[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018150813A1 - Optical coupler and optical coupling method - Google Patents

Optical coupler and optical coupling method Download PDF

Info

Publication number
WO2018150813A1
WO2018150813A1 PCT/JP2018/001721 JP2018001721W WO2018150813A1 WO 2018150813 A1 WO2018150813 A1 WO 2018150813A1 JP 2018001721 W JP2018001721 W JP 2018001721W WO 2018150813 A1 WO2018150813 A1 WO 2018150813A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
input light
optical coupler
propagation axis
Prior art date
Application number
PCT/JP2018/001721
Other languages
French (fr)
Japanese (ja)
Inventor
毅 小西
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2018568058A priority Critical patent/JP7141708B2/en
Publication of WO2018150813A1 publication Critical patent/WO2018150813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Definitions

  • the present invention relates to coupling of light to an optical waveguide.
  • an optical coupler that couples light to the optical waveguide by condensing the light on the end face of the core of the optical waveguide (for example, optical fiber, silicon waveguide (silicon photonics), etc.) has been used.
  • a lens or a tapered waveguide is used for condensing light onto the end face of the core of the optical waveguide.
  • the rod lens is provided in the end surface of the optical fiber.
  • optical damage since incident light is condensed on the end surface of a core, an optical damage may be caused to the end surface of a core.
  • the optical damage threshold per unit area of the core surface of the optical fiber is about 250 kW / cm 2 . Therefore, when high-intensity light exceeding 0.5 W is coupled to a single mode optical fiber having a core diameter of about 10 ⁇ m, optical damage occurs on the end face of the core.
  • the present invention provides an optical coupler capable of suppressing optical damage of the optical waveguide due to optical coupling and improving optical coupling efficiency.
  • An optical coupler is an optical coupler that couples input light to an optical waveguide, the optical coupler including a region having a diffractive optical function formed in a core of the optical waveguide, Enters the region having the diffractive optical function from a direction perpendicular to the propagation axis of the optical waveguide.
  • the input light can be coupled to the optical waveguide by making the input light incident on the diffractive optical element from a direction perpendicular to the propagation axis of the optical waveguide. Therefore, since it is not necessary to focus the input light on the end face of the core, it becomes possible to match the intensity distribution of the input light with the mode distribution of the optical waveguide by the region having the diffractive optical function, thereby improving the optical coupling efficiency. Can do. In addition, since it is not necessary to collect input light on the end face of the core, optical damage to the core can be suppressed.
  • the diffractive optical element is formed inside the core, the optical coupling efficiency can be obtained no matter what direction the input light is incident on the region having the diffractive optical function from any direction as long as it is in a plane perpendicular to the propagation axis of the optical waveguide.
  • the input light can be coupled to the optical waveguide while suppressing the variation of the above, and the degree of freedom of the environment in which the optical coupler is used can be increased.
  • the optical coupler can be used even in an environment (for example, a light receiving portion of a microscope) in which restrictions on the installation location of the optical coupler are severe.
  • the region having the diffractive optical function may satisfy a Bragg condition for the input light incident from a direction perpendicular to the propagation axis of the optical waveguide.
  • the diffraction efficiency in the direction parallel to the propagation axis of the optical waveguide can be improved, and the optical coupling efficiency can be improved.
  • the direction perpendicular to the propagation axis of the optical waveguide is a direction within a predetermined angular range from a direction strictly perpendicular to the propagation axis of the optical waveguide, and the predetermined angular range is a coupled wave. It may be in a range where the diffraction efficiency is 0.5 or more in theory (coupled-wave theory).
  • input light can be incident on a region having a diffractive optical function within an angular range where the diffraction efficiency is 0.5 or more, and the optical coupling efficiency is improved while allowing a certain amount of error. be able to.
  • the region having the diffractive optical function may be a fiber Bragg grating.
  • a fiber Bragg grating can be used for the diffractive optical element.
  • the fiber Bragg grating is most commonly used in an optical fiber sensor, and an optical coupler can be realized relatively easily.
  • the lattice constant of the fiber Bragg grating may coincide with the wavelength of the input light.
  • the lattice constant of the fiber Bragg grating can be matched with the wavelength of the input light. Therefore, the traveling direction of the diffracted light can be made closer to the direction parallel to the propagation axis of the optical waveguide, and the optical coupling efficiency can be further improved.
  • the optical coupler may further include an input unit that makes the input light incident on a region having the diffractive optical function from a direction perpendicular to the propagation axis.
  • the optical coupler can include an input unit that inputs the input light to the diffractive optical element from a direction perpendicular to the propagation axis of the optical waveguide.
  • the input light can be reliably incident on the diffractive optical element, and the optical coupling efficiency can be improved.
  • the input unit may include a condensing element that condenses the input light in a linear shape extending in a direction parallel to the propagation axis.
  • a condensing element that condenses input light in a linear shape extending in a direction parallel to the propagation axis can be used as the input unit. Therefore, the input light can be condensed linearly along the diffractive optical element formed in the core. As a result, the input light can be reliably incident on the diffractive optical element, and the optical coupling efficiency can be further improved.
  • the input unit includes a dispersive element that disperses the input light in a direction parallel to the propagation axis, and the distribution of the lattice constant of the fiber Bragg grating is dispersed in the direction parallel to the propagation axis. It may correspond to the wavelength distribution of the input light.
  • a dispersive element that disperses input light in a direction parallel to the propagation axis can be used as the input unit. Furthermore, in the direction parallel to the propagation axis, the distribution of the fiber Bragg grating lattice constant can be made to correspond to the distribution of the wavelength of the dispersed input light. Therefore, even for broadband input light, the wavelength of the input light can match the lattice constant of the fiber Bragg grating, and the shift between the traveling direction of the diffracted light and the direction of the propagation axis of the optical fiber can be reduced. Can do. That is, even for broadband input light, the diffracted light can be adapted to the mode of the optical fiber with higher accuracy, and the optical coupling efficiency can be improved.
  • the optical coupler may further include an adjustment unit that adjusts a lattice constant of the fiber Bragg grating according to the wavelength of the input light.
  • the fiber Bragg grating lattice constant can be adjusted according to the wavelength of the input light. Therefore, the range of wavelengths of input light that can be coupled can be expanded, and the versatility of the optical coupler can be improved.
  • the optical coupler may further include a reflecting unit that reflects one of the lights diffracted in two directions parallel to the propagation axis by the region having the diffractive optical function in opposite directions.
  • the light propagating through the core can be reflected. Therefore, one of the diffracted lights diffracted in both directions of the propagation axis can be reflected and combined with the other, and the optical coupling efficiency can be improved.
  • the optical coupler may further include a phase compensation unit that compensates a phase of light coupled to the core by the region having the diffractive optical function.
  • the phase of light coupled to the core can be compensated. Therefore, the phase shift of the combined light can be compensated, and for example, when the input light is pulsed light, a change in waveform due to optical coupling can be suppressed.
  • the optical waveguide may be an optical fiber.
  • input light can be coupled to the optical fiber.
  • the optical coupling method is an optical coupling method for coupling input light to an optical waveguide, and is formed inside the core of the optical waveguide from a direction perpendicular to the propagation axis of the optical waveguide.
  • the optical coupler according to one embodiment of the present invention can suppress optical damage of the optical waveguide due to optical coupling and improve optical coupling efficiency.
  • FIG. 1 is a perspective view showing the configuration of the optical coupler according to Embodiment 1.
  • FIG. 2 is a diagram illustrating light diffraction by a general diffraction grating having a lattice constant d.
  • FIG. 3 is a flowchart showing an optical coupling method using the optical coupler according to the first embodiment.
  • FIG. 4A is a diagram showing an outline of an optical coupling experiment.
  • FIG. 4B is a graph showing the relationship between the incident angle and the intensity of the combined light in the optical coupling experiment.
  • FIG. 5 is a perspective view showing the configuration of the optical coupler according to the second embodiment.
  • FIG. 6 is a perspective view showing the configuration of the optical coupler according to Embodiment 3.
  • FIG. 7 is a diagram illustrating a simulation model and a simulation result of the optical coupler according to the third embodiment.
  • FIG. 8A is a graph showing the relationship between the core diameter and the optical coupling efficiency in the simulation result of the optical coupler according to Embodiment 3.
  • FIG. 8B is a graph showing the relationship between the core diameter and the optical damage threshold in the simulation result of the optical coupler according to Embodiment 3.
  • FIG. 9 is a side view showing the configuration of the optical coupler according to the fourth embodiment.
  • FIG. 10 is a side view illustrating the configuration of the optical coupler according to the fifth embodiment.
  • FIG. 11 is a side view showing the configuration of the optical coupler in accordance with the sixth embodiment.
  • coincidence, vertical and parallel are used, but unless specifically limited, these are not strict and are used in a substantial sense.
  • “match” not only means that they are completely matched, but also includes a range that can be considered to be substantially matched. That is, “match” allows an error of about several percent.
  • vertical means not only strictly vertical but also includes a range that can be regarded as substantially vertical.
  • parallel not only means strictly parallel, but also includes a range that can be regarded as substantially parallel.
  • FIG. 1 is a diagram illustrating a configuration of the optical coupler according to the first embodiment.
  • the X-axis direction is a direction parallel to the propagation axis of the optical fiber
  • the Y-axis direction and the Z-axis method are directions orthogonal to the propagation axis of the optical fiber.
  • the optical fiber 100 is an example of an optical waveguide and is a medium for transmitting an optical signal.
  • the optical fiber 100 is a single mode optical fiber and includes a core 110 and a cladding 120.
  • the core 110 is made of, for example, quartz glass or plastic, and is surrounded by the clad 120.
  • the diameter of the core 110 is, for example, about 10 ⁇ m to 100 ⁇ m.
  • the clad 120 is made of, for example, quartz glass or plastic, and has a lower refractive index than the core 110.
  • the outer diameter of the clad 120 is, for example, about 30 ⁇ m to 500 ⁇ m.
  • a region having a diffractive optical function (hereinafter referred to as a diffractive optical element 10) is formed inside the core 110.
  • the input light 130 enters the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction in FIG. 1).
  • the input light 130 is diffracted by the diffractive optical element 10.
  • the diffracted light 140a and 140b also referred to as coupled light propagates in a direction parallel to the propagation axis (X-axis direction in FIG. 1).
  • the direction perpendicular to the propagation axis of the optical fiber 100 may be a direction within a predetermined angle range from a direction strictly perpendicular to the propagation axis of the optical fiber 100.
  • This predetermined angle range can be defined based on the coupled wave theory described in Non-Patent Document 1.
  • the predetermined angular range may be a range in which the diffraction efficiency is equal to or higher than a predetermined threshold efficiency in the coupled wave theory.
  • a predetermined threshold efficiency for example, 0.5 can be used, preferably 0.6 can be used, and more preferably 0.7 can be used. If a value equal to or greater than 0.5 is used as the predetermined threshold efficiency, it is possible to realize a higher coupling efficiency than before.
  • the diffractive optical element 10 satisfies the Bragg condition for the input light 130 incident from a direction perpendicular to the propagation axis of the optical fiber 100.
  • the Bragg condition is expressed by Equation 1 below.
  • d represents the lattice constant of the diffractive optical element 10
  • represents the angle formed by the propagation axis of the optical fiber 100 and the input light 130
  • represents the wavelength of the input light 130
  • n represents an integer.
  • the diffractive optical element 10 is a fiber Bragg grating (FBG).
  • the FBG is manufactured by, for example, irradiating an optical fiber with ultraviolet laser light and periodically changing the refractive index inside the core having sensitivity to ultraviolet light in a direction parallel to the propagation axis.
  • the lattice constant d of the diffractive optical element 10 matches the wavelength ⁇ of the input light 130.
  • the propagation direction of the input light 130 is converted from the incident direction (Z-axis direction in FIG. 1) to a direction perpendicular to the incident direction (X-axis direction in FIG. 1).
  • FIG. 2 is a diagram illustrating light diffraction by a general diffraction grating having a lattice constant d.
  • d a lattice constant
  • FIG. 2 when light of wavelength ⁇ is incident on the diffraction grating at angle ⁇ 1 , diffracted light of angle ⁇ 2 is generated. Since the wavefront phases of the incident light and the diffracted light are equal, the following Expression 2 is established for the + 1st order and ⁇ 1st order diffracted lights.
  • the incident direction of the input light 130 is not limited to the Z-axis direction.
  • the input light 130 may be incident on the diffractive optical element 10 from a direction perpendicular to the X-axis direction (for example, the Y-axis direction). Even in this case, the diffracted lights 140a and 140b travel in the positive and negative directions in the X-axis direction based on the above equation 2.
  • FIG. 3 is a flowchart showing the optical coupling method according to the first embodiment.
  • the input light 130 having a wavelength that matches the lattice constant is incident on the diffractive optical element 10 formed inside the core 110 of the optical fiber 100 (S110).
  • the input light 130 is diffracted by the diffractive optical element 10 (S120). That is, the input light 130 is converted into diffracted light 140 a and 140 b that propagates in a direction parallel to the propagation axis of the optical fiber 100.
  • the input light 130 is incident on the diffractive optical element 10 from the direction perpendicular to the propagation axis of the optical fiber 100 (for example, the Z-axis direction). Input light 130 can be coupled to the fiber 100. Accordingly, since it is not necessary to collect the input light 130 on the end face of the core 110, the intensity distribution of the input light 130 can be matched with the mode distribution of the optical fiber 100 by the diffractive optical element 10, and the optical coupling efficiency is improved. Can be made. In addition, since it is not necessary to collect the input light 130 on the end face of the core 110, optical damage to the core 110 can be suppressed.
  • the diffractive optical element 10 is formed inside the core 110, the input light 130 is transmitted from which direction (for example, the Y-axis direction and the Z-axis direction) 360 degrees within a plane perpendicular to the propagation axis of the optical fiber 100. Even if the light enters the diffractive optical element 10, the input light 130 can be coupled to the optical fiber 100 while suppressing variations in optical coupling efficiency, and the degree of freedom of the environment in which the optical coupler is used can be increased. As a result, the optical coupler according to the present embodiment can be used even in an environment (for example, a light receiving part of a microscope) in which restrictions on the installation location of the optical coupler are severe.
  • an environment for example, a light receiving part of a microscope
  • the diffractive optical element 10 can satisfy the Bragg condition for the input light 130 incident from a direction perpendicular to the propagation axis of the optical fiber 100. Therefore, the diffraction efficiency of the input light 130 in the direction parallel to the propagation axis of the optical fiber 100 can be improved, and the optical coupling efficiency can be improved.
  • the input light can be incident on the region having the diffractive optical function within an angle range where the diffraction efficiency is 0.5 or more, and a certain amount of error is allowed.
  • the optical coupling efficiency can be improved.
  • FBG can be used for the diffractive optical element 10.
  • the FBG is most commonly used in an optical fiber sensor, and the diffractive optical element 10 can be formed in the core 110 relatively easily. Therefore, the optical coupler according to the present embodiment can be realized relatively easily.
  • the lattice constant of the FBG can be matched with the wavelength of the input light. Therefore, the traveling direction of the diffracted light can be made closer to the direction parallel to the propagation axis of the optical fiber 100, and the optical coupling efficiency can be further improved.
  • FIG. 4A is a diagram showing an outline of an optical coupling experiment.
  • a slab waveguide was used as the optical waveguide as shown in FIG. 4A.
  • a diffraction grating film sheet was used as the core and the diffractive optical element formed inside the core.
  • the thickness of the diffraction grating film sheet was about 120 ⁇ m, and the lattice constant was 1.0 ⁇ m.
  • a glass plate was used as the cladding.
  • the wavelength of the input light incident on the slab waveguide from the light source was about 1.6 ⁇ m. Since the refractive index of the diffraction grating film sheet is high, input light having a wavelength of 1.6 ⁇ m, which is slightly larger than the lattice constant of 1.0 ⁇ m, was used. Input light was incident on such a slab waveguide at a plurality of incident angles ⁇ , and the intensity of the coupled light was measured with an intensity measuring device at each of the plurality of incident angles.
  • FIG. 4B is a graph showing the relationship between the incident angle and the intensity of the coupled light in the optical coupling experiment.
  • the intensity of the coupled light was highest when the incident angle ⁇ was near 90 degrees.
  • the optical coupling efficiency was 90% or more. That is, when the input light is incident on the diffractive optical element from a direction perpendicular to the propagation axis, the input light can be coupled to the waveguide with high optical coupling efficiency.
  • the optical coupler includes a condensing element that condenses input light in a linear shape extending in a direction parallel to the propagation axis of the optical waveguide.
  • the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
  • FIG. 5 is a perspective view showing the configuration of the optical coupler according to the second embodiment.
  • the optical coupler according to the present embodiment includes a condensing element 20 in addition to the diffractive optical element 10.
  • the condensing element 20 is an example of an input unit that inputs the input light 131a to the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100, and is, for example, a cylindrical lens.
  • the condensing element 20 condenses the input light 131a in a linear shape extending in a direction parallel to the propagation axis of the optical fiber 100 (X-axis direction).
  • the linear light 131b enters the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction).
  • the condensing element 20 that condenses the input light 131a in a linear shape extending in a direction parallel to the propagation axis (X-axis direction) can be provided. . Therefore, the input light 131a can be condensed linearly along the diffractive optical element 10 formed on the core 110 (linear light 131b). As a result, the input light 131a can be reliably incident on the diffractive optical element 10, and the optical coupling efficiency can be further improved.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • the present embodiment is mainly different from the first embodiment in that the reflection portion formed on the end face of the core is included in the optical coupler.
  • the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
  • FIG. 6 is a perspective view showing the configuration of the optical coupler according to Embodiment 3.
  • the optical coupler according to the present embodiment includes a reflecting unit 30 in addition to the diffractive optical element 10.
  • the reflection unit 30 is provided on the end surface of the core 110, and reflects the diffracted light 140a propagating through the core 110 toward the reflection unit 30. That is, the reflecting unit 30 is one of the light (diffracted light 140a and 140b in the present embodiment) diffracted by the diffractive optical element 10 in two directions parallel to the propagation axis (diffracted light 140a in the present embodiment). ) Is reflected in the opposite direction. As a result, the traveling direction of the diffracted light 140a is reversed, and the diffracted light 140a is combined with the diffracted light 140b.
  • the reflection unit 30 reflects the light propagating in the negative direction in the X-axis direction in the positive direction in the X-axis direction.
  • the reflection part 30 is a metal film (for example, aluminum etc.) which covers the end surface of the core 110, for example.
  • the light propagating through the core 110 can be reflected by the end face of the core 110. Therefore, one (diffracted light 140a) of the diffracted light diffracted in both directions of the propagation axis can be combined with the other (diffracted light 140b), and the optical coupling efficiency can be improved.
  • FIG. 7 is a diagram illustrating a simulation model and a simulation result of the optical coupler according to the third embodiment.
  • FIG. 7A is a perspective view of a three-dimensional model of the optical coupler in the simulation.
  • FIG. 7B is a cross-sectional view of the three-dimensional model of the optical coupler in the simulation.
  • FIGS. 7C and 7D are diagrams showing light intensity distributions after 130 femtoseconds and 1000 femtoseconds in the cross section shown in FIG. 7B. 7C and 7D show that the closer to white, the higher the light intensity, and the closer to black, the lower the light intensity.
  • a finite element time difference method (FDTD) is used, and a linear (two-dimensional) input light from a light source is a propagation axis of an optical fiber as shown in FIG.
  • the light was incident on the diffractive optical element formed inside the core through the clad from the direction perpendicular to.
  • the length in the direction of the propagation axis of the core region (that is, the region where the diffractive optical element is formed) on which the input light is incident was set to 1 cm.
  • a reflection portion was provided on one end face of the core, the wavelength of the input light was 1.485 ⁇ m, and the lattice constant of the diffractive optical element was 1 ⁇ m.
  • the input light incident on the diffractive optical element from the direction perpendicular to the propagation axis of the optical fiber has been converted by the diffractive optical element into coupled light traveling in a direction parallel to the propagation axis. I understand.
  • FIG. 8A is a graph showing the relationship between the core diameter and the optical coupling efficiency.
  • FIG. 8B is a graph showing the relationship between the core diameter and the intensity of input light causing optical damage. In FIG. 8B, 250 kW / cm 2 was used as the optical damage threshold.
  • FIG. 8A shows that an optical coupling efficiency of 60% or more can be realized at a core diameter of 10 ⁇ m or more.
  • FIG. 8B shows that input light having a higher intensity than that of the prior art can be coupled to the optical fiber without optical damage.
  • this simulation shows that the optical coupler according to the present embodiment can achieve high optical coupling efficiency and can increase the intensity of input light that can be coupled without optical damage as compared with the prior art. It was.
  • the optical coupler includes a dispersive element that disperses input light in a direction parallel to the propagation axis of the optical waveguide.
  • the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
  • FIG. 9 is a side view showing the configuration of the optical coupler according to the fourth embodiment.
  • the optical coupler according to the present embodiment includes a diffractive optical element 11, a dispersion element 40, and a lens 41.
  • the dispersion element 40 is an example of an input unit that inputs the input light 132a to the diffractive optical element 11 from a direction perpendicular to the propagation axis of the optical fiber 100, and is, for example, a diffraction grating.
  • the dispersion element 40 disperses the input light 132a in a direction (X-axis direction) parallel to the propagation axis of the optical fiber 100. That is, the dispersive element 40 separates the input light 132a at different positions in the X-axis direction according to the frequency of the input light 132a.
  • the dispersed light 132b includes, for example, red dispersed light 132bR, green dispersed light 132bG, and blue dispersed light 132bB.
  • the lens 41 refracts the dispersed light 132b from the dispersion element 40 and makes the dispersed light 132b enter the diffractive optical element 11 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction).
  • the diffractive optical element 11 is an FBG.
  • the distribution of the lattice constant of the FBG corresponds to the wavelength distribution of the dispersed light 132b. That is, the lattice constant of the FBG continuously changes in the X-axis direction so that the wavelength of the dispersed light 132b incident on the FBG matches the lattice constant of the FBG.
  • the lattice constant of the region where the red dispersed light 132bR is incident is larger than the lattice constant of the region where the blue dispersed light 132B is incident.
  • the dispersive element 40 that disperses the input light 132a in the direction parallel to the propagation axis (X-axis direction) can be provided. Furthermore, in the direction parallel to the propagation axis (X-axis direction), the distribution of the lattice constant of the FBG can correspond to the wavelength distribution of the dispersed light 132b. Therefore, even for broadband input light, the wavelength of the dispersed light 132b and the lattice constant of the FBG can be matched with high accuracy, and the deviation between the traveling direction of the diffracted light and the direction of the propagation axis of the optical fiber is reduced. can do. That is, even for broadband input light, the diffracted light can be adapted to the mode of the optical fiber 100 with higher accuracy, and the optical coupling efficiency can be improved.
  • the optical coupler according to the present embodiment includes a phase compensator for compensating for a phase shift due to wavelength.
  • FIG. 10 is a side view illustrating the configuration of the optical coupler according to the fifth embodiment.
  • the optical coupler according to the present embodiment includes a phase compensation unit 50 in addition to the diffractive optical element 10.
  • the phase compensation unit 50 compensates the phase of the light coupled to the core 110 by the diffractive optical element 10. That is, the phase compensation unit 50 compensates for the phase shift of the diffracted light due to the wavelength.
  • the phase compensation unit 50 includes an optical circulator 51 and an FBG 52.
  • the optical circulator 51 is a 3-port type optical circulator.
  • the optical circulator 51 guides light that has entered the optical circulator 51 from the optical fiber 100 to the optical fiber 101. Further, the optical circulator 51 guides the light that has entered the optical circulator 51 from the optical fiber 101 to the optical fiber 101. That is, the diffracted light 140 b from the diffractive optical element 10 is guided to the FBG 52, and the reflected light from the FBG 52 is guided to the optical fiber 102.
  • optical fibers 100, 101, and 102 may be referred to as first, second, and third optical fibers, respectively.
  • the FBG 52 is formed inside the core of the optical fiber 101.
  • the FBG 52 has a lattice constant that changes in the direction of the propagation axis of the optical fiber 101, and reflects light having a wavelength corresponding to the lattice constant at that position at each position in the direction of the propagation axis. That is, the optical path length in the optical fiber 101 differs depending on the wavelength of the diffracted light 140b. As a result, the phase shift of the diffracted light 140b is compensated.
  • the phase of the light coupled to the core 110 can be compensated. Therefore, the phase shift of the combined light can be compensated, and for example, when the input light is pulsed light, a change in waveform due to optical coupling can be suppressed.
  • Embodiment 6 Next, a sixth embodiment will be described.
  • the present embodiment is mainly different from Embodiment 1 in that an adjustment unit that adjusts the lattice constant of the FBG according to the wavelength of input light is included in the optical coupler.
  • an adjustment unit that adjusts the lattice constant of the FBG according to the wavelength of input light is included in the optical coupler.
  • the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
  • FIG. 11 is a side view showing the configuration of the optical coupler in accordance with the sixth embodiment. As shown in FIG. 11, the optical coupler according to the present embodiment includes an adjustment unit 60.
  • the adjusting unit 60 adjusts the lattice constant of the diffractive optical element 10 (FBG) according to the wavelength of the input light 130.
  • the adjustment unit 60 is a heater, and adjusts the lattice constant of the FBG by heating the optical fiber 100.
  • the adjustment unit 60 is an actuator, and adjusts the lattice constant of the FBG by applying an external force to the optical fiber 100.
  • the lattice constant of the FBG (diffractive optical element 10) can be adjusted according to the wavelength of the input light 130. Therefore, the range of wavelengths of input light that can be coupled can be expanded, and the versatility of the optical coupler can be improved.
  • optical coupler according to one or more aspects of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, one or more of the present invention may be applied to various modifications that can be conceived by those skilled in the art, or forms constructed by combining components in different embodiments. It may be included within the scope of the embodiments.
  • both the light collecting element in the second embodiment and the dispersion element in the fourth embodiment may be included in the optical coupler. Thereby, further improvement in coupling efficiency can be expected.
  • both the dispersion element in the fourth embodiment and the phase compensation unit in the fifth embodiment may be included in the optical coupler. Therefore, even if the input light is a broadband pulse light, the input light can be coupled to the optical waveguide while suppressing a change in waveform.
  • the optical waveguide is an optical fiber.
  • the optical waveguide is not limited to an optical fiber.
  • the optical waveguide may be a silicon waveguide formed by silicon photonics.
  • the cladding of the optical waveguide may be replaced by an air layer.
  • the diffractive optical element is FBG.
  • the present invention is not limited to this.
  • the diffractive optical element may be realized by a hologram.
  • a hologram can be applied to a diffractive optical element will be described.
  • the amplitude transmittance H (x, y, z) of the hologram formed by the superposition (interference) of the reference wave A in (x, y, z) and the object wave A 0 (x, y, z) is This can be expressed by the following formula 3.
  • Equation 4 the first term (A1) represents straight light, the second term (A2) represents a direct image (virtual image), and the third term (A3) represents a conjugate image (real image). Therefore, by appropriately setting the reference wave A in (x, y, z) and the object wave A 0 (x, y, z), the traveling direction of the reproduced wave A in (x, y, z) Holograms can be formed that produce images and conjugate images directly in the vertical direction. In other words, the hologram formed inside the core is diffracted light that travels in a direction parallel to the propagation axis when input light (reproduced wave) is incident from a direction perpendicular to the propagation axis of the core. A direct image and a conjugate image) can be emitted.
  • the optical coupler includes the light condensing element, but the light condensing element is not necessarily provided.
  • the light condensing element is not necessarily provided.
  • the clad can collect the input light, and when the input light is not linear light, the optical coupling efficiency can be improved even when there is no condensing element.
  • the reflective portion is provided on the end surface of the core, but the reflective portion is not necessarily provided on the end surface of the core.
  • the reflecting portion may be an FBG formed inside the core. Even in this case, the diffracted light propagating through the core can be reflected in the opposite direction.
  • the same effect as that of the reflecting portion can be realized by using an optical coupler that couples two optical waveguides (optical fibers) to one optical waveguide (optical fiber).
  • the optical coupling efficiency increases as the diameter of the core on which the diffractive optical element is formed increases. Therefore, the diameter of the portion where the core diffractive optical element is formed (referred to as the first portion) may be larger than the diameter of the portion where the core diffractive optical element is not formed (referred to as the second portion). In this case, a tapered coupling portion may be formed between the first portion and the second portion. Thereby, the optical coupling efficiency can be further improved.
  • optical coupler according to one embodiment of the present invention can be used as an optical coupler for coupling input light to an optical fiber or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

This optical coupler for coupling input light (130) to an optical fiber (100), is provided with a diffraction optical element (10) formed in a core (110) of the optical fiber (100), wherein the input light (130) is incident on the diffraction optical element (10) from a direction perpendicular to the propagation axis of the optical fiber (100).

Description

光結合器及び光結合方法Optical coupler and optical coupling method
 本発明は、光導波路への光の結合に関する。 The present invention relates to coupling of light to an optical waveguide.
 従来、光導波路(例えば光ファイバ、シリコン導波路(シリコンフォトニクス)など)のコアの端面に光を集光することで光導波路に光を結合する光結合器が利用されている。光導波路のコアの端面への光の集光には、レンズあるいはテーパ状の導波路などが用いられる。例えば特許文献1では、光ファイバの端面にロッドレンズが設けられている。 Conventionally, an optical coupler that couples light to the optical waveguide by condensing the light on the end face of the core of the optical waveguide (for example, optical fiber, silicon waveguide (silicon photonics), etc.) has been used. A lens or a tapered waveguide is used for condensing light onto the end face of the core of the optical waveguide. For example, in patent document 1, the rod lens is provided in the end surface of the optical fiber.
特開平10-31128号公報JP-A-10-31128
 しかしながら、上記従来技術では、レンズの焦点に集められたビームスポットの特性を光導波路のパラメータに合わせることが難しく、良好な結合効率を得ることが難しい。特に、シングルモード光ファイバへの光結合では、入射光の強度分布をファイバモードの分布に合わせる必要があり、良好な光結合効率を得ることが難しい。 However, in the above-described conventional technology, it is difficult to match the characteristics of the beam spot collected at the focal point of the lens with the parameters of the optical waveguide, and it is difficult to obtain good coupling efficiency. In particular, in optical coupling to a single mode optical fiber, it is necessary to match the intensity distribution of incident light with the distribution of the fiber mode, and it is difficult to obtain good optical coupling efficiency.
 また、上記従来技術では、コアの端面に入射光が集光されるため、コアの端面に光学的損傷を引き起こす場合がある。光ファイバのコア表面の単位面積あたりの光学的損傷閾値は、約250kW/cm2とされる。したがって、コアの直径が約10μmのシングルモード光ファイバに0.5Wを超える高強度の光を結合すると、コアの端面に光学的損傷が生じることになる。 Moreover, in the said prior art, since incident light is condensed on the end surface of a core, an optical damage may be caused to the end surface of a core. The optical damage threshold per unit area of the core surface of the optical fiber is about 250 kW / cm 2 . Therefore, when high-intensity light exceeding 0.5 W is coupled to a single mode optical fiber having a core diameter of about 10 μm, optical damage occurs on the end face of the core.
 そこで、本発明は、光結合による光導波路の光学的損傷を抑制し、光結合効率を向上させることができる光結合器を提供する。 Therefore, the present invention provides an optical coupler capable of suppressing optical damage of the optical waveguide due to optical coupling and improving optical coupling efficiency.
 本発明の一態様に係る光結合器は、入力光を光導波路に結合する光結合器であって、前記光導波路のコアの内部に形成された回折光学機能を有する領域を備え、前記入力光は、前記光導波路の伝搬軸に垂直な方向から前記回折光学機能を有する領域に入射する。 An optical coupler according to an aspect of the present invention is an optical coupler that couples input light to an optical waveguide, the optical coupler including a region having a diffractive optical function formed in a core of the optical waveguide, Enters the region having the diffractive optical function from a direction perpendicular to the propagation axis of the optical waveguide.
 この構成によれば、光導波路の伝搬軸に垂直な方向から回折光学素子に入力光を入射することで、光導波路に入力光を結合することができる。したがって、コアの端面に入力光を集光する必要がないので、回折光学機能を有する領域により入力光の強度分布を光導波路のモードの分布に合わせることが可能となり、光結合効率を向上させることができる。また、コアの端面に入力光を集光する必要がないので、コアの光学的損傷を抑制することができる。また、コアの内部に回折光学素子が形成されるので、光導波路の伝搬軸に垂直な面内であれば360度どの方向から入力光が回折光学機能を有する領域に入射しても光結合効率のばらつきを抑えて入力光を光導波路に結合することができ、光結合器を使用する環境の自由度を高めることができる。その結果、光結合器の設置場所の制約が厳しい環境(例えば、顕微鏡の受光部など)でも光結合器を使用することができる。 According to this configuration, the input light can be coupled to the optical waveguide by making the input light incident on the diffractive optical element from a direction perpendicular to the propagation axis of the optical waveguide. Therefore, since it is not necessary to focus the input light on the end face of the core, it becomes possible to match the intensity distribution of the input light with the mode distribution of the optical waveguide by the region having the diffractive optical function, thereby improving the optical coupling efficiency. Can do. In addition, since it is not necessary to collect input light on the end face of the core, optical damage to the core can be suppressed. Further, since the diffractive optical element is formed inside the core, the optical coupling efficiency can be obtained no matter what direction the input light is incident on the region having the diffractive optical function from any direction as long as it is in a plane perpendicular to the propagation axis of the optical waveguide. The input light can be coupled to the optical waveguide while suppressing the variation of the above, and the degree of freedom of the environment in which the optical coupler is used can be increased. As a result, the optical coupler can be used even in an environment (for example, a light receiving portion of a microscope) in which restrictions on the installation location of the optical coupler are severe.
 例えば、前記回折光学機能を有する領域は、前記光導波路の伝搬軸に垂直な方向から入射する前記入力光に対してブラッグ条件(Bragg condition)を満たしてもよい。 For example, the region having the diffractive optical function may satisfy a Bragg condition for the input light incident from a direction perpendicular to the propagation axis of the optical waveguide.
 この構成によれば、光導波路の伝搬軸と平行な方向への回折効率を向上させることができ、光結合効率を向上させることができる。 According to this configuration, the diffraction efficiency in the direction parallel to the propagation axis of the optical waveguide can be improved, and the optical coupling efficiency can be improved.
 例えば、前記光導波路の伝搬軸に垂直な方向は、前記光導波路の伝搬軸に厳密に垂直な方向から予め定められた角度範囲内の方向であり、前記予め定められた角度範囲は、結合波理論(coupled-wave theory)において回折効率が0.5以上となる範囲であってもよい。 For example, the direction perpendicular to the propagation axis of the optical waveguide is a direction within a predetermined angular range from a direction strictly perpendicular to the propagation axis of the optical waveguide, and the predetermined angular range is a coupled wave. It may be in a range where the diffraction efficiency is 0.5 or more in theory (coupled-wave theory).
 この構成によれば、回折効率が0.5以上となる角度範囲内で入力光を、回折光学機能を有する領域に入射することができ、ある程度の誤差を許容しつつ、光結合効率を向上させることができる。 According to this configuration, input light can be incident on a region having a diffractive optical function within an angular range where the diffraction efficiency is 0.5 or more, and the optical coupling efficiency is improved while allowing a certain amount of error. be able to.
 例えば、前記回折光学機能を有する領域は、ファイバブラッググレーティングであってもよい。 For example, the region having the diffractive optical function may be a fiber Bragg grating.
 この構成によれば、回折光学素子にファイバブラッググレーティングを用いることができる。ファイバブラッググレーティングは、光ファイバセンサにおいて最も一般的に用いられており、比較的容易に光結合器を実現することができる。 According to this configuration, a fiber Bragg grating can be used for the diffractive optical element. The fiber Bragg grating is most commonly used in an optical fiber sensor, and an optical coupler can be realized relatively easily.
 例えば、前記ファイバブラッググレーティングの格子定数は前記入力光の波長と一致してもよい。 For example, the lattice constant of the fiber Bragg grating may coincide with the wavelength of the input light.
 この構成によれば、ファイバブラッググレーティングの格子定数を入力光の波長と一致させることができる。したがって、回折光の進行方向を光導波路の伝搬軸に平行な方向により近付けることができ、光結合効率をさらに向上させることができる。 According to this configuration, the lattice constant of the fiber Bragg grating can be matched with the wavelength of the input light. Therefore, the traveling direction of the diffracted light can be made closer to the direction parallel to the propagation axis of the optical waveguide, and the optical coupling efficiency can be further improved.
 例えば、前記光結合器は、さらに、前記伝搬軸に垂直な方向から前記回折光学機能を有する領域に前記入力光を入射する入力部を備えてもよい。 For example, the optical coupler may further include an input unit that makes the input light incident on a region having the diffractive optical function from a direction perpendicular to the propagation axis.
 この構成によれば、光結合器は光導波路の伝搬軸に垂直な方向から回折光学素子に入力光を入射する入力部を備えることができる。これにより、入力光を確実に回折光学素子に入射することができ、光結合効率を向上させることができる。 According to this configuration, the optical coupler can include an input unit that inputs the input light to the diffractive optical element from a direction perpendicular to the propagation axis of the optical waveguide. Thereby, the input light can be reliably incident on the diffractive optical element, and the optical coupling efficiency can be improved.
 例えば、前記入力部は、前記伝搬軸に平行な方向に延びる線状に前記入力光を集光する集光素子を含んでもよい。 For example, the input unit may include a condensing element that condenses the input light in a linear shape extending in a direction parallel to the propagation axis.
 この構成によれば、伝搬軸に平行な方向に延びる線状に入力光を集光する集光素子を入力部として用いることができる。したがって、コアに形成された回折光学素子に沿って線状に入力光を集光することができる。その結果、入力光を確実に回折光学素子に入射することができ、さらに光結合効率を向上させることができる。 According to this configuration, a condensing element that condenses input light in a linear shape extending in a direction parallel to the propagation axis can be used as the input unit. Therefore, the input light can be condensed linearly along the diffractive optical element formed in the core. As a result, the input light can be reliably incident on the diffractive optical element, and the optical coupling efficiency can be further improved.
 例えば、前記入力部は、前記入力光を前記伝搬軸に平行な方向に分散する分散素子を含み、前記伝搬軸に平行な方向において、前記ファイバブラッググレーティングの前記格子定数の分布は、分散された前記入力光の波長の分布に対応してもよい。 For example, the input unit includes a dispersive element that disperses the input light in a direction parallel to the propagation axis, and the distribution of the lattice constant of the fiber Bragg grating is dispersed in the direction parallel to the propagation axis. It may correspond to the wavelength distribution of the input light.
 この構成によれば、入力光を伝搬軸に平行な方向に分散する分散素子を入力部として用いることができる。さらに、伝搬軸に平行な方向において、ファイバブラッググレーティングの格子定数の分布を、分散された入力光の波長の分布に対応させることができる。したがって、広帯域な入力光に対しても、入力光の波長とファイバブラッググレーティングの格子定数とを一致させることができ、回折光の進行方向と光ファイバの伝搬軸の方向とのずれを削減することができる。つまり、広帯域の入力光に対しても、より高い精度で回折光を光ファイバのモードに適合させることができ、光結合効率を向上させることができる。 According to this configuration, a dispersive element that disperses input light in a direction parallel to the propagation axis can be used as the input unit. Furthermore, in the direction parallel to the propagation axis, the distribution of the fiber Bragg grating lattice constant can be made to correspond to the distribution of the wavelength of the dispersed input light. Therefore, even for broadband input light, the wavelength of the input light can match the lattice constant of the fiber Bragg grating, and the shift between the traveling direction of the diffracted light and the direction of the propagation axis of the optical fiber can be reduced. Can do. That is, even for broadband input light, the diffracted light can be adapted to the mode of the optical fiber with higher accuracy, and the optical coupling efficiency can be improved.
 例えば、前記光結合器は、さらに、前記入力光の波長に応じて前記ファイバブラッググレーティングの格子定数を調整する調整部を備えてもよい。 For example, the optical coupler may further include an adjustment unit that adjusts a lattice constant of the fiber Bragg grating according to the wavelength of the input light.
 この構成によれば、入力光の波長に応じてファイバブラッググレーティングの格子定数を調整することができる。したがって、結合できる入力光の波長の範囲を広げることができ、光結合器の汎用性を向上させることができる。 According to this configuration, the fiber Bragg grating lattice constant can be adjusted according to the wavelength of the input light. Therefore, the range of wavelengths of input light that can be coupled can be expanded, and the versatility of the optical coupler can be improved.
 例えば、前記光結合器は、さらに、前記回折光学機能を有する領域によって前記伝搬軸に平行な方向の2つの向きに回折された光の一方を逆向きに反射する反射部を備えてもよい。 For example, the optical coupler may further include a reflecting unit that reflects one of the lights diffracted in two directions parallel to the propagation axis by the region having the diffractive optical function in opposite directions.
 この構成によれば、コアを伝搬してきた光を反射することができる。したがって、伝搬軸の両方向に回折された回折光の一方を反射して他方と合波することができ、光結合効率を向上させることができる。 According to this configuration, the light propagating through the core can be reflected. Therefore, one of the diffracted lights diffracted in both directions of the propagation axis can be reflected and combined with the other, and the optical coupling efficiency can be improved.
 例えば、前記光結合器は、さらに、前記回折光学機能を有する領域によって前記コアに結合された光の位相を補償する位相補償部を備えてもよい。 For example, the optical coupler may further include a phase compensation unit that compensates a phase of light coupled to the core by the region having the diffractive optical function.
 この構成によれば、コアに結合された光の位相を補償することができる。したがって、結合光の位相のずれを補償することができ、例えば入力光がパルス光である場合に光結合による波形の変化を抑制することができる。 According to this configuration, the phase of light coupled to the core can be compensated. Therefore, the phase shift of the combined light can be compensated, and for example, when the input light is pulsed light, a change in waveform due to optical coupling can be suppressed.
 例えば、前記光導波路は、光ファイバであってもよい。 For example, the optical waveguide may be an optical fiber.
 この構成によれば、光ファイバに入力光を結合することができる。 According to this configuration, input light can be coupled to the optical fiber.
 また、本発明の一態様に係る光結合方法は、入力光を光導波路に結合する光結合方法であって、前記光導波路の伝搬軸に垂直な方向から、前記光導波路のコアの内部に形成された回折光学機能を有する領域に光を入力する入力ステップと、前記回折光学機能を有する領域に入力された光を回折することにより前記光導波路に光を結合する回折ステップと、を含む。 The optical coupling method according to one aspect of the present invention is an optical coupling method for coupling input light to an optical waveguide, and is formed inside the core of the optical waveguide from a direction perpendicular to the propagation axis of the optical waveguide. An input step of inputting light to the region having the diffractive optical function, and a diffraction step of coupling light to the optical waveguide by diffracting the light input to the region having the diffractive optical function.
 これによれば、上記光結合器と同様の効果を得ることができる。 According to this, the same effect as the above optical coupler can be obtained.
 本発明の一態様に係る光結合器は、光結合による光導波路の光学的損傷を抑制し、光結合効率を向上させることができる。 The optical coupler according to one embodiment of the present invention can suppress optical damage of the optical waveguide due to optical coupling and improve optical coupling efficiency.
図1は、実施の形態1に係る光結合器の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of the optical coupler according to Embodiment 1. FIG. 図2は、格子定数dを有する一般的な回折格子による光の回折を表す図である。FIG. 2 is a diagram illustrating light diffraction by a general diffraction grating having a lattice constant d. 図3は、実施の形態1に係る光結合器を用いた光結合方法を示すフローチャートである。FIG. 3 is a flowchart showing an optical coupling method using the optical coupler according to the first embodiment. 図4Aは、光結合実験の概要を示す図である。FIG. 4A is a diagram showing an outline of an optical coupling experiment. 図4Bは、光結合実験における入射角度と結合光の強度との関係を示すグラフである。FIG. 4B is a graph showing the relationship between the incident angle and the intensity of the combined light in the optical coupling experiment. 図5は、実施の形態2に係る光結合器の構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of the optical coupler according to the second embodiment. 図6は、実施の形態3に係る光結合器の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of the optical coupler according to Embodiment 3. FIG. 図7は、実施の形態3に係る光結合器のシミュレーションモデル及びシミュレーション結果を示す図である。FIG. 7 is a diagram illustrating a simulation model and a simulation result of the optical coupler according to the third embodiment. 図8Aは、実施の形態3に係る光結合器のシミュレーション結果におけるコア直径と光結合効率との関係を示すグラフである。FIG. 8A is a graph showing the relationship between the core diameter and the optical coupling efficiency in the simulation result of the optical coupler according to Embodiment 3. 図8Bは、実施の形態3に係る光結合器のシミュレーション結果におけるコア直径と光学的損傷閾値との関係を示すグラフである。FIG. 8B is a graph showing the relationship between the core diameter and the optical damage threshold in the simulation result of the optical coupler according to Embodiment 3. 図9は、実施の形態4に係る光結合器の構成を示す側面図である。FIG. 9 is a side view showing the configuration of the optical coupler according to the fourth embodiment. 図10は、実施の形態5に係る光結合器の構成を示す側面図である。FIG. 10 is a side view illustrating the configuration of the optical coupler according to the fifth embodiment. 図11は、実施の形態6に係る光結合器の構成を示す側面図である。FIG. 11 is a side view showing the configuration of the optical coupler in accordance with the sixth embodiment.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the scope of the claims. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the substantially same structure, and the overlapping description is abbreviate | omitted or simplified.
 また、以下において、一致、垂直及び平行という用語を用いているが、特に限定しない限り、これらは厳密ではなく、実質的な意味で用いられる。例えば、「一致」は、完全に一致していることを意味するだけでなく、実質的に一致しているとみなせる範囲を含むことを意味する。すなわち、「一致」は、数%程度の誤差を許容する。また例えば、「垂直」は、厳密に垂直であることを意味するだけでなく、実質的に垂直とみなせる範囲を含むことを意味する。また例えば、「平行」は、厳密に平行であることを意味するだけではなく、実質的に平行とみなすことができる範囲を含むことを意味する。 In addition, in the following, the terms coincidence, vertical and parallel are used, but unless specifically limited, these are not strict and are used in a substantial sense. For example, “match” not only means that they are completely matched, but also includes a range that can be considered to be substantially matched. That is, “match” allows an error of about several percent. Further, for example, “vertical” means not only strictly vertical but also includes a range that can be regarded as substantially vertical. Further, for example, “parallel” not only means strictly parallel, but also includes a range that can be regarded as substantially parallel.
 (実施の形態1)
 以下、実施の形態1について図面を参照しながら説明する。
(Embodiment 1)
The first embodiment will be described below with reference to the drawings.
 [光結合器の構成]
 図1は、実施の形態1に係る光結合器の構成を示す図である。図1及び以降の図において、X軸方向は、光ファイバの伝搬軸に平行な方向であり、Y軸方向及びZ軸方法は、光ファイバの伝搬軸に直交する方向である。
[Configuration of optical coupler]
FIG. 1 is a diagram illustrating a configuration of the optical coupler according to the first embodiment. In FIG. 1 and subsequent figures, the X-axis direction is a direction parallel to the propagation axis of the optical fiber, and the Y-axis direction and the Z-axis method are directions orthogonal to the propagation axis of the optical fiber.
 光ファイバ100は、光導波路の一例であり、光信号を伝送するための媒体である。本実施の形態では、光ファイバ100は、シングルモード光ファイバであり、コア110及びクラッド120を備える。 The optical fiber 100 is an example of an optical waveguide and is a medium for transmitting an optical signal. In the present embodiment, the optical fiber 100 is a single mode optical fiber and includes a core 110 and a cladding 120.
 コア110は、例えば石英ガラス又はプラスチックからなり、クラッド120に囲われている。コア110の直径は、例えば約10μm~100μmである。 The core 110 is made of, for example, quartz glass or plastic, and is surrounded by the clad 120. The diameter of the core 110 is, for example, about 10 μm to 100 μm.
 クラッド120は、例えば石英ガラス又はプラスチックからなり、コア110よりも低い屈折率を有する。クラッド120の外径は、例えば約30μm~500μmである。 The clad 120 is made of, for example, quartz glass or plastic, and has a lower refractive index than the core 110. The outer diameter of the clad 120 is, for example, about 30 μm to 500 μm.
 コア110の内部には、回折光学機能を有する領域(以下、回折光学素子10という)が形成されている。入力光130は、光ファイバ100の伝搬軸に垂直な方向(図1ではZ軸方向)から回折光学素子10に入射する。そして、入力光130は、回折光学素子10によって回折される。その結果、回折光140a、140b(結合光ともいう)は、伝搬軸に平行な方向(図1ではX軸方向)に伝搬する。 A region having a diffractive optical function (hereinafter referred to as a diffractive optical element 10) is formed inside the core 110. The input light 130 enters the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction in FIG. 1). The input light 130 is diffracted by the diffractive optical element 10. As a result, the diffracted light 140a and 140b (also referred to as coupled light) propagates in a direction parallel to the propagation axis (X-axis direction in FIG. 1).
 光ファイバ100の伝搬軸に垂直な方向は、光ファイバ100の伝搬軸に厳密に垂直な方向から予め定められた角度範囲内の方向であってもよい。この予め定められた角度範囲は、非特許文献1に記載の結合波理論に基づいて定義することができる。 The direction perpendicular to the propagation axis of the optical fiber 100 may be a direction within a predetermined angle range from a direction strictly perpendicular to the propagation axis of the optical fiber 100. This predetermined angle range can be defined based on the coupled wave theory described in Non-Patent Document 1.
 例えば、予め定められた角度範囲は、結合波理論において回折効率が予め定められた閾値効率以上となる範囲であってもよい。予め定められた閾値効率としては、例えば0.5を用いることができ、好ましくは0.6を用いることもでき、より好ましくは0.7を用いることもできる。予め定められた閾値効率として0.5以上の値が用いられれば、従来よりも高い結合効率を実現することができる。 For example, the predetermined angular range may be a range in which the diffraction efficiency is equal to or higher than a predetermined threshold efficiency in the coupled wave theory. As the predetermined threshold efficiency, for example, 0.5 can be used, preferably 0.6 can be used, and more preferably 0.7 can be used. If a value equal to or greater than 0.5 is used as the predetermined threshold efficiency, it is possible to realize a higher coupling efficiency than before.
 回折光学素子10は、光ファイバ100の伝搬軸に垂直な方向から入射する入力光130に対してブラッグ条件を満たす。ブラッグ条件は、以下の式1で表される。 The diffractive optical element 10 satisfies the Bragg condition for the input light 130 incident from a direction perpendicular to the propagation axis of the optical fiber 100. The Bragg condition is expressed by Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、dは回折光学素子10の格子定数を表し、θは光ファイバ100の伝搬軸と入力光130とが成す角度を表し、λは入力光130の波長を表し、nは整数を表す。 Here, d represents the lattice constant of the diffractive optical element 10, θ represents the angle formed by the propagation axis of the optical fiber 100 and the input light 130, λ represents the wavelength of the input light 130, and n represents an integer.
 つまり、本実施の形態では、θ=90度において式1が満たされる。なお、ブラッグ条件を満たすとは、式1が厳密に満たされることだけを意味するのではなく、式1が実質的に満たされることを意味してもよい。つまり、式1において、微小な誤差が含まれる場合も、ブラッグ条件を満たすと解釈してもよい。 That is, in this embodiment, Formula 1 is satisfied at θ = 90 degrees. Note that satisfying the Bragg condition does not only mean that Expression 1 is strictly satisfied, but may mean that Expression 1 is substantially satisfied. In other words, in Formula 1, even when a minute error is included, it may be interpreted that the Bragg condition is satisfied.
 本実施の形態では、回折光学素子10は、ファイバブラッググレーティング(FBG)である。FBGは、例えば紫外レーザ光を光ファイバに照射して、紫外光に感光性を有するコアの内部の屈折率を伝搬軸に平行な方向に周期的に変化させることで製造される。 In the present embodiment, the diffractive optical element 10 is a fiber Bragg grating (FBG). The FBG is manufactured by, for example, irradiating an optical fiber with ultraviolet laser light and periodically changing the refractive index inside the core having sensitivity to ultraviolet light in a direction parallel to the propagation axis.
 回折光学素子10(FBG)の格子定数dは、入力光130の波長λと一致する。この回折光学素子10によって、入力光130の伝搬方向は、入射方向(図1のZ軸方向)から、当該入射方向に垂直な方向(図1のX軸方向)に変換される。 The lattice constant d of the diffractive optical element 10 (FBG) matches the wavelength λ of the input light 130. By this diffractive optical element 10, the propagation direction of the input light 130 is converted from the incident direction (Z-axis direction in FIG. 1) to a direction perpendicular to the incident direction (X-axis direction in FIG. 1).
 ここで、光の伝搬方向が入射方向に垂直な方向に変換される原理について説明する。図2は、格子定数dを有する一般的な回折格子による光の回折を表す図である。図2に示すように、波長λの光が角度θ1で回折格子に入射すると角度θ2の回折光が生じる。入射光と回折光との波面の位相は等しくなるので、+1次及び-1次の回折光では、以下の式2が成立する。 Here, the principle of changing the light propagation direction to a direction perpendicular to the incident direction will be described. FIG. 2 is a diagram illustrating light diffraction by a general diffraction grating having a lattice constant d. As shown in FIG. 2, when light of wavelength λ is incident on the diffraction grating at angle θ 1 , diffracted light of angle θ 2 is generated. Since the wavefront phases of the incident light and the diffracted light are equal, the following Expression 2 is established for the + 1st order and −1st order diffracted lights.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式2にθ1=0、d=λを代入することにより、θ2=π/2,-π/2が導出される。つまり、図1において、Z軸方向(θ1=0)から波長λ(=d)を有する入力光130が格子定数dを有する回折光学素子10に入射すれば、回折光140a、140bは、X軸方向の正及び負の向き(θ2=π/2,-π/2)に進行する。 By substituting θ 1 = 0 and d = λ into Equation 2 above, θ 2 = π / 2, −π / 2 is derived. That is, in FIG. 1, when the input light 130 having the wavelength λ (= d) from the Z-axis direction (θ 1 = 0) is incident on the diffractive optical element 10 having the grating constant d, the diffracted lights 140a and 140b are It proceeds in the positive and negative directions (θ 2 = π / 2, −π / 2) in the axial direction.
 なお、入力光130の入射方向はZ軸方向に限定されない。入力光130は、X軸方向に垂直な方向(例えばY軸方向)から回折光学素子10に入射すればよい。この場合でも、上記式2に基づいて回折光140a、140bは、X軸方向の正及び負の向きに進行する。 Note that the incident direction of the input light 130 is not limited to the Z-axis direction. The input light 130 may be incident on the diffractive optical element 10 from a direction perpendicular to the X-axis direction (for example, the Y-axis direction). Even in this case, the diffracted lights 140a and 140b travel in the positive and negative directions in the X-axis direction based on the above equation 2.
 [光結合方法]
 次に、以上のように構成された光結合器を用いた光結合方法について説明する。図3は、実施の形態1に係る光結合方法を示すフローチャートである。
[Optical coupling method]
Next, an optical coupling method using the optical coupler configured as described above will be described. FIG. 3 is a flowchart showing the optical coupling method according to the first embodiment.
 まず、光ファイバ100のコア110の内部に形成された回折光学素子10に、格子定数と一致する波長を有する入力光130が入射される(S110)。入力光130は回折光学素子10によって回折される(S120)。つまり、入力光130は、光ファイバ100の伝搬軸に平行な方向に伝搬する回折光140a、140bに変換される。 First, the input light 130 having a wavelength that matches the lattice constant is incident on the diffractive optical element 10 formed inside the core 110 of the optical fiber 100 (S110). The input light 130 is diffracted by the diffractive optical element 10 (S120). That is, the input light 130 is converted into diffracted light 140 a and 140 b that propagates in a direction parallel to the propagation axis of the optical fiber 100.
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、光ファイバ100の伝搬軸に垂直な方向(例えばZ軸方向)から回折光学素子10に入力光130を入射することで、光ファイバ100に入力光130を結合することができる。したがって、コア110の端面に入力光130を集光する必要がないので、回折光学素子10で入力光130の強度分布を光ファイバ100のモードの分布に合わせることが可能となり、光結合効率を向上させることができる。また、コア110の端面に入力光130を集光する必要がないので、コア110の光学的損傷を抑制することができる。また、コア110の内部に回折光学素子10が形成されるので、光ファイバ100の伝搬軸に垂直な面内であれば360度どの方向(例えばY軸方向及びZ軸方向)から入力光130が回折光学素子10に入射しても、光結合効率のばらつきを抑えて入力光130を光ファイバ100に結合することができ、光結合器を使用する環境の自由度を高めることができる。その結果、光結合器の設置場所の制約が厳しい環境(例えば、顕微鏡の受光部など)でも本実施の形態に係る光結合器を使用することができる。
[effect]
As described above, according to the optical coupler in accordance with the present embodiment, the input light 130 is incident on the diffractive optical element 10 from the direction perpendicular to the propagation axis of the optical fiber 100 (for example, the Z-axis direction). Input light 130 can be coupled to the fiber 100. Accordingly, since it is not necessary to collect the input light 130 on the end face of the core 110, the intensity distribution of the input light 130 can be matched with the mode distribution of the optical fiber 100 by the diffractive optical element 10, and the optical coupling efficiency is improved. Can be made. In addition, since it is not necessary to collect the input light 130 on the end face of the core 110, optical damage to the core 110 can be suppressed. In addition, since the diffractive optical element 10 is formed inside the core 110, the input light 130 is transmitted from which direction (for example, the Y-axis direction and the Z-axis direction) 360 degrees within a plane perpendicular to the propagation axis of the optical fiber 100. Even if the light enters the diffractive optical element 10, the input light 130 can be coupled to the optical fiber 100 while suppressing variations in optical coupling efficiency, and the degree of freedom of the environment in which the optical coupler is used can be increased. As a result, the optical coupler according to the present embodiment can be used even in an environment (for example, a light receiving part of a microscope) in which restrictions on the installation location of the optical coupler are severe.
 また、本実施の形態に係る光結合器によれば、回折光学素子10は、光ファイバ100の伝搬軸に垂直な方向から入射する入力光130に対してブラッグ条件を満たすことができる。したがって、入力光130の伝搬方向を光ファイバ100の伝搬軸と平行な方向への回折効率を向上させることでき、光結合効率を向上させることができる。 Further, according to the optical coupler according to the present embodiment, the diffractive optical element 10 can satisfy the Bragg condition for the input light 130 incident from a direction perpendicular to the propagation axis of the optical fiber 100. Therefore, the diffraction efficiency of the input light 130 in the direction parallel to the propagation axis of the optical fiber 100 can be improved, and the optical coupling efficiency can be improved.
 また、本実施の形態に係る光結合器によれば、回折効率が0.5以上となる角度範囲内で入力光を、回折光学機能を有する領域に入射することができ、ある程度の誤差を許容しつつ、光結合効率を向上させることができる。 Further, according to the optical coupler according to the present embodiment, the input light can be incident on the region having the diffractive optical function within an angle range where the diffraction efficiency is 0.5 or more, and a certain amount of error is allowed. However, the optical coupling efficiency can be improved.
 また、本実施の形態に係る光結合器によれば、回折光学素子10にFBGを用いることができる。FBGは、光ファイバセンサにおいて最も一般的に用いられており、コア110の内部に回折光学素子10を比較的容易に形成することができる。したがって、本実施の形態に係る光結合器を比較的容易に実現することができる。 In addition, according to the optical coupler according to the present embodiment, FBG can be used for the diffractive optical element 10. The FBG is most commonly used in an optical fiber sensor, and the diffractive optical element 10 can be formed in the core 110 relatively easily. Therefore, the optical coupler according to the present embodiment can be realized relatively easily.
 また、本実施の形態に係る光結合器によれば、FBGの格子定数を入力光の波長と一致させることができる。したがって、回折光の進行方向を光ファイバ100の伝搬軸に平行な方向により近付けることができ、光結合効率をさらに向上させることができる。 Moreover, according to the optical coupler according to the present embodiment, the lattice constant of the FBG can be matched with the wavelength of the input light. Therefore, the traveling direction of the diffracted light can be made closer to the direction parallel to the propagation axis of the optical fiber 100, and the optical coupling efficiency can be further improved.
 [実験結果]
 ここで、コアの内部に形成された回折光学素子を用いて伝搬軸に垂直な方向から入射した入力光を光ファイバに結合する実験について説明する。図4Aは、光結合実験の概要を示す図である。
[Experimental result]
Here, an experiment will be described in which input light incident from a direction perpendicular to the propagation axis is coupled to an optical fiber using a diffractive optical element formed inside the core. FIG. 4A is a diagram showing an outline of an optical coupling experiment.
 本実験では、図4Aに示すように光導波路としてスラブ導波路を用いた。また、コア及びコアの内部に形成された回折光学素子として回折格子フィルムシートを用いた。回折格子フィルムシートの厚みは約120μmであり、格子定数は1.0μmであった。さらに、クラッドとしてガラス板を用いた。光源からスラブ導波路に入射した入力光の波長は約1.6μmであった。回折格子フィルムシートの屈折率が高いので、格子定数1.0μmより少し大きい波長1.6μmの入力光を用いた。このようなスラブ導波路に対して複数の入射角度θで入力光を入射し、複数の入射角度の各々で結合光の強度を強度測定器で測定した。 In this experiment, a slab waveguide was used as the optical waveguide as shown in FIG. 4A. A diffraction grating film sheet was used as the core and the diffractive optical element formed inside the core. The thickness of the diffraction grating film sheet was about 120 μm, and the lattice constant was 1.0 μm. Further, a glass plate was used as the cladding. The wavelength of the input light incident on the slab waveguide from the light source was about 1.6 μm. Since the refractive index of the diffraction grating film sheet is high, input light having a wavelength of 1.6 μm, which is slightly larger than the lattice constant of 1.0 μm, was used. Input light was incident on such a slab waveguide at a plurality of incident angles θ, and the intensity of the coupled light was measured with an intensity measuring device at each of the plurality of incident angles.
 図4Bは、光結合実験における入射角度と結合光の強度との関係を示すグラフである。図4Bから明らかなように、本実験では、入射角度θが90度近傍のときに結合光の強度が最も高くなった。このとき、光結合効率は90%以上であった。つまり、入力光が伝搬軸に垂直な方向から回折光学素子に入力光を入射することにより、高い光結合効率で導波路に入力光を結合することができた。 FIG. 4B is a graph showing the relationship between the incident angle and the intensity of the coupled light in the optical coupling experiment. As is clear from FIG. 4B, in this experiment, the intensity of the coupled light was highest when the incident angle θ was near 90 degrees. At this time, the optical coupling efficiency was 90% or more. That is, when the input light is incident on the diffractive optical element from a direction perpendicular to the propagation axis, the input light can be coupled to the waveguide with high optical coupling efficiency.
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、光導波路の伝搬軸に平行な方向に延びる線状に入力光を集光する集光素子が光結合器に含まれる点が上記実施の形態1と主として異なる。以下に、本実施の形態に係る光結合器について、上記実施の形態1と異なる点を中心に、図面を参照しながら具体的に説明する。
(Embodiment 2)
Next, a second embodiment will be described. The present embodiment is mainly different from the first embodiment in that the optical coupler includes a condensing element that condenses input light in a linear shape extending in a direction parallel to the propagation axis of the optical waveguide. Hereinafter, the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
 [光結合器の構成]
 図5は、実施の形態2に係る光結合器の構成を示す斜視図である。図5に示すように、本実施の形態に係る光結合器は、回折光学素子10に加えて、集光素子20を備える。
[Configuration of optical coupler]
FIG. 5 is a perspective view showing the configuration of the optical coupler according to the second embodiment. As shown in FIG. 5, the optical coupler according to the present embodiment includes a condensing element 20 in addition to the diffractive optical element 10.
 集光素子20は、光ファイバ100の伝搬軸に垂直な方向から回折光学素子10に入力光131aを入射する入力部の一例であり、例えばシリンドリカルレンズである。集光素子20は、光ファイバ100の伝搬軸に平行な方向(X軸方向)に延びる線状に入力光131aを集光する。線状光131bは、光ファイバ100の伝搬軸に垂直な方向(Z軸方向)から回折光学素子10に入射する。 The condensing element 20 is an example of an input unit that inputs the input light 131a to the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100, and is, for example, a cylindrical lens. The condensing element 20 condenses the input light 131a in a linear shape extending in a direction parallel to the propagation axis of the optical fiber 100 (X-axis direction). The linear light 131b enters the diffractive optical element 10 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction).
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、伝搬軸に平行な方向(X軸方向)に延びる線状に入力光131aを集光する集光素子20を備えることができる。したがって、コア110に形成された回折光学素子10に沿って線状に入力光131aを集光することができる(線状光131b)。その結果、入力光131aを確実に回折光学素子10に入射することができ、さらに光結合効率を向上させることができる。
[effect]
As described above, according to the optical coupler in accordance with the present embodiment, the condensing element 20 that condenses the input light 131a in a linear shape extending in a direction parallel to the propagation axis (X-axis direction) can be provided. . Therefore, the input light 131a can be condensed linearly along the diffractive optical element 10 formed on the core 110 (linear light 131b). As a result, the input light 131a can be reliably incident on the diffractive optical element 10, and the optical coupling efficiency can be further improved.
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、コアの端面に形成された反射部が光結合器に含まれる点が上記実施の形態1と主として異なる。以下に、本実施の形態に係る光結合器について、上記実施の形態1と異なる点を中心に、図面を参照しながら具体的に説明する。
(Embodiment 3)
Next, Embodiment 3 will be described. The present embodiment is mainly different from the first embodiment in that the reflection portion formed on the end face of the core is included in the optical coupler. Hereinafter, the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
 [光結合器の構成]
 図6は、実施の形態3に係る光結合器の構成を示す斜視図である。図6に示すように、本実施の形態に係る光結合器は、回折光学素子10に加えて、反射部30を備える。
[Configuration of optical coupler]
FIG. 6 is a perspective view showing the configuration of the optical coupler according to Embodiment 3. FIG. As shown in FIG. 6, the optical coupler according to the present embodiment includes a reflecting unit 30 in addition to the diffractive optical element 10.
 反射部30は、コア110の端面に設けられ、反射部30に向かってコア110を伝搬してきた回折光140aを反射する。つまり、反射部30は、回折光学素子10によって伝搬軸に平行な方向の2つの向きに回折された光(本実施の形態では回折光140a、140b)の一方(本実施の形態では回折光140a)を逆向きに反射する。その結果、回折光140aの進行方向は反転され、回折光140aは、回折光140bと合波される。 The reflection unit 30 is provided on the end surface of the core 110, and reflects the diffracted light 140a propagating through the core 110 toward the reflection unit 30. That is, the reflecting unit 30 is one of the light (diffracted light 140a and 140b in the present embodiment) diffracted by the diffractive optical element 10 in two directions parallel to the propagation axis (diffracted light 140a in the present embodiment). ) Is reflected in the opposite direction. As a result, the traveling direction of the diffracted light 140a is reversed, and the diffracted light 140a is combined with the diffracted light 140b.
 図6では、反射部30は、X軸方向の負の向き伝搬する光をX軸方向の正の向きに反射する。具体的には、反射部30は、例えばコア110の端面を覆う金属膜(例えばアルミニウムなど)である。 In FIG. 6, the reflection unit 30 reflects the light propagating in the negative direction in the X-axis direction in the positive direction in the X-axis direction. Specifically, the reflection part 30 is a metal film (for example, aluminum etc.) which covers the end surface of the core 110, for example.
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、コア110を伝搬してきた光をコア110の端面で反射することができる。したがって、伝搬軸の両方向に回折された回折光の一方(回折光140a)を他方(回折光140b)と合波することができ、光結合効率を向上させることができる。
[effect]
As described above, according to the optical coupler according to the present embodiment, the light propagating through the core 110 can be reflected by the end face of the core 110. Therefore, one (diffracted light 140a) of the diffracted light diffracted in both directions of the propagation axis can be combined with the other (diffracted light 140b), and the optical coupling efficiency can be improved.
 ここで、本実施の形態に係る光結合器のシミュレーション結果を用いて効果を説明する。図7は、実施の形態3に係る光結合器のシミュレーションモデル及びシミュレーション結果を示す図である。具体的には、図7の(a)は、シミュレーションにおける光結合器の3次元モデルの斜視図である。図7の(b)は、シミュレーションにおける光結合器の3次元モデルの断面図である。図7の(c)及び(d)は、図7の(b)に示す断面における130フェムト秒及び1000フェムト秒後の光の強度分布を示す図である。図7の(c)及び(d)では、白に近いほど光の強度が高く、黒に近いほど光の強度が低いことを示す。 Here, the effect will be described using the simulation result of the optical coupler according to the present embodiment. FIG. 7 is a diagram illustrating a simulation model and a simulation result of the optical coupler according to the third embodiment. Specifically, FIG. 7A is a perspective view of a three-dimensional model of the optical coupler in the simulation. FIG. 7B is a cross-sectional view of the three-dimensional model of the optical coupler in the simulation. FIGS. 7C and 7D are diagrams showing light intensity distributions after 130 femtoseconds and 1000 femtoseconds in the cross section shown in FIG. 7B. 7C and 7D show that the closer to white, the higher the light intensity, and the closer to black, the lower the light intensity.
 このシミュレーションでは、有限要素時間差分法(FDTD;Finite Difference Time Domain)が用いられ、図7の(a)に示すように光源からの線状(2次元)の入力光が、光ファイバの伝搬軸に垂直な方向から、コアの内部に形成された回折光学素子にクラッドを介して入射された。このとき、入力光が入射するコアの領域(つまり回折光学素子が形成された領域)の伝搬軸の方向の長さを1cmとした。また、コアの一方の端面には反射部が設けられ、入力光の波長は1.485μmであり、回折光学素子の格子定数は1μmであった。 In this simulation, a finite element time difference method (FDTD) is used, and a linear (two-dimensional) input light from a light source is a propagation axis of an optical fiber as shown in FIG. The light was incident on the diffractive optical element formed inside the core through the clad from the direction perpendicular to. At this time, the length in the direction of the propagation axis of the core region (that is, the region where the diffractive optical element is formed) on which the input light is incident was set to 1 cm. In addition, a reflection portion was provided on one end face of the core, the wavelength of the input light was 1.485 μm, and the lattice constant of the diffractive optical element was 1 μm.
 図7の(d)を見れば、光ファイバの伝搬軸に垂直な方向から回折光学素子に入射した入力光は、回折光学素子によって伝搬軸に平行な方向に進行する結合光に変換されたことがわかる。 Referring to FIG. 7D, the input light incident on the diffractive optical element from the direction perpendicular to the propagation axis of the optical fiber has been converted by the diffractive optical element into coupled light traveling in a direction parallel to the propagation axis. I understand.
 なお、本シミュレーションは、コアの直径を変化させて複数回行われた。図8Aは、コア直径と光結合効率との関係を示すグラフである。図8Bは、コア直径と光学的損傷が生じる入力光の強度との関係を示すグラフである。図8Bでは、光学的損傷閾値として250kW/cm2を用いた。 This simulation was performed a plurality of times while changing the diameter of the core. FIG. 8A is a graph showing the relationship between the core diameter and the optical coupling efficiency. FIG. 8B is a graph showing the relationship between the core diameter and the intensity of input light causing optical damage. In FIG. 8B, 250 kW / cm 2 was used as the optical damage threshold.
 図8Aを見れば、10μm以上のコア直径において60%以上の光結合効率を実現することができたことがわかる。また、図8Bを見れば、従来技術よりも高い強度の入力光を光学的損傷なしに光ファイバに結合できることがわかる。 FIG. 8A shows that an optical coupling efficiency of 60% or more can be realized at a core diameter of 10 μm or more. FIG. 8B shows that input light having a higher intensity than that of the prior art can be coupled to the optical fiber without optical damage.
 このように、本シミュレーションによって、本実施の形態に係る光結合器によって高い光結合効率を実現できるとともに、従来技術よりも光学的損傷なしに結合できる入力光の強度を増加させることができることがわかった。 As described above, this simulation shows that the optical coupler according to the present embodiment can achieve high optical coupling efficiency and can increase the intensity of input light that can be coupled without optical damage as compared with the prior art. It was.
 (実施の形態4)
 次に、実施の形態4について説明する。本実施の形態では、入力光を光導波路の伝搬軸に平行な方向に分散する分散素子が光結合器に含まれる点が上記実施の形態1と主として異なる。以下に、本実施の形態に係る光結合器について、上記実施の形態1と異なる点を中心に、図面を参照しながら具体的に説明する。
(Embodiment 4)
Next, a fourth embodiment will be described. The present embodiment is mainly different from the first embodiment in that the optical coupler includes a dispersive element that disperses input light in a direction parallel to the propagation axis of the optical waveguide. Hereinafter, the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
 [光結合器の構成]
 図9は、実施の形態4に係る光結合器の構成を示す側面図である。図9に示すように、本実施の形態に係る光結合器は、回折光学素子11と、分散素子40と、レンズ41とを備える。
[Configuration of optical coupler]
FIG. 9 is a side view showing the configuration of the optical coupler according to the fourth embodiment. As shown in FIG. 9, the optical coupler according to the present embodiment includes a diffractive optical element 11, a dispersion element 40, and a lens 41.
 分散素子40は、光ファイバ100の伝搬軸に垂直な方向から回折光学素子11に入力光132aを入射する入力部の一例であり、例えば回折格子である。分散素子40は、入力光132aを光ファイバ100の伝搬軸に平行な方向(X軸方向)に分散する。つまり、分散素子40は、入力光132aの周波数に応じて異なるX軸方向の位置に入力光132aを分離する。分散光132bは、例えば赤分散光132bR、緑分散光132bG及び青分散光132bBを含む。 The dispersion element 40 is an example of an input unit that inputs the input light 132a to the diffractive optical element 11 from a direction perpendicular to the propagation axis of the optical fiber 100, and is, for example, a diffraction grating. The dispersion element 40 disperses the input light 132a in a direction (X-axis direction) parallel to the propagation axis of the optical fiber 100. That is, the dispersive element 40 separates the input light 132a at different positions in the X-axis direction according to the frequency of the input light 132a. The dispersed light 132b includes, for example, red dispersed light 132bR, green dispersed light 132bG, and blue dispersed light 132bB.
 レンズ41は、分散素子40からの分散光132bを屈折させて、分散光132bを光ファイバ100の伝搬軸に垂直な方向(Z軸方向)から回折光学素子11に入射する。 The lens 41 refracts the dispersed light 132b from the dispersion element 40 and makes the dispersed light 132b enter the diffractive optical element 11 from a direction perpendicular to the propagation axis of the optical fiber 100 (Z-axis direction).
 回折光学素子11は、FBGである。光ファイバ100の伝搬軸に平行な方向(X軸方向)において、FBGの格子定数の分布は、分散光132bの波長の分布に対応する。つまり、FBGに入射する分散光132bの波長とFBGの格子定数が一致するように、FBGの格子定数はX軸方向に連続的に変化している。例えば、図9に示すように、赤分散光132bRが入射する領域の格子定数は、青分散光132Bが入射する領域の格子定数よりも大きい。 The diffractive optical element 11 is an FBG. In the direction parallel to the propagation axis of the optical fiber 100 (X-axis direction), the distribution of the lattice constant of the FBG corresponds to the wavelength distribution of the dispersed light 132b. That is, the lattice constant of the FBG continuously changes in the X-axis direction so that the wavelength of the dispersed light 132b incident on the FBG matches the lattice constant of the FBG. For example, as shown in FIG. 9, the lattice constant of the region where the red dispersed light 132bR is incident is larger than the lattice constant of the region where the blue dispersed light 132B is incident.
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、入力光132aを伝搬軸に平行な方向(X軸方向)に分散する分散素子40を備えることができる。さらに、伝搬軸に平行な方向(X軸方向)において、FBGの格子定数の分布を、分散光132bの波長の分布に対応させることができる。したがって、広帯域な入力光に対しても、分散光132bの波長とFBGの格子定数とを高い精度で一致させることができ、回折光の進行方向と光ファイバの伝搬軸の方向とのずれを削減することができる。つまり、広帯域の入力光に対しても、より高い精度で回折光を光ファイバ100のモードに適合させることができ、光結合効率を向上させることができる。
[effect]
As described above, according to the optical coupler in accordance with the present embodiment, the dispersive element 40 that disperses the input light 132a in the direction parallel to the propagation axis (X-axis direction) can be provided. Furthermore, in the direction parallel to the propagation axis (X-axis direction), the distribution of the lattice constant of the FBG can correspond to the wavelength distribution of the dispersed light 132b. Therefore, even for broadband input light, the wavelength of the dispersed light 132b and the lattice constant of the FBG can be matched with high accuracy, and the deviation between the traveling direction of the diffracted light and the direction of the propagation axis of the optical fiber is reduced. can do. That is, even for broadband input light, the diffracted light can be adapted to the mode of the optical fiber 100 with higher accuracy, and the optical coupling efficiency can be improved.
 (実施の形態5)
 次に、実施の形態5について説明する。入力光が単波長でない場合、回折光学素子に入射した入力光は、その波長によって異なる角度で回折する。したがって、波長によって回折光の位相にずれが生じる。その結果、入力光がパルス光である場合に、パルス光の波形が変化してしまう。そこで、本実施の形態に係る光結合器は、波長による位相のずれを補償するための位相補償部を備える。以下に、本実施の形態に係る光結合器について、上記実施の形態1と異なる点を中心に、図面を参照しながら具体的に説明する。
(Embodiment 5)
Next, a fifth embodiment will be described. When the input light is not a single wavelength, the input light incident on the diffractive optical element is diffracted at different angles depending on the wavelength. Therefore, the phase of the diffracted light is shifted depending on the wavelength. As a result, when the input light is pulsed light, the waveform of the pulsed light changes. Therefore, the optical coupler according to the present embodiment includes a phase compensator for compensating for a phase shift due to wavelength. Hereinafter, the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
 [光結合器の構成]
 図10は、実施の形態5に係る光結合器の構成を示す側面図である。図10に示すように、本実施の形態に係る光結合器は、回折光学素子10に加えて、位相補償部50を備える。
[Configuration of optical coupler]
FIG. 10 is a side view illustrating the configuration of the optical coupler according to the fifth embodiment. As shown in FIG. 10, the optical coupler according to the present embodiment includes a phase compensation unit 50 in addition to the diffractive optical element 10.
 位相補償部50は、回折光学素子10によってコア110に結合された光の位相を補償する。つまり、位相補償部50は、波長による回折光の位相のずれを補償する。本実施の形態では、位相補償部50は、光サーキュレータ51と、FBG52とを備える。 The phase compensation unit 50 compensates the phase of the light coupled to the core 110 by the diffractive optical element 10. That is, the phase compensation unit 50 compensates for the phase shift of the diffracted light due to the wavelength. In the present embodiment, the phase compensation unit 50 includes an optical circulator 51 and an FBG 52.
 光サーキュレータ51は、3ポートタイプの光サーキュレータである。光サーキュレータ51は、光ファイバ100から光サーキュレータ51に進入した光を光ファイバ101に導く。さらに、光サーキュレータ51は、光ファイバ101から光サーキュレータ51に進入した光を光ファイバ101に導く。つまり、回折光学素子10による回折光140bをFBG52に導き、FBG52からの反射光を光ファイバ102に導く。 The optical circulator 51 is a 3-port type optical circulator. The optical circulator 51 guides light that has entered the optical circulator 51 from the optical fiber 100 to the optical fiber 101. Further, the optical circulator 51 guides the light that has entered the optical circulator 51 from the optical fiber 101 to the optical fiber 101. That is, the diffracted light 140 b from the diffractive optical element 10 is guided to the FBG 52, and the reflected light from the FBG 52 is guided to the optical fiber 102.
 なお、光ファイバ100、101及び102は、それぞれ、第1、第2及び第3光ファイバと呼ばれてもよい。 Note that the optical fibers 100, 101, and 102 may be referred to as first, second, and third optical fibers, respectively.
 FBG52は、光ファイバ101のコアの内部に形成されている。FBG52は、光ファイバ101の伝搬軸の方向において格子定数が変化しており、伝搬軸の方向の各位置で当該位置の格子定数に対応する波長の光を反射する。つまり、回折光140bの波長によって光ファイバ101内の光路長が異なる。その結果、回折光140bの位相のずれが補償される。 The FBG 52 is formed inside the core of the optical fiber 101. The FBG 52 has a lattice constant that changes in the direction of the propagation axis of the optical fiber 101, and reflects light having a wavelength corresponding to the lattice constant at that position at each position in the direction of the propagation axis. That is, the optical path length in the optical fiber 101 differs depending on the wavelength of the diffracted light 140b. As a result, the phase shift of the diffracted light 140b is compensated.
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、コア110に結合された光の位相を補償することができる。したがって、結合光の位相のずれを補償することができ、例えば入力光がパルス光である場合に光結合による波形の変化を抑制することができる。
[effect]
As described above, according to the optical coupler according to the present embodiment, the phase of the light coupled to the core 110 can be compensated. Therefore, the phase shift of the combined light can be compensated, and for example, when the input light is pulsed light, a change in waveform due to optical coupling can be suppressed.
 (実施の形態6)
 次に、実施の形態6について説明する。本実施の形態では、入力光の波長に応じてFBGの格子定数を調整する調整部が光結合器に含まれる点が上記実施の形態1と主として異なる。以下に、本実施の形態に係る光結合器について、上記実施の形態1と異なる点を中心に、図面を参照しながら具体的に説明する。
(Embodiment 6)
Next, a sixth embodiment will be described. The present embodiment is mainly different from Embodiment 1 in that an adjustment unit that adjusts the lattice constant of the FBG according to the wavelength of input light is included in the optical coupler. Hereinafter, the optical coupler according to the present embodiment will be described in detail with reference to the drawings, centering on differences from the first embodiment.
 [光結合器の構成]
 図11は、実施の形態6に係る光結合器の構成を示す側面図である。図11に示すように、本実施の形態に係る光結合器は、調整部60を備える。
[Configuration of optical coupler]
FIG. 11 is a side view showing the configuration of the optical coupler in accordance with the sixth embodiment. As shown in FIG. 11, the optical coupler according to the present embodiment includes an adjustment unit 60.
 調整部60は、入力光130の波長に応じて回折光学素子10(FBG)の格子定数を調整する。例えば、調整部60は、加熱器であり、光ファイバ100を加熱することによりFBGの格子定数を調整する。また例えば、調整部60は、アクチュエータであり、光ファイバ100に外力を加えることによりFBGの格子定数を調整する。 The adjusting unit 60 adjusts the lattice constant of the diffractive optical element 10 (FBG) according to the wavelength of the input light 130. For example, the adjustment unit 60 is a heater, and adjusts the lattice constant of the FBG by heating the optical fiber 100. Further, for example, the adjustment unit 60 is an actuator, and adjusts the lattice constant of the FBG by applying an external force to the optical fiber 100.
 [効果]
 以上のように、本実施の形態に係る光結合器によれば、入力光130の波長に応じてFBG(回折光学素子10)の格子定数を調整することができる。したがって、結合できる入力光の波長の範囲を広げることができ、光結合器の汎用性を向上させることができる。
[effect]
As described above, according to the optical coupler according to the present embodiment, the lattice constant of the FBG (diffractive optical element 10) can be adjusted according to the wavelength of the input light 130. Therefore, the range of wavelengths of input light that can be coupled can be expanded, and the versatility of the optical coupler can be improved.
 (他の実施の形態)
 以上、本発明の1つまたは複数の態様に係る光結合器について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の1つまたは複数の態様の範囲内に含まれてもよい。
(Other embodiments)
Although the optical coupler according to one or more aspects of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, one or more of the present invention may be applied to various modifications that can be conceived by those skilled in the art, or forms constructed by combining components in different embodiments. It may be included within the scope of the embodiments.
 例えば、実施の形態2における集光素子と実施の形態4における分散素子との両方が光結合器に含まれてもよい。これにより、さらなる結合効率の向上を期待することができる。 For example, both the light collecting element in the second embodiment and the dispersion element in the fourth embodiment may be included in the optical coupler. Thereby, further improvement in coupling efficiency can be expected.
 また、実施の形態4における分散素子と実施の形態5における位相補償部との両方が光結合器に含まれてもよい。これにより、入力光が広帯域なパルス光であっても、波形の変化を抑えながら入力光を光導波路に結合することができる。 Further, both the dispersion element in the fourth embodiment and the phase compensation unit in the fifth embodiment may be included in the optical coupler. Thereby, even if the input light is a broadband pulse light, the input light can be coupled to the optical waveguide while suppressing a change in waveform.
 なお、上記各実施の形態では、光導波路が光ファイバである場合について説明したが、光導波路は光ファイバに限定されない。例えば、光導波路は、シリコンフォトニクスによって形成されるシリコン導波路であってもよい。この場合、光導波路のクラッドは空気層によって代替されてもよい。 In each of the above embodiments, the case where the optical waveguide is an optical fiber has been described. However, the optical waveguide is not limited to an optical fiber. For example, the optical waveguide may be a silicon waveguide formed by silicon photonics. In this case, the cladding of the optical waveguide may be replaced by an air layer.
 なお、上記各実施の形態では、回折光学素子はFBGであったが、これに限定されない。例えば、回折光学素子は、ホログラムによって実現されてもよい。以下に、回折光学素子にホログラムを適用できることについて説明する。 In each of the above embodiments, the diffractive optical element is FBG. However, the present invention is not limited to this. For example, the diffractive optical element may be realized by a hologram. Hereinafter, the fact that a hologram can be applied to a diffractive optical element will be described.
 参照波Ain(x,y,z)と物体波A0(x,y,z)との重ね合わせ(干渉)によって形成されたホログラムの振幅透過率H(x,y,z)は、以下の式3で表すことができる。 The amplitude transmittance H (x, y, z) of the hologram formed by the superposition (interference) of the reference wave A in (x, y, z) and the object wave A 0 (x, y, z) is This can be expressed by the following formula 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、γは定数を表す。この参照波Ain(x,y,z)を再生波として用いた場合、ホログラムからの透過波Aout(x,y,z)は、以下の式4で表される。 Here, γ represents a constant. When this reference wave A in (x, y, z) is used as a reproduction wave, the transmitted wave A out (x, y, z) from the hologram is expressed by the following Expression 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式4において、第1項(A1)は直進光を表し、第2項(A2)は直接像(虚像)を表し、第3項(A3)は共役像(実像)を表す。したがって、参照波Ain(x,y,z)及び物体波A0(x,y,z)を適切に設定することで、再生波Ain(x,y,z)の進行方向に対して垂直な方向に直接像及び共役像を生成するホログラムを形成することができる。つまり、コアの内部に形成されたホログラムは、コアの伝搬軸に対して垂直な方向から入力光(再生波)が入射したときに、当該伝搬軸に対して平行な方向に進行する回折光(直接像及び共役像)を出射することができる。 In Equation 4, the first term (A1) represents straight light, the second term (A2) represents a direct image (virtual image), and the third term (A3) represents a conjugate image (real image). Therefore, by appropriately setting the reference wave A in (x, y, z) and the object wave A 0 (x, y, z), the traveling direction of the reproduced wave A in (x, y, z) Holograms can be formed that produce images and conjugate images directly in the vertical direction. In other words, the hologram formed inside the core is diffracted light that travels in a direction parallel to the propagation axis when input light (reproduced wave) is incident from a direction perpendicular to the propagation axis of the core. A direct image and a conjugate image) can be emitted.
 なお、上記実施の形態2では、光結合器が集光素子を備えていたが必ずしも集光素子を備えなくてもよい。例えば、入力光が線状光である場合には入力光を集光する必要はない。また、クラッドでも入力光を集光することができ、入力光が線状光でない場合に集光素子がないときでも光結合効率を向上させることができる。 In the second embodiment, the optical coupler includes the light condensing element, but the light condensing element is not necessarily provided. For example, when the input light is linear light, it is not necessary to collect the input light. Also, the clad can collect the input light, and when the input light is not linear light, the optical coupling efficiency can be improved even when there is no condensing element.
 なお、上記実施の形態3では、コアの端面に反射部が設けられていたが、反射部は必ずしもコアの端面に設けられなくてもよい。例えば、反射部は、コアの内部に形成されたFBGであってもよい。この場合でも、コアを伝搬してきた回折光を逆向きに反射することができる。また、この反射部と同様の効果は2つの光導波路(光ファイバ)を1つの光導波路(光ファイバ)に結合する光結合器を用いても実現することができる。 In Embodiment 3 described above, the reflective portion is provided on the end surface of the core, but the reflective portion is not necessarily provided on the end surface of the core. For example, the reflecting portion may be an FBG formed inside the core. Even in this case, the diffracted light propagating through the core can be reflected in the opposite direction. The same effect as that of the reflecting portion can be realized by using an optical coupler that couples two optical waveguides (optical fibers) to one optical waveguide (optical fiber).
 なお、上記実施の形態3のシミュレーション結果(図8A)からも明らかなように、回折光学素子が形成されるコアの直径が増加すれば光結合効率が増加する。そこで、コアの回折光学素子が形成されている部分(第1部分という)の直径を、コアの回折光学素子が形成されていない部分(第2部分という)の直径よりも大きくしてもよい。この場合、第1部分と第2部分との間にテーパ状の結合部分が形成されてもよい。これにより、光結合効率をさらに向上させることができる。 As is clear from the simulation result of the third embodiment (FIG. 8A), the optical coupling efficiency increases as the diameter of the core on which the diffractive optical element is formed increases. Therefore, the diameter of the portion where the core diffractive optical element is formed (referred to as the first portion) may be larger than the diameter of the portion where the core diffractive optical element is not formed (referred to as the second portion). In this case, a tapered coupling portion may be formed between the first portion and the second portion. Thereby, the optical coupling efficiency can be further improved.
 本発明の一態様に係る光結合器は、入力光を光ファイバなどに結合するための光結合器として利用することができる。 The optical coupler according to one embodiment of the present invention can be used as an optical coupler for coupling input light to an optical fiber or the like.
 10、11 回折光学素子
 20 集光素子
 30 反射部
 40 分散素子
 50 位相補償部
 51 光サーキュレータ
 52 FBG
 60 調整部
 100、101、102 光ファイバ
 110 コア
 120 クラッド
 130、131a、132a 入力光
 131b 線状光
 132b 分散光
 140a、140b 回折光
10, 11 Diffractive optical element 20 Condensing element 30 Reflecting part 40 Dispersing element 50 Phase compensation part 51 Optical circulator 52 FBG
60 Adjustment unit 100, 101, 102 Optical fiber 110 Core 120 Clad 130, 131a, 132a Input light 131b Linear light 132b Dispersed light 140a, 140b Diffracted light

Claims (13)

  1.  入力光を光導波路に結合する光結合器であって、
     前記光導波路のコアの内部に形成された回折光学機能を有する領域を備え、
     前記入力光は、前記光導波路の伝搬軸に垂直な方向から前記回折光学機能を有する領域に入射する、
     光結合器。
    An optical coupler that couples input light to an optical waveguide,
    A region having a diffractive optical function formed inside the core of the optical waveguide,
    The input light enters the region having the diffractive optical function from a direction perpendicular to the propagation axis of the optical waveguide.
    Optical coupler.
  2.  前記回折光学機能を有する領域は、前記光導波路の伝搬軸に垂直な方向から入射する前記入力光に対してブラッグ条件(Bragg condition)を満たす、
     請求項1に記載の光結合器。
    The region having the diffractive optical function satisfies a Bragg condition for the input light incident from a direction perpendicular to the propagation axis of the optical waveguide.
    The optical coupler according to claim 1.
  3.  前記光導波路の伝搬軸に垂直な方向は、前記光導波路の伝搬軸に厳密に垂直な方向から予め定められた角度範囲内の方向であり、
     前記予め定められた角度範囲は、結合波理論(coupled-wave theory)において回折効率が0.5以上となる範囲である、
     請求項1又は2に記載の光結合器。
    The direction perpendicular to the propagation axis of the optical waveguide is a direction within a predetermined angle range from a direction strictly perpendicular to the propagation axis of the optical waveguide,
    The predetermined angle range is a range where the diffraction efficiency is 0.5 or more in coupled-wave theory.
    The optical coupler according to claim 1 or 2.
  4.  前記回折光学機能を有する領域は、ファイバブラッググレーティングである、
     請求項1~3のいずれか1項に記載の光結合器。
    The region having the diffractive optical function is a fiber Bragg grating,
    The optical coupler according to any one of claims 1 to 3.
  5.  前記ファイバブラッググレーティングの格子定数は前記入力光の波長と一致する、
     請求項4に記載の光結合器。
    The lattice constant of the fiber Bragg grating matches the wavelength of the input light.
    The optical coupler according to claim 4.
  6.  前記光結合器は、さらに、
     前記伝搬軸に垂直な方向から前記回折光学機能を有する領域に前記入力光を入射する入力部を備える、
     請求項1~5のいずれか1項に記載の光結合器。
    The optical coupler further includes:
    An input unit that inputs the input light to a region having the diffractive optical function from a direction perpendicular to the propagation axis;
    The optical coupler according to any one of claims 1 to 5.
  7.  前記入力部は、前記伝搬軸に平行な方向に延びる線状に前記入力光を集光する集光素子を含む、
     請求項6に記載の光結合器。
    The input unit includes a condensing element that condenses the input light in a linear shape extending in a direction parallel to the propagation axis.
    The optical coupler according to claim 6.
  8.  前記入力部は、前記入力光を前記伝搬軸に平行な方向に分散する分散素子を含み、
     前記回折光学機能を有する領域は、ファイバブラッググレーティングであり、
     前記ファイバブラッググレーティングの格子定数は前記入力光の波長と一致し、
     前記伝搬軸に平行な方向において、前記ファイバブラッググレーティングの前記格子定数の分布は、分散された前記入力光の波長の分布に対応する、
     請求項6又は7に記載の光結合器。
    The input unit includes a dispersive element that disperses the input light in a direction parallel to the propagation axis,
    The region having the diffractive optical function is a fiber Bragg grating,
    The lattice constant of the fiber Bragg grating matches the wavelength of the input light,
    In the direction parallel to the propagation axis, the lattice constant distribution of the fiber Bragg grating corresponds to the wavelength distribution of the dispersed input light,
    The optical coupler according to claim 6 or 7.
  9.  前記光結合器は、さらに、
     前記入力光の波長に応じて前記ファイバブラッググレーティングの格子定数を調整する調整部を備える、
     請求項4又は5に記載の光結合器。
    The optical coupler further includes:
    An adjustment unit for adjusting a lattice constant of the fiber Bragg grating according to the wavelength of the input light;
    The optical coupler according to claim 4 or 5.
  10.  前記光結合器は、さらに、
     前記回折光学機能を有する領域によって前記伝搬軸に平行な方向の2つの向きに回折された光の一方を逆向きに反射する反射部を備える、
     請求項1~9のいずれか1項に記載の光結合器。
    The optical coupler further includes:
    A reflection unit configured to reflect one of the lights diffracted in two directions parallel to the propagation axis by the region having the diffractive optical function in opposite directions;
    The optical coupler according to any one of claims 1 to 9.
  11.  前記光結合器は、さらに、
     前記回折光学機能を有する領域によって前記コアに結合された光の位相を補償する位相補償部を備える、
     請求項1~10のいずれか1項に記載の光結合器。
    The optical coupler further includes:
    A phase compensator for compensating the phase of light coupled to the core by the region having the diffractive optical function;
    The optical coupler according to any one of claims 1 to 10.
  12.  前記光導波路は、光ファイバである、
     請求項1~11のいずれか1項に記載の光結合器。
    The optical waveguide is an optical fiber.
    The optical coupler according to any one of claims 1 to 11.
  13.  入力光を光導波路に結合する光結合方法であって、
     前記光導波路の伝搬軸に垂直な方向から、前記光導波路のコアの内部に形成された回折光学機能を有する領域に光を入力する入力ステップと、
     前記回折光学機能を有する領域に入力された光を回折することにより前記光導波路に光を結合する回折ステップと、を含む、
     光結合方法。
    An optical coupling method for coupling input light to an optical waveguide,
    An input step of inputting light from a direction perpendicular to the propagation axis of the optical waveguide to a region having a diffractive optical function formed inside the core of the optical waveguide;
    A diffraction step of coupling light into the optical waveguide by diffracting light input to the region having the diffractive optical function,
    Optical coupling method.
PCT/JP2018/001721 2017-02-14 2018-01-22 Optical coupler and optical coupling method WO2018150813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568058A JP7141708B2 (en) 2017-02-14 2018-01-22 Optical coupler and optical coupling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025390 2017-02-14
JP2017-025390 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018150813A1 true WO2018150813A1 (en) 2018-08-23

Family

ID=63169854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001721 WO2018150813A1 (en) 2017-02-14 2018-01-22 Optical coupler and optical coupling method

Country Status (2)

Country Link
JP (1) JP7141708B2 (en)
WO (1) WO2018150813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929778A (en) * 2020-07-20 2020-11-13 西安立芯光电科技有限公司 Semiconductor laser beam combination technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109011A (en) * 1985-11-06 1987-05-20 エイ・ティ・アンド・ティ・コーポレーション Coupling unit for single mode fiber and communication equipment having the same
JPH04288510A (en) * 1989-12-26 1992-10-13 United Technol Corp <Utc> Structure of optical waveguide having bragg diffraction grating provided therein for changing optical direction
JPH11284263A (en) * 1998-01-30 1999-10-15 Hitachi Cable Ltd Ultra wide band wavelength dispersion compensation device and optical communication system using the same
JP2005241712A (en) * 2004-02-24 2005-09-08 Fujitsu Ltd Optical multiplexing method, optical multiplexer, and optical amplifier using the same
US20060013527A1 (en) * 2004-07-15 2006-01-19 Yannick Morel Optical distribution system for sensors
US7289700B1 (en) * 2006-05-19 2007-10-30 United States Of America As Represented By The Secretary Of The Navy Blazed grating optical fiber polarizing coupler
JP2012098513A (en) * 2010-11-02 2012-05-24 Kyoto Institute Of Technology Wavelength selection filter, and filter device and laser device provided with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832156A (en) * 1996-10-31 1998-11-03 Lucent Technologies Inc. Article comprising an optical waveguide tap
SE514512C2 (en) 1999-07-02 2001-03-05 Proximion Fiber Optics Ab Method and apparatus for coupling light
AUPQ165599A0 (en) 1999-07-15 1999-08-05 University Of Sydney, The Optical processing method and apparatus and products thereof
CN100345013C (en) 2004-11-19 2007-10-24 东南大学 Processing method for position and light of built-in tilt Bragg raster containing optical waveguide
US20150358081A1 (en) 2014-06-05 2015-12-10 I Shou University Optical fiber communication method and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109011A (en) * 1985-11-06 1987-05-20 エイ・ティ・アンド・ティ・コーポレーション Coupling unit for single mode fiber and communication equipment having the same
JPH04288510A (en) * 1989-12-26 1992-10-13 United Technol Corp <Utc> Structure of optical waveguide having bragg diffraction grating provided therein for changing optical direction
JPH11284263A (en) * 1998-01-30 1999-10-15 Hitachi Cable Ltd Ultra wide band wavelength dispersion compensation device and optical communication system using the same
JP2005241712A (en) * 2004-02-24 2005-09-08 Fujitsu Ltd Optical multiplexing method, optical multiplexer, and optical amplifier using the same
US20060013527A1 (en) * 2004-07-15 2006-01-19 Yannick Morel Optical distribution system for sensors
US7289700B1 (en) * 2006-05-19 2007-10-30 United States Of America As Represented By The Secretary Of The Navy Blazed grating optical fiber polarizing coupler
JP2012098513A (en) * 2010-11-02 2012-05-24 Kyoto Institute Of Technology Wavelength selection filter, and filter device and laser device provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929778A (en) * 2020-07-20 2020-11-13 西安立芯光电科技有限公司 Semiconductor laser beam combination technology

Also Published As

Publication number Publication date
JPWO2018150813A1 (en) 2020-01-23
JP7141708B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
Thomas et al. Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique
CN103999303B (en) Integrated sub-wave length grating system
JP6829446B2 (en) Optical circuits and optics
US10156680B2 (en) Forming an optical grating with an apparatus providing an adjustable interference pattern
US20070230861A1 (en) Laser Inscribed Structures
US6968096B2 (en) Diffraction device using photonic crystal
JP6018303B2 (en) Method for optimizing multi-core optical fiber and device using the same
JP4712004B2 (en) Small diameter light production equipment
CA2576969C (en) Broadband fiber optic tap
JP4137829B2 (en) Chromatic dispersion compensator
WO2018150813A1 (en) Optical coupler and optical coupling method
US20230194775A1 (en) Fiber bragg grating sensor in polymer-coated ultra-thin optical fibers and method for producing same
US9739956B2 (en) Variable optical attenuator
JP3612780B2 (en) Optical filter
JP3955703B2 (en) Fabrication method of fiber grating
US7305155B2 (en) Optical element and wavelength separator using the same
JP3334417B2 (en) Method and apparatus for producing optical waveguide type diffraction grating
Li et al. Multilayer dielectric cylindrical mirrors based on omnidirectional reflection from a one-dimensional photonic crystal
JP3555888B2 (en) Self-guided optical circuit
JP2001183536A (en) Method for forming grating in optical fiber
Xin Silicon-Based Polarization-Insensitive Optical Antenna Design and Experimental Characterization of Optical Phased Arrays
JP4437951B2 (en) Optical fiber grating manufacturing apparatus and manufacturing method
JP2005284240A (en) Photonic crystal waveguide, homogeneous medium waveguide, and optical element
WO2008053714A1 (en) Optical connection method of photonic crystal fiber using double phase conjugate mirror
KR101567985B1 (en) optical fiber having dual core and laser machining apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754567

Country of ref document: EP

Kind code of ref document: A1