WO2018155397A1 - 混雑予測システムおよび歩行者シミュレーション装置 - Google Patents
混雑予測システムおよび歩行者シミュレーション装置 Download PDFInfo
- Publication number
- WO2018155397A1 WO2018155397A1 PCT/JP2018/005844 JP2018005844W WO2018155397A1 WO 2018155397 A1 WO2018155397 A1 WO 2018155397A1 JP 2018005844 W JP2018005844 W JP 2018005844W WO 2018155397 A1 WO2018155397 A1 WO 2018155397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- pedestrian
- movement
- nodes
- space
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims description 15
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 238000004364 calculation method Methods 0.000 claims abstract description 16
- 238000011156 evaluation Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 238000013459 approach Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 241000287107 Passer Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Definitions
- the present invention relates to a system for providing congestion information visualization and prediction information.
- Patent Document 1 the number of people flowing into the space and the branch information are input for the station premises, the flow of the pedestrian is estimated, and the branch information is obtained by comparing the estimated value and the measured value of the number of people flowing out of the space.
- a method of correcting and estimating the flow of pedestrians in a station space including transfer behavior is disclosed.
- the traffic volume measured by the traffic volume detector is obtained for road traffic, the diversion rate and the approach rate for each intersection are estimated, and the sensor is measured using the measured traffic volume, the diversion rate and the entrance rate.
- a method for estimating the traffic volume on a road where no is installed is disclosed.
- Patent Document 1 and Patent Document 2 have the following problems.
- Patent Document 1 there is no provision for the connection information between the inflow point and the outflow point, and the movement of the pedestrian cannot be correctly estimated when the spatial structure is restricted or changed.
- devices that are set for one-way traffic such as ticket gates and escalators within a station, and depending on the station structure, it may not be possible to move between specific entry and exit points.
- the direction in which ticket gates and escalators can pass may be dynamically changed according to time periods, and it is necessary to appropriately perform congestion prediction considering the conditions.
- the space is divided at intersections, and the traffic volume of the road between the intersections is estimated as the total amount using the diversion rate and the approach rate of the intersection, but the vehicle on the road where only movement on the line occurs Unlike pedestrian movement, it is not sufficient to calculate the traffic volume on the road (link between nodes) as a total amount, and it is necessary to estimate detailed movement in pedestrian units. is there. Therefore, it is necessary to estimate a movement route so that an unnatural movement does not occur when a specific moving body (vehicle or pedestrian) is extracted.
- An object of the present invention is to realize a prediction system that suppresses the occurrence of unnatural pedestrian movement.
- a congestion prediction system includes a person counting unit to which a measurement result of a passing number of people at a local point in a space is input, and a plurality of nodes arranged in the spatial information of the space together with attributes.
- An input node arrangement unit an equipment setting unit to which station equipment conditions are input, a movement rule database in which pedestrian movement rules are recorded, a node based on the spatial information, the node attributes, and the movement rules
- a connection information generation unit that generates a connection relationship between the nodes, a distribution ratio calculation unit that calculates a distribution ratio that determines the amount of movement of pedestrians between nodes based on the generated connection relationship and the number of people passing, and traffic flowing into the target space It has a human flow prediction unit that simulates the movement of pedestrians using the number of people and the distribution ratio.
- Configuration of congestion prediction system People counting information Spatial information Node information Connection information Distribution ratio information Move rule information Node placement example Sensor installation example Processing flow of calculation unit Processing flow of connection information generator Connection node search example Processing flow of distribution ratio calculation unit Example of distribution ratio correction Process flow of the human flow prediction unit
- the congestion prediction system is a system that predicts a congestion situation in a space such as a station premises, and includes an input unit 100, a calculation unit 200, a recording unit 300, and an output unit 400.
- the input unit 100, the calculation unit 200, the recording unit 300, and the output unit 400 are communicable with each other, and are configured by one or a plurality of interconnected computers and software.
- the input unit 100 includes a node placement unit 101 that associates a node that is an entry / exit point or a branch point of space with the node and space information, a facility setting unit 102 that inputs setting of facilities in the space, and a local in the space It has a person counting unit 103 that measures the number of people passing by.
- the calculation unit 200 includes a connection information generation unit 201 that generates a connection relationship between nodes, a distribution ratio calculation unit 202 that calculates a distribution ratio determined by the flow between nodes, and the flow of pedestrians by using the number of people moving between entrances and exits.
- the recording unit 300 includes a person count information 301 for recording the number of passing persons, a space information 302 for recording the structure of the target space, node information 303 for recording node attributes, and connection information 304 for recording connection relations between nodes.
- Distribution ratio information 305 for recording a distribution ratio that is a ratio to be distributed to pedestrians for each connection between nodes, and movement rule information for recording pedestrian movement rules used when calculating connection relations between nodes. This database holds 306.
- the output unit 400 is a function for displaying indicators such as the pedestrian's movement trajectory, the number of people passing by, and the congestion density calculated by the human flow prediction unit.
- Person count information 301 is data for recording the number of passing persons measured by the person counting section 102, and an example thereof is shown in FIG.
- the person count information 301 includes, for example, a sensor ID, date, start time, end time, direction ID, and number of persons.
- the sensor ID is the sensor ID of the sensor that measured the record.
- the date is a measured date, and the start time and end time are measurement periods.
- the direction ID is the moving direction of the number of people indicated by the record. For example, in the case of a sensor that can measure the number of people passing in the two directions of the entrance direction and the entry direction, the direction ID in the entrance direction is 0, and the number of people in the entry direction is 1.
- the number of people is the number of people passing.
- Spatial information 302 is data structured in such a way that station structure and facility information can be input to the human flow prediction unit 203, and is created in advance based on station building CAD data and the like.
- An example of the spatial information 302 is shown in FIG.
- spatial information is represented using a lattice space obtained by dividing a space used in a pedestrian simulation using a known cellular automaton into a lattice shape.
- the lattice constituting the space lattice is composed of unit lattices such as a passage lattice, a wall lattice, a stair lattice, a ticket gate lattice, and an entrance / entry position lattice.
- Each grid has, as attributes, attribute information such as, for example, whether or not it is possible to pass, a speed that can be passed, a direction that can be passed, a distance cost required for passing, and whether or not a pedestrian can enter and leave the space.
- attribute information such as, for example, whether or not it is possible to pass, a speed that can be passed, a direction that can be passed, a distance cost required for passing, and whether or not a pedestrian can enter and leave the space.
- each unit cell has the presence / absence of a corresponding node and its node ID as attributes.
- the node information 303 is data for recording node attributes, and an example thereof is shown in FIG.
- the node information 303 includes, for example, a node ID, a group ID, a sensor ID, and a reference direction.
- the node ID is an ID for distinguishing the nodes.
- the group ID is an ID for distinguishing nodes by type. For example, different group IDs are assigned to the nodes set in the entrance and exit gates.
- the sensor ID is a sensor ID of a sensor that measures the number of people installed at a position relative to the position where the node is arranged.
- the reference direction is data in which a node is associated with a reference direction in spatial information and a direction ID of a sensor corresponding to the direction.
- the convenience of information is enhanced by providing the node information with a group attribute determined from the type of the node and an ID for designating the measurement result of the corresponding number counting unit.
- the connection information 304 is information representing a connection relationship between nodes, and an example thereof is shown in FIG.
- the connection information 304 includes, for example, a node ID and a movement cost for each connection destination node.
- the node ID is the ID of the target node, and the same ID as the node information 303 is used.
- the movement cost for each connection destination node ID represents the movement cost between the node connected to the node and the node.
- the movement cost is a numerical value that combines physical distance and difficulty of movement due to congestion. Nodes connected in the positive direction with respect to the reference direction of the node have a positive movement cost and are connected in the negative direction. The moving cost of the selected node is negative.
- the positive / negative of the movement cost is used for convenience in order to clarify the connection direction of the nodes, and is not used for evaluation such as a comparison of the movement costs.
- the absolute value is used.
- the movement cost it is simply described as the movement cost, it is the absolute value of the movement cost.
- the distribution ratio information 305 is information for determining a node to which the pedestrian who arrives at the node will go next for each node, and an example thereof is shown in FIG.
- the distribution ratio information 305 includes, for example, a node ID, an inflow source node ID, an outflow destination node ID, and a distribution ratio.
- the node ID is the ID of the target node, and the same ID as the node information 303 is used.
- the inflow source node ID indicates the ID of the node that passes immediately before arriving at the node.
- the outflow destination node ID indicates the node ID of the next node from the node.
- the distribution ratio represents the ratio of pedestrians that have passed through the inflow source node to the next outflow destination node. In the present embodiment, the distribution ratio is determined as a ratio, but the ratio may be determined so that the total sum of records with matching node IDs and inflow source node IDs is 100%.
- the movement rule information 306 is a rule relating to movement between nodes that is referred to when a connection relation between nodes is generated, and an example thereof is shown in FIG.
- the movement rule information 306 includes, for example, a rule ID and a movement rule.
- the rule ID is an ID for specifying a movement rule, and the movement rule is implemented in the form of a function for determining whether the movement is possible, for example.
- the node placement unit 101 is an interface for placing a node on the spatial information 302 and setting its attributes.
- the spatial information 302 is displayed on the display device, the position where the node is arranged is selected by the input device, and the interface is implemented as an interface having a function of associating the space included in the selected position with the node.
- the node information 303 can be edited.
- the node information 303 is displayed as a table and has an interface for directly inputting each attribute.
- the device setting unit 102 is an interface for performing a change to the space information 302 when the equipment condition in the target space is changed. For example, when there is a change in the direction in which the ticket gate can pass, the direction of the ticket gate in the spatial information 302 is changed through the device setting unit 102.
- the device setting unit 102 may directly communicate with equipment such as a ticket gate, or may be input by a person.
- the number-of-people counting unit 103 is composed of a sensor that can measure the number of people in the local range according to direction, and outputs the measurement result as the number-of-people measurement information 301 and records it in the recording unit 300.
- surveillance cameras 1011 to 1016 installed in a station are used as sensors, and the number of people passing by direction is measured by image processing.
- the points to be measured are preferably stations where the entrance and exit of stations 1021 and 1022, the boarding and exiting positions of trains, stairs 1025 and 1026, ticket gates 1023 and 1024, and the like, and where movement between subspaces occurs. .
- the connection information generation unit 201 receives the spatial information 302 and the node information 303 in which the nodes are arranged by the node arrangement unit 101 as input, and determines whether or not the node can be moved by searching the spatial information 302.
- the node connection relation is output as connection information 304 together with the movement cost calculated from the physical distance between nodes and the congestion status.
- the distribution ratio calculation unit 202 receives the estimated number of passing people output from the person count information 301, the connection information 304, and the human flow prediction unit 203, and considers a node (or a link between nodes) that can be a destination from each node.
- the distribution ratio which is the ratio of the number of people who move to (may be) is calculated.
- the number prediction unit 203 receives the number of people measurement information 301, the space information 302, and the distribution ratio information 305, inputs a pedestrian to the space information based on the number of people measurement information, and based on the distribution ratio information.
- the pedestrian simulation apparatus estimates the movement of the pedestrian in the space when the movement path of the pedestrian is determined.
- the number-of-people prediction unit 203 can calculate and output a congestion index such as the number of people passing through an arbitrary point or range in the space, the number of people staying, and the density.
- a pedestrian simulation device using a known cellular automaton is used for the pedestrian simulation device.
- the pedestrian simulation apparatus arranges nodes at points where the space can be divided, and the pedestrian moves in the space as a waypoint to determine the movement path of the pedestrian in the space. Also, by giving the pedestrian information about the next destination node, and when the pedestrian arrives at the node, the pedestrian's destination is changed based on the distribution ratio associated with the node. It also has a function for obtaining a pedestrian's movement route in space.
- the congestion prediction system uses the measurement value of the number of people flowing into the target space measured by the people counting unit as an input, and determines the node that the pedestrian will move to based on the distribution ratio associated with the node at the inflow location
- the congestion situation in the station premises is predicted by simulating the movement of pedestrians in the number prediction unit.
- the predicted value of the number of people predicted by the number prediction unit is compared with the measured value of the number of people measured by the number measurement unit, and the distribution associated with the node Correct the ratio.
- the congestion situation of the entire station premises is predicted in real time using the number of people who pass locally.
- processing for one cycle will be described.
- step 5001 is expressed as S5001.
- S5001 The number of people measurement information 301 and the space information 302 are read from the recording unit 300.
- the number-of-people measurement information 301 and the space information 302 are sequentially updated by operating the input unit 100.
- S5002 It is determined whether or not the spatial information 302 has been changed from the previous execution cycle. If there is a change in the spatial information, the process proceeds to S5003, and if there is no change, the process proceeds to S5004.
- connection information generation unit 201 recalculates the connection information 304.
- the connection information can be synchronized when there is a change in the spatial information 302 such as the direction in which the ticket gate or the escalator can pass.
- the distribution ratio calculation unit 202 recalculates the distribution ratio.
- the passenger flow prediction unit 203 predicts passenger flow.
- S5006 It is determined whether the prediction target time has passed the end time of the congestion prediction target. If the end time has passed, the process ends. If the end time has not passed, the process returns to S5001 to execute the next cycle.
- the congestion prediction is continued until the end time.
- connection information generation unit 201 will be described with reference to the flowchart of FIG.
- S5101 Processing is performed for each node for all nodes. Let n be the node to be processed.
- a searchable space is searched from node n as a starting point. For example, by using a known Dijkstra method, as shown in FIG. 12, the moving cost calculated from the distance from the starting point of the current unit cell and the surrounding congestion state to the adjacent unit cell that can pass, and the unit By recording the movement cost obtained by adding the movement costs from the lattice to the adjacent unit lattice, a space that can be moved to the node is searched. This travel cost is also used when the pedestrian travel route is determined in the congestion prediction unit.
- S5103 It is sequentially determined whether or not a unit cell associated with another node is found during the search. If it is found, the process proceeds to S5104 without further searching for the adjacent unit cell from the unit cell.
- S5104 It is determined whether or not the movement between the search starting point node and the discovered node matches the movement rule. If it matches the movement rule, the process proceeds to S5105, and if not, the process proceeds to S5106. For example, in the case where there is a movement rule that the movement back to the node of the same group ID does not occur, when the group IDs of the search target node and the discovered node are the same, the process does not proceed to S5105 but proceeds to S5106.
- S5105 For the found node, add the search starting node to the connection information. At this time, when the search direction is opposite to the reference direction of the found node, the search starting point node and the movement cost are added to the connection information as the forward direction. When the search direction and the reference direction of the found node are the same direction, the node of the search start point and the movement cost are added as a negative direction.
- S5106 The search is repeated until there is no unsearched unit cell that can be searched.
- connection information is constructed for all nodes.
- S5201 Processing is performed for each node for all nodes. Let n be the node to be processed.
- S5202 A set of nodes connected to node n is set as C, and processing for each node is performed on the nodes included in C. Let m be the node to be processed.
- S5205 It is determined whether or not the distribution ratio has been initialized. If it has not been initialized, the process proceeds to S5206. If it has been initialized, the process proceeds to S5207.
- the initial value of the distribution ratio is calculated using the movement cost between the node n and the node l.
- the distribution ratio is calculated as a ratio of distribution evaluation values that are temporary variables indicating the ease of selection of each node.
- the distribution evaluation value for example, it is considered that there is a negative correlation between the movement cost to a node as a movement candidate and the ease of selection of the node.
- the allocation evaluation value of pedestrians going to node l is Rm, n, l
- the distribution evaluation value may not be calculated and the distribution ratio may be used directly.
- the distribution evaluation value is corrected by using the predicted value of the number of passing people output by the human flow prediction unit and the measured value of the number of passing people output by the number of people counting unit.
- the distribution ratio is directly used as the distribution evaluation value.
- the distribution evaluation values are corrected using information for a plurality of sections.
- the station structure has a regular structure such as doorway, ticket gate, platform staircase, and boarding position, so it is highly accurate by correcting the allocation evaluation using information on the preceding and following sections (for two sections) around the target node.
- the distribution evaluation value can be corrected. For example, as shown in FIG. 14, a route in which the inflow source node m and the outflow destination node l have the same combination with the node n as the center is extracted. In FIG. 14, routes (m, n, l) with (1, 3, 5) and (1, 4, 5) have the same combination, and there is a difference in the movement cost of each route.
- the distribution evaluation value is corrected by applying, and normalized so that the total value obtained by summing Rm, n, l with l for each Rm, n, l with the same node m and node n is the same as before the correction. . Further, the distribution evaluation value may be calculated or corrected based on the movement cost of the two sections in this way at the initial value calculation stage.
- the distribution ratio is calculated by performing the above processing on all the nodes and nodes connected to the nodes.
- Inflow / outflow processing is performed at each entrance / exit position on the lattice space of the spatial information 302.
- Inflow processing refers to pedestrian agents (hereinafter abbreviated as pedestrians) for the number of people who pass in the direction of inflow when a sensor corresponding to a node at the entrance / entry position is detected at that time. It is a process of making it appear and determining the destination of the pedestrian using the distribution ratio of the node and a random number.
- the outflow process is a process of deleting the pedestrian from the lattice space when the destination of the pedestrian existing at the entrance / boarding position is the entrance / boarding position.
- S5302 If there is a pedestrian on the grid associated with the node information, it is determined whether or not the destination of the pedestrian is a node associated with the grid. If the node is the destination, walking The node that was previously set as the destination is set as the inflow source node ID, and the destination of the pedestrian is reset using the distribution ratio of the node and a random number.
- S5303 Processing is performed for all pedestrians existing in the space. Let pedestrian to be processed be a.
- the node When the pedestrian a moves and node information is associated with the destination grid, the node counts as the number of people in the moving direction at the time of the node. In the present embodiment, the number of passing people is counted when flowing into the grid associated with the node, but the number of passing people may be counted when flowing out of the grid.
- S5306 The number of passers predicted at all nodes at the time is output.
- ⁇ Effect> it has means for determining a distribution ratio that determines the amount of movement between nodes and means for calculating the detailed movement of pedestrians between nodes, sharing spatial information, and automatically between nodes.
- the connection information By generating the connection information, the change of the spatial information can be correctly reflected because the means for obtaining the distribution ratio and the means for calculating the movement of the pedestrian move synchronously with respect to the change of the spatial information.
- it has a movement rule set in advance as a database and estimates the distribution ratio with reference to the movement rule, thereby eliminating unnatural pedestrian movement and predicting pedestrian movement with high accuracy.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
鉄道駅構内で局所的に計測できる通行人数の情報を用いて駅全体の混雑状況を駅構造の変化を考慮して高い精度で推定可能な予測技術を提供する。 混雑予測システムは、空間内の局所的な地点の通行人数を計測する人数計測部と、前記空間の空間情報に配置される複数のノードを属性とともに入力するノード配置部と、駅設備の条件を入力する設備設定部と、歩行者の移動ルールを記録した移動ルールデータベースと、前記空間情報と前記ノードの属性と前記移動ルールに基づいてノード間の接続関係を生成する接続情報生成部と、生成した接続関係と通行人数を基にノード間の歩行者の移動量を決める配分比を計算する配分比計算部と、対象空間へ流入する通行人数と配分比を用いて歩行者の移動をシミュレーションする人流予測部を有する。
Description
本発明は、混雑情報の可視化および予測情報を提供するシステムに関する。
鉄道駅では通勤時間帯など日常的な混雑の発生に加えて、交通機関の輸送障害などにより、しばしば混雑が増大する。混雑の発生は、列車乗降時間の増加につながり、それによって列車発車の遅延が生じることから、列車運行に大きな影響を与える。また、混雑によるホームからの転落や将棋倒しなどの群集事故の発生も懸念される。そのため、駅構内の混雑状況を適時把握し、適切な誘導、対策を進めることが重要である。駅構内の混雑状況は、多層に組み合わさった構造から直接目視で観測することは難しく、また混雑時には人と人の重なりによる死角が生じることからセンサで全て計測することも難しい。
特許文献1では、駅構内を対象に、空間への流入人数と分岐情報を入力として、歩行者の流動を推定し、空間からの流出人数の推定値と計測値を比較することで分岐情報を修正し、乗換行動を含む駅空間での歩行者の流動を推定する方法が開示されている。
特許文献2では、道路交通を対象として、交通量感知器が測定した交通量を取得し、交差点毎の分流率と進入率を推定し、測定交通量、分流率および進入率を用いて感知器が設置されていない道路の交通量を推定する方法が開示されている。
しかし、特許文献1および特許文献2で示された方法には、以下のような課題がある。
特許文献1では、流入地点と流出地点間の接続情報について規定はなく、空間構造に制約がある場合や変化した場合に歩行者の移動を正しく推定できない。例えば、駅構内では改札機やエスカレータなど一方通行に設定される機器があり、駅構造によっては特定の流出入地点間の移動ができないことがある。加えて、時間帯別に改札機やエスカレータの通行可能な向きが動的に変更されることもあり、適宜その条件を考慮した混雑予測を行う必要がある。
特許文献2では、空間を交差点で分割して、交差点間の道路の交通量を総量として交差点の分流率と進入率を用いて推定しているが、線での移動のみが発生する道路における車両とは異なり、面で移動する歩行者の移動に対しては道路(ノード間のリンク)の交通量を総量として算出するだけでは不十分であり、歩行者単位で詳細な移動を推定する必要がある。そのため、特定の移動体(車両または歩行者)を抽出したとき不自然な移動が発生しないように移動経路を推定する必要がある。
本発明の目的は、不自然な歩行者の移動の発生を抑制した予測システムを実現することである。
本発明の一つの実施形態に従う混雑予測システムは、空間内の局所的な地点の通行人数の計測結果が入力される人数計測部と、前記空間の空間情報に配置される複数のノードが属性とともに入力されるノード配置部と、駅設備の条件が入力される設備設定部と、歩行者の移動ルールを記録した移動ルールデータベースと、前記空間情報と前記ノードの属性と前記移動ルールに基づいてノード間の接続関係を生成する接続情報生成部と、生成した接続関係と通行人数を基にノード間の歩行者の移動量を決める配分比を計算する配分比計算部と、対象空間へ流入する通行人数と配分比を用いて歩行者の移動をシミュレーションする人流予測部を有する。
本発明によれば、不自然な歩行者の移動の発生を抑制した予測システムを実現することができる。
混雑予測システム
<発明の構成>
本発明の混雑予測システムの実施形態について、以下図面を用いて説明する。
<発明の構成>
本発明の混雑予測システムの実施形態について、以下図面を用いて説明する。
混雑予測システムは、駅構内など空間内の混雑状況を予測するシステムであり、入力部100、演算部200、記録部300、出力部400を有する。入力部100、演算部200、記録部300、出力部400は、相互に通信可能であり、1つまたは相互接続された複数のコンピュータおよびソフトウェアによって構成される。
入力部100は、空間の入出場地点あるいは分岐地点となるノードとそのノードと空間情報を関連付けるノード配置部101と、空間内の設備の設定を入力する設備設定部102と、空間内の局所的な通行人数を計測する人数計測部103を有する。
演算部200は、ノード間の接続関係を生成する接続情報生成部201と、ノード間の流動の定める配分比を計算する配分比計算部202と、出入口間の移動人数を入力として歩行者の流動をシミュレーションによって予測する人流予測部203を有する。
記録部300は、通行人数を記録する人数計測情報301と、対象空間の構造を記録する空間情報302と、ノードの属性を記録するノード情報303と、ノード間の接続関係を記録する接続情報304と、ノード間の接続毎に歩行者に配分する比率である配分比を記録する配分比情報305と、ノード間の接続関係を算出するときに利用する歩行者の移動ルールを記録する移動ルール情報306を保持するデータベースである。
出力部400は、人流予測部で計算される歩行者の移動軌跡や通行人数、混雑密度などの指標を表示する機能である。
<データと機能>
続いて、利用するデータの構造について説明する。
続いて、利用するデータの構造について説明する。
人数計測情報301は、人数計測部102で計測される通行人数を記録するデータであり、その一例を図2に示す。人数計測情報301は、例えば、センサID、日付、開始時刻、終了時刻、方向ID、人数で構成される。センサIDは、該レコードを計測したセンサのセンサIDである。日付は計測した日付であり、開始時刻および終了時刻は計測期間である。方向IDは、該レコードが示す計測人数の移動方向である。例えば、入場方向と出場方向の2方向の通行人数を計測できるセンサの場合、入場方向の方向IDを0、出場方向の通行人数を1として区別する。人数は、計測された通行人数である。
空間情報302は、駅構造や設備情報を人流予測部203に入力できる形で構造化したデータであり、駅の建築CADデータなどをもとに予め作成する。空間情報302の一例を図3に示す。本実施例では、公知のセルオートマトンを用いた歩行者シミュレーションで用いられる空間を格子状に分割した格子空間を用いて空間情報を表す。空間格子を構成する格子は、例えば、通路格子、壁格子、階段格子、改札機格子、出入口・乗車位置格子のような単位格子で構成されている。各格子は属性として、例えば、通行可否、通行可能速度、通行可能方向、通行に要する距離コスト、歩行者の空間への流入および流出の可否などの属性情報を有する。また、本実施例では、各単位格子は対応するノードの有無およびそのノードIDを属性として持つ。
ノード情報303は、ノードの属性を記録するデータであり、その一例を図4に示す。ノード情報303は、例えば、ノードID、グループID、センサID、基準方向で構成される。ノードIDは、ノードを区別するためのIDである。グループIDは、ノードを種別で区別するためのIDである。例えば、出入口と改札機に設定したノードにそれぞれ別のグループIDを割り当てる。センサIDとは、ノードを配置した位置に対する位置に設置された人数計測を行うセンサのセンサIDである。基準方向とは、ノードが空間情報において基準とする方向とその方向に対応するセンサの方向IDを関連付けたデータである。このように、ノード情報にノードの種別から定められるグループ属性や、対応する人数計測部の計測結果を指定するためのIDを持たせることで情報の利便性が高まる。
接続情報304は、ノード間の接続関係を表す情報であり、その一例を図5に示す。接続情報304は、例えば、ノードIDと、接続先ノード毎移動コストで構成される。ノードIDは対象とするノードのIDであり、ノード情報303と同一のIDを利用する。接続先ノードID毎移動コストは、該ノードと接続されたノードとそのノードとの間の移動コストを表す。移動コストとは、物理的な距離と混雑による移動のしにくさを合わせた数値であり、該ノードの基準方向に対して正方向に接続されたノードは移動コストを正とし、負方向に接続されたノードの移動コストを負とする。本実施例において、移動コストの正負はノードの接続方向を明らかにするために便宜上利用するのであって、移動コストの大小比較など評価には利用しない。移動コストの比較を行う場合には、その絶対値を利用する。以下、単に移動コストと記載した場合は、移動コストの絶対値のこととする。
分配比情報305は、ノード毎に該ノードに到着した歩行者が次に向かうノードを決めるための情報であり、その一例を図6に示す。分配比情報305は、例えば、ノードID、流入元ノードID、流出先ノードID、分配比によって構成されている。ノードIDは対象とするノードのIDであり、ノード情報303と同一のIDを使用する。流入元ノードIDは、該ノードに到着する直前に経由したノードのIDを示す。流出先ノードIDは、該ノードから次に向かうノードのノードIDを示す。分配比は、該ノードにおいて、流入元ノードを経由した歩行者が次に各流出先ノードに向かう比率を表す。本実施例では、分配比を比として定めるが、率としてノードIDおよび流入元ノードIDが一致するレコードの総和が100%となるように率で定めてもよい。
移動ルール情報306は、ノード間の接続関係を生成するときに参照するノード間の移動に関するルールであり、その一例を図7に示す。移動ルール情報306は、例えば、ルールIDと移動ルールで構成される。ルールIDは移動ルールを特定するためのIDであり、移動ルールは例えば当該移動が可能か否かを判定する関数の形で実装する。
続いて、各構成要素の機能について説明する。
ノード配置部101は、空間情報302に対してノードを配置し、その属性を設定するためのインターフェースである。例えば、図8のように空間情報302を表示装置に表示し、ノードを配置する位置を入力装置で選択し、選択した位置に含まれる空間をノードに関連付ける機能を持つインターフェースとして実装する。また、ノード情報303を編集できる機能を持つ。例えば、ノード情報303をテーブルとして一覧表示し、各属性を直接入力するインターフェースを持つ。
機器設定部102は、対象空間内の設備条件に変更があった場合に、その変更を空間情報302に対して行うインターフェースである。例えば、改札機の通行可能な向きに変更があった場合、機器設定部102を通して空間情報302の該改札機の向きを変更する。機器設定部102は、改札機など設備と直接通信を行ってもよく、人が入力してもよい。
人数計測部103は、局所的な範囲の通行人数を方向別に計測可能なセンサで構成されており、計測結果を人数計測情報301として出力し、記録部300に記録する。例えば、図9に示すように駅構内に設置された監視カメラ1011~1016をセンサとして利用し、画像処理によって方向別の通行人数を計測する。計測する地点は、駅の出入口1021、1022、列車の乗降車位置、階段1025、1026、改札1023、1024など空間に対する人の流出入が発生する地点や部分空間間の移動が発生する地点が望ましい。
接続情報生成部201は、ノード配置部101でノードを配置した空間情報302とノード情報303を入力として、ノード間が移動可能であるか否かを、空間情報302を探索することで判定し、各ノード間の物理的な距離や混雑状況から算出される移動コストとともに、ノードの接続関係を接続情報304として出力する。
配分比計算部202は、人数計測情報301と、接続情報304と、人流予測部203が出力する通行人数の推定値を入力として、各ノードから移動先となり得るノード(あるいはノード間のリンクと考えてもよい)へ移動する人数の比率である配分比を計算する。
人数予測部203は、人数計測情報301と、空間情報302と、配分比情報305を入力として、空間情報に対して、人数計測情報をもとに歩行者を流入させ、配分比情報に基づいて歩行者の移動経路を決定したときの該空間内での歩行者の移動を推定する歩行者シミュレーション装置によって構成される。人数予測部203は、空間内の任意地点あるいは範囲の通行人数、滞在人数、密度などの混雑指標を算出し、出力することができる。
本実施例では、歩行者シミュレーション装置に公知のセルオートマトンを用いた歩行者シミュレーション装置を用いる。
本実施例の歩行者シミュレーション装置は、空間を分割可能な地点にノードを配置し、歩行者が前記ノードを経由点として移動することで、前記空間内での前記歩行者の移動経路を定める。また歩行者に対して次の目的地となるノードの情報を与え、歩行者が該ノードに到着したときに、該ノードに関連付けられた配分比に基づいて歩行者の目的地を変更することによって空間内での歩行者の移動経路を求める機能も有する。
<処理の説明>
続いて、本実施例における混雑予測システム全体の処理フローの一例を説明し、その後、演算部を構成する各要素の処理フローの一例について説明する。
続いて、本実施例における混雑予測システム全体の処理フローの一例を説明し、その後、演算部を構成する各要素の処理フローの一例について説明する。
混雑予測システムは、人数計測部が計測する対象空間へ流入する通行人数の計測値を入力として、流入する位置のノードに関連付けられた配分比をもとに歩行者の移動先となるノードを確率的に決定し、人数予測部において歩行者の移動をシミュレーションすることにより、駅構内の混雑状況を予測する。また、駅構内の経由地点あるいは流出地点となるノードにおいて、人数予測部で予測された通行人数の予測値と人数計測部で計測された通行人数の計測値を比較し、ノードに関連付けられた配分比を修正する。この処理を周期的に行うことで、局所的な通行人数を用いて駅構内全体の混雑状況をリアルタイムに予測する。以下、1周期分の処理について説明する。
まず、図10のフローチャートを用いて、混雑予測システムの演算部の処理について説明する。その後、演算部を構成する各機能の処理について説明する。以下、ステップをSと省略して説明する。例えば、ステップ5001をS5001と表記する。
S5001:人数計測情報301、空間情報302を記録部300から読み込む。なお、人数計測情報301、空間情報302は入力部100の操作により逐次更新される。
S5002:空間情報302が前回の実行周期から変更されているか否かを判定する。空間情報に変更がある場合はS5003に進み、変更がない場合はS5004に進む。
S5003:空間情報302とノード情報303を入力として、接続情報生成部201で接続情報304を再計算する。これにより、改札機やエスカレータの通行可能な向きなど空間情報302に変更があった場合に接続情報を同期させることができる。
S5004:配分比計算部202で配分比を再計算する。
S5005:人流予測部203で旅客の流動を予測する。
S5006:予測対象時間が混雑予測対象の終了時刻を過ぎているかを判定する。終了時刻が過ぎている場合には、処理を終える。終了時刻を過ぎていない場合には、S5001に戻り、次の周期の実行を行う。
以上の処理を繰り返すことにより、終了時刻まで混雑予測を継続する。
続いて、図11のフローチャートを用いて、接続情報生成部201の処理フローについて説明する。
S5101:全てのノードに対して、ノード毎に処理を行う。処理対象のノードをnとする。
S5102:ノードnを出発点として、通行可能な空間を探索する。例えば、公知のダイクストラ法を用いて、図12に示すように、通行可能な隣接する単位格子に、現在の単位格子の出発点から距離および周辺の混雑状況から算出される移動コストと、該単位格子から隣接する単位格子までの移動コストを足し合わせた移動コストを記録していくことで、該ノードまで移動可能な空間を探索する。また、この移動コストは混雑予測部において歩行者の移動経路を定めるときにも利用する。
S5103:探索中に他のノードと関連付けられた単位格子を発見したか否か逐次に判定する。発見した場合は、当該単位格子から隣接する単位格子の探索はこれ以上行わずにS5104に進む。
S5104:探索出発点のノードと発見したノード間の移動が移動ルールに適合するか否か判定する。移動ルールに適合する場合はS5105に進み、適合しない場合はS5106に進む。例えば、同一のグループIDのノードに戻る移動は発生しないという移動ルールがある場合、探索対象ノードと発見したノードのグループIDが同一であるとき、S5105に進まず、S5106に進む。
S5105:発見したノードに対して、探索出発点のノードを接続情報に追加する。この時、探索方向が発見したノードの基準方向と反対方向である場合、正方向として接続情報に探索出発点のノードと移動コストを追加する。また、探索方向と発見したノードの基準方向が同一方向である場合、負方向として探索出発点のノードと移動コストを追加する。
S5106:探索可能な未探索の単位格子がなくなるまで探索を繰り返す。
以上の処理により、全てのノードと対して接続情報を構築する。
続いて、図13のフローチャートを用いて、配分比計算部202の処理フローについて説明する。
S5201:全てのノードに対して、ノード毎に処理を行う。処理対象のノードをnとする。
S5202:ノードnと接続関係にあるノードの集合をCとし、Cに含まれるノードに対してノード毎の処理を行う。処理対象のノードをmとする。
S5203:ノードnと接続関係にあるノードにおいて、ノードmと反対方向に接続されているノードを抽出し、その集合をEとする。
S5204:Eに含まれるノードに対して、ノード毎の処理を行う。処理対象のノードをlとする。
S5205:配分比が初期化してあるか否かを判定する。初期化していない場合はS5206に進み、初期化してある場合はS5207に進む。
S5206:ノードnとノードlの間の移動コストを用いて配分比の初期値を算出する。配分比は、各ノードの選択のし易さを表す一時的な変数である配分評価値の比として算出する。配分評価値は、例えば、移動候補となるノードまでの移動コストとそのノードの選択のし易さには負の相関があると考えられる。例えば、ノードmからノードnへ流入した歩行者の内、ノードlへ向かう歩行者の配分評価値をRm,n,l、ノードnとノードl間の移動コストをCn,lとすると、Rm,n,l=exp(-Cn,l)として求める。また、前日あるいは過去の条件が似た日の配分比が記録されている場合、配分評価値を計算せず、その配分比を直接用いてもよい。
S5207:人流予測部で出力される通行人数の予測値と、人数計測部で出力される通行人数の測定値を用いて配分評価値の修正を行う。配分比が初期化済みの場合、配分比をそのまま配分評価値として利用する。配分評価値の修正は、例えば、時間帯tにおけるノードlにおけるノードlからノードnへの接続方法と反対方向に向かう通行人数の計測値をMt,l、予測値をPt,lとすると、ノードmからノードnに流入した歩行者の内、ノードlに向かう歩行者の配分評価値Rm,n,lをRm,n,lにMt,l/Pt,lをかけたものに更新し、ノードmおよびノードnが同一であるRm,n,l毎にRm,n,lをlについて集計した合計値が修正前と変わらないように正規化することによって行う。
S5208:すべてのノードについて配分評価値を求めた後、複数区間分の情報を用いて配分評価値を補正する。駅構造は、出入口、改札、ホーム階段、乗車位置と規則正しい構造をしていることから、対象ノードを中心に前後区間(2区間分)の情報を用いて配分評価を補正することで、高精度に配分評価値を補正できる。例えば、図14に示すように、ノードnを中心として、流入元ノードmと流出先ノードlが同一組合せの経路を抽出する。図14においては(m,n,l)が(1,3,5)と(1,4,5)の経路がそれぞれ同一組合せとなり、各経路の移動コストに差が出ている。このとき、各経路の移動コストをDnとすると、Dn=Cm,n+Cn,lであり、この経路毎の移動コストを用いて配分比の補正を行う。例えば、Rm,n,l(m=1,l=5)に対して、取り得るlの総数をsとすると、それぞれ
をかけることで配分評価値を補正し、ノードmおよびノードnが同一であるRm,n,l毎にRm,n,lをlついて集計した合計値が補正前と変わらないように正規化する。また、このように2区間の移動コストを基に配分評価値を算出あるいは補正することを初期値算出段階で行ってもよい。
S5209:各ノードにおいて流入元ノードが同一である配分評価値を比として正規化し、配分比情報に記録する。
以上の処理を全てのノードおよび該ノードと接続関係のあるノードに対して行うことで、配分比を計算する。
続いて、図15のフローチャートを用いて、人流予測部203の処理フローについて説明する。
S5301:空間情報302の格子空間上の各出入口・乗車位置において流入・流出処理を行う。流入処理とは、該時刻に該出入口・乗車位置にあるノードに対応するセンサで流入方向の通行者が検知された場合にその通行人数分の歩行者エージェント(以下、歩行者と省略する)を出現させ、歩行者の目的地を該ノードの分配比と乱数を用いて決定する処理である。流出処理とは、出入口・乗車位置に存在する歩行者の目的地が該出入口・乗車位置である場合に、該歩行者を格子空間上から削除する処理である。
S5302:ノード情報と関連付けられた格子上に歩行者がいる場合、該歩行者の目的地が該格子に関連付けられたノードであるか否かを判定し、該ノードを目的地とする場合、歩行者が前回目的地としていたノードを流入元ノードIDとして、該ノードの分配比と乱数を使って歩行者の目的地を再設定する。
S5303:空間内に存在する全ての歩行者に対して処理を行う。処理対象の歩行者をaとする。
S5304:歩行者aが前回の移動から一定以上の時間が経過している場合、歩行者aを空間情報に記録された歩行者aの目的地までの移動コストが最短となる隣接する格子に移動させる。
S5305:歩行者aが移動し、移動先の格子にノード情報が関連付けられている場合、該ノードの該時刻の該移動方向の通行人数としてカウントする。本実施例では、ノードに関連付けられた格子に流入する時点で通行人数としてカウントするが、該格子から流出する時点で通行人数としてカウントしてもよい。
S5306:該時刻の全ノードで予測した通行人数を出力する。
以上の処理を時刻毎に行うことで、歩行者の移動を予測し、通行人数の予測値を出力する。
<効果>
本実施例によれば、ノード間の移動量を定める配分比を求める手段と、ノード間の歩行者の詳細な移動を計算する手段を有し、空間情報を共有し、自動的にノード間の接続情報を生成することで、空間情報の変更に対して、配分比を求める手段と歩行者の移動を計算する手段が同期的に動くことで、空間情報の変更を正しく反映することができる。また、予め設定した移動ルールをデータベースとして有し、移動ルールを参照して配分比を推定することで、不自然な歩行者の移動を排除し、高い精度で歩行者の移動を予測できる。
本実施例によれば、ノード間の移動量を定める配分比を求める手段と、ノード間の歩行者の詳細な移動を計算する手段を有し、空間情報を共有し、自動的にノード間の接続情報を生成することで、空間情報の変更に対して、配分比を求める手段と歩行者の移動を計算する手段が同期的に動くことで、空間情報の変更を正しく反映することができる。また、予め設定した移動ルールをデータベースとして有し、移動ルールを参照して配分比を推定することで、不自然な歩行者の移動を排除し、高い精度で歩行者の移動を予測できる。
100 入力部
101 ノード配置部
102 設備設定部
103 人数計測部
200 演算部
201 接続情報生成部
202 配分比計算部
203 人流予測部
300 記録部
301 人数計測情報
302 空間情報
303 ノード情報
304 接続情報
305 配分比情報
306 移動ルール情報
400 出力部
1011~1016 監視カメラ
1021,1022 駅の出入口
1025,1026 階段
1023,1024 改札
101 ノード配置部
102 設備設定部
103 人数計測部
200 演算部
201 接続情報生成部
202 配分比計算部
203 人流予測部
300 記録部
301 人数計測情報
302 空間情報
303 ノード情報
304 接続情報
305 配分比情報
306 移動ルール情報
400 出力部
1011~1016 監視カメラ
1021,1022 駅の出入口
1025,1026 階段
1023,1024 改札
Claims (9)
- 歩行者シミュレーションを用いて空間内の混雑状況を予測する混雑予測システムであって、空間内の局所的な地点の通行人数の計測結果が入力される人数計測部と、前記空間の空間情報に配置される複数のノードが属性とともに入力されるノード配置部と、駅設備の条件が入力される設備設定部と、歩行者の移動ルールを記録した移動ルールデータベースと、前記空間情報と前記ノードの属性と前記移動ルールに基づいてノード間の接続関係を生成する接続情報生成部と、生成した接続関係を基にノード間の歩行者の移動量を決める評価値である配分比を計算する配分比計算部と、対象空間へ流入する通行人数と配分比を用いて歩行者の移動をシミュレーションする人流予測部を有することを特徴とする混雑予測システム。
- 請求項1に記載の混雑予測システムであって、空間へ流入する方向の第1群の通行人数と配分比を入力として歩行者シミュレーションを用いて算出する空間から流出する方向の第2群の通行人数の予測値と、センサによって計測される第2群の通行人数の測定値を比較し、予測値と推定値の差分が少なくなるように配分比を修正する機能を有する混雑予測システム。
- 請求項1に記載の混雑予測システムであって、ノード間の接続関係において、対象ノードの直前に接続されるノードと直後に接続されるノードまでの距離を利用して該ノードから次の移動先となる接続関係のある各ノードを決定する評価値を算出する機能を有する混雑予測システム。
- 請求項1に記載の混雑予測システムであって、ノード間の接続関係において、対象ノードの直前に接続されるノードと直後に接続されるノードの組合せが同一の経路を抽出し、該経路を選択するか否かを評価する評価値を該経路の距離を利用して算出あるいは修正する機能を有する混雑予測システム。
- 歩行者シミュレーションが用いる2次元あるいは3次元の空間情報に対して、前記空間情報内にノードを配置し、前記空間情報を空間の移動可否をもとに探索することによって、ノード間の移動可否を判定し、ノード間の接続関係を生成する機能を有する歩行者シミュレーション装置および混雑予測システム。
- 請求項1記載の混雑予測システムであって、ノード情報にノードの種別から定められるグループ属性、または対応する人数計測部の計測結果を指定するためのIDを有することを特徴とする混雑予測システム。
- 請求項5に記載の混雑予測システムであって、同一グループ属性のノードまたは同一方向に戻る移動を行わない移動ルールを有する混雑予測システム。
- 歩行者の流動を模擬する歩行者シミュレーションであって、空間を分割可能な地点にノードを配置し、歩行者が前記ノードを経由点として移動することで、前記空間内での前記歩行者の移動経路を定める歩行者シミュレーション装置。
- 請求項8の歩行者シミュレーション装置であって、前記歩行者に対して次の目的地となるノードの情報を与え、歩行者が該ノードに到着したときに、該ノードに関連付けられた配分比に基づいて前記歩行者の目的地を変更することによって空間内での前記歩行者の移動経路を求める歩行者シミュレーション装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-032814 | 2017-02-24 | ||
JP2017032814A JP2020095292A (ja) | 2017-02-24 | 2017-02-24 | 混雑予測システムおよび歩行者シミュレーション装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018155397A1 true WO2018155397A1 (ja) | 2018-08-30 |
Family
ID=63253823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005844 WO2018155397A1 (ja) | 2017-02-24 | 2018-02-20 | 混雑予測システムおよび歩行者シミュレーション装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020095292A (ja) |
WO (1) | WO2018155397A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110991713A (zh) * | 2019-11-21 | 2020-04-10 | 杭州电子科技大学 | 基于多图卷积和gru的不规则区域流量预测方法 |
JP6837606B1 (ja) * | 2019-12-12 | 2021-03-03 | 三菱電機株式会社 | 混雑度推定装置、混雑度推定方法及び混雑度推定プログラム |
CN114556251A (zh) * | 2019-11-22 | 2022-05-27 | 华为技术有限公司 | 用于确定车辆可通行空间的方法和装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7461231B2 (ja) | 2020-06-24 | 2024-04-03 | 株式会社日立製作所 | 混雑推定システムおよび混雑推定方法 |
US20240144300A1 (en) * | 2021-03-04 | 2024-05-02 | Nec Corporation | Characteristic information generating apparatus, system, method, and computer-readable medium |
KR102537381B1 (ko) * | 2021-04-01 | 2023-05-30 | 광주과학기술원 | 보행경로예측장치 |
CN113449926B (zh) * | 2021-07-12 | 2022-07-29 | 中车青岛四方机车车辆股份有限公司 | 轨道交通车辆数据安全管理方法、系统、存储介质及设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000322402A (ja) * | 1999-05-11 | 2000-11-24 | Hitachi Ltd | 人の流れ分析方法 |
JP2013116676A (ja) * | 2011-12-02 | 2013-06-13 | Hitachi Ltd | 人流予測装置および方法 |
JP2016200973A (ja) * | 2015-04-10 | 2016-12-01 | 東日本旅客鉄道株式会社 | 歩行者のod通行量の推計方法 |
-
2017
- 2017-02-24 JP JP2017032814A patent/JP2020095292A/ja active Pending
-
2018
- 2018-02-20 WO PCT/JP2018/005844 patent/WO2018155397A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000322402A (ja) * | 1999-05-11 | 2000-11-24 | Hitachi Ltd | 人の流れ分析方法 |
JP2013116676A (ja) * | 2011-12-02 | 2013-06-13 | Hitachi Ltd | 人流予測装置および方法 |
JP2016200973A (ja) * | 2015-04-10 | 2016-12-01 | 東日本旅客鉄道株式会社 | 歩行者のod通行量の推計方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110991713A (zh) * | 2019-11-21 | 2020-04-10 | 杭州电子科技大学 | 基于多图卷积和gru的不规则区域流量预测方法 |
CN110991713B (zh) * | 2019-11-21 | 2022-04-01 | 杭州电子科技大学 | 基于多图卷积和gru的不规则区域流量预测方法 |
CN114556251A (zh) * | 2019-11-22 | 2022-05-27 | 华为技术有限公司 | 用于确定车辆可通行空间的方法和装置 |
CN114556251B (zh) * | 2019-11-22 | 2023-11-17 | 华为技术有限公司 | 用于确定车辆可通行空间的方法和装置 |
JP6837606B1 (ja) * | 2019-12-12 | 2021-03-03 | 三菱電機株式会社 | 混雑度推定装置、混雑度推定方法及び混雑度推定プログラム |
WO2021117185A1 (ja) * | 2019-12-12 | 2021-06-17 | 三菱電機株式会社 | 混雑度推定装置、混雑度推定方法及び混雑度推定プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2020095292A (ja) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018155397A1 (ja) | 混雑予測システムおよび歩行者シミュレーション装置 | |
JP6585285B2 (ja) | 人流評価システム、人流制御の検討方法 | |
JP6640988B2 (ja) | 列車降車人数予測システム、混雑可視化・評価システム、および乗車可能人数算出システム | |
JP6236448B2 (ja) | センサ配置決定装置およびセンサ配置決定方法 | |
Hassannayebi et al. | A hybrid simulation model of passenger emergency evacuation under disruption scenarios: A case study of a large transfer railway station | |
JP2016045919A (ja) | 人流動推定システム、方法、およびプログラム | |
JP2019197372A (ja) | 人流推定装置、および、人流推定方法 | |
Stubenschrott et al. | A dynamic pedestrian route choice model validated in a high density subway station | |
JP2019012494A (ja) | 人流推定装置及び人流推定システム並びに人流測定方法 | |
JP2005202546A (ja) | 人口流動推計方法、装置及びプログラム | |
Al-Ahmadi et al. | Preparedness for mass gatherings: A simulation-based framework for flow control and management using crowd monitoring data | |
JP2018103924A (ja) | 混雑予測装置 | |
JP6678476B2 (ja) | 移動経路推定装置、及び移動経路推定方法 | |
JP6481039B2 (ja) | 混雑監視装置、混雑監視方法、および混雑監視プログラム | |
JP2019101445A (ja) | Od交通量推定装置及びod交通量推定システム | |
Zhu | Passenger-to-itinerary assignment model based on automated data | |
JP2018198026A (ja) | 事故予報システム、および、事故予報方法 | |
Das et al. | Macroscopic pedestrian flow modelling using simulation technique | |
Nikolic et al. | Exploratory analysis of pedestrian flow characteristics in mobility hubs using trajectory data | |
BOONSOMPARN et al. | Modeling pedestrian flow in transit stations: a case study of transit stations in Bangkok | |
CN114943390B (zh) | 一种基于数字孪生的地铁车站客流监测方法及系统 | |
de Souza et al. | Modelling traffic accident duration on urban roads with high traffic variability using survival models: a case study on Fortaleza arterial roads | |
Lagervall et al. | Microscopic simulation of pedestrian traffic in a station environment: A study of actual and desired walking speeds | |
Beerens | Exploring Spatiotemporal Patterns of Pedestrian Movements in Shopping Streets using Agent-Based Modelling | |
EP4216116A1 (en) | In-building traffic flow setting device and in-building traffic flow setting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18756910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18756910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |