structure and an AlTiN layer having a relatively low atomic ratio of Ti having an NaCl structure are repeatedly laminated.
  • This lamellar phase has a lamination period of 0.5 to 20 nm.
  • the hard coating layer has an indentation hardness of 3000 kgf / mm 2 (29.4 gPa).
  • the surface covering member of Patent Document 2 has high hardness and can exhibit excellent wear resistance.
  • the surface-coated cutting tool is a surface-coated cutting tool including a base material and a coating formed on the surface thereof, wherein the coating includes one or more layers, and the layers At least one of the layers is an Al-rich layer containing hard particles, and the hard particles have a sodium chloride type crystal structure and are interposed between a plurality of massive first unit phases and the first unit phases.
  • the first unit phase is made of an Al x Ti 1-x nitride or carbonitride, and the atomic ratio x of Al in the first unit phase is 0.7 or more and 0.
  • the second unit phase is made of a nitride or carbonitride of Al y Ti 1-y , and the atomic ratio y of Al of the second unit phase is more than 0.5 and 0.7
  • the Al-rich layer is analyzed from the normal direction of the surface of the coating using an X-ray diffraction method (220) shows a maximum peak at surface.
  • the manufacturing method of the surface-coated cutting tool which concerns on 1 aspect of this indication contains a base material and the film formed in the surface,
  • the said film contains one or two or more layers, At least 1 of the said layers
  • the layer is an Al-rich layer containing hard particles
  • the Al-rich layer is a surface coating that exhibits a maximum peak in the (220) plane when analyzed from the normal direction of the surface of the coating using an X-ray diffraction method.
  • a method for manufacturing a cutting tool comprising the step of forming the Al-rich layer, wherein the step includes a first step of forming a lamellar layer by a CVD method, and the Al-rich layer by annealing the lamellar layer.
  • the second step includes a temperature raising step, an annealing step, and a cooling step, and the temperature raising step raises the temperature of the lamellar layer at a rate of 10 ° C./min or more.
  • Including annealing said annealing includes an operation of obtaining the Al rich layer by annealing the lamellar layer under conditions of 700 ° C. or higher and 1200 ° C. or lower and 0.1 hour or longer and 10 hours or shorter. Including quenching at a rate of at least ° C / min.
  • FIG. 1 is a schematic sectional view of a CVD apparatus used in this embodiment.
  • FIG. 2 is a drawing-substituting photograph for explaining a lamellar phase formed in the production method of the present embodiment as a microscope image taken with a transmission electron microscope (TEM).
  • FIG. 3 is a drawing-substituting photograph for explaining hard particles in the Al-rich layer formed in the surface-coated cutting tool of the present embodiment as a microscope image taken with a transmission electron microscope (TEM).
  • FIG. 4 shows the measurement distance of the ⁇ 100> orientation and the atomic ratio of Al obtained by performing composition analysis using an energy dispersive X-ray analysis (EDX) apparatus in the direction of the arrow ( ⁇ 100> orientation) in FIG. It is a graph showing the relationship.
  • FIG. 5 is a graph showing the relationship between 2 ⁇ obtained by analyzing the Al-rich layer in FIG. 3 from the direction normal to the surface by X-ray diffraction and the diffraction intensity of each crystal plane.
  • the surface covering member disclosed in Patent Document 2 has room for improvement in terms of initial wear when used in a cutting tool. Although the cause is not clear, the lamellar phase in the hard particles is excellent in deformation resistance in the stacking direction, but dislocations are easily formed in the longitudinal direction by an external load. For this reason, it is considered that the initial wear progresses due to the breakage of the lamellar phase starting from the dislocation, which leads to the breakage of the hard particles. Therefore, it has not yet been achieved to provide a surface covering member that has high hardness and is less likely to cause initial wear, and its development is eagerly desired.
  • an object of the present disclosure is to provide a surface-coated cutting tool having high hardness and less likely to cause initial wear, and a method for manufacturing the surface-coated cutting tool.
  • a surface-coated cutting tool is a surface-coated cutting tool including a base material and a coating formed on the surface thereof, and the coating includes one or more layers. At least one of the layers is an Al-rich layer containing hard particles, and the hard particles have a sodium chloride type crystal structure and a plurality of massive first unit phases and the first units.
  • a second unit phase interposed between the phases, and the first unit phase is made of nitride or carbonitride of Al x Ti 1-x , and the atomic ratio x of Al of the first unit phase is 0.
  • the second unit phase is made of nitride or carbonitride of Al y Ti 1-y , and the atomic ratio y of Al of the second unit phase exceeds 0.5.
  • the Al-rich layer is analyzed from the normal direction of the surface of the coating using an X-ray diffraction method. When shows the tallest peak at (220) plane. With such a configuration, the surface-coated cutting tool has high hardness and can also suppress initial wear.
  • the hard particles occupy 50% by volume or more of the Al-rich layer. Thereby, it has higher hardness and can suppress initial wear more.
  • the first unit phase preferably has a size in the ⁇ 100> orientation of 2 nm or more and 15 nm or less. Thereby, it has higher hardness and can further suppress initial wear.
  • a method of manufacturing a surface-coated cutting tool includes a base material and a film formed on the surface of the substrate.
  • the film includes one or more layers. At least one of the layers is an Al-rich layer containing hard particles, and the Al-rich layer has a maximum peak in the (220) plane when analyzed from the normal direction of the surface of the coating using an X-ray diffraction method.
  • a method of manufacturing a surface-coated cutting tool shown in the figure including a step of forming the Al-rich layer, wherein the step includes a first step of forming a lamellar layer by a CVD method, and the Al layer by annealing the lamellar layer.
  • a second step of obtaining a rich layer wherein the second step includes a temperature raising step, an annealing step, and a cooling step, wherein the temperature raising step causes the lamellar layer to move at a rate of 10 ° C./min or more.
  • the process includes an operation of obtaining the Al-rich layer by annealing the lamella layer under conditions of 700 ° C. or more and 1200 ° C. or less and 0.1 hour or more and 10 hours or less, and the cooling step includes the lamella layer.
  • the operation includes quenching at a rate of 20 ° C./min or more. With such a configuration, it is possible to manufacture a surface-coated cutting tool that has high hardness and is less likely to cause initial wear.
  • the first step includes a first operation of obtaining a mixed gas by mixing the first mixed gas and the second mixed gas under the conditions of 650 ° C. or higher and 850 or lower and 0.5 kPa or higher and 1.5 kPa or lower. And a second operation of forming the lamellar layer by ejecting the mixed gas toward the surface side of the base material under the above conditions, wherein the first mixed gas is an AlCl 3 gas or a TiCl 4 gas. and H contain 2 gas, the second gas mixture preferably comprises NH 3 gas and Ar gas. Thereby, it is possible to obtain a lamellar layer for forming an Al-rich layer having higher hardness and less likely to cause initial wear.
  • the lamellar layer includes a third unit phase and a fourth unit phase, and the third unit phase and the fourth unit phase are alternately stacked, and the third unit phase includes Al s Ti 1 ⁇ a nitride or carbonitride of s, the atomic ratio s of Al in the third unit phase is 0.7 to 0.95, nitriding of the fourth unit phase, Al t Ti 1-t Preferably, the atomic ratio t of Al in the fourth unit phase is 0.5 or more and less than 0.7. Thereby, it is possible to obtain an Al-rich layer having higher hardness and less likely to cause initial wear.
  • the notation in the form of “A to B” in the present specification means the upper and lower limits of the range (that is, not less than A and not more than B), and no unit is described in A, and only a unit is described in B. In this case, the unit of A and the unit of B are the same.
  • a compound or the like when a compound or the like is represented by a chemical formula, when the atomic ratio is not particularly limited, it includes any conventionally known atomic ratio, and is not necessarily limited to a stoichiometric range.
  • metal elements such as titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), chromium (Cr), nitrogen (N), oxygen (O), carbon (C), etc.
  • the nonmetallic element does not necessarily have to have a stoichiometric composition.
  • the surface-coated cutting tool according to the present embodiment includes a base material and a film formed on the surface.
  • the coating preferably covers the entire surface of the substrate. However, even if a part of the substrate is not coated with this coating or the configuration of the coating is partially different, it does not depart from the scope of the present invention.
  • Examples of such surface-coated cutting tools include drills, end mills, drill tip changeable cutting tips, end mill tip replacement cutting tips, milling tip replacement cutting tips, turning tip replacement cutting tips, metal saws, A gear cutting tool, a reamer, a tap, etc. can be illustrated.
  • any substrate can be used as long as it is conventionally known as this type of substrate.
  • cemented carbide for example, WC-based cemented carbide, including WC, including Co or containing carbonitride such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc.) Component
  • high-speed steel ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, and diamond sintered body are preferable. .
  • a WC-based cemented carbide or cermet particularly TiCN-based cermet. This is because these substrates are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent characteristics as substrates for surface-coated cutting tools for the above applications.
  • the base material includes those having a chip breaker and those having no chip breaker.
  • the edge of the cutting edge that becomes the center of cutting when cutting the work material has a sharp edge (the ridge where the rake face and the flank face intersect), and honing (the round edge is added to the sharp edge) ), Negative land (beveled), and a combination of honing and negative land.
  • the coating includes one or more layers. At least one of these layers is an Al-rich layer containing hard particles.
  • the coating preferably has a thickness of 3 to 30 ⁇ m. When the thickness is less than 3 ⁇ m, the wear resistance tends to be insufficient. If the thickness exceeds 30 ⁇ m, the coating tends to peel or break when a large stress is applied between the coating and the substrate in intermittent processing.
  • the coating may include other layers as long as it includes at least one Al-rich layer.
  • Al 2 O 3 layer TiB 2 layer, TiBN layer, AlN layer (wurtzite type), TiN layer, TiCN layer, TiBNO layer, TiCNO layer, TiAlN layer, TiAlCN layer, TiAlON layer, TiAlONC A layer etc. can be mentioned.
  • the adhesion between the base material and the coating film can be enhanced.
  • the Al 2 O 3 layer the oxidation resistance of the coating can be enhanced.
  • the outermost layer composed of a TiN layer, a TiC layer, a TiCN layer, a TiBN layer, etc. it is possible to distinguish whether or not the cutting edge of the surface-coated cutting tool has been used.
  • the thickness of the other layer is usually preferably 0.1 to 10 ⁇ m.
  • the coating is an Al-rich layer in which at least one of the one or more layers includes hard particles.
  • the Al-rich layer preferably has a thickness of 1 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 15 ⁇ m.
  • the thickness of the Al-rich layer is less than 1 ⁇ m, the wear resistance tends to be insufficient.
  • the thickness of the Al-rich layer exceeds 20 ⁇ m, the Al-rich layer tends to peel or break when a large stress is applied between the Al-rich layer and the substrate in the intermittent processing.
  • Al-rich layer does not depart from the scope of the present invention even if it includes a phase partially composed of hard particles described later, such as an amorphous phase and a wurtzite type hard phase. Absent.
  • Al-rich of the Al-rich layer means that the Al composition exceeds an average of 0.5 in the metal composition at any five locations in the layer.
  • the thickness of the Al-rich layer, the thickness of the other layers, and the thickness of the coating were obtained by cutting the surface-coated cutting tool in parallel with the normal direction of the surface of the base material. It can be measured by observation using a transmission electron microscope (TEM, trade name: “JEM-2100F”, manufactured by JEOL Ltd.). Furthermore, the thickness of the Al-rich layer, the thicknesses of the other layers, and the thickness of the coating are expressed as average values obtained by, for example, obtaining five cross-sectional samples and measuring the thickness at three arbitrary locations in the sample. be able to.
  • the observation magnification is set to 50000 times and the observation area is adjusted to be about 10 ⁇ m 2 in one field of view.
  • the observation magnification is set to 5000 times, and the observation area is adjusted to be about 100 ⁇ m 2 in one field of view.
  • a known method can be used as a method for obtaining a cross-sectional sample of the surface-coated cutting tool.
  • the hard particles have a sodium chloride type crystal structure and include a plurality of massive first unit phases and a second unit phase interposed between the first unit phases.
  • the first unit phase is made of nitride or carbonitride of Al x Ti 1-x , and the atomic ratio x of Al in the first unit phase is 0.7 or more and 0.96 or less.
  • a nitride of Al x Ti 1-x was expressed as Al x Ti 1-x N z1 , satisfy the relationship of 0.8 ⁇ z1 ⁇ 1.2.
  • the Al x Ti 1-x carbonitride is expressed as Al x Ti 1-x C m1 N n1 , the relationship of 0.8 ⁇ m1 + n1 ⁇ 1.2 is satisfied.
  • the second unit phase is made of nitride or carbonitride of Al y Ti 1-y , and the atomic ratio y of Al in the second unit phase is more than 0.5 and less than 0.7. Furthermore, when a nitride of Al y Ti 1-y was expressed as Al y Ti 1-y N z2 , satisfy the relationship of 0.8 ⁇ z2 ⁇ 1.2. If carbonitrides of Al y Ti 1-y was expressed as Al y Ti 1-y C m2 N n2, satisfying the relationship 0.8 ⁇ m2 + n2 ⁇ 1.2.
  • FIG. 3 is a transmission electron microscope (TEM) image for the hard particles in the Al-rich layer in the cross-sectional sample described above.
  • This microscopic image is a high angle scattering dark field (HAADF). It is taken using the law.
  • HAADF high angle scattering dark field
  • FIG. 3 shows a form in which the thin second unit phase surrounds the massive first unit phase as a cross-sectional structure inside the hard particles. That is, the hard particles have a structure in which the thin linear second unit phase surrounds the plurality of massive first unit phases. Further, by observing the TEM image of FIG. 3, the hard particles have both the first unit phase and the second unit phase having a sodium chloride type crystal structure as described above, and the first unit phase and the second unit phase. It can be seen that the phase is lattice matched.
  • Each phase of the first unit phase and the second unit phase preferably varies in composition along the ⁇ 100> orientation of the hard particles (arrow method in FIG. 3), but each has a single composition. You may have.
  • the case where the composition of the hard particles is changed along the ⁇ 100> direction in each of the first unit phase and the second unit phase will be described, and the mode of the change will be described with reference to FIG.
  • FIG. 4 shows an energy dispersive X-ray spectroscopic (EDX) apparatus (trade name: “JED”) attached to the transmission electron microscope (TEM) in the arrow direction ( ⁇ 100> direction) in FIG. -2300 "(manufactured by JEOL Ltd.).
  • EDX energy dispersive X-ray spectroscopic
  • the horizontal axis is the measurement distance in the arrow direction ( ⁇ 100> orientation)
  • the vertical axis is the atomic ratio of Al (Al / (Al + Ti)).
  • FIG. 4 shows a change in the atomic ratio of Al along the ⁇ 100> direction, that is, a change in the composition along the ⁇ 100> direction inside the hard particles.
  • the first unit phase occupies a range in which the atomic ratio of Al is 0.7 or more and 0.96 or less.
  • the second unit phase occupies a range where the atomic ratio of Al is more than 0.5 and less than 0.7. That is, the first unit phase and the second unit phase are distinguished by the boundary that the atomic ratio of Al is 0.7.
  • the first unit phase includes an Al x Ti 1-x nitride or carbonitride composition in which the atomic ratio of Al is 0.7 or more and the atomic ratio of Al is maximized (peak).
  • the atomic ratio of Al is 0.78, 0.76, 0.78, 0.8, 0.8, 0.83, and 0.84 from the side where the measurement distance in the ⁇ 100> direction is small. , 0.85, 0.84, 0.85, 0.85, and 0.85.
  • the atomic ratio of Al gradually decreases from these peaks toward the adjacent second unit phase.
  • the second unit phase includes an Al y Ti 1-y nitride or carbonitride composition in which the atomic ratio of Al is less than 0.7 and the atomic ratio of Al is minimal (valley).
  • the atomic ratio of Al is 0.63, 0.62, 0.63, 0.63, 0.63, 0.63, and 0.62 from the side where the measurement distance in the ⁇ 100> direction is small. , 0.63, 0.63, 0.64, and 0.68.
  • the atomic ratio of Al gradually increases from the valley toward the adjacent first unit phase.
  • the first unit phase preferably has a size in the ⁇ 100> orientation of 2 nm or more and 15 nm or less. This magnitude is from the midpoint of the first unit phase, through the second unit phase adjacent thereto, to the midpoint of the first unit phase adjacent to the second unit phase along the ⁇ 100> direction. It means the distance to connect. That is, the hard particles have a structure in which a thin second unit phase surrounds a plurality of massive first unit phases, and one period of the first unit phase and the second unit phase in the ⁇ 100> orientation is 2 nm or more and 15 nm. It means the following.
  • the first unit phase is difficult to produce when the size in the ⁇ 100> orientation is less than 2 nm. If the size exceeds 15 nm, the probability of phase transition to the wurtzite crystal structure increases, so that cracks are likely to occur in the coating, and there is a tendency to cause a sudden defect when this progresses.
  • the first unit phase preferably has a size in the ⁇ 100> orientation of 2 nm or more and 10 nm or less.
  • the size of the first unit phase in the ⁇ 100> orientation can be obtained from a TEM image for the hard particles of the cross-sectional sample described above.
  • the TEM image at that time is adjusted so that the observation magnification is 5000000 times, the observation area is about 150 nm 2 and 1 to 10 hard particles appear in one field of view.
  • the size of the first unit phase in the ⁇ 100> orientation can be determined as the average value.
  • the number of the first unit phases surrounded by the second unit phase in the ⁇ 100> orientation should not be particularly limited. However, it is preferably 10 or more and 1000 or less. If the number is less than 10, the number of the first unit phases is too small, and the hardness of the Al-rich layer containing hard particles tends to decrease. On the other hand, when the number exceeds 1000, it becomes impossible to substantially form a structure surrounding the first unit phase by the second unit phase, so that the hardness of the Al-rich layer tends to decrease.
  • the particle size of the hard particles is preferably 10 nm or more and 1000 nm or less.
  • the particle diameter of the hard particles can also be obtained from the TEM image of the cross-sectional sample described above. The TEM image at that time is adjusted so that the observation magnification is 50000 times, the observation area is about 10 ⁇ m 2, and 10 to 100 crystal grains appear in one field of view.
  • the particle size of the hard particles can be measured as follows.
  • the thickness t is equally divided into 10 in the thickness direction, and a range of 0.1 t to 0.9 t is selected. Further, within this range, seven straight lines are equally spaced at a predetermined length with respect to the growth direction of the hard particles (in this embodiment, the direction intersecting at 45 ° with the surface of the substrate). Set. Next, the number of hard particles that intersect these straight lines is determined. Finally, a numerical value obtained by dividing the predetermined length by the number of hard particles intersecting with these straight lines is defined as the particle size of the hard particles in the field of view. This is performed for TEM images of three different fields of view, and the particle size of the hard particles can be obtained as an average value of these.
  • the particle size of the hard particles is more preferably 50 nm or more and 500 nm or less.
  • the hard particles include a structure other than the structure in which the thin second unit phase surrounds the plurality of massive first unit phases, for example, an amorphous phase, a wurtzite hard phase, or the like, or Even if a part of the first unit phase is not surrounded by the thin second unit phase, it does not depart from the scope of the present invention as long as the effects of the present invention are exhibited.
  • the hard particles occupy 50% by volume or more of the Al-rich layer.
  • the hard particles more preferably occupy 60% by volume or more of the Al-rich layer, and most preferably occupy 80% by volume or more.
  • a coating film has higher hardness by containing an Al rich layer, and can suppress initial wear more.
  • the upper limit of the ratio of hard particles in the Al-rich layer is 95% by volume.
  • the ratio (volume%) of hard particles in the Al-rich layer can be measured as follows. That is, first, using the cross-sectional sample described above, a TEM image (observation magnification of about 50000 times, observation area of about 10 ⁇ m 2 ) in which the boundary (interface) on the substrate side and the boundary (interface) on the surface side of the Al-rich layer fit in one field of view. ). Next, based on this TEM image, the total area (S1) of the Al-rich layer and the total area (S2) of the hard particles are respectively determined, and the total area (S2) of the hard particles in the total area (S1) of the Al-rich layer is obtained. The area ratio (S2 / S1 ⁇ 100) is calculated.
  • the area ratio of the hard particles in the Al-rich layer is obtained as an average value of these.
  • the area ratio of the hard particles in the Al-rich layer is considered to be continuous in the depth direction of the Al-rich layer, and this is defined as the volume ratio of the hard particles in the Al-rich layer.
  • the Al-rich layer exhibits a maximum peak in the (220) plane when analyzed from the normal direction of the surface of the coating using X-ray diffraction.
  • the surface-coated cutting tool is a crystal in which most of the hard particles contained in the Al-rich layer are grown in a direction inclined 45 ° to either the right or left of the normal to the normal direction of the surface of the coating. It is understood that there is. Therefore, the surface-coated cutting tool can have an effect of effectively suppressing initial wear as well as high hardness.
  • the maximum peak is shown in the (220) plane, the hardness and toughness can be well-balanced and the wear resistance can be improved. Specifically, the following method is applied to the X-ray diffraction (XRD) method performed on the Al-rich layer.
  • XRD X-ray diffraction
  • a surface-coated cutting tool which is an object to be measured by the X-ray diffraction method, is analyzed from the normal direction of the surface of the coating with an X-ray diffractometer (trade name: “SmartLab (registered trademark)”, manufactured by Rigaku Corporation). Set in the possible direction.
  • the surface-coated cutting tool when the outermost layer or the like is coated on the surface side of the coating from the Al-rich layer, the surface of the Al-rich layer is exposed by polishing the surface of the coating of the surface-coated cutting tool. Then set in the above device.
  • a known method can be used as means for polishing the surface of the coating.
  • the Al-rich layer of the surface-coated cutting tool is analyzed from the normal direction of the surface of the film under the following conditions. Thereby, data relating to the X-ray diffraction peak in the Al-rich layer (hereinafter also referred to as “XRD data”) can be obtained.
  • ⁇ / 2 ⁇ method Incident angle ( ⁇ ): 2 ° Scan angle (2 ⁇ ): 30-70 ° Scan speed: 1 ° / min Scan step width: 0.05 °
  • X-ray source Cu-K ⁇ ray optical system Attributes: Medium-resolution parallel beam tube voltage: 45 kV Tube current: 200 mA
  • X-ray irradiation range Use a 2.0mm range-limited collimator to irradiate a range of 2mm in diameter on the rake face (however, it is acceptable to irradiate the flank with the same conditions)
  • X-ray detector Semiconductor detector (trade name: “D / teX Ultra250”, manufactured by Rigaku Corporation).
  • the XRD data of the Al-rich layer for example, as shown in FIG. 5, the (220) plane of hard particles contained in the Al-rich layer appears as the maximum peak. Specifically, in FIG. 5, it is understood that the peak of the (220) plane of c-AlTiN appears with higher intensity than the other planes.
  • the reason why the initial wear can be suppressed is unknown in detail.
  • the following reason is guessed. That is, the Al-rich layer is remarkably inhibited from dislocation movement due to external stress due to a change in shape to a plurality of nano-sized massive first unit phases and a second unit phase interposed between the first unit phases. It is considered that the occurrence of cracks in the coating at the initial stage of cutting can be suppressed, and even when cracks occur, the progress toward the substrate side can be effectively suppressed.
  • the coating has a granular structure in which the (200) plane has the maximum peak in XRD analyzed from the normal direction of the coating surface, the toughness of the coating is improved and the effect of further suppressing initial wear is promoted. It is thought that it is done.
  • the coating can have an indentation hardness (hereinafter also referred to as “film strength”) of 30 GPa (about 3000 kgf / mm 2 ) or more.
  • the indentation hardness of this coating is more preferably 35 GPa.
  • the upper limit of the indentation hardness of the coating is not particularly limited. For example, if the indentation hardness of the coating is 30 to 38 GPa, the balance between abrasion resistance and chipping resistance can be sufficiently excellent.
  • the indentation hardness can be measured using a nanoindentation method. Specifically, the measurement is performed using an ultra-fine indentation hardness tester that can use the nanoindentation method.
  • the indentation hardness can be calculated based on the indentation depth that the indenter indents with a predetermined load (for example, 30 mN) perpendicular to the thickness direction of the coating.
  • a predetermined load for example, 30 mN
  • the indentation hardness can be measured by exposing the layer and using the above method on the exposed Al-rich layer.
  • the surface-coated cutting tool according to the present embodiment has an effect that the base material is coated with a coating having an Al-rich layer containing hard particles as described above, and thus has high hardness and is less likely to cause initial wear. Can do. Thereby, the surface-coated cutting tool which is stable and has a long life can be provided.
  • the method for manufacturing a surface-coated cutting tool includes a base material and a film formed on the surface, the film includes one or more layers, and at least one of the layers is A method of manufacturing a surface-coated cutting tool that exhibits a maximum peak in the (220) plane when analyzed from the normal direction of the surface of the coating using an X-ray diffraction method. It is.
  • the method for manufacturing a surface-coated cutting tool includes a step of forming an Al-rich layer. This step includes a first step of forming a lamella layer by a CVD method and a second step of obtaining an Al-rich layer by annealing the lamella layer.
  • the second step includes a temperature raising step, an annealing step, and a cooling step.
  • the temperature raising step includes an operation of raising the temperature of the lamella layer at a rate of 10 ° C./min or more.
  • the annealing step includes an operation of obtaining the Al-rich layer by annealing the lamellar layer under conditions of 700 ° C. or higher and 1200 ° C. or lower and 0.1 hour or longer and 10 hours or shorter.
  • the cooling step includes an operation of rapidly cooling the lamellar layer at a rate of 20 ° C./min or more.
  • the method for producing a surface-coated cutting tool can produce a surface-coated cutting tool having high hardness and less likely to cause initial wear by including the above-described steps and operations.
  • steps for manufacturing the surface-coated cutting tool as long as the above steps are performed, other steps can be included. Examples of other processes include a base material manufacturing process for manufacturing a base material, a surface treatment process such as surface grinding and shot blasting, and a CVD process for forming other layers. Other steps can be performed by a conventionally known method.
  • the “substrate”, “coating”, “Al-rich layer containing hard particles” and the like included in the surface-coated cutting tool manufactured by the above-described manufacturing method are each described in the above-mentioned “surface-coated cutting tool”. It is preferable to be the same as the “substrate”, “coating”, and “Al-rich layer containing hard particles”.
  • various processes in the present embodiment will be described in detail.
  • the manufacturing method of the surface-coated cutting tool includes a step of forming an Al-rich layer as described above.
  • the step of forming the Al-rich layer includes a first step of forming a lamellar layer by a CVD method.
  • This lamella layer can be formed using, for example, the CVD apparatus shown in FIG.
  • the lamellar layer is a layer containing hard particles, and the hard particles preferably contain a third unit phase and a fourth unit phase as described later.
  • the third unit phase and the fourth unit phase are alternately stacked in the hard particles to form a lamellar phase.
  • the configuration as described above may be simply expressed as “a lamellar layer includes a third unit phase and a fourth unit phase”.
  • the CVD apparatus 1 is provided with an installation table on which a plurality of substrate setting jigs 3 holding the substrate 2 can be installed.
  • the base material 2 and the base material setting jig 3 installed on the installation table are covered with a reaction vessel 4.
  • a temperature control device 5 is disposed around the reaction vessel 4. The temperature inside the reaction vessel 4 is controlled by the temperature control device 5.
  • the CVD apparatus 1 is provided with an introduction pipe 8 having two introduction ports 6 and 7.
  • the introduction tube 8 is disposed so as to penetrate the installation table on which the base material setting jig 3 is disposed.
  • a plurality of through holes are formed in the vicinity of the base material setting jig 3.
  • the introduction pipe 8 can rotate with its axis as the central axis.
  • the CVD apparatus 1 is provided with an exhaust pipe 9, and the exhaust gas can be discharged from the exhaust port 10 to the outside.
  • the jigs in the reaction vessel 4 are usually made of graphite.
  • the first step it is preferable to perform the following first operation, second operation and cooling operation using the above-described CVD apparatus.
  • a lamellar layer is formed in a film and the cutting tool precursor containing this lamellar layer can be obtained.
  • other layers such as a TiN layer and an Al 2 O 3 layer can be formed on the substrate using the above-described CVD apparatus.
  • the substrate any conventionally known substrate can be used as this type of substrate, and can be produced by a conventionally known method.
  • the first step includes a first operation of first obtaining a mixed gas by mixing the first mixed gas and the second mixed gas under conditions of 650 ° C. or higher and 850 or lower and 0.5 kPa or higher and 1.5 kPa or lower. preferable.
  • a source gas containing Al, a source gas containing Ti, and a first mixed gas containing a carrier gas are introduced from the inlet 6 of the CVD apparatus 1 into the inlet tube 8.
  • the first mixed gas may contain a source gas containing C (carbon).
  • a second mixed gas containing a source gas containing N and a carrier gas is introduced from the introduction port 7 of the CVD apparatus 1 into the introduction tube 8. Subsequently, the first mixed gas and the second mixed gas are ejected from the introduction tube 8 into the reaction vessel 4 having an atmosphere of 650 ° C. or higher and 850 or lower and 0.5 kPa or higher and 1.5 kPa or lower. To obtain a mixed gas.
  • the introduction pipe 8 since the introduction pipe 8 has a plurality of through holes, the introduced first mixed gas and second mixed gas are jetted into the reaction vessel 4 from different through holes, respectively. At this time, the introduction tube 8 rotates about its axis as indicated by a rotation arrow in FIG. Thereby, the mixed gas with which the 1st mixed gas and the 2nd mixed gas were mixed uniformly can be obtained. Accordingly, the mixed gas in which the first mixed gas and the second mixed gas are uniformly mixed can be deposited on the surface side of the base material 2 set in the base material setting jig 3 in the second operation described later.
  • chloride gases can be suitably used as the source gas containing Al and the source gas containing Ti.
  • a hydrocarbon gas such as CH 4 or C 2 H 4 can be suitably used as the source gas containing C, and a nitrogen-containing gas such as ammonia or N 2 can be suitably used as the source gas containing N.
  • the first mixed gas preferably includes AlCl 3 gas, TiCl 4 gas, and H 2 gas. Further, the first mixed gas can contain C 2 H 4 gas in addition to the above gas.
  • the second mixed gas preferably contains NH 3 gas and Ar gas. The ratio of NH 3 gas in the mixed gas is preferably 1 to 2% by volume, and more preferably 1 to 1.5% by volume.
  • the atmosphere in the reaction vessel in which the first operation is performed preferably has a furnace temperature of 700 ° C. or higher and 800 ° C. or lower. Furthermore, the furnace pressure is preferably 0.5 kPa or more and 1 kPa or less. In the mixed gas obtained in this way, the first mixed gas and the second mixed gas are mixed more uniformly.
  • the first step preferably includes a second operation for forming a lamellar layer by ejecting the mixed gas toward the surface side of the substrate under the above-described temperature condition and pressure condition.
  • the raw material (element) contained in the mixed gas described above is deposited on the surface side of the substrate.
  • a lamellar layer is formed in a film, and the cutting tool precursor containing a lamellar layer can be obtained.
  • the lamella layer preferably includes a third unit phase and a fourth unit phase.
  • the third unit phase and the fourth unit phase are preferably stacked alternately.
  • the lamella layer preferably has a laminated structure in which a third unit phase and a fourth unit phase are repeatedly laminated.
  • the third unit phase is made of Al s Ti 1-s nitride or carbonitride, and the atomic ratio s of Al in the third unit phase is 0.7 or more and 0.95 or less.
  • the fourth unit phase is made of nitride or carbonitride of Al t Ti 1-t , and the atomic ratio t of Al of the fourth unit phase is 0.5 or more and less than 0.7.
  • the lamellar layer has a third unit phase that appears dark because the atomic ratio of Al (Al / (Al + Ti)) is relatively high, and an atomic ratio of Al that is higher than that of the third unit phase. It has a laminated structure in which the fourth unit phase that appears bright because it is relatively low is repeatedly laminated.
  • FIG. 2 shows a cross-sectional sample obtained by cutting the cutting tool precursor parallel to the normal direction of the surface of the base material, and transmits the lamellar phase in the hard particles appearing in the cross-sectional sample. It is the image image
  • the method for obtaining the cross-sectional sample of the cutting tool precursor can also be a known method, and can be the same as the method for obtaining the cross-sectional sample of the surface-coated cutting tool, for example.
  • the composition of the third unit phase and the fourth unit phase can be controlled by the mixing ratio of the source gases.
  • the thickness and the lamination period of the third unit phase and the fourth unit phase can be controlled by adjusting the flow rate of the source gas and the film formation time.
  • the number of layers of the third unit phase and the fourth unit phase can be controlled by adjusting the rotation speed of the introduction tube 8 and the film formation time.
  • the first step preferably includes a cooling operation. This is because it may be necessary to move the cutting tool precursor in order to perform each step of the second step described later in a heat treatment furnace (for example, a graphite furnace) different from the CVD apparatus 1.
  • a heat treatment furnace for example, a graphite furnace
  • Known means can be applied to this cooling operation.
  • the base material 2 set on the base material setting jig 3 can be cooled by using the temperature control device 5 provided in the CVD device 1.
  • the cooling operation may be natural cooling by being left standing. It is preferable to cool the cutting tool precursor to 300 ° C. or less by this cooling operation.
  • the manufacturing method of the surface coating cutting tool which concerns on this embodiment includes the 2nd process of obtaining an Al rich layer by annealing a lamella layer.
  • the second step includes a temperature raising step, an annealing step, and a cooling step.
  • the temperature raising step includes an operation of raising the temperature of the lamella layer at a rate of 10 ° C./min or more.
  • the ascending cutting tool precursor is taken out from the CVD apparatus and then introduced into the heat treatment furnace (for example, a graphite furnace), and the inside of the graphite furnace is heated to 700 ° C. or more and 1200 ° C. or less at 10 ° C./min.
  • the temperature is increased at the above speed.
  • the temperature rising rate is more preferably 15 ° C./min or more.
  • the upper limit of the heating rate is 30 ° C./min. When the rate of temperature rise exceeds 30 ° C./min, the strength of the entire surface-coated cutting tool tends to decrease due to carburization.
  • the annealing step includes an operation of obtaining an Al-rich layer by annealing the lamellar layer under conditions of 700 ° C. or higher and 1200 ° C. or lower and 0.1 hour or longer and 10 hours or shorter.
  • a heat treatment is performed to maintain the cutting tool precursor heated to 700 ° C. or more and 1200 ° C. or less at that temperature for 0.1 hour or more and 10 hours or less.
  • a structure in which the thin second unit phase surrounds the plurality of massive first unit phases can be obtained from the lamellar phase.
  • the temperature is less than 700 ° C.
  • the yield for obtaining the Al-rich layer tends to deteriorate.
  • the temperature in the annealing step is preferably 850 ° C. or higher and 1100 ° C. or lower, and the maintenance time is preferably 0.5 hours or longer and 2 hours or shorter.
  • the temperature may vary within a range of 700 ° C. or more and 1200 ° C. or less during the maintenance time, and the variation is temporarily less than 700 ° C. or 1200 ° C. as long as the effect of the present invention is exhibited. May be exceeded.
  • the cooling step includes an operation of rapidly cooling the Al-rich layer at a rate of 20 ° C./min or more.
  • any known cooling means can be used as long as the Al-rich layer can be rapidly cooled at a rate of 20 ° C./min or more.
  • the cutting tool precursor that has undergone the annealing process can be cooled by a temperature control device provided in the graphite furnace. At that time, it is preferable to rapidly cool a cutting tool precursor having a temperature of 700 ° C. or more and 1200 ° C.
  • the Al-rich layer is rapidly cooled at a rate of 35 ° C./min or more. Is preferred.
  • an Al-rich layer that uniformly includes hard particles having a structure in which the thin second unit phase surrounds the plurality of massive first unit phases can be formed.
  • the upper limit of the rate of rapid cooling of the Al-rich layer is 50 ° C./min.
  • the rate of rapid cooling of the Al-rich layer exceeds 50 ° C./min, the probability of cracking increases due to the thermal stress caused by the difference in thermal expansion coefficient between the substrate and the coating, leading to a decrease in the strength of the entire surface-coated cutting tool. There is a fear.
  • the furnace pressure during cooling is preferably 0.5 to 0.9 MPa. More preferably, it is 0.6 to 0.8 MPa.
  • the pressure in the furnace during cooling is in the above range, the viscosity of the cooling gas increases, and the cooling rate can be improved by forced convection.
  • the manufacturing method of the surface-coated cutting tool according to the present embodiment can form a coating film having an Al-rich layer containing hard particles as described above, a coating film having high hardness and hardly causing initial wear is used as a base material. Can be formed on top. Therefore, a stable and long-life surface-coated cutting tool can be manufactured.
  • the base material A shown in Table 1 below was prepared. Specifically, the raw material powder having the composition shown in Table 1 is uniformly mixed, pressed into a predetermined shape, and then sintered at 1300-1500 ° C. for 1-2 hours, so that the shape becomes SEET13T3AGSN- A base material made of cemented carbide of G (manufactured by Sumitomo Electric Hardmetal Co., Ltd.) was obtained. SEET13T3AGSN-G has a shape of a cutting edge exchange type cutting tip for milling.
  • a coating film was formed on the surface of the substrate obtained above. Specifically, using the CVD apparatus shown in FIG. 1, the base material was set on the base material setting jig 3, and a film was formed on the base material using the CVD method.
  • the film forming conditions in Sample 1 to Sample 13 are as shown in Table 2 below for the layers other than the Al-rich layer (TiN, TiCN, Al 2 O 3 ).
  • each layer of TiN, TiCN, and Al 2 O 3 is formed on the substrate after adjusting the film formation time of the source gas so as to have the thickness shown in Table 6 described later. did.
  • About the base material of the sample 14 and the sample 15, after forming TiN using the CVD apparatus mentioned above, on the base material by PVD method using the target (target composition, Al: Ti 60: 40) which consists of Al and Ti An AlTiN film was formed.
  • the Al rich layer was obtained by the step of forming the Al rich layer described above. Specifically, it was formed through a first step of forming a lamellar layer by a CVD method and a second step of obtaining an Al-rich layer by annealing the lamellar layer.
  • a lamellar layer was formed by the first step. As shown in Table 3, there were four conditions for forming the lamellar layer, from condition T1 to condition T4. In conditions T1 to T3, a mixed gas was formed from the first mixed gas containing AlCl 3 gas, TiCl 4 gas and H 2 gas, and the second mixed gas containing NH 3 gas and Ar gas. Under the condition T4, a mixed gas was formed from a first mixed gas containing C 2 H 4 gas and a second mixed gas containing NH 3 gas and Ar gas in addition to AlCl 3 gas, TiCl 4 gas and H 2 gas. . In the conditions T1 to T4, the volume ratio of AlCl 3 / (AlCl 3 + TiCl 4 ) in the mixed gas, the temperature condition and the pressure condition in the CVD apparatus 1 are as shown in Table 3, respectively.
  • the first mixed gas was introduced into the introduction pipe 8 from the introduction port 6 of the CVD apparatus 1, and the second mixed gas was introduced into the introduction pipe 8 from the introduction port 7. Subsequently, the introduction pipe 8 was rotated to eject the first mixed gas and the second mixed gas from the through hole of the introduction pipe 8. Thereby, a mixed gas in which the first mixed gas and the second mixed gas were made uniform was obtained, and this mixed gas was laminated on the surface side of the substrate to form a lamella layer.
  • a third unit phase having a composition of Al 0.85 Ti 0.15 N and a thickness of 3 ⁇ m and a fourth unit phase having a composition of Al 0.62 Ti 0.38 N and a thickness of 1 ⁇ m are repeatedly laminated.
  • a lamellar layer in which the average composition of the third unit phase and the fourth unit phase is Al 0.8 Ti 0.2 N can be formed.
  • a lamella layer was formed on the base materials of Sample 1 to Sample 4, Sample 6 to Sample 8, and Sample 12 using Condition T1.
  • a lamella layer was formed on the substrate of Sample 5 using Condition T2.
  • a lamella layer was formed on the base materials of Sample 9 and Sample 10 using Condition T3.
  • a lamella layer was formed on the base materials of Sample 11 and Sample 13 using Condition T4.
  • a transmission electron microscope image of the lamellar layer (lamellar phase) of Sample 1 is shown in FIG.
  • the trade name: “JEM-2100F (manufactured by JEOL Ltd.)” was used for the transmission electron microscope.
  • the Al-rich layer was obtained by annealing the lamellar layer in the second step.
  • the conditions for forming the Al-rich layer were the four conditions C1 to C4.
  • the heating rate in the second heating step, the annealing temperature in the annealing step, the annealing time and the annealing atmosphere, the cooling rate in the cooling step, and the furnace pressure during cooling are as shown in Table 4. It is.
  • the lamellar layer is heated at a rate of temperature increase of 10 ° C./min and annealed at 900 ° C. for 60 minutes to obtain an Al rich layer. Cool at a cooling rate of / min and a furnace pressure of 0.9 MPa.
  • an Al-rich layer was obtained by using the condition C1 for the lamellar layers of Sample 1 and Sample 5.
  • an Al-rich layer was obtained by using Condition C2.
  • an Al-rich layer was obtained by using Condition C3.
  • an Al-rich layer was obtained by using condition C4.
  • the second step was not performed on the lamella layers of Sample 12 to Sample 13.
  • the second step was not performed on the AlTiN film formed by PVD of Sample 14.
  • the AlTiN film formed by PVD of Sample 15 was subjected to heat treatment of temperature increase, annealing, and cooling using the condition C1.
  • a transmission electron microscope image of the hard particles in the Al-rich layer in Sample 1 is shown in FIG.
  • the trade name: “JEM-2100F (manufactured by JEOL Ltd.)” was used for the transmission electron microscope.
  • Sample 1 is a surface-coated cutting tool in which a TiN layer having a thickness of 1 ⁇ m is formed as an underlayer directly on the substrate A, and an Al-rich layer having a thickness of 10 ⁇ m is formed on the TiN layer. It is shown that.
  • the surface-coated cutting tool of Sample 1 has an Al-rich layer obtained by annealing a lamellar layer formed under condition T1 under condition C1.
  • the sample 9 is TiN layer of 1 ⁇ m thick as an underlying layer directly on the base material A is formed, the Al 2 O 3 layer thickness of 3 ⁇ m on the TiN layer is formed, the the Al 2 O 3 layer
  • the surface-coated cutting tool of Sample 9 has an Al-rich layer obtained by annealing a lamella layer formed under condition T3 under condition C3.
  • a TiN layer having a thickness of 0.5 ⁇ m is formed as a base layer directly on the substrate A, a TiCN layer having a thickness of 2 ⁇ m is formed on the TiN layer, and a 2 ⁇ m thickness is formed on the TiCN layer.
  • the surface-coated cutting tool of Sample 10 has an Al-rich layer obtained by annealing a lamella layer formed under condition T3 under condition C3.
  • each Al-rich layer was observed using the transmission microscope described above, and elemental analysis was performed with EDX attached to the transmission microscope.
  • the atomic ratio x (average value) of peak Al in the first unit phase of the Al-rich layer, the atomic ratio y (average value) of Al in the valley in the second unit phase, and the ⁇ 100> orientation of the first unit phase was measured.
  • the results are shown in Table 7.
  • the film strength (indentation hardness) of each of the surface-coated cutting tools of Sample 1 to Sample 11 was examined by the method described above. The results are also shown in Table 7.
  • sample 12 is a surface-coated cutting tool in which a film is formed by performing only condition T1 on substrate A coated with a TiN layer as an underlayer.
  • This is a surface-coated cutting tool in which a film is formed by performing only condition T4 on a substrate A coated with a TiN layer as an underlayer.
  • Sample 14 is a surface-coated cutting tool in which an AlTiN layer is formed by PVD under the above-described conditions on a substrate A coated with a TiN layer as an underlayer
  • Sample 15 is a substrate coated with a TiN layer as an underlayer.
  • This is a surface-coated cutting tool in which an AlTiN layer is formed by PVD under the above-described conditions for A, followed by heat treatment under conditions C1 to form a film.
  • the hard particles in the Al-rich layer of Sample 1 have a peak Al atomic ratio x in the first unit phase of 0.87 (ie, Al 0.87 Ti 0.13 N), and in the second unit phase.
  • the atomic ratio y of Al in the valley is 0.6 (that is, Al 0.6 Ti 0.4 N).
  • the first unit phase has a ⁇ 100> orientation size of 4 nm.
  • the Al-rich layer of Sample 1 had a film strength (indentation hardness) of 38 GPa.
  • a cutting test (abrasion resistance test) was performed on the surface-coated cutting tools of Sample 1 to Sample 15 under the following cutting conditions. Specifically, for the surface-coated cutting tools of Sample 1 to Sample 15 (the shape is SEET13T3AGSN-G), the cutting time until the flank wear amount (Vb) becomes 0.30 mm was measured under the following cutting conditions. . The results are shown in Table 8. The surface-coated cutting tool having a longer cutting time indicates that the initial wear is suppressed, and thus the wear resistance is superior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

表面被覆切削工具は、基材と、その表面に形成された被膜とを含み、前記被膜は、1または2以上の層を含み、前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、前記硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、前記第1単位相間に介在する第2単位相とを含み、前記第1単位相は、AlxTi1-xの窒化物または炭窒化物からなり、前記第1単位相のAlの原子比xは、0.7以上0.96以下であり、前記第2単位相は、AlyTi1-yの窒化物または炭窒化物からなり、前記第2単位相のAlの原子比yは、0.5を超え0.7未満であり、前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す。

Description

表面被覆切削工具およびその製造方法
 本発明は、表面被覆切削工具およびその製造方法に関する。本出願は、2017年2月28日に出願した日本特許出願である特願2017-037377号に基づく優先権を主張する。当該日本特許出願に記載されたすべての記載内容は、参照によって本明細書に援用される。
 特表2008-545063号公報(特許文献1)には、表面被覆部材として、Ti1-xAlxN被膜を有する部材が開示されている。このTi1-xAlxN被膜は、0.75<x≦0.93の化学量論係数を有し、0.412~0.405nmの格子定数aおよび単相の立方晶NaCl構造を有する。Ti1-xAlxN被膜は、CVD(Chemical Vapor Deposition)法により形成される。具体的には、基材を収容したホットウォールタイプのCVD反応器中に、AlCl3、TiCl4、H2およびArからなる第1の気体混合物と、NH3およびN2からなる第2の気体混合物とを導入することにより、Ti1-xAlxNの結晶を成長させる。この方法で形成された上記被膜は、公知のPVD法で作製されたTi1-xAlxN被膜に比べ、被膜中のAlの含有率が高い。このため該被膜を有する表面被覆部材は、高い耐酸化性および高い硬度を有し、高温において優れた耐摩耗性を発揮することができるとされる。
 特開2014-129562号公報(特許文献2)には、表面被覆部材が開示されている。この表面被覆部材には、CVD法により硬質被膜層が形成されている。この硬質被膜層は硬質粒子を含み、該硬質粒子はNaCl構造のTiの原子比率が相対的に高いAlTiN層およびNaCl構造のTiの原子比率が相対的に低いAlTiN層が繰り返し積層された多層構造(所謂ラメラ相)を含む。このラメラ相は、その積層周期が0.5~20nmである。硬質被膜層は、押し込み硬さが3000kgf/mm2(29.4gPa)
以上であって高い硬度を有し、もって特許文献2の表面被覆部材は、優れた耐摩耗性を発揮することができる。
特表2008-545063号公報 特開2014-129562号公報
 本開示の一態様に係る表面被覆切削工具は、基材と、その表面に形成された被膜とを含む表面被覆切削工具であって、前記被膜は、1または2以上の層を含み、前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、前記硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、前記第1単位相間に介在する第2単位相とを含み、前記第1単位相は、AlxTi1-xの窒化物または炭窒化物からなり、前記第1単位相のAlの原子比xは、0.7以上0.96以下であり、前記第2単位相は、AlyTi1-yの窒化物または炭窒化物からなり、前記第2単位相のAlの原子比yは、0.5を超え0.7未満であり、前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す。
 本開示の一態様に係る表面被覆切削工具の製造方法は、基材と、その表面に形成された被膜とを含み、前記被膜は、1または2以上の層を含み、前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す表面被覆切削工具の製造方法であって、前記Alリッチ層を形成する工程を含み、前記工程は、CVD法によりラメラ層を形成する第1工程と、前記ラメラ層をアニールすることにより前記Alリッチ層を得る第2工程とを含み、前記第2工程は、昇温工程と、アニール工程と、冷却工程とを含み、前記昇温工程は、前記ラメラ層を10℃/分以上の速度で昇温する操作を含み、前記アニール工程は、700℃以上1200℃以下かつ0.1時間以上10時間以下の条件下で前記ラメラ層をアニールすることにより前記Alリッチ層を得る操作を含み、前記冷却工程は、前記Alリッチ層を20℃/分以上の速度で急冷する操作を含む。
図1は、本実施形態において用いられるCVD装置の概略断面図である。 図2は、本実施形態の製造方法において形成されるラメラ相を透過電子顕微鏡(TEM)で撮影した顕微鏡像として説明する図面代用写真である。 図3は、本実施形態の表面被覆切削工具において形成されるAlリッチ層中の硬質粒子を透過電子顕微鏡(TEM)で撮影した顕微鏡像として説明する図面代用写真である。 図4は、図3における矢印方向(<100>方位)にエネルギー分散型X線分析(EDX)装置を用いて組成分析をすることにより得られる<100>方位の測定距離とAlの原子比との関係を表したグラフである。 図5は、図3におけるAlリッチ層を、X線回折法によりその表面に対する法線方向から解析することにより得られる2θと各結晶面の回折強度との関係を表したグラフである。
 [本開示が解決しようとする課題]
 特許文献1に開示された表面被覆部材のTi1-xAlxN被膜は、xが0.7より大きい場合、Ti1-xAlxNの結晶構造に大きな歪が生じる。このため、上記被膜にエネルギーが付与された場合、Ti1-xAlxNの結晶は、より安定なウルツ鉱型結晶構造へ相転移する。したがって、表面被覆部材が切削工具に用いられた場合、切削の際に発生する熱でTi1-xAlxNの結晶構造が相転移することにより、上記被膜に亀裂が生じ、これが進展することによって突発的な欠損に至る傾向がある。
 特許文献2に開示された表面被覆部材は、切削工具に用いられた場合に初期摩耗の点で改善の余地があった。その原因は明らかではないが、硬質粒子内のラメラ相は、積層方向に対して耐変形に優れる一方、その長手方向に対して外部負荷によって転位が形成されやすい。このため、その転位が起点となってラメラ相に破壊が生じ、これが硬質粒子の破壊につながることにより初期摩耗が進展すると考えられる。したがって、未だ高い硬度を有し、かつ初期摩耗も生じにくい表面被覆部材を実現することには至っておらず、その開発が切望されている。
 以上の点に鑑み、本開示は、高い硬度を有し、かつ初期摩耗も生じにくい表面被覆切削工具およびその製造方法を提供することを目的とする。
 [本開示の効果]
 上記によれば、高い硬度を有し、かつ初期摩耗も生じにくい表面被覆切削工具を提供することができる。
 [本願発明の実施形態の説明]
 本発明者らは、初期摩耗が抑制される被膜の創作を鋭意検討する中で、特許文献2に開示されたラメラ相に対して熱処理することにより、ラメラ相中のAlなどの金属原子を拡散させることを着想した。従来、被膜を熱処理すればその品質が低下すると考えられていたが、熱処理に際して特殊な制御を行なってラメラ相を構成している結晶粒がウルツ鉱型結晶構造へ相転移する前にスピノーダル分解を停止させることにより、結晶粒の内部に初期摩耗を抑制する特定の相を形成し得ることを見出し、本発明に到達した。
 最初に本発明の実施態様を列記して説明する。
 [1]本開示の一態様に係る表面被覆切削工具は、基材と、その表面に形成された被膜とを含む表面被覆切削工具であって、上記被膜は、1または2以上の層を含み、上記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、上記硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、上記第1単位相間に介在する第2単位相とを含み、上記第1単位相は、AlxTi1-xの窒化物または炭窒化物からなり、上記第1単位相のAlの原子比xは、0.7以上0.96以下であり、上記第2単位相は、AlyTi1-yの窒化物または炭窒化物からなり、上記第2単位相のAlの原子比yは、0.5を超え0.7未満であり、上記Alリッチ層は、X線回折法を用いて上記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す。このような構成により表面被覆切削工具は、高い硬度を有し、かつ初期摩耗も抑制することができる。
 [2]上記硬質粒子は、上記Alリッチ層の50体積%以上を占有することが好ましい。これにより、より高い硬度を有し、かつ初期摩耗もより抑制することができる。
 [3]上記第1単位相は、その<100>方位における大きさが2nm以上15nm以下であることが好ましい。これにより、さらに高い硬度を有し、かつ初期摩耗もさらに抑制することができる。
 [4]本開示の一態様に係る表面被覆切削工具の製造方法は、基材と、その表面に形成された被膜とを含み、上記被膜は、1または2以上の層を含み、上記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、上記Alリッチ層は、X線回折法を用いて上記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す表面被覆切削工具の製造方法であって、上記Alリッチ層を形成する工程を含み、上記工程は、CVD法によりラメラ層を形成する第1工程と、上記ラメラ層をアニールすることにより上記Alリッチ層を得る第2工程とを含み、上記第2工程は、昇温工程と、アニール工程と、冷却工程とを含み、上記昇温工程は、上記ラメラ層を10℃/分以上の速度で昇温する操作を含み、上記アニール工程は、700℃以上1200℃以下かつ0.1時間以上10時間以下の条件下で上記ラメラ層をアニールすることにより上記Alリッチ層を得る操作を含み、上記冷却工程は、上記ラメラ層を20℃/分以上の速度で急冷する操作を含む。このような構成により高い硬度を有し、かつ初期摩耗も生じにくい表面被覆切削工具を製造することができる。
 [5]上記第1工程は、650℃以上850以下かつ0.5kPa以上1.5kPa以下の条件の下、第1混合ガスおよび第2混合ガスを混合することにより混合ガスを得る第1操作と、上記条件の下、上記混合ガスを上記基材の表面側へ向けて噴出することにより上記ラメラ層を形成する第2操作とを含み、上記第1混合ガスは、AlCl3ガス、TiCl4ガスおよびH2ガスを含み、上記第2混合ガスは、NH3ガスおよびArガスを含むことが好ましい。これにより、より高い硬度を有し、かつ初期摩耗もより生じにくいAlリッチ層を形成するためのラメラ層を得ることができる。
 [6]上記ラメラ層は、第3単位相および第4単位相を含み、上記第3単位相および上記第4単位相は、交互に積層され、上記第3単位相は、AlsTi1-sの窒化物または炭窒化物からなり、上記第3単位相のAlの原子比sは、0.7以上0.95以下であり、上記第4単位相は、AltTi1-tの窒化物または炭窒化物からなり、上記第4単位相のAlの原子比tは、0.5以上0.7未満であることが好ましい。これにより、より高い硬度を有し、かつ初期摩耗もより生じにくいAlリッチ層を得ることができる。
 [本願発明の実施形態の詳細]
 以下、本発明の実施形態(以下「本実施形態」とも記す)についてさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。以下では図面を参照しながら説明する。
 ここで、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。さらに、本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるものではない。たとえば「TiBN」と記載されている場合、TiBNを構成する原子数の比はTi:B:N=1:0.5:0.5に限られず、従来公知のあらゆる原子比が含まれる。このことは、「TiBN」以外の化合物の記載についても同様である。本実施形態において、チタン(Ti)、アルミニウム(Al)、ケイ素(Si)、タンタル(Ta)、クロム(Cr)などの金属元素と、窒素(N)、酸素(O)または炭素(C)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。
 ≪表面被覆切削工具≫
 本実施形態に係る表面被覆切削工具は、基材と、その表面に形成された被膜とを含む。被膜は、基材の全面を被覆することが好ましい。しかしながら、基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても、本発明の範囲を逸脱するものではない。
 このような表面被覆切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどを例示することができる。
 <基材>
 基材は、この種の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nbなどの炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体およびダイヤモンド焼結体のいずれかであることが好ましい。
 これらの各種基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の表面被覆切削工具の基材として優れた特性を有するためである。
 表面被覆切削工具が刃先交換型切削チップなどである場合、基材は、チップブレーカを有するものも、有さないものも含まれる。さらに被削材を切削する際に切削の中心部となる刃先稜線部は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドとを組み合わせたもののいずれのものも含まれる。
 <被膜>
 被膜は、1または2以上の層を含む。この層のうち少なくとも1層は硬質粒子を含むAlリッチ層である。被膜は、3~30μmの厚みを有することが好ましい。その厚みが3μm未満である場合、耐摩耗性が不十分となる傾向がある。その厚みが30μmを超えると、断続加工において被膜と基材との間に大きな応力が加わった際に被膜が剥離し、または破壊が発生する傾向がある。
 (他の層)
 被膜は、Alリッチ層を少なくとも1層含む限り、他の層を含んでいてもよい。他の層としては、たとえばAl23層、TiB2層、TiBN層、AlN層(ウルツ鉱型)、TiN層、TiCN層、TiBNO層、TiCNO層、TiAlN層、TiAlCN層、TiAlON層、TiAlONC層などを挙げることができる。
 たとえば、下地層としてTiN層、TiC層、TiCN層、TiBN層を基材の直上に含むことにより、基材と被膜との密着性を高めることができる。Al23層を含むことにより、被膜の耐酸化性を高めることができる。さらに、TiN層、TiC層、TiCN層、TiBN層などからなる最外層を含むことにより、表面被覆切削工具の刃先が使用済みか否かの識別性を有することができる。他の層の厚みは、通常0.1~10μmの厚みとすることが好ましい。
 <Alリッチ層>
 被膜は、上述の通りその1または2以上の層のうち少なくとも1層が、硬質粒子を含むAlリッチ層である。Alリッチ層は、1μm以上20μm以下の厚みを有することが好適であり、より好ましくは3μm以上15μm以下である。Alリッチ層の厚みが1μm未満の場合、耐摩耗性が不十分となる傾向がある。Alリッチ層の厚みが20μmを超えると、断続加工においてAlリッチ層と基材との間に大きな応力が加わった際にAlリッチ層が剥離し、または破壊が発生する傾向がある。発明の効果を発揮する限りにおいて、Alリッチ層は、部分的に後述する硬質粒子以外からなる相、たとえばアモルファス相、ウルツ鉱型硬質相を含んでいたとしても本発明の範囲を逸脱するものではない。ここでAlリッチ層の「Alリッチ」とは、該層の任意の5箇所における金属組成のうちAlの組成が、平均で0.5を超過していることをいう。
 Alリッチ層の厚み、他の層の厚みおよび被膜の厚みは、表面被覆切削工具に対し、その基材の表面の法線方向と平行に切断することにより断面サンプルを得て、この断面サンプルを、透過電子顕微鏡(TEM、商品名:「JEM-2100F」、日本電子株式会社製)を用いて観察することにより測定することができる。さらに、Alリッチ層の厚み、他の層の厚みおよび被膜の厚みは、たとえば5個の断面サンプルを得て、そのサンプル中の任意の3箇所でそれぞれ厚みを測定し、その平均値としてそれぞれ表すことができる。Alリッチ層の厚みおよび他の層の厚みを観察するときは、観察倍率を50000倍とし、観察面積が1視野で10μm2程度となるように調整する。被膜の厚みを観察するときは、観察倍率を5000倍とし、観察面積が1視野で100μm2程度となるように調整する。
 表面被覆切削工具の断面サンプルを得る方法は、公知の手段を用いることができる。なかでも、集束イオンビーム装置(商品名:「JIB-4501」、日本電子株式会社製)を用いてGaイオン(加速電圧30kV)により上記断面サンプルを作製することが好ましい。
 <硬質粒子>
 硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、この第1単位相間に介在する第2単位相とを含む。第1単位相は、AlxTi1-xの窒化物または炭窒化物からなり、第1単位相のAlの原子比xは、0.7以上0.96以下である。さらに、AlxTi1-xの窒化物をAlxTi1-xz1と表した場合、0.8≦z1≦1.2の関係を満たす。AlxTi1-xの炭窒化物をAlxTi1-xm1n1と表した場合、0.8≦m1+n1≦1.2の関係を満たす。
 第2単位相は、AlyTi1-yの窒化物または炭窒化物からなり、第2単位相のAlの原子比yは、0.5を超え0.7未満である。さらに、AlyTi1-yの窒化物をAlyTi1-yz2と表した場合、0.8≦z2≦1.2の関係を満たす。AlyTi1-yの炭窒化物をAlyTi1-ym2n2と表した場合、0.8≦m2+n2≦1.2の関係を満たす。
 硬質粒子は、たとえば図3の顕微鏡像に示すように、複数の塊状の第1単位相と、この第1単位相間に介在する第2単位相とを有している。ここで図3は、上述した断面サンプルにおけるAlリッチ層中の硬質粒子を対象とした透過電子顕微鏡(TEM)像である。この顕微鏡像は、高角度散乱暗視野(HAADF:High-Angle Annular Dark-field)
法を用いて撮影されている。図3において明暗は、Alの原子比率に依存して現れる。具体的には、Alの原子比率が高い箇所である程、暗く現れる。したがって、相対的に暗い部分が第1単位相となり、相対的に明るい部分が第2単位相となる。
 図3には硬質粒子の内部の断面構造として、細線状の第2単位相が塊状の第1単位相を包囲する形態が現れている。すなわち硬質粒子は、その内部において細線状の第2単位相が複数の塊状の第1単位相を包囲するような構造を有している。さらに図3のTEM像を観察することにより、硬質粒子は、第1単位相および第2単位相がともに、上述の通り塩化ナトリウム型の結晶構造を有し、かつ第1単位相と第2単位相とが格子整合していることが分かる。
 第1単位相および第2単位相の各相は、硬質粒子の<100>方位(図3における矢印方法)に沿って、それぞれ組成が変化していることが好ましいが、それぞれ単一の組成を有していてもよい。以下、硬質粒子がその第1単位相および第2単位相のそれぞれにおいて、その<100>方位に沿って組成が変化している場合を取り上げ、その変化の態様について図4に基づいて説明する。
 図4は、図3における矢印方向(<100>方位)に、上記透過電子顕微鏡(TEM)に付帯するエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)装置(商品名:「JED-2300」、日本電子株式会社製)を用いて組成分析をした結果を示すグラフである。図4のグラフは、横軸を矢印方向(<100>方位)の測定距離とし、縦軸をAlの原子比(Al/(Al+Ti))としている。そして図4には、<100>方位に沿ったAlの原子比の変化、すなわち硬質粒子の内部の<100>方位に沿った組成の変化が現れている。EDX装置を用いて分析することにより、その分析位置に存在する原子の構成比率を算出することができる。図4において、第1単位相は、Alの原子比が0.7以上0.96以下となる範囲を占める。第2単位相は、Alの原子比が0.5を超え0.7未満となる範囲を占める。すなわち第1単位相と第2単位相とは、Alの原子比が0.7であることを境界に区別される。
 さらに第1単位相は、Alの原子比が0.7以上であって、かつAlの原子比が極大(ピーク)となるAlxTi1-xの窒化物または炭窒化物の組成を含む。たとえば図4では、<100>方位の測定距離が小さい側から、Alの原子比がそれぞれ0.78、0.76、0.78、0.8、0.8、0.83、0.84、0.85、0.84、0.85、0.85、0.85となるピークを有する。第1単位相は、これらのピークから隣接する第2単位相へ向け、徐々にAlの原子比が減少する。第2単位相は、Alの原子比が0.7未満であって、かつAlの原子比が極小(バレー)となるAlyTi1-yの窒化物または炭窒化物の組成を含む。たとえば図4では、<100>方位の測定距離が小さい側から、Alの原子比がそれぞれ0.63、0.62、0.63、0.63、0.63、0.63、0.62、0.63、0.63、0.64、0.68となるバレーを有する。第2単位相は、そのバレーから隣接する第1単位相へ向け、徐々にAlの原子比が増加する。
 硬質粒子において第1単位相は、その<100>方位における大きさが2nm以上15nm以下であることが好ましい。この大きさは、第1単位相の中点から、これに隣接する第2単位相を経て、さらにこの第2単位相に隣接する第1単位相の中点までを<100>方位に沿って結ぶ距離を意味する。すなわち、硬質粒子は、細線状の第2単位相が複数の塊状の第1単位相を包囲する構造において、その<100>方位における第1単位相および第2単位相の1周期が2nm以上15nm以下であることを意味する。
 第1単位相は、その<100>方位における大きさが2nm未満である場合、製造することが困難となる。その大きさが15nmを超える場合、ウルツ鉱型結晶構造へ相転移する確率が高まるため、被膜に亀裂が生じやすくなり、これが進展することによって突発的な欠損に至る傾向がある。硬質粒子において第1単位相は、その<100>方位における大きさが2nm以上10nm以下であることがより好ましい。
 第1単位相の<100>方位における大きさは、上述した断面サンプルの硬質粒子を対象としたTEM像から求めることができる。そのときのTEM像は、観察倍率を5000000倍とし、観察面積を150nm2程度として1視野に1~10個の硬質粒子が現れるように調整する。これを異なる10視野で観察することより、第1単位相の<100>方位における大きさを、その平均値として求めることができる。
 細線状の第2単位相が複数の塊状の第1単位相を包囲する構造において、その<100>方位において第2単位相によって包囲される第1単位相の数は、特に限定されるべきではないが、10以上1000以下とすることが好ましい。その数が10未満であると、第1単位相の数が少なすぎて硬質粒子を含むAlリッチ層の硬度が低下する傾向がある。一方で、その数が1000を超えると、第2単位相によって第1単位相を包囲する構造を実質的に形成することができなくなるため、Alリッチ層の硬度が低下する傾向がある。
 硬質粒子の粒径は、10nm以上1000nm以下であることが好ましい。硬質粒子の粒径が10nm未満である場合、上述した形態の硬質粒子を製造することが困難となる。硬質粒子の粒径が1000nmを超えると、硬質粒子の脱落およびこれに基づくチッピングをまねく傾向がある。硬質粒子の粒径についても、上述した断面サンプルのTEM像から求めることができる。そのときのTEM像は、観察倍率を50000倍とし、観察面積を10μm2程度として1視野に10~100個の結晶粒が現れるように調整する。硬質粒子の粒径は、具体的には以下のように測定することができる。
 すなわち、まず上記のTEM像の1視野において現れたAlリッチ層の厚みをtとした場合、この厚みtを厚み方向に10等分にして0.1t~0.9tの範囲を選択する。さらに、この範囲において、硬質粒子の成長方向(本実施形態の場合、基材の表面に対して45°で交差する方向)に対して垂直となる直線を所定の長さで等間隔に7本設定する。次に、これらの直線と交差する硬質粒子の数を求める。最後に、上記所定の長さをこれらの直線と交差した硬質粒子の数で除して得られる数値を、当該視野における硬質粒子の粒径とする。これを異なる3視野のTEM像に対しそれぞれ行ない、これらの平均値として硬質粒子の粒径を求めることができる。硬質粒子の粒径は、50nm以上500nm以下であることがより好ましい。
 硬質粒子は、細線状の第2単位相が複数の塊状の第1単位相を包囲する構造以外の構造、たとえば、アモルファス相、ウルツ鉱型硬質相などをその内部に含んでいたとしても、あるいは第1単位相の一部が細線状の第2単位相に包囲されていなくても、本発明の効果を発揮する限りにおいて本発明の範囲を逸脱するものではない。
 ここで硬質粒子は、Alリッチ層の50体積%以上を占有することが好ましい。硬質粒子は、Alリッチ層の60体積%以上を占有することがより好ましく、80体積%以上を占有することが最も好ましい。これにより被膜は、Alリッチ層を含むことにより、より高い硬度を有し、かつ初期摩耗をより抑制することができる。Alリッチ層における硬質粒子の比率が50体積%未満になると、初期摩耗を抑制する効果が得られにくくなる。Alリッチ層における硬質粒子の比率の上限値は、95体積%である。
 Alリッチ層における硬質粒子の比率(体積%)は、次のようにして測定することができる。すなわち、まず上述した断面サンプルを用いてAlリッチ層の基材側の境界(界面)および表面側の境界(界面)が1視野中に収まるTEM像(観察倍率約50000倍、観察面積10μm2程度)を撮像する。次に、このTEM像に基づいてAlリッチ層の総面積(S1)および硬質粒子の総面積(S2)をそれぞれ求め、Alリッチ層の総面積(S1)における硬質粒子の総面積(S2)の面積比率(S2/S1×100)を算出する。さらに、この測定を異なる3視野のTEM像に対しそれぞれ行ない、これらの平均値としてAlリッチ層中の硬質粒子の面積比率を求める。最後に、このAlリッチ層中の硬質粒子の面積比率が、Alリッチ層の奥行き方向にも連続するものとみなし、これをAlリッチ層における硬質粒子の体積比率と定めることとする。
 <回折ピーク>
 本実施形態において、Alリッチ層は、X線回折法を用いて被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す。これにより表面被覆切削工具は、Alリッチ層に含まれる硬質粒子の大部分が、被膜の表面の法線方向に対して、その法線の左右いずれかに45°傾いた方向へ成長した結晶であることが理解される。もって、表面被覆切削工具は、高い硬度とともに初期摩耗を効果的に抑制する効果を有することができる。さらに、(220)面において最大ピークを示すことから、硬度と靱性をバランスよく備えて耐摩耗性により優れることができる。Alリッチ層に対して行なうX線回折(XRD)法は、具体的には以下の方法が適用される。
 まず、X線回折法の測定対象物となる表面被覆切削工具をX線回折装置(商品名:「SmartLab(登録商標)」、株式会社リガク製)に、その被膜の表面の法線方向から解析可能となる方向にセットする。このとき表面被覆切削工具において、Alリッチ層よりも被膜の表面側に最外層などが被覆されている場合、表面被覆切削工具の被膜の表面を研磨することにより、Alリッチ層の表面を露出させた上で上記装置にセットする。被膜の表面を研磨する手段は、公知の方法を用いることができる。
 次に、表面被覆切削工具のAlリッチ層に対し、次の条件下で被膜の表面の法線方向から解析する。これにより、Alリッチ層におけるX線回折ピークに関するデータ(以下、「XRDデータ」とも記す)を得ることができる。
測定方法:ω/2θ法
入射角度(ω):2°
スキャン角度(2θ):30~70°
スキャンスピード:1°/min
スキャンステップ幅:0.05°
X線源:Cu-Kα線
光学系属性:中分解能平行ビーム
管電圧:45kV
管電流:200mA
X線照射範囲:2.0mm範囲制限コリメーターを使用し、すくい面上の直径2mmの範囲に照射(ただし、同条件で逃げ面にX線を照射することも許容される)
X線検出器:半導体検出器(商品名:「D/teX Ultra250」、株式会社リガク製)。
 本実施形態においてAlリッチ層のXRDデータは、たとえば図5に示すように、Alリッチ層に含まれる硬質粒子の(220)面が最大ピークとして現れる。具体的には図5において、c-AlTiNの(220)面のピークがその他の面よりも高い強度で現れていることが理解される。
 ここで、表面被覆切削工具が上述した形態のAlリッチ層を含む被膜で被覆される場合、初期摩耗を抑制することができる理由については詳細には不明である。しかし、次の理由が推察される。すなわちAlリッチ層が、複数のナノサイズの塊状の第1単位相と、この第1単位相間に介在する第2単位相へ形態変化することによって外部応力による転位運動が著しく阻害されることにより、切削初期の被膜における亀裂の発生を抑制することができ、かつ亀裂が発生した場合にもその基材側への進展を効果的に抑制することができると考えられる。さらに、該被膜は被膜の表面の法線方向から解析したXRDにおいて(200)面が最大ピークとなる粒状組織を有することとなるため、被膜の靭性が向上し、初期摩耗のさらなる抑制効果が助長されると考えられる。
 (押し込み硬さ)
 本実施形態に係る表面被覆切削工具において、被膜は、30GPa(約3000kgf/mm2)以上の押し込み硬さ(以下、「膜強度」とも記す)を有することができる。この被膜の押し込み硬さは、35GPaであることがより好ましい。被膜の押し込み硬さが上記範囲であることにより、表面被覆切削工具は、耐摩耗性が向上する。特に、耐熱合金などの難削材の切削加工を行う際に優れた性能を発揮することができる。被膜の押し込み硬さの上限は、特に制限はない。たとえば、被膜の押し込み硬さは、30~38GPaであれば十分に耐摩耗性および耐チッピング性のバランスに優れることができる。
 この押し込み硬さは、ナノインデンテーション法を用いて測定することができる。具体的には、ナノインデンテーション法が利用可能な超微小押し込み硬さ試験機を用いて測定する。押し込み硬さは、被膜の厚さ方向に対して垂直に所定荷重(たとえば30mN)で圧子を押し込み、圧子が押し込んだ押し込み深さに基づいて算出することができる。特に、Alリッチ層の押し込み硬さを測定する場合において、被膜の表面側に最外層などの他の層が存在する場合、カロテスト、斜めラッピングなどをすることにより、他の層を除いてAlリッチ層を露出させ、この露出したAlリッチ層に対して上記方法を用いることにより、押し込み硬さを測定することができる。
 <作用>
 本実施形態に係る表面被覆切削工具は、基材が上述した硬質粒子を含むAlリッチ層を有する被膜で被覆されることによって、高い硬度を有し、かつ初期摩耗も生じにくいという効果を有することができる。これにより、安定し、かつ長寿命な表面被覆切削工具を提供することができる。
 ≪表面被覆切削工具の製造方法≫
 本実施形態に係る表面被覆切削工具の製造方法は、基材と、その表面に形成された被膜とを含み、被膜は、1または2以上の層を含み、この層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、Alリッチ層は、X線回折法を用いて被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す表面被覆切削工具の製造方法である。表面被覆切削工具の製造方法は、Alリッチ層を形成する工程を含む。この工程は、CVD法によりラメラ層を形成する第1工程と、ラメラ層をアニールすることによりAlリッチ層を得る第2工程とを含む。第2工程は、昇温工程と、アニール工程と、冷却工程とを含む。昇温工程は、ラメラ層を10℃/分以上の速度で昇温する操作を含む。アニール工程は、700℃以上1200℃以下かつ0.1時間以上10時間以下の条件下でラメラ層をアニールすることにより、前記Alリッチ層を得る操作を含む。さらに冷却工程は、ラメラ層を20℃/分以上の速度で急冷する操作を含む。
 表面被覆切削工具の製造方法は、上述した各工程、ならびに各操作を含むことにより、高い硬度を有し、かつ初期摩耗も生じにくい表面被覆切削工具を製造することができる。表面被覆切削工具の製造方法においては、上記工程を行なう限り、他の工程を含むことができる。他の工程としては、たとえば基材を製造する基材製造工程、表面研削、ショットブラストなどの表面処理工程、および他の層を形成するためのCVD工程などを挙げることができる。他の工程は、従来公知の方法により行なうことができる。
 ここで、上記製造方法により製造される表面被覆切削工具に含まれる「基材」、「被膜」、「硬質粒子を含むAlリッチ層」などは、それぞれ上述の≪表面被覆切削工具≫において説明した「基材」、「被膜」、「硬質粒子を含むAlリッチ層」と同一であることが好ましい。以下、本実施形態における各種の工程について詳述する。
 <Alリッチ層を形成する工程>
 (第1工程)
 表面被覆切削工具の製造方法は、上述の通り、Alリッチ層を形成する工程を含む。このAlリッチ層を形成する工程は、CVD法によりラメラ層を形成する第1工程を含む。このラメラ層は、たとえば図1に示すCVD装置を用いて形成することができる。ここでラメラ層は、硬質粒子を含む層であって、この硬質粒子は、後述するように第3単位相および第4単位相を含むことが好ましい。第3単位相および第4単位相は、硬質粒子内において交互に積層され、ラメラ相を形成する。本明細書において、以上のような構成を単に「ラメラ層は、第3単位相および第4単位相を含む」と表現する場合がある。
 図1に示すように、CVD装置1は、基材2を保持した基材セット治具3を複数設置することができる設置台が設けられている。この設置台に設置された基材2および基材セット治具3は、反応容器4によりカバーされる。反応容器4の周囲には、調温装置5が配置されている。この調温装置5により、反応容器4内の温度が制御される。
 CVD装置1は、2つの導入口6、7を有する導入管8が配置されている。導入管8は、基材セット治具3が配置される設置台を貫通するように配置されている。基材セット治具3近傍の部分には、複数の貫通孔が形成されている。導入管8において、導入口6、7から管内に導入された各ガスは、その内部で混合されることなく、それぞれ貫通孔を経て反応容器4内に導入される。導入管8は、その軸を中心軸として回転することができる。さらにCVD装置1は、排気管9が配置されており、排気ガスは排気口10から外部へ排出することができる。反応容器4内の治具類は、通常黒鉛により構成される。
 第1工程では、上述のCVD装置を用いて、以下の第1操作、第2操作および冷却操作を行うことが好ましい。これにより、被膜中にラメラ層を形成し、このラメラ層を含む切削工具前駆体を得ることができる。さらに、ラメラ層を形成する前後において、上述のCVD装置を用いてTiN層、Al23層などの他の層を基材上に形成することもできる。基材は、この種の基材として従来公知のものをいずれも使用することができ、もって従来公知の方法により製造することができる。
 〔第1操作〕
 第1工程は、まず650℃以上850以下かつ0.5kPa以上1.5kPa以下の条件の下、第1混合ガスおよび第2混合ガスを混合することにより混合ガスを得る第1操作を含むことが好ましい。この第1操作では、Alを含む原料ガス、Tiを含む原料ガス、およびキャリアガスを含む第1混合ガスをCVD装置1の導入口6から導入管8へ導入する。この第1混合ガスには、C(炭素)を含む原料ガスを含む場合がある。
 さらに第1操作では、Nを含む原料ガスとキャリアガスとを含む第2混合ガスをCVD装置1の導入口7から導入管8に導入する。続いて、650℃以上850以下かつ0.5kPa以上1.5kPa以下の雰囲気とした反応容器4内へ、上記第1混合ガスおよび第2混合ガスを導入管8から噴出することにより、これらのガスが混合された混合ガスを得る。
 特に、導入管8には複数の貫通孔が開いているため、導入された第1混合ガスおよび第2混合ガスは、それぞれ異なる貫通孔から反応容器4内に噴出される。このとき導入管8は、図1中の回転矢印で示すようにその軸を中心として回転している。これにより、第1混合ガスと第2混合ガスとが均一に混合された混合ガスを得ることができる。もって第1混合ガスと第2混合ガスとが均一に混合された混合ガスを後述する第2操作において、基材セット治具3にセットされた基材2の表面側へ堆積することができる。
 Alを含む原料ガス、Tiを含む原料ガスとしては、これらの塩化物ガスを好適に用いることができる。Cを含む原料ガスとしては、CH4、C24などの炭化水素ガスを、Nを含む原料ガスとしては、アンモニア、N2などの窒素含有ガスをそれぞれ好適に用いることができる。具体的には、第1混合ガスは、AlCl3ガス、TiCl4ガスおよびH2ガスを含むことが好ましい。さらに第1混合ガスは、上記ガスに加え、C24ガスを含むことができる。第2混合ガスは、NH3ガスおよびArガスを含むことが好ましい。混合ガス中のNH3ガスの比率は、1~2体積%であることが好ましく、1~1.5体積%であることがより好ましい。
 第1操作を行なう反応容器内の雰囲気は、炉内温度が700℃以上800℃以下であることが好ましい。さらに炉内圧力が0.5kPa以上1kPa以下であることが好ましい。これにより得られる混合ガスは、第1混合ガスと第2混合ガスとがより均一に混合されることとなる。
 〔第2操作〕
 第1工程は、上述した温度条件および圧力条件の下、上記混合ガスを基材の表面側へ向けて噴出することによりラメラ層を形成する第2操作を含むことが好ましい。この第2操作では、上述した混合ガスに含まれる原料(元素)を基材の表面側に堆積させる。これにより被膜中にラメラ層を形成し、ラメラ層を含む切削工具前駆体を得ることができる。
 このラメラ層は、第3単位相および第4単位相を含むことが好ましい。この第3単位相および第4単位相は、交互に積層されることが好ましい。具体的にはラメラ層は、第3単位相および第4単位相が繰り返し積層された積層構造を有することが好ましい。第3単位相は、AlsTi1-sの窒化物または炭窒化物からなり、第3単位相のAlの原子比sは、0.7以上0.95以下である。第4単位相は、AltTi1-tの窒化物または炭窒化物からなり、第4単位相のAlの原子比tは、0.5以上0.7未満である。
 ラメラ層は、たとえば図2に示すように、Alの原子比(Al/(Al+Ti))が相対的に高いために暗く現れる第3単位相と、この第3単位相よりもAlの原子比が相対的に低いために明るく現れる第4単位相とが繰り返し積層された積層構造を有している。ここで図2は、上記切削工具前駆体に対し、その基材の表面の法線方向と平行に切断することにより断面サンプルを得て、この断面サンプルに現れた硬質粒子中のラメラ相を透過電子顕微鏡(TEM、商品名:「JEM-2100F」、日本電子株式会社製)を用いて撮影した像である。この顕微鏡像は、上述したAlリッチ層中の硬質粒子と同様に高角度散乱暗視野法(HAADF)法を用いて撮影されている。したがって、顕微鏡像はAlの原子比が高い箇所である程、暗く現れる。上記切削工具前駆体の断面サンプルを得る方法も公知の手段を用いることができ、たとえば表面被覆切削工具の断面サンプルを得る方法と同じとすることができる。
 ここで第3単位相、第4単位相の組成は、原料ガスの混合割合によって制御することができる。第3単位相、第4単位相の厚みおよび積層周期は、原料ガスの流量と、成膜時間とを調整することによって制御することができる。第3単位相および第4単位相の積層数は、導入管8の回転速度と、成膜時間とを調整することによって制御することができる。
 〔冷却操作〕
 第1工程は、冷却操作を含むことが好ましい。なぜなら、後述する第2工程の各工程をCVD装置1とは別の熱処理炉(たとえば、黒鉛製炉)で行なうのに切削工具前駆体の移動を要する場合があるからである。この冷却操作は公知の手段を適用することができる。たとえばCVD装置1に備え付けの調温装置5を用いることにより、基材セット治具3にセットされた基材2を冷却することができる。さらに冷却操作は、放置による自然冷却であってもよい。この冷却操作により、上記の切削工具前駆体を300℃以下にまで冷却することが好ましい。
 (第2工程)
 本実施形態に係る表面被覆切削工具の製造方法は、ラメラ層をアニールすることによりAlリッチ層を得る第2工程を含む。第2工程は、昇温工程と、アニール工程と、冷却工程とを含む。これらの工程を含むことにより、ラメラ相を有する硬質粒子を含む層(ラメラ層)から、細線状の第2単位相が複数の塊状の第1単位相を包囲する構造を有する硬質粒子を含むAlリッチ層を得ることができる。
 〔昇温工程〕
 昇温工程は、ラメラ層を10℃/分以上の速度で昇温する操作を含む。昇温工程では、たとえば昇切削工具前駆体をCVD装置から取り出した後、上記熱処理炉(たとえば、黒鉛製炉)に導入し、この黒鉛製炉内を700℃以上1200℃以下まで10℃/分以上の速度で昇温する。昇温速度が10℃/分未満である場合、後述するアニール工程においてAlリッチ層を得る歩留りが悪化する恐れがある。昇温速度は、15℃/分以上であることがより好ましい。昇温速度の上限は、30℃/分である。昇温速度が30℃/分を超えると、浸炭によって表面被覆切削工具全体の強度が低下する傾向がある。
 〔アニール工程〕
 アニール工程は、700℃以上1200℃以下かつ0.1時間以上10時間以下の条件下でラメラ層をアニールすることによりAlリッチ層を得る操作を含む。アニール工程では、700℃以上1200℃以下まで昇温させられた切削工具前駆体を、その温度で0.1時間以上10時間以下維持する熱処理を行なう。これによりラメラ相から、細線状の第2単位相が複数の塊状の第1単位相を包囲する構造を得ることができる。アニール工程において、その温度が700℃未満である場合、およびその維持時間が0.1時間未満である場合、Alリッチ層を得る歩留りが悪化する傾向がある。アニール工程の温度が1200℃を超える場合、およびその維持時間が10時間を超える場合、ラメラ相がウルツ鉱型結晶構造を有する相に相転移する傾向がある。アニール工程における温度は、850℃以上1100℃以下であることが好ましく、その維持時間は0.5時間以上2時間以下であることが好ましい。ただし、アニール工程では、その維持時間中に700℃以上1200℃以下の範囲で温度の変動があってもよく、本発明の効果を発揮する限りにおいてその変動が一時的に700℃未満または1200℃を超えてもよい。
 〔冷却工程〕
 冷却工程は、Alリッチ層を20℃/分以上の速度で急冷する操作を含む。冷却工程では、Alリッチ層を20℃/分以上の速度で急冷することができる手段である限り、公知の冷却手段を用いることができる。たとえば、上記黒鉛製炉に備え付けの調温装置により、アニール工程を経た切削工具前駆体を冷却することができる。そのとき、700℃以上1200℃以下の切削工具前駆体を室温付近(たとえば50℃程度)まで30分以内に急冷することが好ましく、もってAlリッチ層を35℃/分以上の速度で急冷することが好ましい。これにより、細線状の第2単位相が複数の塊状の第1単位相を包囲する構造を有する硬質粒子を一様に含むAlリッチ層を形成することができる。Alリッチ層を急冷する速度の上限は、50℃/分である。Alリッチ層を急冷する速度が50℃/分を超えると、基材と被膜との熱膨張係数の差により生じる熱応力によって亀裂発生の確率が高まり、表面被覆切削工具全体の強度が低下につながる恐れがある。
 上記冷却工程において、冷却時の炉内圧力は、0.5~0.9MPaであることが好ましい。0.6~0.8MPaであることがより好ましい。冷却時の炉内圧力が上記範囲であることにより、冷却ガスの粘性が増加し、強制対流によって冷却速度を向上させることができる。
 本実施形態に係る表面被覆切削工具の製造方法は、上述した硬質粒子を含むAlリッチ層を有する被膜を形成することができるため、高い硬度を有し、かつ初期摩耗も生じにくい被膜を基材上に形成することができる。もって、安定し、かつ長寿命な表面被覆切削工具を製造することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 本実施例では、被膜の組成および形成条件が異なる試料1~試料15の表面被覆切削工具を作製し、その性能を評価した。後述するように試料1~試料11が実施例に相当し、試料12~試料15が比較例に相当する。
 ≪表面被覆切削工具の作製≫
 <基材の調製>
 試料1~試料15の表面被覆切削工具を作製するため、以下の表1に示す基材Aを準備した。具体的には、表1に示す配合組成からなる原料粉末を均一に混合し、所定の形状に加圧成形した後、1300~1500℃で1~2時間焼結することにより、形状がSEET13T3AGSN-Gの超硬合金製基材(住友電工ハードメタル株式会社製)を得た。SEET13T3AGSN-Gは、転削(フライス)用の刃先交換型切削チップの形状である。
Figure JPOXMLDOC01-appb-T000001
 <被膜の形成>
 (他の層の形成)
 上記で得られた基材に対してその表面に被膜を形成した。具体的には、図1に示すCVD装置を用い、基材を基材セット治具3にセットし、CVD法を用いて基材上に被膜を形成した。
 試料1~試料13における被膜の形成条件は、Alリッチ層以外(TiN、TiCN、Al23)ついては、以下の表2に示す通りである。各試料(試料1~試料13)においてTiN、TiCN、Al23の各層は、後述する表6に示す厚みとなるように原料ガスの成膜時間を調整した上で、基材上に形成した。試料14および試料15の基材については上述したCVD装置を用いてTiNを形成した後、AlおよびTiからなるターゲット(ターゲット組成、Al:Ti=60:40)を用いたPVD法により基材上にAlTiN膜を形成した。
Figure JPOXMLDOC01-appb-T000002
 ここで試料14および試料15の基材に対してAlTiN膜を形成したPVDの条件は、以下の通りである。
アーク電流:150V
バイアス電圧:-40A
チャンバ内圧力:2.6×10-3Pa
反応ガス:窒素
基材を載置する回転テーブルの回転速度:10rpm。
 (Alリッチ層の形成)
 Alリッチ層については、上述したAlリッチ層を形成する工程により得た。具体的にはCVD法によりラメラ層を形成する第1工程と、このラメラ層をアニールすることによりAlリッチ層を得る第2工程とを経ることにより形成した。
 〔第1工程〕
 まず第1工程によってラメラ層を形成した。表3に示すように、ラメラ層を形成する条件は、条件T1~条件T4の4通りとした。条件T1~条件T3では、AlCl3ガス、TiCl4ガスおよびH2ガスを含む第1混合ガスと、NH3ガスおよびArガスを含む第2混合ガスとから混合ガスを形成した。条件T4では、AlCl3ガス、TiCl4ガスおよびH2ガスに加え、C24ガスを含む第1混合ガスと、NH3ガスおよびArガスを含む第2混合ガスとから混合ガスを形成した。条件T1~条件T4において、混合ガスにおけるAlCl3/(AlCl3+TiCl4)の体積比、CVD装置1内の温度条件および圧力条件は、それぞれ表3に示す通りである。
 第1工程では、具体的には、上記第1混合ガスをCVD装置1の導入口6から導入管8に導入し、第2混合ガスを導入口7より導入管8に導入した。続いて導入管8を回転させて導入管8の貫通孔から第1混合ガスおよび第2混合ガスを噴出させた。これにより、第1混合ガスと第2混合ガスとが均一化された混合ガスを得、この混合ガスを基材の表面側に積層することによってラメラ層を形成した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、たとえば条件T1では、Al0.85Ti0.15Nの組成で3μmの厚みの第3単位相と、Al0.62Ti0.38Nの組成で1μmの厚みの第4単位相とが繰り返し積層され、第3単位相および第4単位相の平均組成がAl0.8Ti0.2Nであるラメラ層を形成することができる。
 第1工程では、後述する表6に示すように、試料1~試料4、試料6~試料8および試料12の基材に対し、条件T1を用いてラメラ層を形成した。試料5の基材に対して条件T2を用いてラメラ層を形成した。試料9および試料10の基材に対して条件T3を用いてラメラ層を形成した。試料11および試料13の基材に対して条件T4を用いてラメラ層を形成した。ここで試料1のラメラ層(ラメラ相)の透過電子顕微鏡像を図2に示す。透過電子顕微鏡には、商品名:「JEM-2100F(日本電子株式会社製)」を用いた。
 〔第2工程〕
 さらに第2工程によって上記ラメラ層をアニールすることにより、Alリッチ層を得た。表4に示すように、Alリッチ層を形成する条件は、条件C1~条件C4の4通りとした。条件C1~条件C4において、第2工程の昇温工程における昇温速度、アニール工程におけるアニール温度、アニール時間およびアニール雰囲気、冷却工程における冷却速度および冷却時の炉内圧力は、表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、たとえば条件C1では、昇温速度10℃/分で上記ラメラ層を昇温し、900℃で60分間アニールすることによりAlリッチ層を得、このAlリッチ層を40℃/分の冷却速度および0.9MPaの炉内圧力で冷却する。
 第2工程では、後述する表6に示すように、試料1および試料5のラメラ層に対し、条件C1を用いることによりAlリッチ層を得た。試料2および試料6~試料8のラメラ層に対し、条件C2を用いることによりAlリッチ層を得た。試料3、試料9および試料10のラメラ層に対し、条件C3を用いることによりAlリッチ層を得た。試料11のラメラ層に対し、条件C4を用いることによりAlリッチ層を得た。試料12~試料13のラメラ層に対しては、第2工程を行なわなかった。試料14のPVDで形成したAlTiN膜に対しても、第2工程を行なわなかった。ただし、試料15のPVDで形成したAlTiN膜に対しては、条件C1を用いて昇温、アニールおよび冷却の熱処理を行なった。ここで試料1におけるAlリッチ層中の硬質粒子の透過電子顕微鏡像を図3に示す。透過電子顕微鏡には、商品名:「JEM-2100F(日本電子株式会社製)」を用いた。
 (表面処理)
 さらに、試料7、試料8に対してはそれぞれ、表5に示す条件でショットブラストによる表面処理を行なって被膜に圧縮応力を付与した。
Figure JPOXMLDOC01-appb-T000005
 以上のように各基材上に被膜を形成することにより、試料1~試料15の表面被覆切削工具を作製した。その一覧を表6に示す。表6において、たとえば試料1は、基材Aの直上に下地層として1μmの厚みのTiN層が形成され、このTiN層上に10μmの厚みのAlリッチ層が形成された表面被覆切削工具であることを示している。試料1の表面被覆切削工具は、条件T1により形成したラメラ層を、条件C1によりアニールすることにより得たAlリッチ層を有している。
 さらに、たとえば試料9は、基材Aの直上に下地層として1μmの厚みのTiN層が形成され、このTiN層上に3μmの厚みのAl23層が形成され、このAl23層上に5μmの厚みのAlリッチ層が形成された表面被覆切削工具であることを示している。試料9の表面被覆切削工具は、条件T3により形成したラメラ層を、条件C3によりアニールすることにより得たAlリッチ層を有している。たとえば試料10は、基材Aの直上に下地層として0.5μmの厚みのTiN層が形成され、このTiN層上に2μmの厚みのTiCN層が形成され、このTiCN層上に2μmの厚みのAl23層が形成され、このAl23層上に5μmの厚みのAlリッチ層が形成された表面被覆切削工具であることを示している。試料10の表面被覆切削工具は、条件T3により形成したラメラ層を、条件C3によりアニールすることにより得たAlリッチ層を有している。
Figure JPOXMLDOC01-appb-T000006
 ≪表面被覆切削工具の評価≫
 <Alリッチ層の観察>
 試料1~試料11の表面被覆切削工具に対し、まずX線回折法によりAlリッチ層を被膜の表面の法線方向から解析し、どの結晶面において回折ピークが最大となるかを調べた。その結果、試料1~試料11の表面被覆切削工具におけるAlリッチ層は、回折ピークが(220)面で最大を示した。たとえば図5は、試料1の表面被覆切削工具におけるAlリッチ層のX線回折の結果を示している。これにより試料1~試料11の表面被覆切削工具は、耐摩耗性および耐欠損性に優れるため、耐熱合金などの難削材の切削加工および鋳物などの断続加工が必要な用途において、優れた性能を発揮することができると期待される。
 さらに、試料1~試料11の表面被覆切削工具に対し、それぞれAlリッチ層を上述した透過顕微鏡を用いて観察し、当該透過顕微鏡に付帯したEDXで元素分析した。これによりAlリッチ層の第1単位相におけるピークのAlの原子比x(平均値)、第2単位相におけるバレーのAlの原子比y(平均値)、第1単位相の<100>方位の大きさ(平均値)を測定した。その結果を表7に示す。加えて試料1~試料11の表面被覆切削工具に対し、それぞれ上述した方法により膜強度(押し込み硬さ)を調べた。その結果も表7に示す。
 ここで試料12~試料15の表面被覆切削工具に対しては、Alリッチ層を形成していないことから、上述したX線回折法による解析、EDXによる元素分析および第1単位相の<100>方位の大きさの測定を行わなかった。ただし、試料12~試料15の表面被覆切削工具に対し、それぞれ上述した方法により膜強度(押し込み硬さ)について評価した。その結果を表7に示す。
 なお上述した表6に示すように、試料12は、下地層としてTiN層を被覆した基材Aに対して条件T1のみを行なうことにより被膜を形成した表面被覆切削工具であり、試料13は、下地層としてTiN層を被覆した基材Aに対して条件T4のみを行なうことにより被膜を形成した表面被覆切削工具である。試料14は、下地層としてTiN層を被覆した基材Aに対して上述した条件のPVDによりAlTiN層を形成した表面被覆切削工具であり、試料15は、下地層としてTiN層を被覆した基材Aに対して上述した条件のPVDによりAlTiN層を形成し、続けて条件C1の熱処理を行なうことにより被膜を形成した表面被覆切削工具である。
Figure JPOXMLDOC01-appb-T000007
 表7より、たとえば試料1のAlリッチ層中の硬質粒子は、第1単位相におけるピークのAlの原子比xが0.87(すなわち、Al0.87Ti0.13N)であり、第2単位相におけるバレーのAlの原子比yが0.6(すなわち、Al0.6Ti0.4N)である。さらに第1単位相は、<100>方位の大きさが4nmである。試料1のAlリッチ層は、膜強度(押し込み硬さ)が38GPaであった。
 さらに表7より、試料1~試料11のAlリッチ層は、試料12~試料15に比べ、膜強度の特性で優れていた。
 <切削試験>
 次に、試料1~試料15の表面被覆切削工具に対し、以下の切削条件の下で切削試験(耐摩耗性試験)を行った。具体的には、試料1~試料15の表面被覆切削工具(形状はSEET13T3AGSN-G)について、以下の切削条件により逃げ面摩耗量(Vb)が0.30mmになるまでの切削可能時間を測定した。その結果を、表8に示す。切削可能時間が長い表面被覆切削工具である程、初期摩耗が抑えられることにより、耐摩耗性に優れていることを示す。
 <切削条件>
 被削材:FCDブロック材
 カッター:WGC4160R(住友電工ハードメタル社製)
 周速:500m/min
 送り速度:0.3mm/秒
 切込み量:1.0mm
 切削液:なし。
Figure JPOXMLDOC01-appb-T000008
 表8より、試料1~試料11(実施例)の表面被覆切削工具は、試料12~試料15(比較例)の表面被覆切削工具に比べ、初期摩耗が抑えられることにより、耐摩耗性に優れていることが分かる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 CVD装置、2 基材、3 基材セット治具、4 反応容器、5 調温装置、6,7 導入口、8 導入管、9 排気管、10 排気口。

Claims (6)

  1.  基材と、その表面に形成された被膜とを含む表面被覆切削工具であって、
     前記被膜は、1または2以上の層を含み、
     前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、
     前記硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、前記第1単位相間に介在する第2単位相とを含み、
     前記第1単位相は、AlxTi1-xの窒化物または炭窒化物からなり、
     前記第1単位相のAlの原子比xは、0.7以上0.96以下であり、
     前記第2単位相は、AlyTi1-yの窒化物または炭窒化物からなり、
     前記第2単位相のAlの原子比yは、0.5を超え0.7未満であり、
     前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す、表面被覆切削工具。
  2.  前記硬質粒子は、前記Alリッチ層の50体積%以上を占有する、請求項1に記載の表面被覆切削工具。
  3.  前記第1単位相は、その<100>方位における大きさが2nm以上15nm以下である、請求項1または請求項2に記載の表面被覆切削工具。
  4.  基材と、その表面に形成された被膜とを含み、
     前記被膜は、1または2以上の層を含み、
     前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、
     前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(220)面において最大ピークを示す表面被覆切削工具の製造方法であって、
     前記Alリッチ層を形成する工程を含み、
     前記工程は、CVD法によりラメラ層を形成する第1工程と、
     前記ラメラ層をアニールすることにより前記Alリッチ層を得る第2工程とを含み、
     前記第2工程は、昇温工程と、アニール工程と、冷却工程とを含み、
     前記昇温工程は、前記ラメラ層を10℃/分以上の速度で昇温する操作を含み、
     前記アニール工程は、700℃以上1200℃以下かつ0.1時間以上10時間以下の条件下で前記ラメラ層をアニールすることにより前記Alリッチ層を得る操作を含み、
     前記冷却工程は、前記Alリッチ層を20℃/分以上の速度で急冷する操作を含む、表面被覆切削工具の製造方法。
  5.  前記第1工程は、650℃以上850以下かつ0.5kPa以上1.5kPa以下の条件の下、第1混合ガスおよび第2混合ガスを混合することにより混合ガスを得る第1操作と、
     前記条件の下、前記混合ガスを前記基材の表面側へ向けて噴出することにより前記ラメラ層を形成する第2操作とを含み、
     前記第1混合ガスは、AlCl3ガス、TiCl4ガスおよびH2ガスを含み、
     前記第2混合ガスは、NH3ガスおよびArガスを含む、請求項4に記載の表面被覆切削工具の製造方法。
  6.  前記ラメラ層は、第3単位相および第4単位相を含み、
     前記第3単位相および前記第4単位相は、交互に積層され、
     前記第3単位相は、AlsTi1-sの窒化物または炭窒化物からなり、
     前記第3単位相のAlの原子比sは、0.7以上0.95以下であり、
     前記第4単位相は、AltTi1-tの窒化物または炭窒化物からなり、
     前記第4単位相のAlの原子比tは、0.5以上0.7未満である、請求項4または請求項5に記載の表面被覆切削工具の製造方法。
PCT/JP2017/025247 2017-02-28 2017-07-11 表面被覆切削工具およびその製造方法 WO2018158976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/489,292 US11130181B2 (en) 2017-02-28 2017-07-11 Surface-coated cutting tool and method for manufacturing the same
CN201780087569.8A CN110382146B (zh) 2017-02-28 2017-07-11 表面被覆切削工具及其制造方法
EP17898796.2A EP3590638B1 (en) 2017-02-28 2017-07-11 Surface-coated cutting tool and method for manufacturing the same
JP2019502437A JP6667713B2 (ja) 2017-02-28 2017-07-11 表面被覆切削工具およびその製造方法
KR1020197024752A KR20190112036A (ko) 2017-02-28 2017-07-11 표면 피복 절삭 공구 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037377 2017-02-28
JP2017-037377 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018158976A1 true WO2018158976A1 (ja) 2018-09-07

Family

ID=63369948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025247 WO2018158976A1 (ja) 2017-02-28 2017-07-11 表面被覆切削工具およびその製造方法

Country Status (6)

Country Link
US (1) US11130181B2 (ja)
EP (1) EP3590638B1 (ja)
JP (1) JP6667713B2 (ja)
KR (1) KR20190112036A (ja)
CN (1) CN110382146B (ja)
WO (1) WO2018158976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382145B (zh) 2017-02-28 2021-09-21 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
KR102509585B1 (ko) * 2020-12-24 2023-03-14 한국야금 주식회사 내마모성과 내치핑성이 향상된 cvd 절삭공구용 피막
KR102497484B1 (ko) * 2020-12-30 2023-02-08 한국야금 주식회사 내박리성이 우수한 cvd 절삭공구용 피막

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
JP2015509858A (ja) * 2012-03-14 2015-04-02 ベーレリト ゲーエムベーハー ウント コー. カーゲー. 被覆された本体および本体を被覆する方法
US20160333473A1 (en) * 2014-03-11 2016-11-17 Walter Ag TiAlCN Layers With Lamellar Structure
JP2017037377A (ja) 2015-08-07 2017-02-16 富士通株式会社 情報処理装置、シミュレーション方法、およびシミュレーションプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU512633B2 (en) 1976-12-21 1980-10-23 Sumitomo Electric Industries, Ltd. Sintered tool
SE531971C2 (sv) * 2007-08-24 2009-09-15 Seco Tools Ab Belagt skärverktyg för allmän svarvning i varmhållfast superlegeringar (HRSA)
DE102007000512B3 (de) 2007-10-16 2009-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung
DE102009046667B4 (de) 2009-11-12 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtete Körper aus Metall, Hartmetal, Cermet oder Keramik sowie Verfahren zur Beschichtung derartiger Körper
US8409702B2 (en) 2011-02-07 2013-04-02 Kennametal Inc. Cubic aluminum titanium nitride coating and method of making same
JP6206800B2 (ja) 2013-09-05 2017-10-04 住友電工ハードメタル株式会社 被膜の製造方法
CN104816141B (zh) * 2014-01-31 2018-06-19 三菱综合材料株式会社 表面包覆切削工具
JP5924507B2 (ja) 2014-09-25 2016-05-25 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6120229B2 (ja) 2015-01-14 2017-04-26 住友電工ハードメタル株式会社 硬質被膜、切削工具および硬質被膜の製造方法
KR20240005993A (ko) 2015-07-27 2024-01-12 발터 악티엔게젤샤프트 TiAlN 코팅을 갖는 공구
JP6045010B1 (ja) 2016-04-14 2016-12-14 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6037256B1 (ja) 2016-04-14 2016-12-07 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6831448B2 (ja) * 2017-02-28 2021-02-17 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法
JP2015509858A (ja) * 2012-03-14 2015-04-02 ベーレリト ゲーエムベーハー ウント コー. カーゲー. 被覆された本体および本体を被覆する方法
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
US20160333473A1 (en) * 2014-03-11 2016-11-17 Walter Ag TiAlCN Layers With Lamellar Structure
JP2017037377A (ja) 2015-08-07 2017-02-16 富士通株式会社 情報処理装置、シミュレーション方法、およびシミュレーションプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.TODT ET AL.: "Al-rich cubic A10.8Ti0.2N coating with self-organized nano-lamellar microstructure:Thermal and mechanical properties", SURFACE AND COATINGS TECHNOLOGY, vol. 291, 2016, pages 89 - 93, XP029493081 *
See also references of EP3590638A4

Also Published As

Publication number Publication date
EP3590638A1 (en) 2020-01-08
CN110382146A (zh) 2019-10-25
CN110382146B (zh) 2021-09-10
JP6667713B2 (ja) 2020-03-18
KR20190112036A (ko) 2019-10-02
EP3590638B1 (en) 2024-01-17
US11130181B2 (en) 2021-09-28
EP3590638A4 (en) 2020-10-28
JPWO2018158976A1 (ja) 2019-11-07
US20200061716A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2018158974A1 (ja) 表面被覆切削工具およびその製造方法
WO2012144088A1 (ja) 表面被覆切削工具およびその製造方法
EP3008225A1 (en) Coated cutting tool
WO2022230362A1 (ja) 切削工具
WO2012132032A1 (ja) 表面被覆切削工具およびその製造方法
WO2018158976A1 (ja) 表面被覆切削工具およびその製造方法
WO2018158975A1 (ja) 表面被覆切削工具およびその製造方法
JP2022171412A (ja) 切削工具
JP7568076B2 (ja) 切削工具及びその製造方法
JP7326693B2 (ja) 切削工具及びその製造方法
JP7326691B2 (ja) 切削工具及びその製造方法
JP7326692B2 (ja) 切削工具及びその製造方法
JP7135250B1 (ja) 切削工具
WO2022230361A1 (ja) 切削工具
WO2020158425A1 (ja) 切削工具及びその製造方法
WO2020158426A1 (ja) 切削工具及びその製造方法
WO2020158427A1 (ja) 切削工具及びその製造方法
JP2022171409A (ja) 切削工具
JP2022171411A (ja) 切削工具
JP2022171408A (ja) 切削工具
JP2022171410A (ja) 切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502437

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024752

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898796

Country of ref document: EP

Effective date: 20190930