[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018157786A1 - 下行业务数据的指示方法和设备 - Google Patents

下行业务数据的指示方法和设备 Download PDF

Info

Publication number
WO2018157786A1
WO2018157786A1 PCT/CN2018/077382 CN2018077382W WO2018157786A1 WO 2018157786 A1 WO2018157786 A1 WO 2018157786A1 CN 2018077382 W CN2018077382 W CN 2018077382W WO 2018157786 A1 WO2018157786 A1 WO 2018157786A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
wake
listening interval
frame
bit
Prior art date
Application number
PCT/CN2018/077382
Other languages
English (en)
French (fr)
Inventor
淦明
贾嘉
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21216060.0A priority Critical patent/EP4037386A1/en
Priority to EP18761138.9A priority patent/EP3582556B1/en
Publication of WO2018157786A1 publication Critical patent/WO2018157786A1/zh
Priority to US16/559,064 priority patent/US11343766B2/en
Priority to US17/743,335 priority patent/US20220272632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method and an apparatus for indicating downlink service data.
  • a considerable portion of the energy of the receiving device is wasted in the idle listening mode when the station (Station, referred to as STA) does not receive or transmit the message.
  • the listening channel will consume a lot of energy, so the Sleep Schedule is introduced in the communication standard so that the STA can enter the Deep Sleep state when there is no data to transmit and receive, so as to reduce the energy consumption of continuous monitoring.
  • the access point (AP) cannot communicate with the STA. Only when the STA wakes up can the transmission be between the two, which may cause a certain delay.
  • the STA In order to avoid the high latency caused by the dormancy mechanism, the STA usually wakes up according to a certain sleep policy period to check whether there is data to be received, but this reduces the sleep efficiency of the STA.
  • the receiving device includes a new low-power wake-up receiver in addition to the traditional 802.11 main transceiver module.
  • WUR Wike Up Receiver
  • the traditional 802.11 transceiver module is the 802.11 main radio (MR), which includes both the main transmitter and the main receiver, as shown in Figure 1, the WUR-equipped site
  • MR 802.11 main radio
  • the MR of the WUR-equipped station needs to wake up to listen to the beacon frame sent by the AP during the listening interval negotiated with the AP, thereby obtaining an important basis for the AP broadcast.
  • Service Set (BSS) parameter information such as an indication of whether the AP has downlink service data for the site. If the awake site (ie, the site's MR wakes up) hears that the beacon frame sent by the AP contains an indication that the AP has downlink service data for the site, the site will briefly return to sleep state, and wake up by autonomously selecting time.
  • a power save poll (Ps-poll) frame is sent to the AP to inform the AP that it is in a waking state, and the AP can send downlink service data to itself.
  • the station does not return to the sleep state, and directly sends a Ps-poll frame to the AP to send downlink service data.
  • the above listening interval duration is used to inform the AP that the primary transceiver of the WUR-equipped station wakes up to receive the beacon frame frequency, that is, the station's primary transceiver wakes up once in each listening interval to receive the beacon frame.
  • the downlink service data of the AP to the site accounts for a very small percentage of the total data traffic transmission. If the above is equipped with WUR
  • the MR of the station wakes up to receive the beacon frame in the listening interval according to the 802.11 mechanism, the MR wakes up frequently, and the station consumes a large amount of power.
  • the present invention provides a method and a device for indicating downlink service data, which are used to solve the technical problem that the wake-up frequency of the MR is high and the power consumption of the site is large in the prior art.
  • the application provides a method for indicating downlink service data, including:
  • the first station STA associated with the wireless access point AP controls the wake-up receiver of the first STA to wake up within a preset first listening interval, and receives a wake-up beacon frame sent by the AP; the wake-up letter
  • the frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA;
  • the first STA controls the primary radio MR of the first STA to wake up to receive the beacon frame sent by the AP in the second listening interval;
  • the first STA determines, according to the indication field, whether the AP has downlink service data to be sent to the first STA.
  • the AP is configured to determine the STA equipped with the wake-up receiver from the associated STA, and then periodically send the wake-up beacon frame to the WURs of the STAs equipped with the wake-up receiver.
  • the wake-up beacon frame includes an indication field for indicating downlink service data of the first STA, where the indication field includes only the downlink service data indication of the first STA associated with the AP and equipped with the wake-up receiver; and then, A STA controlling the WUR of the first STA to wake up within the preset first listening interval and receiving the wake-up beacon frame, and controlling the MR of the first STA does not need to be in the second listening interval (ie, the interception specified by the 802.11 protocol)
  • the WLAN wakes up to receive the 802.11 beacon frame sent by the AP, and the first STA can determine whether the AP has downlink service data to be sent to the first STA by using the indication field in the wake-up beacon frame.
  • the present application is configured to indicate to the first STA whether the AP has downlink service data transmission to the first STA, and the first STA can obtain the downlink service data indication of the first STA by using the wake-up beacon frame sent by the AP, the first STA.
  • the MR does not need to wake up to receive the beacon frame broadcasted by the AP in the second listening interval, and only needs to be known when the WUR of the first STA learns that the AP has downlink service data and sends it to the first STA according to the detected wake-up beacon frame.
  • the WUR of the first STA can be awakened, which greatly reduces the waking frequency of the MR and reduces the power consumption of the first STA.
  • the indication field of the wake-up beacon frame in the present application includes only the downlink of the first STA.
  • the service data indicates that when the transmission rate of the WUR is slow, the indication field can also be transmitted within a transmission opportunity preempted by the AP, that is, the transmission time of the wake-up beacon frame is relatively short, and the transmission efficiency is high.
  • the method further includes:
  • the association response carries an identity identifier that is allocated by the AP to the first STA, where the identity of the AP allocated to the first STA is consecutive .
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the method for indicating the downlink service data provided by the AP assigns an identity to the first STA associated with the AP by using the association response, and the identity of the AP allocated to all the first STAs is continuous, so that the first STA is listening.
  • the offset of the bit in the partial virtual bit bitmap field can be obtained according to the bit bitmap control field, and then determined according to the offset
  • the first STA corresponds to the location of the indication bit in the partial virtual bitmap field, and determines the identity of the first STA corresponding to the first bit of the partial virtual bitmap field, which improves the identification of the first STA by itself. Corresponding indicator bit efficiency.
  • the application provides a method for indicating downlink service data, including:
  • the wireless access point AP determines a station STA equipped with a wake-up receiver associated with the AP, the STA including a first STA;
  • the AP sends a wake-up beacon frame to the wake-up receiver period of the STA, where the wake-up beacon frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA.
  • the method further includes:
  • the AP sends an association response to the first STA, where the association response carries an identity that is allocated by the AP to the first STA, where the identity of the AP allocated to the first STA is continuous.
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the method further includes:
  • the AP receives the listening interval information sent by the first STA, where the listening interval information includes a starting point of the first listening interval and a duration of the first listening interval, where the first listening interval is The starting point is the transmission time of the last receiving wake-up beacon frame when the wake-up receiver of the first STA wakes up last time.
  • the identity of the first STA includes: any one of an identifier of the wake-up receiver of the first STA, and an association identifier of a primary radio MR of the first STA.
  • the bytes of the first listening interval include M normalized bits and N non-normalized bits, and the values of the M normalized bits are used to indicate the first a basic unit of the listening interval, the value of the N non-normalized bits is used to indicate the number of basic units of the first listening interval;
  • the duration of the first listening interval is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • the first STA sends the interception interval information to the AP through the association request frame in the association phase, where the starting point of the first interception interval in the interception interval information is the wakeup receiver of the first STA.
  • the transmission time of the wake-up beacon frame is received for the last time when waking up, so that the AP can determine the lifetime of the downlink service data sent to the first STA according to the interception interval information, thereby better managing its own data buffer space;
  • the present application extends the duration of the original 802.11 listening interval (ie, the second listening interval), that is, the present application increases the basic unit of the first listening interval by dividing the normalized bits, thereby increasing
  • the duration of the first first listening interval that is, the duration of the first listening interval provided by the present application is greater than the duration of the 802.11 listening interval, so that the wake-up receiver of the first STA does not need to wake up frequently, and the first one is further reduced. STA power consumption.
  • the application provides an information indication method, including:
  • the wakeup report frame sent by the primary transceiver of the second communication device, the wakeup report frame carrying the indication information, where the indication information is used to indicate to the AP that the second communication device is The wake-up state of the primary transceiver is triggered by the wake-up frame;
  • the first communications device determines, according to the indication information, that the second communications device is triggered to wake up by a wake-up frame.
  • the second communication device after waking up, sends a wake-up report frame carrying the indication information to the first communication device, where the first communication device can determine the second communication device according to the wake-up report frame.
  • the awake state is triggered by the wake-up frame, thereby enabling the first communication device to accurately learn the attribute of the awake state of the second communication device, thereby enabling more reasonable and effective control of data communication with the second communication device.
  • waking up the indication information of the reporting frame and implicitly enabling the first communication device to determine whether the second communication device is attacked according to the awake state of the second communication device, so that the first communication can be combined in time to respond. Protection measures to avoid MR waking up due to the second communication device being attacked again, saving energy of the second communication device.
  • the awake report frame further includes: feature information of the wake-up frame
  • the method further includes:
  • the first communications device determines, according to the feature information of the wake-up frame, whether to send the wake-up frame as a sent wake-up frame of the first communications device.
  • the possible design provides a method for carrying the indication information and the feature information of the wake-up frame in the wake-up report frame sent to the first communication device, so that the first communication device can learn to send the wake-up report according to the wake-up report frame.
  • the embodiment of the present application provides a site, where the site is a first STA in a site associated with a wireless access point AP, the first STA There is a function of an indication method for realizing the above-described downlink service data.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first station includes multiple function modules or units, and is used to implement the indication method of any one of the foregoing first aspects of the downlink service data.
  • the structure of the first site may include a processor, a receiver, and a transmitter (or a transceiver).
  • the processor is configured to support a corresponding function in the method for indicating that the device performs the downlink service data of any one of the foregoing aspects.
  • the transceiver is configured to support communication between the device and other network devices or terminal devices, and may be, for example, a corresponding radio frequency module or a baseband module.
  • the device can also include a memory for coupling with the processor, which stores program instructions and data necessary for the first station to perform the indication of the downlink service data.
  • the embodiment of the present application provides a wireless access point AP, where the AP has a function of implementing the indication method of the downlink service data.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the AP includes multiple function modules or units, and is used to implement the method for indicating downlink service data of any one of the foregoing second aspects.
  • the structure of the AP may include a processor, a receiver, and a transmitter (or a transceiver).
  • the processor is configured to support a corresponding function in the method for indicating that the device performs the downlink service data of any one of the foregoing second aspects.
  • the transceiver is configured to support communication between the device and the transmitting device, and may be, for example, a corresponding radio frequency module or a baseband module.
  • the device can also include a memory for coupling with the processor, which stores program instructions and data necessary for the AP to perform the indication of the downlink service data.
  • the embodiment of the present application provides a communication device, where the communication device is a first communication device, and optionally, the first communication device may be an AP, and may also be It is STA.
  • the AP has a function of implementing the above information indicating method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first communications device includes a plurality of functional modules or units, and is used to implement any one of the foregoing information indicating methods.
  • the first communication device may include a processor, a receiver, and a transmitter (or a transceiver) in the structure.
  • the processor is configured to support the device to perform a corresponding function in the information indicating method of any one of the above second aspects.
  • the transceiver is configured to support communication between the device and the transmitting device, and may be, for example, a corresponding radio frequency module or a baseband module.
  • the device can also include a memory for coupling with the processor that retains program instructions and data necessary for the first communication device to perform the above-described information indicating method.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the first STA, which includes a program designed to execute the first aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the AP, which includes a program designed to execute the foregoing second aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the first communication device, which includes a program designed to execute the third aspect.
  • an embodiment of the present application provides a computer program product, comprising instructions, when the computer program is executed by a computer, causing a computer to perform a function performed by a first STA in the foregoing method.
  • an embodiment of the present application provides a computer program product, comprising: instructions that, when executed by a computer, cause the computer to perform the functions performed by the AP in the above method.
  • the embodiment of the present application provides a computer program product, comprising instructions for causing a computer to perform a function performed by a first communication device in the above method when the computer program is executed by a computer.
  • the method and device for indicating downlink service data determine, by an AP, STAs equipped with wake-up receivers from associated STAs, and then perform WUR periodicity to STAs equipped with wake-up receivers.
  • the wake-up beacon frame includes an indication field for indicating downlink service data of the first STA, where the indication field includes only the downlink of the first STA of the STA associated with the AP and equipped with the wake-up receiver
  • the service data indicates; then, the first STA controls the WUR of the first STA to wake up within the preset first listening interval and receives the wake-up beacon frame, and controls the MR of the first STA without the second listening interval ( That is, the 802.11 beacon frame sent by the AP is awake in the listening interval specified by the 802.11 protocol, and the first STA can determine whether the AP is to be sent to the first STA by using the indication field in the wake-up beacon frame.
  • Business data is possible to determine whether the AP is to be sent to the first STA by using the indication field in the wake-up beacon frame.
  • the present application is configured to indicate to the first STA whether the AP has downlink service data transmission to the first STA, and the first STA can obtain the downlink service data indication of the first STA by using the wake-up beacon frame sent by the AP, the first STA.
  • the MR does not need to wake up to receive the beacon frame broadcasted by the AP in the second listening interval, and only needs to be known when the WUR of the first STA learns that the AP has downlink service data and sends it to the first STA according to the detected wake-up beacon frame.
  • the WUR of the first STA can be awakened, which greatly reduces the waking frequency of the MR and reduces the power consumption of the first STA.
  • the indication field of the wake-up beacon frame in the present application includes only the downlink of the first STA.
  • the service data indicates that when the transmission rate of the WUR is slow, the indication field can also be transmitted within a transmission opportunity preempted by the AP, that is, the transmission time of the wake-up beacon frame is relatively short, and the transmission efficiency is high.
  • FIG. 1 is a schematic structural diagram of a site equipped with a wake-up receiver provided by the present application
  • FIG. 2 is a schematic structural diagram of a WLAN system provided by the present application.
  • FIG. 3 is a signaling flowchart of an embodiment of a method for indicating downlink service data provided by the present application
  • FIG. 5 is a schematic diagram of a first listening interval provided by the present application.
  • FIG. 6 is a schematic flow chart of an embodiment of an information indication method provided by an application itself
  • FIG. 7 is a schematic diagram of a passive wake-up process of an MR provided by the present application.
  • FIG. 7a is a schematic structural diagram of a Ps-poll frame provided by the present application.
  • FIG. 8 is a schematic structural diagram of a site embodiment provided by the present application.
  • FIG. 9 is a schematic structural diagram of another embodiment of a site provided by the present application.
  • FIG. 10 is a schematic structural diagram of an AP embodiment provided by the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of a site provided by the present application.
  • FIG. 12 is a schematic structural diagram of another embodiment of an AP provided by the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • FIG. 14 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • the present application can be applied to a Wireless Local Area Networks (WLAN).
  • WLAN Wireless Local Area Networks
  • IEEE Institute of Electrical and Electronics Engineers 802.11 series.
  • STA station
  • AP access point
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi (English: Wireless Fidelity) chip.
  • the AP may be a device supporting the 802.11ax system.
  • the AP may be a device supporting multiple WLAN technologies such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a. In this embodiment, There is no limit to the type of system supported by the AP.
  • the STA is generally a client device in the WLAN.
  • the STA may be mobile or fixed, and is the most basic component of the wireless local area network.
  • the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • mobile phone supporting WiFi communication function tablet computer supporting WiFi communication function, set-top box supporting WiFi communication function, smart TV supporting WiFi communication function, smart wearable device supporting WiFi communication function, and vehicle communication supporting WiFi communication function Devices and computers that support WiFi communication.
  • FIG. 2 is a schematic structural diagram of a WLAN system provided by the present application.
  • an AP in a WLAN system can interact with multiple STAs (three in the figure as an example), including STA1, STA2, and STA3. .
  • STA1, STA2, and STA3. can also exchange information with one or more STA groups, and multiple STAs can also interact with each other.
  • the first STA and the second STA involved in the present application are both sites configured with an 802.11 primary radio MR (or a primary transceiver) and a wake-up receiver WUR, and the first STA and the second STA may refer to the figure.
  • MR wake can be divided into active wake and passive wake.
  • the AP actually sends a wake-up frame (WUP Up Packet, WUP for short) to at least one station STA associated with the AP, and the WUP can be used to indicate that the MR of the at least one site that is awake is from the sleep state.
  • WUP Up Packet WUP Up Packet
  • Receive parameters after wake-up such as receive mode indication, time indication of wake-up, etc.
  • WUR wakes up the MR of the station after receiving the wake-up frame (WUP) sent by the AP.
  • the MR After the MR of the STA is woken up, the MR sends a PS-Poll frame or an acknowledgement frame to the AP, telling the AP that it has awake, and then the AP replies (ACK) the response or directly transmits the data to the MR of the station.
  • the AP It is also possible to directly send a data frame to the MR of the station after the MR of the station is woken up, without waiting for the MR of the station to send a PS-Poll frame; or, the AP can also send a request to send (RTS) message.
  • RTS request to send
  • the MR of the awakened site is then allowed to send a clear to send (CTS) message to the AP.
  • CTS clear to send
  • the present application is not limited to the fact that the AP sends the WUP to the non-AP STA, or the non-AP STA sends the WUP to the AP.
  • beacon frame (the beacon frame here is the 802.11 beacon frame sent by the AP to the station main transceiver), thereby obtaining the basic basic service set (BSS) parameter information of the AP broadcast, such as an AP.
  • BSS basic basic service set
  • the awake site ie, the site's MR wakes up
  • the site will briefly return to sleep state, and wake up by autonomously selecting time.
  • the Ps-poll frame is sent to the AP to inform the AP that it is awake, and the AP can send downlink service data to itself.
  • the station does not return to the sleep state, and directly sends a Ps-poll frame to the AP to send downlink service data.
  • the above listening interval duration is used to inform the AP that the primary transceiver of the WUR-equipped station wakes up to receive the beacon frame frequency, that is, the station's primary transceiver wakes up once in each listening interval to receive the beacon frame. .
  • the downlink service data of the AP to the site accounts for a very small percentage of the total data traffic transmission. If the above is equipped with WUR
  • the MR of the station wakes up to receive the beacon frame in the listening interval according to the 802.11 mechanism, the MR wakes up frequently, and the station consumes a large amount of power.
  • the method and device for indicating downlink service data provided by the embodiments of the present application are directed to solving the problem that some sites in the prior art that have very strict power consumption requirements (such as a very low power consumption site) have a high frequency of waking up. A technical problem with large power consumption.
  • first, second, third, etc. may be used to describe XXX in embodiments of the invention, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present invention.
  • second XXX may also be referred to as a first XXX.
  • FIG. 3 is a signaling flowchart of an embodiment of a method for indicating downlink service data provided by the present application.
  • the embodiment relates to that the AP sends a wake-up beacon frame to the wake-up receiver of the station associated with the AP, so that the first STA equipped with the wake-up receiver associated with the AP can learn whether the AP is to be sent according to the wake-up beacon frame.
  • the downlink service data for the first STA does not require the specific process of the first STA's MR waking up to receive the beacon frame.
  • the method includes the following steps:
  • the AP determines a station STA equipped with a wake-up receiver associated with the AP, where the STA includes a first STA.
  • the AP-associated station may include an STA equipped with a wake-up receiver, and may also include an STA that is not equipped with a wake-up receiver.
  • the AP may divide the STAs equipped with the wake-up receiver into first STAs and second STAs according to the power consumption requirements of the STAs or other related factors.
  • the AP may determine, as the first STA, the STA whose power consumption requirement is less than the preset power consumption threshold, and determine the STA whose power consumption requirement is greater than or equal to the preset power consumption threshold as the second STA.
  • the power consumption requirement of all STAs equipped with the wake-up receivers of the current AP is less than the preset power consumption threshold, that is, the STAs associated with the current AP are all the first STAs.
  • the first STA may be a site equipped with a button battery.
  • the power consumption of the site is strict, that is, the site is a very low power station, and the second STA may be a looser power consumption requirement. Power consumption site.
  • the first STA may be one, or may be multiple.
  • the AP sends a wake-up beacon frame to the wake-up receiver period of the STA, where the wake-up beacon frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA.
  • the WUR can be periodically sent to the WURs of all the STAs equipped with the wake-up receiver.
  • the AP also The beacon frame is transmitted to the MR of these STAs equipped with the wake-up receiver and the other STAs not equipped with the wake-up receiver, which is a beacon frame (abbreviated as 802.11 beacon frame) in the 802.11 protocol.
  • the wake-up beacon frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA, where the indication field includes only the downlink service data indication of the first STA, and does not include the second
  • the downlink service data of the STA and other STAs that are not equipped with the wake-up receiver indicate that the WUR of the first STA wakes up after the wake-up beacon frame is detected, and can be learned by the bit corresponding to itself in the indication field of the wake-up beacon frame. Whether there is downlink service data to be sent to the first STA on the AP.
  • the 802.11 beacon frame includes a TIM field, where the TIM field includes the downlink service data indication of the second STA, the downlink service data indication of the first STA, and the downlink service of the STA that is not equipped with the wakeup receiver.
  • the data indication ie, the 802.11 beacon frame contains downlink service data indications for all STAs associated with the AP). According to the above example, if all the STAs associated with the AP are equipped with WUR (that is, there are 2007), the TIM field in the 802.11 beacon frame will contain 2007 bits, and the MR of the second STA is listening to the 802.11. After the beacon frame, the AP corresponding to the second STA in the TIM field learns whether the AP has downlink service data sent to itself.
  • the first STA controls the wake-up receiver of the first STA to wake up within a preset first listening interval, and receives a wake-up beacon frame sent by the AP.
  • the first STA controls the primary radio MR of the first STA to wake up to receive the beacon frame sent by the AP in the second listening interval.
  • the second listening interval is the listening interval specified by the 802.11 protocol.
  • the first listening interval may be the same as the second listening interval, or may be different.
  • the first STA determines, according to the indication field, whether the AP has downlink service data to be sent to the first STA.
  • the first STA controls the WUR of the first STA to wake up and listen to each preset first listening interval as the AP periodically sends a wake-up beacon frame to all WURs of the STAs equipped with the wake-up receiver.
  • the wake-up beacon frame sent by the AP after receiving the wake-up beacon frame in the wake-up period, the WUR of the first STA can know whether the AP currently exists to be sent to the first according to the indication field in the wake-up beacon frame.
  • Downlink service data of a STA is
  • the first STA controls the MR of the first STA to wake up to receive the 802.11 beacon frame sent by the AP in the second listening interval, that is, the primary transceiver of the first STA (or the primary radio) does not need to wake up frequently to listen to the AP.
  • the broadcasted 802.11 beacon frame is used to obtain the indication of the downlink service data, and the MR only needs to be learned by the WUR of the first STA according to the detected wake-up beacon frame that the AP has downlink service data and is sent to the first STA by the first STA. WUR can be awakened, which greatly reduces the wake frequency of the MR and reduces the power consumption of the first STA.
  • the AP divides the STA into the first STA according to the respective power consumption requirements of the station or other factors. And the second STA, the AP sends a wake-up beacon frame to the wake-up receiver of the first STA and the wake-up receiver of the second STA, respectively.
  • the site equipped with WUR has low power consumption requirements, narrowband transmission
  • the limitation determines that the transmission rate of the wake-up beacon frame sent by the AP is relatively slow, for example, 250 Kbps, and the transmission time takes about 8 ms. Therefore, after the AP preempts the transmission channel, the wake-up beacon frame cannot be transmitted within one transmission opportunity. That is, the transmission time of the wake-up beacon frame is relatively long, which greatly wastes the air interface overhead.
  • the wake-up beacon frame proposed by the present invention only includes the downlink service data indication of the first STA (ie, the indication field described above), in the WUR. When the transmission rate is slow, the indication field can also be transmitted within a transmission opportunity that the AP preempts, that is, the transmission time of the wake-up beacon frame is relatively short, and the transmission efficiency is high.
  • the method for indicating downlink service data determines an STA equipped with a wake-up receiver from an associated STA by using an AP, and then periodically sends a wake-up beacon frame to the WUR of the STA equipped with the wake-up receiver, the wake-up message
  • the frame frame includes an indication field for indicating downlink service data of the first STA, where the indication field includes only the downlink service data indication of the first STA associated with the AP and equipped with the wake-up receiver; and then, the first STA Controlling the WUR of the first STA to wake up within the preset first listening interval and receiving the wake-up beacon frame, and controlling the MR of the first STA does not need to be in the second listening interval (ie, the listening interval specified by the 802.11 protocol)
  • the waking up to receive the 802.11 beacon frame sent by the AP, the first STA can determine whether the AP has downlink service data to be sent to the first STA by using the indication field in the wake-up beacon frame.
  • the present application is configured to indicate to the first STA whether the AP has downlink service data transmission to the first STA, and the first STA can obtain the downlink service data indication of the first STA by using the wake-up beacon frame sent by the AP, the first STA.
  • the MR does not need to wake up to receive the beacon frame broadcasted by the AP in the second listening interval, and only needs to be known when the WUR of the first STA learns that the AP has downlink service data and sends it to the first STA according to the detected wake-up beacon frame.
  • the WUR of the first STA can be awakened, which greatly reduces the waking frequency of the MR and reduces the power consumption of the first STA.
  • the indication field of the wake-up beacon frame in the present application includes only the downlink of the first STA.
  • the service data indicates that when the transmission rate of the WUR is slow, the indication field can also be transmitted within a transmission opportunity preempted by the AP, that is, the transmission time of the wake-up beacon frame is relatively short, and the transmission efficiency is high.
  • FIG. 4 is a signaling flowchart of another embodiment of a method for indicating downlink service data provided by the present application.
  • the AP allocates consecutive identity identifiers to the first STA that is associated with the STA, and the specific field of the indication field of the wake-up beacon frame includes only the downlink service data indication of the first STA.
  • the method may further include the following steps:
  • the first STA sends an association request frame to the AP.
  • the AP receives the association request frame sent by the first STA, and then replies to the acknowledgement frame.
  • the AP sends an association response frame to the first STA, where the association response carries an identity identifier that is allocated by the AP to the first STA, where the identity of the AP allocated to the first STA is continuous. .
  • the first STA receives the association response frame sent by the AP, and then responds to the acknowledgement frame.
  • the first STA sends an association request frame to the AP when the AP is associated
  • the second STA sends an association request frame to the AP when the AP is associated with the AP
  • the AP can identify the received association request frame from the AP.
  • the first STA is still the second STA, and then sends a corresponding association response to the corresponding STA, and carries the identity identifier of the corresponding STA in the association response, that is, the association response sent to the first STA carries the identity identifier of the first STA, and sends
  • the association response to the second STA carries the identity of the second STA.
  • the identity assigned by the AP to the first STA needs to be continuous.
  • the identifier of the first STA is used to identify the wake-up receiver of the STA, and may be an identifier of the WUR allocated by the AP to the first STA, or may be an association identifier assigned by the multiplex AP to the primary radio MR of the first STA (Association) Identifer, referred to as AID).
  • the AP assigns an identity to each STA, and needs to determine that the identity assigned to the first STA is continuous, and may include two implementation manners:
  • the first implementation manner the AP assigns a Wake Up Receiver ID (WID) to all the STAs equipped with the wake-up receiver, and uses the WID as the identity of the STA, and the AP can associate the second with the AP.
  • the STA randomly allocates the WID without repeating, and only needs to ensure that the WID assigned to the first STA is continuous.
  • the second implementation manner is as follows:
  • the AP directly uses the association identifier (AID) of the MR of the first STA as the WID of the wake-up transceiver, that is, when the AP allocates the AID to the MR of the first STA, the AP ensures that The AID of the MR allocated to the first STA is consecutive, and the AP uses the AID of the MR of the first STA as the identity of the first STA, so that the identity of the first STA is continuous.
  • AID association identifier
  • the AP may separately allocate an additional Very Low Power Wakeup Receiver Identifier (EWID) for the wakeup receivers of all the first STAs, and the EWIDs are consecutive, and one EWID is associated with a first STA.
  • EWID Very Low Power Wakeup Receiver Identifier
  • the WID should be implemented so that the identity of the wake-up receiver is contiguous.
  • the indication field of the wake-up beacon frame periodically broadcasted by the AP indicates whether the downlink service data indication is provided to the first STA in the EWID order, and the AP only needs to ensure that the EWID is continuous.
  • the main purpose of the AP is to include the downlink service data indication of the first STA, and the specific reason can be referred to the following description.
  • the content of the indication field in the wake-up beacon frame is introduced.
  • the indication field may specifically include: a bit bitmap control field and a partial virtual bit bitmap field.
  • Each bit in the part of the virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data, and the order between the bits in the part of the virtual bit bitmap field and the identity of the corresponding first STA The order of the identifiers is the same; the bit bitmap control field is used to indicate the offset of the bits in the partial virtual bit bitmap field, and the offset is used to indicate the current first bit corresponding to the partial virtual bit bitmap field The difference between the identity of the first STA and the identity of the first first STA.
  • each bit in the partial virtual bit bitmap field in the above-mentioned wake-up beacon frame corresponds to a first STA site, but If the identity of the AP assigned to the first STA is not continuous, it cannot be ensured that the wake-up beacon frame can identify the indication bit of its corresponding downlink service data when the downlink service indicator bit of the first STA is only included. position.
  • the AP can manage a maximum of 2007 sites, wherein the site whose identity is WID1 is the first STA, the site of WID2-WID2006 is the second STA, and the site of WID2007 is the first STA, that is, the identity of the AP assigned to the first STA.
  • the identifier is discontinuous.
  • the partial virtual bit bitmap field includes the downlink service data indication of all the stations, each station knows the bit position corresponding to itself.
  • the partial virtual bit bitmap field includes only the downlink service data indication bit of the first STA, that is, the wake-up beacon frame includes only two indication bits corresponding to WID1 and WID2007, for WID1.
  • the first STA can know that the first bit is its own downlink service data indicator bit, but for the first STA of WID 2007, it only knows that it is located in the partial virtual bit bitmap field of the 802.11 beacon frame.
  • the 2007 bit position but since the partial virtual bit bitmap field lacks the downlink service data indication bit in the middle with respect to the second STA, the first STA of the WID 2007 cannot know the partial virtual bit bitmap in the wake-up beacon frame.
  • the second bit is its own corresponding indication bit.
  • the ID of the first STA is taken as an example.
  • the number of the first STAs associated with the AP is 100, and the number of the second STAs is 1907.
  • the AP assigns WID1-WID7 as the identity of the second STA.
  • the WID8-WID 108 is assigned the identity of 100 first STAs, and the WID 108-WID 2007 is the identity of the remaining second STAs.
  • each bit in the partial virtual bit bitmap field of the wake-up beacon frame is used to indicate whether the first STA corresponding to the bit has downlink service data, that is, the wake-up beacon frame.
  • the partial virtual bit bitmap field contains only the indication bits of the downlink service data of all the first STAs.
  • the wake-up beacon frame also introduces a bit bitmap control field, which is used to indicate the offset of the bit in the partial virtual bit bitmap field, the offset is in bytes, and the use thereof And a difference between the identity of the first STA corresponding to the current first bit of the partial virtual bit bitmap field and the identity of the first first STA.
  • the difference between the identity of the first STA corresponding to the current first bit of the partial virtual bitmap field and the identity of the first first STA (WID8) is 0.
  • the identifier of the first STA corresponding to the current first bit of the partial virtual bit bitmap field is WID8. If the offset is 1, it indicates that the first bit of the current virtual bit bitmap field corresponds to the first bit.
  • the difference between the identity of the STA and the identity of the first first STA (WID8) is 8, and the identity of the first STA corresponding to the current first bit of the partial virtual bitmap field is WID16. Based on the identity of the first STA corresponding to the first bit of the partial virtual bitmap field, the other first STA can accurately know the bit position corresponding to the partial virtual bitmap field, and thus accurately know whether the AP has The downlink service data is sent to itself.
  • the AP is assigned to the identity identifier of the first STA associated with the AP, so that the first STA can identify the downlink service data corresponding to the first STA when receiving the wake-up beacon frame of the present application.
  • the position of the bit For example, if the partial virtual bit bitmap field of the wake-up beacon frame is "0110010010000000" and the offset of the partial virtual bit bitmap is 0, it indicates that starting from WID8, the stations representing WID9, WID10, WID13, and WID16 have Downstream business data.
  • the basic service set (Basic Service Set, BSS for short) of the primary transceiver may change during the sleep of the first STA, and the wake-up beacon frame may further include the MR of the first STA.
  • the wake-up beacon frame may further include clock synchronization information.
  • the first STA in which the primary transceiver is in a sleep state needs the AP to send a periodic wake-up beacon frame to notify that it is still within the management range of the AP, so
  • the awake beacon frame may further include first indication information, where the first indication information is used to indicate to the first STA that the first STA is currently in the association range of the AP, and the parameter is not only useful for the first STA, but also The second STA is also useful.
  • the method for indicating the downlink service data provided by the application the AP allocates an identity identifier to the first STA associated with the AP by using the association response, and the identity of the AP allocated to all the first STAs is continuous, so that the first STA is included in the interception.
  • the bit bitmap control field and the partial virtual bit bitmap field wake up the beacon frame
  • the offset of the bit in the partial virtual bit bitmap field can be obtained according to the bit bitmap control field, and then the offset is determined according to the offset
  • the STA corresponds to the location of the indication bit in the partial virtual bitmap field, and determines the identity of the first STA corresponding to the first bit of the partial virtual bitmap field, which improves the correspondence of the first STA identification itself.
  • the MR of the first STA does not need to wake up in the second listening interval to receive the beacon frame broadcast by the AP, Only when the WUR of the first STA learns that the downlink service data is sent to the first STA, the WUR of the first STA is awakened by the WUR of the first STA, which is greatly reduced. MR wake frequency, lower power consumption of the first STA.
  • Another embodiment of the present application provides a method for indicating downlink service data.
  • the first STA involved in the embodiment sends the interception interval information to the AP through the association request frame in the association phase, where the interception interval information includes the start point of the first listening interval and the duration of the first listening interval, thereby
  • the AP can determine the lifetime of the downlink service data sent to the first STA according to the interception interval information, so as to better manage the data buffer space of the user (of course, if the first listening interval in the interception interval information does not meet the AP)
  • the request the AP can reject the association request).
  • the first listening interval in this embodiment is different from the listening interval specified in the current 802.11 protocol, that is, the second listening interval, and the starting point of the first listening interval is the WUR of the first STA.
  • the transmission time of the wake-up beacon frame is received for the last time when waking up, and the end point of the first listening interval is the start position of the first listening interval plus the time position corresponding to the duration of the first listening interval.
  • the first listening interval is used to indicate that the AP wakes up the receiver of the first STA to wake up to receive the wake-up beacon frame, that is, the wake-up receiver of the first STA is in each first listening interval.
  • a wake-up beacon frame transmission time is within the first listening interval of the starting point.
  • FIG. 5 A schematic diagram of a specific first listening interval can be seen in FIG. 5.
  • the starting point of the first listening interval A is the transmission time of the last wake-up beacon frame (the wake-up beacon frame a in FIG. 5) received by the WUR of the first STA, and the first listening.
  • the end point of the interval A is the starting point of the first listening interval A plus the time position of the duration of the first listening interval; likewise, the starting point of the first listening interval B is the WUR of the first STA.
  • the transmission time of the last wake-up beacon frame (wake-up beacon frame b in Figure 5) received.
  • the first STA is a site with strict power consumption requirements, that is, a very low power consumption site. Therefore, generally, the downlink service data sent by the AP to the first STA accounts for a very small ratio of the entire data service transmission.
  • the present application is extended based on the listening interval (ie, the second listening interval) in the original 802.11 protocol, and the duration of the first listening interval after the expansion may be greater than the duration of the second listening interval in the 802.11 protocol. Thereby, the wake-up receiver of the first STA does not wake up frequently, further reducing the power consumption of the first STA.
  • the length of the 802.11 listening interval (that is, the second listening interval) is 2 bytes, and the 802.11 listening interval is based on the sending interval of the beacon frame, 2 bytes.
  • the value of the M normalized bits (ie, the binary converted to a decimal value) is used to indicate a basic unit of the first listening interval.
  • the basic unit of the first listening interval is equal to the normalized factor.
  • the value, shown in Table 1, is an example.
  • the normalization factor characterizes the transmission interval of several wake-up beacon frames to form the basic unit of a first listening interval.
  • the normalization factor can also represent several
  • the sending interval of the other frames constitutes a basic unit of the first listening interval, which is not limited in this application, as long as the normalization factor enables the basic unit of the first listening interval to be greater than the basic unit of the second listening interval. Just fine.
  • the normalization factor corresponding to the value of the normalized bit in Table 1 is only an example.
  • the normalized bit is 11
  • the value of the normalized bit is 3
  • the corresponding normalization factor is the transmission interval of 10,000 wake-up beacon frames, that is, the above-mentioned first listening interval.
  • the N non-normalized values are used to indicate the number of basic units of the first listening interval.
  • the duration of the first listening interval of the present application is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • the number of non-normalized bits is 14. Assuming that the sequence consisting of these non-normalized bits is "11111111111111", the values of these non-normalized bits are equal to 2 ⁇ 14-1.
  • the duration of the first listening interval provided by the application is equal to the product of (2 ⁇ 14-1)*1000s.
  • the first STA sends the interception interval information to the AP through the association request frame in the association phase, where the starting point of the first interception interval in the interception interval information is the wake of the first STA
  • the transmission time of the wake-up beacon frame is received last time when the receiver wakes up last time, so that the AP can determine the lifetime of the downlink service data sent to the first STA according to the interception interval information, thereby better managing its own data buffer.
  • the present application extends the duration of the original 802.11 listening interval (ie, the second listening interval), that is, the present application increases the basic unit of the first listening interval by dividing the normalized bits.
  • the duration of the first listening interval is increased, that is, the duration of the first listening interval provided by the application is longer than the duration of the 802.11 listening interval, so that the wake-up receiver of the first STA does not need to wake up frequently, which is further reduced.
  • the power consumption of the first STA is increased, that is, the duration of the first listening interval provided by the application is longer than the duration of the 802.11 listening interval, so that the wake-up receiver of the first STA does not need to wake up frequently, which is further reduced.
  • FIG. 6 is a schematic flowchart diagram of an embodiment of an information indication method provided by the present application.
  • the embodiment relates to a specific process of determining, by the first communication device, whether the wakeup of the second communication device is a passive wake or an active wake according to the wakeup report frame sent by the primary transceiver of the second communication device.
  • the first communication device may be an AP or a station STA
  • the second communication device may be an STA or an AP.
  • the first communication device is an AP
  • the second communication device is an STA
  • the first communication device is an STA
  • the second communication device is an AP.
  • the following embodiment describes the specific process of this embodiment by taking the first communication device as the AP and the second communication device as the STA.
  • the method includes the following steps:
  • the first communication device receives the wakeup report frame sent by the main transceiver of the second communication device, and the wakeup report frame carries the indication information, where the indication information is used to indicate the second communication to the AP.
  • the wake-up state of the device's primary transceiver is triggered by the wake-up frame.
  • the first communications device determines, according to the indication information, that the second communications device triggers wakeup by a wakeup frame.
  • the wake of the STA is divided into an active wake and a passive wake. Whether the active wake or the passive wake, the STA may send a wakeup report frame to the station after waking up, and the wakeup report frame may be It is a Ps-poll frame, an ACK frame, and the like.
  • the AP at present, after receiving the awake report frame sent by the STA, the AP cannot know whether the wakeup of the current STA is a passive wake or an active wake based on the wakeup report frame. therefore.
  • the awake reporting frame sent by the STA to the AP carries an indication information, which is used to indicate to the AP that the awake state of the current STA is triggered by the awake frame.
  • the awake frame may be sent by the AP to the STA, or may be sent to the STA by another site masquerading as an AP.
  • the AP can learn whether the awake state of the STA is active wake-up or passive wake-up according to the wake-up report frame, thereby enabling more reasonable and effective control of data communication with the STA.
  • the embodiment can also consider that the wake-up receiver of the station is sent by other stations (attackers) masquerading as APs to send wake-up frames, thereby The wake-up receiver is caused to frequently inform the station that its main transceiver wakes up consuming its energy.
  • the AP does not send a wake-up frame to any STA for a long period of time, if the STA sends a wake-up report frame to the AP during the period of time, and the wake-up report frame carries the above-mentioned If the indication information is obtained, the AP learns that the wakeup report frame of the STA is a response frame of the wakeup frame sent by a certain device (for example, an attacker), so the AP determines that the STA is currently likely to be attacked by the pseudo site. Therefore, the AP can perform a unique way to avoid site attacks, such as changing the identity of the wake-up receiver to the site, or changing the encryption method of the wake-up frame.
  • the wake-up report frame in the present application carries the indication information.
  • the Ps-poll frame is taken as an example, and the indication information in the report frame can be awake.
  • the first type the indication information carried in the Ps-poll frame provided by the application can be implemented by the type of the frame control field in the MAC header and/or the subtype subfield.
  • the indication information may also be carried by the undefined sub-field in the frame control field of the MAC header, and is used to indicate that the wake-up report frame is a response frame for the wake-up frame, for example, the undefined sub-field may be The "power management" bit in the MAC header control field in the Ps-poll frame. When the value of the bit is 1, it indicates that the wakeup report frame is a response frame for the wake-up frame.
  • the structure of the Ps-poll frame can be seen in Figure 7a.
  • the third type of indication information may also be implemented by using a reserved value (or a special value) of the field.
  • the associated identifier field in the Ps-poll frame is set to a special value, usually the associated identifier field (16 bits in total, Bit 14 and bit 15 in bit 0 to bit 15) are both set to 1, and the range of bit 0 to bit 13 converted to a decimal value needs to be in the range of 1 to 2007, such as 0 or 2008 to 16383. value. Therefore, the value of the association identifier value set outside the normal value range can identify that the wakeup report frame is a response frame for the wakeup frame.
  • the bit 15 is set to 0, and other bits are arbitrarily combined (or carry other information, such as carrying The feature information of the wake-up frame sender).
  • the information indicating method provided by the application the second communication device sends a wake-up report frame carrying the indication information to the first communication device after waking up, and the first communication device can determine the wake-up of the second communication device according to the wake-up report frame.
  • the state is triggered by the wake-up frame, thereby enabling the first communication device to accurately know the attributes of the awake state of the second communication device, thereby enabling more reasonable and efficient control of data communication with the second communication device.
  • waking up the indication information of the reporting frame and implicitly enabling the first communication device to determine whether the second communication device is attacked according to the awake state of the second communication device, so that the first communication can be combined in time to respond. Protection measures to avoid MR waking up due to the second communication device being attacked again, saving energy of the second communication device.
  • the wakeup report frame further includes feature information of the wakeup frame, and the feature information of the wakeup frame is used to indicate to the AP which device the wakeup frame is sent by. Therefore, after S302, the foregoing method may further include:
  • the first communications device determines, according to the feature information of the wake-up frame, whether to send the wake-up frame as a transmitted wake-up frame of the first communications device.
  • the wake-up frame received by the wake-up receiver of the second communications device may be sent by the AP, or may be sent by the pseudo-site, and therefore, the feature information of the wake-up frame carried in the wake-up reporting frame And indicating to the AP that the wakeup report frame is responsive to which wake-up frame or which wake-up frame is sent by the sending device.
  • the AP may learn, by using the feature information of the wake-up frame, whether the current awake report frame is responding to the wake-up frame sent by the station to the station.
  • the AP determines that the feature information of the wake-up frame carried by the wake-up report frame does not match the feature information of the AP, that is, it determines that the wake-up frame for the wake-up report frame is not sent by the AP, the AP determines that the site is attacked by the pseudo-site.
  • the AP can perform a unique way to prevent the site from being attacked again, such as changing the identity of the wake-up receiver to the site, or changing the encryption method of the wake-up frame.
  • the feature information is implemented, for example, by using a partial bit of the MAC address of the wake-up frame sender, and may also report, by using the wake-up, a frame check sequence (or a cyclic redundancy check bit) of the wake-up frame for the frame. Part of the bit is implemented.
  • a part of the MAC address of the sender of the awake frame or a part of the check sequence of the awake frame for the wake-up frame may be carried in the associated identifier of the Ps-poll frame. In the field.
  • the information indicating method provided by the embodiment, by carrying the indication information and the feature information of the wake-up frame in the wake-up report frame sent to the first communication device, so that the first communication device can learn to wake up according to the wake-up report frame. Whether the second communication device reporting the frame is attacked by the pseudo-site, and after determining that the site transmitting the wake-up report frame is attacked by the pseudo-site, responds to the protection measures in time to avoid the MR being awakened by the second communication device being attacked again. Thereby the energy of the second communication device is saved.
  • FIG. 8 is a schematic structural diagram of a site embodiment provided by the present application.
  • the site is the first STA in the site associated with the AP.
  • the first STA can be implemented by software, hardware or a combination of software and hardware.
  • the first STA includes: a control module 10, a first receiving module 11, and a determining module 12.
  • the control module 10 is configured to control the wake-up receiver of the first STA to wake up within a preset first listening interval
  • the first receiving module 11 is configured to: after the wakeup receiver of the first STA wakes up, receive a wakeup beacon frame sent by the AP; the wakeup beacon frame includes, to indicate whether an AP is to be sent to the An indication field of downlink service data of the first STA;
  • the control module 10 is further configured to: control the primary radio MR of the first STA to wake up to receive the beacon frame sent by the AP in the second listening interval;
  • the determining module 12 is configured to determine, according to the indication field, whether the AP has downlink service data to be sent to the first STA.
  • the foregoing first receiving module 11 may be a wake-up receiver of the first STA, or may be a module integrated in the wake-up receiver of the first STA.
  • the above-described control module 10 and determination module 12 may be components having a control function and a processing function, such as a processor in the first STA.
  • FIG. 9 is a schematic structural diagram of another embodiment of a site provided by the present application.
  • the first STA may further include: a sending module 13 and a second receiving module 14.
  • the sending module 13 is configured to send an association request frame to the AP;
  • the second receiving module 14 is configured to receive an association response sent by the AP, where the association response carries an identity identifier that is allocated by the AP to the first STA, where the AP is allocated to the first STA.
  • the identity is continuous.
  • the sending module 13 and the second receiving module 14 may be the MRs in the first STA, that is, the sending module 13 may correspond to the primary transmitter of the MR of the first STA, and the second receiving module 14 may correspond to the first STA.
  • the main receiver of MR may be the MRs in the first STA.
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the identifier of the first STA includes: any one of an identifier of the wake-up receiver of the first STA, and an association identifier of a primary radio MR of the first STA.
  • the starting point of the first listening interval is a transmission time of the last receiving wake-up beacon frame when the wake-up receiver of the first STA wakes up last time.
  • the byte of the first listening interval includes M normalized bits and N non-normalized bits, where values of the M normalized bits are used to indicate the first interception a basic unit of intervals, the values of the N non-normalized bits being used to indicate the number of basic units of the first listening interval;
  • the duration of the first listening interval is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • FIG. 10 is a schematic structural diagram of an AP embodiment provided by the present application.
  • the AP can be implemented by software, hardware or a combination of software and hardware. As shown in FIG. 10, the AP includes: a determining module 21 and a sending module 22.
  • the determining module 21 is configured to determine a station STA that is associated with the AP and that is equipped with a wake-up receiver, where the STA includes a first STA;
  • the sending module 22 is configured to send a wake-up beacon frame to the wake-up receiver period with the STA, where the wake-up beacon frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA. .
  • the determining module 21 may correspond to a processor, a controller, and the like having a processing function or a control function in the AP
  • the sending module 22 may correspond to a primary transmitter that is an MR of the AP.
  • the AP may further include a receiving module 23.
  • the receiving module 23 is configured to receive an association request frame sent by the first STA, where the sending module 22 is further configured to send an association response to the first STA, where the association response carries the AP to the An identity of the first STA; wherein the identity assigned by the AP to the first STA is continuous.
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the identifier of the first STA includes: any one of an identifier of the wake-up receiver of the first STA, and an association identifier of a primary radio MR of the first STA.
  • the receiving module 23 is further configured to receive the listening interval information sent by the first STA, where the listening interval information includes a starting point of the first listening interval and the first listening interval.
  • the duration of the first listening interval is the transmission time of the last received wake-up beacon frame when the wake-up receiver of the first STA wakes up last time.
  • the byte of the first listening interval includes M normalized bits and N non-normalized bits, and the values of the M normalized bits are used to indicate the first listening interval.
  • the values of the N non-normalized bits are used to indicate the number of basic units of the first listening interval;
  • the duration of the first listening interval is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • the AP provided in this application can perform the foregoing embodiment of the method for indicating the downlink service data, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of another embodiment of a site provided by the present application.
  • the site is a first STA in a site associated with a wireless access point AP, which may include a receiver 30, a memory 31, a processor 32, and at least one communication bus 33.
  • the communication bus 33 is used to implement a communication connection between components.
  • the memory 31 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the sender device may further include a transmitter 34.
  • the receiver 30 may be a wake-up receiver in the first STA
  • the transmitter 34 may be a primary transmitter in the MR of the first STA.
  • the processor 32 is configured to control the wake-up receiver of the first STA to wake up within a preset first listening interval
  • the receiver 30 is configured to receive, after the first STA wakes up, the wake-up beacon frame sent by the AP, where the wake-up beacon frame includes, to indicate whether the AP has downlink service data to be sent to the first STA. Indication field;
  • the processor 32 is further configured to control the primary radio MR of the first STA to wake up to receive a beacon frame sent by the AP in a second listening interval, and determine the AP according to the indication field. Whether there is downlink service data to be sent to the first STA.
  • the sender 34 is configured to send an association request frame to the AP.
  • the receiver 30 is further configured to receive an association response sent by the AP, where the association response carries an identity identifier that is allocated by the AP to the first STA, where the AP is allocated to the first STA.
  • the identity is continuous.
  • the receiver 30 may also be a primary receiver of the MR of the first STA.
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the identifier of the first STA includes: any one of an identifier of the wake-up receiver of the first STA, and an association identifier of a primary radio MR of the first STA.
  • the starting point of the first listening interval is a transmission time of the last receiving wake-up beacon frame when the wake-up receiver of the first STA wakes up last time.
  • the byte of the first listening interval includes M normalized bits and N non-normalized bits, where values of the M normalized bits are used to indicate the first interception a basic unit of intervals, the values of the N non-normalized bits being used to indicate the number of basic units of the first listening interval;
  • the duration of the first listening interval is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • FIG. 12 is a schematic structural diagram of another embodiment of an AP provided by the present application.
  • the AP may include a transmitter 40, a memory 41, a processor 42, and at least one communication bus 43.
  • Communication bus 43 is used to implement a communication connection between the components.
  • the memory 41 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the sender device may further include a receiver 44.
  • the transmitter 40 may be the primary transmitter of the MR of the AP
  • the receiver 44 may be the primary receiver in the MR of the AP.
  • the processor 42 is configured to determine a station STA that is associated with the AP and that is equipped with a wake-up receiver, where the STA includes a first STA;
  • the transmitter 40 is configured to send a wake-up beacon frame to the wake-up receiver period of the STA, where the wake-up beacon frame includes an indication field for indicating whether the AP has downlink service data to be sent to the first STA. .
  • the receiver 44 is configured to receive an association request frame sent by the first STA.
  • the transmitter 40 is further configured to send an association response to the first STA, where the association response carries an identity identifier that is allocated by the AP to the first STA, where the AP is allocated to the first
  • the identity of the STA is continuous.
  • the indication field specifically includes: a bit bitmap control field and a partial virtual bit bitmap field;
  • Each bit in the partial virtual bit bitmap field is used to indicate whether the first STA corresponding to the bit has downlink service data
  • the bit bitmap control field is configured to indicate an offset of a bit in the partial virtual bit bitmap field, where the offset is used to indicate a first bit corresponding to a current bit of the partial virtual bit bitmap field The difference between the identity of a STA and the identity of the first first STA.
  • the identifier of the first STA includes: any one of an identifier of the wake-up receiver of the first STA, and an association identifier of a primary radio MR of the first STA.
  • the receiver 44 is further configured to receive the listening interval information sent by the first STA, where the listening interval information includes a starting point of the first listening interval and the first listening interval.
  • the duration of the first listening interval is the transmission time of the last received wake-up beacon frame when the wake-up receiver of the first STA wakes up last time.
  • the byte of the first listening interval includes M normalized bits and N non-normalized bits, and the values of the M normalized bits are used to indicate the first listening interval.
  • the values of the N non-normalized bits are used to indicate the number of basic units of the first listening interval;
  • the duration of the first listening interval is equal to the product of the number of basic units of the first listening interval and the basic unit of the first listening interval.
  • the AP provided in this application can perform the foregoing embodiment of the method for indicating the downlink service data, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • the communication device may be the first communication device in the foregoing method embodiment.
  • the first communication device includes: a receiving module 51 and a determining module 52.
  • the receiving module 51 is configured to receive a wakeup report frame sent by the primary transceiver of the second communication device, the wakeup report frame carrying indication information, where the indication information is used to indicate the second communication to the AP
  • the wake-up state of the device's primary transceiver is triggered by the wake-up frame;
  • the determining module 52 is configured to determine, according to the indication information, that the second communications device triggers wakeup by a wakeup frame.
  • the receiving module 51 may be a primary transceiver of the first communications device
  • the determining module 52 may be a processor, a controller, or the like having a processing function or a control function in the first communications device.
  • the awake report frame further includes: feature information of the wake-up frame
  • the determining module 52 is further configured to determine, according to the feature information of the wake-up frame, whether sending the wake-up frame is the first The wake-up frame sent by the communication device.
  • the communication device provided by the present application can perform the method embodiment shown in FIG. 6 above, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • the communication device is the first communication device in the above method embodiment.
  • the first communication device can include a receiver 60, a memory 61, a processor 62, and at least one communication bus 63.
  • Communication bus 63 is used to implement a communication connection between the components.
  • the memory 61 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the sender device may further include a transmitter 64.
  • the receiver 60 may be the primary receiver in the MR of the AP
  • the transmitter 64 may be the primary transmitter of the MR of the AP.
  • the receiver 60 is configured to receive a wakeup report frame sent by the primary transceiver of the second communication device, and the wakeup report frame carries indication information, where the indication information is used for The AP indicates that the awake state of the primary transceiver of the second communications device is triggered by the wake-up frame;
  • the processor 62 is configured to determine, according to the indication information, that the second communications device triggers wakeup by a wakeup frame.
  • the awake report frame further includes: feature information of the wake-up frame,
  • the processor 62 is further configured to determine, according to the feature information of the wake-up frame, whether the sending of the wake-up frame is a sent wake-up frame of the first communications device.
  • the communication device provided by the present application may perform the foregoing embodiment of the information indicating method, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the steps of the method or algorithm described in connection with the disclosure of the present application may be implemented in a hardware manner, or may be implemented by a processor executing a software instruction, or may be implemented by a computer program product.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment. Of course, the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the scope of the present application.
  • the embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. .
  • Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the described systems, devices, and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the present application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electronic, mechanical or other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种下行业务数据的指示方法和设备。该方法包括:与无线接入点AP关联的第一站点STA控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒,并接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;所述第一STA控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧;所述第一STA根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。本申请提供的方法,第一STA的MR无需在第二侦听间隔内醒来接收AP广播的信标帧,其大大减少了MR的苏醒频率,降低了第一STA的功耗。

Description

下行业务数据的指示方法和设备
本申请要求于2017年03月03日提交中国专利局、申请号为201710124880.7、申请名称为“下行业务数据的指示方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种下行业务数据的指示方法和设备。
背景技术
在无线保真(Wireless-Fidelity,简称WiFi)网络中,接收端设备相当一部分能量浪费在无接收信号时的监听(idle listening),即当站点(Station,简称STA)没有消息收发时,若持续监听信道将会消耗大量的能量,因此通信标准中引入了休眠机制(Sleep Schedule)使得STA在无数据收发时可以进入深度休眠(Deep Sleep)状态,以减少持续监听的能耗。但是当STA处于深度休眠时,接入点(Access Point,简称AP)无法与STA通信,只有等到STA苏醒后两者之间才能进行传输,这可能会导致一定的时延(latency)。为了避免休眠机制导致的高时延,STA通常会遵循一定的休眠策略周期醒来检查有无数据需要接收,然而这又降低了STA的休眠效率。
因此,除了上述优化休眠策略外,减少设备idle listening的能量浪费的另一条技术途径是使用WUR,其核心思想是:接收端设备除包含传统802.11主收发模块外,新增低功耗唤醒接收机(Wake up Receiver,简称WUR)部分,该传统的802.11收发模块即为802.11主无线电(Main Radio,简称MR),其同时包含主发送机和主接收机,如图1所示,配备WUR的站点通过尽可能的延长MR的睡眠时间,从而达到最佳节能效果。然而根据已有的802.11协议,配备WUR的站点的MR需在与AP协商的侦听间隔(listen interval)期间内醒来侦听AP发送的信标帧(beacon),从而获取AP广播的重要基础服务集合(Basic Service Set,简称BSS)参数信息,比如AP给该站点是否有下行业务数据的指示。如果醒来的站点(即该站点的MR醒来)侦听到AP发送的信标帧包含AP给该站点有下行业务数据的指示,则该站点会短暂返回睡眠状态,自主选择时间醒来,然后发送节能轮询(Power save poll,简称Ps-poll)帧给AP,以告知AP其已处于醒来状态,AP可以发送下行业务数据给自己。或者,站点听完信标帧的指示后,不返回睡眠状态,直接发送Ps-poll帧给AP,让其发送下行业务数据。上述侦听间隔时长是用来告知AP该配备了WUR的站点的主收发机醒来接收信标帧的频率,即站点的主收发机在每个侦听间隔内醒来一次以接收信标帧。
但是,对于一些对功耗要求非常严格的具有WUR的站点,例如配备纽扣电池的站点(如传感器),AP给该类站点的下行业务数据占整个数据业务传输的比率非常小,如果上述配备WUR的站点的MR按照802.11机制在侦听间隔内醒来接收信标帧,MR 的醒来频率较高,站点的功耗较大。
发明内容
本申请提供一种下行业务数据的指示方法和设备,用以解决现有技术中MR的醒来频率较高,站点的功耗较大的技术问题。
第一方面,本申请提供一种下行业务数据的指示方法,包括:
与无线接入点AP关联的第一站点STA控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒,并接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;
所述第一STA控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧;
所述第一STA根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
上述第一方面提供的下行业务数据的指示方法,通过AP从关联的STA中确定配备了唤醒接收机的STA,然后向这些配备了唤醒接收机的STA的WUR周期性发送唤醒信标帧,该唤醒信标帧包括用于指示第一STA的下行业务数据的指示字段,该指示字段仅包括上述与AP关联且配备了唤醒接收机的STA中的第一STA的下行业务数据指示;然后,第一STA控制第一STA的WUR在预设的第一侦听间隔内苏醒并将接收该唤醒信标帧,并控制第一STA的MR无需在第二侦听间隔(即802.11协议规定的侦听间隔)内醒来接收AP发送的802.11信标帧,该第一STA仅通过该唤醒信标帧中的指示字段就可以确定出AP是否有待发送给第一STA的下行业务数据。即本申请对于向第一STA指示AP是否对第一STA有下行业务数据发送来说,第一STA仅通过AP发送的唤醒信标帧就可以获知第一STA的下行业务数据指示,第一STA的MR无需在第二侦听间隔内醒来接收AP广播的信标帧,只需要在第一STA的WUR根据侦听到的唤醒信标帧获知AP有下行业务数据发送给第一STA时被该第一STA的WUR唤醒即可,其大大减少了MR的苏醒频率,降低了第一STA的功耗;并且,本申请中的唤醒信标帧的指示字段中仅包括了第一STA的下行业务数据指示,其在WUR的传输速率较慢情况下,该指示字段在AP抢占的一次传输机会内也能传输完,即该唤醒信标帧的传输时间比较短,传输效率高。
在一种可能的设计中,所述方法还包括:
所述第一STA向所述AP发送关联请求帧;
所述第一STA接收所述AP发送的关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
在一种可能的设计中,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识 与首个第一STA的身份标识的差值。
该可能的设计提供的下行业务数据的指示方法,AP通过关联响应为AP所关联的第一STA分配身份标识,且AP分配给所有第一STA的身份标识连续,从而使得第一STA在侦听到包含比特位图控制字段和部分虚拟比特位图字段的唤醒信标帧时,能够根据该比特位图控制字段获知部分虚拟比特位图字段中比特的偏移量,进而根据该偏移量确定该第一STA对应在部分虚拟比特位图字段中的指示比特的位置,以及确定该部分虚拟比特位图字段的第一个比特对应的第一STA的身份标识,提高了第一STA识别自身所对应的指示比特的效率。
第二方面,本申请提供一种下行业务数据的指示方法,包括:
无线接入点AP确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA;
所述AP向与所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
在一种可能的设计中,所述方法还包括:
所述AP接收所述第一STA发送的关联请求帧;
所述AP向所述第一STA发送关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
在一种可能的设计中,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
上述第二方面以及第二方面的可能的设计所提供的方法,其有益效果可以参见上述第一方面以及第一方面的各可能的设计的有益效果,在此不再赘述。
结合上述第一方面以及第一方面的各可能的设计、第二方面以及第二方面各可能的设计,在一种可能的设计中,在一种可能的设计中,所述方法还包括:
所述AP接收所述第一STA发送的侦听间隔信息,所述侦听间隔信息包括第一侦听间隔的起始点和所述第一侦听间隔的时长,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
在一种可能的设计中,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
在一种可能的设计中,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
上述各可能的设计提供的方法,第一STA在关联阶段通过关联请求帧将侦听间隔信息 发送给AP,该侦听间隔信息中第一侦听间隔的起始点为第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间,从而使得AP能够根据该侦听间隔信息决定发送给第一STA的下行业务数据的生命期,从而更好的管理自己的数据缓冲空间;另外本申请对原有的802.11侦听间隔(即上述第二侦听间隔)的时长进行了扩展,即本申请通过划分的归一化比特来增大第一侦听间隔的基本单位,从而增大第一侦听间隔的时长,即本申请所提供的第一侦听间隔的时长大于802.11侦听间隔的时长,从而使得第一STA的唤醒接收机无需频繁的醒来,更加降低了第一STA的功耗。
第三方面,本申请提供一种信息指示方法,包括:
第一通信设备接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发;
所述第一通信设备根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
上述第三方面提供的信息指示方法,第二通信设备在苏醒后向第一通信设备发送携带了指示信息的醒来汇报帧,第一通信设备可以根据该醒来汇报帧确定该第二通信设备的唤醒状态由唤醒帧触发,从而使得第一通信设备能够精确的获知第二通信设备的苏醒状态的属性,从而能够更加合理有效的控制与第二通信设备之间的数据通信。另一方面,醒来汇报帧的指示信息,还可以隐式的使第一通信设备能够根据第二通信设备的苏醒状态确定第二通信设备是否被攻击,从而使得第一通信时合并能够及时响应保护措施,避免因第二通信设备被再次攻击而造成MR误苏醒,节省了第二通信设备的能量。
在一种可能的设计中,所述醒来汇报帧还包括:所述唤醒帧的特征信息,所述方法还包括:
所述第一通信设备根据所述唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
该可能的设计提供的方法,通过在发送给第一通信设备的醒来汇报帧中携带指示信息和唤醒帧的特征信息,使得第一通信设备可以根据该醒来汇报帧获知当前发送醒来汇报帧的第二通信设备是否受到伪站点的攻击,并在确定发送醒来汇报帧的站点受到伪站点攻击后,及时响应保护措施,避免因第二通信设备被再次攻击而造成MR误苏醒,从而节省了第二通信设备的能量。
第四方面,为了实现上述第一方面的下行业务数据的指示方法,本申请实施例提供了一种站点,该站点为与无线接入点AP关联的站点中的第一STA,该第一STA具有实现上述下行业务数据的指示方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第四方面的一种可能的实现方式中,该第一站点包括多个功能模块或单元,用于实现上述第一方面中的任一种下行业务数据的指示方法。
在第四方面的另一种可能的实现方式中,该第一站点的结构中可以包括处理器、接收器和发送器(或者收发器)。所述处理器被配置为支持该设备执行上述第一方面中任一种下行业务数据的指示方法中相应的功能。所述收发器用于支持该设备与其他 网络设备或者终端设备之间的通信,例如可以为相应的射频模块或者基带模块。该设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存该第一站点执行上述下行业务数据的指示方法必要的程序指令和数据。
第五方面,为了实现上述第二方面的下行业务数据的指示方法,本申请实施例提供了一种无线接入点AP,该AP具有实现上述下行业务数据的指示方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第五方面的一种可能的实现方式中,该AP包括多个功能模块或单元,用于实现上述第二方面中的任一种下行业务数据的指示方法。
在第五方面的另一种可能的实现方式中,该AP的结构中可以包括处理器、接收器和发送器(或者收发器)。所述处理器被配置为支持该设备执行上述第二方面中任一种下行业务数据的指示方法中相应的功能。所述收发器用于支持该设备与发送端设备之间的通信,例如可以为相应的射频模块或者基带模块。该设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存该AP执行上述下行业务数据的指示方法必要的程序指令和数据。
第六方面,为了实现上述第三方面的信息指示方法,本申请实施例提供了一种通信设备,该通信设备为第一通信设备,可选的,该第一通信设备可以是AP,还可以是STA。该AP具有实现上述信息指示方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在第六方面的一种可能的实现方式中,该第一通信设备包括多个功能模块或单元,用于实现上述第三方面中的任一种信息指示方法。
在第六方面的另一种可能的实现方式中,该第一通信设备的结构中可以包括处理器、接收器和发送器(或者收发器)。所述处理器被配置为支持该设备执行上述第二方面中任一种信息指示方法中相应的功能。所述收发器用于支持该设备与发送端设备之间的通信,例如可以为相应的射频模块或者基带模块。该设备中还可以包括存储器,所述存储器用于与处理器耦合,其保存该第一通信设备执行上述信息指示方法必要的程序指令和数据。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第一STA所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第八方面,本申请实施例提供了一种计算机存储介质,用于储存为上述AP所用的计算机软件指令,其包含用于执行上述第二方面所设计的程序。
第九方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第一通信设备所用的计算机软件指令,其包含用于执行上述第三方面所设计的程序。
第十方面,本申请实施例提供一种计算机程序产品,其包含指令,当所述计算机程序被计算机所执行时,该指令使得计算机执行上述方法中第一STA所执行的功能。
第十一方面,本申请实施例提供一种计算机程序产品,其包含指令,当所述计算机程序被计算机所执行时,该指令使得计算机执行上述方法中AP所执行的功能。
第十二方面,本申请实施例提供一种计算机程序产品,其包含指令,当所述计算 机程序被计算机所执行时,该指令使得计算机执行上述方法中第一通信设备所执行的功能。
相较于现有技术,本申请提供的下行业务数据的指示方法和设备,通过AP从关联的STA中确定配备了唤醒接收机的STA,然后向这些配备了唤醒接收机的STA的WUR周期性发送唤醒信标帧,该唤醒信标帧包括用于指示第一STA的下行业务数据的指示字段,该指示字段仅包括上述与AP关联且配备了唤醒接收机的STA中的第一STA的下行业务数据指示;然后,第一STA控制第一STA的WUR在预设的第一侦听间隔内苏醒并将接收该唤醒信标帧,并控制第一STA的MR无需在第二侦听间隔(即802.11协议规定的侦听间隔)内醒来接收AP发送的802.11信标帧,该第一STA仅通过该唤醒信标帧中的指示字段就可以确定出AP是否有待发送给第一STA的下行业务数据。即本申请对于向第一STA指示AP是否对第一STA有下行业务数据发送来说,第一STA仅通过AP发送的唤醒信标帧就可以获知第一STA的下行业务数据指示,第一STA的MR无需在第二侦听间隔内醒来接收AP广播的信标帧,只需要在第一STA的WUR根据侦听到的唤醒信标帧获知AP有下行业务数据发送给第一STA时被该第一STA的WUR唤醒即可,其大大减少了MR的苏醒频率,降低了第一STA的功耗;并且,本申请中的唤醒信标帧的指示字段中仅包括了第一STA的下行业务数据指示,其在WUR的传输速率较慢情况下,该指示字段在AP抢占的一次传输机会内也能传输完,即该唤醒信标帧的传输时间比较短,传输效率高。
附图说明
图1为本申请提供的配备唤醒接收机的站点的结构示意图;
图2为本申请提供的WLAN系统的结构示意图;
图3为本申请提供的下行业务数据的指示方法实施例的信令流程图;
图4为本申请提供的下行业务数据的指示方法另一实施例的信令流程图;
图5为本申请提供的第一侦听间隔的示意图;
图6为本身申请提供的信息指示方法实施例的流程示意图;
图7为本申请提供的MR的被动唤醒过程示意图;
图7a为本申请提供的Ps-poll帧的结构示意图;
图8为本申请提供的站点实施例的结构示意图;
图9为本申请提供的站点的另一实施例的结构示意图;
图10为本申请提供的AP实施例的结构示意图;
图11为本申请提供的站点另一实施例的结构示意图;
图12为本申请提供的AP另一实施例的结构示意图;
图13为本申请提供的通信设备实施例的结构示意图;
图14为本申请提供的通信设备另一实施例的结构示意图。
具体实施方式
本申请可以应用于无线局域网络(Wireless Local Area Networks,简称WLAN), 目前WLAN采用的标准为电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称IEEE)802.11系列。其中,站点(Station,简称STA)和接入点(Access Point,简称AP)是WLAN的基本组成单元。
其中,AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi(英文:Wireless Fidelity,中文:无线保真)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备,本实施例中对AP所支持的制式类型并不做限定。
STA在WLAN中一般为客户端设备。STA可以是移动的,也可以是固定的,是无线局域网的最基本组成单元,该STA可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。
图2为本申请提供的WLAN系统的结构示意图,如图2所示,WLAN系统中1个AP可以与多个STA(图中以3个为例)进行信息交互,其中包括STA1、STA2和STA3。当然,也并不局限于此,1个AP还可以与一个或多个STA组进行信息交互,多个STA之间也可以进行交互。需要说明的是,本申请所涉及的第一STA和第二STA均为配置了802.11主无线电MR(或者主收发机)和唤醒接收机WUR的站点,该第一STA和第二STA可以参见图1所示的结构。
本申请中,MR苏醒可以分为主动苏醒和被动唤醒。针对MR的被动唤醒,实际上是AP向关联于该AP的至少一个站点STA发送唤醒帧(Wake Up Packet,简称WUP),该WUP可以用于指示被唤醒的至少一个站点的MR从休眠状态被唤醒后的接收参数,比如接收模式指示、被唤醒的时间指示等等;WUR接收到AP发送的唤醒帧(WUP)之后对该站点的MR进行唤醒。当STA的MR被唤醒后,MR发送PS-Poll帧或者确认帧给AP,告诉AP自己已醒来,然后AP回确认(ACK)响应或者直接传送数据给该站点的MR,可选的,AP也可以直接在站点的MR被唤醒后,直接发送数据帧给该站点的MR,而无需等候该站点的MR发送PS-Poll帧;或者,AP也可以发送请求发送(request to send,RTS)消息给被唤醒的站点的MR,然后站点的MR响应允许发送(clear to send,CTS)消息给AP。另外,本申请不限制是AP发送WUP给非AP站点(non-AP STA),也可以是non-AP STA发送WUP给AP。
针对MR的主动苏醒,其中一种是配备WUR和MR的站点遵循802.11协议中的节能机制,配备WUR的站点的MR在与AP协商的侦听间隔(listen interval)期间内醒来侦听AP发送的信标帧(beacon)(这里的信标帧是AP发送给站点主收发机的802.11信标帧),从而获取AP广播的重要基础服务集合(Basic Service Set,简称BSS)参数信息,比如AP给该站点是否有下行业务数据的指示。如果醒来的站点(即该站点的MR醒来)侦听到AP发送的信标帧包含AP给该站点有下行业务数据的指示,则该站点会短暂返回睡眠状态,自主选择时间醒来,然后发送Ps-poll帧给AP,以告 知AP其已处于醒来状态,AP可以发送下行业务数据给自己。或者,站点听完信标帧的指示后,不返回睡眠状态,直接发送Ps-poll帧给AP,让其发送下行业务数据。上述侦听间隔时长是用来告知AP该配备了WUR的站点的主收发机醒来接收信标帧的频率,即站点的主收发机在每个侦听间隔内醒来一次以接收信标帧。
但是,对于一些对功耗要求非常严格的具有WUR的站点,例如配备纽扣电池的站点(如传感器),AP给该类站点的下行业务数据占整个数据业务传输的比率非常小,如果上述配备WUR的站点的MR按照802.11机制在侦听间隔内醒来接收信标帧,MR的醒来频率较高,站点的功耗较大。
因此,本申请实施例提供的下行业务数据的指示方法和设备,旨在解决现有技术中一些功耗要求非常严格的站点(例如极低功耗站点)的MR醒来频率较高导致站点的功耗较大的技术问题。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本申请提供的下行业务数据的指示方法实施例的信令流程图。本实施例涉及的是AP通过向关联到自身的站点的唤醒接收机发送唤醒信标帧,使得与AP关联的配备了唤醒接收机的第一STA能够根据该唤醒信标帧获知AP是否有待发送给第一STA的下行业务数据,无需第一STA的MR醒来接收信标帧的具体的过程。如图3所示,该方法包括如下步骤:
S101:AP确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA。
本实施例中,AP关联的站点可以包括配备了唤醒接收机的STA,还可以包括未配备唤醒接收机的STA。对于配备了唤醒接收机的STA,AP可以按照STA的功耗要求或者其他相关因素将这些配备了唤醒接收机的STA划分为第一STA和第二STA。可选的,AP可以将功耗要求小于预设的功耗阈值的STA确定为第一STA,将功耗要求大于或者等于预设的功耗阈值的STA确定为第二STA。当然,也存在当前AP关联的所有配备了唤醒接收机的STA的功耗要求均小于预设的功耗阈值的情况,即当前AP关联的STA均为第一STA。可选的,该第一STA可以为配备纽扣电池的站点,该类站点的功耗要求比较严格,即该类站点为极低功耗站点,上述第二STA可以为功耗要求较为宽松的低功耗站点。可选的,该第一STA可以是一个,还可以是多个。
S102:AP向所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
具体的,AP确定了与自己所关联的配备了唤醒接收机的所有STA之后,可以向这些配备了唤醒接收机的所有STA的WUR周期性的发送唤醒信标帧,按照802.11协议,AP也会向这些配备了唤醒接收机的STA的MR以及未配备唤醒接收机的其他STA的MR发送信标帧,该信标帧为802.11协议中的信标帧(简称802.11信标帧)。
本实施例中,唤醒信标帧包括用于指示AP是否存在待发送给上述第一STA的下行业务数据的指示字段,该指示字段仅包含了第一STA的下行业务数据指示,不包含第二STA以及其他未配备唤醒接收机的STA的下行业务数据指示,第一STA的WUR醒来在侦听到唤醒信标帧之后,可以通过该唤醒信标帧的指示字段中与自己对应的比特获知AP上是否有待发送给第一STA的下行业务数据。上述802.11信标帧包括TIM字段,该TIM字段中既包括了第二STA的下行业务数据指示,也包括了第一STA的下行业务数据指示,还包括了未配备唤醒接收机的STA的下行业务数据指示(即802.11信标帧包含了与AP关联的所有STA的下行业务数据指示)。若按照上述所举的例子,如果AP关联的所有STA均配备WUR(即共有2007个),该802.11信标帧中的TIM字段就会包含2007比特,第二STA的MR在侦听到该802.11信标帧后会通过该TIM字段中第二STA对应的比特获知AP是否有下行业务数据发送给自己。
S103:第一STA控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒,并接收所述AP发送的唤醒信标帧。
S104:第一STA控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧。
该第二侦听间隔为802.11协议规定的侦听间隔,本实施例中,上述第一侦听间隔可以与第二侦听间隔相同,也可以不同,本实施例对此并不做限定。
S105:第一STA根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
具体的,随着上述AP周期性向所有配备了唤醒接收机的STA的WUR发送唤醒信标帧,第一STA控制第一STA的WUR在每个预设的第一侦听间隔内醒来侦听AP发送的唤醒信标帧,第一STA的WUR在醒来的这一段时间内接收到唤醒信标帧之后,根据该唤醒信标帧中的指示字段就可以获知AP当前是否存在待发送给第一STA的下行业务数据。同时第一STA会控制第一STA的MR无需在上述第二侦听间隔内醒来接收AP发送的802.11信标帧,即第一STA的主收发机(或者主无线电)无需频繁苏醒侦听AP广播的802.11信标帧以获取下行业务数据指示,该MR只需要在第一STA的WUR根据侦听到的唤醒信标帧获知AP有下行业务数据发送给第一STA时被该第一STA的WUR唤醒即可,其大大减少了MR的苏醒频率,降低了第一STA的功耗。
另外,结合上述实施例的描述,如果AP关联的所有STA均配备唤醒接收机WUR(即共有2007个),可选的,AP按照站点各自的功耗要求或者其他因素将其划分为第一STA和第二STA,AP分别向第一STA的唤醒接收机和第二STA的唤醒接收机发送唤醒信标帧。若唤醒帧信标帧中的指示字段包含所有配备唤醒接收机的站点的下行业务指示(最多有2007个站点配备唤醒接收机),然而配备了WUR的站点由于低功耗的要求、窄带传输的限制决定了AP发送的唤醒信标帧传输速率比较慢,比如250Kbps,其传输时间就需占用8ms左右,因此当AP抢占到传输信道后,在一次传输机会内无法传输完该唤醒信标帧,即该唤醒信标帧的传输时间比较长,极大的浪费了空口开销;本发明提出的唤醒信标帧中仅包含第一STA的下行业务数据指示(即上述的指示字段),在WUR的传输速率较慢情况下,该指示字段在AP抢占的一次传输机会内也能传输完,即该唤醒信标帧的传输时间比较短,传输效率高。
本申请提供的下行业务数据的指示方法,通过AP从关联的STA中确定配备了唤醒接收机的STA,然后向这些配备了唤醒接收机的STA的WUR周期性发送唤醒信标帧,该唤醒信标帧包括用于指示第一STA的下行业务数据的指示字段,该指示字段仅包括上述与AP关联且配备了唤醒接收机的STA中的第一STA的下行业务数据指示;然后,第一STA控制第一STA的WUR在预设的第一侦听间隔内苏醒并将接收该唤醒信标帧,并控制第一STA的MR无需在第二侦听间隔(即802.11协议规定的侦听间隔)内醒来接收AP发送的802.11信标帧,该第一STA仅通过该唤醒信标帧中的指示字段就可以确定出AP是否有待发送给第一STA的下行业务数据。即本申请对于向第一STA指示AP是否对第一STA有下行业务数据发送来说,第一STA仅通过AP发送的唤醒信标帧就可以获知第一STA的下行业务数据指示,第一STA的MR无需在第二侦听间隔内醒来接收AP广播的信标帧,只需要在第一STA的WUR根据侦听到的唤醒信标帧获知AP有下行业务数据发送给第一STA时被该第一STA的WUR唤醒即可,其大大减少了MR的苏醒频率,降低了第一STA的功耗;并且,本申请中的唤醒信标帧的指示字段中仅包括了第一STA的下行业务数据指示,其在WUR的传输速率较慢情况下,该指示字段在AP抢占的一次传输机会内也能传输完,即该唤醒信标帧的传输时间比较短,传输效率高。
图4为本申请提供的下行业务数据的指示方法另一实施例的信令流程图。本实施例涉及的是AP通过与STA的关联过程为关联的第一STA分配连续的身份标识,实现唤醒信标帧的指示字段仅包含第一STA的下行业务数据指示的具体过程。在上述实施例的基础上,进一步地,在上述S101之前,该方法还可以包括如下步骤:
S201:第一STA向所述AP发送关联请求帧。
S202:AP接收所述第一STA发送的关联请求帧,然后回复确认帧
S203:AP向所述第一STA发送关联响应帧,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
S204:第一STA接收所述AP发送的关联响应帧,然后响应确认帧。
具体的,本申请中,第一STA在关联AP时会向AP发送关联请求帧,第二STA在关联AP时也会向AP发送关联请求帧,AP能够甄别所接收到的关联请求帧来自于第一STA还是第二STA,然后向其发送对应的关联响应,并在该关联响应中携带对应的STA的身份标识,即发送给第一STA的关联响应中携带第一STA的身份标识,发送给第二STA的关联响应中携带第二STA的身份标识。本申请中,AP分配给第一STA的身份标识需连续。该第一STA的身份标识用来标识STA的唤醒接收机,可以是AP额外给第一STA分配的WUR的标识,还可以是复用AP给第一STA的主无线电MR分配的关联标识(Association Identifer,简称AID)。
在AP为各个STA分配身份标识,并且需要确定分配给第一STA的身份标识是连续的,可以包括两种实现方式:
第一种实现方式:AP给所有配备了唤醒接收机的STA分配唤醒接收机的身份标识(Wake Up Receiver ID,简称WID),将该WID作为STA的身份标识,AP可以给AP关联的第二STA随机不重复的分配WID,仅需要确保分配给第一STA的WID连 续即可。
第二种实现方式:在该实现方式中,AP将第一STA的MR的关联标识(AID)直接作为其唤醒收发机的WID,即AP在为第一STA的MR分配AID时,就保证了分配给第一STA的MR的AID连续,AP将第一STA的MR的AID作为第一STA的身份标识,从而使得第一STA的身份标识连续。
可选的,AP可以单独为所有第一STA的唤醒接收机分配额外的极低功耗站点唤醒接收机标识(Extreme Low Power WID,简称EWID),这些EWID连续,且一个EWID与一个第一STA的WID应,从而实现唤醒接收机的标识连续。上述AP周期性广播的唤醒信标帧的指示字段是按EWID顺序指示是否对第一STA有下行业务数据指示,AP仅需确保EWID连续即可。
对于AP之所以需要确保分配给第一STA的身份标识连续,其主要目的是为了实现唤醒信标帧的指示字段仅包含第一STA的下行业务数据指示,具体原因可以参见下述实施例的介绍。在介绍该原因之前,先对唤醒信标帧中的指示字段的内容进行介绍:本实施例中,该指示字段具体可以包括:比特位图控制字段和部分虚拟比特位图字段。该部分虚拟比特位图字段中每个比特用于指示该比特对应的第一STA是否具有下行业务数据,且该部分虚拟比特位图字段中的比特之间的顺序与对应的第一STA的身份标识的顺序相同;上述比特位图控制字段用于指示上述部分虚拟比特位图字段中比特的偏移量,该偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
下面以一个简单的例子来说明具体介绍AP确保分配给第一STA的身份标识连续的原因:上述唤醒信标帧中的部分虚拟比特位图字段中每一个比特位对应一个第一STA站点,但是,如果AP分配给第一STA的身份标识不连续的话,就无法确保唤醒信标帧在仅包含第一STA的下行业务指示比特时第一STA能够识别其对应的下行业务数据的指示比特所在的位置。
例如,假设AP最大可管理2007个站点,其中身份标识为WID1的站点为第一STA,WID2-WID2006的站点为第二STA,WID2007的站点为第一STA,即AP分配给第一STA的身份标识是不连续的,按照802.11信标帧中TIM字段的结构,当部分虚拟比特位图字段中包括了所有的站点的下行业务数据指示,则每个站点知道自己所对应的比特位置。但是针对本申请的唤醒信标帧,其部分虚拟比特位图字段仅包括第一STA的下行业务数据指示比特,即该唤醒信标帧中仅包含WID1和WID2007对应的两个指示比特,对于WID1的第一STA来说,其能够获知第一个比特是自己的下行业务数据指示比特,但是对于WID2007的第一STA来说,其只知道自己位于802.11信标帧的部分虚拟比特位图字段中第2007个比特位置,但是由于部分虚拟比特位图字段缺少了中间关于第二STA的下行业务数据指示比特位,该WID2007的第一STA无法获知该唤醒信标帧中的部分虚拟比特位图上的第二个比特是自己对应的指示比特。
因此,本申请AP在为第一STA分配身份标识时,需要确保第一STA的身份标识是连续的。继续以第一STA的身份标识为WID为例,假设AP关联的第一STA的个数为100个,第二STA的个数为1907个,AP分配WID1-WID7为第二STA的身份标识,分配WID8-WID108为100个第一STA的身份标识,WID108-WID2007为剩余的 第二STA的身份标识。按照上述针对唤醒信标帧的结构的描述,该唤醒信标帧的部分虚拟比特位图字段中每个比特用于指示该比特对应的第一STA是否具有下行业务数据,即唤醒信标帧的部分虚拟比特位图字段中仅包含所有第一STA的下行业务数据的指示比特。该唤醒信标帧还引入了一比特位图控制字段,该比特位图控制字段用于指示上述部分虚拟比特位图字段中比特的偏移量,该偏移量以字节为单位,其用于指示上述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识之间的差值。例如,假设偏移量为0,则部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识(WID8)之间的差值就为0,则部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识就是WID8,如果偏移量为1,则表明部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识(WID8)之间的差值就为8,则部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识就是WID16。基于部分虚拟比特位图字段的第一个比特对应的第一STA的身份标识,其他第一STA就可以准确获知自己对应在部分虚拟比特位图字段中的比特位置,进而准确的获知AP是否有下行业务数据发送给自己。
基于上述例子就可以得知,AP分配给自身所关联的第一STA连续的身份标识,使得第一STA在接收到本申请的唤醒信标帧时,能够识别自身所对应的下行业务数据的指示比特的位置。例如,如果唤醒信标帧的部分虚拟比特位图字段为“0110010010000000”,并且部分虚拟比特位图的偏移量为0,则表明从WID8开始,则表示WID9、WID10、WID13和WID16的站点具有下行业务数据。
可选的,由于第一STA的MR在睡眠过程中,主收发机所在的基本服务集(Basic Service Set,简称BSS)会发生变化,因此,上述唤醒信标帧还可以包括第一STA的MR处于睡眠状态时第一站点STA的BSS参数;另外由于主收发机处于睡眠、唤醒接收机打开的第一STA由于使用功耗低的时钟振荡器等硬件导致时钟在睡眠的时间内偏移,因此上述唤醒信标帧还可以包括时钟同步信息;可选的,主收发机处于睡眠状态的第一STA同时需要AP发送一个周期的唤醒信标帧告知其仍处在AP的管理范围之内,因此,该唤醒信标帧还可以包括第一指示信息,该第一指示信息用于向第一STA指示第一STA当前处于AP的关联范围内,该类参数不仅是对第一STA有用,而且第二STA也有用。
本申请提供的下行业务数据的指示方法,AP通过关联响应为AP所关联的第一STA分配身份标识,且AP分配给所有第一STA的身份标识连续,从而使得第一STA在侦听到包含比特位图控制字段和部分虚拟比特位图字段的唤醒信标帧时,能够根据该比特位图控制字段获知部分虚拟比特位图字段中比特的偏移量,进而根据该偏移量确定该第一STA对应在部分虚拟比特位图字段中的指示比特的位置,以及确定该部分虚拟比特位图字段的第一个比特对应的第一STA的身份标识,提高了第一STA识别自身所对应的指示比特的效率;另外,对于向第一STA指示AP是否对第一STA有下行业务数据发送来说,第一STA的MR无需在第二侦听间隔内醒来接收AP广播的信标帧,只需要在第一STA的WUR根据侦听到的唤醒信标帧获知AP有下行业务数据发送给第一STA时被该第一STA的WUR唤醒即可,其大大减少了MR的苏醒频率, 降低了第一STA的功耗。
本申请另一实施例提供了一种下行业务数据的指示方法。该实施例涉及的第一STA在关联阶段通过关联请求帧向AP发送侦听间隔信息,该侦听间隔信息中包含上述第一侦听间隔的起始点和该第一侦听间隔的时长,从而使得AP能够根据该侦听间隔信息决定发送给第一STA的下行业务数据的生命期,从而更好的管理自己的数据缓冲空间(当然,如果侦听间隔信息中第一侦听间隔不符合AP的要求,AP可以拒绝该关联请求)。
具体的,本实施例中的第一侦听间隔与目前802.11协议中规定的侦听间隔(即上述第二侦听间隔)不同,该第一侦听间隔的起始点为第一STA的WUR上一次苏醒时最后一次接收到唤醒信标帧的传输时间,该第一侦听间隔的终点为该第一侦听间隔的起始点加上第一侦听间隔的时长后所对应的时刻位置。本申请中,第一侦听间隔是用来指示AP该第一STA的唤醒接收机醒来接收唤醒信标帧的频率,即指示该第一STA的唤醒接收机在每个第一侦听间隔内醒来一次接收唤醒信标帧,而该唤醒接收机需醒来足够早、以至于接收到的第一个唤醒信标帧的时间位于以“上次唤醒接收机醒来期间接收到的最后的一个唤醒信标帧传输时间”为起始点的第一侦听间隔内。具体的第一侦听间隔的示意图可以参见图5所示。图5中,第一侦听间隔A的起始点为第一STA的WUR上一次醒来接收到的最后一个唤醒信标帧(图5中唤醒信标帧a)的传输时间,第一侦听间隔A的终点为第一侦听间隔A的起始点加上该第一侦听间隔的时长所在的时刻位置;同样的,第一侦听间隔B的起始点为第一STA的WUR上一次醒来接收到的最后一个唤醒信标帧(图5中唤醒信标帧b)的传输时间。
可选的,由于第一STA为功耗要求比较严格的站点,即极低功耗站点,因此,一般的,AP发送给第一STA的下行业务数据占整个数据业务传输的比率非常小,故,本申请基于原有的802.11协议中的侦听间隔(即上述第二侦听间隔)进行了扩展,扩展之后的第一侦听间隔的时长可以大于802.11协议中第二侦听间隔的时长,从而使得第一STA的唤醒接收机不用频繁的醒来,进一步降低了第一STA的功耗。
具体的,目前的802.11协议中,802.11侦听间隔(即上述第二侦听间隔)的长度为2个字节,该802.11侦听间隔以信标帧的发送间隔为基本单位,2个字节共16比特,即802.11侦听间隔最长可以为2^16-1=65535个信标帧发送间隔。若假设信标帧的发送间隔为100ms(802.11侦听间隔的基本单位为一个信标帧的发送间隔),则802.11侦听间隔最长为6553.6秒。
本申请中,将第一侦听间隔的字节(可以为2个字节)划分为M个归一化比特和N个非归一化比特,可选的,M+N=16。该M个归一化比特的值(即二进制转换为十进制后的值)用于指示第一侦听间隔的基本单位,可选的,该第一侦听间隔的基本单位等于归一化因子的值,表1中示出的是一种示例,归一化因子表征若干个唤醒信标帧的发送间隔构成了一个第一侦听间隔的基本单位,当然,归一化因子还可以表征若干个其他帧的发送间隔构成一个第一侦听间隔的基本单位,本申请对此并不做限定,只要该归一化因子能够使得第一侦听间隔的基本单位大于第二侦听间隔的基本单位即可。
以表1为例,表1中的归一化比特的个数为2,即M=2,N=14,不同的归一化比特的 值表征不同的归一化因子。当然,表1中归一化比特的值对应的归一化因子只是一种举例。基于下述表1,假设归一化比特为11,则归一化比特的值为3,其对应的归一化因子为10000个唤醒信标帧的发送间隔,即上述第一侦听间隔的基本单位就等于10000个唤醒信标帧的发送间隔。假设唤醒信标帧的发送间隔为100ms,则第一侦听间隔的基本单位=10000*100ms=1000s。
表1
归一化比特 归一化比特的值 归一化因子
00 0 1个唤醒信标帧的发送间隔
01 1 10个唤醒信标帧的发送间隔
10 2 1000个唤醒信标帧的发送间隔
11 3 10000个唤醒信标帧的发送间隔
对于上述N个非归一化比特,该N个非归一化的值用于指示所述第一侦听间隔的基本单位的个数。结合上述归一化因子和非归一化间隔,本申请的第一侦听间隔的时长就等于第一侦听间隔的基本单位的个数与第一侦听间隔的基本单位的乘积。继续以上述表1为例,非归一化比特为14个,假设这些非归一化比特组成的序列为“11111111111111”,则这些非归一化比特的值等于2^14-1,则本申请提供的第一侦听间隔的时长就等于(2^14-1)*1000s的乘积。
本申请提供的下行业务数据的指示方法,第一STA在关联阶段通过关联请求帧将侦听间隔信息发送给AP,该侦听间隔信息中第一侦听间隔的起始点为第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间,从而使得AP能够根据该侦听间隔信息决定发送给第一STA的下行业务数据的生命期,从而更好的管理自己的数据缓冲空间;另外本申请对原有的802.11侦听间隔(即上述第二侦听间隔)的时长进行了扩展,即本申请通过划分的归一化比特来增大第一侦听间隔的基本单位,从而增大第一侦听间隔的时长,即本申请所提供的第一侦听间隔的时长大于802.11侦听间隔的时长,从而使得第一STA的唤醒接收机无需频繁的醒来,更加降低了第一STA的功耗。
图6为本申请提供的信息指示方法实施例的流程示意图。本实施例涉及的是第一通信设备根据第二通信设备的主收发机醒来发送的醒来汇报帧确定该第二通信设备的苏醒是被动唤醒还是主动苏醒的具体过程。本实施例中,第一通信设备可以为AP,也可以是站点STA,第二通信设备可以是STA,还可以是AP。当第一通信设备是AP时,第二通信设备为STA,当第一通信设备为STA时,第二通信设备为AP。下述实施例以第一通信设备为AP,第二通信设备为STA为例来介绍本实施例的具体过程。如图6所示,该方法包括如下步骤:
S301:第一通信设备接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发。
S302:第一通信设备根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
具体的,如前述实施例所描述的,STA的苏醒分为主动苏醒和被动唤醒,无论是 主动苏醒还是被动唤醒,STA在苏醒后均可以向站点发送醒来汇报帧,该醒来汇报帧可以为Ps-poll帧、ACK帧等。但是,对于AP来说,目前,AP在接收到STA发送的醒来汇报帧后,其基于该醒来汇报帧无法获知当前STA的苏醒是被动唤醒还是主动苏醒。因此。针对此问题,本申请中,STA向AP发送的醒来汇报帧中携带一指示信息,该指示信息用于向AP指示当前STA的苏醒状态是由唤醒帧触发的。可选的,该唤醒帧可以是AP发送给该STA的,还可以是其他伪装成AP的站点发送给STA的。无论是哪一种,AP均可以根据该醒来汇报帧获知STA的苏醒状态是主动苏醒还是被动唤醒,从而能够更加合理有效的控制与STA之间的数据通信。
针对前文已提到的被动的唤醒过程(该被动唤醒过程可以参见图7所示),本实施例还可以考虑站点的唤醒接收机被其他伪装成AP的站点(攻击者)发送唤醒帧,从而使得该唤醒接收机频繁通知该站点触发其主收发机醒来耗费其能量的情况。例如,可选的,如果AP在很长一段时间内没有向任何STA发送过唤醒帧,如果在这一段时间内有STA向AP发送了醒来汇报帧,且该醒来汇报帧中携带了上述指示信息,则AP就会获知该STA的醒来汇报帧是针对某一设备(例如攻击者)发送的唤醒帧的响应帧,因此AP就会确定该STA当前有可能受到伪站点的攻击。因此,AP可以执行特有方式避免站点攻击,比如给站点更换唤醒接收机的标识,或者更换唤醒帧的加密方法等。
为了和目前协议中站点发送的Ps-poll帧或者ACK帧区分,本申请中的醒来汇报帧携带指示信息,这里以Ps-poll帧为例,醒来汇报帧中的指示信息可以具体以下几种实施方式:
第一种:本申请提供的携带在Ps-poll帧的指示信息,可以通过MAC头中帧控制字段的类型和/或子类型子字段来实现。
第二种:上述指示信息还可以通过MAC头中帧控制字段中未定义的子字段携带指示信息,用于指示该醒来汇报帧是针对唤醒帧的响应帧,比如未定义的子字段可以是Ps-poll帧中MAC头帧控制字段中的“功率管理”比特,该比特的值为1时标识该醒来汇报帧是针对唤醒帧的响应帧。Ps-poll帧的结构可以参见图7a所示。
第三种、上述指示信息还可以通过使用字段的保留值(或称为特殊值)来实现,比如Ps-poll帧中的关联标识字段设置成特殊值,通常该关联标识字段(共16比特,从比特位0到比特位15)中的比特位14和比特位15设置都为1,比特0到比特13转换成十进制数值的范围需在1~2007之内,比如0或者2008~16383是保留值。因此关联标识值设置在正常值范围外的值就可以标识该醒来汇报帧是针对唤醒帧的响应帧,比如,比特位15设置成0,其他比特任意组合(或者携带其他信息,比如携带下述唤醒帧发送者的特征信息)。
本申请提供的信息指示方法,第二通信设备在苏醒后向第一通信设备发送携带了指示信息的醒来汇报帧,第一通信设备可以根据该醒来汇报帧确定该第二通信设备的唤醒状态由唤醒帧触发,从而使得第一通信设备能够精确的获知第二通信设备的苏醒状态的属性,从而能够更加合理有效的控制与第二通信设备之间的数据通信。另一方面,醒来汇报帧的指示信息,还可以隐式的使第一通信设备能够根据第二通信设备的苏醒状态确定第二通信设备是否被攻击,从而使得第一通信时合并能够及时响应保护措施,避免因第二通信设备被再次攻击而造成MR误苏醒,节省了第二通信设备的能 量。
进一步地,在上述实施例的基础上,上述醒来汇报帧还包括唤醒帧的特征信息,该唤醒帧的特征信息用于向AP指示该唤醒帧是由哪一个设备发送的。因此,在S302之后,上述方法还可以包括:
第一通信设备根据该唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
具体的,该实施例中,第二通信设备的唤醒接收机接收到的唤醒帧可能是AP发送的,也有可能是伪站点发送的,因此,该醒来汇报帧中携带的唤醒帧的特征信息,用于向AP指示上述醒来汇报帧是针对哪一个发送设备发送的唤醒帧或者说是哪一个唤醒帧而进行响应的。AP在接收到站点发送的醒来汇报帧之后,可以通过该唤醒帧的特征信息获知当前的醒来汇报帧是否针对的是自己发送给站点的唤醒帧进行响应的。如果AP判断该醒来汇报帧携带的唤醒帧的特征信息与AP的特征信息不匹配,即确定该醒来汇报帧所针对的唤醒帧不是AP发送的,则AP确定该站点被伪站点攻击,AP可以执行特有方式避免站点再次被攻击,比如给站点更换唤醒接收机的标识,或者更换唤醒帧的加密方法等。可选的,该特征信息例如通过上述唤醒帧发送者的MAC地址的部分比特实现,还可以通过该醒来汇报帧针对的那个唤醒帧的帧校验序列(或循环冗余校验比特)的部分比特来实现。以醒来汇报帧为Ps-poll帧为例,该唤醒帧发送者的MAC地址的部分比特或者醒来汇报帧针对的唤醒帧的校验序列的部分比特可以携带于Ps-poll帧的关联标识字段中。
本实施例提供的信息指示方法,通过在发送给第一通信设备的醒来汇报帧中携带指示信息和唤醒帧的特征信息,使得第一通信设备可以根据该醒来汇报帧获知当前发送醒来汇报帧的第二通信设备是否受到伪站点的攻击,并在确定发送醒来汇报帧的站点受到伪站点攻击后,及时响应保护措施,避免因第二通信设备被再次攻击而造成MR误苏醒,从而节省了第二通信设备的能量。
图8为本申请提供的站点实施例的结构示意图。本实施例中,该站点为与AP关联的站点中的第一STA。该第一STA可以通过软件、硬件或者软硬件结合的方式实现。如图8所示,该第一STA包括:控制模块10、第一接收模块11和确定模块12。
上述控制模块10,用于控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒;
第一接收模块11,用于在所述第一STA的唤醒接收机苏醒后,接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;
上述控制模块10,还用于控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧;
上述确定模块12,用于根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
可选的,上述第一接收模块11可以为第一STA的唤醒接收机,还可以是集成在第一STA的唤醒接收机中的模块。上述控制模块10和确定模块12可以为第一STA 中的处理器等具有控制功能和处理功能的元件。
在上述图8所示实施例的基础上,进一步地,图9为本申请提供的站点的另一实施例的结构示意图。如图9所示,该第一STA还可以包括:发送模块13和第二接收模块14。
该发送模块13,用于向所述AP发送关联请求帧;
第二接收模块14,用于接收所述AP发送的关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
可选的,该发送模块13和第二接收模块14可以为第一STA中的MR,即发送模块13可以对应第一STA的MR的主发送机,第二接收模块14可以对应第一STA的MR的主接收机。
可选的,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
可选的,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
可选的,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
可选的,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示所述第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
本申请提供的站点,可以执行上述下行业务数据的指示方法的实施例,其实现原理和技术效果类似,在此不再赘述。
图10为本申请提供的AP实施例的结构示意图。该AP可以通过软件、硬件或者软硬件结合的方式实现。如图10所示,该AP包括:确定模块21和发送模块22。
具体的,确定模块21,用于确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA;
发送模块22,用于向与所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
可选的,该确定模块21可以对应于AP中具有处理功能或者控制功能的处理器、控制器等元件,该发送模块22可以对应于为AP的MR的主发送机。
在图10所示实施例的基础上,进一步地,该AP还可以包括接收模块23。该接收模块23,用于接收所述第一STA发送的关联请求帧;上述发送模块22,还用于向所 述第一STA发送关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
可选的,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
可选的,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
可选的,所述接收模块23,还用于接收所述第一STA发送的侦听间隔信息,所述侦听间隔信息包括第一侦听间隔的起始点和所述第一侦听间隔的时长,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
可选的,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
本申请提供的AP,可以执行上述下行业务数据的指示方法的实施例,其实现原理和技术效果类似,在此不再赘述。
图11为本申请提供的站点另一实施例的结构示意图。如图11所示,该站点为与无线接入点AP关联的站点中的第一STA,该站点可以包括接收器30、存储器31、处理器32和至少一个通信总线33。通信总线33用于实现元件之间的通信连接。存储器31可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器31中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。可选的,该发送端设备还可以包括发送器34。本实施例中,接收器30可以为第一STA中的唤醒接收机,发送器34可以是第一STA的MR中的主发送机。
具体的,本实施例中,处理器32,用于控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒;
接收器30,用于在所述第一STA苏醒后接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;
所述处理器32,还用于控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧,以及根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
可选的,上述发送器34,用于向所述AP发送关联请求帧;
所述接收器30,还用于接收所述AP发送的关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。 可选的,该可选的方式下,该接收器30还可以为第一STA的MR的主接收机。
可选的,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
可选的,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
可选的,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
可选的,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示所述第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
本申请提供的站点,可以执行上述下行业务数据的指示方法的实施例,其实现原理和技术效果类似,在此不再赘述。
图12为本申请提供的AP另一实施例的结构示意图。如图12所示,该AP可以包括发送器40、存储器41、处理器42和至少一个通信总线43。通信总线43用于实现元件之间的通信连接。存储器41可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器41中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。可选的,该发送端设备还可以包括接收器44。本实施例中,发送器40可以为AP的MR的主发送机,接收器44可以是AP的MR中的主接收机。
具体的,本实施例中,处理器42,用于确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA;
发送器40,用于向与所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
可选的,所述接收器44,用于接收所述第一STA发送的关联请求帧;
所述发送器40,还用于向所述第一STA发送关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
可选的,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
可选的,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
可选的,所述接收器44,还用于接收所述第一STA发送的侦听间隔信息,所述侦听间隔信息包括第一侦听间隔的起始点和所述第一侦听间隔的时长,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
可选的,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
本申请提供的AP,可以执行上述下行业务数据的指示方法的实施例,其实现原理和技术效果类似,在此不再赘述。
图13为本申请提供的通信设备实施例的结构示意图。该通信设备可以为上述方法实施例中的第一通信设备,如图13所示,该第一通信设备包括:接收模块51和确定模块52。
接收模块51,用于接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发;
确定模块52,用于根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
可选的,该接收模块51可以为第一通信设备的主收发机,该确定模块52可以为第一通信设备中具有处理功能或者控制功能的处理器、控制器等元件。
进一步地,所述醒来汇报帧还包括:所述唤醒帧的特征信息,则上述确定模块52,还用于根据所述唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
本申请提供的通信设备,可以执行上述图6所示的方法实施例,其实现原理和技术效果类似,在此不再赘述。
图14为本申请提供的通信设备另一实施例的结构示意图。该通信设备为上述方法实施例中的第一通信设备。如图14所示,该第一通信设备可以包括接收器60、存储器61、处理器62和至少一个通信总线63。通信总线63用于实现元件之间的通信连接。存储器61可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器61中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。可选的,该发送端设备还可以包括发送器64。本实施例中,接收器60可以是AP的MR中的主接收机,发送器64可以为AP的MR的主发送机,
具体的,本实施例中,接收器60,用于接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发;
处理器62,用于根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
可选的,所述醒来汇报帧还包括:所述唤醒帧的特征信息,
所述处理器62,还用于根据所述唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
本申请提供的通信设备,可以执行上述信息指示方法的实施例,其实现原理和技术效果类似,在此不再赘述。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现,也可以通过计算机程序产品实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,所描述系统、设备和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。

Claims (28)

  1. 一种下行业务数据的指示方法,其特征在于,包括:
    与无线接入点AP关联的第一站点STA控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒,并接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;
    所述第一STA控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧;
    所述第一STA根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一STA向所述AP发送关联请求帧;
    所述第一STA接收所述AP发送的关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
  3. 根据权利要求2所述的方法,其特征在于,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
    所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
    所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
  4. 根据权利要求2所述的方法,其特征在于,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示所述第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
    所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
  7. 一种下行业务数据的指示方法,其特征在于,包括:
    无线接入点AP确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA;
    所述AP向与所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述AP接收所述第一STA发送的关联请求帧;
    所述AP向所述第一STA发送关联响应,所述关联响应中携带所述AP分配给所述第 一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
  9. 根据权利要求8所述的方法,其特征在于,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
    所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
    所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
  10. 根据权利要求8所述的方法,其特征在于,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法还包括:
    所述AP接收所述第一STA发送的侦听间隔信息,所述侦听间隔信息包括第一侦听间隔的起始点和所述第一侦听间隔的时长,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
    所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
  13. 一种信息指示方法,其特征在于,包括:
    第一通信设备接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发;
    所述第一通信设备根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
  14. 根据权利要求13所述的方法,其特征在于,所述醒来汇报帧还包括:所述唤醒帧的特征信息,所述方法还包括:
    所述第一通信设备根据所述唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
  15. 一种站点,其特征在于,所述站点为与无线接入点AP关联的站点中的第一STA,包括:
    处理器,用于控制所述第一STA的唤醒接收机在预设的第一侦听间隔内苏醒;
    接收器,用于在所述第一STA苏醒后接收所述AP发送的唤醒信标帧;所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段;
    所述处理器,还用于控制所述第一STA的主无线电MR无需在第二侦听间隔内醒来接收所述AP发送的信标帧,以及根据所述指示字段,确定所述AP是否存在待发送给所述第一STA的下行业务数据。
  16. 根据权利要求15所述的站点,其特征在于,所述站点还包括:
    发送器,用于向所述AP发送关联请求帧;
    所述接收器,还用于接收所述AP发送的关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
  17. 根据权利要求16所述的站点,其特征在于,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
    所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
    所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
  18. 根据权利要求16所述的站点,其特征在于,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
  19. 根据权利要求15-18任一项所述的站点,其特征在于,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
  20. 根据权利要求15-19任一项所述的站点,其特征在于,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示所述第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
    所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
  21. 一种AP,其特征在于,包括:
    处理器,用于确定与所述AP关联的配备唤醒接收机的站点STA,所述STA包括第一STA;
    发送器,用于向与所述STA的唤醒接收机周期发送唤醒信标帧,所述唤醒信标帧包括用于指示AP是否存在待发送给所述第一STA的下行业务数据的指示字段。
  22. 根据权利要求21所述的AP,其特征在于,所述AP还包括:
    接收器,用于接收所述第一STA发送的关联请求帧;
    所述发送器,还用于向所述第一STA发送关联响应,所述关联响应中携带所述AP分配给所述第一STA的身份标识;其中,所述AP分配给所述第一STA的身份标识连续。
  23. 根据权利要求22所述的AP,其特征在于,所述指示字段,具体包括:比特位图控制字段和部分虚拟比特位图字段;
    所述部分虚拟比特位图字段中每个比特用于指示所述比特对应的第一STA是否具有下行业务数据;
    所述比特位图控制字段用于指示所述部分虚拟比特位图字段中比特的偏移量,所述偏移量用于指示所述部分虚拟比特位图字段当前的第一个比特对应的第一STA的身份标识与首个第一STA的身份标识的差值。
  24. 根据权利要求22所述的AP,其特征在于,所述第一STA的身份标识包括:所述第一STA的唤醒接收机的标识、所述第一STA的主无线电MR的关联标识的任一种。
  25. 根据权利要求21-24任一项所述的AP,其特征在于,所述接收器,还用于接收所述第一STA发送的侦听间隔信息,所述侦听间隔信息包括第一侦听间隔的起始点和所述第 一侦听间隔的时长,所述第一侦听间隔的起始点为所述第一STA的唤醒接收机上一次苏醒时最后一次接收到唤醒信标帧的传输时间。
  26. 根据权利要求21-25任一项所述的AP,其特征在于,所述第一侦听间隔的字节中包括M个归一化比特和N个非归一化比特,所述M个归一化比特的值用于指示第一侦听间隔的基本单位,所述N个非归一化比特的值用于指示所述第一侦听间隔的基本单位的个数;
    所述第一侦听间隔的时长等于所述第一侦听间隔的基本单位的个数与所述第一侦听间隔的基本单位的乘积。
  27. 一种通信设备,其特征在于,所述通信设备为第一通信设备,包括:
    接收器,用于接收第二通信设备的主收发机唤醒后发送的醒来汇报帧,所述醒来汇报帧携带指示信息,所述指示信息用于向所述AP指示所述第二通信设备的主收发机的唤醒状态由唤醒帧触发;
    处理器,用于根据所述指示信息确定所述第二通信设备由唤醒帧触发唤醒。
  28. 根据权利要求27所述的通信设备,其特征在于,所述醒来汇报帧还包括:所述唤醒帧的特征信息,
    所述处理器,还用于根据所述唤醒帧的特征信息,确定发送所述唤醒帧是否为所述第一通信设备的发送的唤醒帧。
PCT/CN2018/077382 2017-03-03 2018-02-27 下行业务数据的指示方法和设备 WO2018157786A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21216060.0A EP4037386A1 (en) 2017-03-03 2018-02-27 Method for indicating downlink service data and device
EP18761138.9A EP3582556B1 (en) 2017-03-03 2018-02-27 Method and equipment for indicating downlink service data
US16/559,064 US11343766B2 (en) 2017-03-03 2019-09-03 Method for indicating downlink service data and device
US17/743,335 US20220272632A1 (en) 2017-03-03 2022-05-12 Method For Indicating Downlink Service Data and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710124880.7 2017-03-03
CN201710124880.7A CN108541047B (zh) 2017-03-03 2017-03-03 下行业务数据的指示方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/559,064 Continuation US11343766B2 (en) 2017-03-03 2019-09-03 Method for indicating downlink service data and device

Publications (1)

Publication Number Publication Date
WO2018157786A1 true WO2018157786A1 (zh) 2018-09-07

Family

ID=63369783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077382 WO2018157786A1 (zh) 2017-03-03 2018-02-27 下行业务数据的指示方法和设备

Country Status (4)

Country Link
US (2) US11343766B2 (zh)
EP (2) EP4037386A1 (zh)
CN (2) CN113613316B (zh)
WO (1) WO2018157786A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022028610A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置
US11968600B2 (en) 2020-07-27 2024-04-23 Huawei Technologies Co., Ltd. Group addressed traffic transmission method applicable to plurality of links and apparatus

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811047A (zh) * 2017-04-26 2018-11-13 华为技术有限公司 无线接入点、终端设备及无线接入点唤醒终端设备的方法
CN109121190B (zh) * 2017-06-26 2022-07-12 珠海市魅族科技有限公司 无线局域网的通信方法、装置、接入点设备和站点设备
CN109121191B (zh) * 2017-06-26 2022-08-02 珠海市魅族科技有限公司 无线局域网的通信方法、装置、接入点设备和站点设备
US11647463B2 (en) 2017-09-13 2023-05-09 Intel Corporation Methods and arrangements to enable wake-up receiver for modes of operation
US11576123B2 (en) 2017-10-11 2023-02-07 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
US11589309B2 (en) * 2018-01-12 2023-02-21 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
CN110557814B (zh) * 2018-06-04 2021-02-23 电信科学技术研究院有限公司 一种唤醒区域更新方法及装置
EP4021087A4 (en) * 2019-08-23 2023-04-19 Beijing Xiaomi Mobile Software Co., Ltd. DOWNLINK DATA CACHE INDICATING METHOD AND APPARATUS, AND DOWNLINK DATA ACQUISITION METHOD AND APPARATUS
WO2021062784A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 指示信息的发送方法和装置
CN116582911B (zh) * 2019-11-08 2024-03-01 华为技术有限公司 一种多链路设备间的通信方法和装置
CN111315006B (zh) * 2020-02-20 2023-04-07 京东方科技集团股份有限公司 电量均衡处理方法、装置、系统、设备及其存储介质
CN111417182A (zh) * 2020-03-31 2020-07-14 上海庆科信息技术有限公司 数据传输方法、装置、存储介质、处理器及系统
CN115765950B (zh) 2020-04-14 2023-12-29 华为技术有限公司 一种通信方法和通信装置
CN115776646B (zh) 2020-06-04 2023-09-01 华为技术有限公司 适用于多链路的组播业务传输方法及装置
WO2022073241A1 (zh) * 2020-10-10 2022-04-14 北京小米移动软件有限公司 一种多连接设备的站点唤醒方法、装置及介质
CN114828168B (zh) * 2021-01-22 2024-09-24 Oppo广东移动通信有限公司 监听无线链路的方法、装置、无线终端及存储介质
US20240057158A1 (en) * 2021-03-25 2024-02-15 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for communicating through multi links
CN115474261A (zh) * 2021-06-11 2022-12-13 Oppo广东移动通信有限公司 监听无线链路的方法及装置、无线终端、计算机存储介质
CN114143864B (zh) * 2022-02-07 2022-07-15 云丁网络技术(北京)有限公司 通信方法及装置
CN114339969B (zh) * 2021-12-28 2023-07-14 北京升哲科技有限公司 低功耗网络的数据接收方法、装置、设备及存储介质
CN114844607B (zh) * 2022-02-21 2024-03-12 珠海泰芯半导体有限公司 信标帧的发送方法、装置、存储介质及ap
WO2024152234A1 (zh) * 2023-01-18 2024-07-25 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780785A (zh) * 2012-08-13 2012-11-14 广东威创视讯科技股份有限公司 多终端同步显示方法、终端及系统
CN104081875A (zh) * 2011-11-09 2014-10-01 新加坡科技研究局 寻址无线通信网络中的多个通信终端
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)
US20150208436A1 (en) * 2012-07-13 2015-07-23 Lg Electronics Inc. Method and apparatus for accessing channel using null data packet in wireless lan system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1933507A1 (en) * 2006-12-15 2008-06-18 Ubiwave Low-power multi-hop networks
KR101139223B1 (ko) * 2008-12-15 2012-04-24 한국전자통신연구원 웨이크업 신호 통신장치 및 방법
CN104205984B (zh) * 2012-03-23 2018-04-24 Lg 电子株式会社 在无线lan系统中的信道接入的方法和设备
KR101514966B1 (ko) * 2012-06-28 2015-04-24 주식회사 케이티 무선랜 시스템에서 aid 재할당 방법
JP5961323B2 (ja) * 2012-09-18 2016-08-02 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいて聴取間隔アップデート方法及び装置
US9241307B2 (en) * 2012-10-24 2016-01-19 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US9288220B2 (en) * 2013-11-07 2016-03-15 Cyberpoint International Llc Methods and systems for malware detection
US20150195849A1 (en) * 2014-01-06 2015-07-09 Intel IP Corporation Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum
US9955333B2 (en) * 2014-08-20 2018-04-24 Qualcomm, Incorporated Secure wireless wake-up companion
US9525540B1 (en) * 2015-06-18 2016-12-20 Qualcomm Incorporated Embedded wake-up signaling
US10104616B2 (en) * 2015-06-22 2018-10-16 Qualcomm Incorporated Downlink multiplexing and MAC signaling for a system with devices operating with and without low power companion receivers
WO2017052596A1 (en) * 2015-09-25 2017-03-30 Maruti Gupta Low-power wakeup radio for mobile devices
CN112153703A (zh) * 2016-08-15 2020-12-29 华为技术有限公司 通信系统中传输唤醒包的方法和设备
US20180110000A1 (en) * 2016-10-19 2018-04-19 Qualcomm Incorporated Wake-up receiver scheduling
US20180115952A1 (en) * 2016-10-21 2018-04-26 Qualcomm Incorporated Physical layer design for wakeup radio
US11564169B2 (en) * 2017-07-05 2023-01-24 Apple Inc. Wake-up-radio link adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081875A (zh) * 2011-11-09 2014-10-01 新加坡科技研究局 寻址无线通信网络中的多个通信终端
US20150208436A1 (en) * 2012-07-13 2015-07-23 Lg Electronics Inc. Method and apparatus for accessing channel using null data packet in wireless lan system
CN102780785A (zh) * 2012-08-13 2012-11-14 广东威创视讯科技股份有限公司 多终端同步显示方法、终端及系统
CN104756560A (zh) * 2012-10-24 2015-07-01 高通股份有限公司 具有常规ps模式且无ulp的近乎无源接收机(ap不知道该接收机/电路模式)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582556A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968600B2 (en) 2020-07-27 2024-04-23 Huawei Technologies Co., Ltd. Group addressed traffic transmission method applicable to plurality of links and apparatus
WO2022028610A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置
US11864039B2 (en) 2020-08-07 2024-01-02 Huawei Technologies Co., Ltd. Individually addressed traffic indication method applicable to multiple links and related apparatus

Also Published As

Publication number Publication date
CN108541047A (zh) 2018-09-14
EP4037386A1 (en) 2022-08-03
US20220272632A1 (en) 2022-08-25
CN113613316A (zh) 2021-11-05
US11343766B2 (en) 2022-05-24
US20190394726A1 (en) 2019-12-26
EP3582556A1 (en) 2019-12-18
CN113613316B (zh) 2022-11-18
CN108541047B (zh) 2021-07-16
EP3582556A4 (en) 2020-01-08
EP3582556B1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2018157786A1 (zh) 下行业务数据的指示方法和设备
JP5456488B2 (ja) Wlanのパワーマネジメントのための方法と装置
WO2018077186A1 (zh) 一种数据通信方法及装置
CN108738109B (zh) 一种站点唤醒方法及站点
JP5072778B2 (ja) 無線通信基地局、無線通信端末、無線通信システムおよび無線通信制御方法
TW202010336A (zh) 一種信號發送、接收方法、網路設備及終端
US20130229959A1 (en) Method and apparatus for group synchronized channel access with tim segmentation
US8310968B2 (en) Access point, wireless communication station, wireless communication system and wireless communication method
US20060187864A1 (en) Apparatus and methods for delivery traffic indication message (DTIM) periods in a wireless network
WO2018040817A1 (zh) 一种无线局域网中唤醒帧的传输方法及装置
WO2018076988A1 (zh) 唤醒方法和装置
CN108616968B (zh) 传输帧的方法和设备
KR20100095524A (ko) 통신 시스템에서의 파워 관리를 위한 방법 및 장치
CN108012313B (zh) 帧传输方法、设备及系统
CN108633099B (zh) 信道接入的指示方法和设备
WO2018099315A1 (zh) 一种站点关联方法及装置
WO2018090895A1 (zh) 唤醒帧发送方法、节点醒来后发送第一帧的方法、装置及设备
WO2017114031A1 (zh) 一种多用户接入的方法及装置
JP2010081367A (ja) 無線通信システム、無線通信端末、無線通信基地局及び無線通信方法
CN109429299B (zh) 无线局域网的通信方法及通信装置、通信设备
CN109219154B (zh) 无线局域网的通信方法及通信装置、通信设备
WO2018171409A1 (zh) 站点唤醒方法及目标站点
WO2018233646A1 (zh) 唤醒方法、接入点和站点
WO2018157437A1 (zh) 一种唤醒无线设备的方法及设备
US20140119282A1 (en) Message acknowledgement method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761138

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761138

Country of ref document: EP

Effective date: 20190909