[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018154888A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2018154888A1
WO2018154888A1 PCT/JP2017/041831 JP2017041831W WO2018154888A1 WO 2018154888 A1 WO2018154888 A1 WO 2018154888A1 JP 2017041831 W JP2017041831 W JP 2017041831W WO 2018154888 A1 WO2018154888 A1 WO 2018154888A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin layer
bending
inorganic
inorganic layer
Prior art date
Application number
PCT/JP2017/041831
Other languages
French (fr)
Japanese (ja)
Inventor
太介 鎌田
安弘 神保
浩平 横山
越智 貴志
通 園田
Original Assignee
株式会社半導体エネルギー研究所
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所, シャープ株式会社 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2018154888A1 publication Critical patent/WO2018154888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a display device.
  • the OLED display has a higher response speed than a liquid crystal display, can be driven at high frequency, and has good moving image characteristics. Furthermore, since it is a self-luminous device, the black level is low and a high contrast can be achieved, so that an image with a clear outline can be displayed. As described above, since the OLED display has many features, it is rapidly developed as a next-generation display. In fact, many set makers are considering installing OLED displays on smartphones, and capital investment is progressing.
  • the OLED display has a feature that it can be easily made flexible.
  • flexible OLED panels using flexible substrates have been adopted in smartphones and smart watches and shipped as products. Since a flexible film is used for the support substrate, it can be made lighter and thinner than conventional displays using glass substrates. In addition, since a flexible substrate is used, it is possible to bend it, which was impossible with a panel made of a conventional glass substrate. Therefore, new designs and functions can be considered and new values can be proposed. For example, OLED panels whose entire screen is gently curved and panels whose edges on both sides of the panel are curved are on the market.
  • a method of using the flexible panel that can be bent one step further is being studied, and it can be applied to various uses such as a display that can be folded compactly and a display that is rolled up and rolled up.
  • a display that can be folded compactly and a display that is rolled up and rolled up.
  • many reports have been reported at academic societies regarding displays that can be folded and rolled up, and are expected as market needs.
  • no manufacturer has commercialized a display that can be folded, and each company is developing to increase bending resistance.
  • a method of controlling the neutral plane has been proposed as a method for manufacturing a display that simultaneously satisfies both the inner bending and the outer bending resistance (see, for example, Patent Document 1).
  • a structural design capable of withstanding both the internal bending and the external bending required for a display to be folded is important.
  • the inorganic layer is a brittle material in addition to having a high Young's modulus, and as a result, high stress continues to be applied by repeated bending tests of 50,000 times or more or 100,000 times or more, resulting in film breakage due to accumulation of bending fatigue. I think that. It is very important to design a structure so as not to cause film breakage in order to commercialize a foldable display.
  • the inorganic layer tends to be weak against tensile stress, the inorganic layer in the flexible panel is easily broken when the flexible panel is bent.
  • An object of one embodiment of the present invention is to provide a display device having bending resistance that can withstand repeated bending with a small radius of curvature.
  • One embodiment of the present invention includes a first resin layer, a first inorganic layer located on the first resin layer, an EL layer located on the first inorganic layer, and the EL layer.
  • a second inorganic layer positioned and a second resin layer positioned on the second inorganic layer, wherein the first resin layer, the first inorganic layer, the EL layer, the first layer
  • the second resin layer and the second inorganic layer are configured to be foldable, and a strain rate applied to each of the first inorganic layer and the second inorganic layer at the time of the bending is greater than 0 and 0. It is a display device characterized by being 4% or less.
  • the strain rate applied to each of the first inorganic layer and the second inorganic layer which is weak against tensile stress, is set to 0.4% or less.
  • the breakage of the first and second inorganic layers can be suppressed.
  • a display device having bending resistance that can withstand repeated bending with a small radius of curvature can be realized.
  • each of the first inorganic layer and the second inorganic layer may include a metal oxide, a metal nitride, a compound of Si and O, or a compound of Si and N.
  • a first hard coat layer may be located on the second resin layer.
  • the third resin layer positioned between the second inorganic layer and the second resin layer, the third resin layer, and the second resin layer It is good to have the 2nd hard-coat layer located in between.
  • a third hard coat layer may be located under the first resin layer.
  • the fourth resin layer positioned between the first inorganic layer and the first resin layer, the fourth resin layer, and the first resin layer And a fourth hard coat layer positioned therebetween.
  • a fifth resin layer may be located between the EL layer and the second inorganic layer.
  • a color filter may be positioned between the EL layer and the second inorganic layer.
  • the average thickness of the fifth resin layer is preferably 9 ⁇ m or less.
  • the first resin layer, the first inorganic layer, and the first inorganic layer so that a strain rate of 0.4% is applied to each of the first inorganic layer and the second inorganic layer.
  • a test of repeatedly bending the EL layer, the second resin layer, and the second inorganic layer 50,000 times it is preferable that display defects do not occur.
  • a display device having bending resistance that can withstand repeated bending with a small radius of curvature can be provided.
  • FIG. 4A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention
  • FIG. 4B is a cross-sectional view schematically illustrating the display device according to one embodiment of the present invention.
  • FIG. 4A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention
  • FIG. 4B is a cross-sectional view schematically illustrating the display device according to one embodiment of the present invention.
  • 1 is a cross-sectional view schematically illustrating a display device (flexible panel) according to one embodiment of the present invention. Sectional drawing which shows a book type repeated bending tester typically.
  • (A-1) is a photograph of a flexible panel before the test
  • (C-1) is a photograph immediately after the storage test
  • (A-2) is a test.
  • (C-2) is a photograph immediately after the storage test.
  • (A-1) is a photograph of a flexible panel before the test
  • (C-1) is a photograph immediately after the storage test
  • (A-2) is a test.
  • (C-2) is a photograph immediately after the storage test.
  • (A-1) is a photograph of a flexible panel before the test
  • (C-1) is a photograph immediately after the storage test
  • (A-2) is a test.
  • (A) is sectional drawing which shows typically the state before bending the flexible panel 1
  • (B) is sectional drawing which shows the state which bent the flexible panel 1 of (A).
  • (A) is sectional drawing which shows the example in which the neutral surface NP approaches inside, and sectional drawing which shows the example in which an inorganic layer moves away from the neutral surface NP.
  • Sectional drawing which shows the model used for the outside bending simulation.
  • Sectional drawing which shows the laminated structure model of the flexible panel used for the outside bending simulation.
  • Sectional drawing which is a laminated structure of the flexible panel used for the outside bending simulation, and shows the model which changes the film thickness of the laminated film 32.
  • FIG. The figure which shows the result of having calculated the relationship between the film thickness 32a of the laminated film shown in FIG. 14, and the bending stress which arises in the CF side inorganic layer.
  • the figure which shows nine points (P1 thru
  • FIG. 1 is a photograph of the flexible panel before the test
  • A-3) is a photograph immediately after the storage test
  • B-1) is a photograph of the flexible panel before the test
  • B-3) is a photograph immediately after the storage test.
  • the graph which reflected the repeated bending test result of Table 2 in FIG. (A) is a perspective view which shows the state which bent the flexible panel 1
  • (B) is sectional drawing which shows the state before bending the flexible panel 1.
  • FIG. The figure for demonstrating how to obtain
  • FIG. 1A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention.
  • This display device (also referred to as a flexible panel) includes at least a resin layer 11 (also referred to as a first resin layer) that is a film, and a moisture-proof layer 13a (also referred to as a first inorganic layer) formed on the resin layer 11.
  • the display device illustrated in FIG. 1A includes a resin layer 11, and an adhesive resin layer 12 b (also referred to as a fourth resin layer) is formed over the resin layer 11.
  • a moisture-proof layer 13a is formed on the adhesive resin layer 12b, and a layer 13b such as an FET (Field effector transistor) is formed on the moisture-proof layer 13a.
  • An EL layer 13c is formed on the layer 13b such as an FET.
  • a moisture-proof layer 23a is formed on the upper surface of the EL layer 13c, the side surfaces of the EL layer 13c and the layer 13b such as an FET, and the moisture-proof layer 13a. That is, the EL layer 13c and the FET layer 13b are covered with the moisture-proof layers 13a and 23a, so that moisture can be prevented from entering the EL layer 13c and the FET layer 13b.
  • an adhesive resin layer 22b (also referred to as a third resin layer) is formed on the moisture-proof layer 23a. That is, the resin layer 11 is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b, and the moisture-proof layer 23a is bonded to the resin layer 21a by the adhesive resin layer 22b.
  • a hard coat layer 21b (also referred to as a first hard coat layer) is formed on the resin layer 21a.
  • the resin layer 21a and the hard coat layer 21b are referred to as a film 21.
  • Each of the moisture-proof layer 13a (first inorganic layer) and the moisture-proof layer 23a (second inorganic layer) preferably contains a metal oxide, a metal nitride, a compound of Si and O, or a compound of Si and N.
  • the display device is configured so that it can be bent.
  • the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less).
  • the curvature radius when the display device is bent so that the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less).
  • the material and thickness of each of the resin layer 11, adhesive resin layer 12b, moisture-proof layer 13a, FET layer 13b, EL layer 13c, moisture-proof layer 23a, adhesive resin layer 22b, resin layer 21a, and hard coat layer 21b of this display device Sato should be decided.
  • the strain rate applied to each of the moisture-proof layer 13a as the first inorganic layer and the moisture-proof layer 23a as the second inorganic layer is greater than 0 and equal to or less than 0.4% (preferably it is 0.27% or less.
  • the strain applied to the inorganic layer that is weak against the tensile stress is 0.4% or less (preferably 0.27% or less)
  • breakage of the inorganic layer in the flexible panel can be suppressed.
  • FIG. 1B is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention, in which the same portions as those in FIG.
  • 1B includes a solid sealing resin 31 (also referred to as a fifth resin layer) and a hard coat layer 21c (also referred to as a second hard coat layer) in the display device illustrated in FIG. It has been added. This will be described in detail below.
  • a resin layer 11 (first resin layer), and an adhesive resin layer 12 b (fourth resin layer) is formed on the resin layer 11.
  • a moisture-proof layer 13a (first inorganic layer) is formed on the adhesive resin layer 12b. That is, the resin layer 11 is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b.
  • a layer 13b such as an FET is formed on the moisture-proof layer 13a.
  • An EL layer 13c is formed on the layer 13b such as an FET.
  • a solid sealing resin layer 31 is formed on the EL layer 13c, the FET layer 13b, and the moisture-proof layer 13a. That is, the EL layer 13 c and the layer 13 b such as an FET are sealed with the solid sealing resin layer 31.
  • a moisture-proof layer 23a (second inorganic layer) is formed on the solid sealing resin layer 31. That is, the EL layer 13c and the FET layer 13b are covered with the moisture-proof layers 13a and 23a, so that moisture can be prevented from entering the EL layer 13c and the FET layer 13b.
  • the adhesive resin layer 22b is formed on the moisture-proof layer 23a, and the hard coat layer 21c is formed on the adhesive resin layer 22b.
  • a resin layer 21a (second resin layer) is formed on the hard coat layer 21c, and a hard coat layer 21b (first hard coat layer) is formed on the resin layer 21a.
  • the hard coat layer 21c, the resin layer 21a, and the hard coat layer 21b are referred to as a film 21. That is, the moisture-proof layer 23a is bonded to the hard coat layer 21c by the adhesive resin layer 22b.
  • the display device is configured to be bent.
  • the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less).
  • the average thickness of the solid sealing resin 31 is preferably 9 ⁇ m or less.
  • the thickness of the display device can be further reduced.
  • the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a can be further reduced, and the breakage of the inorganic layer in the display device can be further suppressed.
  • FIG. 2A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention.
  • the same portions as those in FIG. 1B are denoted by the same reference numerals, and only different portions will be described.
  • 2A is a display device in which a color filter 23b is added to the display device shown in FIG. Specifically, the color filter 23b is located between the EL layer 13c and the moisture-proof layer 23a, and the solid sealing resin 31 is disposed between the color filter 23b and the EL layer 13c.
  • FIG. 2B is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention.
  • the same portions as those in FIG. 2A are denoted by the same reference numerals, and only different portions will be described.
  • the adhesive resin layer 22b is formed on the moisture-proof layer 23a, and the resin layer 21a is formed on the adhesive resin layer 22b.
  • a hard coat layer 21b is formed on the resin layer 21a.
  • the hard coat layer 21b and the resin layer 21a are referred to as a film 21. That is, the moisture-proof layer 23a is bonded to the resin layer 21a by the adhesive resin layer 22b.
  • FIG. 3 is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention.
  • the same portions as those in FIG. 2A are denoted by the same reference numerals, and only different portions will be described.
  • the display device of FIG. 3 is obtained by adding hard coat layers 11b and 11c to the display device shown in FIG. Specifically, a resin layer 11a (first resin layer) is formed on the hard coat layer 11b (also referred to as a third hard coat layer), and the hard coat layer 11c (fourth resin layer) is formed on the resin layer 11a. (Also referred to as a hard coat layer).
  • the hard coat layer 11c, the resin layer 11a, and the hard coat layer 11b are referred to as a film 11.
  • the hard coat layer 11c is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b.
  • Embodiments 1 to 5 can be implemented in combination with each other as appropriate.
  • the flexible panel of Example 5 shown in FIG. 3 was used for the flexible panel of the Example.
  • the flexible panel has a laminated structure of a film 11 having a thickness of 23 ⁇ m, a resin 12b having a thickness of 10 ⁇ m, a moisture-proof layer (inorganic layer) 13a having a thickness of 2 ⁇ m, a solid sealing resin layer (resin layer) 31 having a thickness of 13 ⁇ m, and a thickness.
  • the test method is as follows.
  • the repeated bending test was performed using a book-type repeated bending tester shown in FIG.
  • This book-type repeated bending tester has a first stage 4, and the first stage 4 is connected to a second stage 5 by a rotating shaft 6.
  • the rotation shaft 6 is connected to a rotation drive mechanism (not shown), and the rotation drive mechanism is configured to be capable of rotating 180 ° as indicated by an arrow.
  • the flexible panel 1 is fixed on the first and second stages 4 and 5, and the second stage 5 is rotated by 180 ° about the rotation shaft 6, whereby the flexible panel 1 is bent at the curvature radius R.
  • the second stage 5 is rotated 180 ° in the reverse direction about the rotation axis 6, whereby the bending of the flexible panel 1 is released and the flexible panel 1 is returned to a planar shape.
  • a repeated bending test of the flexible panel 1 is performed.
  • the speed of the repeated bending test is 2 seconds / time.
  • the radius of curvature R can be adjusted from 1 mm to 5 mm at 1 mm intervals.
  • the repeated bending test includes an inner bending test and an outer bending test.
  • the inner bend test is a test in which the display surface is bent inward when the flexible panel is bent
  • the outer bend test is a test in which the display surface is bent outward when the flexible panel is bent.
  • FIG. 5A-1 is a photograph of the display surface of the flexible panel before the test.
  • FIG. 5C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 5B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • FIG. 5 (A-2) is a photograph of the display surface of the flexible panel before the test.
  • FIG. 5 (C-2) shows a photograph immediately after a storage test in which the flexible panel shown in FIG. 5 (B-2) was subjected to an external bending test in an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • FIG. 6 (A-1) is a photograph of the display surface of the flexible panel before the test.
  • 6C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 6B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • FIG. 6 (A-2) is a photograph of the display surface of the flexible panel before the test.
  • FIG. 6C-2 is a photograph immediately after a storage test in which the flexible panel shown in FIG. 6B-2 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • FIG. 7 (A-1) is a photograph of the display surface of the flexible panel before the test.
  • FIG. 7C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 7B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • FIG. 7 (A-2) is a photograph of the display surface of the flexible panel before the test.
  • FIG. 8A is a cross-sectional view schematically showing a state before the flexible panel 1 is bent.
  • the flexible panel 1 includes films 11 and 21, and a layer 33 such as a resin layer, an inorganic layer, or an EL layer is disposed between the film 11 and the film 21.
  • FIG. 8B is a cross-sectional view showing a state where the flexible panel 1 of FIG. 8A is bent.
  • the outer side of the flexible panel 1 is stretched as indicated by arrows 34a and 34b, so that tensile stress is generated, and the inner side of the flexible panel 1 is compressed as indicated by arrows 35a and 35b, so that compressive stress is generated.
  • a neutral plane NP that does not expand or contract exists near the center of the flexible panel 1 in the thickness direction, specifically, at the position of the thickness T1 from the surface of the film 21.
  • the stress applied to the neutral plane NP is zero.
  • the tensile and compressive stress increases in proportion to the distance from the neutral plane NP.
  • the inorganic layer (moisture-proof layer) in the layer 33 When the inorganic layer (moisture-proof layer) in the layer 33 is separated from the neutral plane NP, the stress applied to the inorganic layer increases. Since the inorganic layer is susceptible to tensile stress, the further away the inorganic layer from the neutral plane NP, the greater the tensile stress applied to the inorganic layer, and as a result, cracks occur in the inorganic layer. It is expected to lead to. Therefore, since the inorganic layer in the flexible panel is easily broken as the inorganic layer (moisture-proof layer) in the layer 33 is separated from the neutral plane NP, the flexible panel is considered to be weak in repeated bending tests.
  • the inorganic layer moves away from the neutral plane.
  • the neutral surface NP is moved inward so that the neutral surface NP is positioned at a thickness T ⁇ b> 2 from the surface of the film 21.
  • the thicker the resin layer such as the sealing resin layer
  • the thicker the flexible panel 1 is. Therefore, the thickness of the flexible panel 1 on the outer side from the neutral surface NP is increased so that the neutral surface NP is positioned at the thickness T3 from the surface of the film 21, and the inorganic layer is easily moved away from the neutral surface NP.
  • FIG. 10 is a cross-sectional view schematically illustrating a flexible panel according to one embodiment of the present invention, and is a diagram illustrating a flexible panel in which the display device in FIG. 3A is simplified for simulation.
  • Simulation method and calculation results Simulation was performed using the heat transfer-structure coupled analysis software ANSYS Mechanical APDL.
  • ANSYS Mechanical APDL The simulation was performed using the heat transfer-structure coupled analysis software ANSYS Mechanical APDL.
  • a model shown in FIG. 10 was constructed in which an actual flexible panel was simplified using “two-dimensional”, “bending range of 0.5 mm only”, and “linear elastic region”.
  • a 10 has a film 11, and a resin 12 is formed on the film 11.
  • An FET side inorganic layer 13 is formed on the resin layer 12, and a laminated film 32 in which an EL layer, a resin layer, and a CF (color filter) are sequentially laminated is formed on the FET side inorganic layer 13.
  • a CF-side inorganic layer 23 is formed on the laminated film 32, and a resin layer 22 is formed on the CF-side inorganic layer 23.
  • a film 21 is formed on the resin layer 22.
  • the model was set so that the top and bottom of the model were restrained as shown in FIG. External bending (panel display surface is outside) was expressed by applying downward force to both ends. Furthermore, in carrying out the simulation, the laminated structure shown in FIG. 11 was assumed for the laminated structure of the flexible panel.
  • This laminated structure includes a film 11 having a thickness of 23 ⁇ m, a resin 12 having a thickness of 10 ⁇ m, an FET-side inorganic layer 13 having a thickness of 2 ⁇ m, a laminated film 32 having a thickness of 13 ⁇ m, a CF-side inorganic layer 23 having a thickness of 1 ⁇ m, and a thickness of 10 ⁇ m.
  • the resin layer 22 and the film 21 having a thickness of 23 ⁇ m are sequentially laminated.
  • the laminated film 32 has a structure in which an organic interlayer film, an EL layer, a resin layer, and CF are laminated in this order.
  • the property values of each layer and the set values of the calculation conditions were used. Table 1 shows the setting values for the calculation conditions.
  • FIG. 12A is a view showing a state where the flexible panel is bent by restraining the upper and lower sides of the flexible panel shown in FIG. 10 and applying a force to both ends of the surface of the film 21, and
  • FIG. 13 is an enlarged view of a region surrounded by a broken line shown in FIG. As shown in FIG. 12C, in the gray scale, minus is compressive stress and plus is tensile stress.
  • the stress generated by bending is proportional to the Young's modulus and the distance from the neutral plane, and inversely proportional to the radius of curvature.
  • the position of the neutral plane was calculated using the calculation model shown in FIG. The result is shown in FIG. Since the distance between the neutral surface 101 and the CF-side inorganic layer 23 is about 10 ⁇ m, and the distance between the neutral surface 101 and the FET-side inorganic layer 13 is about 6 ⁇ m, the distance between the neutral surface 101 and the inorganic layer is It is biased between the CF side and the FET side.
  • the FET-side inorganic layer 13 is thicker than the CF-side inorganic layer 23 because it includes a gate insulating film and the like.
  • the neutral surface 101 is closer to the FET-side inorganic layer 13, and as a result, the CF-side inorganic layer 23 (moisture-proof layer) having a larger distance from the neutral surface 101 is considered to be easily cracked because of higher bending stress. .
  • the calculation result of the neutral surface 101 tended to coincide with the experimental result (see FIG. 7) having low resistance to external bending.
  • the film thickness 32a of the laminated film 32 in which the organic interlayer film, the EL layer, the resin layer, and the CF are sequentially laminated is changed by changing the thickness of the resin layer in the laminated film 32,
  • the stress generated in the CF side inorganic layer (moisture-proof layer) 23 at that time was calculated. This stress is a stress generated in the CF-side inorganic layer 23 depending on the thickness of the resin layer (sealing resin layer) in the laminated film 32.
  • the film thickness 32 a of the laminated film 32 is a thickness obtained by adding a thickness of 2 ⁇ m corresponding to the total thickness of the organic interlayer film, the EL layer, and the CF to the thickness of the sealing resin layer.
  • the structural model in FIG. 14 is merely an example used for calculation, and may be another structural model, for example, a structure in which CF is omitted (FIG. 1B). Further, a structure in which the resin layer and CF in the laminated film 32 are omitted, and the CF-side inorganic layer 23 is formed directly on the EL layer (FIG. 1A) may be used. In that case, it is necessary to discuss the distortion rate generated in the inorganic layer 23 formed directly on the EL layer.
  • the horizontal axis is the film thickness 32 a ( ⁇ m) of the laminated film 32
  • the vertical axis is the maximum stress (MPa) generated in the CF-side inorganic layer (moisture-proof layer) 23.
  • the thickness of the organic interlayer film is less than 1 ⁇ m
  • the thickness of CF is about 1 ⁇ m
  • the thickness of the EL layer is sufficiently thinner than the organic interlayer film or CF, for example, about 0.3 ⁇ m. Therefore, the sum of these thicknesses was assumed to correspond to 2 ⁇ m.
  • the maximum bending stress generated in the CF-side inorganic layer 23 is linearly related to the film thickness ( ⁇ m) of the laminated film. It can also be seen that the smaller the radius of curvature R, the more sensitive to changes in the thickness of the laminated film 32 and the greater the inclination.
  • ⁇ Repeated bending test ⁇ (Measurement result of resin layer thickness of flexible panel of Example)
  • the thickness of the resin layer was measured by cross-sectional STEM observation of the flexible panel.
  • FIG. 16 shows an example of a cross-sectional STEM image.
  • the film thickness measurement location 32b measured the distance between the moisture-proof layer 23 / CF (G) interface and the organic layer (resin layer) / inorganic layer 13 interface at three points, and the average value of the three points was the thickness of the resin layer. .
  • the thickness of the resin layer at nine points (P1 to P9) in the display area of the flexible panel shown in FIG. 17 was measured.
  • the average thickness of the nine resin layers in the panel display area was 9 ⁇ m ⁇ 18%.
  • ⁇ 18% indicates that the thicknesses of the nine resin layers were all within the range of ⁇ 18% of the average thickness.
  • FIG. 18A-1 is a photograph of the display surface of the flexible panel before the test.
  • FIG. 18 (B-1) is a photograph of the display surface of the flexible panel before the test.
  • 18B-3 shows a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 18B-2 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
  • Table 2 summarizes the results of repeated bending tests and resin layer thickness measurements for different thicknesses of the laminated film.
  • the thickness of the laminated film was in the range of about 8 ⁇ m to 9.5 ⁇ m (average 9 ⁇ m)
  • the external bending test was cleared 50,000 times, but the external bending test was 75,000 times NG.
  • FIG. 19 shows a graph reflecting the repeated bending test results in Table 2 in FIG. That is, FIG. 19 is a diagram in which the repeated bending test results shown in Table 2 are reflected on the relationship (calculation results) between the film thickness 32a of the laminated film shown in FIG. 14 and the bending stress generated in the CF-side inorganic layer 23.
  • the horizontal axis is the film thickness 32 a ( ⁇ m) of the laminated film 32
  • the vertical axis is the maximum stress (MPa) generated in the CF-side inorganic layer (moisture-proof layer) 23.
  • the film thickness range 36 shown in FIG. 19 shows the dispersion after removing an abnormal value from the film thickness of the laminated film (the thickness of the sealing resin layer + 2 ⁇ m) measured in the display area of the flexible panel shown in FIG. It is the range shown.
  • the repeated bending test of 100,000 times is cleared.
  • the film thickness 32a of the laminated film shown in FIG. 14 is 7 ⁇ m or less (preferably 6 ⁇ m or less so that the generated stress is about 300 MPa or less. ).
  • FIG. 20A is a perspective view showing a state in which the flexible panel 1 is bent
  • FIG. 20B is a panel sectional view before the flexible panel 1 is bent.
  • the radius of curvature of the bending was controlled by the magnitude of the force applied to the left and right ends of the model.
  • the coordinates of the three points at both ends and the center of the model lower side after bending are calculated and obtained by the simulation software.
  • the radius of the drawn arc was obtained.
  • the center point 103 existing at an equal distance from these three points was calculated using the solver function of the spreadsheet software Excel.
  • the distance from the obtained center point 103 to each of the three points is the bending radius of curvature R.
  • the magnitude of the force applied to the left and right ends was adjusted, the simulation was performed to calculate the radius of curvature again, and this was repeated until the radius of curvature reached the target value.
  • Distortion ⁇ ⁇ (deformation amount) / L (original length) (Formula 1)
  • the radius of curvature R of the inorganic layer is determined by the method shown in FIG. 21 while limiting the range from the inorganic layer to the inorganic layer in the model.
  • the deformation amount ⁇ of the inorganic layer was determined from the radius of curvature R.
  • the original length L of the inorganic layer is a width of 0.5 mm, which is the object of the simulation model.
  • the maximum distortion rate ⁇ was calculated by substituting ⁇ and L of the inorganic layer into the above (formula 1).
  • the bending rate can withstand 100,000 bending tests if it does not exceed 0.27%.
  • the measurement result of the fracture strain rate of the CF side inorganic layer was 0.95%.
  • the value multiplied by is considered the fatigue limit strain rate.
  • the strain rate of the inorganic layer is greater than 0 and 0.95% or less, preferably 0.4% or less, and more preferably 0.27% or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

[Problem] To provide a display device having flexural resistance which can withstand repeated flexing in a small radius of curvature. [Solution] One mode of this invention is a display device comprising a first resin layer 11, a first inorganic layer 13a positioned above the first resin layer, an EL layer 13c positioned above the first inorganic layer, a second inorganic layer 23a positioned above the EL layer, and a second resin layer 21a positioned above the second inorganic layer. The first resin layer, the first inorganic layer, the EL layer, the second resin layer and the second inorganic layer are constituted so as to be able to bend, and when bending, the first inorganic layer and the second inorganic layer have respective distortion rates not exceeding 0.4%.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 近年スマートフォンのディスプレイに対する高画質の要求が上がってきおり、特に、高精細化、広色域化、高輝度化が求められている。高精細化の流れは加速しており、5.5インチサイズで4K(3840 x 2160)の解像度をもつ液晶ディスプレイが搭載されたスマートフォンが発売され、画素密度は806ppiに達している。今後も高精細化の流れはさらに加速していくと予想される。広色域化に関しても、4k、8kディスプレイ向けの規格としてB.T.2020が注目されている。色域が広がることで、人間の目で直接見ている映像を再現することが可能になる。また、高輝度化に関してはHigh Dynamic Range(HDR)が注目されている。明るさのレンジを広げることで、太陽光の眩しさなど日常で感じる光を再現できるため、より臨場感を出せる映像を表示できるメリットがある。そのような市場要求に対応可能なディスプレイの1つとしてOLEDディスプレイが上げられる。OLEDディスプレイは上記特徴に加えて、応答速度が液晶ディスプレイと比較すると速く、高周波駆動も可能であり動画特性が良いことが上げられる。さらに、自発光型のデバイスであるため黒レベルが低く、高いコントラストが達成できるため、輪郭がはっきりとした映像を表示することが可能となる。このようにOLEDディスプレイには多くの特徴があるため、次世代のディスプレイとして急速に開発が進んでいる。事実、多くのセットメーカーでOLEDディスプレイをスマートフォンに搭載することを検討しており、設備投資が進んでいる。 In recent years, there has been a demand for high image quality for smartphone displays, and in particular, high definition, wide color gamut, and high brightness have been demanded. The trend of high definition is accelerating, and smartphones equipped with a liquid crystal display with a resolution of 4K (3840) x 2160) in 5.5 inches have been released, and the pixel density has reached 806ppi. It is expected that the flow of high definition will further accelerate in the future. As for the wide color gamut, B.T.2020 is attracting attention as a standard for 4k and 8k displays. By expanding the color gamut, it is possible to reproduce images that are directly viewed by the human eye. In addition, High Dynamic Range (HDR) has attracted attention for high brightness. By widening the brightness range, it is possible to reproduce daily light such as the glare of sunlight, which has the advantage of displaying images that give a more realistic feel. One of the displays that can meet such market demand is an OLED display. In addition to the above characteristics, the OLED display has a higher response speed than a liquid crystal display, can be driven at high frequency, and has good moving image characteristics. Furthermore, since it is a self-luminous device, the black level is low and a high contrast can be achieved, so that an image with a clear outline can be displayed. As described above, since the OLED display has many features, it is rapidly developed as a next-generation display. In fact, many set makers are considering installing OLED displays on smartphones, and capital investment is progressing.
 また、OLEDディスプレイにはフレキシブル化が容易であるという特徴がある。近年では、フレキシブル基板を用いたフレキシブルOLEDパネルがスマートフォンやスマートウォッチに採用され、製品として出荷されている。支持基板に可撓性を有するフィルムを用いているため、今までのガラス基板を用いたディスプレイと比較すると軽く、薄く作製することが可能となる。また、フレキシブル基板を用いている為、従来のガラス基板で作製していたパネルでは不可能であった折り曲げることが可能になる。そのため、今までにないデザインや機能が考えられ、新しい価値を提案できる。例えば、画面全体が緩やかに湾曲したOLEDパネルやパネルの両サイドのエッジ部が湾曲しているパネルなどが発売されている。 In addition, the OLED display has a feature that it can be easily made flexible. In recent years, flexible OLED panels using flexible substrates have been adopted in smartphones and smart watches and shipped as products. Since a flexible film is used for the support substrate, it can be made lighter and thinner than conventional displays using glass substrates. In addition, since a flexible substrate is used, it is possible to bend it, which was impossible with a panel made of a conventional glass substrate. Therefore, new designs and functions can be considered and new values can be proposed. For example, OLED panels whose entire screen is gently curved and panels whose edges on both sides of the panel are curved are on the market.
 さらにフレキシブルパネルの曲げられる特徴を一歩進めた活用方法も検討されており、コンパクトに折りたためるディスプレイや、丸めて巻き取るディスプレイ等の様々な用途への展開も考えられ、製品化を目指して各社開発を進めている。実際、折りたためるディスプレイや丸めて巻き取るディスプレイに関して学会などで数多く報告され、市場のニーズとしても期待されている。しかし、折りたためるディスプレイを製品化したメーカーは無く、曲げ耐性を上げるために各社開発を進めている状況である。 In addition, a method of using the flexible panel that can be bent one step further is being studied, and it can be applied to various uses such as a display that can be folded compactly and a display that is rolled up and rolled up. We are promoting. In fact, many reports have been reported at academic societies regarding displays that can be folded and rolled up, and are expected as market needs. However, no manufacturer has commercialized a display that can be folded, and each company is developing to increase bending resistance.
 多くのメーカーで折りたためるディスプレイの製品化に向けた開発が行われており、繰り返し曲げ試験などの曲げ耐性を向上させることが重要となる。曲げ耐性を上げるためにはフレキシブルパネルの各層にかかる応力を緩和させる構造設計や中立面制御が重要となる。ディスプレイの構造検討として例えば以下の論文が発表されている。
(1) Information display January/February 2015 VOL. 31, NO.1 P.12-P16
(2) Information display March/April 2015 VOL. 32, NO. 2 P.18-P23
Many manufacturers are developing products that can be folded, and it is important to improve bending resistance such as repeated bending tests. In order to increase bending resistance, structural design and neutral surface control that relieve stress applied to each layer of the flexible panel are important. For example, the following papers have been published to examine the structure of the display.
(1) Information display January / February 2015 VOL. 31, NO. 1 P.M. 12-P16
(2) Information display March / April 2015 VOL. 32, NO. 2P. 18-P23
 これらの論文では、構造計算ソフトを用いて、ディスプレイを曲げた時にかかる応力を緩和するための構造が提案されている。しかし、上記構造計算は1回曲げを想定している計算であり、構成される部材や膜にかかる応力を緩和するための構造を提案しているにすぎない。また、表示面が内側に曲げられる内曲げを想定した曲げ耐性向上のみ議論されている。 In these papers, a structure for relieving the stress applied when the display is bent is proposed using structural calculation software. However, the above structural calculation is a calculation that assumes one-time bending, and only proposes a structure for relieving the stress applied to the constituent members and films. In addition, only the bending resistance improvement assuming internal bending in which the display surface is bent inward is discussed.
 そこで、内曲げ、外曲げの両方の曲げに対する耐性を同時に満たすディスプレイを作製する手法として、中立面を制御する方法が提案されている(例えば特許文献1参照)。この方法では、折りたためるディスプレイに求められる内曲げと外曲げの両方の曲げに耐えられる構造設計が重要となる。 Therefore, a method of controlling the neutral plane has been proposed as a method for manufacturing a display that simultaneously satisfies both the inner bending and the outer bending resistance (see, for example, Patent Document 1). In this method, a structural design capable of withstanding both the internal bending and the external bending required for a display to be folded is important.
 ここで、実際の折りたためるディスプレイの用途を考えると、1回の曲げではなく、複数回の曲げに耐えられる構造設計が重要となる。製品寿命を3年として、1日に50回以上または100回以上程製品を曲げることを想定した場合、5万回以上または10万回以上の繰り返し曲げ試験に耐えることが求められる。特に無機層は高ヤング率であることに加えて脆性材料であるため、5万回以上または10万回以上の繰り返し曲げ試験によって高い応力がかかり続ける結果、曲げ疲労の蓄積により膜破断などが発生すると考えられる。膜破断を生じさせないための構造設計をすることは、折りたためるディスプレイを製品化するうえで非常に重要になる。 Here, considering the actual use of the display that can be folded, it is important to design a structure that can withstand multiple bends rather than one bend. When assuming that the product life is 3 years and the product is bent 50 times or more or 100 times or more per day, it is required to withstand a repeated bending test of 50,000 times or more or 100,000 times or more. In particular, the inorganic layer is a brittle material in addition to having a high Young's modulus, and as a result, high stress continues to be applied by repeated bending tests of 50,000 times or more or 100,000 times or more, resulting in film breakage due to accumulation of bending fatigue. I think that. It is very important to design a structure so as not to cause film breakage in order to commercialize a foldable display.
特開2015-228367号公報JP2015-228367A
 無機層は引っ張りストレスに対して弱い傾向があるため、フレキシブルパネルを折り曲げたときに、フレキシブルパネル内の無機層が破断しやすい。 Since the inorganic layer tends to be weak against tensile stress, the inorganic layer in the flexible panel is easily broken when the flexible panel is bent.
 本発明の一態様は、小さい曲率半径での複数回の繰り返し曲げに耐えられる曲げ耐性を有する表示装置を提供することを課題とする。 An object of one embodiment of the present invention is to provide a display device having bending resistance that can withstand repeated bending with a small radius of curvature.
 本発明の一態様は、第1の樹脂層と、前記第1の樹脂層上に位置する第1の無機層と、前記第1の無機層上に位置するEL層と、前記EL層上に位置する第2の無機層と、前記第2の無機層上に位置する第2の樹脂層と、を具備し、前記第1の樹脂層、前記第1の無機層、前記EL層、前記第2の樹脂層及び前記第2の無機層は折り曲げることができるように構成されており、前記折り曲げる際に前記第1の無機層及び前記第2の無機層それぞれにかかる歪率が0より大きく0.4%以下であることを特徴とする表示装置である。 One embodiment of the present invention includes a first resin layer, a first inorganic layer located on the first resin layer, an EL layer located on the first inorganic layer, and the EL layer. A second inorganic layer positioned and a second resin layer positioned on the second inorganic layer, wherein the first resin layer, the first inorganic layer, the EL layer, the first layer The second resin layer and the second inorganic layer are configured to be foldable, and a strain rate applied to each of the first inorganic layer and the second inorganic layer at the time of the bending is greater than 0 and 0. It is a display device characterized by being 4% or less.
 上記の本発明の一態様によれば、表示装置を折り曲げる際に、引張応力に対して弱い第1の無機層及び第2の無機層それぞれにかかる歪率を0.4%以下とすることで、第1及び第2の無機層の破断を抑制することができる。その結果、小さい曲率半径での複数回の繰り返し曲げに耐えられる曲げ耐性を有する表示装置を実現できる。 According to one embodiment of the present invention, when the display device is bent, the strain rate applied to each of the first inorganic layer and the second inorganic layer, which is weak against tensile stress, is set to 0.4% or less. The breakage of the first and second inorganic layers can be suppressed. As a result, a display device having bending resistance that can withstand repeated bending with a small radius of curvature can be realized.
 また、本発明の一態様において、前記第1の無機層及び前記第2の無機層それぞれは、金属酸化物、金属窒化物、SiとOの化合物またはSiとNの化合物を含むとよい。 In one embodiment of the present invention, each of the first inorganic layer and the second inorganic layer may include a metal oxide, a metal nitride, a compound of Si and O, or a compound of Si and N.
 また、本発明の一態様において、前記第2の樹脂層上に第1のハードコート層が位置するとよい。 In one embodiment of the present invention, a first hard coat layer may be located on the second resin layer.
 また、本発明の一態様において、前記第2の無機層と前記第2の樹脂層との間に位置する第3の樹脂層と、前記第3の樹脂層と前記第2の樹脂層との間に位置する第2のハードコート層と、を有するとよい。 In one embodiment of the present invention, the third resin layer positioned between the second inorganic layer and the second resin layer, the third resin layer, and the second resin layer It is good to have the 2nd hard-coat layer located in between.
 また、本発明の一態様において、前記第1の樹脂層下に第3のハードコート層が位置するとよい。 In one embodiment of the present invention, a third hard coat layer may be located under the first resin layer.
 また、本発明の一態様において、前記第1の無機層と前記第1の樹脂層との間に位置する第4の樹脂層と、前記第4の樹脂層と前記第1の樹脂層との間に位置する第4のハードコート層と、を有するとよい。 In one embodiment of the present invention, the fourth resin layer positioned between the first inorganic layer and the first resin layer, the fourth resin layer, and the first resin layer And a fourth hard coat layer positioned therebetween.
 また、本発明の一態様において、前記EL層と前記第2の無機層との間に第5の樹脂層が位置するとよい。 Further, in one embodiment of the present invention, a fifth resin layer may be located between the EL layer and the second inorganic layer.
 また、本発明の一態様において、前記EL層と前記第2の無機層との間にカラーフィルターが位置するとよい。 In one embodiment of the present invention, a color filter may be positioned between the EL layer and the second inorganic layer.
 また、本発明の一態様において、前記第5の樹脂層の平均厚さは9μm以下であるとよい。 In one embodiment of the present invention, the average thickness of the fifth resin layer is preferably 9 μm or less.
 また、本発明の一態様において、前記第1の無機層及び前記第2の無機層それぞれに歪率が0.4%かかるように、前記第1の樹脂層、前記第1の無機層、前記EL層、前記第2の樹脂層及び前記第2の無機層を5万回繰り返し折り曲げる試験を行った場合、表示不良が発生しないとよい。 In one embodiment of the present invention, the first resin layer, the first inorganic layer, and the first inorganic layer so that a strain rate of 0.4% is applied to each of the first inorganic layer and the second inorganic layer. In the case where a test of repeatedly bending the EL layer, the second resin layer, and the second inorganic layer 50,000 times is performed, it is preferable that display defects do not occur.
 本発明の一態様を適用することで、小さい曲率半径での複数回の繰り返し曲げに耐えられる曲げ耐性を有する表示装置を提供することができる。 By applying one embodiment of the present invention, a display device having bending resistance that can withstand repeated bending with a small radius of curvature can be provided.
(A)は本発明の一態様に係る表示装置を概略的に示す断面図、(B)は本発明の一態様に係る表示装置を概略的に示す断面図。FIG. 4A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention, and FIG. 4B is a cross-sectional view schematically illustrating the display device according to one embodiment of the present invention. (A)は本発明の一態様に係る表示装置を概略的に示す断面図、(B)は本発明の一態様に係る表示装置を概略的に示す断面図。FIG. 4A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention, and FIG. 4B is a cross-sectional view schematically illustrating the display device according to one embodiment of the present invention. 本発明の一態様に係る表示装置(フレキシブルパネル)を概略的に示す断面図。1 is a cross-sectional view schematically illustrating a display device (flexible panel) according to one embodiment of the present invention. ブック型繰り返し曲げ試験機を模式的に示す断面図。Sectional drawing which shows a book type repeated bending tester typically. (A-1)は試験前のフレキシブルパネルの写真、(B-1)はR=5mmの内曲げ試験直後の写真、(C-1)は保存試験直後の写真、(A-2)は試験前のフレキシブルパネルの写真、(B-2)はR=5mmの外曲げ試験直後の写真、(C-2)は保存試験直後の写真。(A-1) is a photograph of a flexible panel before the test, (B-1) is a photograph immediately after the internal bending test of R = 5 mm, (C-1) is a photograph immediately after the storage test, and (A-2) is a test. A photograph of the previous flexible panel, (B-2) is a photograph immediately after the outer bending test of R = 5 mm, and (C-2) is a photograph immediately after the storage test. (A-1)は試験前のフレキシブルパネルの写真、(B-1)はR=3mmの内曲げ試験直後の写真、(C-1)は保存試験直後の写真、(A-2)は試験前のフレキシブルパネルの写真、(B-2)はR=3mmの外曲げ試験直後の写真、(C-2)は保存試験直後の写真。(A-1) is a photograph of a flexible panel before the test, (B-1) is a photograph immediately after the internal bending test of R = 3 mm, (C-1) is a photograph immediately after the storage test, and (A-2) is a test. A photograph of the previous flexible panel, (B-2) is a photograph immediately after the outer bending test of R = 3 mm, and (C-2) is a photograph immediately after the storage test. (A-1)は試験前のフレキシブルパネルの写真、(B-1)はR=2mmの内曲げ試験直後の写真、(C-1)は保存試験直後の写真、(A-2)は試験前のフレキシブルパネルの写真、(B-2)はR=2mmの外曲げ試験直後の写真。(A-1) is a photograph of a flexible panel before the test, (B-1) is a photograph immediately after the internal bending test of R = 2 mm, (C-1) is a photograph immediately after the storage test, and (A-2) is a test. A photograph of the previous flexible panel, (B-2) is a photograph immediately after the outer bending test with R = 2 mm. (A)はフレキシブルパネル1を曲げる前の状態を模式的に示す断面図、(B)は(A)のフレキシブルパネル1を曲げた状態を示す断面図。(A) is sectional drawing which shows typically the state before bending the flexible panel 1, (B) is sectional drawing which shows the state which bent the flexible panel 1 of (A). (A)は中立面NPが内側に寄る例を示す断面図、無機層が中立面NPから遠ざかる例を示す断面図。(A) is sectional drawing which shows the example in which the neutral surface NP approaches inside, and sectional drawing which shows the example in which an inorganic layer moves away from the neutral surface NP. 外曲げシミュレーションに用いたモデルを示す断面図。Sectional drawing which shows the model used for the outside bending simulation. 外曲げシミュレーションに用いたフレキシブルパネルの積層構造モデルを示す断面図。Sectional drawing which shows the laminated structure model of the flexible panel used for the outside bending simulation. (A)乃至(C)は、外曲げの曲率半径がR=2mmで積層膜32の膜厚が13μmのときのシミュレーションによる応力分布を示す図。(A) thru | or (C) is a figure which shows the stress distribution by simulation when the curvature radius of an external bending is R = 2mm, and the film thickness of the laminated film 32 is 13 micrometers. 図12の計算モデルで折り曲げたときの中立面の位置を算出した結果を示す図。The figure which shows the result of having calculated the position of the neutral plane when it bends with the calculation model of FIG. 外曲げシミュレーションに用いたフレキシブルパネルの積層構造であって積層膜32の膜厚を変化させるモデルを示す断面図。Sectional drawing which is a laminated structure of the flexible panel used for the outside bending simulation, and shows the model which changes the film thickness of the laminated film 32. FIG. 図14に示す積層膜の膜厚32aとCF側無機層23に生じる曲げ応力の関係を計算した結果を示す図。The figure which shows the result of having calculated the relationship between the film thickness 32a of the laminated film shown in FIG. 14, and the bending stress which arises in the CF side inorganic layer. 繰り返し曲げ試験を実施するフレキシブルパネルの断面のSTEM像。STEM image of a cross section of a flexible panel subjected to repeated bending tests. フレキシブルパネルの表示領域の樹脂層の厚さを測定する9点(P1乃至P9)を示す図。The figure which shows nine points (P1 thru | or P9) which measure the thickness of the resin layer of the display area of a flexible panel. (A-1)は試験前のフレキシブルパネルの写真、(A-2)はR=2mm、7.5万回の外曲げ試験直後の写真、(A-3)は保存試験直後の写真、(B-1)は試験前のフレキシブルパネルの写真、(B-2)はR=2mm、10万回の内曲げ試験直後の写真、(B-3)は保存試験直後の写真。(A-1) is a photograph of the flexible panel before the test, (A-2) is a photograph immediately after the external bending test of R = 2 mm and 75,000 times, (A-3) is a photograph immediately after the storage test, B-1) is a photograph of the flexible panel before the test, (B-2) is a photograph immediately after the internal bending test of R = 2 mm and 100,000 times, and (B-3) is a photograph immediately after the storage test. 表2の繰り返し曲げ試験結果を図15に反映させたグラフ。The graph which reflected the repeated bending test result of Table 2 in FIG. (A)はフレキシブルパネル1を折り曲げた状態を示す斜視図、(B)はフレキシブルパネル1を折り曲げる前の状態を示す断面図。(A) is a perspective view which shows the state which bent the flexible panel 1, (B) is sectional drawing which shows the state before bending the flexible panel 1. FIG. 曲率半径の求め方を説明するための図。The figure for demonstrating how to obtain | require a curvature radius. 破断歪率(実測)と曲げのシミュレーションによる歪率(計算)を比較した図。The figure which compared the distortion rate (calculation) by the simulation of bending with the fracture rate (measurement).
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it will be easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
 [実施の形態1]
 図1(A)は、本発明の一態様に係る表示装置を概略的に示す断面図である。
 この表示装置(フレキシブルパネルともいう)は、少なくともフィルムである樹脂層11(第1の樹脂層ともいう)と、樹脂層11上に形成された防湿層13a(第1の無機層ともいう)と、防湿層13a上に形成されたEL層13cと、EL層13c上に形成された防湿層23a(第2の無機層ともいう)と、防湿層23a上に形成された樹脂層21a(第2の樹脂層ともいう)を有する。以下に詳細に説明する。
[Embodiment 1]
FIG. 1A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention.
This display device (also referred to as a flexible panel) includes at least a resin layer 11 (also referred to as a first resin layer) that is a film, and a moisture-proof layer 13a (also referred to as a first inorganic layer) formed on the resin layer 11. The EL layer 13c formed on the moisture-proof layer 13a, the moisture-proof layer 23a (also referred to as second inorganic layer) formed on the EL layer 13c, and the resin layer 21a (second layer) formed on the moisture-proof layer 23a It is also called a resin layer. This will be described in detail below.
 図1(A)に示す表示装置は、樹脂層11を有し、樹脂層11上には接着樹脂層12b(第4の樹脂層ともいう)が形成されている。接着樹脂層12b上には防湿層13aが形成されており、防湿層13a上にはFET(Field effect transistor)等の層13bが形成されている。FET等の層13b上にはEL層13cが形成されている。EL層13cの上面、EL層13c及びFET等の層13bの側面及び防湿層13a上には防湿層23aが形成されている。即ち、EL層13c及びFET等の層13bが防湿層13a,23aによって覆われることで、EL層13c及びFET等の層13bに水分が入り込むのを抑制できる。 The display device illustrated in FIG. 1A includes a resin layer 11, and an adhesive resin layer 12 b (also referred to as a fourth resin layer) is formed over the resin layer 11. A moisture-proof layer 13a is formed on the adhesive resin layer 12b, and a layer 13b such as an FET (Field effector transistor) is formed on the moisture-proof layer 13a. An EL layer 13c is formed on the layer 13b such as an FET. A moisture-proof layer 23a is formed on the upper surface of the EL layer 13c, the side surfaces of the EL layer 13c and the layer 13b such as an FET, and the moisture-proof layer 13a. That is, the EL layer 13c and the FET layer 13b are covered with the moisture- proof layers 13a and 23a, so that moisture can be prevented from entering the EL layer 13c and the FET layer 13b.
 また、防湿層23a上には接着樹脂層22b(第3の樹脂層ともいう)が形成されている。即ち、樹脂層11は接着樹脂層12bによって防湿層13aに接着されており、防湿層23aは接着樹脂層22bによって樹脂層21aに接着されている。 Further, an adhesive resin layer 22b (also referred to as a third resin layer) is formed on the moisture-proof layer 23a. That is, the resin layer 11 is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b, and the moisture-proof layer 23a is bonded to the resin layer 21a by the adhesive resin layer 22b.
 樹脂層21a上にはハードコート層21b(第1のハードコート層ともいう)が形成されている。樹脂層21aとハードコート層21bとを含めてフィルム21という。なお、防湿層13a(第1の無機層)及び防湿層23a(第2の無機層)それぞれは、金属酸化物、金属窒化物、SiとOの化合物またはSiとNの化合物を含むとよい。 A hard coat layer 21b (also referred to as a first hard coat layer) is formed on the resin layer 21a. The resin layer 21a and the hard coat layer 21b are referred to as a film 21. Each of the moisture-proof layer 13a (first inorganic layer) and the moisture-proof layer 23a (second inorganic layer) preferably contains a metal oxide, a metal nitride, a compound of Si and O, or a compound of Si and N.
 表示装置は折り曲げることができるように構成されている。そして、図1(A)の表示装置を折り曲げる際に防湿層13a及び防湿層23aそれぞれにかかる歪率は0より大きく0.4%以下(好ましくは0.27%以下)である。 The display device is configured so that it can be bent. When the display device in FIG. 1A is bent, the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less).
 別言すれば、防湿層13a及び防湿層23aそれぞれにかかる歪率が0より大きく0.4%以下(好ましくは0.27%以下)となるように、この表示装置を折り曲げる際の曲率半径と、この表示装置の樹脂層11、接着樹脂層12b、防湿層13a、FET等の層13b、EL層13c、防湿層23a、接着樹脂層22b、樹脂層21a及びハードコート層21bそれぞれの材質及び厚さとが決められるとよい。 In other words, the curvature radius when the display device is bent so that the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less). The material and thickness of each of the resin layer 11, adhesive resin layer 12b, moisture-proof layer 13a, FET layer 13b, EL layer 13c, moisture-proof layer 23a, adhesive resin layer 22b, resin layer 21a, and hard coat layer 21b of this display device Sato should be decided.
 本実施の形態によれば、表示装置を折り曲げる際に第1の無機層である防湿層13a及び第2の無機層である防湿層23aそれぞれにかかる歪率を0より大きく0.4%以下(好ましくは0.27%以下)とする。つまり、引張応力に対して弱い無機層にかかる歪率を0.4%以下(好ましくは0.27%以下)とすることで、フレキシブルパネル内の無機層の破断を抑制することができる。その結果、小さい曲率半径での複数回の繰り返し曲げに耐えられる曲げ耐性を有する表示装置を実現することが可能となる。 According to the present embodiment, when the display device is bent, the strain rate applied to each of the moisture-proof layer 13a as the first inorganic layer and the moisture-proof layer 23a as the second inorganic layer is greater than 0 and equal to or less than 0.4% ( Preferably it is 0.27% or less. In other words, by setting the strain applied to the inorganic layer that is weak against the tensile stress to 0.4% or less (preferably 0.27% or less), breakage of the inorganic layer in the flexible panel can be suppressed. As a result, it is possible to realize a display device having bending resistance that can withstand repeated bending with a small radius of curvature.
 [実施の形態2]
 図1(B)は、本発明の一態様に係る表示装置を概略的に示す断面図であり、図1(A)と同一部分には同一符号を付す。
[Embodiment 2]
FIG. 1B is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention, in which the same portions as those in FIG.
 図1(B)の表示装置は、図1(A)に示す表示装置に固体封止樹脂31(第5の樹脂層ともいう)及びハードコート層21c(第2のハードコート層ともいう)が加えられたものである。以下に詳細に説明する。 1B includes a solid sealing resin 31 (also referred to as a fifth resin layer) and a hard coat layer 21c (also referred to as a second hard coat layer) in the display device illustrated in FIG. It has been added. This will be described in detail below.
 図1(B)の表示装置は樹脂層11(第1の樹脂層)を有し、樹脂層11上には接着樹脂層12b(第4の樹脂層)が形成されている。接着樹脂層12b上には防湿層13a(第1の無機層)が形成されている。即ち、樹脂層11は接着樹脂層12bによって防湿層13aに接着されている。 1B has a resin layer 11 (first resin layer), and an adhesive resin layer 12 b (fourth resin layer) is formed on the resin layer 11. A moisture-proof layer 13a (first inorganic layer) is formed on the adhesive resin layer 12b. That is, the resin layer 11 is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b.
 また、防湿層13a上にはFET等の層13bが形成されている。FET等の層13b上にはEL層13cが形成されている。EL層13c、FET等の層13b及び防湿層13aの上には固体封止樹脂層31が形成されている。つまり、EL層13c及びFET等の層13bは固体封止樹脂層31によって封止されている。固体封止樹脂層31上には防湿層23a(第2の無機層)が形成されている。即ち、EL層13c及びFET等の層13bが防湿層13a,23aによって覆われることで、EL層13c及びFET等の層13bに水分が入り込むのを抑制できる。 Further, a layer 13b such as an FET is formed on the moisture-proof layer 13a. An EL layer 13c is formed on the layer 13b such as an FET. A solid sealing resin layer 31 is formed on the EL layer 13c, the FET layer 13b, and the moisture-proof layer 13a. That is, the EL layer 13 c and the layer 13 b such as an FET are sealed with the solid sealing resin layer 31. A moisture-proof layer 23a (second inorganic layer) is formed on the solid sealing resin layer 31. That is, the EL layer 13c and the FET layer 13b are covered with the moisture- proof layers 13a and 23a, so that moisture can be prevented from entering the EL layer 13c and the FET layer 13b.
 また、防湿層23a上には接着樹脂層22bが形成されており、接着樹脂層22b上にはハードコート層21cが形成されている。ハードコート層21c上には樹脂層21a(第2の樹脂層)が形成されており、樹脂層21a上にはハードコート層21b(第1のハードコート層)が形成されている。ハードコート層21cと樹脂層21aとハードコート層21bとを含めてフィルム21という。即ち、防湿層23aは接着樹脂層22bによってハードコート層21cに接着されている。 The adhesive resin layer 22b is formed on the moisture-proof layer 23a, and the hard coat layer 21c is formed on the adhesive resin layer 22b. A resin layer 21a (second resin layer) is formed on the hard coat layer 21c, and a hard coat layer 21b (first hard coat layer) is formed on the resin layer 21a. The hard coat layer 21c, the resin layer 21a, and the hard coat layer 21b are referred to as a film 21. That is, the moisture-proof layer 23a is bonded to the hard coat layer 21c by the adhesive resin layer 22b.
 実施の形態1と同様に、表示装置は折り曲げることができるように構成されている。そして、図1(B)の表示装置を折り曲げる際に防湿層13a及び防湿層23aそれぞれにかかる歪率は0より大きく0.4%以下(好ましくは0.27%以下)である。 As in the first embodiment, the display device is configured to be bent. When the display device in FIG. 1B is bent, the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a is greater than 0 and 0.4% or less (preferably 0.27% or less).
 本実施の形態においても実施の形態1と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the first embodiment can be obtained.
 また、固体封止樹脂31(第5の樹脂層)の平均厚さは9μm以下とすることが好ましい。これにより、表示装置の厚さをより薄くすることができる。その結果、表示装置を折り曲げる際に防湿層13a及び防湿層23aそれぞれにかかる歪率をより小さくすることができ、表示装置内の無機層の破断をより抑制することができる。 Further, the average thickness of the solid sealing resin 31 (fifth resin layer) is preferably 9 μm or less. Thereby, the thickness of the display device can be further reduced. As a result, when the display device is bent, the strain rate applied to each of the moisture-proof layer 13a and the moisture-proof layer 23a can be further reduced, and the breakage of the inorganic layer in the display device can be further suppressed.
 [実施の形態3]
 図2(A)は、本発明の一態様に係る表示装置を概略的に示す断面図であり、図1(B)と同一部分には同一符号を付し、異なる部分についてのみ説明する。
[Embodiment 3]
FIG. 2A is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention. The same portions as those in FIG. 1B are denoted by the same reference numerals, and only different portions will be described.
 図2(A)の表示装置は、図1(B)に示す表示装置にカラーフィルター23bが加えられたものである。詳細には、カラーフィルター23bはEL層13cと防湿層23aとの間に位置し、カラーフィルター23bとEL層13cとの間には固体封止樹脂31が配置されている。 2A is a display device in which a color filter 23b is added to the display device shown in FIG. Specifically, the color filter 23b is located between the EL layer 13c and the moisture-proof layer 23a, and the solid sealing resin 31 is disposed between the color filter 23b and the EL layer 13c.
 本実施の形態においても実施の形態2と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the second embodiment can be obtained.
 [実施の形態4]
 図2(B)は、本発明の一態様に係る表示装置を概略的に示す断面図であり、図2(A)と同一部分には同一符号を付し、異なる部分についてのみ説明する。
[Embodiment 4]
FIG. 2B is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention. The same portions as those in FIG. 2A are denoted by the same reference numerals, and only different portions will be described.
 図2(B)の表示装置は、図2(A)に示す表示装置からハードコート層21cを除去したものである。詳細には、防湿層23a上には接着樹脂層22bが形成されており、接着樹脂層22b上には樹脂層21aが形成されている。樹脂層21a上にはハードコート層21bが形成されている。ハードコート層21bと樹脂層21aとを含めてフィルム21という。即ち、防湿層23aは接着樹脂層22bによって樹脂層21aに接着されている。 2 (B) is obtained by removing the hard coat layer 21c from the display device shown in FIG. 2 (A). Specifically, the adhesive resin layer 22b is formed on the moisture-proof layer 23a, and the resin layer 21a is formed on the adhesive resin layer 22b. A hard coat layer 21b is formed on the resin layer 21a. The hard coat layer 21b and the resin layer 21a are referred to as a film 21. That is, the moisture-proof layer 23a is bonded to the resin layer 21a by the adhesive resin layer 22b.
 本実施の形態においても実施の形態3と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the third embodiment can be obtained.
 [実施の形態5]
 図3は、本発明の一態様に係る表示装置を概略的に示す断面図であり、図2(A)と同一部分には同一符号を付し、異なる部分についてのみ説明する。
[Embodiment 5]
FIG. 3 is a cross-sectional view schematically illustrating a display device according to one embodiment of the present invention. The same portions as those in FIG. 2A are denoted by the same reference numerals, and only different portions will be described.
 図3の表示装置は、図2(A)に示す表示装置にハードコート層11b,11cを加えたものである。詳細には、ハードコート層11b(第3のハードコート層ともいう)上には樹脂層11a(第1の樹脂層)が形成されており、樹脂層11a上にはハードコート層11c(第4のハードコート層ともいう)が形成されている。ハードコート層11cと樹脂層11aとハードコート層11bとを含めてフィルム11という。ハードコート層11cは接着樹脂層12bによって防湿層13aに接着されている。 The display device of FIG. 3 is obtained by adding hard coat layers 11b and 11c to the display device shown in FIG. Specifically, a resin layer 11a (first resin layer) is formed on the hard coat layer 11b (also referred to as a third hard coat layer), and the hard coat layer 11c (fourth resin layer) is formed on the resin layer 11a. (Also referred to as a hard coat layer). The hard coat layer 11c, the resin layer 11a, and the hard coat layer 11b are referred to as a film 11. The hard coat layer 11c is bonded to the moisture-proof layer 13a by the adhesive resin layer 12b.
 本実施の形態においても実施の形態3と同様の効果を得ることができる。 Also in this embodiment, the same effect as in the third embodiment can be obtained.
 なお、実施の形態1乃至5は、互いに適宜組み合わせて実施することが可能である。 Note that Embodiments 1 to 5 can be implemented in combination with each other as appropriate.
 ≪繰り返し曲げ試験≫
 実施例による表示装置であるフレキシブルパネルが小さい曲率半径での曲げに耐えられる曲げ耐性を有するか否かを試験するために、繰り返し曲げ試験を行った。実施例のフレキシブルパネルには図3に示す実施の形態5のフレキシブルパネルを用いた。このフレキシブルパネルの積層構造は、厚さ23μmのフィルム11、厚さ10μmの樹脂12b、厚さ2μmの防湿層(無機層)13a、厚さ13μmの固体封止樹脂層(樹脂層)31、厚さ1μmの防湿層(無機層)23a、厚さ10μmの接着樹脂層(樹脂層)22b、厚さ23μmのフィルム21を順に積層した構造である。試験の方法は以下のとおりである。
≪Repeated bending test≫
In order to test whether or not the flexible panel, which is a display device according to the example, has bending resistance capable of withstanding bending with a small radius of curvature, a repeated bending test was performed. The flexible panel of Example 5 shown in FIG. 3 was used for the flexible panel of the Example. The flexible panel has a laminated structure of a film 11 having a thickness of 23 μm, a resin 12b having a thickness of 10 μm, a moisture-proof layer (inorganic layer) 13a having a thickness of 2 μm, a solid sealing resin layer (resin layer) 31 having a thickness of 13 μm, and a thickness. This is a structure in which a moisture-proof layer (inorganic layer) 23 a having a thickness of 1 μm, an adhesive resin layer (resin layer) 22 b having a thickness of 10 μm, and a film 21 having a thickness of 23 μm are sequentially laminated. The test method is as follows.
(繰り返し曲げ試験方法)
 繰り返し曲げ試験は、図4に示すブック型繰り返し曲げ試験機を用いて行った。このブック型繰り返し曲げ試験機は第1のステージ4を有し、第1のステージ4は回転軸6によって第2のステージ5と連結されている。回転軸6は図示せぬ回転駆動機構に接続されており、この回転駆動機構によって回転軸6は矢印のように180°の回転が可能な構成とされている。第1及び第2のステージ4,5上にフレキシブルパネル1が固定され、第2のステージ5が回転軸6を中心に180°回転されることで、フレキシブルパネル1が曲率半径Rで折り曲げられる。次いで、第2のステージ5が回転軸6を中心に逆方向に180°回転されることで、フレキシブルパネル1の折り曲げが解除され、フレキシブルパネル1が平面形状に戻される。これを繰り返すことで、フレキシブルパネル1の繰り返し曲げ試験が行われる。繰り返し曲げ試験の速度は2秒/回である。なお、曲率半径Rは1mmから5mmまで1mm間隔で調整できるようになっている。
(Repeated bending test method)
The repeated bending test was performed using a book-type repeated bending tester shown in FIG. This book-type repeated bending tester has a first stage 4, and the first stage 4 is connected to a second stage 5 by a rotating shaft 6. The rotation shaft 6 is connected to a rotation drive mechanism (not shown), and the rotation drive mechanism is configured to be capable of rotating 180 ° as indicated by an arrow. The flexible panel 1 is fixed on the first and second stages 4 and 5, and the second stage 5 is rotated by 180 ° about the rotation shaft 6, whereby the flexible panel 1 is bent at the curvature radius R. Next, the second stage 5 is rotated 180 ° in the reverse direction about the rotation axis 6, whereby the bending of the flexible panel 1 is released and the flexible panel 1 is returned to a planar shape. By repeating this, a repeated bending test of the flexible panel 1 is performed. The speed of the repeated bending test is 2 seconds / time. The radius of curvature R can be adjusted from 1 mm to 5 mm at 1 mm intervals.
 繰り返し曲げ試験には内曲げ試験と外曲げ試験がある。内曲げ試験は、フレキシブルパネルを折り曲げた際に表示面が内側になるように曲げる試験であり、外曲げ試験は、フレキシブルパネルを折り曲げた際に表示面が外側になるように曲げる試験である。 The repeated bending test includes an inner bending test and an outer bending test. The inner bend test is a test in which the display surface is bent inward when the flexible panel is bent, and the outer bend test is a test in which the display surface is bent outward when the flexible panel is bent.
 本試験では、実施例のフレキシブルパネルについて曲率半径R=5mm,3mm,2mmそれぞれで繰り返し回数10万回の内曲げ試験と外曲げ試験を行った。 In this test, the flexible panel of the example was subjected to an internal bending test and an external bending test with a radius of curvature R = 5 mm, 3 mm, and 2 mm, each with 100,000 repetitions.
(繰り返し曲げ試験結果)
 図5(A-1)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図5(B-1)は、図5(A-1)に示すフレキシブルパネルに曲率半径R=5mmで内曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。
(Repeated bending test results)
FIG. 5A-1 is a photograph of the display surface of the flexible panel before the test. FIG. 5 (B-1) is a photograph immediately after an internal bending test is performed on the flexible panel shown in FIG. 5 (A-1) with a radius of curvature R = 5 mm. It was done in the form of bending.
 図5(C-1)は、図5(B-1)に示す内曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 FIG. 5C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 5B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図5(B-1),(C-1)に示すように、R=5mmの内曲げ試験ではフレキシブルパネルに不具合は発生しなかった。 As shown in FIGS. 5 (B-1) and 5 (C-1), no failure occurred in the flexible panel in the internal bending test of R = 5 mm.
 図5(A-2)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図5(B-2)は、図5(A-2)に示すフレキシブルパネルに曲率半径R=5mmで外曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 5 (A-2) is a photograph of the display surface of the flexible panel before the test. FIG. 5 (B-2) is a photograph immediately after an external bending test is performed on the flexible panel shown in FIG. 5 (A-2) with a radius of curvature R = 5 mm. It was done in the form of bending.
 図5(C-2)は、図5(B-2)に示す外曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 FIG. 5 (C-2) shows a photograph immediately after a storage test in which the flexible panel shown in FIG. 5 (B-2) was subjected to an external bending test in an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図5(B-2),(C-2)に示すように、R=5mmの外曲げ試験ではフレキシブルパネルに不具合は発生しなかった。 As shown in FIGS. 5 (B-2) and (C-2), no failure occurred in the flexible panel in the external bending test of R = 5 mm.
 図6(A-1)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図6(B-1)は、図6(A-1)に示すフレキシブルパネルに曲率半径R=3mmで内曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 6 (A-1) is a photograph of the display surface of the flexible panel before the test. FIG. 6 (B-1) is a photograph immediately after the internal bending test was performed on the flexible panel shown in FIG. 6 (A-1) with a radius of curvature R = 3 mm. It was done in the form of bending.
 図6(C-1)は、図6(B-1)に示す内曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 6C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 6B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図6(B-1),(C-1)に示すように、R=3mmの内曲げ試験ではフレキシブルパネルに不具合は発生しなかった。 As shown in FIGS. 6 (B-1) and (C-1), in the internal bending test of R = 3 mm, no defect occurred in the flexible panel.
 図6(A-2)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図6(B-2)は、図6(A-2)に示すフレキシブルパネルに曲率半径R=3mmで外曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 6 (A-2) is a photograph of the display surface of the flexible panel before the test. FIG. 6 (B-2) is a photograph immediately after an external bending test is performed on the flexible panel shown in FIG. 6 (A-2) with a radius of curvature R = 3 mm. It was done in the form of bending.
 図6(C-2)は、図6(B-2)に示す外曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 FIG. 6C-2 is a photograph immediately after a storage test in which the flexible panel shown in FIG. 6B-2 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図6(B-2),(C-2)に示すように、R=3mmの外曲げ試験ではフレキシブルパネルに不具合は発生しなかった。 As shown in FIGS. 6 (B-2) and (C-2), no failure occurred in the flexible panel in the outer bending test of R = 3 mm.
 図7(A-1)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図7(B-1)は、図7(A-1)に示すフレキシブルパネルに曲率半径R=2mmで内曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 7 (A-1) is a photograph of the display surface of the flexible panel before the test. FIG. 7 (B-1) is a photograph immediately after the internal bending test is performed on the flexible panel shown in FIG. 7 (A-1) with a radius of curvature R = 2 mm. It was done in the form of bending.
 図7(C-1)は、図7(B-1)に示す内曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 FIG. 7C-1 is a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 7B-1 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図7(B-1),(C-1)に示すように、R=2mmの内曲げ試験ではフレキシブルパネルに不具合は発生しなかった。 As shown in FIGS. 7 (B-1) and (C-1), no failure occurred in the flexible panel in the internal bending test of R = 2 mm.
 図7(A-2)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図7(B-2)は、図7(A-2)に示すフレキシブルパネルに曲率半径R=2mmで外曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 7 (A-2) is a photograph of the display surface of the flexible panel before the test. FIG. 7 (B-2) is a photograph immediately after an external bending test is performed on the flexible panel shown in FIG. 7 (A-2) with a radius of curvature R = 2 mm. It was done in the form of bending.
 図7(B-2)に示すように、R=2mmの外曲げ試験ではフレキシブルパネルにクラックが発生した。なお、図7(B-2)に示すフレキシブルパネルはクラックが発生したため、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行わなかった。 As shown in FIG. 7 (B-2), cracks occurred in the flexible panel in the outer bending test of R = 2 mm. Note that the flexible panel shown in FIG. 7B-2 was cracked, so a storage test was not performed by exposing it to an atmosphere of 65 ° C. and 95% humidity for 100 hours.
 ≪曲げによるフレキシブルパネルへの負荷≫
 図8(A)は、フレキシブルパネル1を曲げる前の状態を模式的に示す断面図である。フレキシブルパネル1はフィルム11,21を有し、フィルム11とフィルム21との間には樹脂層、無機層、EL層等の層33が配置されている。
≪Bending to flexible panel due to bending≫
FIG. 8A is a cross-sectional view schematically showing a state before the flexible panel 1 is bent. The flexible panel 1 includes films 11 and 21, and a layer 33 such as a resin layer, an inorganic layer, or an EL layer is disposed between the film 11 and the film 21.
 図8(B)は、図8(A)のフレキシブルパネル1を曲げた状態を示す断面図である。
 曲げにより、フレキシブルパネル1の外側は矢印34a,34bのように引き伸ばされるため、引張応力が発生し、フレキシブルパネル1の内側は矢印35a,35bのように圧縮されるため、圧縮応力が発生する。また、フレキシブルパネル1の厚さ方向の中心付近、具体的にはフィルム21の表面からの厚さT1の位置には伸びも縮みもしない中立面NPが存在する。中立面NPに掛かる応力はゼロである。中立面NPからの距離に比例して引張及び圧縮の応力は大きくなる。層33中の無機層(防湿層)が中立面NPから離れている場合、その無機層に掛かる応力が大きくなる。無機層は引張応力に弱いため、中立面NPから外側の無機層が中立面NPから離れているほど、その無機層に掛かる引張応力が大きくなり、その結果、無機層にクラックが発生することにつながると予想される。従って、層33中の無機層(防湿層)が中立面NPから離れるほど、フレキシブルパネル内の無機層が破断しやすくなるため、フレキシブルパネルが繰り返し曲げ試験に弱くなると考えられる。
FIG. 8B is a cross-sectional view showing a state where the flexible panel 1 of FIG. 8A is bent.
By bending, the outer side of the flexible panel 1 is stretched as indicated by arrows 34a and 34b, so that tensile stress is generated, and the inner side of the flexible panel 1 is compressed as indicated by arrows 35a and 35b, so that compressive stress is generated. Further, a neutral plane NP that does not expand or contract exists near the center of the flexible panel 1 in the thickness direction, specifically, at the position of the thickness T1 from the surface of the film 21. The stress applied to the neutral plane NP is zero. The tensile and compressive stress increases in proportion to the distance from the neutral plane NP. When the inorganic layer (moisture-proof layer) in the layer 33 is separated from the neutral plane NP, the stress applied to the inorganic layer increases. Since the inorganic layer is susceptible to tensile stress, the further away the inorganic layer from the neutral plane NP, the greater the tensile stress applied to the inorganic layer, and as a result, cracks occur in the inorganic layer. It is expected to lead to. Therefore, since the inorganic layer in the flexible panel is easily broken as the inorganic layer (moisture-proof layer) in the layer 33 is separated from the neutral plane NP, the flexible panel is considered to be weak in repeated bending tests.
 無機層が中立面から遠ざかる要因は2つ考えられる。
(1)フレキシブルパネルの積層構造が非対称であると曲げによる応力のバランスが崩れ、中立面NPが外側か内側のどちらか片側に寄ってしまう。例えば、図9(A)に示すように、中立面NPがフィルム21の表面からの厚さT2に位置するように、中立面NPが内側に寄ってしまう。
(2)図9(B)に示すように、層33中の中立面付近の樹脂層(封止樹脂層など)が厚いほど、フレキシブルパネル1の全体の厚さも厚くなる。そのため、中立面NPがフィルム21の表面からの厚さT3に位置するように、中立面NPから外側のフレキシブルパネル1の厚さも厚くなり、無機層が中立面NPから遠ざかりやすくなる。
There are two possible causes for the inorganic layer to move away from the neutral plane.
(1) If the laminated structure of the flexible panel is asymmetric, the stress balance due to bending is lost, and the neutral plane NP is shifted to either the outer side or the inner side. For example, as shown in FIG. 9A, the neutral surface NP is moved inward so that the neutral surface NP is positioned at a thickness T <b> 2 from the surface of the film 21.
(2) As shown in FIG. 9B, the thicker the resin layer (such as the sealing resin layer) near the neutral surface in the layer 33, the thicker the flexible panel 1 is. Therefore, the thickness of the flexible panel 1 on the outer side from the neutral surface NP is increased so that the neutral surface NP is positioned at the thickness T3 from the surface of the film 21, and the inorganic layer is easily moved away from the neutral surface NP.
 ≪曲げシミュレーション≫
 フレキシブルパネルの外曲げシミュレーションについて説明する。
 図10は、本発明の一態様に係るフレキシブルパネルを概略的に示す断面図であり、シミュレーションのために図3(A)の表示装置を簡略化したフレキシブルパネルを示す図である。
≪Bending simulation≫
A flexible panel external bending simulation will be described.
10 is a cross-sectional view schematically illustrating a flexible panel according to one embodiment of the present invention, and is a diagram illustrating a flexible panel in which the display device in FIG. 3A is simplified for simulation.
(シミュレーション手法と計算結果)
 伝熱-構造連成解析ソフトANSYS Mechanical APDLを使用してシミュレーションした。なお、計算簡略化のため「2次元」「曲げ部0.5mmの範囲のみ」「線形弾性領域」で実際のフレキシブルパネルを簡略化した図10に示すモデルを構築した。
(Simulation method and calculation results)
Simulation was performed using the heat transfer-structure coupled analysis software ANSYS Mechanical APDL. In order to simplify the calculation, a model shown in FIG. 10 was constructed in which an actual flexible panel was simplified using “two-dimensional”, “bending range of 0.5 mm only”, and “linear elastic region”.
 図10の表示装置はフィルム11を有し、フィルム11上には樹脂12が形成されている。樹脂層12上にはFET側無機層13が形成されており、FET側無機層13上にはEL層、樹脂層、CF(カラーフィルター)を順に積層した積層膜32が形成されている。この積層膜32上にはCF側無機層23が形成されており、CF側無機層23上には樹脂層22が形成されている。樹脂層22上にはフィルム21が形成されている。 10 has a film 11, and a resin 12 is formed on the film 11. An FET side inorganic layer 13 is formed on the resin layer 12, and a laminated film 32 in which an EL layer, a resin layer, and a CF (color filter) are sequentially laminated is formed on the FET side inorganic layer 13. A CF-side inorganic layer 23 is formed on the laminated film 32, and a resin layer 22 is formed on the CF-side inorganic layer 23. A film 21 is formed on the resin layer 22.
 計算で折り曲げ状況を再現するために、図10に示すようにモデル中央上下を拘束し、フィルム21の表面両端に力を印加するように設定した。両端に下向きの力を加えることで外曲げ(パネル表示面が外側)を表現した。さらに、シミュレーションの実施にあたり、フレキシブルパネルの積層構造については、図11に示す積層構造を仮定した。この積層構造は、厚さ23μmのフィルム11、厚さ10μmの樹脂12、厚さ2μmのFET側無機層13、厚さ13μmの積層膜32、厚さ1μmのCF側無機層23、厚さ10μmの樹脂層22、厚さ23μmのフィルム21を順に積層した構造である。なお、積層膜32の構造は、有機層間膜、EL層、樹脂層、CFを順に積層した構造である。また、計算に当たって各層の物性値と計算条件の設定値を使用した。計算条件の設定値は表1に示す。 In order to reproduce the bending state by calculation, the model was set so that the top and bottom of the model were restrained as shown in FIG. External bending (panel display surface is outside) was expressed by applying downward force to both ends. Furthermore, in carrying out the simulation, the laminated structure shown in FIG. 11 was assumed for the laminated structure of the flexible panel. This laminated structure includes a film 11 having a thickness of 23 μm, a resin 12 having a thickness of 10 μm, an FET-side inorganic layer 13 having a thickness of 2 μm, a laminated film 32 having a thickness of 13 μm, a CF-side inorganic layer 23 having a thickness of 1 μm, and a thickness of 10 μm. The resin layer 22 and the film 21 having a thickness of 23 μm are sequentially laminated. The laminated film 32 has a structure in which an organic interlayer film, an EL layer, a resin layer, and CF are laminated in this order. In the calculation, the property values of each layer and the set values of the calculation conditions were used. Table 1 shows the setting values for the calculation conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図11の構造モデルにおいて曲率半径R=2mmで外曲げした場合の応力分布の計算結果を図12に示す。図12(A)は、図10に示すフレキシブルパネルの中央上下を拘束し、フィルム21の表面両端に力を印加することでフレキシブルパネルを曲げた状態を示す図であり、図12(B)は、図12(A)に示す破線で囲まれた領域を拡大した図である。図12(C)に示すように、グレースケールはマイナスが圧縮応力で、プラスが引張応力である。図12(B)の曲げ部のみを拡大した図を見ると、全体として曲げ内側では圧縮応力が、曲げ外側では引張応力が発生していることが分かる。また、特にFET側無機層13及びCF側無機層23といった無機層では大きな曲げ応力が発生していることが分かる。これは無機層が有機層と比較して大きなヤング率を有することに起因している。 FIG. 12 shows the calculation result of the stress distribution when the structure model in FIG. 11 is bent outward with a radius of curvature R = 2 mm. FIG. 12A is a view showing a state where the flexible panel is bent by restraining the upper and lower sides of the flexible panel shown in FIG. 10 and applying a force to both ends of the surface of the film 21, and FIG. FIG. 13 is an enlarged view of a region surrounded by a broken line shown in FIG. As shown in FIG. 12C, in the gray scale, minus is compressive stress and plus is tensile stress. When the figure which expanded only the bending part of FIG. 12 (B) is seen, it turns out that the compressive stress has generate | occur | produced the bending inner side as a whole, and the tensile stress has generate | occur | produced on the bending outer side. It can also be seen that large bending stresses are generated particularly in the inorganic layers such as the FET-side inorganic layer 13 and the CF-side inorganic layer 23. This is because the inorganic layer has a larger Young's modulus than the organic layer.
 折り曲げによって生じる応力は、ヤング率と中立面からの距離に比例し、曲率半径に反比例する。図12の計算モデルで中立面の位置を算出した。その結果を図13に示す。中立面101とCF側無機層23との距離は約10μmであり、中立面101とFET側無機層13との距離は約6μmであるので、中立面101と無機層との距離はCF側とFET側で偏っている。FET側無機層13は、ゲート絶縁膜等を含むため、CF側無機層23よりも厚い。従って、中立面101がFET側無機層13に寄り、その結果、中立面101からの距離が大きいCF側無機層23(防湿層)の方が曲げ応力が強くかかるため割れやすいと考えられる。この中立面101の計算結果は外曲げに対する耐性が低い実験結果(図7参照)と一致する傾向を示した。 The stress generated by bending is proportional to the Young's modulus and the distance from the neutral plane, and inversely proportional to the radius of curvature. The position of the neutral plane was calculated using the calculation model shown in FIG. The result is shown in FIG. Since the distance between the neutral surface 101 and the CF-side inorganic layer 23 is about 10 μm, and the distance between the neutral surface 101 and the FET-side inorganic layer 13 is about 6 μm, the distance between the neutral surface 101 and the inorganic layer is It is biased between the CF side and the FET side. The FET-side inorganic layer 13 is thicker than the CF-side inorganic layer 23 because it includes a gate insulating film and the like. Therefore, the neutral surface 101 is closer to the FET-side inorganic layer 13, and as a result, the CF-side inorganic layer 23 (moisture-proof layer) having a larger distance from the neutral surface 101 is considered to be easily cracked because of higher bending stress. . The calculation result of the neutral surface 101 tended to coincide with the experimental result (see FIG. 7) having low resistance to external bending.
 フレキシブルパネルの繰り返し曲げ試験で観察される不良の多くは、外曲げ時のCF側無機層(防湿層)23が破断したことによるものである。そこで、図14に示すように、有機層間膜、EL層、樹脂層、CFを順に積層した積層膜32の膜厚32aを、積層膜32中の樹脂層の厚さを変えることで変化させ、その際にCF側無機層(防湿層)23に発生する応力を計算した。この応力は、積層膜32中の樹脂層(封止樹脂層)の厚さに依存してCF側無機層23に発生する応力である。積層膜32の膜厚32aは、封止樹脂層の厚さに有機層間膜とEL層とCFの厚さの合計に相当する厚さ2μmを加えた厚さである。図14の構造モデルはあくまでも計算に使用した一例であって、他の構造モデル、例えばCFが省略された構造(図1(B))であっても良い。さらに、積層膜32中の樹脂層及びCFが省略され、CF側無機層23がEL層上に直接成膜されているような構造(図1(A))でもよい。その場合は、EL層上に直接成膜された無機層23に生じる歪率を議論する必要がある。 Most of the defects observed in the repeated bending test of the flexible panel are due to the fracture of the CF-side inorganic layer (moisture-proof layer) 23 during external bending. Therefore, as shown in FIG. 14, the film thickness 32a of the laminated film 32 in which the organic interlayer film, the EL layer, the resin layer, and the CF are sequentially laminated is changed by changing the thickness of the resin layer in the laminated film 32, The stress generated in the CF side inorganic layer (moisture-proof layer) 23 at that time was calculated. This stress is a stress generated in the CF-side inorganic layer 23 depending on the thickness of the resin layer (sealing resin layer) in the laminated film 32. The film thickness 32 a of the laminated film 32 is a thickness obtained by adding a thickness of 2 μm corresponding to the total thickness of the organic interlayer film, the EL layer, and the CF to the thickness of the sealing resin layer. The structural model in FIG. 14 is merely an example used for calculation, and may be another structural model, for example, a structure in which CF is omitted (FIG. 1B). Further, a structure in which the resin layer and CF in the laminated film 32 are omitted, and the CF-side inorganic layer 23 is formed directly on the EL layer (FIG. 1A) may be used. In that case, it is necessary to discuss the distortion rate generated in the inorganic layer 23 formed directly on the EL layer.
 上記の積層膜32中の有機層間膜とEL層とCFの厚さの和を2μmとし、樹脂層(封止樹脂層)の厚さを4μmから11μmまで変化させ、その変化させた各膜厚32aでの外曲げの曲率半径がR= 2、3、5mmの時にCF側無機層23に発生する応力の関係を計算した結果を図15に示す。図15において、横軸は積層膜32の膜厚32a(μm)であり、縦軸はCF側無機層(防湿層)23に発生する最大応力(MPa)である。なお、例えば、有機層間膜の厚さは1μm未満であり、CFの厚さは1μm程度であり、EL層の厚さは有機層間膜やCFに比べて十分薄く、例えば0.3μm程度であることから、これらの厚さの和を2μmに相当するとした。 The sum of the thicknesses of the organic interlayer film, the EL layer, and the CF in the laminated film 32 is set to 2 μm, and the thickness of the resin layer (sealing resin layer) is changed from 4 μm to 11 μm. FIG. 15 shows the result of calculating the relationship between the stresses generated in the CF-side inorganic layer 23 when the radius of curvature of the outer bend at 32a is R = 2, 3, 5 mm. In FIG. 15, the horizontal axis is the film thickness 32 a (μm) of the laminated film 32, and the vertical axis is the maximum stress (MPa) generated in the CF-side inorganic layer (moisture-proof layer) 23. For example, the thickness of the organic interlayer film is less than 1 μm, the thickness of CF is about 1 μm, and the thickness of the EL layer is sufficiently thinner than the organic interlayer film or CF, for example, about 0.3 μm. Therefore, the sum of these thicknesses was assumed to correspond to 2 μm.
 図15によれば、CF側無機層23に発生する外曲げの最大応力は、積層膜の膜厚(μm)と線形関係にあることが分かる。また、曲率半径Rが小さくなるほど積層膜32の膜厚の変化に対して敏感となり、傾きが大きくなることが分かる。 15, it can be seen that the maximum bending stress generated in the CF-side inorganic layer 23 is linearly related to the film thickness (μm) of the laminated film. It can also be seen that the smaller the radius of curvature R, the more sensitive to changes in the thickness of the laminated film 32 and the greater the inclination.
 ≪繰り返し曲げ試験≫
(実施例のフレキシブルパネルの樹脂層厚測定結果)
 計算結果と実験結果(曲げ試験の合否)との整合性を確認するために、繰り返し曲げ試験を実施するフレキシブルパネルの樹脂層(封止樹脂層)の厚さを調査した。そのフレキシブルパネルの断面STEM観察により樹脂層の厚さを測定した。図16に断面STEM像の一例を示す。膜厚測定箇所32bは防湿層23/CF(G)界面と有機層(樹脂層)間/無機層13間界面との距離を3点測定し、3点の平均値を樹脂層の厚さとした。この方法で図17に示すフレキシブルパネルの表示領域の9点(P1乃至P9)の樹脂層の厚さを測定した。その結果、パネル表示領域の9点の樹脂層の平均厚さは9μm±18%だった。±18%は、9点の樹脂層の厚さが全て平均厚さの±18%の範囲内に含まれていたことを示す。
≪Repeated bending test≫
(Measurement result of resin layer thickness of flexible panel of Example)
In order to confirm the consistency between the calculation results and the experimental results (pass / fail of the bending test), the thickness of the resin layer (sealing resin layer) of the flexible panel on which the repeated bending test is performed was investigated. The thickness of the resin layer was measured by cross-sectional STEM observation of the flexible panel. FIG. 16 shows an example of a cross-sectional STEM image. The film thickness measurement location 32b measured the distance between the moisture-proof layer 23 / CF (G) interface and the organic layer (resin layer) / inorganic layer 13 interface at three points, and the average value of the three points was the thickness of the resin layer. . With this method, the thickness of the resin layer at nine points (P1 to P9) in the display area of the flexible panel shown in FIG. 17 was measured. As a result, the average thickness of the nine resin layers in the panel display area was 9 μm ± 18%. ± 18% indicates that the thicknesses of the nine resin layers were all within the range of ± 18% of the average thickness.
(繰り返し曲げ試験方法)
 図16に示すフレキシブルパネルと同じ条件で作製したフレキシブルパネルについて、図4に示すブック型繰り返し曲げ試験機を用いて曲率半径R=2mmで繰り返し回数5万回、7.5万回、10万回の外曲げ試験と内曲げ試験を行った。
(Repeated bending test method)
For the flexible panel manufactured under the same conditions as the flexible panel shown in FIG. 16, using the book-type repeated bending tester shown in FIG. 4, the curvature radius is R = 2 mm, the number of repetitions is 50,000 times, 75,000 times, 100,000 times. An outer bending test and an inner bending test were performed.
(繰り返し曲げ試験結果)
 図18(A-1)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図18(A-2)は、図18(A-1)に示すフレキシブルパネルに曲率半径R=2mmで繰り返し回数7.5万回の外曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。図18(A-2)に示すように曲げ部で表示不良が発生した。
(Repeated bending test results)
FIG. 18A-1 is a photograph of the display surface of the flexible panel before the test. FIG. 18 (A-2) is a photograph immediately after an external bending test with a curvature radius of R = 2 mm and a repetition count of 75,000 times is performed on the flexible panel shown in FIG. 18 (A-1). This was done by bending the broken line in the center of the panel. As shown in FIG. 18A-2, a display defect occurred at the bent portion.
 図18(A-3)は、図18(A-2)に示す外曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。図18(A-3)に示すように曲げ部で表示不良が発生した。なお、曲率半径R=2mmで繰り返し回数5万回の外曲げ試験では、外曲げ試験直後及び保存試験直後ともに表示不良は発生しなかった。 FIG. 18A-3 is a photograph immediately after a storage test in which the flexible panel subjected to the outer bending test shown in FIG. 18A-2 is exposed to an atmosphere at a temperature of 65 ° C. and a humidity of 95% for 100 hours. It is. As shown in FIG. 18A-3, display failure occurred at the bent portion. In the outer bending test with the radius of curvature R = 2 mm and the number of repetitions of 50,000 times, no display defect occurred immediately after the outer bending test and immediately after the storage test.
 図18(B-1)は、試験前のフレキシブルパネルの表示面を撮影した写真である。図18(B-2)は、図18(B-1)に示すフレキシブルパネルに曲率半径R=2mmで繰り返し回数10万回の内曲げ試験を行った直後の写真であり、その試験はパネル中央部分の破線枠内を曲げる形で行われた。 Fig. 18 (B-1) is a photograph of the display surface of the flexible panel before the test. FIG. 18 (B-2) is a photograph immediately after the internal bending test with the radius of curvature R = 2 mm and the number of repetitions of 100,000 times is performed on the flexible panel shown in FIG. 18 (B-1). It was done in the form of bending in the broken line frame of the part.
 図18(B-3)は、図18(B-2)に示す内曲げ試験が行われたフレキシブルパネルを、温度65℃、湿度95%の雰囲気で100時間曝す保存試験を行った直後の写真である。 18B-3 shows a photograph immediately after a storage test in which the flexible panel subjected to the internal bending test shown in FIG. 18B-2 is exposed to an atmosphere of 65 ° C. and 95% humidity for 100 hours. It is.
 図18(B-2),(B-3)に示すように、R=2mmの内曲げ試験ではフレキシブルパネルに表示不良は発生しなかった。なお、曲率半径R=2mmで繰り返し回数5万回、7.5万回の内曲げ試験では、内曲げ試験直後及び保存試験直後ともに表示不良は発生しなかった。 As shown in FIGS. 18B-2 and B-3, display failure did not occur in the flexible panel in the internal bending test of R = 2 mm. In the internal bending test with the curvature radius R = 2 mm and the number of repetitions of 50,000 times and 75,000 times, no display defect occurred immediately after the internal bending test and immediately after the storage test.
 表2に積層膜の厚さの違いによる繰り返し曲げ試験結果と樹脂層厚測定結果をまとめる。積層膜の厚さが13μmでは外曲げR=3mm、R=5mmにおいて10万回の繰り返し曲げ試験をクリアできている(図5,6参照)。一方積層膜の厚さが約8μm以上9.5μm以下の範囲(平均9μm)では、5万回繰り返し外曲げ試験はクリアしたが、7.5万回繰り返し外曲げ試験はNGであった。 Table 2 summarizes the results of repeated bending tests and resin layer thickness measurements for different thicknesses of the laminated film. When the thickness of the laminated film is 13 μm, the repeated bending test of 100,000 times can be cleared at the outer bending R = 3 mm and R = 5 mm (see FIGS. 5 and 6). On the other hand, when the thickness of the laminated film was in the range of about 8 μm to 9.5 μm (average 9 μm), the external bending test was cleared 50,000 times, but the external bending test was 75,000 times NG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(繰り返し曲げ試験結果と計算結果との比較)
 表2の繰り返し曲げ試験結果を図15に反映させたグラフを図19に示す。つまり、図19は、図14に示す積層膜の膜厚32aとCF側無機層23に生じる曲げ応力の関係(計算結果)に表2の繰り返し曲げ試験結果を反映させた図である。図19において、横軸は積層膜32の膜厚32a(μm)であり、縦軸はCF側無機層(防湿層)23に発生する最大応力(MPa)である。なお、図19に示す膜厚範囲36は、図16に示すフレキシブルパネルの表示領域において測定された積層膜の膜厚(封止樹脂層の厚さ+2μm)から異常値を除いたあとのばらつきを示す範囲である。
(Comparison between repeated bending test results and calculation results)
FIG. 19 shows a graph reflecting the repeated bending test results in Table 2 in FIG. That is, FIG. 19 is a diagram in which the repeated bending test results shown in Table 2 are reflected on the relationship (calculation results) between the film thickness 32a of the laminated film shown in FIG. 14 and the bending stress generated in the CF-side inorganic layer 23. In FIG. 19, the horizontal axis is the film thickness 32 a (μm) of the laminated film 32, and the vertical axis is the maximum stress (MPa) generated in the CF-side inorganic layer (moisture-proof layer) 23. In addition, the film thickness range 36 shown in FIG. 19 shows the dispersion after removing an abnormal value from the film thickness of the laminated film (the thickness of the sealing resin layer + 2 μm) measured in the display area of the flexible panel shown in FIG. It is the range shown.
 また、図19に示す積層膜の膜厚が13μmの外曲げR=3mm、R=5mmでは、10万回の繰り返し曲げ試験をクリアしている。図19に示す外曲げR=2mmでは、外曲げR=3mm、R=5mmより全ての膜厚でCF側無機層23に大きな応力が発生している。例えば、外曲げR=3mmの繰り返し曲げ試験をクリアした厚さ13μmの積層膜を備えた試料においては、およそ300MPaの応力が発生していると見積もられる。そのため、外曲げR=2mmで10万回の繰り返し曲げ試験をクリアするには、発生する応力がおよそ300MPa以下になるように図14に示す積層膜の膜厚32aを7μm以下(好ましくは6μm以下)にすることが考えられる。 Further, when the thickness of the laminated film shown in FIG. 19 is 13 μm and the outer bending is R = 3 mm and R = 5 mm, the repeated bending test of 100,000 times is cleared. In the outer bend R = 2 mm shown in FIG. 19, a greater stress is generated in the CF-side inorganic layer 23 at all film thicknesses than the outer bend R = 3 mm and R = 5 mm. For example, it is estimated that a stress of about 300 MPa is generated in a sample including a laminated film having a thickness of 13 μm that has cleared a repeated bending test of an outer bend R = 3 mm. Therefore, in order to clear the 100,000 times repeated bending test with the outer bending R = 2 mm, the film thickness 32a of the laminated film shown in FIG. 14 is 7 μm or less (preferably 6 μm or less so that the generated stress is about 300 MPa or less. ).
 ≪歪率の算出≫
 歪率は有限要素法のシミュレーションにフレキシブルパネルの各層の物性値を入力し、パネルの折り曲げを再現することによって算出した。ここでは伝熱-構造連成解析ソフト「ANSYS Mechanical APDL」を使用した。シミュレーションモデルは、図20(A)に示すように、フレキシブルパネル1を折り曲げる軸102に対して直交する面でパネルの断面を切り、図20(B)に示すパネルの断面で積層構造を表現した2次元モデルとした。図20(A)はフレキシブルパネル1を折り曲げた状態を示す斜視図であり、図20(B)はフレキシブルパネル1を折り曲げる前のパネル断面図である。
≪Calculation of distortion rate≫
The strain rate was calculated by inputting the physical property values of each layer of the flexible panel to the simulation of the finite element method and reproducing the panel bending. Here, the heat transfer-structure interaction analysis software “ANSYS Mechanical APDL” was used. In the simulation model, as shown in FIG. 20A, the cross section of the panel is cut along a plane orthogonal to the axis 102 for bending the flexible panel 1, and the laminated structure is expressed by the cross section of the panel shown in FIG. A two-dimensional model was used. FIG. 20A is a perspective view showing a state in which the flexible panel 1 is bent, and FIG. 20B is a panel sectional view before the flexible panel 1 is bent.
 シミュレーションモデルでは、パネル全体ではなく、幅0.5mmの領域のみを対象とした。線形弾性領域のみを仮定し、塑性変形は計算に含めなかった。なお、シミュレーションの詳細については、≪曲げシミュレーション≫の欄で記載した。 In the simulation model, not the entire panel, but only the area with a width of 0.5 mm. Only the linear elastic region was assumed and plastic deformation was not included in the calculation. The details of the simulation are described in the “Bending simulation” column.
 シミュレーションにおいて、折り曲げの曲率半径は、モデルの左右端にかける力の大きさにより制御した。初めに、任意の力をかけて曲げシミュレーションを実施した後、図21のように、折り曲げ後のモデル下辺の両端・中央の3点の座標をシミュレーションソフトに算出させて取得し、この3点が描く円弧の半径を求めた。詳細には、この3点から等しい距離に存在する中心点103を、表計算ソフトExcelのソルバー機能を用いて算出させた。得られた中心点103から各3点の距離が折り曲げの曲率半径Rとなる。 In the simulation, the radius of curvature of the bending was controlled by the magnitude of the force applied to the left and right ends of the model. First, after carrying out a bending simulation by applying an arbitrary force, as shown in FIG. 21, the coordinates of the three points at both ends and the center of the model lower side after bending are calculated and obtained by the simulation software. The radius of the drawn arc was obtained. Specifically, the center point 103 existing at an equal distance from these three points was calculated using the solver function of the spreadsheet software Excel. The distance from the obtained center point 103 to each of the three points is the bending radius of curvature R.
 所望の曲率半径とするため、左右端にかける力の大きさを調整し、シミュレーションを実施して曲率半径を再度算出し、曲率半径が狙いの値となるまでこれを繰り返した。 In order to obtain the desired radius of curvature, the magnitude of the force applied to the left and right ends was adjusted, the simulation was performed to calculate the radius of curvature again, and this was repeated until the radius of curvature reached the target value.
 所望の曲率半径となる荷重がわかったところで、計算後のモデルに生じる歪率の大きさを表示させた。歪率εは下記(式1)によって算出される。
 歪率ε=λ(変形量)/L(元の長さ) ・・・(式1)
When the load having the desired radius of curvature was found, the magnitude of the distortion generated in the model after calculation was displayed. The distortion rate ε is calculated by the following (Equation 1).
Distortion ε = λ (deformation amount) / L (original length) (Formula 1)
 つまり、パネルの折り曲げにおいて実際に破断が生じるのは無機層であることから、モデルの中の無機層~無機層の範囲に限定した中で、無機層の曲率半径Rを図21に示す方法で求め、その曲率半径Rから無機層の変形量λを求めた。無機層の元の長さLは、シミュレーションモデルの対象である幅0.5mmである。無機層のλ及びLを上記(式1)に代入することで、最大の歪率εを算出させた。 That is, since it is the inorganic layer that actually breaks when the panel is bent, the radius of curvature R of the inorganic layer is determined by the method shown in FIG. 21 while limiting the range from the inorganic layer to the inorganic layer in the model. The deformation amount λ of the inorganic layer was determined from the radius of curvature R. The original length L of the inorganic layer is a width of 0.5 mm, which is the object of the simulation model. The maximum distortion rate ε was calculated by substituting λ and L of the inorganic layer into the above (formula 1).
 具体的には、表2に示すように、積層膜32の厚さが9μmのフレキシブルパネルを曲率半径R=2mmで5万回折り曲げても、CF側無機層(防湿層)23は破断しなかった。この結果をもとに上記の歪率の算出方法により、積層膜32の厚さが9μmのモデルにて改めてシミュレーションを行い、R=2mmの時のCF側無機層(防湿層)23の歪率を算出すると0.40%となった。従って、無機層の歪率が0.4%を超えないように、フレキシブルパネルの積層構造あるいは曲率半径を設定すると5万回の曲げ試験に耐える。 Specifically, as shown in Table 2, the CF-side inorganic layer (moisture-proof layer) 23 does not break even when a laminated panel 32 having a thickness of 9 μm is bent 50,000 times with a radius of curvature R = 2 mm. It was. Based on this result, the above-described method for calculating the distortion rate is used to simulate a new model with a thickness of the laminated film 32 of 9 μm, and the distortion rate of the CF-side inorganic layer (moisture-proof layer) 23 when R = 2 mm. Was calculated to be 0.40%. Therefore, if the laminated structure of the flexible panel or the radius of curvature is set so that the strain rate of the inorganic layer does not exceed 0.4%, it can withstand 50,000 bending tests.
 また、同様に積層膜32の厚さが9μmのモデルにて曲率半径R=3mm、R=5mmでフレキシブルパネルを折り曲げた場合の歪率を算出すると、曲率半径R=3mmでの歪率は0.27%となり、曲率半径R=5mmでの歪率は0.16%となった。つまり、曲率半径R=3mmでフレキシブルパネルを折り曲げた場合の歪率が0.27%を超えないようにすれば10万回の曲げ試験に耐える。 Similarly, when calculating the distortion when the flexible panel is bent with a radius of curvature R = 3 mm and R = 5 mm in a model having a thickness of 9 μm, the distortion at the curvature radius R = 3 mm is 0.27. %, And the curvature at the radius of curvature R = 5 mm was 0.16%. In other words, if the flexural panel is bent with a radius of curvature R = 3 mm, the bending rate can withstand 100,000 bending tests if it does not exceed 0.27%.
 また、CF側無機層の破断歪率を実測した結果は、0.95%であった。この結果と上記の結果を図22に示す。図22において、曲率半径R=2mm、R=3mm、R=5mmの歪率は曲げシミュレーションでの歪率を示す。鉄鋼材料における引張り強さと疲労限度の比:0.33以上0.59以下(日本機械学会編、機械実用便覧より)を参考にすると、無機層の破断歪率に0.33以上0.59以下を乗じた値を疲労限度の歪率と考えられる。曲げシミュレーションにより求められたR=2mm、R=3mmでのCF側無機層(防湿層)の歪率の値と疲労限度の歪率を比較すると、R=2mmの歪率は疲労限度の歪率範囲内に含まれてくるが、R=3mmの歪率は下限以下の値であり、実際の繰り返し曲げ試験5万回の結果がR=2mm、3mmでOKという結果に対応している。以上のことから、無機層の歪率を0より大きく0.95%以下、好ましくは0.4%以下、さらに好ましくは0.27%以下に構造設計するとよい。 Further, the measurement result of the fracture strain rate of the CF side inorganic layer was 0.95%. This result and the above result are shown in FIG. In FIG. 22, the distortion ratios of the curvature radii R = 2 mm, R = 3 mm, and R = 5 mm indicate the distortion ratio in the bending simulation. The ratio of tensile strength to fatigue limit in steel materials: 0.33 or more and 0.59 or less (edited by the Japan Society of Mechanical Engineers, from the practical handbook of machinery), the breaking strain rate of the inorganic layer is 0.33 or more and 0.59 or less The value multiplied by is considered the fatigue limit strain rate. Comparing the strain rate of the CF side inorganic layer (moisture-proof layer) at R = 2 mm and R = 3 mm obtained by bending simulation with the strain rate of the fatigue limit, the strain rate of R = 2 mm is the strain rate of the fatigue limit. Although included in the range, the distortion rate of R = 3 mm is a value below the lower limit, and the actual results of 50,000 repeated bending tests correspond to the results of R = 2 mm and 3 mm being OK. In view of the above, it is preferable to design the structure so that the strain rate of the inorganic layer is greater than 0 and 0.95% or less, preferably 0.4% or less, and more preferably 0.27% or less.
 つまり、CF側無機層(防湿層)23及びFET側無機層13それぞれに歪率が0より大きく0.4%かかるように、フレキシブルパネルを5万回繰り返し折り曲げる試験を行った場合でも、表示不良が発生しないといえる。 That is, even when a test is performed to repeatedly bend the flexible panel 50,000 times so that the CF-side inorganic layer (moisture-proof layer) 23 and the FET-side inorganic layer 13 each have a strain rate greater than 0 and 0.4%, display failure It can be said that does not occur.
 1  フレキシブルパネル
 4  第1のステージ
 5  第2のステージ
 6  回転軸
11  フィルム,樹脂層(第1の樹脂層)
11a 樹脂層(第1の樹脂層)
11b ハードコート層(第3のハードコート層)
11c ハードコート層(第4のハードコート層)
12  樹脂
12b 接着樹脂層(第4の樹脂層)
13  FET側無機層
13a 防湿層(第1の無機層)
13b FET等の層
13c EL層
21  フィルム
21a 樹脂層(第2の樹脂層)
21b ハードコート層(第1のハードコート層)
21c ハードコート層(第2のハードコート層)
22  樹脂層
22b 接着樹脂層(第3の樹脂層)
23  CF側無機層(防湿層)
23a 防湿層(第2の無機層)
23b カラーフィルター
31  固体封止樹脂層(第5の樹脂層)
32  EL層、樹脂層、CFを順に積層した積層膜
32a 積層膜の膜厚
32b 膜厚測定箇所
33  樹脂層、無機層、EL層等の層
34a,34b,35a,35b 矢印
36  膜厚範囲
101 中立面
102 折り曲げる軸
103 中心点
DESCRIPTION OF SYMBOLS 1 Flexible panel 4 1st stage 5 2nd stage 6 Rotating shaft 11 Film, resin layer (1st resin layer)
11a Resin layer (first resin layer)
11b Hard coat layer (third hard coat layer)
11c Hard coat layer (fourth hard coat layer)
12 Resin 12b Adhesive resin layer (fourth resin layer)
13 FET-side inorganic layer 13a Moisture-proof layer (first inorganic layer)
13b FET layer 13c EL layer 21 Film 21a Resin layer (second resin layer)
21b Hard coat layer (first hard coat layer)
21c Hard coat layer (second hard coat layer)
22 resin layer 22b adhesive resin layer (third resin layer)
23 CF side inorganic layer (moisture-proof layer)
23a Moisture-proof layer (second inorganic layer)
23b Color filter 31 Solid encapsulating resin layer (fifth resin layer)
32 EL layer, resin layer, CF laminated layer 32a Laminated film thickness 32b Thickness measurement location 33 Resin layer, inorganic layer, EL layer, etc. 34a, 34b, 35a, 35b Arrow 36 Thickness range 101 Neutral surface 102 Folding axis 103 Center point

Claims (10)

  1.  第1の樹脂層と、
     前記第1の樹脂層上に位置する第1の無機層と、
     前記第1の無機層上に位置するEL層と、
     前記EL層上に位置する第2の無機層と、
     前記第2の無機層上に位置する第2の樹脂層と、
    を具備し、
     前記第1の樹脂層、前記第1の無機層、前記EL層、前記第2の樹脂層及び前記第2の無機層は折り曲げることができるように構成されており、
     前記折り曲げる際に前記第1の無機層及び前記第2の無機層それぞれにかかる歪率が0.4%以下であることを特徴とする表示装置。
    A first resin layer;
    A first inorganic layer located on the first resin layer;
    An EL layer located on the first inorganic layer;
    A second inorganic layer located on the EL layer;
    A second resin layer located on the second inorganic layer;
    Comprising
    The first resin layer, the first inorganic layer, the EL layer, the second resin layer, and the second inorganic layer are configured to be bendable,
    A display device, wherein a strain rate applied to each of the first inorganic layer and the second inorganic layer during the bending is 0.4% or less.
  2.  請求項1において、
     前記第1の無機層及び前記第2の無機層それぞれは、金属酸化物、金属窒化物、SiとOの化合物またはSiとNの化合物を含むことを特徴とする表示装置。
    In claim 1,
    Each of the first inorganic layer and the second inorganic layer includes a metal oxide, a metal nitride, a compound of Si and O, or a compound of Si and N.
  3.  請求項1または2において、
     前記第2の樹脂層上に第1のハードコート層が位置することを特徴とする表示装置。
    In claim 1 or 2,
    A display device, wherein a first hard coat layer is located on the second resin layer.
  4.  請求項3において、
     前記第2の無機層と前記第2の樹脂層との間に位置する第3の樹脂層と、
     前記第3の樹脂層と前記第2の樹脂層との間に位置する第2のハードコート層と、
    を有することを特徴とする表示装置。
    In claim 3,
    A third resin layer located between the second inorganic layer and the second resin layer;
    A second hard coat layer located between the third resin layer and the second resin layer;
    A display device comprising:
  5.  請求項1乃至4のいずれか一項において、
     前記第1の樹脂層下に第3のハードコート層が位置することを特徴とする表示装置。
    In any one of Claims 1 thru | or 4,
    A display device, wherein a third hard coat layer is located under the first resin layer.
  6.  請求項5において、
     前記第1の無機層と前記第1の樹脂層との間に位置する第4の樹脂層と、
     前記第4の樹脂層と前記第1の樹脂層との間に位置する第4のハードコート層と、
    を有することを特徴とする表示装置。
    In claim 5,
    A fourth resin layer located between the first inorganic layer and the first resin layer;
    A fourth hard coat layer located between the fourth resin layer and the first resin layer;
    A display device comprising:
  7.  請求項1乃至6のいずれか一項において、
     前記EL層と前記第2の無機層との間に第5の樹脂層が位置することを特徴とする表示装置。
    In any one of Claims 1 thru | or 6,
    A display device, wherein a fifth resin layer is located between the EL layer and the second inorganic layer.
  8.  請求項1乃至7のいずれか一項において、
     前記EL層と前記第2の無機層との間にカラーフィルターが位置することを特徴とする表示装置。
    In any one of Claims 1 thru | or 7,
    A display device, wherein a color filter is located between the EL layer and the second inorganic layer.
  9.  請求項7において、
     前記第5の樹脂層の平均厚さの上限は9μm以下であることを特徴とする表示装置。
    In claim 7,
    The upper limit of the average thickness of the fifth resin layer is 9 μm or less.
  10.  請求項1乃至9のいずれか一項において、
     前記第1の無機層及び前記第2の無機層それぞれに歪率が0.4%かかるように、前記第1の樹脂層、前記第1の無機層、前記EL層、前記第2の樹脂層及び前記第2の無機層を5万回繰り返し折り曲げる試験を行った場合、表示不良が発生しないことを特徴とする表示装置。
    In any one of Claims 1 thru | or 9,
    The first resin layer, the first inorganic layer, the EL layer, and the second resin layer so that a strain rate of 0.4% is applied to each of the first inorganic layer and the second inorganic layer. And when the test which repeats the said 2nd inorganic layer is repeated 50,000 times is performed, the display defect does not generate | occur | produce.
PCT/JP2017/041831 2017-02-22 2017-11-21 Display device WO2018154888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-031398 2017-02-22
JP2017031398A JP2020064704A (en) 2017-02-22 2017-02-22 Display device

Publications (1)

Publication Number Publication Date
WO2018154888A1 true WO2018154888A1 (en) 2018-08-30

Family

ID=63253180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041831 WO2018154888A1 (en) 2017-02-22 2017-11-21 Display device

Country Status (2)

Country Link
JP (1) JP2020064704A (en)
WO (1) WO2018154888A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168556A (en) * 2001-11-30 2003-06-13 Shin Sti Technology Kk Organic el element structure
JP2006082322A (en) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc Substrate film for display and organic electroluminescence element
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
WO2011086500A2 (en) * 2010-01-12 2011-07-21 Koninklijke Philips Electronics N.V. Sealed thin-film device, oled and solar cell
JP2013254747A (en) * 2009-06-04 2013-12-19 Samsung Display Co Ltd Organic light emitting display device and method of manufacturing the same
US20150179722A1 (en) * 2013-12-19 2015-06-25 Samsung Display Co., Ltd. Organic light emitting display device
JP2015141782A (en) * 2014-01-28 2015-08-03 コニカミノルタ株式会社 Surface light-emitting module
CN104979489A (en) * 2014-04-03 2015-10-14 海洋王照明科技股份有限公司 Organic light-emitting diode and preparation method therefor
WO2016114373A1 (en) * 2015-01-16 2016-07-21 シャープ株式会社 Display device, bonding jig used for manufacturing said display device, bonding device, stretching jig, and method for manufacturing display device
WO2016125477A1 (en) * 2015-02-04 2016-08-11 シャープ株式会社 Display device and method for producing same
JP2017009983A (en) * 2014-11-28 2017-01-12 株式会社半導体エネルギー研究所 Display module and method for manufacturing display module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168556A (en) * 2001-11-30 2003-06-13 Shin Sti Technology Kk Organic el element structure
JP2006082322A (en) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc Substrate film for display and organic electroluminescence element
JP2013254747A (en) * 2009-06-04 2013-12-19 Samsung Display Co Ltd Organic light emitting display device and method of manufacturing the same
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
WO2011086500A2 (en) * 2010-01-12 2011-07-21 Koninklijke Philips Electronics N.V. Sealed thin-film device, oled and solar cell
US20150179722A1 (en) * 2013-12-19 2015-06-25 Samsung Display Co., Ltd. Organic light emitting display device
JP2015141782A (en) * 2014-01-28 2015-08-03 コニカミノルタ株式会社 Surface light-emitting module
CN104979489A (en) * 2014-04-03 2015-10-14 海洋王照明科技股份有限公司 Organic light-emitting diode and preparation method therefor
JP2017009983A (en) * 2014-11-28 2017-01-12 株式会社半導体エネルギー研究所 Display module and method for manufacturing display module
WO2016114373A1 (en) * 2015-01-16 2016-07-21 シャープ株式会社 Display device, bonding jig used for manufacturing said display device, bonding device, stretching jig, and method for manufacturing display device
WO2016125477A1 (en) * 2015-02-04 2016-08-11 シャープ株式会社 Display device and method for producing same

Also Published As

Publication number Publication date
JP2020064704A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US10514724B2 (en) Foldable display neutral axis management with thin, high modulus layers
CN104680941B (en) Flexible display apparatus
TWI726302B (en) Bendable glass stack assemblies and methods of making the same
CN105074802B (en) Electronic device with flexible display
US20210083210A1 (en) Flexible element, flexible display device and manufacturing method thereof
GB2567060A (en) Adhesive and flexible display using the same
JP5066554B2 (en) Liquid crystal display
Chiang et al. Mechanical modeling of flexible OLED devices
JP6851362B2 (en) Flexible laminate and flexible display using it
Lee et al. Development of robust flexible OLED encapsulations using simulated estimations and experimental validations
CN109147573A (en) A kind of display device, cover sheet
CN110675755B (en) Foldable display device
TWI521259B (en) Display panel and manufacturing method thereof
Kim et al. Efficient analysis of laminated composite and sandwich plates with interfacial imperfections
US20190129528A1 (en) Touch sensor panel and method for fabricating the same
CN112086024A (en) Window member for display device, and manufacturing method for display device
CN108282557A (en) Electronic device
US11474563B2 (en) Foldable display devices with multiple pages
CN110121226B (en) Flexible display panel and method of manufacturing the same
KR102562977B1 (en) Electro-optical Panel
WO2018154888A1 (en) Display device
Wang et al. Mechanical simulation of foldable organic light‐emitting diode display supporting layer
Yeh et al. Bending stress analysis of flexible touch panel
Tounsi et al. On the transverse cracking and stiffness degradation of aged angle-ply laminates
Mets et al. Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP