[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018154890A1 - 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法 - Google Patents

生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法 Download PDF

Info

Publication number
WO2018154890A1
WO2018154890A1 PCT/JP2017/041867 JP2017041867W WO2018154890A1 WO 2018154890 A1 WO2018154890 A1 WO 2018154890A1 JP 2017041867 W JP2017041867 W JP 2017041867W WO 2018154890 A1 WO2018154890 A1 WO 2018154890A1
Authority
WO
WIPO (PCT)
Prior art keywords
ready
hardening
concrete
rapid
mixed
Prior art date
Application number
PCT/JP2017/041867
Other languages
English (en)
French (fr)
Inventor
一裕 相澤
万穂 吉岡
泰一郎 森
盛岡 実
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP17898116.3A priority Critical patent/EP3587374A4/en
Priority to SG11201906437WA priority patent/SG11201906437WA/en
Priority to JP2019501056A priority patent/JP6830149B2/ja
Priority to CN201780085435.2A priority patent/CN110278710A/zh
Priority to MYPI2019004637A priority patent/MY196346A/en
Publication of WO2018154890A1 publication Critical patent/WO2018154890A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a hardener for ready-mixed shipment type rapid hardening concrete, a ready-mixed shipment type rapid hardening concrete material, a ready-mixed shipment type rapid hardening concrete composition, and a method for preparing the same.
  • pot life is also an important performance. Taking ready-to-use plants in the ready-mixed plant, transporting them to the construction site, and taking into account the time required for construction and the cleaning time of the agitator vehicle that is a ready-mixed vehicle, it is possible to secure at least 120 minutes, preferably 180 minutes or more. desirable. However, securing a long pot life will delay the curing time, so that it will not be possible to meet the required strength at short-term ages. For this reason, with the conventional technology, it has been difficult to satisfy the required strength expression at the initial age while securing sufficient pot life.
  • rapid-hardening concrete is actually prepared at the construction site.
  • This method requires a lot of manpower, increases the number of man-hours, increases the cost, and limits the volume of hardened concrete that can be supplied.
  • rapid-hardening concrete is continuously supplied using a concrete mobile vehicle.
  • fine aggregate and coarse aggregate with a constant moisture control in advance are packed into a flexible container pack and transported to the site, or rapidly hardened.
  • the cost of rapid-hardening concrete is remarkably increased because the man-hours such as filling the flexible container pack with cement and preparing it by transporting it to the site may increase.
  • rapid-hardening concrete that can be shipped from ready-mixed plants is strongly desired. If rapid-hardening concrete can be shipped from a raw plant, a large amount of rapid-hardening concrete can be supplied to the construction site using existing mixing equipment and transport systems.
  • Patent Documents 4 to 8 disclose quick setting concrete in which quick setting concrete is shipped from a raw plant plant and arrives at a construction site and then a quick setting agent is added.
  • Patent Documents 9 to 11 disclose quick setting concrete in which a setting retarder and calcium hydroxide are added together with ⁇ -naphthalene sulfonic acid to raw concrete, and the quick setting agent is added after arrival at the construction site.
  • Patent Documents 12 and 13 a setting retarder composed of oxycarboxylic acid or a salt thereof and lithium carbonate is added at the time of kneading the base concrete or immediately after kneading, and CaO ⁇ Al 2 O 3 is added to the kneaded base concrete.
  • a method for producing fast-hardening concrete is disclosed, characterized in that a quick-hardening material mainly composed of crystals is added during construction.
  • the minimum pot life must be 120 minutes or longer, and more than 180 minutes when the traffic is heavy or the transfer distance is long. It is desirable to ensure. In this way, the reason why raw concrete shipment-type rapid-hardening concrete has not been realized so far is that there is a technical trade-off between securing a long pot life and developing short-term strength. Is extremely difficult.
  • Patent Documents 4 to 8 are used in the tunnel pre-lining method, and the rapid setting agent applies alkali aluminate, aluminum sulfate, sodium silicate, etc., and after the rapid setting agent is added, The working time could not be secured.
  • the quality standards for quick setting materials are defined in the shotcrete guideline (draft) as the definition of quick setting agents. According to this, the start of the setting time is set within 5 minutes and the end is set within 15 minutes. That is, when the quick setting agent is used, a pot life of 15 minutes or more cannot be secured.
  • Patent Documents 9 to 11 use a quick setting agent, a pot life of 15 minutes or more cannot be secured after the quick setting agent is added.
  • the present invention provides a ready-mixed quick-hardening concrete composition that is excellent in initial strength development while ensuring sufficient pot life, and also exhibits excellent wear resistance when made into a cured product.
  • the purpose is to provide.
  • Another object of the present invention is to provide a hardener for ready-mixed shipment type rapid-hardening concrete capable of exhibiting the effect of the ready-mixed shipment type rapid-hardening concrete composition satisfactorily. Furthermore, it aims at providing the preparation method of the said ready-mixed shipment type rapid-hardening concrete composition for manufacturing the said ready-mixed shipment type rapid-hardening concrete composition.
  • the present inventors prepared concrete prepared by combining a specific quick-hardening material and a specific sleeping agent in a raw concrete plant, and after transporting it to the site.
  • a specific hardener by adding and mixing a specific hardener, while knowing that it is possible to prepare rapid-hardening concrete that is excellent in initial strength development while ensuring sufficient pot life, in addition, excellent in wear resistance, The present invention has been completed. That is, the present invention is as follows.
  • the calcium hydroxide and the calcium aluminate compound are included, and the mass ratio of the calcium hydroxide to the calcium aluminate compound (calcium hydroxide / calcium aluminate compound) is 1/99 to 99.
  • the ready-mixed concrete hardener for quick-hardening concrete [5] The method according to any one of [1] to [4], wherein a molar ratio of CaO to Al 2 O 3 (CaO / Al 2 O 3 ) in the calcium aluminate compound is 0.5 to 2.4.
  • a material containing cement, a rapid hardening material, and a sleeping agent is added and mixed with the B material containing the hardener for ready-mixed shipment rapid hardening concrete according to any one of [1] to [7].
  • a ready-mixed quick-hardening concrete composition [10] The ready-mixed shipment-type quick-hardening concrete composition according to [9], wherein the rapid-hardening material includes a calcium aluminate compound and gypsum as main components.
  • the rapid-hardening material includes a CaO—Al 2 O 3 —SiO 2 based compound and gypsum, and the CaO—Al 2 O 3 —SiO 2 based compound has an amorphous degree of 70% or more, and The ready-mixed shipment type rapid-hardening concrete composition according to [9] or [10], wherein SiO 2 is in the range of 1 to 18% by mass.
  • the content of the hardener for ready-mixed quick-hardening concrete is 0.5 to 7 parts by mass with respect to a total of 100 parts by mass of the cement and the rapid-hardening material [9] to [12 ]
  • the capacity of the base concrete containing at least cement, a hardened material, a sleeping agent, an aggregate, and kneaded water is set to 40% or more of the internal volume of the kneading container.
  • the type and mixing amount of the ready-mixed shipment type hardened concrete hardener are determined so that the pot life after mixing the ready-mixed shipment type hardened concrete hardener can be secured for 15 minutes or more [14] Or the preparation method of the ready-mixed shipment type quick-hardening concrete as described in [15].
  • a ready-mixed type quick-hardening concrete composition that is excellent in initial strength development while ensuring sufficient pot life, and also exhibits excellent wear resistance when made into a cured product. can do.
  • the hardening agent for ready-mixed shipment type quick-hardening concrete which can make the said effect of the said ready-mixed shipment type rapid-hardening concrete composition show well can be provided.
  • the preparation method of the said ready-mixed shipment type quick-hardening concrete composition for manufacturing the said ready-mixed shipment type rapid-hardening concrete composition can be provided.
  • the present invention is particularly preferably used in the field of civil engineering and architecture.
  • composition in this specification is a general term for a cement composition, a mortar composition, and a concrete composition.
  • Hardener for ready-mixed quick-hardening concrete In the embodiment according to the hardener for ready-mixed shipment quick-hardening concrete of the present invention, the hardener for ready-mixed shipment quick-hardening concrete (hereinafter simply referred to as “hardening agent”). "Is sometimes called”) means a material that awakens the hydration hardening of rapid-hardened concrete (concretely stopped in hydration hardening) that has been asleep by adding a large amount of a sleeping agent to be described later, for example, at the construction site.
  • Specific examples thereof include one or more of calcium hydroxide, calcium carbonate, calcium aluminate compound, calcium silicate compound, colloidal silica, Portland cement, calcium sulfoaluminate cement, blast furnace slag, and the like. It is possible.
  • the “raw concrete shipment type rapid-hardening concrete” as used in the present embodiment is kneaded with ready-mixed concrete (ready-mixed concrete) in a ready-mix factory, ready-mixed plant, etc., and then transported by an agitator car to a civil engineering construction site or construction site. It is concrete that is shipped to construction sites such as and that hardens relatively quickly after being driven in.
  • ready-mixed quick-cure concrete the minimum pot life is 120 minutes from shipment to completion due to the transfer time. If the transfer distance is long, the pot life is 180 minutes or more. It is desirable to do.
  • the present embodiment is used specifically for such applications.
  • agitator car is a freight car equipped with a mixing drum (mixing container) in the loading platform, which can transport raw concrete while stirring, and there is no significant difference in its function.
  • mixing drum mixing container
  • the ready-mixed concrete hardener for hardened concrete has one of the above-mentioned components as an essential component, but in order to improve temperature dependence, it is better to use calcium hydroxide and calcium aluminate compound together.
  • the mixing ratio is not particularly limited, but is preferably 1/99 to 99/1 in terms of mass ratio of calcium hydroxide to calcium aluminate compound (calcium hydroxide / calcium aluminate compound). More preferably, it is 98 to 98/2.
  • the mass ratio is further preferably 10/90 to 90/10, and more preferably 20/80 to 80/20.
  • the 300 ⁇ m sieve residue is preferably 5% or less, and the 100 ⁇ m sieve residue is preferably 10% or less.
  • the calcium aluminate-based compound is used for a rapid-hardening material to be described later, but the calcium aluminate-based compound applied to the hardener has a CaO / Al 2 O 3 molar ratio of 0.5 to 2.4.
  • a range is preferred.
  • the CaO / Al 2 O 3 molar ratio is 0.5 or more, the effect of improving the temperature dependency can be more fully exhibited, and when it is 2.4 or less, the hardener is used in the slurry. In this case, rapid hardening can be suppressed.
  • the range of 0.5 to 1.2 is more preferable, and the range of 0.75 to 1.0 is more preferable from the viewpoint of increasing the pot life.
  • the range of 1.2 to 2.4 is more preferable, and the range of 1.25 to 2.3 is more preferable.
  • the calcium aluminate compound is roughly classified into an amorphous calcium aluminate compound and a crystalline calcium aluminate compound, but the use of an amorphous calcium aluminate compound is preferable from the standpoint of long-term strength.
  • the presence of substances (other components) other than the exemplified hardeners can increase the dispersibility of the hardener and promote the effects of the hardener, thereby inhibiting the effects of the present invention. If not, it can be contained in a range of 30% or less.
  • gypsum in the hardener which concerns on this invention, it is preferable to contain gypsum further in one of the components mentioned above, and it is more preferable to contain a calcium aluminate type compound and gypsum.
  • gypsum any of gypsum, gypsum, half water gypsum, and gypsum can be used.
  • chemical gypsum such as natural gypsum, phosphoric acid by-product gypsum, excretion gypsum and hydrofluoric acid by-product gypsum, or gypsum obtained by heat-treating these can be used.
  • anhydrous gypsum and / or semi-aqueous gypsum are preferable in terms of strength development, but it is preferable to select anhydrous gypsum from the viewpoint of cost, and type II anhydrous gypsum and / or natural anhydrous gypsum are preferable.
  • the particle size of gypsum is preferably from 3000 cm 2 / g or more in Blaine value, more preferably 4000 ⁇ 7000cm 2 / g. When it is 3000 cm 2 / g or more, the initial strength development can be satisfactorily exhibited.
  • the amount of gypsum used is preferably 10 to 200 parts, more preferably 15 to 150 parts, even more preferably 90 to 130 parts with respect to 100 parts of a hardener (preferably a calcium aluminate compound). Within these ranges, long-term strength development and durability can be improved.
  • the amount of hardener for ready-mixed shipment rapid hardening concrete is not particularly limited, but is preferably 0.5 to 7 parts with respect to a total of 100 parts of cement and rapid hardening material described later. More preferred is 5 parts.
  • the amount is 0.5 to 7 parts, the strength development of short-term material age can be made sufficient, and the pot life can be secured.
  • the hardener may be made into a slurry and added to various base concretes. In this case, it is desirable from the viewpoint of strength development that a part of the kneaded water from the concrete blend is filled in the slurry of the hardener and the water is subtracted from the base concrete. Moreover, you may add a hardener to various base concrete etc.
  • the base concrete refers to a concrete obtained by kneading at least cement, a rapid hardening material, a sleeping agent, an aggregate, and kneaded water.
  • the water-soluble film of a preferred embodiment uses a material made of wood pulp, polysaccharides, poval, cellulose, polyvinyl alcohol, carboxymethyl cellulose, starch, etc., and the content of wood pulp in the raw material is 75 to 95%. 80 to 90% is more preferable.
  • the raw materials such as polysaccharides excluding wood pulp, poval, cellulose, polyvinyl alcohol, carboxymethylcellulose, and starch are preferably 5 to 25%, more preferably 10 to 20%. If there are fewer raw materials such as polysaccharides, poval, cellulose, polyvinyl alcohol, carboxymethyl cellulose, starch, etc.
  • the water-soluble film of a preferred embodiment is not particularly limited as long as it is water-soluble, but 10 g of the water-soluble film is added to a beaker (capacity 1000 ml) containing 20 ml of water at 20 ° C., and a stirrer (Ikeda Riko Co., Ltd.).
  • the dispersion time when stirring at 800 rpm is preferably 30 seconds or less, and more preferably 20 seconds or less. Dispersion time refers to the time when no agglomerates are visible.
  • the dispersion time exceeds 30 seconds, it may not be dispersed after the concrete is mixed and may remain in the concrete.
  • the mixing time of the concrete using the embodiment in which the hardener is packaged by the water-soluble film of the preferred embodiment is comparable to that of the non-mixed concrete not using the embodiment, but the water-soluble property of the preferred embodiment.
  • the mixing time of the concrete may be long, and in the case of the same mixing time, even if the number of input bags is the same as the water-soluble film of the preferred embodiment, the water-soluble film is in the concrete. May remain.
  • the hardener according to the present invention when the hardener according to the present invention is slurried and added to various base concretes by pressure, it is preferable to contain at least one selected from the group consisting of dextrin and cellulose derivatives. Of these, dextrin or a combination of dextrin and a cellulose derivative is more preferable.
  • Dextrin can enhance the stability of a ready-mixed shipment type rapid-hardening concrete composition described later by delaying the setting of cement.
  • Dextrin is generally called a modified starch, and is usually obtained by hydrolyzing corn starch, potato, tapioca starch, wheat starch, sweet potato starch, rice starch, and the like.
  • acid roasted dextrin obtained by adding dilute acid and decomposing is the most common, obtained by acid dipping method, maltodextrin obtained by enzymatic degradation of starch, British gum obtained without roasting
  • pre-gelatinized starch obtained by heating a starch to which water has been added, or by rapidly dehydrating a solution obtained by adding an alkali or concentrated salt solution to a starch, or dissolving these in water
  • a powder or the like obtained by drying the residue can be used.
  • those obtained by chemical modification such as carboxylic acid esterification, carbonic acid esterification, and etherification can be used.
  • the dextrin is preferably 0.01 to 5 parts, more preferably 0.1 to 3 parts, relative to 100 parts of the hardener.
  • the content is 0.01 to 5 parts, the strength development of short-term aging can be made sufficient, and heat generation when the hardened material is slurried can be suppressed.
  • the cellulose derivative contributes to bleeding prevention when the hardened material is slurried and is not particularly limited, but is generally called a water-soluble polymer substance, such as methyl cellulose (MC), Examples thereof include carboxymethyl cellulose (CMC).
  • MC methyl cellulose
  • CMC carboxymethyl cellulose
  • the amount of cellulose derivative used is preferably 5 to 80 parts, more preferably 10 to 50 parts, per 100 parts of dextrin. When it is 5 to 80 parts, both bleeding prevention and long-distance pumpability can be achieved.
  • [2] Ready-mixed shipment type rapid-hardening concrete material and ready-mixed shipment type rapid-hardening concrete composition The embodiment according to the ready-mixed shipment type rapid-hardening concrete material of the present invention includes the rapid hardening material and the A material containing a sleeping agent. And a B material containing a hardener for ready-mixed shipment type rapid hardening concrete, and a two-component ready-mixed shipment type rapid hardening concrete material. And the embodiment which concerns on the ready-mixed container quick-hardening concrete composition of this invention comprises the said B material added and mixed with the said A material.
  • the pot life after adding the quick hard material becomes extremely short, 10 minutes or less, and construction cannot be performed.
  • the pot life is shortened, the compressive strength is low, wear resistance tends to deteriorate, and 30% of the drum volume of the agitator Can only transport to the extent.
  • the addition timing of the rapid hardening material and the hardener is extremely important.
  • cement in the present embodiment is not particularly limited.
  • various normal, early strong, moderate heat, low heat Portland cement, blast furnace slag, fly ash which are defined by Japanese Industrial Standards (JIS).
  • JIS Japanese Industrial Standards
  • environmentally friendly cement eco-cement manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials
  • the cement defined by EN197-2000 overseas and all the cements defined by the Chinese GB standard can be mentioned, and one or more of these can be used.
  • the rapid-hardening material of this embodiment is composed of a calcium aluminate compound and gypsum.
  • the calcium aluminate compound is a generic term for compounds mainly composed of CaO and Al 2 O 3 and is not particularly limited. Specific examples thereof include CaO ⁇ Al 2 O 3 , 12CaO ⁇ 7Al 2 O 3 , 11CaO ⁇ 7Al 2 O 3 ⁇ CaF 2 , 3CaO ⁇ Al 2 O 3 , 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 , and CaO And amorphous substances mainly composed of Al 2 O 3 (for example, CaO—Al 2 O 3 —SiO 2 compounds). Among them, it is preferable to select an amorphous substance from the viewpoint of strength development.
  • the amorphous degree in this embodiment is defined as follows.
  • the target substance is annealed at 1000 ° C. for 2 hours, and then slowly cooled at a cooling rate of 5 ° C./min to crystallize.
  • the crystallized material is measured by a powder X-ray diffraction method to determine the area S 0 of the main peak of the crystal mineral.
  • the amorphous degree X is obtained from the main peak area S of the crystal of the material before annealing by the following formula.
  • X (%) 100 ⁇ (1 ⁇ S / S 0 )
  • General industrial raw materials contain impurities such as SiO 2 , MgO, Fe 2 O 3 , TiO 2 , K 2 O, and Na 2 O. These impurities are non-calcium aluminate compounds. There is also a surface that promotes crystallization, and the total amount of these may be 20% or less. Among them, the presence of SiO 2 is preferable, and can be contained in the range of 1 to 18% for the purpose of obtaining amorphous calcium aluminate.
  • the rapid hardener includes a CaO—Al 2 O 3 —SiO 2 compound and gypsum, and the CaO—Al 2 O 3 —SiO 2 compound has an amorphous degree of 70% or more, and SiO 2 is preferably in the range of 1 to 18% by mass. More preferably, the CaO—Al 2 O 3 —SiO 2 based compound has an amorphous degree of 80% or more and SiO 2 in a range of 2 to 13% by mass.
  • the calcium aluminate compound is preferably adjusted to 3000 to 9000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g, by a pulverization treatment.
  • the calcium aluminate-based compound has a fineness (brain specific surface area) of 4000 to 9000 cm 2 / g, it is easy to obtain sufficient rapid hardening, and it is easy to obtain strength development at low temperatures.
  • the rapid hardening material of the present embodiment is preferably adjusted to 3000 to 9000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g, by a pulverization treatment.
  • the rapid hardening material has a fineness of 3000 to 9000 cm 2 / g, it becomes easy to obtain sufficient super-hardness, and it is easy to obtain strength development at low temperatures.
  • the amount of the rapid-hardening material used is preferably 10 to 35 parts, more preferably 15 to 30 parts, and even more preferably 20 to 25 parts, out of a total of 100 parts of cement and rapid-hardening material. When it is 10 to 35 parts, good initial strength development is easily obtained, and long-term strength is less likely to decrease.
  • the sleeping agent used in this embodiment has the function of sleeping rapid-hardening concrete shipped from ready-mixed concrete (almost stops hydration hardening). This avoids sudden hard troubles.
  • the sleeping agent include oxycarboxylic acid or a salt thereof, or a combination of these with an alkali metal carbonate, saccharide, boric acid and the like. It is preferable to use an oxycarboxylic acid and an alkali metal carbonate in combination from the viewpoint of having a large effect of causing the rapid-hardening concrete to sleep and from the viewpoint of good strength development after adding a hardener.
  • the alkali metal carbonate is preferably selected from alkali metal carbonates other than lithium. It is necessary to secure a sufficient pot life of the base concrete, to ensure a certain pot life even after adding a hardener, and to improve the strength development. Application is not preferred.
  • the sleeping agent preferably contains a mixture of an oxycarboxylic acid, an alkali metal carbonate other than lithium, and an oxycarboxylic acid, and more preferably contains an alkali metal carbonate other than lithium and an oxycarboxylic acid.
  • the mixing ratio of the alkali metal carbonate other than lithium and the oxycarboxylic acid is preferably 10/90 to 90/10, and preferably 20/80 to 80/20, as the alkali metal carbonate / oxycarboxylic acid. Is more preferable.
  • Examples of the oxycarboxylic acid or a salt thereof include citric acid, gluconic acid, tartaric acid, malic acid, and the salt includes sodium salt, potassium salt, calcium salt, magnesium salt, and the like. One or two or more of these may be used in combination.
  • the amount of the sleeping agent used is preferably 0.3 to 5 parts, more preferably 0.3 to 4.5 parts with respect to 100 parts of the cement and the rapid hardening material. By being 0.3 to 5 parts, it becomes easy to secure sufficient work time in addition to the transport time to the site. In addition, when a hardener is added, hydration hardening is easily evoked.
  • any gypsum of anhydrous gypsum, semi-water gypsum, and two-water gypsum can be used.
  • chemical gypsum such as natural gypsum, phosphoric acid by-product gypsum, excretion gypsum and hydrofluoric acid by-product gypsum, or gypsum obtained by heat-treating these can be used.
  • anhydrous gypsum and / or semi-aqueous gypsum are preferable in terms of strength development, but it is desirable to select anhydrous gypsum from the viewpoint of cost, and type II anhydrous gypsum and / or natural anhydrous gypsum are preferable.
  • the particle size of gypsum is preferably from 3000 cm 2 / g or more in Blaine value, more preferably 4000 ⁇ 7000cm 2 / g. When it is 3000 cm 2 / g or more, the initial strength development can be satisfactorily exhibited.
  • the amount of gypsum used is preferably 10 to 200 parts, more preferably 15 to 150 parts, even more preferably 20 to 130 parts with respect to 100 parts of the calcium aluminate compound. Within these ranges, strength development can be satisfactorily exhibited.
  • the expanding material in addition to the rapid hardening material, the sleeping agent, and the hardener described above, the expanding material, the water reducing agent, the AE water reducing agent, the high performance water reducing agent, the blast furnace slow cooling slag fine powder, and the blast furnace slow cooling slag fine powder.
  • the water reducing agent such as slag, limestone fine powder, fly ash, silica fume and other admixtures, defoamers, thickeners, rust inhibitors, antifreeze agents, shrinkage reducers, polymers, clay minerals such as bentonite, hydrotalcite, etc. It is possible to use 1 type, or 2 types or more of these anion exchangers etc. in the range which does not inhibit substantially the objective of this invention.
  • at least cement, rapid-hardening material, and a sleeping agent are mixed with kneading water in a kneading container.
  • a step of kneading and a step of mixing a hard-mixing agent for ready-mixed shipment type rapid hardening concrete, for example, at a construction site are sequentially included.
  • the kneaded water is shipped from, for example, a ready-mix factory or a ready-mix plant. Further, in the kneading process, there are many cases where conveyance is performed together with kneading.
  • the volume of the base concrete containing cement, quick-hardening material, sleeping agent, and kneaded water is used for mixing (transport).
  • the volume is preferably 40% (volume%) or more, more preferably 50 volume% or more of the inner volume of the container.
  • the kneading (conveying) container refers to a container that is provided in a ready-mixed container transport vehicle such as a drum of an agitator car and can hold the ready-mixed container while stirring.
  • the ready-mixed concrete hardener for ready-mixed concrete is kneaded with ready-mixed concrete (ready-mixed concrete), then the kneaded product is transported and shipped to the construction site, and added after the driving operation. Suitable for use as an admixture material.
  • the ready-mixed shipment type rapid-hardening concrete material according to the present embodiment is also suitable for use as an admixture added after the driving operation, like the hardener.
  • the pot life can be set to 120 minutes or longer, preferably 180 minutes or longer, for example.
  • 1.5 parts of the sleeping agent 1 was added to 100 parts of the binder composed of cement and a rapid hardening material so as not to be hydrated and hardened for 24 hours or longer (A material).
  • various hardeners material B shown in Table 1 below were added to 100 parts of binder after 120 minutes. did.
  • s / a is a fine aggregate rate, and is a value expressed as a percentage of the absolute volume ratio of the fine aggregate amount to the total aggregate amount in the concrete.
  • Hardeners i to Chi-hardeners i Calcium hydroxide, commercial product, 300 ⁇ m residue less than 1%, 100 ⁇ m residue 5%
  • Hardener B Calcium carbonate, commercial product, Blaine specific surface area 4,000 cm 2 / g Okoshikata agent
  • c calcium aluminate-based compounds, alumina cement No. 1 made mainly of CaO ⁇ Al 2 O 3, molar ratio of CaO and Al 2 O 3 (CaO / Al 2 O 3) 1.27, Blaine specific Surface area 5,000cm 2 / g Hardener d: 3CaO.SiO 2 synthesized from calcium silicate compound, reagent grade 1 calcium carbonate and SiO 2 .
  • Blaine specific surface area 3,000 cm 2 / g Hardener E Colloidal silica
  • Commercially available product hardener F Portland cement
  • Commercially available product hardener Calcium sulfoaluminate cement
  • commercial product Blaine specific surface area 4,500 cm 2 / g Hardener
  • H Blast furnace slag, commercial product
  • Quick setting agent 1-3 Quick setting agent 1: Sodium aluminate, reagent grade 1 quick setting agent 2: Aluminum sulfate, reagent grade 1 quick setting agent 3: Sodium silicate, reagent grade 1
  • Sleeping agent Sleeping agent 1 Mixture of 75 parts of reagent grade 1 potassium carbonate and 25 parts of reagent grade 1 citric acid
  • Abrasion resistance test Evaluated by O-type abrasion test.
  • the test surface of the specimen is attached in a hexagonal shape to the drum with the test surface facing inward, and 20 ⁇ 22mm ⁇ 40mm rods (approximately 2.5kg) machined by cutting a PC steel rod are put into it and rotated at 80rpm. I let you. The forward rotation and the reverse rotation were alternately performed every hour, and after 4 hours, the specimen was taken out and the wear coefficient was calculated.
  • the wear coefficient was obtained by the following equation.
  • Abrasion coefficient (mm 3 / cm 2 ) (Abrasion mass / Specimen density) / Abraded area
  • the abrasion coefficient was less than 300, it was evaluated as ⁇ , when it was 300 or more and less than 400, ⁇ , and when it was 400 or more, ⁇ .
  • Example 2 The hardener A is used in 3 parts with respect to 100 parts of the binder, and the type of the hardened material (A to D; the hardened material A is used in Experimental Example 1, and the hardened materials B to D are as follows. 1) and the amount used was changed as shown in Table 2 below. The results are also shown in Table 2 below.
  • ⁇ Materials used> -Quick hard material B An equal mixture of CaO-Al 2 O 3 -SiO 2 amorphous material and anhydrous gypsum.
  • CaO—Al 2 O 3 —SiO 2 amorphous material CaO is 47%, Al 2 O 3 is 47%, SiO 2 is 3%, and others are 3%.
  • Density 2.85 g / cm 3 Blaine specific surface area 5000 cm 2 / g, amorphousness 90% -Quick hard material
  • C Equal mixture of alumina cement No.
  • anhydrous gypsum mainly composed of CaO ⁇ Al 2 O 3 Density 3.00 g / cm 3 , Blaine specific surface area 5000 cm 2 / g -Quick hardening material D: Super fast hardening cement containing 3CaO.3Al 2 O 3 .CaSO 4 compound as a main component (40%). Density 2.80 g / cm 3 , Blaine specific surface area 5000 cm 2 / g
  • Example 3 It was carried out in the same manner as in Experimental Example 1 except that the hardener A was used and the type and amount of the sleeping agent were changed as shown in Table 3. The results are shown in Table 3.
  • Hypnotic 1 Mixture of 75 parts of reagent grade 1 potassium carbonate and 25 parts of reagent grade 1 citric acid
  • Non-sleep agent 2 Reagent grade 1 potassium carbonate sleep agent 3: Reagent grade 1 citric acid sleep agent 4: Reagent 1 Grade tartaric acid
  • Example 4 Cement 380 kg / m 3, rapid hardwood A120kg / m 3, in the ultra-rapid setting concrete using Okoshikata Zaii 3 parts, as shown in the following Table 4, to have changed the amount of cement type and Nemurizai 1 Except for this, the same procedure as in Experimental Example 1 was performed. The results are shown in Table 4 below.
  • Example 5 In the hardened concrete using 380 kg / m 3 cement, 120 kg / m 3 of the hardener A, 1.5 parts of the sleeping agent 1 and 3 parts of the hardener A, the timing of addition of the hardener and the hardener The experiment was performed in the same manner as in Experimental Example 1 except that the changes were made as shown in Table 5 below. The results are shown in Table 5 below.
  • the pot life is shortened, the compressive strength is low, the wear resistance tends to deteriorate, and the agitator used as a mixing container It can be seen that only about 30% of the drum volume can be conveyed.
  • Example 7 It was carried out in the same manner as in Experimental Example 1 except that anhydrous gypsum was added to 100 parts of the hardener C as shown in the following table. The results are also shown in Table 7 below.
  • Anhydrite is a type II natural anhydrous gypsum from Thailand.
  • Example 8 It was carried out in the same manner as in Experimental Example 1 except that 100 parts of water, 100 parts of dextrin and cellulose derivative were blended as shown in the following table and added to and mixed with the base concrete after slurrying. . The results are also shown in Table 8 below.
  • the dextrin is a dextrin manufactured by Oji Cornstarch Co., Ltd. and has a cold water soluble content of 50%, and the cellulose derivative is methylcellulose SM10000 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 9 It was carried out in the same manner as in Experimental Example 1 except that 100 parts of the hardener was packaged with a water-soluble PVA film to prepare a hardener composition.
  • the results are also shown in Table 8 below.
  • the water-soluble PVA film was prepared by polymerizing vinyl acetate so as to be a maleic acid-modified product having an average saponification rate of 50% and 10%. Further, the dust concentration at which the electromotive hardwood packaged in water-soluble PVA film was added to the concrete, less than 0.1 mg / m 3 ⁇ , less than 1.0 mg / m 3 from 0.1 ⁇ , 1.0 mg / M 3 or more was taken as x.
  • Example 10 Three parts of the hardener C are used for 100 parts of the binder, and the type of the hardened material (A to D; the hardened material A is used in Experimental Example 1, and the hardened materials B to D are used in the experiment.
  • the same procedure as in Experimental Example 1 was conducted except that the amount used and the amount used in Example 2 were changed as shown in Table 10 below. The results are also shown in Table 10 below.
  • ⁇ Materials used> -Quick hard material B An equal mixture of CaO-Al 2 O 3 -SiO 2 amorphous material and anhydrous gypsum.
  • CaO—Al 2 O 3 —SiO 2 amorphous material CaO is 47%, Al 2 O 3 is 47%, SiO 2 is 3%, and others are 3%.
  • Density 2.85 g / cm 3 Blaine specific surface area 5000 cm 2 / g, amorphousness 90% -Quick hard material
  • C Equal mixture of alumina cement No.
  • anhydrous gypsum mainly composed of CaO ⁇ Al 2 O 3 Density 3.00 g / cm 3 , Blaine specific surface area 5000 cm 2 / g -Quick hardening material D: Super fast hardening cement containing 3CaO.3Al 2 O 3 .CaSO 4 compound as a main component (40%). Density 2.80 g / cm 3 , Blaine specific surface area 5000 cm 2 / g
  • Example 11 It was carried out in the same manner as in Experimental Example 1 except that the hardener C was used and the type and amount of the sleeping agent were changed as shown in Table 11. The results are shown in Table 11.
  • Hypnotic 1 Mixture of 75 parts of reagent grade 1 potassium carbonate and 25 parts of reagent grade 1 citric acid
  • Non-sleep agent 2 Reagent grade 1 potassium carbonate sleep agent 3: Reagent grade 1 citric acid sleep agent 4: Reagent 1 Grade tartaric acid
  • Example 13 In the hardened concrete using 380 kg / m 3 cement, 120 kg / m 3 of hardener A, 1.5 parts of sleeping agent 1 and 3 parts of hardener C, the timing of addition of the hardener and hardener The experiment was performed in the same manner as in Experimental Example 1 except that the changes were made as shown in Table 13 below. The results are shown in Table 13 below.
  • the pot life is shortened, the compressive strength is low, the wear resistance tends to deteriorate, and it becomes a kneading / transporting container. It can be seen that only about 30% of the drum volume of the agitator can be conveyed.
  • the ready-mixed quick-hardening concrete composition of the present invention is excellent in initial strength development while ensuring sufficient pot life, and is excellent in wear resistance after curing. It is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

水酸化カルシウム、炭酸カルシウム、カルシウムアルミネート系化合物、カルシウムシリケート系化合物、コロイダルシリカ、ポルトランドセメント、カルシウムサルフォアルミネートセメント、及び高炉スラグからなる群から選択される少なくとも1種を含む生コン出荷型急硬コンクリート用起硬剤である。

Description

生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
 本発明は、生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法に関する。
 世界的に見るとセメントの生産量は増加しており、急速にインフラ整備が進められている。特に、中国や東南アジアでの建設ラッシュは現在も続いている。インフラ整備の中でも、道路整備は重要な位置付けにある。道路は新設の際にも、また、補修の際にも、早期解放が望まれるため、使用する材料としても早期供用を可能とする材料が求められている。その一例として、急硬コンクリートが挙げられる。
 急硬コンクリートの要求性能としては、可使時間も重要な性能となる。生コンプラントで生コンを製造し、施工現場まで搬送し、施工にかかる時間や生コン運搬車であるアジテータ車の洗浄時間も考慮すると、最低でも120分以上、できれば180分以上の可使時間の確保が望ましい。しかしながら、可使時間を長く確保することは、硬化時間を遅らせることになるため、短期材齢での要求強度を満たすことができなくなる。このため、従来の技術では、充分な可使時間を確保しつつ、初期材齢で必要な強度発現性を満たすことは困難であった。
 現在、急硬コンクリートは、施工現場で調製されているのが実情である。少量の打設量の工事では、0.1~0.2m程度のミキサで急硬コンクリートを練り混ぜ、人海戦術で急硬コンクリートの調製と打設を行っている。この方法では、人手が多く必要となり工数が嵩みコスト高である上に、供給できる急硬コンクリートのボリュームに限界があった。また、打設量の多い工事では、コンクリートモービル車を用いて急硬コンクリートを連続して供給している。しかしながら、この方法では、コンクリートモービル車を手配しなければならないにことに加えて、予め、水分を一定に管理した細骨材や粗骨材をフレコンパックに詰めて現場に搬送したり、急硬セメントをフレコンパックに詰めて現場に搬送して準備しておいたり等の工数が嵩むこともあり、急硬コンクリートのコストが著しく高くなるという課題があった。また、コンクリートモービル車の手配にも限界があった。
 今日では、生コンプラントから出荷できる急硬コンクリートの開発が強く望まれている。生コンプラントから急硬コンクリートを出荷できれば、既存の練り混ぜ設備や搬送システムをそのまま活用して大量の急硬コンクリートを施工現場に供給できる。
 他方、ポルトランドセメントに、急硬性を与える目的でカルシウムアルミネートを加えること、また、さらにセッコウ類を併用することが米国のSpackmanにより古くから検討されている(例えば、特許文献1参照)。また、非晶質のカルシウムアルミネートとセッコウ類の混合物を急硬材として利用することも知られていた(例えば、特許文献2、3参照)。
 特許文献4~8には、生コンプラントから急硬コンクリートを出荷し、施工現場に到着後、急結剤を添加する急結コンクリートが開示されている。
 また、特許文献9~11には、生コンに凝結遅延剤と水酸化カルシウムをβナフタレンスルホン酸とともに添加しておき、施工現場に到着後に急結剤を添加する急結コンクリートが開示されている。
 特許文献12、13には、オキシカルボン酸またはその塩と炭酸リチウムよりなる凝結遅延剤をベースコンクリートの練り混ぜ時または練り混ぜ直後に添加し、この練り混ぜたベースコンクリートにCaO・Al結晶を主成分とする速硬材を施工時に添加することを特徴とする速硬コンクリートの製造方法が開示されている。
米国特許第903019号 特開昭48-1024号公報 特開平04-97932号公報 特開2000-264712号公報 特開2000-327394号公報 特開2001-213655号公報 特開2001-253753号公報 特開2002-037654号公報 特開平11-24074号公報 特開2002-321958号公報 特開2002-321959号公報 特開2007-045654号公報 特開2012-139897号公報
 しかし、特許文献1~3の従来の急硬材技術のみを活用してみても、生コンから出荷できる急硬コンクリートを調製できるものではなかった。すなわち、従来の急硬コンクリートは、ポルトランドセメントに加えて、急硬材と遅延剤を併用するものであり、短時間材齢での強度発現性を求める場合には、可使時間の設定を60分以内に設定しなければならない。そして、この場合、生コンプラントからの出荷が現実的に不可能であった。逆に、生コンプラントからの出荷を実現するために、遅延剤を多く添加して、可使時間の設定を120分以上にすると、短時間材齢での強度発現は不可能であった。ましてや、実際の工事では、交通渋滞や施工トラブルによる工事の中断等、想定外のアクシデントが多数発生する可能性もある。生コン出荷型の急硬コンクリートを考える場合には、このようなリスクを全て許容するような長い可使時間の確保が重要となる。
 したがって、どんなに搬送時間が短い施工現場であっても、最低でも可使時間は120分以上必要であり、ましてや、交通量が多い場合や、搬送距離が長い場合には180分以上の可使時間を確保することが望まれる。このように、これまで生コン出荷型の急硬コンクリートが実現しなかった理由は、長い可使時間の確保と短時間強度の発現が、技術的にトレードオフの関係にあり、これらを両立することが極めて困難なためである。
 生コンプラントで練り混ぜができ、アジテータ車で施工現場まで運搬し、打設に要する時間や洗浄にかかる時間、さらには、交通渋滞や施工トラブルによる工事の中断等、あらゆるアクシデントも許容するような長い可使時間を設定しても、打設後は迅速に強度発現するような急硬コンクリートの開発が切望さているのである。また、道路舗装では、耐摩耗性も重要な要求性能である。
 また、特許文献4~8の技術はトンネルのプレライニング工法に用いられるもので、急結剤はアルミン酸アルカリや硫酸アルミニウム、ケイ酸ナトリウムなどを適用するものであり、急結剤を添加した後に作業時間が確保できるものではなかった。土木学会の指針では、急結剤の定義として、吹付けコンクリート指針(案)に急結材の品質規格が規定されている。これによると、凝結時間の始発は5分以内、終結は15分以内と定められている。つまり、急結剤を用いると、15分以上の可使時間は確保できない。
 さらに、特許文献9~11の技術も急結剤を用いるため、急結剤添加後に15分以上の可使時間は確保できないものであった。
 また、特許文献12、13の技術では、施工現場に到着してから多量の速硬材を添加しなければならず、実用性に乏しいものであった。具体的には、ケイ酸系セメント40~90部に対して、速硬材10~60部を添加するものであった。多量の速硬材を後添加してアジテータトラックで練り混ぜるため、アジテータのドラム容積に対して、3/8(37.5vol%)以下の容量しか生コンを積み込んで搬送できないものであった。
 以上から、本発明は、充分な可使時間を確保しつつ、初期の強度発現性に優れ、しかも、硬化物とした際に優れた耐摩耗性を発揮する生コン出荷型急硬コンクリート組成物を提供することを目的とする。また、当該生コン出荷型急硬コンクリート組成物の当該効果を良好に発揮させることができる生コン出荷型急硬コンクリート用起硬剤を提供することを目的とする。さらに、当該生コン出荷型急硬コンクリート組成物を製造するための当該生コン出荷型急硬コンクリート組成物の調製方法を提供することを目的とする。
 そこで、本発明者らは、上記課題を解決すべく、種々努力を重ねた結果、特定の急硬材と特定の眠剤とを組み合わせて調製したコンクリートを生コンプラントで調製し、現場まで搬送後、特定の起硬剤を添加混合することにより、充分な可使時間を確保しつつ、初期の強度発現性に優れ、加えて、耐摩耗性にも優れる急硬コンクリートを調製できることを知見し、本発明を完成するに至った。すなわち、本発明は下記のとおりである。
[1] 水酸化カルシウム、炭酸カルシウム、カルシウムアルミネート系化合物、カルシウムシリケート系化合物、コロイダルシリカ、ポルトランドセメント、カルシウムサルフォアルミネートセメント、及び高炉スラグからなる群から選択される少なくとも1種を含む生コン出荷型急硬コンクリート用起硬剤。
[2] さらに、セッコウを含有してなる[1]に記載の生コン出荷型急硬コンクリート用起硬剤。
[3] 前記カルシウムアルミネート系化合物と前記セッコウとを含有してなる[2]に記載の生コン出荷型急硬コンクリート用起硬剤。
[4] 前記水酸化カルシウムと前記カルシウムアルミネート系化合物とを含み、前記水酸化カルシウムと前記カルシウムアルミネート系化合物との質量比(水酸化カルシウム/カルシウムアルミネート系化合物)が1/99~99/1である[1]~[3]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤。
[5] 前記カルシウムアルミネート系化合物におけるCaOとAlとのモル比(CaO/Al)が0.5~2.4である[1]~[4]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤。
[6] さらに、デキストリン及びセルロース誘導体からなる群から選ばれる少なくとも1種を含有してなる[1]~[5]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤。
[7] 水溶性フィルムで包装されてなる[1]~[6]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤。
[8] セメント、急硬材、及び眠剤を含むA材と、[1]~[7]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤を含むB材と、を含む2材型の生コン出荷型急硬コンクリート材料。
[9] セメント、急硬材、及び眠剤を含むA材に、[1]~[7]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤を含むB材が添加混合されてなる生コン出荷型急硬コンクリート組成物。
[10] 前記急硬材がカルシムアルミネート系化合物とセッコウ類とを主成分とする[9]に記載の生コン出荷型急硬コンクリート組成物。
[11] 前記急硬材がCaO-Al-SiO系化合物とセッコウ類とを含み、前記CaO-Al-SiO系化合物の非晶質度が70%以上で、かつ、SiOが1~18質量%の範囲である[9]又は[10]に記載の生コン出荷型急硬コンクリート組成物。
[12] 前記眠剤が、オキシカルボン酸、リチウム以外のアルカリ金属炭酸塩及びオキシカルボン酸を含む[9]~[11]のいずれかに記載の生コン出荷型急硬コンクリート組成物。
[13] 前記生コン出荷型急硬コンクリート用起硬剤の含有量が、前記セメント及び前記急硬材の合計100質量部に対して、0.5~7質量部である[9]~[12]のいずれかに記載する生コン出荷型急硬コンクリート組成物。
[14] 少なくとも、セメント、急硬材、及び眠剤を混練水とともに練り混ぜ用容器内で練り混ぜる工程と、さらに、[1]~[7]のいずれかに記載の生コン出荷型急硬コンクリート用起硬剤を混合する工程と、を順次含む生コン出荷型急硬コンクリートの調製方法。
[15] 前記練り混ぜる工程において、少なくとも、セメント、急硬材、眠剤、骨材及び混練水を含むベースコンクリートの容量を、前記練り混ぜ容器の内容積の40%以上とする[14]に記載の生コン出荷型急硬コンクリートの調製方法。
[16] 生コン出荷型急硬コンクリート用起硬剤を混合した後の可使時間を15分以上確保できるように前記生コン出荷型急硬コンクリート用起硬剤の種類と混合量を定める[14]又は[15]に記載の生コン出荷型急硬コンクリートの調製方法。
[17] 前記眠剤の使用量を、前記セメントと前記急硬材の合計100質量部に対して、0.3~5質量部とする[14]~[16]のいずれかに記載の生コン出荷型急硬コンクリートの調製方法。
 本発明によれば、充分な可使時間を確保しつつ、初期の強度発現性に優れ、しかも、硬化物とした際に優れた耐摩耗性を発揮する生コン出荷型急硬コンクリート組成物を提供することができる。また、当該生コン出荷型急硬コンクリート組成物の当該効果を良好に発揮させることができる生コン出荷型急硬コンクリート用起硬剤を提供することができる。さらに、当該生コン出荷型急硬コンクリート組成物を製造するための当該生コン出荷型急硬コンクリート組成物の調製方法を提供することができる。
 以上のような効果に鑑みると、本発明は、特に、土木建築分野で好適に用いられる。
 以下、本発明の実施形態を詳細に説明するが、本発明は当該実施形態に限定されるものではない。なお、本明細書における「部」や「%」は特に規定しない限り質量基準とする。また、本明細書における組成物とは、セメント組成物、モルタル組成物、コンクリート組成物を総称するものである。
[1]生コン出荷型急硬コンクリート用起硬剤
 本発明の生コン出荷型急硬コンクリート用起硬剤に係る実施形態において、生コン出荷型急硬コンクリート用起硬剤(以下、単に「起硬剤」ということがある)とは、後述する眠剤を多量に添加し、眠らせた急硬コンクリート(水和硬化がほぼ停止したコンクリート)の水和硬化を例えば施工現場で再び呼び覚ます材料を意味する。その具体例としては、水酸化カルシウム、炭酸カルシウム、カルシウムアルミネート系化合物、カルシウムシリケート系化合物、コロイダルシリカ、ポルトランドセメント、カルシウムサルフォアルミネートセメント、高炉スラグなどの1種または2種以上を併用することが可能である。
 ここで、本実施形態でいう「生コン出荷型急硬コンクリート」とは、生コン工場や生コンプラント等で生コン(レディミクストコンクリート)を混練した後、アジテータ車によって搬送されて、土木工事現場や建設現場等の施工現場に出荷され、打ち込み作業後に比較的早く硬化するコンクリートをいう。生コン出荷型急硬コンクリートの場合、搬送時間の関係から、出荷から作業完了まで、最低でも可使時間は120分以上必要であり、搬送距離が長い場合には180分以上の可使時間を確保することが望まれる。本実施形態は、このような用途に特化して用いられるものである。
 なお、上記の「アジテータ車」とは、生コンを撹拌しながら輸送することができる、荷台部分にミキシング・ドラム(練り混ぜ用容器)を備えた貨物自動車であり、その機能に大きな差はないが、最大積載量2~26t級のものがあり、用途に応じて使い分けられている。
 ただし、生コン出荷型急硬コンクリート用起硬剤を添加した後も、作業時間を確保する必要があり、少なくとも15分以上の可使時間が確保できる起硬剤の種類の選定と添加量の設定が必要である。その観点から、起硬剤として、アルミン酸ナトリウム、硫酸アルミニウム、ケイ酸ナトリウム等の急結剤の選定は避ける必要がある。これらの急結剤は、添加後直ちに急結性を示し、10分以上の可使時間を確保することが困難となる。したがって、これら急結剤は生コン出荷型急硬コンクリート用起硬剤100部に対して、30部以下とすることが好ましく、まったく使用しないことがより好ましい。
 生コン出荷型急硬コンクリート用起硬剤は既述のいずれかの成分を必須成分とするが、温度依存性を改善するために、水酸化カルシウムとカルシウムアルミネート系化合物とを併用することがより好ましい。その配合割合は特に限定されないが、水酸化カルシウムとカルシウムアルミネート系化合物との質量比(水酸化カルシウム/カルシウムアルミネート系化合物)で、1/99~99/1であることが好ましく、2/98~98/2であることがより好ましい。質量比1/99~99/1であることで、温度依存性を小さくできることに加え、セメントの種類が変化した際にも安定した起硬剤の効果を発揮することができる。当該質量比は、さらに、10/90~90/10であることが好ましく、20/80~80/20であることがより好ましい。
 生コン出荷型急硬コンクリート用起硬剤は、例えば、300μm篩い残分が5%以下であり、100μm篩い残分が10%以下であることが好ましい。
 本発明においてカルシウムアルミネート系化合物は、後述する急硬材にも用いるが、起硬剤に適用するカルシウムアルミネート系化合物は、CaO/Alモル比で0.5~2.4の範囲のものが好ましい。CaO/Alモル比が0.5以上であることで、温度依存性の改善効果をより十分に発揮させることができ、2.4以下であることで、起硬剤をスラリーで用いる際に急硬を抑えることができる。
 なお、上記の好ましい範囲内でも、可使時間を長くする観点からは、0.5~1.2の範囲のものがより好ましく、0.75~1.0の範囲のものがさらに好ましい。初期の強度発現の観点からは、1.2~2.4の範囲のものがより好ましく、1.25~2.3の範囲のものがさらに好ましい。
 さらにカルシウムアルミネート系化合物は、非晶質カルシウムアルミネート系化合物と結晶質カルシウムアルミネート系化合物に大別されるが、長期強度の発現性から非晶質カルシウムアルミネート系化合物の使用が好ましい。
 また、生コン出荷型急硬コンクリート用起硬剤における、水酸化カルシウム、炭酸カルシウム、カルシウムアルミネート系化合物、カルシウムシリケート系化合物、コロイダルシリカ、ポルトランドセメント、カルシウムサルフォアルミネートセメント、及び高炉スラグのそれぞれ、又は、併用する場合はそれらの合計は、それぞれの効果、又は、複合効果を効率よく発揮させる観点から、70%以上であることが好ましく、80%以上であることがより好ましい。
 なお、上記例示した起硬剤以外の物質(その他の成分)の存在も、当該起硬剤の分散性を高めたり、起硬剤の効果を助長したりできるもので、本発明の効果を阻害しないものあれば、30%以下の範囲で含有させることができる。
 本発明に係る起硬剤においては、既述のいずれかの成分に、さらに、セッコウを含有することが好ましく、カルシウムアルミネート系化合物とセッコウとを含有してなることがより好ましい。使用するセッコウは、無水セッコウ、半水セッコウ、二水セッコウのいずれのセッコウも使用できる。さらに天然セッコウや、リン酸副生セッコウ、排脱セッコウ、及びフッ酸副生セッコウなどの化学セッコウ、または、これらを熱処理して得られるセッコウなども使用できる。これらの中では、強度発現性の点で、無水セッコウ及び/又は半水セッコウが好ましいが、コストの観点から無水セッコウを選定することが好ましく、II型無水セッコウ及び/又は天然無水セッコウが好ましい。セッコウの粒度はブレーン値で3000cm/g以上が好ましく、4000~7000cm/gがより好ましい。3000cm/g以上であることで初期強度発現性を良好に発揮させることができる。
 セッコウの使用量は、起硬剤(好ましくはカルシウムアルミネート系化合物)100部に対して10~200部が好ましく、15~150部がより好ましく、90~130部がさらに好ましい。これらの範囲であることで長期強度発現性と耐久性を良好にすることができる。
 生コン出荷型急硬コンクリート用起硬剤の使用量は、特に限定されるものではないが、後述のセメントと急硬材との合計100部に対して、0.5~7部が好ましく、1~5部がより好ましい。0.5~7部であることで、短時間材齢の強度発現性を十分なものとし、可使時間を確保することができる。なお、起硬剤はスラリー化して各種のベースコンクリートなどに添加してもよい。この場合、コンクリート配合から練り混ぜ水の一部を起硬剤のスラリーに充て、ベースコンクリートからその分の水を差し引いておくことが、強度発現性の観点から望ましい。また、起硬剤は予めポリビニルアルコール(PVA)フィルムなどの水溶性フィルムによって包装された状態で各種のベースコンクリートなどに添加してもよい。この場合、起硬剤とともにその効果を阻害しない範囲で種々の添加物を混合してもよい。なお、本明細書において、ベースコンクリートとは、少なくとも、セメント、急硬材、眠剤、骨材、及び混練水を混練してなるコンクリートをいう。
 ここで、好ましい態様の水溶性フィルムは、木材パルプ、多糖類、ポバール、セルロース、ポリビニルアルコール、カルボキシメチルセルロース、でんぷん等を原料としたものを用い、原料中の木材パルプの含有量は75~95%が好ましく、80~90%はより好ましい。木材パルプを除く多糖類、ポバール、セルロース、ポリビニルアルコール、カルボキシメチルセルロース、でんぷん等の原料は、5~25%が好ましく、10~20%がより好ましい。
 上記範囲より多糖類、ポバール、セルロース、ポリビニルアルコール、カルボキシメチルセルロース、でんぷん等の原料が少ない場合、水溶紙を製造する際のヒートシールに必要な接着剤原料が不足し、製造が困難となり、上記範囲より多い場合、コンクリート中に空気を巻き込むので好ましくない。
 また、好ましい態様の水溶性フィルムは水溶性であれば特に限定されるものではないが、20℃の水500mlが入ったビーカー(容量1000ml)に水溶性フィルムを10g添加し、スターラー(池田理工社製)により800rpmで撹拌した時の分散時間が、30秒以下であることが好ましく、20秒以下がより好ましい。分散時間は目視により凝集物がなくなった状態の時を言う。分散時間が30秒を超えるものはコンクリート練混ぜ後に分散しきらず、コンクリート中に残存する場合がある。
 上記好ましい態様の水溶性フィルムによって起硬剤を包装した態様を用いたコンクリートの練混ぜ時間は、当該態様を用いない無混和のコンクリートと比較して同程度であるが、上記好ましい態様の水溶性フィルムでない水溶性フィルムを用いた場合、コンクリートの練混ぜ時間が長くなることがあり、同じ練混ぜ時間の場合、投入袋数が好ましい態様の水溶性フィルムと同じでも、水溶性フィルムがコンクリート中に残存する場合がある。
 さらに、本発明に係る起硬剤をスラリー化して各種のベースコンクリートなどに圧送添加する場合においては、デキストリン及びセルロース誘導体からなる群から選ばれる少なくとも1種を含有してなることが好ましい。なかでも、デキストリン、あるいはデキストリンとセルロース誘導体との組み合わせがより好ましい。
 デキストリンは、セメントの凝結を遅らせることで後述の生コン出荷型急硬コンクリート組成物の安定性を高めることができる。デキストリンは、一般に化工澱粉とも呼ばれ、通常、トウモロコシ澱粉、馬鈴薯、タピオカ澱粉、小麦澱粉、甘薯澱粉、及び米澱粉等を加水分解して得られる。なかでも、希酸を加え、分解して得られる酸焙焼デキストリンが最も一般的であり、酸浸漬法で得られるもの、澱粉の酵素分解で得られるマルトデキストリン、無焙焼で得られるブリティッシュガム、あるいは、澱粉に水を加えたものを加熱したり、アルカリや濃厚な塩類の溶液を加えてアルファー化したりしたものを急速に脱水乾燥して得られるアルファー化澱粉、もしくは、これらを水に溶解させて残留分を乾燥させた粉末等が使用できる。この他、カルボン酸エステル化、炭酸エステル化、及びエーテル化等の化学変性をさせたものが使用できる。特に、デキストリンの20℃における冷水可溶分が5~90%のものが好ましく、10~65%がより好ましい。デキストリンの20℃における冷水可溶分が小さくなると充分な凝結遅延効果が得られない場合があり、デキストリンの20℃における冷水可溶分が大きくなると硬化不良を引き起こすおそれがある。
 デキストリンは、起硬剤100部に対して、0.01~5部が好ましく、0.1~3部がより好ましい。0.01~5部であることで、短時間材齢の強度発現性を十分なものとし、起硬材をスラリー化したときの発熱を抑制することができる。
 セルロース誘導体は、起硬材をスラリー化したときのブリーディング防止に寄与するものであり、特に限定されるものではないが、一般に水溶性高分子物質と呼ばれているもので、メチルセルロース(MC)、カルボキシルメチルセルロース(CMC)等が挙げられる。
 セルロース誘導体の使用量は、デキストリン100部に対して、5~80部が好ましく、10~50部がより好ましい。5~80部であることで、ブリーディング防止と長距離圧送性を両立することができる。
[2]生コン出荷型急硬コンクリート材料及び生コン出荷型急硬コンクリート組成物
 本発明の生コン出荷型急硬コンクリート材料に係る実施形態は、急硬材、及び眠剤を含むA材と、既述の生コン出荷型急硬コンクリート用起硬剤を含むB材と、を含む2材型の生コン出荷型急硬コンクリート材料である。
 そして、本発明の生コン出荷型急硬コンクリート組成物に係る実施形態は、上記A材に上記B材が添加混合されてなる。
 本実施形態において、生コンプラントでは、急硬材と眠剤を予め添加混合した各種のベースコンクリートを用意する必要があり、起硬剤は現場まで搬送後に各種のベースコンクリートに対して添加混合する必要がある。起硬剤を施工現場でなく生コンプラントで予め各種のベースコンクリートに対して混合すると、可使時間が確保できない。また、生コン工場で急硬材と起硬剤の双方を添加すると、可使時間が極端に短くなり、搬送途中でコンクリートの破棄を余儀なくされる。
 起硬剤を生コン工場で添加し、施工現場で急硬材を添加する場合には、急硬材を添加した後の可使時間が10分以下と極端に短くなり、施工ができない。急硬材と起硬剤を施工現場で添加する場合には、可使時間が短縮され、圧縮強度も低い値となり、耐摩耗性も改悪傾向となることに加え、アジテータのドラム容積の30%程度しか搬送できない。このように、急硬材と起硬剤の添加タイミングは極めて重要である。
 そこで、本実施形態では、セメント、急硬材、及び眠剤を含むA材と、生コン出荷型急硬コンクリート用起硬剤を含むB材とからなる2材型とすることで、具体的には、生コンプラントから施工現場まで、A材とB材を別々に搬送し、施工現場でこれらを混合することで、本実施形態の生コン出荷型急硬コンクリート組成物とすることができる。以下、本実施形態に係る各成分等を詳細に説明する。
(セメント)
 本実施形態でいう「セメント」とは、特に限定されるものではないが、例えば、日本工業規格(JIS)で定められる普通、早強、中庸熱、低熱の各種ポルトランドセメント、高炉スラグ、フライアッシュ、シリカを混合した各種の混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのあらゆるセメントが挙げられる。また、海外のEN197-2000で定められたセメントや中国GB規格で定められるあらゆるセメントを挙げることができ、これらのうちの一種又は二種以上が使用可能である。
 ポルトランドセメントの構成化合物は、エーライト(3CaO・SiO)、ビーライト(2CaO・SiO)、アルミネート(3CaO・Al)、フェライト(4CaO・Al・Fe)と、さらに、二水セッコウが混合されている(この一部が半水セッコウに変化することもある)。本実施形態では、高炉スラグ、フライアッシュ、シリカ、石灰石微粉末などの混合材を含まないセメントを選定することが強度発現性の観点から望ましく、中でも、エーライト含有量が高く、粉末度の高い(粒度が細かい)セメントを選定することが好ましい。これに該当するセメントとしては、例えば、日本のセメントで例示すると、早強セメントや普通セメントを挙げることができる。また、中国のセメントで例示すると、PII52.5やPII42.5を挙げることができる。
(急硬材)
 本実施形態の急硬材は、カルシウムアルミネート系化合物とセッコウ類とからなる。ここで、カルシウムアルミネート系化合物とは、CaOとAlを主体とする化合物を総称するものであり、特に限定されるものではない。その具体例としては、CaO・Al、12CaO・7Al、11CaO・7Al・CaF、3CaO・Al、3CaO・3Al・CaSO、更に、CaOとAlを主体とする非晶質物質(例えば、CaO-Al-SiO系化合物)等が挙げられる。中でも、非晶質物質を選定することが強度発現性の観点から好ましい。
 ここで、本実施形態における非晶質度とは、以下のように定義する。対象物質を1000℃で2時間焼きなました後、5℃/分の冷却速度で徐冷して結晶化させる。そして、結晶化させたものを粉末X線回折法により測定し、結晶鉱物のメインピークの面積Sを求める。次いで、焼きなまし前の物質の結晶のメインピーク面積Sから、以下の式により非晶質度Xを求める。
 X(%)=100×(1-S/S
 なお、一般の工業原料にはSiO、MgO、Fe、TiO、KO、NaO等の不純物が含まれているが、これらの不純物は、カルシウムアルミネート系化合物の非晶質化を助長する面もあり、これらの総量が20%以下の範囲で存在しても差し支えない。中でも、SiOの存在は好ましく、非晶質カルシウムアルミネートを得る目的で、1~18%の範囲で含有させることもできる。
 したがって、急硬材としては、CaO-Al-SiO系化合物とセッコウ類とを含み、このCaO-Al-SiO系化合物の非晶質度が70%以上で、かつ、SiOが1~18質量%の範囲であることが好ましい。より好ましくは、CaO-Al-SiO系化合物の非晶質度が80%以上で、かつ、SiOが2~13質量%の範囲である。
 カルシウムアルミネート系化合物は、粉砕処理により、ブレーン比表面積で3000~9000cm/gに調整することが好ましく、4000~8000cm/gに調整することがより好ましい。カルシウムアルミネート系化合物の粉末度(ブレーン比表面積)が、4000~9000cm/gであることで十分な急硬性が得られやすくなり、低温での強度発現性も得られやすくなる。
 また、本実施形態の急硬材は、粉砕処理により、ブレーン比表面積で3000~9000cm/gに調整することが好ましく、4000~8000cm/gに調整することがより好ましい。急硬材の粉末度が、3000~9000cm/gであることで十分な超速硬性が得られやすくなり、低温での強度発現性も得られやすくなる。
 急硬材の使用量は、セメントと急硬材との合計100部中、10~35部が好ましく、15~30部がより好ましく、20~25部がさらに好ましい。10~35部であることで、良好な初期強度発現性が得られやすくなり、長期強度の低下も起こりにくくなる。
(眠剤)
 本実施形態で使用する眠剤は、生コンから出荷した急硬コンクリートを眠らせる(水和硬化をほぼ停止させる)働きを持つものであり、生コンプラントでの急硬トラブルや、アジテータ車で搬送する際の急硬トラブルを回避するものである。眠剤としては、例えば、オキシカルボン酸、又は、その塩、或いはこれらとアルカリ金属炭酸塩の併用、糖類、ホウ酸等が挙げられる。オキシカルボン酸とアルカリ金属炭酸塩を併用することが、急硬コンクリートを眠らせる効果が大きい面や、起硬剤を添加した後の強度発現性が良好な面から好ましい。ただし、アルカリ金属炭酸塩はリチウム以外のアルカリ金属炭酸塩を選定することが好ましい。ベースコンクリートの十分な可使時間を確保し、かつ、起硬剤を添加した後も一定の可使時間を確保し、さらに、強度発現性を良好にする必要があり、この観点から炭酸リチウムの適用は好ましくない。
 眠剤としては、オキシカルボン酸、リチウム以外のアルカリ金属炭酸塩及びオキシカルボン酸の混合物を含むことが好ましく、リチウム以外のアルカリ金属炭酸塩とオキシカルボン酸とを含むことがより好ましい。リチウム以外のアルカリ金属炭酸塩とオキシカルボン酸との混合比は、アルカリ金属炭酸塩/オキシカルボン酸で、10/90~90/10であることが好ましく、20/80~80/20であることがより好ましい。
 オキシカルボン酸又はその塩としては、クエン酸、グルコン酸、酒石酸、リンゴ酸等が挙げられ、その塩としては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられる。これらの1種又は2種以上を併用してもよい。
 眠剤の使用量は、セメントと急硬材の合計100部に対して、0.3~5部が好ましく、0.3~4.5部がより好ましい。0.3~5部であることで、現場までの搬送時間に加え、十分な作業時間の確保がしやすくなる。また、起硬剤を添加した際に水和硬化を再び呼び起こしやすくなる。
(セッコウ)
 本実施形態で使用するセッコウ類は、無水セッコウ、半水セッコウ、二水セッコウのいずれのセッコウも使用できる。さらに天然セッコウや、リン酸副生セッコウ、排脱セッコウ、及びフッ酸副生セッコウなどの化学セッコウ、または、これらを熱処理して得られるセッコウなども使用できる。これらの中では、強度発現性の点で、無水セッコウ及び/又は半水セッコウが好ましいが、コストの観点から無水セッコウを選定することが望ましく、II型無水セッコウ及び/又は天然無水セッコウが好ましい。セッコウの粒度はブレーン値で3000cm/g以上が好ましく、4000~7000cm/gがより好ましい。3000cm/g以上であることで初期強度発現性を良好に発揮させることができる。
 セッコウ類の使用量は、カルシウムアルミネート系化合物100部に対して10~200部が好ましく、15~150部がより好ましく、20~130部がさらに好ましい。これらの範囲であることで強度発現性を良好に発揮させることができる。
 本実施形態では、既述の急硬材、眠剤、起硬剤の他に、膨張材、減水剤、AE減水剤、高性能減水剤、高炉徐冷スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末やフライアッシュ、シリカフューム等の混和材料、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、ポリマー、ベントナイトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
[3]生コン出荷型急硬コンクリートの調製方法
 本発明の生コン出荷型急硬コンクリートの調製方法の実施形態は、少なくとも、セメント、急硬材、及び眠剤を混練水とともに練り混ぜ用容器内で練り混ぜる工程と、さらに、生コン出荷型急硬コンクリート用起硬剤を例えば施工現場で混合する工程と、を順次含む。
 なお、上記混練水は例えば、生コン工場や生コンプラント等から出荷される。また、練り混ぜ工程では、練り混ぜとともに運搬も行われる場合が多い。
 生コン工場や生コンプラント等から出荷され、練り混ぜ(・運搬する)工程においては、少なくとも、セメント、急硬材、眠剤、及び混練水を含むベースコンクリートの容量を、練り混ぜ(・運搬)用容器の内容積の40%(容量%)以上とすることが好ましく、50容量%以上とすることがより好ましい。
 ここで、練り混ぜ(・運搬)用容器とは、例えば、アジテータ車のドラム等のような生コン運搬車に備え付けられ、生コンを撹拌しながら保持できる容器をいう。
 そして、生コン出荷型急硬コンクリート用起硬剤を混合した後の可使時間が10分以上、好ましくは15分以上確保できるように生コン出荷型急硬コンクリート用起硬剤の種類と混合量を定めることが好ましい。
 以上のように、本実施形態に係る生コン出荷型急硬コンクリート用起硬剤は、生コン(レディミクストコンクリート)を混練した後、この混練物が搬送されて施工現場に出荷され、打ち込み作業後に添加される混和材料としての使用に好適である。また、同様に、本実施形態に係る生コン出荷型急硬コンクリート材料も、起硬剤と同様に、打ち込み作業後に添加される混和材料としての使用に好適である。そして、可使時間を例えば、120分以上、好ましくは180分以上とすることができる。
 以下、実験例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(実験例1)
 セメント380kg/m、急硬材A120kg/m、水/結合材比32%、s/a=42%、空気量2.0±1.5容量%の急硬コンクリートを調製した。この際、セメントと急硬材からなる結合材100部に対して、眠剤1を1.5部添加し、24時間以上、水和硬化しないようにした(A材)。現場までの搬送時間と施工現場に到着後に待機時間が発生したことを想定して、120分後に下記表1に示す様々な起硬剤(B材)を結合材100部に対して3部添加した。起硬剤を添加してからの可使時間を測定するとともに、起硬剤添加後から6時間後(練り上がりから8時間後)の圧縮強度を測定した。また、耐摩耗性も評価した。結果を下記表1に併記する。
 なお、s/aは、細骨材率で、コンクリート中の全骨材量に対する細骨材量の絶対容積比を百分率で表した値である。
<使用材料>
(1)起硬剤イ~チ
起硬剤イ:水酸化カルシウム、市販品、300μm残分1%未満、100μm残分が5%
起硬剤ロ:炭酸カルシウム、市販品、ブレーン比表面積4,000cm/g
起硬剤ハ:カルシウムアルミネート系化合物、CaO・Alを主体とするアルミナセメント1号、CaOとAlとのモル比(CaO/Al)1.27、ブレーン比表面積5,000cm/g
起硬剤ニ:カルシウムシリケート化合物、試薬1級の炭酸カルシウムとSiOから合成した3CaO・SiO。ブレーン比表面積3,000cm/g
起硬剤ホ:コロイダルシリカ、市販品
起硬剤ヘ:ポルトランドセメント、市販品
起硬剤ト:カルシウムサルフォアルミネートセメント、市販品、ブレーン比表面積4,500cm/g
起硬剤チ:高炉スラグ、市販品
(2)急結剤1~3
急結剤1:アルミン酸ナトリウム、試薬1級
急結剤2:硫酸アルミニウム、試薬1級
急結剤3:ケイ酸ナトリウム、試薬1級
(3)急硬材
急硬材A:CaO-Al-SiO系非晶質物質と無水セッコウの等量混合物。CaO-Al-SiO系非晶質物質のCaOが43%、Alが44%、SiOが10%、その他3%。密度2.85g/cm、ブレーン比表面積5000cm/g、非晶質度90%
(4)眠剤
眠剤1:試薬1級の炭酸カリウム75部と試薬1級のクエン酸25部の混合物
(5)その他
セメント:市販の普通ポルトランドセメント(デンカ社製 密度3.15g/cm
無水石膏:II型無水石膏、pH3.0、ブレーン比表面積5000cm/g
水:水道水
細骨材:天然川砂
粗骨材:砕石
<測定方法>
・可使時間:JIS A 1147に準じて凝結の始発時間を測定し、可使時間とした。
・圧縮強度:JIS A 1108に準じて測定した。
・耐摩耗性試験:O式すり減り試験にて評価した。供試体の試験面を内側に向けてドラムに六角形に組んで取り付け、その中にPC鋼棒を切断して加工したφ22mm×40mmのロッド20個(約2.5kg)を入れ、80rpmで回転させた。1時間ごとに正回転と逆回転を交互に行い、4時間後に供試体を取り出してすり減り係数を算出した。すり減り係数は次式で求めた。
 すり減り係数(mm/cm)=(すり減り質量/供試体密度)/すり減りを受けた面積
 ここで、すり減りを受けた面積は27×14.5cm=391.5cmとした。
 すり減り係数が300未満の場合は○、300以上で400未満の場合は△、400以上の場合は×とした。
Figure JPOXMLDOC01-appb-T000001
 表1より、起硬剤を添加しない場合には、24時間以上硬化せず、6時間強度や1日強度を発現しないが、起硬剤を添加した場合には、一定の可使時間を得た上で、良好な6時間強度や1日強度を発現していることがわかる。加えて、耐摩耗性にも優れることがわかる。また、急結剤であるアルミン酸ナトリウム、硫酸アルミニウム、ケイ酸ナトリウムを用いた場合には、瞬結してしまい可使時間を確保できないことがわかる。また、水酸化カルシウムとカルシウムアルミネート系化合物と併用すると温度依存性を小さくできることがわかる。
(実験例2)
 起硬剤イを結合材100部に対して3部使用し、急硬材の種類(A~D;急硬材Aは実験例1で使用したものであり、急硬材B~Dは以下に記載のもの)と使用量を下記表2に示すように変化したこと以外は実験例1と同様に行った。結果を下記表2に併記する。
<使用材料>
・急硬材B:CaO-Al-SiO系非晶質物質と無水セッコウとの等量混合物。CaO-Al-SiO系非晶質物質のCaOが47%、Alが47%、SiOが3%、その他3%。密度2.85g/cm、ブレーン比表面積5000cm/g、非晶質度90%
・急硬材C:CaO・Alを主成分とするアルミナセメント1号と無水セッコウの等量混合物。密度3.00g/cm、ブレーン比表面積5000cm/g
・急硬材D:3CaO・3Al・CaSO系化合物を主成分(40%)として含有する超速硬セメント。密度2.80g/cm、ブレーン比表面積5000cm/g
Figure JPOXMLDOC01-appb-T000002
 表2より、急硬材を添加しない場合には、24時間以上硬化せず、6時間強度や1日強度を発現しないが、急硬材を添加した場合には、一定の可使時間を得た上で、良好な6時間強度や1日強度を発現していることがわかる。加えて、耐摩耗性にも優れることがわかる。そして、急硬材の種類が変わっても、起硬剤の効果が発揮されていることがわかる。
(実験例3)
 起硬剤イを使用し、眠剤の種類と使用量を表3に示すように変化したこと以外は、実験例1と同様に行った。結果を表3に示す。
<使用材料>
眠剤1:試薬1級の炭酸カリウム75部と試薬1級のクエン酸25部の混合物
非眠剤2:試薬1級の炭酸カリウム
眠剤3:試薬1級のクエン酸
眠剤4:試薬1級の酒石酸
Figure JPOXMLDOC01-appb-T000003
 表3より、眠剤として、オキシカルボン酸、もしくは、オキシカルボン酸とリチウム以外のアルカリ金属炭酸塩の混合物を用いた場合に、本発明の効果が特に良好に発揮されることがわかる。
(実験例4)
 セメント380kg/m、急硬材A120kg/m、起硬剤イ3部を使用した超速硬コンクリートにおいて、下記表4に示すように、セメントの種類と眠剤1の使用量を変化したこと以外は実験例1と同様に行った。結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、いかなるセメントにおいても、眠剤の使用量を適切に制御することによって、一定の可使時間を得た上で、良好な6時間強度や1日強度が得られ、加えて、耐摩耗性にも優れることがわかる。
(実験例5)
 セメント380kg/m、急硬材Aを120kg/m、眠剤1を1.5部、起硬剤イを3部使用した急硬コンクリートにおいて、急硬材と起硬剤の添加時期を下記表5に示すように変化したこと以外は実験例1と同様に行った。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、急硬材と眠剤を生コンプラントで添加し、起硬剤を施工現場で添加しないと本発明の効果が得られないことがわかる。生コン工場で急硬材と起硬剤の双方を添加した場合には、可使時間が60分と極端に短くなり、搬送途中で破棄を余儀なくされた。また、起硬剤を生コン工場で添加し、施工現場で急硬材を添加した場合には、急硬材を添加した後の可使時間が10分と極端に短くなり、施工ができなかった。急硬材と起硬剤を施工現場で添加する場合には、可使時間が短縮され、圧縮強度も低い値となり、耐摩耗性も改悪傾向となることに加え、練り混ぜ容器となるアジテータのドラム容積の30%程度しか搬送できないことがわかる。
(実験例6)
 実験No.1-3において起硬剤ハを、CaOとAlとのモル比(CaO/Al)が下記表に示す起硬剤ハ-1及びハ-2のそれぞれとした以外は、実験例1と同様に行った。結果を下記表6に併記する。
Figure JPOXMLDOC01-appb-T000006
(実験例7)
 起硬剤ハ100部に対し無水石膏を下記表に示すように配合した以外は、実験例1と同様に行った。結果を下記表7に併記する。
 なお無水石膏は、タイ産のII型天然無水セッコウである。
Figure JPOXMLDOC01-appb-T000007
(実験例8)
 起硬剤ハ100部に対し水100部、及びデキストリン及びセルロール誘導体を下記表に示すように配合してスラリー化のうえベースコンクリートへ添加・混合したこと以外は、実験例1と同様に行った。結果を下記表8に併記する。
 なおデキストリンは、王子コーンスターチ社製で冷水可溶分50%のデキストリンであり、セルロール誘導体は信越化学社製のメチルセルロースSM10000である。
 
Figure JPOXMLDOC01-appb-T000008
(実験例9)
 起硬剤ハ100部を水溶性PVAフィルムでパッケージして起硬剤組成物を調製した以外は、実験例1と同様に行った。結果を下記表8に併記する。
 なお、水溶性PVAフィルムは、酢酸ビニルを重合させ、平均けん化率50%、10%マレイン酸変性体となるよう調製したものである。
 また、水溶性PVAフィルムでパッケージした起硬材をコンクリートに添加した時の粉塵濃度が、0.1mg/m未満を○、0.1から1.0mg/m未満を△、1.0mg/m以上を×とした。
Figure JPOXMLDOC01-appb-T000009
(実験例10)
 起硬剤ハを結合材100部に対して3部使用し、急硬材の種類(A~D;急硬材Aは実験例1で使用したものであり、急硬材B~Dは実験例2で使用したもの)と使用量を下記表10に示すように変化したこと以外は実験例1と同様に行った。結果を下記表10に併記する。
<使用材料>
・急硬材B:CaO-Al-SiO系非晶質物質と無水セッコウとの等量混合物。CaO-Al-SiO系非晶質物質のCaOが47%、Alが47%、SiOが3%、その他3%。密度2.85g/cm、ブレーン比表面積5000cm/g、非晶質度90%
・急硬材C:CaO・Alを主成分とするアルミナセメント1号と無水セッコウの等量混合物。密度3.00g/cm、ブレーン比表面積5000cm/g
・急硬材D:3CaO・3Al・CaSO系化合物を主成分(40%)として含有する超速硬セメント。密度2.80g/cm、ブレーン比表面積5000cm/g
Figure JPOXMLDOC01-appb-T000010
 表10より、急硬材を添加しない場合には、24時間以上硬化せず、6時間強度や1日強度を発現しないが、急硬材を添加した場合には、一定の可使時間を得た上で、良好な6時間強度や1日強度を発現していることがわかる。加えて、耐摩耗性にも優れることがわかる。そして、急硬材の種類が変わっても、起硬剤の効果が発揮されていることがわかる。
(実験例11)
 起硬剤ハを使用し、眠剤の種類と使用量を表11に示すように変化したこと以外は、実験例1と同様に行った。結果を表11に示す。
<使用材料>
眠剤1:試薬1級の炭酸カリウム75部と試薬1級のクエン酸25部の混合物
非眠剤2:試薬1級の炭酸カリウム
眠剤3:試薬1級のクエン酸
眠剤4:試薬1級の酒石酸
Figure JPOXMLDOC01-appb-T000011

 
 表11より、眠剤として、オキシカルボン酸、もしくは、オキシカルボン酸とリチウム以外のアルカリ金属炭酸塩の混合物を用いた場合に、本発明の効果が特に良好に発揮されることがわかる。
(実験例12)
 セメント380kg/m、急硬材A120kg/m、起硬剤ハ3部を使用した超速硬コンクリートにおいて、下記表12に示すように、セメントの種類と眠剤1の使用量を変化したこと以外は実験例1と同様に行った。結果を下記表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12より、いかなるセメントにおいても、眠剤の使用量を適切に制御することによって、一定の可使時間を得た上で、良好な6時間強度や1日強度が得られ、加えて、耐摩耗性にも優れることがわかる。
(実験例13)
 セメント380kg/m、急硬材Aを120kg/m、眠剤1を1.5部、起硬剤ハを3部使用した急硬コンクリートにおいて、急硬材と起硬剤の添加時期を下記表13に示すように変化したこと以外は実験例1と同様に行った。結果を下記表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13より、急硬材と眠剤を生コンプラントで添加し、起硬剤を施工現場で添加しないと本発明の効果が得られないことがわかる。生コン工場で急硬材と起硬剤の双方を添加した場合には、可使時間が60分と極端に短くなり、搬送途中で破棄を余儀なくされた。また、起硬剤を生コン工場で添加し、施工現場で急硬材を添加した場合には、急硬材を添加した後の可使時間が10分と極端に短くなり、施工ができなかった。急硬材と起硬剤を施工現場で添加する場合には、可使時間が短縮され、圧縮強度も低い値となり、耐摩耗性も改悪傾向となることに加え、練り混ぜ・運搬容器となるアジテータのドラム容積の30%程度しか搬送できないことがわかる。
 本発明の生コン出荷型急硬コンクリート組成物は、充分な可使時間を確保しつつ、初期の強度発現性に優れ、硬化後は耐摩耗性に優れるため、特に、土木建築分野で好適に用いられる。

Claims (17)

  1.  水酸化カルシウム、炭酸カルシウム、カルシウムアルミネート系化合物、カルシウムシリケート系化合物、コロイダルシリカ、ポルトランドセメント、カルシウムサルフォアルミネートセメント、及び高炉スラグからなる群から選択される少なくとも1種を含む生コン出荷型急硬コンクリート用起硬剤。
  2.  さらに、セッコウを含有してなる請求項1に記載の生コン出荷型急硬コンクリート用起硬剤。
  3.  前記カルシウムアルミネート系化合物と前記セッコウとを含有してなる請求項2に記載の生コン出荷型急硬コンクリート用起硬剤。
  4.  前記水酸化カルシウムと前記カルシウムアルミネート系化合物とを含み、
     前記水酸化カルシウムと前記カルシウムアルミネート系化合物との質量比(水酸化カルシウム/カルシウムアルミネート系化合物)が1/99~99/1である請求項1~3のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤。
  5.  前記カルシウムアルミネート系化合物におけるCaOとAlとのモル比(CaO/Al)が0.5~2.4である請求項1~4のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤。
  6.  さらに、デキストリン及びセルロース誘導体からなる群から選ばれる少なくとも1種を含有してなる請求項1~5のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤。
  7.  水溶性フィルムで包装されてなる請求項1~6のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤。
  8.  セメント、急硬材、及び眠剤を含むA材と、請求項1~7のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤を含むB材と、を含む2材型の生コン出荷型急硬コンクリート材料。
  9.  セメント、急硬材、及び眠剤を含むA材に、請求項1~7のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤を含むB材が添加混合されてなる生コン出荷型急硬コンクリート組成物。
  10.  前記急硬材がカルシムアルミネート系化合物とセッコウ類とを主成分とする請求項9に記載の生コン出荷型急硬コンクリート組成物。
  11.  前記急硬材がCaO-Al-SiO系化合物とセッコウ類とを含み、
     前記CaO-Al-SiO系化合物の非晶質度が70%以上で、かつ、SiOが1~18質量%の範囲である請求項9又は10に記載の生コン出荷型急硬コンクリート組成物。
  12.  前記眠剤が、オキシカルボン酸、リチウム以外のアルカリ金属炭酸塩及びオキシカルボン酸を含む請求項9~11のいずれか1項に記載の生コン出荷型急硬コンクリート組成物。
  13.  前記生コン出荷型急硬コンクリート用起硬剤の含有量が、前記セメント及び前記急硬材の合計100質量部に対して、0.5~7質量部である請求項9~12のいずれか1項に記載する生コン出荷型急硬コンクリート組成物。
  14.  少なくとも、セメント、急硬材、及び眠剤を混練水とともに練り混ぜ用容器内で練り混ぜる工程と、さらに、請求項1~7のいずれか1項に記載の生コン出荷型急硬コンクリート用起硬剤を混合する工程と、を順次含む生コン出荷型急硬コンクリートの調製方法。
  15.  前記練り混ぜる工程において、少なくとも、セメント、急硬材、眠剤、骨材及び混練水を含むベースコンクリートの容量を、前記練り混ぜ容器の内容積の40%以上とする請求項14に記載の生コン出荷型急硬コンクリートの調製方法。
  16.  生コン出荷型急硬コンクリート用起硬剤を混合した後の可使時間を15分以上確保できるように前記生コン出荷型急硬コンクリート用起硬剤の種類と混合量を定める請求項14又は15に記載の生コン出荷型急硬コンクリートの調製方法。
  17.  前記眠剤の使用量を、前記セメントと前記急硬材の合計100質量部に対して、0.3~5質量部とする請求項14~16のいずれか1項に記載の生コン出荷型急硬コンクリートの調製方法。
PCT/JP2017/041867 2017-02-22 2017-11-21 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法 WO2018154890A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17898116.3A EP3587374A4 (en) 2017-02-22 2017-11-21 CURING AGENTS FOR COMPLETE DELIVERED, FAST-CURING CONCRETE, MATERIAL FOR COMPLETE DELIVERED, FAST-CURING CONCRETE, COMPOSITION FOR COMPLETE-DELIVERED, FAST-CURING CONCRETE AND PROCESS FOR PRODUCING IT
SG11201906437WA SG11201906437WA (en) 2017-02-22 2017-11-21 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
JP2019501056A JP6830149B2 (ja) 2017-02-22 2017-11-21 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
CN201780085435.2A CN110278710A (zh) 2017-02-22 2017-11-21 用于以预拌混凝土方式出货的快硬混凝土的硬化剂、以预拌混凝土方式出货的快硬混凝土材料、以预拌混凝土方式出货的快硬混凝土组合物及其调制方法
MYPI2019004637A MY196346A (en) 2017-02-22 2017-11-21 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-030980 2017-02-22
JP2017030980 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018154890A1 true WO2018154890A1 (ja) 2018-08-30

Family

ID=63254257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041867 WO2018154890A1 (ja) 2017-02-22 2017-11-21 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法

Country Status (7)

Country Link
EP (1) EP3587374A4 (ja)
JP (1) JP6830149B2 (ja)
CN (1) CN110278710A (ja)
MY (1) MY196346A (ja)
SG (1) SG11201906437WA (ja)
TW (1) TWI734869B (ja)
WO (1) WO2018154890A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039908A1 (ja) * 2018-08-22 2020-02-27 デンカ株式会社 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
JP2020066543A (ja) * 2018-10-23 2020-04-30 デンカ株式会社 超速硬性組成物、セメント組成物、コンクリート組成物及び吹付け施工方法
JP2020163646A (ja) * 2019-03-29 2020-10-08 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
CN113382822A (zh) * 2018-11-30 2021-09-10 康克利亚有限公司 混凝土地面的干撒式施覆的方法
JP6983963B1 (ja) * 2020-08-24 2021-12-17 デンカ株式会社 セメント組成物
WO2022059519A1 (ja) * 2020-09-18 2022-03-24 デンカ株式会社 生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物
WO2022092081A1 (ja) * 2020-10-30 2022-05-05 デンカ株式会社 2材型の生コン出荷型急硬コンクリート材料及び生コン出荷型急硬コンクリート組成物
CN116553852A (zh) * 2023-04-10 2023-08-08 上海复洁环保科技股份有限公司 一种缓凝增强剂、道路用缓凝水泥及其制备方法
JP7532327B2 (ja) 2021-09-29 2024-08-13 デンカ株式会社 セメント組成物及びそれを用いた補修方法、並びに、コンクリート構造物
JP7560017B2 (ja) 2022-04-05 2024-10-02 アサノ有明生コン株式会社 生コンクリート用の処理剤、生コンクリート用の処理剤の製造方法、及び生コンクリートの処理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950571A (zh) * 2019-12-19 2020-04-03 深圳市君辰装饰设计工程有限公司 一种机制砂调节剂
CN110981268B (zh) * 2019-12-25 2022-03-29 云南凯威特新材料股份有限公司 一种湿喷混凝土用无碱无氯休眠剂唤醒剂组合物及其使用方法
CN112341032A (zh) * 2020-11-19 2021-02-09 深圳港创建材股份有限公司 铝离子系流态混凝土粉体速干剂及使用方法
EP4242187A1 (en) * 2022-03-08 2023-09-13 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and calcium silicate as well as use thereof
EP4242188A1 (en) * 2022-03-08 2023-09-13 Hilti Aktiengesellschaft Two-component mortar system based on aluminous cement and ground granulated blast-furnace slag as well as use thereof
EP4242184A1 (en) * 2022-03-08 2023-09-13 Hilti Aktiengesellschaft Stabilized aqueous composition based on blocked ground-granulated blast furnace slag for initiating setting and hardening of aluminous cement compositions
EP4242186A1 (en) * 2022-03-08 2023-09-13 Hilti Aktiengesellschaft Stabilized aqueous composition based on blocked calcium silicate cement for initiating setting and hardening of aluminous cement compositions
CN115008615B (zh) * 2022-07-04 2024-07-02 朱东敏 一种制备绿色高性能混凝土的场拌及施工一体化生产线

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US903019A (en) 1908-09-22 1908-11-03 Henry S Spackman Engineering Company Cementitious material.
JPS6360184A (ja) * 1986-08-26 1988-03-16 サンド・アクチエンゲゼルシヤフト もどりコンクリートの再生方法
JPH0497932A (ja) 1990-08-16 1992-03-30 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH07148728A (ja) * 1993-11-26 1995-06-13 Mitsui Sekika Sanshi Kk 水中不分離性混和剤用包装体
JPH1124074A (ja) 1997-07-08 1999-01-29 Sharp Corp バックライト装置
JP2000264712A (ja) 1999-03-19 2000-09-26 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び急結性セメントコンクリート
JP2000327394A (ja) 1999-05-21 2000-11-28 Denki Kagaku Kogyo Kk プレライニング用急結コンクリートの製造方法及びプレライニング用急結コンクリート
JP2001213655A (ja) 2000-01-31 2001-08-07 Denki Kagaku Kogyo Kk プレライニング用急結コンクリート及びプレライニング用急結コンクリートの製造方法
JP2001253753A (ja) 2000-03-10 2001-09-18 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び場所打ちライニング工法
JP2002037654A (ja) 2000-07-27 2002-02-06 Denki Kagaku Kogyo Kk プレライニング用急結コンクリート及びプレライニング用急結コンクリートの製造方法
JP2002321959A (ja) 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk セメントコンクリート、急結性セメントコンクリート、及び調製方法
JP2002321958A (ja) 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk セメントコンクリート、急結性セメントコンクリート、及び施工方法
JP2007045654A (ja) 2005-08-09 2007-02-22 Taiheiyo Material Kk 速硬コンクリートの製造方法
JP2007137745A (ja) * 2005-11-22 2007-06-07 Taiheiyo Material Kk 急硬化材および高浸透性注入材
JP2012139897A (ja) 2010-12-28 2012-07-26 Taiheiyo Materials Corp 速硬性セメント混練物の製造方法
WO2013077216A1 (ja) * 2011-11-21 2013-05-30 電気化学工業株式会社 超速硬性クリンカー、それを用いたセメント組成物、及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527978A1 (de) * 1985-08-03 1987-02-05 Sicowa Verfahrenstech Schnellzement
JP4823432B2 (ja) * 2001-04-25 2011-11-24 電気化学工業株式会社 トンネル覆工工法
JP2007320833A (ja) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート
JP2007320834A (ja) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk 超速硬セメント組成物、超速硬セメントコンクリート組成物、及び超速硬セメントコンクリート
JP2009073679A (ja) * 2007-09-19 2009-04-09 Denki Kagaku Kogyo Kk セメント組成物
CA2735705C (en) * 2008-09-02 2019-11-12 Construction Research & Technology Gmbh Plasticizer-containing hardening accelerator composition
CN106380151A (zh) * 2016-08-30 2017-02-08 卓达新材料科技集团威海股份有限公司 一种3d打印房屋用快硬硫铝酸盐水泥胶凝材料

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US903019A (en) 1908-09-22 1908-11-03 Henry S Spackman Engineering Company Cementitious material.
JPS6360184A (ja) * 1986-08-26 1988-03-16 サンド・アクチエンゲゼルシヤフト もどりコンクリートの再生方法
JPH0497932A (ja) 1990-08-16 1992-03-30 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH07148728A (ja) * 1993-11-26 1995-06-13 Mitsui Sekika Sanshi Kk 水中不分離性混和剤用包装体
JPH1124074A (ja) 1997-07-08 1999-01-29 Sharp Corp バックライト装置
JP2000264712A (ja) 1999-03-19 2000-09-26 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び急結性セメントコンクリート
JP2000327394A (ja) 1999-05-21 2000-11-28 Denki Kagaku Kogyo Kk プレライニング用急結コンクリートの製造方法及びプレライニング用急結コンクリート
JP2001213655A (ja) 2000-01-31 2001-08-07 Denki Kagaku Kogyo Kk プレライニング用急結コンクリート及びプレライニング用急結コンクリートの製造方法
JP2001253753A (ja) 2000-03-10 2001-09-18 Denki Kagaku Kogyo Kk 急硬性セメントコンクリート及び場所打ちライニング工法
JP2002037654A (ja) 2000-07-27 2002-02-06 Denki Kagaku Kogyo Kk プレライニング用急結コンクリート及びプレライニング用急結コンクリートの製造方法
JP2002321959A (ja) 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk セメントコンクリート、急結性セメントコンクリート、及び調製方法
JP2002321958A (ja) 2001-04-25 2002-11-08 Denki Kagaku Kogyo Kk セメントコンクリート、急結性セメントコンクリート、及び施工方法
JP2007045654A (ja) 2005-08-09 2007-02-22 Taiheiyo Material Kk 速硬コンクリートの製造方法
JP2007137745A (ja) * 2005-11-22 2007-06-07 Taiheiyo Material Kk 急硬化材および高浸透性注入材
JP2012139897A (ja) 2010-12-28 2012-07-26 Taiheiyo Materials Corp 速硬性セメント混練物の製造方法
WO2013077216A1 (ja) * 2011-11-21 2013-05-30 電気化学工業株式会社 超速硬性クリンカー、それを用いたセメント組成物、及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUI, HIROSHI ET AL.: "An Experimental Study on Re-Use of Returned Concrete", PROCEEDINGS OF THE JAPAN CONCRETE INSTITUTE, vol. 19, no. 1, 1 January 1997 (1997-01-01), pages 241 - 246, XP055613528 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039908A1 (ja) * 2018-08-22 2020-02-27 デンカ株式会社 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
JP7173827B2 (ja) 2018-10-23 2022-11-16 デンカ株式会社 超速硬性組成物、セメント組成物、コンクリート組成物及び吹付け施工方法
JP2020066543A (ja) * 2018-10-23 2020-04-30 デンカ株式会社 超速硬性組成物、セメント組成物、コンクリート組成物及び吹付け施工方法
CN113382822A (zh) * 2018-11-30 2021-09-10 康克利亚有限公司 混凝土地面的干撒式施覆的方法
US12109663B2 (en) 2018-11-30 2024-10-08 Concria Oy Method in dry-shake coating of a concrete floor
CN113382822B (zh) * 2018-11-30 2023-10-17 康克利亚有限公司 混凝土地面的干撒式施覆的方法
JP2020163646A (ja) * 2019-03-29 2020-10-08 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
JP7262896B2 (ja) 2019-03-29 2023-04-24 太平洋マテリアル株式会社 混和材梱包体および混和材梱包体を用いた速硬コンクリートの製造方法
JP6983963B1 (ja) * 2020-08-24 2021-12-17 デンカ株式会社 セメント組成物
JP2022036676A (ja) * 2020-08-24 2022-03-08 デンカ株式会社 セメント組成物
WO2022044890A1 (ja) * 2020-08-24 2022-03-03 デンカ株式会社 セメント組成物、製造方法、該セメント組成物を含有させる鉄筋コンクリートの中性化抑制方法及び該セメント組成物を含有させる鉄筋コンクリートの表面美観保持方法
WO2022059519A1 (ja) * 2020-09-18 2022-03-24 デンカ株式会社 生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物
JP7573634B2 (ja) 2020-09-18 2024-10-25 デンカ株式会社 生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物
WO2022092081A1 (ja) * 2020-10-30 2022-05-05 デンカ株式会社 2材型の生コン出荷型急硬コンクリート材料及び生コン出荷型急硬コンクリート組成物
JP7532327B2 (ja) 2021-09-29 2024-08-13 デンカ株式会社 セメント組成物及びそれを用いた補修方法、並びに、コンクリート構造物
JP7560017B2 (ja) 2022-04-05 2024-10-02 アサノ有明生コン株式会社 生コンクリート用の処理剤、生コンクリート用の処理剤の製造方法、及び生コンクリートの処理方法
CN116553852A (zh) * 2023-04-10 2023-08-08 上海复洁环保科技股份有限公司 一种缓凝增强剂、道路用缓凝水泥及其制备方法

Also Published As

Publication number Publication date
JP6830149B2 (ja) 2021-02-17
JPWO2018154890A1 (ja) 2019-12-19
EP3587374A4 (en) 2020-12-23
MY196346A (en) 2023-03-24
TW201831423A (zh) 2018-09-01
CN110278710A (zh) 2019-09-24
EP3587374A1 (en) 2020-01-01
TWI734869B (zh) 2021-08-01
SG11201906437WA (en) 2019-09-27

Similar Documents

Publication Publication Date Title
JP6830149B2 (ja) 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
WO2019176957A1 (ja) 粉末状急結剤、急結材料、急結材料硬化物、及び吹付け工法
JP7319984B2 (ja) 生コン出荷型急硬コンクリート用起硬剤、生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物及びその調製方法
JP2009132808A (ja) 注入材および硬化時間の調整方法
JP5271073B2 (ja) コンクリート硬化体及びコンクリート組成物
JP2010013301A (ja) 急硬性のpva短繊維配合モルタルおよびそれを用いた急硬性の高靭性frc材料
JP2008222503A (ja) コンクリート組成物及びコンクリート硬化体、並びに膨張性混和材
JP2008308348A (ja) 低発熱型高強度コンクリートおよびそれを用いたコンクリート硬化体
JP7209001B2 (ja) コンクリート組成物用養生剤、及びコンクリート組成物の養生方法
KR101503841B1 (ko) 연약토양의 안정화 및 강도 증진을 위한 친환경 지오폴리머 조성물과 이를 이용한 시공 방법
JP4727020B2 (ja) セメント組成物
JP5165436B2 (ja) コンクリート組成物及びコンクリート硬化体
JP3549645B2 (ja) セメント混和材及びセメント組成物
WO2022196633A1 (ja) セメント混和材、セメント組成物、及びコンクリート製品の製造方法
TW202323218A (zh) 水泥混合材、水泥混合材之製造方法及水泥組成物
JP7573634B2 (ja) 生コン出荷型急硬コンクリート材料、生コン出荷型急硬コンクリート組成物
JP4107757B2 (ja) セメント混和材及びセメント組成物
JP4484311B2 (ja) セメント混和材及びセメント組成物
JP2001048615A (ja) セメント混和材及びそれを用いたセメント組成物
JP4347204B2 (ja) セメント混和材及びセメント組成物
JP4157720B2 (ja) 遅硬型土質改良用固化材
JP4311805B2 (ja) 水和熱抑制材及びセメント組成物
JP4484310B2 (ja) セメント組成物
JP5744498B2 (ja) セメント急硬材の製造方法
JP3844411B2 (ja) セメント混和材及びセメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017898116

Country of ref document: EP

Effective date: 20190923