WO2018150294A1 - Display panel, information processing device and method for producing display panel - Google Patents
Display panel, information processing device and method for producing display panel Download PDFInfo
- Publication number
- WO2018150294A1 WO2018150294A1 PCT/IB2018/050746 IB2018050746W WO2018150294A1 WO 2018150294 A1 WO2018150294 A1 WO 2018150294A1 IB 2018050746 W IB2018050746 W IB 2018050746W WO 2018150294 A1 WO2018150294 A1 WO 2018150294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- film
- light
- pixel
- display panel
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 238000001228 spectrum Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 101
- 238000000034 method Methods 0.000 claims description 97
- 238000002834 transmittance Methods 0.000 claims description 30
- 230000003287 optical effect Effects 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 20
- 238000001579 optical reflectometry Methods 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 956
- 230000006870 function Effects 0.000 description 155
- 239000000463 material Substances 0.000 description 153
- 239000010410 layer Substances 0.000 description 131
- 239000004065 semiconductor Substances 0.000 description 97
- 239000000758 substrate Substances 0.000 description 97
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 38
- 229910052738 indium Inorganic materials 0.000 description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 37
- 229910052710 silicon Inorganic materials 0.000 description 37
- 239000010703 silicon Substances 0.000 description 37
- 239000011701 zinc Substances 0.000 description 35
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 32
- 239000004973 liquid crystal related substance Substances 0.000 description 32
- 238000010586 diagram Methods 0.000 description 30
- 229910052760 oxygen Inorganic materials 0.000 description 30
- 230000008569 process Effects 0.000 description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000001301 oxygen Substances 0.000 description 28
- 238000012545 processing Methods 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 239000003990 capacitor Substances 0.000 description 21
- 239000004020 conductor Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- 238000004891 communication Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 229910044991 metal oxide Inorganic materials 0.000 description 19
- 239000011787 zinc oxide Substances 0.000 description 19
- 238000005520 cutting process Methods 0.000 description 17
- 229910052733 gallium Inorganic materials 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 16
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 229920001721 polyimide Polymers 0.000 description 14
- 239000004642 Polyimide Substances 0.000 description 13
- 229910052581 Si3N4 Inorganic materials 0.000 description 13
- 238000004364 calculation method Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000012535 impurity Substances 0.000 description 13
- 239000002346 layers by function Substances 0.000 description 13
- 239000011368 organic material Substances 0.000 description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 13
- 229910052721 tungsten Inorganic materials 0.000 description 13
- 239000010937 tungsten Substances 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 12
- 239000002131 composite material Substances 0.000 description 12
- 229910010272 inorganic material Inorganic materials 0.000 description 12
- 239000011147 inorganic material Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 229910052718 tin Inorganic materials 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- 239000004332 silver Substances 0.000 description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 239000004925 Acrylic resin Substances 0.000 description 9
- 229920000178 Acrylic resin Polymers 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 150000004706 metal oxides Chemical class 0.000 description 9
- 239000003566 sealing material Substances 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000004040 coloring Methods 0.000 description 8
- 229910021389 graphene Inorganic materials 0.000 description 8
- 239000002648 laminated material Substances 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 238000004380 ashing Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910003437 indium oxide Inorganic materials 0.000 description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 239000002070 nanowire Substances 0.000 description 6
- -1 or the like) Polymers 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002096 quantum dot Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000005341 toughened glass Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 102100027310 Bromodomain adjacent to zinc finger domain protein 1A Human genes 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 101000937778 Homo sapiens Bromodomain adjacent to zinc finger domain protein 1A Proteins 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 241001422033 Thestylus Species 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000011156 metal matrix composite Substances 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229910016006 MoSi Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 229910008813 Sn—Si Inorganic materials 0.000 description 1
- 229910008839 Sn—Ti Inorganic materials 0.000 description 1
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
- H05B33/24—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/876—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
Definitions
- One embodiment of the present invention relates to a display panel, an information processing device, or a method for manufacturing a display panel.
- one embodiment of the present invention is not limited to the above technical field.
- the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
- one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, a driving method thereof, or a manufacturing method thereof, Can be cited as an example.
- a light-emitting element using a microcavity method is advantageous in realizing full color.
- it is necessary to obtain an optimum emission spectrum peak wavelength and a sharp spectrum.
- an element structure in which only light having a desired wavelength is emitted from each light-emitting element is provided.
- An object of the present invention is to provide a light-emitting device and a lighting device including a light-emitting element with good color purity and high light extraction efficiency. Furthermore, it aims at reducing the number of processes and cost.
- An object of one embodiment of the present invention is to provide a novel display panel that is highly convenient or reliable. Another object is to provide a novel display device that is highly convenient or reliable. Another object is to provide a novel input / output device that is highly convenient or reliable. Another object is to provide a novel information processing device that is highly convenient or reliable. Another object is to provide a novel display panel, a novel display device, a novel input / output device, a novel information processing device, or a novel semiconductor device.
- the display panel of one embodiment of the present invention includes a first pixel and a second pixel.
- Each of the first pixel and the second pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film.
- the first conductive film has semi-light transmittance and semi-light reflectivity
- the second conductive film has light reflectivity.
- the first conductive film has light reflectivity
- the second conductive film has semi-light transmittance and semi-light reflectivity.
- the third conductive film is light transmissive, the first conductive film is formed so as to sandwich the third conductive film between the second conductive film, and the light emitting layer is formed of the second conductive film.
- the first pixel has a first distance between the first conductive film and the second conductive film, and is formed so as to be sandwiched between the film and the third conductive film.
- the pixel has a second distance between the first conductive film and the second conductive film, the second distance is equal to the first distance, and the first pixel has a light emission maximum wavelength.
- Light having a spectrum having a wavelength in a wavelength region of 630 nm to 670 nm is emitted, and the second pixel emits light having a spectrum having a maximum emission wavelength in a wavelength region of 430 nm to 460 nm.
- the above structure further includes a third pixel.
- the third pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film. Is provided with a third distance between the first conductive film and the second conductive film, the third distance is different from the first distance, and the third pixel emits green light. preferable.
- Each of the above structures preferably further includes a fourth conductive film, and the fourth conductive film preferably has light transmittance.
- the fourth conductive film is disposed so as to be sandwiched between the light emitting layer and the third conductive film.
- the fourth conductive film is formed of the light emitting layer.
- the third conductive film are preferably arranged so as to be sandwiched between them.
- the third conductive film has a first film thickness
- the second pixel the third conductive film has a second film thickness.
- the fourth conductive film has a third film thickness.
- the fourth conductive film has a fourth film thickness, and the first film thickness is equal to the second film thickness.
- the third film thickness is preferably equal to the fourth film thickness.
- the third conductive film has a lower etching rate in one etching atmosphere than the fourth conductive film.
- the third conductive film has a lower etching rate when one solution is used than the fourth conductive film.
- An information processing device includes one or more of a keyboard, a hardware button, a pointing device, a touch sensor, an illuminance sensor, an imaging device, a voice input device, a line-of-sight input device, and a posture detection device described above.
- a display panel includes one or more of a keyboard, a hardware button, a pointing device, a touch sensor, an illuminance sensor, an imaging device, a voice input device, a line-of-sight input device, and a posture detection device described above.
- a method for manufacturing a display panel of one embodiment of the present invention includes a step of forming a first conductive film, a step of forming a second conductive film over the first conductive film, and a region above the second conductive film.
- a mask having a step of forming a third conductive film, a first region above the third conductive film, and a second region having a thickness smaller than the thickness of the first region.
- the terms “source” and “drain” of a transistor interchange with each other depending on the polarity of the transistor or the level of potential applied to each terminal.
- a terminal to which a low potential is applied is called a source
- a terminal to which a high potential is applied is called a drain
- a terminal to which a high potential is applied is called a source.
- the connection relationship between transistors may be described on the assumption that the source and the drain are fixed. However, the names of the source and the drain are actually switched according to the above-described potential relationship. .
- the source of a transistor means a source region that is part of a semiconductor film functioning as an active layer or a source electrode connected to the semiconductor film.
- a drain of a transistor means a drain region that is part of the semiconductor film or a drain electrode connected to the semiconductor film.
- the gate means a gate electrode.
- the state where the transistors are connected in series means, for example, a state where only one of the source and the drain of the first transistor is connected to only one of the source and the drain of the second transistor.
- the state where the transistors are connected in parallel means that one of the source and the drain of the first transistor is connected to one of the source and the drain of the second transistor, and the other of the source and the drain of the first transistor is connected. It means a state of being connected to the other of the source and the drain of the second transistor.
- connection means an electrical connection, and corresponds to a state where current, voltage, or potential can be supplied or transmitted. Therefore, the connected state does not necessarily indicate a directly connected state, and a wiring, a resistor, a diode, a transistor, or the like is provided so that current, voltage, or potential can be supplied or transmitted.
- the state of being indirectly connected through a circuit element is also included in the category.
- connection includes a case where one conductive film has functions of a plurality of components.
- one of a first electrode and a second electrode of a transistor refers to a source electrode, and the other refers to a drain electrode.
- a novel display panel that is highly convenient or reliable can be provided.
- a novel display device that is highly convenient or reliable can be provided.
- a novel input / output device that is highly convenient or reliable can be provided.
- a novel information processing device that is highly convenient or reliable can be provided.
- a novel display panel, a novel display device, a novel input / output device, a novel information processing device, or a novel semiconductor device can be provided.
- 4A and 4B are a top view and cross-sectional views illustrating a pixel and a subpixel of a display panel according to Embodiment.
- 4A and 4B are a top view and cross-sectional views illustrating a pixel and a subpixel of a display panel according to Embodiment.
- 4A and 4B are a top view and a schematic view illustrating a structure of a display panel according to an embodiment.
- 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 10 is a top view illustrating a structure of a pixel of a display panel according to an embodiment.
- FIG. 6 is a circuit diagram illustrating a pixel circuit of a display panel according to an embodiment.
- 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 8A and 8B are cross-sectional views illustrating a method for manufacturing a display panel according to Embodiment.
- 8A and 8B are cross-sectional views illustrating a method for manufacturing a display panel according to Embodiment. 4A and 4B illustrate a multi-tone mask according to an embodiment.
- FIG. 8A and 8B are cross-sectional views illustrating a method for manufacturing a display panel according to Embodiment.
- 4A and 4B are a top view and cross-sectional views illustrating a pixel and a subpixel of a display panel according to Embodiment.
- 4A and 4B are a schematic view and a cross-sectional view illustrating a structure of a display panel according to an embodiment.
- FIG. 9 is a block diagram illustrating a structure of a display device according to an embodiment.
- 4A and 4B are a block diagram illustrating a structure of a display panel according to Embodiment and an external view thereof;
- FIG. 3 is a block diagram illustrating a structure of an input / output device according to an embodiment.
- FIG. 4A and 4B are a top view and a projection view illustrating the structure of the input / output device according to the embodiment.
- FIG. 6 illustrates a structure of an input / output device according to an embodiment.
- FIG. 9 is a block diagram illustrating a structure of a display panel of a display device according to an embodiment.
- FIG. 9 is a block diagram illustrating a structure of a display panel of a display device according to an embodiment.
- FIG. 10 is a top view illustrating a structure of a pixel of a display panel according to an embodiment.
- 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 4 is a cross-sectional view illustrating a structure of a display panel according to Embodiment.
- FIG. 10 is a top view illustrating a structure of a pixel of a display panel according to an embodiment.
- FIG. 6 is a circuit diagram illustrating a pixel circuit of a display panel according to an embodiment.
- FIG. 6 is a schematic diagram illustrating the shape of a light reflection film of a display panel according to an embodiment.
- 2A and 2B are a block diagram and a schematic diagram illustrating a structure of an information processing device according to an embodiment.
- FIG. 6 is a flowchart illustrating a method for driving the information processing apparatus according to the embodiment.
- 6A and 6B are a flowchart and a timing chart illustrating a method for driving an information processing apparatus according to an embodiment.
- 2A and 2B illustrate a structure of an information processing device according to an embodiment.
- 2A and 2B illustrate a structure of an information processing device according to an embodiment.
- the figure explaining the refractive index which concerns on an Example The figure explaining the sample which concerns on an Example, and light intensity.
- the display panel of one embodiment of the present invention includes a plurality of pixels.
- the plurality of pixels include self-luminous display elements that display colors having different hues.
- the plurality of pixels include minute optical resonators (also referred to as microcavities).
- FIG. 1A and 1B are a top view and a cross-sectional view illustrating a pixel and a subpixel of a display panel of one embodiment of the present invention, respectively.
- FIG. 1A is a top view of a pixel of a display panel of one embodiment of the present invention
- FIG. 1B is a cross-sectional view taken along line Y3-Y4 in FIG.
- 2A and 2B are a top view and a cross-sectional view illustrating a pixel and a subpixel of a display panel of one embodiment of the present invention, respectively.
- 2A is a top view of a pixel of a display panel of one embodiment of the present invention
- FIG. 2B is a cross-sectional view taken along line Y3-Y4 in FIG.
- FIG. 3 illustrates a structure of a display panel of one embodiment of the present invention.
- 3A is a top view of the display panel
- FIG. 3B is a top view illustrating part of the pixels of the display panel illustrated in FIG. 3A.
- FIG. 3C is a schematic diagram illustrating a cross-sectional structure of the display panel illustrated in FIG.
- FIG. 6 is a top view illustrating a structure of a pixel of the display panel illustrated in FIG.
- 4 and 5 are cross-sectional views illustrating the structure of the display panel.
- 4A is a cross-sectional view taken along the cutting line X1-X2, the cutting line X3-X4, and the cutting line X5-X6 in FIG. 6, and FIG. 4B and FIG. Both are diagrams for explaining a part of FIG.
- FIG. 5 is a cross-sectional view taken along a cutting line X7-X8 in FIG. 6 and a cutting line X9-X10 in FIG.
- FIG. 7 is a circuit diagram illustrating a structure of a pixel circuit included in the display panel of one embodiment of the present invention.
- a variable having an integer value of 1 or more may be used for the sign.
- (p) including a variable p that takes an integer value of 1 or more may be used as a part of a code that identifies any of the maximum p components.
- a variable m that takes an integer value of 1 or more and (m, n) including a variable n may be used as part of a code that identifies any of the maximum m ⁇ n components.
- a display panel 700 described in this embodiment includes a plurality of pixels.
- the plurality of pixels have a function of displaying colors having different hues.
- hue colors that cannot be displayed by the pixels can be displayed by additive color mixing.
- each pixel can be referred to as a sub-pixel.
- a plurality of sub-pixels can be referred to as a pixel.
- the pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2) are all regarded as subpixels, and these are regarded as a set and are rephrased as a pixel 703 (i, k). (See FIG. 1A).
- the pixel 702 (i, j) that displays red, the pixel 702 (i, j + 1) that displays green, and the pixel 702 (i, j + 2) that displays blue are regarded as sub-pixels, and are combined into one set.
- And can be used for the pixel 703 (i, k).
- a sub-pixel for displaying white can be used for the pixel in addition to the above set.
- the pixel 702 (i, j) includes the display element 550 (i, j) (see FIG. 1B).
- the display element 550 (i, j) has a function of emitting light.
- an organic EL element can be used for the display element 550 (i, j).
- the display element 550 (i, j) includes a light-emitting layer 553, an electrode 551 (i, j), and an electrode 552.
- the electrode 551 (i, j) is formed using a light-transmitting material
- the electrode 552 is formed using a light-reflecting material.
- the light-emitting layer 553 is a layer containing a light-emitting material.
- the pixel 702 (i, j) includes a red colored film CF1 (R), the pixel 702 (i, j + 1) includes a green colored film CF1 (G), and the pixel 702 ( i, j + 2) includes a blue colored film CF1 (B).
- a conductive film 551_0 (i, j) having semi-light transmittance and semi-light reflectivity and a conductive film 551_1 (i, j) having light transmittance are formed using an electrode 551 ( i, j).
- the light-transmitting conductive film 551_1 (i, j) includes a region sandwiched between the light-transmitting layer 553 and the conductive film 551_0 (i, j) having semi-light transmitting and semi-light reflecting properties.
- a stacked film of the light-emitting layer 553 and the light-transmitting conductive film 551_1 (i, j) can be regarded as a light-transmitting film.
- the pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2) have a microresonator structure.
- a micro-optical resonator structure is a light-transmitting film in which a film having a predetermined optical distance in the thickness direction is sandwiched between a light-transmitting film and a light-reflecting film. Refers to a laminated structure.
- the light-transmitting conductive film 551_1 (i, j) may have a stacked structure of two or more different light transmittances.
- FIG. 1B shows red light R01 and R02, green light G01 and G02, and blue light B01 and B02. Either light is emitted from the light emitting layer 553. D0 and d1 are also shown. Each of d0 and d1 is a distance along the film thickness direction of the conductive film 551_0 between the conductive film 551_0 (i, j) and the electrode 552.
- the light R02, the light G02, and the light B02 are reflected at an interface between the conductive film 551_0 (i, j) having semi-light transmittance and semi-light reflectivity and the conductive film 551_1 (i, j) having light transmittance. .
- the light R02, the light G02, and the light B02 are reflected at the interface between the light-emitting layer 553 and the electrode 552 having light reflectivity.
- the light R01 and the light R02 interfere and strengthen each other.
- the light G01 and the light G02 interfere and strengthen each other.
- the light B01 and the light B02 interfere and strengthen each other.
- the pixel 702 (i, j) and the pixel 702 (i, j + 2) have a distance d0. Further, the distance d0 at the pixel 702 (i, j) is different from the distance d1 at the pixel 702 (i, j + 1). In other words, the distance between the electrode 552 and the conductive film 551_0 (i, j) in the pixel 702 (i, j), and the distance between the electrode 552 and the conductive film 551_0 (i, j + 2) in the pixel 702 (i, j + 2). Are approximately equal.
- the distance between the electrode 552 and the conductive film 551_0 (i, j) in the pixel 702 (i, j) and the distance between the electrode 552 and the conductive film 551_0 (i, j + 1) in the pixel 702 (i, j + 1) , Different.
- two distances being substantially equal means that the ratio of one of the two distances to the other is 0.8 or more and 1.2 or less.
- the distance at the pixel 702 (i, j) The optical distance differs between d0 and the distance d0 at the pixel 702 (i, j + 2).
- an effective minute optical resonator structure is formed by determining the distance d0 in consideration of the refractive index.
- a film having semi-light transmissivity and semi-light reflectivity has a function of transmitting part of visible light and a function of reflecting another part.
- a metal film that is thin enough to transmit light can be used as a film having semi-light-transmitting properties and semi-light-reflecting properties.
- the minute optical resonator structure can be provided in the pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2).
- the pixel 702 (i, j) can increase the color purity of red and make the display vivid.
- the pixel 702 (i, j + 1) can increase the color purity of green and make the display vivid.
- the pixel 702 (i, j + 2) can increase the color purity of blue and make the display vivid.
- light with a predetermined wavelength can be extracted more efficiently than other light.
- light with a narrow half-width of the spectrum can be extracted.
- brightly colored light can be extracted.
- a stacked structure in which the conductive film 551_2 (i, j) is provided in contact with the conductive film 551_1 (i, j) may be used (see FIG. 2B).
- the conductive film 551_1 (i, j) and the conductive film 551_2 (i, j) are preferably different materials.
- the conductive film 551_1 (i, j) and the conductive film 551_2 (i, j) may be formed of the same material. The same applies to the conductive film 551_1 (i, j + 2).
- the provided conductive film 551_2 (i, j) can be used for the electrode 551 (i, j). The same applies to the display element 550 (i, j + 2).
- the light-transmitting conductive film 551_1 (i, j) includes a region sandwiched between the light-transmitting layer 553 and the conductive film 551_0 (i, j) having semi-light transmitting and semi-light reflecting properties.
- the light-transmitting conductive film 551_2 (i, j) includes a region sandwiched between the light-transmitting conductive film 551_1 (i, j) and the light-emitting layer 553.
- a stacked film of the light-emitting layer 553, the light-transmitting conductive film 551_1 (i, j), and the light-transmitting conductive film 551_2 (i, j) can be regarded as a light-transmitting film. .
- a conductive film 551_0 (i, j + 1) having a semi-light transmitting property and a semi-light reflecting property and a conductive film 551_1 (i, j + 1) having a light transmitting property are connected to an electrode 551 ( i, j + 1).
- the light-transmitting conductive film 551_1 (i, j + 1) includes a region sandwiched between the light-transmitting layer 553_0 (i, i + 1) and the light-emitting layer 553.
- the stacked film of the light-emitting layer 553 and the light-transmitting conductive film 551_1 (i, j + 1) can be regarded as a light-transmitting film.
- the electrode 551 (i, j) has a stacked structure like the display panel 700_1, it is effective in simplifying the manufacturing process of the electrode 551 (i, j).
- a light-emitting layer that emits white light can be used for the light-emitting layer 553 (see FIG. 2B).
- the pixel 702 (i, j) includes a red colored film CF1 (R) and has a function of emitting red light (see FIG. 2B).
- the pixel 702 (i, j + 1) includes a green coloring film CF1 (G) and has a function of emitting green light.
- the pixel 702 (i, j + 2) includes a blue colored film CF1 (B) and has a function of emitting blue light.
- the sub-pixels are separated from each other by an insulating film 528.
- the light-emitting layer 553 includes a region disposed in the pixel 702 (i, j), a region disposed in the pixel 702 (i, j + 1), and a region disposed in the pixel 702 (i, j + 2).
- the light emitting layer 553 can have a thickness of, for example, 188 nm.
- the conductive film 551_1 (i, j) for example, an oxide conductive film having a thickness of 50 nm and containing indium, tin, and silicon can be used.
- the conductive film 551_2 (i, j) for example, an oxide conductive film having a thickness of 62 nm and containing indium and zinc can be used. The same applies to the pixel 702 (i, j + 2).
- the light emitting layer 553 can have a thickness of, for example, 188 nm.
- the conductive film 551_1 (i, j + 1) for example, an oxide conductive film having a thickness of 50 nm and containing indium, tin, and silicon can be used.
- the pixel 702 (i, j) has a higher red color purity
- the pixel 702 (i, j + 1) has a higher green color purity
- the pixel 702 (i, j + 1) has a blue color purity.
- the color purity of the display can be increased and any display can be made vivid.
- a display panel 700 described in this embodiment includes a pixel 702 (i, j) (see FIG. 3A or FIG. 17).
- the pixel 702 (i, j) includes a display element 550 (i, j) (see FIG. 3C).
- the pixel 702 (i, j) includes a pixel circuit 530 (i, j).
- the pixel circuit 530 (i, j) includes a conductive film.
- the conductive film may include a region that transmits visible light.
- a conductive film that transmits visible light can be used for the conductive films 512A, 512B, and 504 (see FIG. 4A).
- each of the conductive films 512A, 512B, and 504 has a function of an electrode of the transistor M.
- each of the conductive films 512A, 512B, and 504 has a wiring function of the pixel circuit 530 (i, j) (see FIG. 4A or FIG. 4B).
- the display element 550 (i, j) is electrically connected to the pixel circuit 530 (i, j) (see FIG. 3C).
- the display element 550 (i, j) is electrically connected to the pixel circuit 530 (i, j) at the connection portion 522A.
- the electrode 551 (i, j) of the display element 550 (i, j) is electrically connected to the conductive film 512A of the transistor M.
- the display element 550 (i, j) has a function of emitting visible light toward the substrate 770 (see FIGS. 3C and 4A). At this time, the colored film CF1 (R) can be provided in the path through which the light L1 is emitted. The same applies to the display element 550 (i, j + 1) and the display element 550 (i, j + 2).
- the pixel circuit 530 (i, j) includes a transistor M.
- the transistor M includes a semiconductor film 508, a conductive film 512A, a conductive film 512B, and a conductive film 504 functioning as a gate electrode.
- the semiconductor film 508 includes a region 508A electrically connected to the conductive film 512A and a region 508B electrically connected to the conductive film 512B (see FIG. 4B).
- the semiconductor film 508 includes a region 508C that overlaps with the conductive film 504 functioning as a gate electrode between the region 508A and the region 508B.
- the pixel circuit 530 (i, j) has a function of driving the display element 550 (i, j) (see FIG. 7).
- a switch, a transistor, a diode, a resistor, an inductor, a capacitor, or the like can be used for the pixel circuit 530 (i, j).
- one or more transistors can be used for the switch.
- a plurality of transistors connected in parallel, a plurality of transistors connected in series, and a plurality of transistors connected in combination of series and parallel can be used for one switch.
- the pixel circuit 530 (i, j) is electrically connected to the signal line S2 (j), the scanning line G2 (i), and the conductive film ANO (see FIG. 7).
- the conductive film 512B is electrically connected to the conductive film ANO at the connection portion 522B (see FIGS. 4A and 7).
- the pixel circuit 530 (i, j) includes a switch SW2, a transistor M, and a capacitor C21 (see FIG. 7).
- a transistor including a gate electrode electrically connected to the scan line G2 (i) and a first electrode electrically connected to the signal line S2 (j) can be used for the switch SW2.
- the transistor M includes a gate electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a first electrode that is electrically connected to the conductive film ANO.
- a transistor including a conductive film provided so that a semiconductor film is interposed between a gate electrode and the gate electrode can be used for the transistor M.
- a conductive film that is electrically connected to a wiring that can supply the same potential as the gate electrode of the transistor M can be used for the conductive film.
- the capacitor C21 includes a first electrode electrically connected to the second electrode of the transistor used for the switch SW2, and a second electrode electrically connected to the first electrode of the transistor M. .
- the electrode 551 (i, j) of the display element 550 (i, j) is electrically connected to the second electrode of the transistor M, and the electrode 552 of the display element 550 (i, j) is electrically connected to the conductive film VCOM2. Connect. Thereby, the display element 550 (i, j) can be driven.
- the pixel 702 (i, j) includes an insulating film 573 (see FIG. 5).
- a single film or a stacked film in which a plurality of films are stacked can be used for the insulating film 573.
- a stacked film in which the insulating films 573A and 573B are stacked can be used for the insulating film 573.
- the pixel 702 (i, j) includes an insulating film 518.
- the insulating film 573 includes, for example, a region in contact with the insulating film 518 outside the display region 231.
- the display element 550 (i, j) includes a region sandwiched between the insulating film 573 and the insulating film 518.
- the display element 550 includes an electrode 551 (i, j), a light emitting layer 553, and an electrode 552.
- the light-emitting layer 553 includes a region sandwiched between the electrode 551 (i, j) and the electrode 552.
- the light-emitting layer 553 includes an organic compound.
- the display panel 700 described in this embodiment includes a display region 231 (see FIG. 17).
- the display region 231 is scanned with a group of a plurality of pixels 702 (i, 1) to 702 (i, n) and another group of a plurality of pixels 702 (1, j) to 702 (m, j).
- a line G2 (i) and a signal line S2 (j) are included (see FIG. 17).
- the conductive film VCOM2 and the conductive film ANO are included. Note that i is an integer of 1 to m, j is an integer of 1 to n, and m and n are integers of 1 or more.
- a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes a pixel 702 (i, j), and a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes Arranged in the row direction (direction indicated by arrow R1 in the figure).
- the other group of the plurality of pixels 702 (1, j) to 702 (m, j) includes the pixel 702 (i, j), and the other group of the plurality of pixels 702 (1, j) to 702 (m , J) are arranged in a column direction (direction indicated by an arrow C1 in the drawing) intersecting the row direction.
- the scan line G2 (i) is electrically connected to a group of the plurality of pixels 702 (i, 1) to 702 (i, n) arranged in the row direction.
- the signal line S2 (j) is electrically connected to another group of the plurality of pixels 702 (1, j) to 702 (m, j) arranged in the column direction.
- the display panel 700 described in this embodiment can include the driver circuit GD or the driver circuit SD (see FIGS. 3A and 17).
- the drive circuit GD has a function of supplying a selection signal based on the control information.
- a function of supplying a selection signal to one scanning line at a frequency of 30 Hz or higher, preferably 60 Hz or higher is provided based on the control information. Thereby, a moving image can be displayed smoothly.
- it has a function of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute based on the control information. Thereby, a still image can be displayed in a state where flicker is suppressed.
- the display panel can include a plurality of driver circuits.
- the display panel 700B includes a driver circuit GDA and a driver circuit GDB (see FIG. 18).
- the frequency with which the drive circuit GDA supplies the selection signal and the frequency with which the drive circuit GDB supplies the selection signal can be made different.
- the selection signal can be supplied to another region displaying the moving image at a frequency higher than the frequency of supplying the selection signal to one region displaying the still image.
- the drive circuit SD includes a drive circuit SD1 and a drive circuit SD2.
- the drive circuit SD1 has a function of supplying an image signal based on the information V11
- the drive circuit SD2 has a function of supplying an image signal based on the information V12 (see FIG. 22 or FIG. 23).
- the drive circuit SD1 or the drive circuit SD2 has a function of generating an image signal and a function of supplying the image signal to a pixel circuit that is electrically connected to one display element. Specifically, it has a function of generating a signal whose polarity is inverted. Thereby, for example, a liquid crystal display element can be driven.
- various sequential circuits such as a shift register can be used for the drive circuit SD.
- an integrated circuit in which the drive circuit SD1 and the drive circuit SD2 are integrated can be used for the drive circuit SD.
- an integrated circuit formed on a silicon substrate can be used for the drive circuit SD.
- an integrated circuit can be mounted on a terminal by using a COG (Chip on glass) method or a COF (Chip on Film) method.
- a COG Chip on glass
- COF Chip on Film
- an integrated circuit can be mounted on a terminal using an anisotropic conductive film.
- the display panel 700 described in this embodiment includes a terminal 519B, a substrate 570, a substrate 770, a bonding layer 505, a functional film 770P, and the like (see FIG. 4A or FIG. 5).
- the terminal 519B includes a conductive film 511B, for example.
- the terminal 519B can be electrically connected to the signal line S2 (j), for example.
- the substrate 770 includes a region overlapping with the substrate 570.
- the substrate 770 includes a region that sandwiches the display element 550 (i, j) between the substrate 570 and the substrate 570.
- a material in which birefringence is suppressed can be used.
- the bonding layer 505 has a function of bonding the substrate 770 and the substrate 570 together.
- the functional film 770P includes a region overlapping with the display element 550 (i, j).
- the display panel 700 includes the substrate 570, the substrate 770, or the bonding layer 505.
- the display panel 700 includes the insulating film 521A, the insulating film 521B, the insulating film 528, the insulating film 516, the insulating film 503, or the insulating film 506.
- the display panel 700 includes the signal line S2 (j), the scanning line G2 (i), or the conductive film ANO.
- the display panel 700 includes a terminal 519B or a conductive film 511B.
- the display panel 700 includes a pixel circuit 530 (i, j) or a transistor M.
- the display panel 700 includes the display element 550 (i, j), the electrode 551 (i, j), the electrode 552, or the light-emitting layer 553 (j).
- the display panel 700 includes an insulating film 573.
- the display panel 700 includes a drive circuit GD or a drive circuit SD.
- Substrate 570 A material having heat resistance high enough to withstand heat treatment in the manufacturing process can be used for the substrate 570.
- a material having a thickness of 0.7 mm or less and a thickness of 0.1 mm or more can be used for the substrate 570.
- a material polished or etched to a thickness of about 0.1 mm can be used.
- a large glass substrate can be used for the substrate 570.
- a large display device can be manufactured.
- An organic material, an inorganic material, a composite material of an organic material and an inorganic material, or the like can be used for the substrate 570.
- an inorganic material such as glass, ceramics, or metal can be used for the substrate 570.
- alkali-free glass, soda-lime glass, potash glass, crystal glass, aluminosilicate glass, tempered glass, chemically tempered glass, quartz, sapphire, or the like can be used for the substrate 570.
- an inorganic oxide film, an inorganic nitride film, an inorganic oxynitride film, or the like can be used for the substrate 570.
- a silicon oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxide film, or the like can be used for the substrate 570.
- Stainless steel, aluminum, or the like can be used for the substrate 570.
- a single crystal semiconductor substrate made of silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, an SOI substrate, or the like can be used for the substrate 570.
- a semiconductor element can be formed on the substrate 570.
- an organic material such as a resin, a resin film, or plastic can be used for the substrate 570.
- a resin film or a resin plate such as polyester, polyolefin, polyamide, polyimide, polycarbonate, or an acrylic resin can be used for the substrate 570.
- a composite material in which a film such as a metal plate, a thin glass plate, or an inorganic material is attached to a resin film or the like can be used for the substrate 570.
- a composite material in which a fibrous or particulate metal, glass, inorganic material, or the like is dispersed in a resin film can be used for the substrate 570.
- a composite material in which a fibrous or particulate resin or an organic material is dispersed in an inorganic material can be used for the substrate 570.
- a single layer material or a material in which a plurality of layers is stacked can be used for the substrate 570.
- a material in which a base material and an insulating film that prevents diffusion of impurities contained in the base material are stacked can be used for the substrate 570.
- a material in which one or a plurality of films selected from a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, or the like that prevents diffusion of impurities contained in glass is used for the substrate 570 is used. Can do.
- a material in which a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like that prevents resin and diffusion of impurities that permeate the resin is stacked can be used for the substrate 570.
- a resin film such as polyester, polyolefin, polyamide, polyimide, polycarbonate, or an acrylic resin, a resin plate, a laminated material, or the like can be used for the substrate 570.
- a material containing a resin having a siloxane bond such as polyester, polyolefin, polyamide (nylon, aramid, or the like), polyimide, polycarbonate, polyurethane, acrylic resin, epoxy resin, or silicone can be used for the substrate 570.
- polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, or the like can be used for the substrate 570.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PES polyethersulfone
- acrylic resin or the like
- COP cycloolefin polymer
- COC cycloolefin copolymer
- paper, wood, or the like can be used for the substrate 570.
- a flexible substrate can be used for the substrate 570.
- a method of directly forming a transistor, a capacitor, or the like over a substrate can be used.
- a method in which a transistor, a capacitor, or the like is formed over a substrate for a process that has heat resistance to heat applied during the manufacturing process, and the formed transistor, capacitor, or the like is transferred to the substrate 570 can be used.
- a transistor or a capacitor can be formed over a flexible substrate.
- a material that can be used for the substrate 570 can be used for the substrate 770.
- a material having light transmittance selected from materials that can be used for the substrate 570 can be used for the substrate 770.
- a material in which an antireflection film of 1 ⁇ m or less, for example, is formed on one surface can be used for the substrate 770.
- a stacked film in which three or more dielectric layers are stacked, preferably 5 layers or more, more preferably 15 layers or more can be used for the substrate 770. Thereby, a reflectance can be suppressed to 0.5% or less, preferably 0.08% or less.
- aluminosilicate glass, tempered glass, chemically tempered glass, sapphire, or the like can be suitably used for the substrate 770 disposed on the side closer to the user of the display panel. Thereby, it is possible to prevent the display panel from being damaged or damaged due to use.
- a resin film can be preferably used for the substrate 770.
- a weight can be reduced.
- a material having a thickness of 0.7 mm or less and a thickness of 0.1 mm or more can be used for the substrate 770.
- a polished substrate can be used to reduce the thickness. Thereby, a weight can be reduced.
- insulating inorganic material an insulating organic material, or an insulating composite material including an inorganic material and an organic material can be used for the insulating film 521A or the insulating film 521B.
- an inorganic oxide film, an inorganic nitride film, an inorganic oxynitride film, or the like, or a stacked material in which a plurality selected from these films is stacked can be used for the insulating film 521A or the insulating film 521B.
- a film including a silicon oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxide film, or the like, or a stacked material in which a plurality of layers selected from these are stacked can be used for the insulating film 521A or the insulating film 521B.
- the silicon nitride film is a dense film and has an excellent function of suppressing impurity diffusion.
- polyester, polyolefin, polyamide, polyimide, polycarbonate, polysiloxane, acrylic resin, or the like, or a laminated material or a composite material of a plurality of resins selected from these can be used for the insulating film 521A or the insulating film 521B.
- a material having photosensitivity may be used. Accordingly, the insulating film 521A or the insulating film 521B can planarize steps resulting from various structures overlapping with the insulating film 521A or the insulating film 521B, for example.
- polyimide has characteristics superior to other organic materials in characteristics such as thermal stability, insulation, toughness, low dielectric constant, low thermal expansion coefficient, and chemical resistance. Thereby, polyimide can be suitably used for the insulating film 521A, the insulating film 521B, or the like.
- a film formed using a photosensitive material can be used for the insulating film 521A or the insulating film 521B.
- a film formed using photosensitive polyimide, photosensitive acrylic resin, or the like can be used for the insulating film 521A or the insulating film 521B.
- a light-transmitting material can be used for the insulating film 521A or the insulating film 521B.
- silicon nitride can be used for the insulating film 521A or the insulating film 521B.
- ⁇ Insulating film 528> a material that can be used for the insulating film 521A or the insulating film 521B can be used for the insulating film 528. Specifically, a film containing polyimide can be used for the insulating film 528.
- insulating film 518 For example, a material that can be used for the insulating film 521A or the insulating film 521B can be used for the insulating film 518.
- a material having a function of suppressing diffusion of oxygen, hydrogen, water, alkali metal, alkaline earth metal, or the like can be used for the insulating film 518.
- a nitride insulating film can be used for the insulating film 518.
- silicon nitride, silicon nitride oxide, aluminum nitride, aluminum nitride oxide, or the like can be used for the insulating film 518.
- diffusion of impurities into the semiconductor film of the transistor can be suppressed.
- diffusion of oxygen from the oxide semiconductor film used for the semiconductor film of the transistor to the outside of the transistor can be suppressed.
- diffusion of hydrogen, water, or the like from the outside of the transistor to the oxide semiconductor film can be suppressed.
- a material having a function of supplying hydrogen or nitrogen can be used for the insulating film 518. Accordingly, hydrogen or nitrogen can be supplied to the film in contact with the insulating film 518.
- the insulating film 518 can be formed in contact with the oxide semiconductor film, and hydrogen or nitrogen can be supplied to the oxide semiconductor film.
- conductivity can be imparted to the oxide semiconductor film.
- the oxide semiconductor film can be used for the second gate electrode.
- ⁇ Insulating film 516> a material that can be used for the insulating film 521A or the insulating film 521B can be used for the insulating film 516. Specifically, a stacked film in which films with different manufacturing methods are stacked can be used for the insulating film 516.
- a stacked film in which a second film containing silicon oxynitride or the like is stacked can be used for the insulating film 516.
- a material having a spins / cm 3 or less is preferably used for the second film.
- insulating film 521A or the insulating film 521B can be used for the insulating film 503.
- silicon nitride, silicon nitride oxide, aluminum nitride, aluminum nitride oxide, silicon oxide, silicon oxynitride, or the like can be used for the insulating film 503. Thereby, for example, diffusion of impurities into the semiconductor film of the transistor can be suppressed.
- insulating film 521A or the insulating film 521B can be used for the insulating film 506.
- a stacked film in which a first film having a function of suppressing oxygen permeation and a second film having a function of supplying oxygen can be used for the insulating film 506. Accordingly, for example, oxygen can be diffused into the oxide semiconductor film used for the semiconductor film of the transistor.
- a film including a lanthanum oxide film, a cerium oxide film, or a neodymium oxide film can be used for the insulating film 506.
- a film formed in an oxygen atmosphere can be used for the second film.
- a film into which oxygen is introduced after film formation can be used for the second film.
- oxygen can be introduced after film formation by ion implantation, ion doping, plasma immersion ion implantation, plasma treatment, or the like.
- ⁇ Insulating film 573> a material that can be used for the insulating film 521A or the insulating film 521B can be used for the insulating film 573.
- a stacked film in which the insulating films 573A and 573B are stacked can be used for the insulating film 573.
- an oxide or a nitride can be used for the insulating film 573.
- aluminum oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, silicon nitride, aluminum nitride, or the like can be used for the insulating film 573.
- it is less than 1 ⁇ 10 ⁇ 2 g / (m 2 ⁇ day), preferably 5 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day) or less, preferably 1 ⁇ 10 ⁇ 4 g / (m 2 Day), preferably a film having a water vapor transmission rate of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ day) or less, preferably 1 ⁇ 10 ⁇ 6 g / (m 2 ⁇ day) or less. Used for.
- a film that can be formed by a sputtering method can be used for the insulating film 573B.
- a film that can be formed by an atomic layer deposition method (Atomic Layer Deposition method; ALD method) can be used for the insulating film 573A.
- ALD method atomic layer deposition method
- a low density region generated in an insulating film formed using a sputtering method can be covered with a dense insulating film formed using an atomic layer deposition method.
- a region where impurities generated in an insulating film formed by a sputtering method are easily diffused can be covered with a film which is difficult to diffuse impurities formed by an atomic layer deposition method.
- diffusion of impurities from the outside to the display element can be suppressed.
- a film containing aluminum oxide with a thickness of 50 nm to 1000 nm, preferably 100 nm to 300 nm can be used for the insulating film 573B.
- a film containing aluminum oxide with a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm can be used for the insulating film 573A.
- a conductive material can be used for the wiring or the like. Specifically, a material having conductivity can be used for the signal line S2 (j), the scanning line G2 (i), the conductive film ANO, the terminal 519B, the conductive film 511B, or the like.
- an inorganic conductive material an organic conductive material, a metal, a conductive ceramic, or the like can be used for the wiring.
- a metal element selected from aluminum, gold, platinum, silver, copper, chromium, tantalum, titanium, molybdenum, tungsten, nickel, iron, cobalt, palladium, or manganese can be used for the wiring or the like.
- an alloy containing the above metal element can be used for the wiring or the like.
- an alloy of copper and manganese is suitable for fine processing using a wet etching method.
- a two-layer structure in which a titanium film is laminated on an aluminum film a two-layer structure in which a titanium film is laminated on a titanium nitride film, a two-layer structure in which a tungsten film is laminated on a titanium nitride film, a tantalum nitride film or
- a two-layer structure in which a tungsten film is stacked on a tungsten nitride film, a titanium film, and a three-layer structure in which an aluminum film is stacked on the titanium film and a titanium film is further formed thereon can be used for wiring or the like.
- a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide to which gallium is added can be used for the wiring or the like.
- a film containing graphene or graphite can be used for the wiring or the like.
- the film containing graphene can be formed.
- the reduction method include a method of applying heat and a method of using a reducing agent.
- a film containing metal nanowires can be used for wiring or the like.
- a nanowire containing silver can be used.
- a conductive polymer can be used for wiring or the like.
- the conductive material ACF1 can be used to electrically connect the terminal 519B and the flexible printed circuit board FPC1.
- the terminal 519B and the flexible printed circuit board FPC1 can be electrically connected using the conductive material CP.
- ⁇ Functional film 770P> an antireflection film, a polarizing film, a retardation film, or the like can be used for the functional film 770P.
- a circularly polarizing film can be used for the functional film 770P.
- antistatic film that suppresses adhesion of dust
- water-repellent film that makes it difficult to adhere dirt
- antireflection film anti-reflection film
- non-glossy film anti-glare film
- scratches caused by use A hard coat film or the like that suppresses the above can be used for the functional film 770P.
- Display element 550 (i, j)>
- a display element having a function of emitting light can be used for the display element 550 (i, j).
- an organic electroluminescence element, an inorganic electroluminescence element, a light emitting diode, a QDLED (Quantum Dot LED), or the like can be used for the display element 550 (i, j).
- a light-emitting organic compound can be used for the light-emitting layer 553 (j).
- quantum dots can be used for the light-emitting layer 553 (j).
- the half value width is narrow and it is possible to emit brightly colored light.
- ⁇ Light emitting layer> For example, a stacked material or the like stacked so as to emit white light can be used for the light-emitting layer 553 (j).
- a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j).
- a different light emitting layer may be formed for each subpixel.
- the laminated material laminated so as to emit red light is applied to the light emitting layer 553 (j)
- the laminated material laminated so as to emit green light is applied to the light emitting layer 553 (j + 1)
- blue light is emitted.
- the like can be used for the light-emitting layer 553 (j + 2).
- a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j), the light-emitting layer 553 (j + 1), and the light-emitting layer 553 (j + 2).
- Electrode 551 a material having a light-transmitting property with respect to visible light selected from materials that can be used for wirings or the like can be used for the electrode 551 (i, j).
- a conductive oxide or a conductive oxide containing indium, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or the like is used as the electrode 551 (i, j).
- a metal film that is thin enough to transmit light can be used for the electrode 551 (i, j).
- a metal film that transmits part of light and reflects another part of light can be used for the electrode 551 (i, j).
- the minute optical resonator structure can be provided in the display element 550 (i, j). As a result, light with a predetermined wavelength can be extracted more efficiently than other light.
- a material that can be used for wiring or the like can be used for the electrode 552.
- a light-reflective material in other words, a material that reflects visible light can be used for the electrode 552.
- ⁇ Drive circuit GD> Various sequential circuits such as a shift register can be used for the drive circuit GD.
- a transistor MD, a capacitor, or the like can be used for the drive circuit GD.
- a transistor that can be used for the switch SW2 or a transistor including a semiconductor film that can be formed in the same process as the transistor M can be used.
- the same structure as the transistor M can be used for the transistor MD.
- a different structure from the transistor that can be used for the transistor M can be used for the transistor MD.
- a metal film can be used for the conductive films 512C, 512D, and 504E (see FIG. 4C).
- the electrical resistance of the conductive film which also functions as a wiring can be reduced.
- external light traveling toward the region 508C can be blocked.
- abnormality in the electrical characteristics of the transistor due to external light can be prevented.
- the reliability of the transistor can be improved.
- ⁇ Transistor> a semiconductor film that can be formed in the same process can be used for a transistor in a driver circuit and a pixel circuit.
- a bottom-gate transistor, a top-gate transistor, or the like can be used as a driver circuit transistor or a pixel circuit transistor.
- a bottom-gate transistor production line using amorphous silicon as a semiconductor can be easily modified to a bottom-gate transistor production line using an oxide semiconductor as a semiconductor.
- a top gate type production line using polysilicon as a semiconductor can be easily modified to a top gate type transistor production line using an oxide semiconductor as a semiconductor. Both modifications can make effective use of existing production lines.
- a transistor in which an oxide semiconductor is used for a semiconductor film can be used.
- an oxide semiconductor containing indium or an oxide semiconductor containing indium, gallium, and zinc can be used for the semiconductor film.
- a transistor whose leakage current in an off state is smaller than that of a transistor using amorphous silicon as a semiconductor film can be used.
- a transistor in which an oxide semiconductor is used for a semiconductor film can be used.
- the time during which the pixel circuit can hold an image signal can be lengthened.
- the selection signal can be supplied at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute while suppressing the occurrence of flicker.
- fatigue accumulated in the user of the information processing apparatus can be reduced.
- power consumption associated with driving can be reduced.
- a transistor including the semiconductor film 508, the conductive film 504, the conductive film 512A, and the conductive film 512B can be used for the transistor M (see FIG. 4B).
- the insulating film 506 includes a region sandwiched between the semiconductor film 508 and the conductive film 504.
- the conductive film 504 includes a region overlapping with the semiconductor film 508.
- the conductive film 504 has a function of a gate electrode.
- the insulating film 506 has a function of a gate insulating film.
- the conductive films 512A and 512B are electrically connected to the semiconductor film 508.
- the conductive film 512A has one of the function of the source electrode and the function of the drain electrode, and the conductive film 512B has the other of the function of the source electrode and the function of the drain electrode.
- a transistor including the conductive film 524 can be used for a transistor in a driver circuit or a pixel circuit (see FIG. 4B or FIG. 4C).
- the conductive film 524 includes a region in which the semiconductor film 508 is sandwiched between the conductive film 504 and the conductive film 504.
- the insulating film 516 includes a region sandwiched between the conductive film 524 and the semiconductor film 508.
- the conductive film 524 can be electrically connected to a wiring that supplies the same potential as the conductive film 504.
- a conductive film in which a 10-nm-thick film containing tantalum and nitrogen and a 300-nm-thick film containing copper are stacked can be used for the conductive film 504E of the transistor MD.
- the film containing copper includes a region between which the film containing tantalum and nitrogen is sandwiched between the film containing copper.
- a stacked film in which a 400-nm-thick film containing silicon and nitrogen and a 200-nm-thick film containing silicon, oxygen, and nitrogen are stacked can be used for the insulating film 506.
- the film containing silicon and nitrogen includes a region between the semiconductor film 508 and the film containing silicon, oxygen, and nitrogen.
- a 25-nm-thick film containing indium, gallium, and zinc can be used for the semiconductor film 508.
- the film containing tungsten includes a region in contact with the semiconductor film 508.
- FIG. 8 and 9 are cross-sectional views illustrating the structure of the display panel.
- 8A is a cross-sectional view at a position corresponding to the cutting line X1-X2, the cutting line X3-X4, and the cutting line X5-X6 in FIG. 6, and
- FIG. 8B and FIG. (C) is a figure explaining a part of FIG. 8 (A).
- FIG. 9 is a cross-sectional view at a position corresponding to the cutting line X7-X8 in FIG. 6 and the cutting line X9-X10 in FIG.
- the display panel described in this embodiment is different from the display panel described with reference to FIGS. 4 and 5 in that a top-gate transistor is provided.
- FIG. 10 illustrates a structure of a display panel of one embodiment of the present invention.
- 10A1 and 10A2 are schematic top views when the pixel 900 is viewed from the display surface side.
- FIG. 10B is a cross-sectional view taken along a cutting line AB in FIG.
- FIG. 10A1 is a schematic top view when the pixel 900 is viewed from the display surface side.
- a pixel 900 illustrated in FIG. 10A1 includes three subpixels. Each subpixel is provided with a light-emitting element 930EL (not illustrated in FIGS. 10A1 and 10A2), a transistor 910, and a transistor 912.
- a light-emitting region (light-emitting region 916R, light-emitting region 916G, or light-emitting region 916B) of the light-emitting element 930EL is illustrated.
- the light-emitting element 930 ⁇ / b> EL is a so-called bottom emission light-emitting element that emits light to the transistor 910 and the transistor 912 side.
- the pixel 900 includes a wiring 902, a wiring 904, a wiring 906, and the like.
- the wiring 902 functions as, for example, a scanning line.
- the wiring 904 functions as a signal line, for example.
- the wiring 906 functions as a power supply line for supplying a potential to the light emitting element, for example.
- the wiring 902 and the wiring 904 have portions that intersect each other.
- the wiring 902 and the wiring 906 have portions that cross each other. Note that although the structure in which the wiring 902 and the wiring 904 and the wiring 902 and the wiring 906 intersect with each other is illustrated here, the present invention is not limited to this, and a structure in which the wiring 904 and the wiring 906 intersect may be employed.
- the transistor 910 functions as a selection transistor.
- a gate of the transistor 910 is electrically connected to the wiring 902.
- One of a source and a drain of the transistor 910 is electrically connected to the wiring 904.
- the transistor 912 is a transistor that controls current flowing in the light-emitting element.
- a gate of the transistor 912 is electrically connected to the other of the source and the drain of the transistor 910.
- One of a source and a drain of the transistor 912 is electrically connected to the wiring 906, and the other is electrically connected to one of the pair of electrodes of the light-emitting element 930EL.
- the light-emitting region 916R, the light-emitting region 916G, and the light-emitting region 916B each have a long strip shape in the vertical direction and are arranged in stripes in the horizontal direction.
- the wiring 902, the wiring 904, and the wiring 906 have a light shielding property. It is preferable to use a light-transmitting film for the other layers, that is, the transistors 910, 912, wirings connected to the transistors, contacts, capacitors, and the like.
- FIG. 10A2 illustrates an example in which the pixel 900 illustrated in FIG. 10A1 is divided into a transmission region 900t that transmits visible light and a light-blocking region 900s that blocks visible light.
- a portion other than a portion where each wiring is provided can be a transmission region 900t.
- the light-emitting region of the light-emitting element can be overlapped with a transistor, a wiring connected to the transistor, a contact, a capacitor, or the like, the aperture ratio of the pixel can be increased.
- the ratio of the area of the transmissive region to the area of the pixel can be 1% to 95%, preferably 10% to 90%, more preferably 20% to 80%. In particular, it is preferably 40% or more or 50% or more, and more preferably 60% or more and 80% or less.
- FIG. 10B is a cross-sectional view corresponding to a cross-sectional surface taken along dashed-dotted line AB in FIG. 10A2. Note that in FIG. 10B, cross sections of the light-emitting element 930EL, the capacitor 913, the driver circuit portion 901, and the like which are not illustrated in the top view are also illustrated.
- the driver circuit portion 901 can be used as a scanning line driver circuit portion or a signal line driver circuit portion.
- the driver circuit portion 901 includes a transistor 911.
- the transistor 911 may be light-blocking.
- the reliability and driving ability of the driver circuit portion can be improved. That is, it is preferable to use a light-shielding conductive film for the gate electrode, the source electrode, and the drain electrode included in the transistor 911. Similarly, it is preferable to use a light-shielding conductive film for the wiring connected thereto.
- the following materials can be used.
- the semiconductor film included in the transistor can be formed using a light-transmitting semiconductor material.
- a metal oxide, an oxide semiconductor, or the like can be given.
- the oxide semiconductor preferably contains at least indium. In particular, it is preferable to contain indium and zinc.
- One kind selected from the above or a plurality of kinds may be included.
- the conductive film included in the transistor can be formed using a light-transmitting conductive material.
- the light-transmitting conductive material preferably contains one or more selected from indium, zinc, and tin.
- In oxide, In—Sn oxide also referred to as ITO: Indium Tin Oxide
- ITO Indium Tin Oxide
- In—Zn oxide, In—W oxide, In—W—Zn oxide, In—Ti oxide, In-Sn-Ti oxide, In-Sn-Si oxide, Zn oxide, Ga-Zn oxide, and the like can be given.
- an oxide semiconductor whose resistance is reduced by adding an impurity element to the conductive film included in the transistor may be used.
- the low-resistance oxide semiconductor can be referred to as an oxide conductor (OC).
- an oxygen vacancy is formed in an oxide semiconductor, and hydrogen is added to the oxygen vacancy, whereby a donor level is formed in the vicinity of the conduction band.
- the donor level is formed in the oxide semiconductor, the oxide semiconductor has high conductivity and becomes a conductor.
- an oxide semiconductor has a large energy gap (e.g., an energy gap of 2.5 eV or more), and thus has an optical transparency with respect to visible light.
- the oxide conductor is an oxide semiconductor having a donor level in the vicinity of the conduction band. Therefore, the oxide conductor is less affected by the absorption due to the donor level and has a light transmittance comparable to that of the oxide semiconductor with respect to visible light.
- the oxide conductor preferably includes one or more metal elements contained in a semiconductor film included in the transistor.
- a manufacturing apparatus eg, a film formation apparatus or a processing apparatus
- a manufacturing apparatus can be used in common for two or more steps. Since it becomes possible, manufacturing cost can be suppressed.
- the display device of one embodiment of the present invention can reproduce color gamuts of various standards.
- PAL Phase Alternating Line
- NTSC National Television System Committee
- sRGB standard RGB
- HDTV High Definition Television
- 709 International Telecommunication Union Radiocommunication Sector Broadcasting Service (Television) 709) Standard
- DCI-P3 DigitalCineMitiTitiHit3P
- a color gamut such as 2020 (REC. 2020 (Recommendation 2020)) standard can be reproduced.
- FIG. 11 is a cross-sectional view illustrating a structure of the display panel 700_1.
- a portion indicated by a pixel 702 (i, j) in FIG. 11 is a cross-sectional view taken along a cutting line X5-X5M of the pixel 702 (i, j) shown in FIG.
- the cutting line X5-X5M is provided in the pixel 702 (i, j + 1) and the pixel 702 (i, j + 2), their respective cross sections are shown in FIG. Shown side by side.
- the functional film 770P is not shown in FIG.
- the display element 550 (i, j) includes a conductive film 551_0 (i, j), a conductive film 551_1 (i, j), and a conductive film 551_2 (i, j) as electrodes 551 (i, j).
- the display element 550 (i, j + 1) includes a conductive film 551_0 (i, j + 1) and a conductive film 551_1 (i, j + 1) as the electrode 551 (i, j + 1).
- the display element 550 (i, j + 2) includes a conductive film 551_0 (i, j + 2), a conductive film 551_1 (i, j + 2), and a conductive film 551_2 (i, j + 2) as electrodes 551 (i, j + 2).
- 12A, 12B, 14A, and 14B are cross-sectional views illustrating a method for manufacturing a display panel.
- FIG. 12A illustrates a state in which a conductive film 551_0, a conductive film 551_1 above and a conductive film 551_2 are formed over the insulating film 521B.
- a conductive film 551_0 i, j
- the conductive film 551_1 i, j
- the conductive film 551_2 i, j
- the film thicknesses of the conductive film 551_1 and the conductive film 551_2 can be set, for example, in the same manner as in Embodiment 1 and the examples shown in the examples.
- the conductive film 551_1 and the conductive film 551_2 are etched with a predetermined solution used for wet etching under the same conditions, a material whose etching rate is lower than that of the conductive film 551_2 is preferably used.
- the conductive film 551_1 preferably has a lower etching rate when the same solution is used than the conductive film 551_2.
- the conductive film 551_1 is formed by sputtering using argon gas and oxygen gas using a target having 85% In 2 O 3 , 10% SnO 2 , and 5% SiO 2 in a weight ratio, for example.
- the film can be formed with a thickness of 50 nm.
- the conductive film 551_2 can be formed with a film thickness of 62 nm by a sputtering method using an argon gas and an oxygen gas with a target having a composition of 25% In 2 O 3 and 75% ZnO, for example. .
- the etching rate in the case of using oxalic acid at room temperature is 227 nm / min in the conductive film 551_1, and the conductive film 551_2. Is larger than 400 nm / min.
- Etching rate when using mixed acid aluminum liquid at room temperature (mixed solution containing less than 80% phosphoric acid, less than 10% acetic acid, less than 5% nitric acid and 5% by weight water)
- it is 5 nm / min
- it is higher than 350 nm / min.
- the etching rate when 0.85% phosphoric acid at room temperature obtained by diluting 85% phosphoric acid to 1/100 with water is 1 nm / min for the conductive film 551_1 and 66.9 nm for the conductive film 551_2. / Min.
- the conductive film 551_1 is formed using a crystalline conductive film containing In 2 O 3 and SnO 2
- the conductive film 551_2 is an amorphous film containing In 2 O 3 , SnO 2 , and SiO 2 . You may form with a electrically conductive film.
- the conductive film 551_1 may be formed using a conductive film containing In 2 O 3 and ZnO
- the conductive film 551_2 may be formed using a conductive film containing In 2 O 3 and ZnO whose ZnO content is lower than that of the conductive film 551_1.
- the etching of the conductive film 551_1 and the conductive film 551_2 is not limited to wet etching and may be dry etching. However, when the conductive film 551_1 and the conductive film 551_2 are dry-etched under the same conditions, it is preferable to use a material whose etching rate is lower than that of the conductive film 551_2. Alternatively, the conductive film 551_1 preferably has a lower etching rate in one etching atmosphere than the conductive film 551_2.
- etching gas used for dry etching
- a gas containing chlorine chlorine-based gas such as chlorine (Cl 2 ), boron trichloride (BCl 3 ), silicon tetrachloride (SiCl 4 ), carbon tetrachloride (CCl 4 ), or the like
- chlorine chlorine
- BCl 3 boron trichloride
- SiCl 4 silicon tetrachloride
- CCl 4 carbon tetrachloride
- etching gases used for dry etching include fluorine-containing gases (fluorine-based gases such as carbon tetrafluoride (CF 4 ), sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), trifluoro Methane (CHF 3 ), hydrogen bromide (HBr), oxygen (O 2 ), a gas obtained by adding a rare gas such as helium (He) or argon (Ar) to these gases, or the like can be used.
- fluorine-containing gases fluorine-based gases such as carbon tetrafluoride (CF 4 ), sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), trifluoro Methane (CHF 3 ), hydrogen bromide (HBr), oxygen (O 2 ), a gas obtained by adding a rare gas such as helium (He) or argon (Ar) to these gases, or the like can be used.
- fluorine-based gases such as carbon
- a resist mask 541 is formed over the conductive film 551_2 (see FIG. 12B).
- the resist mask 541 includes a region where the thickness of the resist is small in a region overlapping with the pixel 702 (i, j + 1).
- a region overlapping with the pixel 702 (i, j + 1) can be said to be a concave portion.
- exposure using a multi-tone (high-tone) mask is used for forming the resist mask 541.
- resist masks 541 having different resist thicknesses can be formed.
- a resist is formed to form a resist mask.
- a positive resist or a negative resist can be used.
- a positive resist is used.
- the resist may be formed by a spin coating method or may be selectively formed by an ink jet method. When the resist is selectively formed by an ink-jet method, formation of the resist in unnecessary portions can be reduced, so that waste of materials can be reduced.
- the resist is irradiated with light to expose the resist.
- a multi-tone mask is a mask capable of performing three exposure levels on an exposed portion, an intermediate exposed portion, and an unexposed portion, and is an exposure mask in which transmitted light has a plurality of intensities. With a single exposure and development process, a resist mask having a plurality of thickness regions can be formed. Therefore, by using a multi-tone mask, the number of lithography processes can be reduced and the process can be simplified.
- Typical examples of the multi-tone mask include a gray-tone mask 10a as shown in FIG. 13A and a half-tone mask 10b as shown in FIG.
- the gray tone mask 10 a includes a light transmissive substrate 13 and a light shielding film 15 formed on the light transmissive substrate 13. Further, the gray tone mask 10a includes a light shielding part 17 provided with a light shielding film, a diffraction grating part 18 provided by a pattern of the light shielding film, and a transmission part 19 provided with no light shielding film.
- the light transmissive substrate 13 can be a light transmissive substrate such as quartz.
- the light shielding film 15 can be formed using a light shielding material that absorbs light, such as chromium or chromium oxide.
- FIG. 13B shows light transmittance TR when the gray-tone mask 10a is irradiated with exposure light.
- the light transmittance 21 of the light shielding portion 17 is 0%.
- the light transmittance 21 is approximately 100%.
- the light transmittance 21 can be adjusted in the range of 10% to 70%.
- the interval between the light transmitting portions such as slits, dots, and meshes is set to be equal to or less than the resolution limit of light used for exposure.
- the diffraction grating part 18 can control the transmittance
- the diffraction grating unit 18 can use either a periodic slit, a dot, or a mesh, or an aperiodic slit, dot, or mesh.
- the halftone mask 10 b includes a light transmissive substrate 13 and a light shielding film 25 and a semi-light transmissive film 23 formed on the light transmissive substrate 13.
- the halftone mask 10b includes a light shielding portion 27 provided with the light shielding film 25 and the semi-light transmission film 23, a semi-light transmission portion 28 provided with the semi-light transmission film 23 without the light shielding film 25, and the light shielding. It has a transmission part 29 where the film 25 and the semi-light transmission film 23 are not provided.
- FIG. 13D shows the light transmittance when the halftone mask 10b is irradiated with exposure light.
- the light transmittance 31 is 0% in the light shielding portion 27, and the light transmittance 31 is substantially 100% in the transmissive portion 29.
- the light transmittance 31 can be adjusted in the range of 10% to 70%.
- the light transmittance can be controlled by the material of the semi-light transmitting film 23.
- the light shielding film 25 can be made of a light shielding material that absorbs light, such as chromium or chromium oxide.
- the embodiment of the present invention is not limited to this.
- a resist having three or more kinds of film thicknesses can be formed.
- part of the conductive film 551_0, the conductive film 551_1, and the conductive film 551_2 is removed using the resist mask 541 as a mask.
- the conductive film 551_0 (i, j) The conductive film 551_1 (i, j) and the conductive film 551_2 (i, j) are formed.
- a conductive film 551_2 (i, j + 1) is formed in the pixel 702 (i, j + 1), and the conductive film 551_2 (i, j + 1) is removed in the following steps.
- wet etching can be used for processing the conductive films 551_0, 551_1, and 551_2.
- the processing method is not limited to this, and dry etching may be used, for example.
- a part of the resist mask 541 is removed by retreating, and the area of the resist mask is reduced.
- the term “retreat” means to reduce the film thickness.
- An ashing apparatus can be used to remove part of the resist mask. Ashing may reduce the area of the resist mask and reduce the thickness of the resist mask.
- photoexcited ashing may be used in which a gas such as oxygen or ozone is irradiated with light such as ultraviolet rays, and the gas and the organic substance are chemically reacted to remove the organic substance.
- plasma ashing may be used in which a gas such as oxygen or ozone is turned into plasma at a high frequency and the organic matter is removed using the plasma.
- the resist mask 541 where the resist mask is thin, the resist is removed by the ashing, and the resist mask is separated as shown in FIG. Accordingly, the resist mask in a region overlapping with the pixel 702 (i, j + 1) is removed, and the conductive film 551_2 (i, j + 1) of the pixel 702 (i, j + 1) is exposed.
- the conductive film 551_2 (i, j + 1) is etched using the resist mask 542 as a mask.
- the conductive film 551_2 (i, i + 1) has a higher etching rate than the conductive film 551_2 (i, j)
- the conductive film 551_2 (i, j) can be preferably processed without being lost.
- the display panel 700_1 can be manufactured.
- Embodiment 3 In this embodiment, a display panel different from that in Embodiment 1 is described.
- the light-emitting layer 553 (j) includes a material stacked so as to emit red light, and the light-emitting layer 553 ( A material stacked to emit blue light at j + 1) can be used for the light-emitting layer 553 (j + 2) (see FIGS. 15A and 15B).
- the pixel 702 (i, j) includes a light emitting layer 553 (j), the pixel 702 (i, j + 1) includes a light emitting layer 553 (j + 1), and the pixel 702 (i, j + 2) includes a light emitting layer 553 (j).
- red display can be performed using the pixel 702 (i, j).
- Green display can be performed using the pixel 702 (i, j + 1).
- Blue display can be performed using the pixel 702 (i, j + 2).
- the optical distances in the film thickness direction of the light-emitting layer 553 (j), the light-emitting layer 553 (j + 1), and the light-emitting layer 553 (j + 2) are made equal to those in the pixel configuration example 1.
- the coloring film CF1 (R), the coloring film CF1 (G), and the coloring film CF1 (B) may not be provided.
- the other structure of the display element 550 is the same as that of the display panel 700.
- the pixel 702 (i, j) has a higher red color purity
- the pixel 702 (i, j + 1) has a higher green color purity
- the pixel 702 (i, j + 1) has a blue color purity.
- the color purity of the display can be increased and any display can be made vivid.
- the light L2 from the display element 550 (i, j) is in a direction opposite to the direction in which the pixel circuit 530 (i, j) is provided. It is good also as a structure inject
- the pixel circuit 530 (i, j) is provided so that the electrode 552 having light reflectivity is sandwiched between the electrode 551 (i, j).
- the colored film CF1 (R) can be provided in the path through which the light L2 is emitted.
- the light-emitting layer 553 be provided between the conductive film 551_1 (i, j) and the conductive film 551_0 (i, j) in the display element 550 (i, j) (FIG. 16). (See (B)). The same applies to the display element 550 (i, j + 1) and the display element 550 (i, j + 2).
- the aperture ratio can be improved as compared with the display panel 700.
- An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
- a non-single-crystal oxide semiconductor a CAAC-OS (c-axis-aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide OS) : Amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
- CAC-OS Cloud-Aligned Composite
- non-single-crystal oxide semiconductor or CAC-OS can be preferably used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention.
- non-single-crystal oxide semiconductor nc-OS or CAAC-OS can be preferably used.
- a CAC-OS is preferably used as the semiconductor layer of the transistor.
- the CAC-OS high electrical characteristics or high reliability can be imparted to the transistor.
- CAC-OS Details of the CAC-OS will be described below.
- the CAC-OS or the CAC-metal oxide has a conductive function in part of the material and an insulating function in part of the material, and has a function as a semiconductor in the whole material.
- the conductive function is a function of flowing electrons (or holes) serving as carriers
- the insulating function is a carrier. This function prevents electrons from flowing.
- a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
- the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region.
- the conductive region has the above-described conductive function
- the insulating region has the above-described insulating function.
- the conductive region and the insulating region may be separated at the nanoparticle level.
- the conductive region and the insulating region may be unevenly distributed in the material, respectively.
- the conductive region may be observed with the periphery blurred and connected in a cloud shape.
- the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
- CAC-OS or CAC-metal oxide is composed of components having different band gaps.
- CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
- the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
- the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
- CAC-OS or CAC-metal oxide can also be referred to as a matrix composite (metal matrix composite) or a metal matrix composite (metal matrix composite).
- the CAC-OS is one structure of a material in which an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near.
- an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near.
- a metal oxide one or more metal elements are unevenly distributed, and a region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm or near.
- the mixed state is also called mosaic or patch.
- the metal oxide preferably contains at least indium.
- One kind or plural kinds selected from may be included.
- a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
- X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter, click Also called Udo-like.) A.
- CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite metal oxide having a structure that is mixed.
- the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
- IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O.
- ZnO ZnO
- the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC (c-axis aligned crystal) structure.
- the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
- CAC-OS relates to a material structure of a metal oxide.
- CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In.
- the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
- the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
- a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
- GaOX3 is a region which is a main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
- the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
- the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
- the CAC-OS can be formed by a sputtering method, for example, without heating the substrate.
- a CAC-OS is formed by a sputtering method
- any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good.
- the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
- the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
- XRD X-ray diffraction
- an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
- a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
- EDX energy dispersive X-ray spectroscopy
- CAC-OS has a structure different from that of an IGZO compound in which metal elements are uniformly distributed, and has a property different from that of an IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
- the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
- areas such GaOX3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaOX3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and a favorable switching operation can be realized.
- CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (Ion) and high field effect mobility ( ⁇ ) can be realized.
- CAC-OS is optimal for various semiconductor devices including a display.
- FIG. 17 is a block diagram illustrating a structure of a display device of one embodiment of the present invention.
- FIG. 18A is a block diagram illustrating a structure different from the structure of the display panel illustrated in FIG. 18B-1 to 18B-3 illustrate the appearance of a display device of one embodiment of the present invention.
- the display device described in this embodiment includes a control portion 238 and a display panel 700 (see FIG. 17).
- the control unit 238 has a function to which the image information V1 and the control information SS are supplied.
- the control unit 238 has a function of generating information V12 based on the image information V1.
- the control unit 238 has a function of supplying the information V12.
- control unit 238 includes a decompression circuit 234 and an image processing circuit 235M.
- the display panel 700 has a function of being supplied with the information V12.
- the display panel 700 includes a pixel 702 (i, j).
- the pixel 702 (i, j) includes a display element 550 (i, j).
- the display element 550 (i, j) has a function of displaying based on the information V12, and the display element 550 (i, j) is a light emitting element.
- the display panel described in Embodiment 1 can be used for the display panel 700.
- the display panel 700B can be used.
- a television receiver system see FIG. 18B-1
- a video monitor see FIG. 18B-2
- a notebook computer see FIG. 18B-3
- the like can be provided. .
- the expansion circuit 234 has a function of expanding the image information V1 supplied in a compressed state.
- the decompression circuit 234 includes a storage unit.
- the storage unit has a function of storing, for example, decompressed image information.
- the image processing circuit 235M includes a region, for example.
- the area has a function of storing information included in the image information V1, for example.
- the image processing circuit 235M includes, for example, a function of correcting the image information V1 based on a predetermined characteristic curve to generate the information V12 and a function of supplying the information V12. Specifically, a function for generating the information V12 is provided so that the display element 550 (i, j) displays a good image.
- FIG. 19 is a block diagram illustrating a structure of the input / output device of one embodiment of the present invention.
- the input / output device described in this embodiment includes an input unit 240 and a display unit 230 (see FIG. 19).
- the display panel 700 described in Embodiment 1 can be used for the display portion 230.
- the input unit 240 includes a detection area 241.
- the input unit 240 has a function of detecting an object close to the detection area 241.
- the detection region 241 includes a region overlapping with the pixel 702 (i, j).
- the input unit 240 includes a detection area 241.
- the input unit 240 can include an oscillation circuit OSC and a detection circuit DC (see FIG. 19).
- the detection region 241 can include, for example, one or more detection elements.
- the detection region 241 includes a group of detection elements 775 (g, 1) to detection elements 775 (g, q) and another group of detection elements 775 (1, h) to detection elements 775 (p, h). (See FIG. 19). Note that g is an integer of 1 to p, h is an integer of 1 to q, and p and q are integers of 1 or more.
- the group of sensing elements 775 (g, 1) to 775 (g, q) includes the sensing elements 775 (g, h) and are arranged in the row direction (direction indicated by an arrow R2 in the drawing). Note that the direction indicated by the arrow R2 in FIG. 19 may be the same as or different from the direction indicated by the arrow R1 in FIG.
- another group of the detection elements 775 (1, h) to 775 (p, h) includes the detection elements 775 (g, h), and the column direction (in the drawing, indicated by an arrow C2) that intersects the row direction. (Direction shown).
- the detection element has a function of detecting an adjacent pointer.
- a finger or a stylus pen can be used as the pointer.
- a metal piece or a coil can be used for the stylus pen.
- a capacitive proximity sensor an electromagnetic induction proximity sensor, an optical proximity sensor, a resistive proximity sensor, or the like can be used as the detection element.
- a plurality of types of sensing elements can also be used in combination.
- a detection element that detects a finger and a detection element that detects a stylus pen can be used in combination.
- the type of the pointer can be determined.
- different instructions can be associated with the detection information based on the determined type of pointer. Specifically, when it is determined that a finger is used as the pointer, the detection information can be associated with the gesture. Alternatively, when it is determined that the stylus pen is used as the pointer, the detection information can be associated with the drawing process.
- a finger can be detected by using a capacitive or optical proximity sensor.
- the stylus pen can be detected using an electromagnetic induction type or optical type proximity sensor.
- FIG. 20 illustrates the structure of an input / output panel that can be used for the input / output device of one embodiment of the present invention.
- FIG. 20A is a top view of the input / output panel.
- 20B and 20C are projection views for explaining a part of FIG.
- FIG. 21 illustrates a structure of an input / output panel that can be used in the input / output device of one embodiment of the present invention.
- FIG. 21A is a top view of adjacent portions of the control line and the detection signal line.
- FIG. 21B is a projection diagram schematically illustrating the electric field generated in the adjacent portion.
- the input / output panel described in this embodiment is different from, for example, the display panel 700 described in Embodiment 1 in that a detection region 241 is provided.
- a detection region 241 is provided.
- the detection region 241 includes a control line CL (g), a detection signal line ML (h), and a conductive film.
- the conductive film includes a sensing element 775 (g, h) (see FIGS. 19 and 20A).
- a conductive film divided into a plurality of regions can be used for the detection region 241 (see FIG. 19 or FIG. 20). Thereby, different potentials can be supplied to each of the plurality of regions.
- a conductive film that is divided into a conductive film that can be used for the control line CL (g) and a conductive film that can be used for the detection signal line ML (h) is used for the detection region 241.
- it can.
- a rectangular conductive film can be used for each of the conductive films divided into a plurality of regions (see FIGS. 21A, 21B, 4A, and 5).
- the divided conductive film can be used as the electrode of the sensing element.
- a different potential can be supplied to the control line.
- an in-cell input / output panel can be provided.
- the member which comprises an input-output panel can be reduced.
- the divided conductive films are adjacent to each other in the adjacent portion X0 (see FIG. 20A, FIG. 20C, or FIG. 21).
- the detection element 775 (g, h) is electrically connected to the control line CL (g) and the detection signal line ML (h) (see FIG. 20A).
- control line CL (g) has a function of supplying a control signal
- detection signal line ML (h) has a function of supplying a detection signal
- the detection element 775 (g, h) has a function of supplying a detection signal that changes based on a control signal and a distance from an area close to the region overlapping with the pixel 702 (i, j).
- the detection element 775 (g, h) includes an electrode C (g) and an electrode M (h) (see FIG. 21B).
- the electrode C (g) includes a light-transmitting region in a region overlapping with the pixel 702 (i, j), and the electrode C (g) is electrically connected to the control line CL (g).
- the electrode C (g) can be referred to as a control electrode. Further, the same conductive film as that used for the control line CL (g) can be used for the electrode C (g), so that the control line CL (g) and the electrode C (g) can be integrated.
- the electrode M (h) includes a light-transmitting region in a region overlapping with the pixel 702 (i, j) (see FIGS. 4A and 5).
- the electrode M (h) is electrically connected to the detection signal line ML (h).
- the electrode M (h) is disposed so as to form an electric field between the electrode C (g) and a part of the electrode M (h) that is blocked by an element close to the region overlapping with the pixel 702 (i, j) (FIG. 21). (See (B)).
- the electrode M (h) can be referred to as a detection electrode.
- the same conductive film as that used for the detection signal line ML (h) is used for the electrode M (h), so that the detection signal line ML (h) and the electrode M (h) can be integrated.
- an electric field is formed between the electrode C (g) and the electrode M (h) or between the electrode C (g) and the electrode M (h + 1) (FIG. 21 (B)).
- a part of the electric field formed between the electrode C (g) and the electrode M (h) is blocked by a nearby finger or the like.
- position information can be input using a finger or the like that is brought close to the display portion as a pointer.
- the position information can be associated with image information displayed on the display unit.
- the oscillation circuit OSC is electrically connected to the control line CL (g) and has a function of supplying a control signal.
- a rectangular wave, a sawtooth wave, a triangular wave, or the like can be used as the control signal.
- the detection circuit DC is electrically connected to the detection signal line ML (h) and has a function of supplying a detection signal based on a change in potential of the detection signal line ML (h).
- the detection signal includes, for example, position information P1.
- Display unit 230 For example, the display panel described in Embodiment 1 can be used for the display portion 230. Alternatively, the display device described in Embodiment 5 can be used for the display portion 230.
- the detection element 775 includes an electrode C (g) and a detection signal line ML (h).
- a light-transmitting conductive film can be used for the electrode C (g) and the detection signal line ML (h).
- a conductive film including an opening in a region overlapping with the pixel 702 (i, j) can be used for the electrode C (g) and the detection signal line ML (h). Accordingly, it is possible to detect an object close to a region overlapping with the display panel without blocking the display on the display panel.
- the detection region 241 includes a group of detection elements 775 (g, 1) to detection elements 775 (g, q) and another group of detection elements 775 (1, h) to detection elements 775 (p, h). (See FIG. 19). Note that g is an integer of 1 to p, h is an integer of 1 to q, and p and q are integers of 1 or more.
- the group of sensing elements 775 (g, 1) to 775 (g, q) includes the sensing elements 775 (g, h) and are arranged in the row direction (direction indicated by an arrow R2 in the drawing). Note that the direction indicated by the arrow R2 in FIG. 19 may be the same as or different from the direction indicated by the arrow R1 in FIG.
- another group of the detection elements 775 (1, h) to 775 (p, h) includes the detection elements 775 (g, h), and the column direction (in the drawing, indicated by an arrow C2) that intersects the row direction. (Direction shown).
- the group of sensing elements 775 (g, 1) to 775 (g, q) arranged in the row direction includes an electrode C (g) electrically connected to the control line CL (g) (FIG. 20 (B) or FIG. 20 (C)).
- an electrode C (g) electrically connected to the control line CL (g) (FIG. 20 (B) or FIG. 20 (C)).
- a conductive film that can be formed in the same step can be used for the control line CL (g) and the electrode C (g).
- Another group of the detection elements 775 (1, h) to 775 (p, h) arranged in the column direction has electrodes M (h) electrically connected to the detection signal lines ML (h).
- electrodes M (h) electrically connected to the detection signal lines ML (h).
- a conductive film that can be formed in the same process can be used for the detection signal line ML (h) and the electrode M (h).
- the detection signal line ML (h) includes a conductive film BR (g, h) (see FIG. 20B and FIG. 6).
- the conductive film BR (g, h) includes a region overlapping with the control line CL (g).
- the detection element 775 (g, h) includes an insulating film.
- the insulating film includes a region sandwiched between the detection signal line ML (h) and the conductive film BR (g, h). Thereby, short circuit of the detection signal line ML (h) and the conductive film BR (g, h) can be prevented.
- the display panel of one embodiment of the present invention may have a structure different from those in Embodiments 1 to 7.
- a display panel having both a reflective display element 750 (i, j) using a layer containing a liquid crystal material and a display element 550 (i, j) having a function of emitting light.
- the structure of 700_3 will be described with reference to FIGS.
- the display panel 700_3 has a function of acquiring information V11 and information V12 from an arithmetic device or the like.
- the arithmetic device can generate the information V11 and the information V12 so that the display panel 700_3 can display an image or the like by a desired display method. For example, moving image information is included in the information V11, still image information is included in the information V12, and the like.
- the display panel 700_3 displays the display element 750 (i, j) based on the information V11, and displays the display element 550 (i, j) based on the information V12.
- FIG. 22 is a block diagram illustrating a structure of a display device of one embodiment of the present invention.
- the display device has a display panel.
- FIG. 23 is a block diagram illustrating a structure of a display panel of a display device of one embodiment of the present invention.
- FIG. 23 is a block diagram illustrating a configuration different from the configuration shown in FIG.
- FIG. 24 illustrates a structure of a display panel that can be used for the display device of one embodiment of the present invention.
- FIG. 24A is a top view of the display panel
- FIG. 24B is a top view illustrating part of the pixels of the display panel illustrated in FIG.
- FIG. 24C is a schematic diagram illustrating the structure of the pixel illustrated in FIG.
- 25 and 26 are cross-sectional views illustrating the structure of the display panel.
- 25A is a cross-sectional view taken along cutting line X1-X2, cutting line X3-X4, and cutting line X5-X6 in FIG. 24A.
- FIG. 25B is a partial view of FIG. It is a figure explaining.
- FIG. 26A is a cross-sectional view taken along cutting lines X7-X8 and X9-X10 in FIG. 24A, and FIG. 26B is a diagram for explaining part of FIG.
- FIG. 27A is a bottom view illustrating part of the pixels of the display panel illustrated in FIG. 24B, and FIG. 27B is illustrated with a part of the structure illustrated in FIG. 27A omitted.
- FIG. 27B is a bottom view illustrating part of the pixels of the display panel illustrated in FIG. 24B, and FIG. 27B is illustrated with a part of the structure illustrated in FIG. 27A omitted.
- FIG. 28 is a circuit diagram illustrating a structure of a pixel circuit included in the display panel of one embodiment of the present invention.
- FIG. 29 is a schematic diagram illustrating the shape of a light reflecting film that can be used for a pixel of a display panel.
- a variable having an integer value of 1 or more may be used for the sign.
- (p) including a variable p that takes an integer value of 1 or more may be used as a part of a code that identifies any of the maximum p components.
- a variable m that takes an integer value of 1 or more and (m, n) including a variable n may be used as part of a code that identifies any of the maximum m ⁇ n components.
- a display panel 700_3 described in this embodiment includes a display region 231 (see FIG. 22).
- the display panel 700_3 can include the driver circuit GD or the driver circuit SD.
- the display panel can include a plurality of driver circuits.
- the display panel 700_3B includes a driver circuit GDA and a driver circuit GDB (see FIG. 23).
- ⁇ Display area 231> The display region 231 is scanned with a group of a plurality of pixels 702 (i, 1) to 702 (i, n) and another group of a plurality of pixels 702 (1, j) to 702 (m, j).
- Line G1 (i) (see FIG. 22, FIG. 27 or FIG. 28).
- the scanning line G2 (i), the wiring CSCOM, the third conductive film ANO, and the signal line S2 (j) are included.
- i is an integer of 1 to m
- j is an integer of 1 to n
- m and n are integers of 1 or more.
- a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes a pixel 702 (i, j), and a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes Arranged in the row direction (direction indicated by arrow R1 in the figure).
- the other group of the plurality of pixels 702 (1, j) to 702 (m, j) includes the pixel 702 (i, j), and the other group of the plurality of pixels 702 (1, j) to 702 (m , J) are arranged in a column direction (direction indicated by an arrow C1 in the drawing) intersecting the row direction.
- the scan line G1 (i) and the scan line G2 (i) are electrically connected to a group of the plurality of pixels 702 (i, 1) to 702 (i, n) arranged in the row direction.
- Another group of the plurality of pixels 702 (1, j) to 702 (m, j) arranged in the column direction is electrically connected to the signal line S1 (j) and the signal line S2 (j). .
- the drive circuit GD has a function of supplying a selection signal based on the control information.
- a function of supplying a selection signal to one scanning line at a frequency of 30 Hz or higher, preferably 60 Hz or higher is provided based on the control information. Thereby, a moving image can be displayed smoothly.
- it has a function of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute based on the control information. Thereby, a still image can be displayed in a state where flicker is suppressed.
- the frequency with which the drive circuit GDA supplies the selection signal and the frequency with which the drive circuit GDB supplies the selection signal can be different.
- the selection signal can be supplied to the area where the moving image is smoothly displayed at a higher frequency than the area where the still image is displayed with the flicker suppressed.
- the drive circuit SD includes a drive circuit SD1 and a drive circuit SD2.
- the drive circuit SD1 has a function of supplying an image signal based on the information V11
- the drive circuit SD2 has a function of supplying an image signal based on the information V12 (see FIG. 22).
- the drive circuit SD1 has a function of generating an image signal to be supplied to a pixel circuit that is electrically connected to one display element. Specifically, it has a function of generating a signal whose polarity is inverted. Thereby, for example, a liquid crystal display element can be driven.
- the drive circuit SD2 has a function of generating an image signal to be supplied to a pixel circuit that is electrically connected to another display element that performs display using a method different from that of one display element. For example, an organic EL element can be driven.
- various sequential circuits such as a shift register can be used for the drive circuit SD.
- an integrated circuit in which the drive circuit SD1 and the drive circuit SD2 are integrated can be used for the drive circuit SD.
- an integrated circuit formed on a silicon substrate can be used for the drive circuit SD.
- an integrated circuit can be implemented as a terminal using a COG (Chip on glass) method or a COF (Chip on Film) method.
- an integrated circuit can be mounted on a terminal using an anisotropic conductive film.
- the pixel 702 (i, j) includes a display element 750 (i, j), a display element 550 (i, j), and a part of the functional layer 520 (FIGS. 24C, 25A, and 26). (See (A)).
- the functional layer 520 includes a first conductive film, a second conductive film, an insulating film 501C, and a pixel circuit 530 (i, j) (see FIGS. 25A and 25B). .
- the functional layer 520 includes an insulating film 521, an insulating film 528, an insulating film 518, and an insulating film 516.
- the functional layer 520 includes a region sandwiched between the substrate 570 and the substrate 770.
- the insulating film 501C includes a region sandwiched between the first conductive film and the second conductive film, and the insulating film 501C includes an opening 591A (see FIG. 26A).
- the first electrode 751 (i, j) of the display element 750 (i, j) can be used for the first conductive film.
- the first conductive film is electrically connected to the first electrode 751 (i, j).
- the conductive film 512B can be used for the second conductive film.
- the second conductive film includes a region overlapping with the first conductive film.
- the second conductive film is electrically connected to the first conductive film in the opening 591A.
- the first conductive film electrically connected to the second conductive film in the opening 591A provided in the insulating film 501C can be referred to as a through electrode.
- the second conductive film is electrically connected to the pixel circuit 530 (i, j).
- a conductive film functioning as a source electrode or a drain electrode of a transistor used for the switch SW1 of the pixel circuit 530 (i, j) can be used for the second conductive film.
- the pixel circuit 530 (i, j) has a function of driving the display element 750 (i, j) and the display element 550 (i, j) (see FIG. 28).
- a switch, a transistor, a diode, a resistor, an inductor, a capacitor, or the like can be used for the pixel circuit 530 (i, j).
- one or more transistors can be used for the switch.
- a plurality of transistors connected in parallel, a plurality of transistors connected in series, and a plurality of transistors connected in combination of series and parallel can be used for one switch.
- the pixel circuit 530 (i, j) includes the signal line S1 (j), the signal line S2 (j), the scanning line G1 (i), the scanning line G2 (i), the wiring CSCOM, and the third conductive film ANO. Electrically connected (see FIG. 28). Note that the conductive film 512A is electrically connected to the signal line S1 (j) (see FIGS. 26A and 28).
- the pixel circuit 530 (i, j) includes a switch SW1 and a capacitor C11 (see FIG. 28).
- Pixel circuit 530 (i, j) includes switch SW2, transistor M, and capacitor C12.
- a transistor including a gate electrode electrically connected to the scan line G1 (i) and a first electrode electrically connected to the signal line S1 (j) can be used for the switch SW1. .
- the capacitor C11 includes a first electrode that is electrically connected to the second electrode of the transistor used for the switch SW1, and a second electrode that is electrically connected to the wiring CSCOM.
- a transistor including a gate electrode electrically connected to the scan line G2 (i) and a first electrode electrically connected to the signal line S2 (j) can be used for the switch SW2.
- the transistor M includes a gate electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a first electrode that is electrically connected to the third conductive film ANO.
- a transistor including a conductive film provided so that a semiconductor film is interposed between a gate electrode and the gate electrode can be used for the transistor M.
- a conductive film that is electrically connected to a wiring that can supply the same potential as the gate electrode of the transistor M can be used for the conductive film.
- the capacitor C12 includes a first electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a second electrode that is electrically connected to the first electrode of the transistor M. .
- the first electrode of the display element 750 (i, j) is electrically connected to the second electrode of the transistor used for the switch SW1.
- the second electrode of the display element 750 (i, j) is electrically connected to the wiring VCOM1. Accordingly, the display element 750 (i, j) can be driven.
- the third electrode 551 (i, j) of the display element 550 (i, j) is electrically connected to the second electrode of the transistor M, and the fourth electrode 552 of the display element 550 (i, j). Is electrically connected to the fourth conductive film VCOM2. Thereby, the display element 550 (i, j) can be driven.
- ⁇ Display element 750 (i, j)> a display element having a function of controlling reflection or transmission of light can be used for the display element 750 (i, j).
- a reflective liquid crystal display element can be used for the display element 750 (i, j).
- a shutter-type MEMS display element or the like can be used. By using a reflective display element, power consumption of the display panel can be suppressed.
- the display element 750 includes a first electrode 751 (i, j), a second electrode 752, and a layer 753 containing a liquid crystal material.
- the second electrode 752 is disposed so that an electric field for controlling the alignment of the liquid crystal material is formed between the second electrode 752 and the first electrode 751 (i, j) (FIGS. 25A and 26A). reference).
- the display element 750 (i, j) includes an alignment film AF1 and an alignment film AF2.
- the alignment film AF2 includes a region in which a layer 753 containing a liquid crystal material is sandwiched between the alignment film AF1.
- Display element 550 (i, j) For example, a display element having a function of emitting light can be used for the display element 550 (i, j). Specifically, an organic EL element or the like can be used.
- the display element 550 (i, j) has a function of emitting light toward the insulating film 501C (see FIG. 25A).
- the display element 550 (i, j) is arranged so that the display using the display element 550 (i, j) can be visually recognized in a part of the range where the display using the display element 750 (i, j) can be visually recognized.
- the direction in which external light is incident and reflected on the display element 750 (i, j) that displays image information by controlling the intensity of reflecting external light is indicated by a dashed arrow in the figure (FIG. 26A). reference).
- the direction in which the display element 550 (i, j) emits light to a part of the range where the display using the display element 750 (i, j) can be visually recognized is indicated by a solid arrow in the drawing (FIG. 25 ( A)).
- the display element 550 includes a third electrode 551 (i, j), a fourth electrode 552, and a light-emitting layer 553 (j) (see FIG. 25A).
- the fourth electrode 552 includes a region overlapping with the third electrode 551 (i, j).
- the light-emitting layer 553 (j) includes a region sandwiched between the third electrode 551 (i, j) and the fourth electrode 552.
- the third electrode 551 (i, j) is electrically connected to the pixel circuit 530 (i, j) at the connection portion 522. Note that the third electrode 551 (i, j) is electrically connected to the third conductive film ANO, and the fourth electrode 552 is electrically connected to the fourth conductive film VCOM2 (FIG. 28). reference).
- the display panel described in this embodiment includes an intermediate film 754A, an intermediate film 754B, and an intermediate film 754C.
- the intermediate film 754A includes a region in which the first conductive film is sandwiched between the intermediate film 501C and the intermediate film 754A includes a region in contact with the first electrode 751 (i, j).
- the intermediate film 754B includes a region in contact with the conductive film 511B.
- the intermediate film 754C includes a region in contact with the conductive film 511C.
- the display panel described in this embodiment includes an insulating film 501A (see FIG. 25A).
- the insulating film 501A includes a first opening 592A, a second opening 592B, and an opening 592C (see FIG. 25A or FIG. 26A).
- the first opening 592A includes a region overlapping with the intermediate film 754A and the first electrode 751 (i, j) or a region overlapping with the intermediate film 754A and the insulating film 501C.
- the second opening 592B includes a region overlapping with the intermediate film 754B and the conductive film 511B.
- the opening 592C includes a region overlapping with the intermediate film 754C and the conductive film 511C.
- the insulating film 501A includes a region in which the insulating film 501C is sandwiched between the insulating film 501B and the conductive film 511B.
- the insulating film 501A is in contact with the conductive film 511B in the opening 591B of the insulating film 501C.
- the insulating film 501A is in contact with the conductive film 511C in the opening 591C of the insulating film 501C.
- the insulating film 501A includes a region sandwiched between the intermediate film 754A and the insulating film 501C along the peripheral edge of the first opening 592A, and the insulating film 501A extends along the peripheral edge of the second opening 592B. A region sandwiched between the intermediate film 754B and the conductive film 511B is provided.
- the insulating film 521 includes a region sandwiched between the pixel circuit 530 (i, j) and the display element 550 (i, j).
- the insulating film 528 is provided between the insulating film 521 and the substrate 570 and includes an opening in a region overlapping with the display element 550 (i, j).
- An insulating film 528 formed along the periphery of the third electrode 551 (i, j) prevents a short circuit between the third electrode 551 (i, j) and the fourth electrode 552.
- the insulating film 518 includes a region sandwiched between the insulating film 521 and the pixel circuit 530 (i, j).
- the insulating film 516 includes a region sandwiched between the insulating film 518 and the pixel circuit 530 (i, j).
- the display panel described in this embodiment includes a terminal 519B and a terminal 519C.
- the terminal 519B includes a conductive film 511B and an intermediate film 754B, and the intermediate film 754B includes a region in contact with the conductive film 511B.
- the terminal 519B is electrically connected to the signal line S1 (j), for example.
- the terminal 519C includes a conductive film 511C and an intermediate film 754C, and the intermediate film 754C includes a region in contact with the conductive film 511C.
- the conductive film 511C is electrically connected to, for example, the wiring VCOM1.
- the conductive material CP is sandwiched between the terminal 519C and the second electrode 752, and has a function of electrically connecting the terminal 519C and the second electrode 752.
- conductive particles can be used for the conductive material CP.
- the display panel described in this embodiment includes a substrate 570 and a substrate 770.
- the substrate 770 includes a region overlapping with the substrate 570.
- the substrate 770 includes a region that sandwiches the functional layer 520 with the substrate 570.
- the display panel described in this embodiment includes a bonding layer 505, a sealing material 705, and a structure KB1.
- the bonding layer 505 includes a region sandwiched between the functional layer 520 and the substrate 570 and has a function of bonding the functional layer 520 and the substrate 570 together.
- the sealing material 705 includes a region sandwiched between the functional layer 520 and the substrate 770 and has a function of bonding the functional layer 520 and the substrate 770 together.
- the structure KB1 has a function of providing a predetermined gap between the functional layer 520 and the substrate 770.
- the display panel described in this embodiment includes a light-blocking film BM, an insulating film 771, a functional film 770P, and a functional film 770D. Further, it has a colored film CF1 and a colored film CF2.
- the light shielding film BM includes an opening in a region overlapping with the display element 750 (i, j).
- the coloring film CF2 is provided between the insulating film 501C and the display element 550 (i, j) and includes a region overlapping with the opening 751H (see FIG. 25A).
- the insulating film 771 includes a region sandwiched between the colored film CF1 and the layer 753 containing a liquid crystal material or between the light shielding film BM and the layer 753 containing a liquid crystal material. Thereby, the unevenness
- the functional film 770P includes a region overlapping with the display element 750 (i, j).
- the functional film 770D includes a region overlapping with the display element 750 (i, j).
- the functional film 770D is disposed so as to sandwich the substrate 770 with the display element 750 (i, j). Thereby, for example, the light reflected by the display element 750 (i, j) can be diffused.
- the display panel 700_3 includes the substrate 570, the substrate 770, the structure KB1, the sealing material 705, or the bonding layer 505.
- the display panel 700_3 includes the functional layer 520, the insulating film 521, or the insulating film 528.
- the display panel 700_3 includes the signal line S1 (j), the signal line S2 (j), the scanning line G1 (i), the scanning line G2 (i), the wiring CSCOM, or the third conductive film ANO.
- the display panel 700_3 includes a first conductive film or a second conductive film.
- the display panel 700_3 includes the terminal 519B, the terminal 519C, the conductive film 511B, or the conductive film 511C.
- the display panel 700_3 includes the pixel circuit 530 (i, j) or the switch SW1.
- the display panel 700_3 includes the display element 750 (i, j), the first electrode 751 (i, j), the light reflecting film, the opening, the layer 753 containing a liquid crystal material, or the second electrode 752.
- the display panel 700_3 includes the alignment film AF1, the alignment film AF2, the coloring film CF1, the coloring film CF2, the light-shielding film BM, the insulating film 771, the functional film 770P, and the functional film 770D.
- the display panel 700_3 includes the display element 550 (i, j), the third electrode 551 (i, j), the fourth electrode 552, or the light-emitting layer 553 (j).
- the display panel 700_3 includes the insulating film 501A and the insulating film 501C.
- the display panel 700_3 includes the driver circuit GD or the driver circuit SD.
- ⁇ Structure KB1> an organic material, an inorganic material, or a composite material of an organic material and an inorganic material can be used for the structure KB1 or the like. Thereby, a predetermined space
- polyester, polyolefin, polyamide, polyimide, polycarbonate, polysiloxane, acrylic resin, or a composite material of a plurality of resins selected from these can be used for the structure KB1.
- a material having photosensitivity may be used.
- ⁇ Sealing material 705> An inorganic material, an organic material, a composite material of an inorganic material and an organic material, or the like can be used for the sealant 705 or the like.
- an organic material such as a heat-meltable resin or a curable resin can be used for the sealing material 705 or the like.
- an organic material such as a reactive curable adhesive, a photocurable adhesive, a thermosetting adhesive, and / or an anaerobic adhesive can be used for the sealing material 705 or the like.
- an adhesive including epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, and the like. Can be used for the sealing material 705 or the like.
- ⁇ Junction layer 505> a material that can be used for the sealant 705 can be used for the bonding layer 505.
- ⁇ Insulating film 521> For example, a material used for the insulating films 521A and 521B can be used.
- ⁇ Insulating film 528> a material that can be used for the insulating film 521 can be used for the insulating film 528 or the like. Specifically, a film containing polyimide with a thickness of 1 ⁇ m can be used for the insulating film 528.
- a material that can be used for the insulating film 521 can be used for the insulating film 501A.
- a material having a function of supplying hydrogen can be used for the insulating film 501A.
- a material in which a material containing silicon and oxygen and a material containing silicon and nitrogen are stacked can be used for the insulating film 501A.
- a material having a function of releasing hydrogen by heating or the like and supplying the released hydrogen to another structure can be used for the insulating film 501A.
- a material having a function of releasing hydrogen taken in during the manufacturing process by heating or the like and supplying the hydrogen to another structure can be used for the insulating film 501A.
- a film containing silicon and oxygen formed by a chemical vapor deposition method using silane or the like as a source gas can be used for the insulating film 501A.
- a material in which a material including silicon and oxygen having a thickness of 200 nm to 600 nm and a material including silicon and nitrogen and having a thickness of about 200 nm can be used for the insulating film 501A.
- ⁇ Insulating film 501C> a material that can be used for the insulating film 521 can be used for the insulating film 501C. Specifically, a material containing silicon and oxygen can be used for the insulating film 501C. Thereby, diffusion of impurities into the pixel circuit or the display element 550 (i, j) can be suppressed.
- a 200-nm-thick film containing silicon, oxygen, and nitrogen can be used for the insulating film 501C.
- Intermediate film 754A, intermediate film 754B, intermediate film 754C For example, a film having a thickness of 10 nm to 500 nm, preferably 10 nm to 100 nm can be used for the intermediate film 754A, the intermediate film 754B, or the intermediate film 754C. Note that in this specification, the intermediate film 754A, the intermediate film 754B, or the intermediate film 754C is referred to as an intermediate film.
- a material having a function of permeating or supplying hydrogen can be used for the intermediate film.
- a material having conductivity can be used for the intermediate film.
- a material having optical transparency can be used for the intermediate film.
- a material containing indium and oxygen, a material containing indium, gallium, zinc and oxygen, a material containing indium, tin and oxygen, or the like can be used for the intermediate film. Note that these materials have a function of permeating hydrogen.
- a 50 nm-thick film or a 100 nm-thick film containing indium, gallium, zinc, and oxygen can be used as the intermediate film.
- a material in which a film functioning as an etching stopper is stacked can be used for the intermediate film.
- a laminated material obtained by laminating a film having a thickness of 50 nm containing indium, gallium, zinc, and oxygen and a film having a thickness of 20 nm containing indium, tin, and oxygen in this order is used for the intermediate film. it can.
- a conductive material can be used for the wiring or the like. Specifically, a material having conductivity is formed using a signal line S1 (j), a signal line S2 (j), a scanning line G1 (i), a scanning line G2 (i), a wiring CSCOM, a third conductive film ANO, It can be used for the terminal 519B, the terminal 519C, the conductive film 511B, the conductive film 511C, or the like.
- an inorganic conductive material an organic conductive material, a metal, a conductive ceramic, or the like can be used for the wiring.
- a metal element selected from aluminum, gold, platinum, silver, copper, chromium, tantalum, titanium, molybdenum, tungsten, nickel, iron, cobalt, palladium, or manganese can be used for the wiring or the like.
- an alloy containing the above metal element can be used for the wiring or the like.
- an alloy of copper and manganese is suitable for fine processing using a wet etching method.
- a two-layer structure in which a titanium film is laminated on an aluminum film a two-layer structure in which a titanium film is laminated on a titanium nitride film, a two-layer structure in which a tungsten film is laminated on a titanium nitride film, a tantalum nitride film or
- a two-layer structure in which a tungsten film is stacked on a tungsten nitride film, a titanium film, and a three-layer structure in which an aluminum film is stacked on the titanium film and a titanium film is further formed thereon can be used for wiring or the like.
- a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide to which gallium is added can be used for the wiring or the like.
- a film containing graphene or graphite can be used for the wiring or the like.
- the film containing graphene can be formed.
- the reduction method include a method of applying heat and a method of using a reducing agent.
- a film containing metal nanowires can be used for wiring or the like.
- a nanowire containing silver can be used.
- a conductive polymer can be used for wiring or the like.
- the conductive material ACF1 can be used to electrically connect the terminal 519B and the flexible printed circuit board FPC1.
- First conductive film, second conductive film> For example, a material that can be used for a wiring or the like can be used for the first conductive film or the second conductive film.
- the first electrode 751 (i, j), the wiring, or the like can be used for the first conductive film.
- a conductive film 512B functioning as a source electrode or a drain electrode of a transistor that can be used for the switch SW1, a wiring, or the like can be used for the second conductive film.
- ⁇ Display element 750 (i, j)> a display element having a function of controlling reflection or transmission of light can be used for the display element 750 (i, j).
- a structure in which a liquid crystal element and a polarizing plate are combined or a shutter-type MEMS display element or the like can be used.
- a reflective liquid crystal display element can be used for the display element 750 (i, j). By using a reflective display element, power consumption of the display panel can be suppressed.
- IPS In-Plane-Switching
- TN Transmission Nematic
- FFS Fe Field Switched
- ASM Analy Symmetrically Applied Micro-cell
- OCB OpticBridge
- a liquid crystal element that can be driven using a driving method such as a Crystal) mode or an AFLC (Antiferroelectric Liquid Crystal) mode can be used.
- VA vertical alignment
- MVA Multi-Domain Vertical Alignment
- PVA Plasma Vertical Alignment
- ECB Electrical Controlled Birefringence ACP mode
- CPB CPB mode
- a liquid crystal element that can be driven by a driving method such as an (Advanced Super-View) mode can be used.
- the display element 750 (i, j) includes a first electrode 751 (i, j), a second electrode 752, and a layer 753 containing a liquid crystal material.
- the layer 753 containing a liquid crystal material contains a liquid crystal material whose alignment can be controlled using a voltage between the first electrode 751 (i, j) and the second electrode 752.
- an electric field in the thickness direction (also referred to as a vertical direction) of the layer 753 containing a liquid crystal material and a direction intersecting with the vertical direction also referred to as a horizontal direction or an oblique direction
- an electric field for controlling the alignment of the liquid crystal material is used as an electric field for controlling the alignment of the liquid crystal material. it can.
- ⁇ Layer 753 including liquid crystal material> a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used for the layer containing a liquid crystal material.
- a liquid crystal material exhibiting a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like can be used.
- a liquid crystal material exhibiting a blue phase can be used.
- a material that reflects visible light can be used for the light reflecting film.
- a material containing silver can be used for the light reflecting film.
- a material containing silver and palladium or a material containing silver and copper can be used for the light reflecting film.
- the light reflecting film reflects, for example, light transmitted through the layer 753 containing a liquid crystal material.
- the display element 750 i, j
- the display element 750 can be a reflective liquid crystal element.
- a material having irregularities on the surface can be used for the light reflecting film. Thereby, incident light can be reflected in various directions to display white.
- the first conductive film, the first electrode 751 (i, j), or the like can be used for the light reflecting film.
- a film including a region between the layer 753 containing a liquid crystal material and the first electrode 751 (i, j) can be used as the light reflecting film.
- a light reflective film can be used for a film including a region in which the first electrode 751 (i, j) having light transmittance is interposed between the layer 753 containing a liquid crystal material.
- the light reflecting film has a shape in which a region that does not block the light emitted from the display element 550 (i, j) is formed.
- a shape having one or a plurality of openings can be used for the light reflecting film.
- a shape such as a polygon, a rectangle, an ellipse, a circle, or a cross can be used for the opening.
- an elongated stripe shape, a slit shape, or a checkered shape can be used for the opening 751H.
- the display using the display element 750 (i, j) becomes dark.
- the display using the display element 550 (i, j) becomes dark.
- the reliability of the display element 550 (i, j) may be impaired.
- the opening 751H of the pixel 702 (i, j + 1) adjacent to the pixel 702 (i, j) passes through the opening 751H of the pixel 702 (i, j) (the direction indicated by the arrow R1 in the drawing). (See FIG. 29A).
- the opening 751H of the pixel 702 (i + 1, j) adjacent to the pixel 702 (i, j) passes through the opening 751H of the pixel 702 (i, j) in the column direction (in FIG. They are not arranged on a straight line extending in the direction shown (see FIG. 29B).
- the opening 751H of the pixel 702 (i, j + 2) is disposed on a straight line extending in the row direction and passing through the opening 751H of the pixel 702 (i, j) (see FIG. 29A).
- the opening 751H of the pixel 702 (i, j + 1) is arranged on a straight line orthogonal to the straight line between the opening 751H of the pixel 702 (i, j) and the opening 751H of the pixel 702 (i, j + 2).
- the opening 751H of the pixel 702 (i + 2, j) is arranged on a straight line passing through the opening 751H of the pixel 702 (i, j) and extending in the column direction (see FIG. 29B).
- the opening 751H of the pixel 702 (i + 1, j) is on a straight line orthogonal to the straight line between the opening 751H of the pixel 702 (i, j) and the opening 751H of the pixel 702 (i + 2, j). It is arranged.
- a material having a shape in which an end portion is cut off so that a region 751E that does not block light emitted from the display element 550 (i, j) is formed can be used for the light reflecting film.
- the first electrode 751 (i, j) whose end is cut so that the column direction (the direction indicated by the arrow C1 in the drawing) is shortened can be used for the light reflecting film.
- ⁇ Second electrode 752> For example, a material having conductivity can be used for the second electrode 752. A material having a light-transmitting property with respect to visible light can be used for the second electrode 752.
- a conductive oxide, a metal film that is thin enough to transmit light, or a metal nanowire can be used for the second electrode 752.
- a conductive oxide containing indium can be used for the second electrode 752.
- a metal thin film with a thickness greater than or equal to 1 nm and less than or equal to 10 nm can be used for the second electrode 752.
- a metal nanowire containing silver can be used for the second electrode 752.
- indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, zinc oxide to which aluminum is added, or the like can be used for the second electrode 752.
- ⁇ Alignment film AF1 and alignment film AF2> For example, a material containing polyimide or the like can be used for the alignment film AF1 or the alignment film AF2. Specifically, a material formed using a rubbing process or a photo-alignment technique so that the liquid crystal material is aligned in a predetermined direction can be used.
- a film containing soluble polyimide can be used for the alignment film AF1 or the alignment film AF2.
- the temperature required for forming the alignment film AF1 or the alignment film AF2 can be lowered.
- damage to other components when forming the alignment film AF1 or the alignment film AF2 can be reduced.
- a material that transmits light of a predetermined color can be used for the colored film CF1 or the colored film CF2.
- the colored film CF1 or the colored film CF2 can be used for a color filter, for example.
- a material that transmits blue, green, or red light can be used for the colored film CF1 or the colored film CF2.
- a material that transmits yellow light, white light, or the like can be used for the colored film CF1 or the colored film CF2.
- a material having a function of converting irradiated light into light of a predetermined color can be used for the colored film CF2.
- quantum dots can be used for the colored film CF2. Thereby, display with high color purity can be performed.
- Light shielding film BM A material that prevents light transmission can be used for the light-shielding film BM.
- the light shielding film BM can be used for, for example, a black matrix.
- ⁇ Insulating film 771> polyimide, epoxy resin, acrylic resin, or the like can be used for the insulating film 771.
- an antireflection film, a polarizing film, a retardation film, a light diffusion film, a light collecting film, or the like can be used for the functional film 770P or the functional film 770D.
- a film containing a dichroic dye can be used for the functional film 770P or the functional film 770D.
- a material having a columnar structure including an axis along a direction intersecting the surface of the base material can be used for the functional film 770P or the functional film 770D.
- an antistatic film that suppresses adhesion of dust a water-repellent film that makes it difficult to adhere dirt, a hard coat film that suppresses generation of scratches due to use, and the like can be used for the functional film 770P.
- a circularly polarizing film can be used for the functional film 770P.
- a light diffusion film can be used for the functional film 770D.
- a light-emitting element can be used for the display element 550 (i, j).
- an organic electroluminescent element, an inorganic electroluminescent element, a light-emitting diode, or the like can be used for the display element 550 (i, j).
- a light-emitting organic compound can be used for the light-emitting layer 553 (j).
- quantum dots can be used for the light-emitting layer 553 (j).
- the half value width is narrow and it is possible to emit brightly colored light.
- a light-emitting layer 553 (a laminated material laminated so as to emit blue light, a laminated material laminated so as to emit green light, or a laminated material laminated so as to emit red light) j).
- a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j).
- a stacked material stacked so as to emit white light can be used for the light-emitting layer 553 (j).
- a light emitting layer containing a fluorescent material that emits blue light, a layer containing a material other than a fluorescent material that emits green and red light, or a layer containing a material other than a fluorescent material that emits yellow light can be used for the light-emitting layer 553 (j).
- a material that can be used for a wiring or the like can be used for the third electrode 551 (i, j).
- a material that has a light-transmitting property with respect to visible light and is selected from materials that can be used for wirings or the like can be used for the third electrode 551 (i, j).
- a conductive oxide or a conductive oxide containing indium, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or the like is used for the third electrode 551 (i , J).
- a metal film that is thin enough to transmit light can be used for the third electrode 551 (i, j).
- a metal film that transmits part of light and reflects the other part of light can be used for the third electrode 551 (i, j).
- a microresonator structure can be provided in the display element 550 (i, j). As a result, light with a predetermined wavelength can be extracted more efficiently than other light.
- a material that can be used for a wiring or the like can be used for the fourth electrode 552.
- a light-reflective material in other words, a material that reflects visible light can be used for the fourth electrode 552.
- ⁇ Drive circuit GD> a different structure from the transistor that can be used for the switch SW1 can be used for the transistor MD. Specifically, a transistor including the conductive film 524 can be used for the transistor MD (see FIG. 25B).
- the structure of the display panel 700_3 includes the display element 750 (i, j) as compared to the structure of the display panel 700 (see FIGS. 4A and 5). Therefore, the number of masks required for the process increases. By having the structure as shown in Embodiment Modes 1 to 3 in the display panel, the number of steps is not increased even if the minute optical resonator is formed, which is effective in reducing the manufacturing cost.
- FIG. 30A is a block diagram illustrating a structure of an information processing device of one embodiment of the present invention.
- FIG. 30B and FIG. 30C are projection views for explaining an example of the appearance of the information processing apparatus 200.
- FIG. 31 is a flowchart illustrating a program according to one embodiment of the present invention.
- FIG. 31A is a flowchart for describing main processing of the program of one embodiment of the present invention
- FIG. 31B is a flowchart for describing interrupt processing.
- FIG. 32 is a diagram illustrating a program according to one embodiment of the present invention.
- FIG. 32A is a flowchart for describing interrupt processing of a program according to one embodiment of the present invention
- FIG. 32B is a timing chart illustrating operation of the information processing device according to one embodiment of the present invention.
- the information processing device 200 described in this embodiment includes an input / output device 220 and an arithmetic device 210 (see FIG. 30A).
- the input / output device is electrically connected to the arithmetic device 210.
- the information processing device 200 can include a housing (see FIG. 30B or FIG. 30C).
- the input / output device 220 includes a display portion 230 and an input portion 240 (see FIG. 30A).
- the input / output device 220 includes a detection unit 250.
- the input / output device 220 can include a communication unit 290.
- the input / output device 220 has a function of supplying image information V1 or control information SS, and a function of supplying position information P1 or detection information SE1.
- the arithmetic device 210 has a function to which the position information P1 or the detection information SE1 is supplied.
- the arithmetic device 210 has a function of supplying image information V1.
- the arithmetic device 210 has a function of operating based on, for example, the position information P1 or the detection information SE1.
- the housing has a function of housing the input / output device 220 or the arithmetic device 210.
- the housing has a function of supporting the display unit 230 or the arithmetic device 210.
- the display unit 230 has a function of displaying an image based on the image information V1.
- the display unit 230 has a function of displaying an image based on the control information SS.
- the input unit 240 has a function of supplying the position information P1.
- the detection unit 250 has a function of supplying detection information SE1.
- the detection unit 250 has a function of detecting the illuminance of an environment where the information processing apparatus 200 is used, and a function of supplying illuminance information.
- the information processing apparatus can operate by grasping the intensity of light received by the casing of the information processing apparatus in an environment where the information processing apparatus is used.
- the user of the information processing apparatus can select a display method.
- a novel information processing apparatus that is highly convenient or reliable can be provided.
- a touch panel in which a touch sensor is superimposed on a display panel is not only a display unit but also an input unit.
- the information processing device 200 of one embodiment of the present invention includes a housing or the arithmetic device 210.
- the computing device 210 includes a computing unit 211, a storage unit 212, a transmission path 214, and an input / output interface 215.
- the information processing device of one embodiment of the present invention includes the input / output device 220.
- the input / output device 220 includes a display unit 230, an input unit 240, a detection unit 250, and a communication unit 290.
- the information processing device of one embodiment of the present invention includes the arithmetic device 210 or the input / output device 220.
- the calculation device 210 includes a calculation unit 211 and a storage unit 212.
- a transmission path 214 and an input / output interface 215 are provided.
- the calculation unit 211 has a function of executing a program, for example.
- the storage unit 212 has a function of storing, for example, a program executed by the calculation unit 211, initial information, setting information, or an image.
- a hard disk a flash memory, a memory including a transistor including an oxide semiconductor, or the like can be used.
- the input / output interface 215 includes a terminal or a wiring, and has a function of supplying information and receiving information.
- the transmission line 214 can be electrically connected.
- the input / output device 220 can be electrically connected.
- the transmission path 214 includes wiring, supplies information, and has a function of being supplied with information.
- the input / output interface 215 can be electrically connected.
- the calculation unit 211 or the storage unit 212 can be electrically connected.
- the input / output device 220 includes a display unit 230, an input unit 240, a detection unit 250, or a communication unit 290.
- the input / output device described in Embodiment 6 can be used. Thereby, power consumption can be reduced.
- the display unit 230 includes a control unit 238, a drive circuit GD, a drive circuit SD, and a display panel 700 (see FIG. 17).
- the display device described in Embodiment 5 can be used for the display portion 230.
- ⁇ Input unit 240> Various human interfaces or the like can be used for the input unit 240 (see FIG. 30).
- a keyboard, mouse, touch sensor, microphone, camera, or the like can be used for the input unit 240.
- a touch sensor including a region overlapping with the display portion 230 can be used.
- An input / output device including a touch sensor including a display unit 230 and a region overlapping with the display unit 230 can be referred to as a touch panel or a touch screen.
- the user can make various gestures (tap, drag, swipe, pinch in, etc.) using a finger touching the touch panel as a pointer.
- various gestures tap, drag, swipe, pinch in, etc.
- the computing device 210 may analyze information such as the position or trajectory of a finger that touches the touch panel, and a specific gesture may be supplied when the analysis result satisfies a predetermined condition. Accordingly, the user can supply a predetermined operation command associated with the predetermined gesture in advance using the gesture.
- the user can supply a “scroll command” for changing the display position of the image information using a gesture for moving a finger that touches the touch panel along the touch panel.
- the detection unit 250 has a function of detecting surrounding conditions and supplying detection information. Specifically, illuminance information, posture information, pressure information, position information, and the like can be supplied.
- a light detector for example, a light detector, an attitude detector, an acceleration sensor, an orientation sensor, a GPS (Global positioning System) signal receiving circuit, a pressure sensor, a temperature sensor, a humidity sensor, a camera, or the like can be used for the detection unit 250.
- a GPS Global positioning System
- the communication unit 290 has a function of supplying information to the network and acquiring information from the network.
- the program of one embodiment of the present invention includes the following steps (see FIG. 31A).
- predetermined image information to be displayed at startup a predetermined mode for displaying the image information, and information for specifying a predetermined display method for displaying the image information are acquired from the storage unit 212.
- one still image information or other moving image information can be used as predetermined image information.
- the first mode or the second mode can be used as a predetermined mode.
- interrupt processing is permitted (see FIGS. 31A and S2).
- an arithmetic unit that is permitted to perform interrupt processing can perform interrupt processing in parallel with main processing.
- the arithmetic unit that has returned to the main process from the interrupt process can reflect the result obtained by the interrupt process to the main process.
- the arithmetic unit performs interrupt processing, and when returning from the interrupt processing, the counter may be set to a value other than the initial value. As a result, interrupt processing can always be performed after the program is started.
- the image information is displayed using the predetermined mode or the predetermined display method selected in the first step or the interruption process (see FIGS. 31A and 31).
- the predetermined mode specifies a mode for displaying image information
- the predetermined display method specifies a method for displaying image information. Further, for example, it can be used as information for displaying the image information V1 or the information V12.
- one method for displaying the image information V1 can be associated with the first mode.
- another method for displaying the image information V1 can be associated with the second mode. Thereby, a display method can be selected based on the selected mode.
- a method of supplying a selection signal to one scanning line at a frequency of 30 Hz or more, preferably 60 Hz or more, and displaying based on the selection signal can be associated with the first mode.
- the selection signal when the selection signal is supplied at a frequency of 30 Hz or higher, preferably 60 Hz or higher, the motion of the moving image can be displayed smoothly.
- an image when an image is updated at a frequency of 30 Hz or higher, preferably 60 Hz or higher, an image that changes so as to smoothly follow the user's operation can be displayed on the information processing apparatus 200 being operated by the user.
- ⁇ Second mode> Specifically, a method of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute, and performing display based on the selection signal is described in the second mode.
- a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute, and performing display based on the selection signal is described in the second mode.
- the selection signal is supplied at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute, a display in which flicker or flicker is suppressed can be displayed. In addition, power consumption can be reduced.
- the display can be updated at a frequency of once per second or a frequency of once per minute.
- the light-emitting element when a light-emitting element is used as a display element, the light-emitting element can emit light in a pulse shape to display image information.
- the organic EL element can emit light in a pulse shape, and the afterglow can be used for display. Since the organic EL element has excellent frequency characteristics, there are cases where the time for driving the light emitting element can be shortened and the power consumption can be reduced. Alternatively, heat generation is suppressed, so that deterioration of the light-emitting element can be reduced in some cases.
- an end command supplied in the interrupt process may be used for determination.
- the interrupt process includes the following sixth to eighth steps (see FIG. 31B).
- the detection unit 250 is used to detect the illuminance of the environment in which the information processing apparatus 200 is used (see FIGS. 31B and S6). Note that the color temperature or chromaticity of the ambient light may be detected instead of the illuminance of the environment.
- a display method is determined based on the detected illuminance information (see FIGS. 31B and S7). For example, the display brightness is determined not to be too dark or too bright.
- the display color may be adjusted.
- FIG. 32A is a flowchart illustrating a program of one embodiment of the present invention.
- FIG. 32A is a flowchart for explaining interrupt processing different from the interrupt processing shown in FIG.
- the configuration example 3 of the information processing device is different from the interrupt processing described with reference to FIG. 31B in that the interrupt processing includes a step of changing the mode based on the supplied predetermined event. .
- the interrupt processing includes a step of changing the mode based on the supplied predetermined event.
- the interrupt process includes the following sixth to eighth steps (see FIG. 32A).
- the process proceeds to the seventh step. If a predetermined event is not supplied, the process proceeds to the eighth step (see FIGS. 32A and U6). ).
- the predetermined period can be a period of 5 seconds or less, 1 second or less, or 0.5 seconds or less, preferably 0.1 seconds or less and longer than 0 seconds.
- the mode is changed (see FIGS. 32A and U7). Specifically, when the first mode is selected, the second mode is selected, and when the second mode is selected, the first mode is selected.
- the display mode can be changed for some areas of the display unit 230. Specifically, the display mode can be changed for a region where the drive circuit GDB of the display unit 230 including the drive circuit GDA, the drive circuit GDB, the drive circuit GDC, and the drive circuit GDD supplies a selection signal (FIG. 32 ( B)).
- the display mode of the area can be changed. Specifically, the frequency of the selection signal supplied by the drive circuit GDB can be changed. Thereby, for example, the display of the region where the drive circuit GDB supplies the selection signal can be updated without operating the drive circuit GDA, the drive circuit GDC, and the drive circuit GDD. Alternatively, power consumed by the driver circuit can be suppressed.
- interrupt processing is terminated (see FIGS. 32A and U8). Note that interrupt processing may be repeatedly executed during a period in which main processing is being executed.
- ⁇ Predetermined event> For example, an event such as “click” or “drag” supplied using a pointing device such as a mouse, an event such as “tap”, “drag” or “swipe” supplied to a touch panel using a finger or the like as a pointer Can be used.
- an argument of a command associated with a predetermined event can be given using the position of the slide bar pointed to by the pointer, the swipe speed, the drag speed, or the like.
- the information detected by the detection unit 250 can be compared with a preset threshold value, and the comparison result can be used as an event.
- a pressure-sensitive detector or the like that contacts a button or the like that can be pushed into the housing can be used for the detection unit 250.
- ⁇ Instruction associated with a predetermined event> For example, an end instruction can be associated with a particular event.
- a “page turning command” for switching display from one displayed image information to another image information can be associated with a predetermined event.
- an argument that determines a page turning speed used when executing the “page turning instruction” can be given using a predetermined event.
- a “scroll command” for moving the display position of a part of one image information displayed to display another part continuous to the part can be associated with a predetermined event. It should be noted that an argument that determines the speed of moving the display position used when executing the “scroll command” can be given using a predetermined event.
- a command for setting a display method or a command for generating image information can be associated with a predetermined event.
- An argument that determines the brightness of the image to be generated can be associated with a predetermined event.
- an argument for determining the brightness of the image to be generated may be determined based on the brightness of the environment detected by the detection unit 250.
- a command for acquiring information distributed using a push-type service using the communication unit 290 can be associated with a predetermined event.
- the teaching material distributed in a classroom such as a school or a university can be received and the information processing apparatus 200 can be used as a textbook (see FIG. 30C).
- a material distributed in a conference room of a company or the like can be received and used as a conference material.
- FIG. 33A is a block diagram of an information processing device
- FIGS. 33B to 33E are perspective views illustrating the configuration of the information processing device
- FIGS. 34A to 34E are perspective views illustrating the configuration of the information processing apparatus.
- An information processing device 5200B described in this embodiment includes an arithmetic device 5210 and an input / output device 5220 (see FIG. 33A).
- the arithmetic device 5210 has a function of supplying operation information and a function of supplying image information based on the operation information.
- the input / output device 5220 includes a display unit 5230, an input unit 5240, a detection unit 5250, a communication unit 5290, a function of supplying operation information, and a function of supplying image information.
- the input / output device 5220 has a function of supplying detection information, a function of supplying communication information, and a function of supplying communication information.
- the input unit 5240 has a function of supplying operation information.
- the input unit 5240 supplies operation information based on the operation of the user of the information processing apparatus 5200B.
- a keyboard Specifically, a keyboard, hardware buttons, a pointing device, a touch sensor, a voice input device, a line-of-sight input device, or the like can be used for the input unit 5240.
- the display unit 5230 has a function of displaying a display panel and image information.
- the display panel described in Embodiment 1 can be used for the display portion 5230.
- the detection unit 5250 has a function of supplying detection information. For example, it has a function of detecting the surrounding environment where the information processing apparatus is used and supplying it as detection information.
- an illuminance sensor an imaging device, a posture detection device, a pressure sensor, a human sensor, or the like can be used for the detection unit 5250.
- the communication unit 5290 has a function for supplying communication information and a function for supplying communication information. For example, a function of connecting to another electronic device or a communication network by wireless communication or wired communication is provided. Specifically, it has functions such as wireless local area communication, telephone communication, and short-range wireless communication.
- an outer shape along a cylindrical column or the like can be applied to the display portion 5230 (see FIG. 33B).
- it has a function of changing the display method according to the illuminance of the usage environment. It also has a function of detecting the presence of a person and changing the display content. Thereby, it can install in the pillar of a building, for example.
- an advertisement or a guide can be displayed. Alternatively, it can be used for digital signage and the like.
- a function of generating image information based on a locus of a pointer used by the user is provided (see FIG. 33C).
- a display panel having a diagonal line length of 20 inches or more, preferably 40 inches or more, more preferably 55 inches or more can be used.
- a plurality of display panels can be arranged and used for one display area.
- a plurality of display panels can be arranged and used for a multi-screen. Thereby, it can use for an electronic blackboard, an electronic bulletin board, an electronic signboard, etc., for example.
- ⁇ Configuration Example 3 of Information Processing Device> For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 33D). Thereby, for example, the power consumption of the smart watch can be reduced. Alternatively, for example, an image can be displayed on the smart watch so that the image can be suitably used even in an environment with strong outside light such as outdoors on a sunny day.
- the display portion 5230 includes, for example, a curved surface that bends gently along the side surface of the housing (see FIG. 33E).
- the display unit 5230 includes a display panel, and the display panel has a function of displaying on the front surface, the side surface, and the upper surface, for example. Thereby, for example, image information can be displayed not only on the front surface of the mobile phone but also on the side surface and the upper surface.
- ⁇ Configuration Example 5 of Information Processing Device> For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34A). Thereby, the power consumption of a smart phone can be reduced. Alternatively, for example, an image can be displayed on a smartphone so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
- ⁇ Configuration Example 6 of Information Processing Device> For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34B). Thereby, an image can be displayed on the television system so that it can be suitably used even when it is exposed to strong external light that is inserted indoors on a sunny day.
- ⁇ Configuration Example 7 of Information Processing Device> For example, a function of changing a display method in accordance with the illuminance of the usage environment is provided (see FIG. 34C). Thereby, for example, an image can be displayed on a tablet computer so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
- ⁇ Configuration Example 8 of Information Processing Device> For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34D). Thereby, for example, the subject can be displayed on the digital camera so that it can be viewed properly even in an environment with strong external light such as outdoors on a sunny day.
- ⁇ Configuration Example 9 of Information Processing Device> For example, a function of changing a display method in accordance with the illuminance of the usage environment is provided (see FIG. 34E). Thereby, for example, an image can be displayed on a personal computer so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
- X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
- an element that enables electrical connection between X and Y for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.
- Element, light emitting element, load, etc. are not connected between X and Y
- elements for example, switches, transistors, capacitive elements, inductors
- resistor element for example, a diode, a display element, a light emitting element, a load, or the like.
- an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.
- the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows.
- the case where X and Y are electrically connected includes the case where X and Y are directly connected.
- a circuit for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc.
- Circuit CA conversion circuit, AD conversion circuit, gamma correction circuit, etc.
- potential level conversion circuit power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.)
- voltage source current source
- switching Circuit amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.)
- amplifier circuit circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.
- signal generation circuit memory circuit, control circuit, etc.
- X and Y are functionally connected.
- the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
- the source (or the first terminal) of the transistor is electrically connected to X through (or not through) Z1, and the drain (or the second terminal or the like) of the transistor is connected to Z2.
- Y is electrically connected, or the source (or the first terminal, etc.) of the transistor is directly connected to a part of Z1, and another part of Z1 Is directly connected to X, and the drain (or second terminal, etc.) of the transistor is directly connected to a part of Z2, and another part of Z2 is directly connected to Y.
- X and Y, and the source (or the first terminal or the like) and the drain (or the second terminal or the like) of the transistor are electrically connected to each other.
- the drain of the transistor (or the second terminal, etc.) and the Y are electrically connected in this order.
- the source (or the first terminal or the like) of the transistor is electrically connected to X
- the drain (or the second terminal or the like) of the transistor is electrically connected to Y
- X or the source ( Or the first terminal or the like, the drain of the transistor (or the second terminal, or the like) and Y are electrically connected in this order.
- X is electrically connected to Y through the source (or the first terminal) and the drain (or the second terminal) of the transistor, and X is the source of the transistor (or the first terminal). Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
- Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order.
- a source (or a first terminal or the like of a transistor) is electrically connected to X through at least a first connection path, and the first connection path is The second connection path does not have a second connection path, and the second connection path includes a transistor source (or first terminal or the like) and a transistor drain (or second terminal or the like) through the transistor.
- the first connection path is a path through Z1
- the drain (or the second terminal, etc.) of the transistor is electrically connected to Y through at least the third connection path.
- the third connection path is connected and does not have the second connection path, and the third connection path is a path through Z2.
- the source (or the first terminal or the like) of the transistor is electrically connected to X via Z1 by at least a first connection path, and the first connection path is a second connection path.
- the second connection path has a connection path through the transistor, and the drain (or the second terminal, etc.) of the transistor is at least connected to Z2 by the third connection path.
- Y, and the third connection path does not have the second connection path.
- the source of the transistor (or the first terminal or the like) is electrically connected to X through Z1 by at least a first electrical path, and the first electrical path is a second electrical path Does not have an electrical path, and the second electrical path is an electrical path from the source (or first terminal or the like) of the transistor to the drain (or second terminal or the like) of the transistor;
- the drain (or the second terminal or the like) of the transistor is electrically connected to Y through Z2 by at least a third electrical path, and the third electrical path is a fourth electrical path.
- the fourth electrical path is an electrical path from the drain (or second terminal or the like) of the transistor to the source (or first terminal or the like) of the transistor.
- X, Y, Z1, and Z2 are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, and the like).
- the term “electrically connected” in this specification includes in its category such a case where one conductive film has functions of a plurality of components.
- J + 2) the result of evaluating the effect of the micro-optical resonator structure.
- the conductive film 551_1 (i, j) As an element constituting the display element 550 (i, j), the display element 550 (i, j + 1), and the display element 550 (i, j + 2), an oxide having indium, tin, and silicon as the conductive film 551_1 (i, j) A physical conductive film was assumed.
- the conductive film 551_2 (i, j) is an oxide conductive film containing indium and zinc.
- FIG. 35 shows a refractive index characteristic N1 calculated from the transmittance obtained by forming an oxide conductive film containing indium, tin, and silicon on a light-transmitting substrate with a thickness of 100 nm.
- an oxide conductive film containing indium and zinc is formed to a thickness of 100 nm on a light-transmitting substrate, and a refractive index characteristic N2 calculated from the obtained transmittance is shown.
- the horizontal axis of FIG. 35 is the wavelength (nm) of light, and the vertical axis is the refractive index.
- a quartz substrate was used as the light transmissive substrate.
- An oxide conductive film having indium, tin, and silicon is formed by using a target having 85% In 2 O 3 , 10% SnO 2 , and 5% SiO 2 by weight ratio, and using argon gas and oxygen gas. It formed by the used sputtering method.
- An oxide conductive film containing indium and zinc was formed by a sputtering method using an argon gas and an oxygen gas by using a target having a composition of 25% In 2 O 3 and 75% ZnO.
- the refractive index characteristic N1 and the refractive index characteristic N2 have wavelength dispersion.
- micro optical resonator structure used in the calculation of this example and the effect of the micro optical resonator structure will be described by comparing the structure MS1 and the structure MS2.
- the structure MS1 assumes a display element 550 (i, j) and a display element 550 (i, j + 2) (see FIG. 2B).
- a light-emitting layer 553 having a thickness of 188 nm and a conductive film 551_1 (i, j) And an oxide conductive film including indium, tin, and silicon with a thickness of 50 nm and an oxide conductive film including indium and zinc with a thickness of 62 nm as the conductive film 551_2 (i, j). (See FIG. 36A).
- the structure MS2 assumes a display element 550 (i, j + 1) (see FIG. 2B), a light-emitting layer 553 having a thickness of 188 nm, and an indium having a thickness of 50 nm as the conductive film 551_1 (i, j). And an oxide conductive film containing tin and silicon are stacked (see FIG. 36B).
- the electrode 552 was a film made of silver having a thickness of 200 nm.
- the conductive film 551_0 (i, j) was a film containing silver with a thickness of 25 nm.
- the refractive index is a physical property value of silver.
- a structure in which an oxide conductive film having a thickness of 70 nm and containing indium, tin, and silicon is stacked thereon is assumed as the conductive layer 554.
- the refractive index was as shown in FIG. Further, a structure in which a film having a refractive index of 1.5 is stacked as the insulating film 555 is assumed (see FIGS. 36A and 36B).
- the film thickness is set assuming the refractive index of each material in each color as shown below.
- the light emitting layer has a refractive index of about 1.8 at any of the above wavelengths.
- a minute optical resonator structure is configured for the color of each subpixel. Is effective.
- FIG. 36C shows the calculation result of the light intensity.
- the horizontal axis represents the wavelength (nm) of light emitted from the light-emitting layer 553, and the vertical axis represents light intensity reaching the insulating film 555.
- the light emitting layer 553 emits white light.
- the light intensity changes depending on the spectrum of light emitted from the light-emitting layer 553. Therefore, the vertical axis in FIG. 36C means a qualitative value, and the exact position of the light emission maximum wavelength may vary depending on the spectrum of light.
- FIG. 36C shows the result of calculation using calculation software called SETOS manufactured by Cybernet Systems.
- the calculation result of the emission spectrum peak shown in FIG. 36C includes the above error, but in the structure MS1, the intensity of the wavelength in the wavelength region of 430 nm to 460 nm showing red and the wavelength of 630 nm to 670 nm showing blue are shown. It can be seen that the intensity of the wavelength in the wavelength region is large. That is, the pixel having the structure MS1 can emit light having a spectrum having a light emission maximum wavelength in any of the wavelength regions.
- the film thicknesses of the conductive film 551_1 (i, j), the conductive film 551_2 (i, j), and the light-emitting layer 553 are set to be larger than the above values, wavelengths that are several times stronger in the visible light region can be formed.
- the distance d0 or the distance d1 between the reflective electrode and the semi-transmissive electrode along the film thickness direction of the semi-transmissive electrode is increased, both blue and red can be increased in the emission intensity of the display element.
- light having a large emission intensity appears between blue and red.
- the setting of the materials and film thicknesses of the structures MS1 and MS2 is effective for the micro optical resonator structure to emit high-purity color.
- the minute optical resonator structure has a predetermined value for the optical distance at each wavelength of light to be displayed between the reflective electrode and the semi-transmissive conductive film.
- R02 can resonate.
- the optical distance at a wavelength of 640 nm which is red is 556.18 nm.
- the optical distance at a wavelength of 530 nm, which is green, was 438.9 nm.
- the optical distance at a wavelength of 450 nm which is blue was 577.78 nm.
- the above-described normalized optical distance does not change for the refractive index and film thickness of each film.
Landscapes
- Engineering & Computer Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明の一態様は、表示パネル、情報処理装置または表示パネルの作製方法に関する。 One embodiment of the present invention relates to a display panel, an information processing device, or a method for manufacturing a display panel.
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、作製方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの作製方法、を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. The technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes a semiconductor device, a display device, a light-emitting device, a power storage device, a memory device, a driving method thereof, or a manufacturing method thereof, Can be cited as an example.
ディスプレイ技術の発展に伴って、要求される性能は日々高度化している。あるディスプレイが再現可能な色域を示す規格には、従来から広く指標とされているsRGB規格やNTSC規格などがあるが、最近ではより広い色域をカバーするBT.2020規格が提唱されている。 With the development of display technology, the required performance is becoming more sophisticated every day. Standards indicating the color gamut that can be reproduced by a display include the sRGB standard and the NTSC standard, which have been widely used as indexes, but recently, BT. The 2020 standard has been proposed.
ほぼ全ての物体色を表現できるBT.2020規格ではあるが、有機化合物の発するブロードな発光スペクトルをそのまま用いるのでは現状実現が難しいため、キャビティ構造等を用いることによって色純度を高めることで、当該規格を実現する試みがなされている。 BT. That can represent almost all object colors. Although it is the 2020 standard, it is difficult to realize the present situation by using a broad emission spectrum emitted from an organic compound as it is, so an attempt has been made to realize the standard by increasing the color purity by using a cavity structure or the like.
表示パネルにおいて、より広い色域をカバーする、キャビティ長の異なる領域を設ける構造などが提案されている(例えば、特許文献1参照)。 There has been proposed a structure in which a display panel is provided with regions having different cavity lengths covering a wider color gamut (see, for example, Patent Document 1).
マイクロキャビティ方式を利用する発光素子は、フルカラー化を実現する上で有利である。特に、広い色再現性を達成するためには、最適な発光スペクトルピーク波長と、シャープなスペクトルを得ることが必要である。 A light-emitting element using a microcavity method is advantageous in realizing full color. In particular, in order to achieve wide color reproducibility, it is necessary to obtain an optimum emission spectrum peak wavelength and a sharp spectrum.
しかしながら、マイクロキャビティ方式を利用するフルカラー化の発光素子の場合において、発光色の異なる画素毎に一対の電極間の距離を調節する必要があるが、画素によっては、複数の波長が存在し、色純度の低下が問題となっている。さらに、一対の電極間の距離を調節する上でのマスク枚数や工程の増加も問題になっている。 However, in the case of a full-color light emitting element using a microcavity method, it is necessary to adjust the distance between a pair of electrodes for each pixel having a different emission color. A decrease in purity is a problem. Furthermore, the increase in the number of masks and processes in adjusting the distance between the pair of electrodes is also a problem.
そこで、本発明の一態様では、異なる波長の光を呈する発光素子を複数有するマイクロキャビティ方式を利用した発光装置において、各発光素子から所望の波長の光のみが射出される素子構造とすることにより、色純度が良く、光取り出し効率の良い発光素子を備えた発光装置および照明装置を提供することを目的とする。さらに、工程数およびコストの削減を図ることを目的とする。 Therefore, in one embodiment of the present invention, in a light-emitting device using a microcavity method including a plurality of light-emitting elements that exhibit light having different wavelengths, an element structure in which only light having a desired wavelength is emitted from each light-emitting element is provided. An object of the present invention is to provide a light-emitting device and a lighting device including a light-emitting element with good color purity and high light extraction efficiency. Furthermore, it aims at reducing the number of processes and cost.
本発明の一態様は、利便性または信頼性に優れた新規な表示パネルを提供することを課題の一とする。または、利便性または信頼性に優れた新規な表示装置を提供することを課題の一とする。または、利便性または信頼性に優れた新規な入出力装置を提供することを課題の一とする。または、利便性または信頼性に優れた新規な情報処理装置を提供することを課題の一とする。または、新規な表示パネル、新規な表示装置、新規な入出力装置、新規な情報処理装置または新規な半導体装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a novel display panel that is highly convenient or reliable. Another object is to provide a novel display device that is highly convenient or reliable. Another object is to provide a novel input / output device that is highly convenient or reliable. Another object is to provide a novel information processing device that is highly convenient or reliable. Another object is to provide a novel display panel, a novel display device, a novel input / output device, a novel information processing device, or a novel semiconductor device.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
本発明の一態様の表示パネルは、第1の画素と、第2の画素と、を有する。第1の画素及び第2の画素はそれぞれ、発光層と、第1の導電膜と、第2の導電膜と、第3の導電膜とを有する。第1の導電膜は、半光透過性および半光反射性を備え、第2の導電膜は、光反射性を備える。または、第1の導電膜は光反射性を備え、第2の導電膜は半光透過性および半光反射性を備える。 The display panel of one embodiment of the present invention includes a first pixel and a second pixel. Each of the first pixel and the second pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film. The first conductive film has semi-light transmittance and semi-light reflectivity, and the second conductive film has light reflectivity. Alternatively, the first conductive film has light reflectivity, and the second conductive film has semi-light transmittance and semi-light reflectivity.
第3の導電膜は、光透過性を備え、第1の導電膜は、第2の導電膜との間に、第3の導電膜を挟むように形成され、発光層は、第2の導電膜と、第3の導電膜との間に挟まれるように形成され、第1の画素は、第1の導電膜と第2の導電膜との間に、第1の距離を備え、第2の画素は、第1の導電膜と第2の導電膜との間に、第2の距離を備え、第2の距離は、第1の距離と等しく、第1の画素は、発光極大波長を波長630nm以上670nm以下の波長領域に有するスペクトルを備える光を射出し、第2の画素は、発光極大波長を波長430nm以上460nm以下の波長領域に有するスペクトルを備える光を射出する。 The third conductive film is light transmissive, the first conductive film is formed so as to sandwich the third conductive film between the second conductive film, and the light emitting layer is formed of the second conductive film. The first pixel has a first distance between the first conductive film and the second conductive film, and is formed so as to be sandwiched between the film and the third conductive film. The pixel has a second distance between the first conductive film and the second conductive film, the second distance is equal to the first distance, and the first pixel has a light emission maximum wavelength. Light having a spectrum having a wavelength in a wavelength region of 630 nm to 670 nm is emitted, and the second pixel emits light having a spectrum having a maximum emission wavelength in a wavelength region of 430 nm to 460 nm.
上記構成において、さらに第3の画素を有し、第3の画素は発光層と、第1の導電膜と、第2の導電膜と、第3の導電膜とを有し、第3の画素は、第1の導電膜と第2の導電膜との間に、第3の距離を備え、第3の距離は、第1の距離と異なり、第3の画素は、緑色の光を射出すると好ましい。 The above structure further includes a third pixel. The third pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film. Is provided with a third distance between the first conductive film and the second conductive film, the third distance is different from the first distance, and the third pixel emits green light. preferable.
上記各構成において、さらに第4の導電膜を有し、第4の導電膜は、光透過性を備えると好ましい。また、第1の画素において、第4の導電膜は、発光層と、第3の導電膜との間に挟まれるように配置され、第2の画素において、第4の導電膜は、発光層と、第3の導電膜との間に挟まれるように配置されると好ましい。また、第1の画素において、第3の導電膜は、第1の膜厚を備え、第2の画素において、第3の導電膜は、第2の膜厚を備え、第1の画素において、第4の導電膜は、第3の膜厚を備え、第2の画素において、第4の導電膜は、第4の膜厚を備え、第1の膜厚は第2の膜厚と等しく、第3の膜厚は第4の膜厚と等しいと好ましい。 Each of the above structures preferably further includes a fourth conductive film, and the fourth conductive film preferably has light transmittance. In the first pixel, the fourth conductive film is disposed so as to be sandwiched between the light emitting layer and the third conductive film. In the second pixel, the fourth conductive film is formed of the light emitting layer. And the third conductive film are preferably arranged so as to be sandwiched between them. In the first pixel, the third conductive film has a first film thickness, and in the second pixel, the third conductive film has a second film thickness. In the first pixel, The fourth conductive film has a third film thickness. In the second pixel, the fourth conductive film has a fourth film thickness, and the first film thickness is equal to the second film thickness. The third film thickness is preferably equal to the fourth film thickness.
上記各構成において、第3の導電膜は、第4の導電膜より、一のエッチング雰囲気におけるエッチングレートが小さいと好ましい。または、第3の導電膜は、第4の導電膜より、一の溶液を用いた場合のエッチングレートが小さいと好ましい。 In each of the above structures, it is preferable that the third conductive film has a lower etching rate in one etching atmosphere than the fourth conductive film. Alternatively, it is preferable that the third conductive film has a lower etching rate when one solution is used than the fourth conductive film.
本発明の一態様の情報処理装置は、キーボード、ハードウェアボタン、ポインティングデバイス、タッチセンサ、照度センサ、撮像装置、音声入力装置、視線入力装置、姿勢検出装置、のうち一以上と、上記記載の表示パネルと、を含む。 An information processing device according to one embodiment of the present invention includes one or more of a keyboard, a hardware button, a pointing device, a touch sensor, an illuminance sensor, an imaging device, a voice input device, a line-of-sight input device, and a posture detection device described above. A display panel.
本発明の一態様の表示パネルの作製方法は、第1の導電膜を形成する工程と、第1の導電膜の上方に第2の導電膜を形成する工程と、第2の導電膜の上方に第3の導電膜を形成する工程と、第3の導電膜の上方に、第1の領域と、第1の領域における厚さよりも小さな厚さを有する第2の領域と、を有するマスクを形成する工程と、第1の導電膜と、第2の導電膜と、第3の導電膜と、のマスクと重ならない部分を除去する第1の工程と、第1の工程の後、マスクを後退させることにより第2の領域のマスクを除去する第2の工程と、第2の工程の後、第3の導電膜の第2の領域と重なる部分を除去する第3の工程と、第3の工程の後、マスクを除去する工程と、第2の導電膜、または第3の導電膜の上方に、発光層を形成する工程と、発光層の上に、第4の導電膜を形成する工程と、を含むことを特徴とする。 A method for manufacturing a display panel of one embodiment of the present invention includes a step of forming a first conductive film, a step of forming a second conductive film over the first conductive film, and a region above the second conductive film. A mask having a step of forming a third conductive film, a first region above the third conductive film, and a second region having a thickness smaller than the thickness of the first region. A step of forming, a first step of removing a portion of the first conductive film, the second conductive film, and the third conductive film that do not overlap with the mask; and a mask after the first step. A second step of removing the mask of the second region by retreating, a third step of removing a portion overlapping the second region of the third conductive film after the second step, and a third step After the step, a step of removing the mask, a step of forming a light emitting layer over the second conductive film or the third conductive film, and light emission Over, characterized in that it comprises a step of forming a fourth conductive film.
本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。 In the drawings attached to the present specification, the components are classified by function, and the block diagram is shown as an independent block. However, it is difficult to completely separate the actual components for each function. May involve multiple functions.
本明細書においてトランジスタが有するソースとドレインは、トランジスタの極性及び各端子に与えられる電位の高低によって、その呼び方が入れ替わる。一般的に、nチャネル型トランジスタでは、低い電位が与えられる端子がソースと呼ばれ、高い電位が与えられる端子がドレインと呼ばれる。また、pチャネル型トランジスタでは、低い電位が与えられる端子がドレインと呼ばれ、高い電位が与えられる端子がソースと呼ばれる。本明細書では、便宜上、ソースとドレインとが固定されているものと仮定して、トランジスタの接続関係を説明する場合があるが、実際には上記電位の関係に従ってソースとドレインの呼び方が入れ替わる。 In this specification, the terms “source” and “drain” of a transistor interchange with each other depending on the polarity of the transistor or the level of potential applied to each terminal. In general, in an n-channel transistor, a terminal to which a low potential is applied is called a source, and a terminal to which a high potential is applied is called a drain. In a p-channel transistor, a terminal to which a low potential is applied is called a drain, and a terminal to which a high potential is applied is called a source. In this specification, for the sake of convenience, the connection relationship between transistors may be described on the assumption that the source and the drain are fixed. However, the names of the source and the drain are actually switched according to the above-described potential relationship. .
本明細書においてトランジスタのソースとは、活性層として機能する半導体膜の一部であるソース領域、或いは上記半導体膜に接続されたソース電極を意味する。同様に、トランジスタのドレインとは、上記半導体膜の一部であるドレイン領域、或いは上記半導体膜に接続されたドレイン電極を意味する。また、ゲートはゲート電極を意味する。 In this specification, the source of a transistor means a source region that is part of a semiconductor film functioning as an active layer or a source electrode connected to the semiconductor film. Similarly, a drain of a transistor means a drain region that is part of the semiconductor film or a drain electrode connected to the semiconductor film. The gate means a gate electrode.
本明細書においてトランジスタが直列に接続されている状態とは、例えば、第1のトランジスタのソースまたはドレインの一方のみが、第2のトランジスタのソースまたはドレインの一方のみに接続されている状態を意味する。また、トランジスタが並列に接続されている状態とは、第1のトランジスタのソースまたはドレインの一方が第2のトランジスタのソースまたはドレインの一方に接続され、第1のトランジスタのソースまたはドレインの他方が第2のトランジスタのソースまたはドレインの他方に接続されている状態を意味する。 In this specification, the state where the transistors are connected in series means, for example, a state where only one of the source and the drain of the first transistor is connected to only one of the source and the drain of the second transistor. To do. In addition, the state where the transistors are connected in parallel means that one of the source and the drain of the first transistor is connected to one of the source and the drain of the second transistor, and the other of the source and the drain of the first transistor is connected. It means a state of being connected to the other of the source and the drain of the second transistor.
本明細書において接続とは、電気的な接続を意味しており、電流、電圧または電位が、供給可能、或いは伝送可能な状態に相当する。従って、接続している状態とは、直接接続している状態を必ずしも指すわけではなく、電流、電圧または電位が、供給可能、或いは伝送可能であるように、配線、抵抗、ダイオード、トランジスタなどの回路素子を介して間接的に接続している状態も、その範疇に含む。 In this specification, the connection means an electrical connection, and corresponds to a state where current, voltage, or potential can be supplied or transmitted. Therefore, the connected state does not necessarily indicate a directly connected state, and a wiring, a resistor, a diode, a transistor, or the like is provided so that current, voltage, or potential can be supplied or transmitted. The state of being indirectly connected through a circuit element is also included in the category.
本明細書において回路図上は独立している構成要素どうしが接続されている場合であっても、実際には、例えば配線の一部が電極として機能する場合など、一の導電膜が、複数の構成要素の機能を併せ持っている場合もある。本明細書において接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。 In this specification, even when independent components on the circuit diagram are connected to each other, in practice, for example, when a part of the wiring functions as an electrode, In some cases, it also has the functions of the components. In this specification, the term “connection” includes a case where one conductive film has functions of a plurality of components.
また、本明細書中において、トランジスタの第1の電極または第2の電極の一方がソース電極を、他方がドレイン電極を指す。 In this specification, one of a first electrode and a second electrode of a transistor refers to a source electrode, and the other refers to a drain electrode.
本発明の一態様によれば、利便性または信頼性に優れた新規な表示パネルを提供することができる。または、利便性または信頼性に優れた新規な表示装置を提供することができる。または、利便性または信頼性に優れた新規な入出力装置を提供することができる。または、利便性または信頼性に優れた新規な情報処理装置を提供することができる。または、新規な表示パネル、新規な表示装置、新規な入出力装置、新規な情報処理装置または新規な半導体装置を提供することができる。 According to one embodiment of the present invention, a novel display panel that is highly convenient or reliable can be provided. Alternatively, a novel display device that is highly convenient or reliable can be provided. Alternatively, a novel input / output device that is highly convenient or reliable can be provided. Alternatively, a novel information processing device that is highly convenient or reliable can be provided. Alternatively, a novel display panel, a novel display device, a novel input / output device, a novel information processing device, or a novel semiconductor device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.
本発明の一態様の表示パネルは、複数の画素を備える。当該複数の画素は、色相が互いに異なる色を表示する自発光型の表示素子を備える。当該複数の画素は、微小光共振器(マイクロキャビティともいう)を備える。 The display panel of one embodiment of the present invention includes a plurality of pixels. The plurality of pixels include self-luminous display elements that display colors having different hues. The plurality of pixels include minute optical resonators (also referred to as microcavities).
これにより、色純度が良い発光素子を備えた発光装置および照明装置を提供することができる。さらに、色相が互いに異なる2の画素の、微少共振器構造の作製工程の一部を同一とすることにより、工程数およびコストの削減を図ることができる。 Accordingly, it is possible to provide a light emitting device and a lighting device including a light emitting element with good color purity. Furthermore, the number of steps and the cost can be reduced by making a part of the manufacturing process of the microresonator structure of two pixels having different hues the same.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below. Note that in structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated.
(実施の形態1)
本実施の形態では、本発明の一態様の表示パネルの構成について説明する。
(Embodiment 1)
In this embodiment, a structure of a display panel of one embodiment of the present invention is described.
図1(A)および図1(B)はそれぞれ、本発明の一態様の表示パネルの画素と副画素を説明する上面図および断面図である。図1(A)は本発明の一態様の表示パネルの画素の上面図であり、図1(B)は図1(A)の切断線Y3−Y4における断面図である。 1A and 1B are a top view and a cross-sectional view illustrating a pixel and a subpixel of a display panel of one embodiment of the present invention, respectively. FIG. 1A is a top view of a pixel of a display panel of one embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line Y3-Y4 in FIG.
図2(A)および図2(B)はそれぞれ、本発明の一態様の表示パネルの画素と副画素を説明する上面図および断面図である。図2(A)は本発明の一態様の表示パネルの画素の上面図であり、図2(B)は図2(A)の切断線Y3−Y4における断面図である。 2A and 2B are a top view and a cross-sectional view illustrating a pixel and a subpixel of a display panel of one embodiment of the present invention, respectively. 2A is a top view of a pixel of a display panel of one embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line Y3-Y4 in FIG.
図3は本発明の一態様の表示パネルの構成を説明する図である。図3(A)は表示パネルの上面図であり、図3(B)は図3(A)に示す表示パネルの画素の一部を説明する上面図である。図3(C)は図3(A)に示す表示パネルの断面の構成を説明する模式図である。 FIG. 3 illustrates a structure of a display panel of one embodiment of the present invention. 3A is a top view of the display panel, and FIG. 3B is a top view illustrating part of the pixels of the display panel illustrated in FIG. 3A. FIG. 3C is a schematic diagram illustrating a cross-sectional structure of the display panel illustrated in FIG.
図6は図3(A)に示す表示パネルの画素の構成を説明する上面図である。 FIG. 6 is a top view illustrating a structure of a pixel of the display panel illustrated in FIG.
図4および図5は表示パネルの構成を説明する断面図である。図4(A)は図3(A)の切断線X1−X2、切断線X3−X4、図6の切断線X5−X6における断面図であり、図4(B)および図4(C)はいずれも図4(A)の一部を説明する図である。 4 and 5 are cross-sectional views illustrating the structure of the display panel. 4A is a cross-sectional view taken along the cutting line X1-X2, the cutting line X3-X4, and the cutting line X5-X6 in FIG. 6, and FIG. 4B and FIG. Both are diagrams for explaining a part of FIG.
図5は図6の切断線X7−X8、図3(A)の切断線X9−X10における断面図である。 5 is a cross-sectional view taken along a cutting line X7-X8 in FIG. 6 and a cutting line X9-X10 in FIG.
図7は本発明の一態様の表示パネルが備える画素回路の構成を説明する回路図である。 FIG. 7 is a circuit diagram illustrating a structure of a pixel circuit included in the display panel of one embodiment of the present invention.
なお、本明細書において、1以上の整数を値にとる変数を符号に用いる場合がある。例えば、1以上の整数の値をとる変数pを含む(p)を、最大p個の構成要素のいずれかを特定する符号の一部に用いる場合がある。また、例えば、1以上の整数の値をとる変数mおよび変数nを含む(m,n)を、最大m×n個の構成要素のいずれかを特定する符号の一部に用いる場合がある。 In the present specification, a variable having an integer value of 1 or more may be used for the sign. For example, (p) including a variable p that takes an integer value of 1 or more may be used as a part of a code that identifies any of the maximum p components. Further, for example, a variable m that takes an integer value of 1 or more and (m, n) including a variable n may be used as part of a code that identifies any of the maximum m × n components.
<表示パネルの構成例1>
本実施の形態で説明する表示パネル700は、複数の画素を備える。当該複数の画素は、色相が互いに異なる色を表示する機能を備える。
<Configuration Example 1 of Display Panel>
A
当該複数の画素を用いて、各々その画素では表示できない色相の色を、加法混色により表示することができる。 Using the plurality of pixels, hue colors that cannot be displayed by the pixels can be displayed by additive color mixing.
なお、色相が異なる色を表示することができる複数の画素を混色に用いる場合において、それぞれの画素を副画素と言い換えることができる。また、複数の副画素を一組にして、画素と言い換えることができる。 Note that in the case where a plurality of pixels that can display colors having different hues are used for color mixing, each pixel can be referred to as a sub-pixel. In addition, a plurality of sub-pixels can be referred to as a pixel.
例えば、画素702(i,j)、画素702(i,j+1)および画素702(i,j+2)を、いずれも副画素とみなし、これらを一組にして画素703(i,k)と言い換えることができる(図1(A)参照)。 For example, the pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2) are all regarded as subpixels, and these are regarded as a set and are rephrased as a pixel 703 (i, k). (See FIG. 1A).
具体的には、赤色を表示する画素702(i,j)、緑色を表示する画素702(i,j+1)および青色を表示する画素702(i,j+2)を副画素とみなし、一組にして、画素703(i,k)に用いることができる。 Specifically, the pixel 702 (i, j) that displays red, the pixel 702 (i, j + 1) that displays green, and the pixel 702 (i, j + 2) that displays blue are regarded as sub-pixels, and are combined into one set. , And can be used for the pixel 703 (i, k).
また、例えば、白色を表示する副画素等を上記の一組に加えて、画素に用いることができる。 Further, for example, a sub-pixel for displaying white can be used for the pixel in addition to the above set.
<表示素子の構成例1>
画素702(i,j)は、表示素子550(i,j)を有する(図1(B)参照)。表示素子550(i,j)は、光を射出する機能を備える。例えば、有機EL素子を表示素子550(i,j)に用いることができる。表示素子550(i,j)は発光層553、電極551(i,j)、電極552を備える。例えば、電極551(i,j)は光透過性を有する材料、電極552は光反射性を有する材料を用いる。画素702(i,j+1)および画素702(i,j+2)についても同様である。発光層553は、発光性の材料を含む層である。
<Configuration Example 1 of Display Element>
The pixel 702 (i, j) includes the display element 550 (i, j) (see FIG. 1B). The display element 550 (i, j) has a function of emitting light. For example, an organic EL element can be used for the display element 550 (i, j). The display element 550 (i, j) includes a light-emitting
また後述の部分で説明するが、画素702(i,j)は赤色の着色膜CF1(R)を備え、画素702(i,j+1)は緑色の着色膜CF1(G)を備え、画素702(i,j+2)は青色の着色膜CF1(B)を備える。 As will be described later, the pixel 702 (i, j) includes a red colored film CF1 (R), the pixel 702 (i, j + 1) includes a green colored film CF1 (G), and the pixel 702 ( i, j + 2) includes a blue colored film CF1 (B).
表示素子550(i,j)において、半光透過性・半光反射性を備える導電膜551_0(i,j)と、光透過性を備える導電膜551_1(i,j)とを、電極551(i,j)に用いることができる。表示素子550(i,j+1)、表示素子550(i,j+2)においても同様である。 In the display element 550 (i, j), a conductive film 551_0 (i, j) having semi-light transmittance and semi-light reflectivity and a conductive film 551_1 (i, j) having light transmittance are formed using an electrode 551 ( i, j). The same applies to the display element 550 (i, j + 1) and the display element 550 (i, j + 2).
光透過性を備える導電膜551_1(i,j)は、半光透過性・半光反射性を備える導電膜551_0(i,j)および発光層553の間に挟まれる領域を備える。
The light-transmitting conductive film 551_1 (i, j) includes a region sandwiched between the light-transmitting
この場合において、発光層553と、光透過性を備える導電膜551_1(i,j)との積層膜を、光透過性を有する膜とみなすことができる。表示素子550(i,j+1)、表示素子550(i,j+2)においても同様である。
In this case, a stacked film of the light-emitting
画素702(i,j)、画素702(i,j+1)、画素702(i,j+2)は微少共振器構造を備える。微小光共振器構造とは、光透過性を有し、厚さ方向において所定の光学距離を有する膜を、半光透過性・半光反射性を備える膜と、光反射膜との間に挟む積層構造を指す。光透過性を有する導電膜551_1(i,j)は、光透過率の異なる2種以上の積層構造としても良い。 The pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2) have a microresonator structure. A micro-optical resonator structure is a light-transmitting film in which a film having a predetermined optical distance in the thickness direction is sandwiched between a light-transmitting film and a light-reflecting film. Refers to a laminated structure. The light-transmitting conductive film 551_1 (i, j) may have a stacked structure of two or more different light transmittances.
図1(B)には、赤色の光R01及びR02、緑色の光G01及びG02、青色の光B01及びB02が示されている。いずれの光も発光層553から射出される。また、d0、d1が示されている。d0、d1はいずれも、導電膜551_0(i,j)と電極552との間の、導電膜551_0の膜厚方向に沿った距離である。
FIG. 1B shows red light R01 and R02, green light G01 and G02, and blue light B01 and B02. Either light is emitted from the
光R02、光G02、光B02、は半光透過性・半光反射性を備える導電膜551_0(i,j)と、光透過性を備える導電膜551_1(i,j)との界面で反射する。また光R02、光G02、光B02、は発光層553と、光反射性を有する電極552との界面で反射する。
The light R02, the light G02, and the light B02 are reflected at an interface between the conductive film 551_0 (i, j) having semi-light transmittance and semi-light reflectivity and the conductive film 551_1 (i, j) having light transmittance. . The light R02, the light G02, and the light B02 are reflected at the interface between the light-emitting
画素702(i,j)において光R01と光R02とは干渉して強めあう。画素702(i,j+1)において光G01と光G02とは干渉して強めあう。画素702(i,j+2)において光B01と光B02とは干渉して強めあう。 In the pixel 702 (i, j), the light R01 and the light R02 interfere and strengthen each other. In the pixel 702 (i, j + 1), the light G01 and the light G02 interfere and strengthen each other. In the pixel 702 (i, j + 2), the light B01 and the light B02 interfere and strengthen each other.
本発明の一態様の表示パネル700において、画素702(i,j)と、画素702(i,j+2)と、は距離d0を有する。また、画素702(i,j)における距離d0と、画素702(i,j+1)における距離d1とは異なる。換言すると、画素702(i,j)における電極552と導電膜551_0(i,j)との距離と、画素702(i,j+2)における電極552と導電膜551_0(i,j+2)との距離とは、概略等しい。また、画素702(i,j)における電極552と導電膜551_0(i,j)との距離と、画素702(i,j+1)における電極552と導電膜551_0(i,j+1)との距離とは、異なる。なお、本明細書等において、2つの距離が概略等しいとは、2つの距離のうちの一方の、他方に対する比が0.8以上1.2以下であることを示す。
In the
光透過性を備える導電膜551_1(i,j)の屈折率に波長依存性があり、赤色の光と青色の光とで互いに屈折率が異なるのであれば、画素702(i,j)における距離d0と、画素702(i,j+2)における距離d0とにおいて、光学距離は異なる。表示パネル700において、上記屈折率を考慮して、距離d0を決定することで、有効な微小光共振器構造が形成される。
If the refractive index of the light-transmitting conductive film 551_1 (i, j) is wavelength-dependent and the refractive indexes of the red light and the blue light are different from each other, the distance at the pixel 702 (i, j) The optical distance differs between d0 and the distance d0 at the pixel 702 (i, j + 2). In the
なお、半光透過性・半光反射性を備える膜は、可視光の一部を透過する機能および他の一部を反射する機能を備える。具体的には、光が透過する程度に薄い金属膜を半光透過性・半光反射性を備える膜に用いることができる。 Note that a film having semi-light transmissivity and semi-light reflectivity has a function of transmitting part of visible light and a function of reflecting another part. Specifically, a metal film that is thin enough to transmit light can be used as a film having semi-light-transmitting properties and semi-light-reflecting properties.
これにより、微小光共振器構造を画素702(i,j)、画素702(i,j+1)、画素702(i,j+2)に設けることができる。画素702(i,j)は、赤色の色純度を高め、表示を鮮やかにすることができる。また画素702(i,j+1)は、緑色の色純度を高め、表示を鮮やかにすることができる。また画素702(i,j+2)は、青色の色純度を高め、表示を鮮やかにすることができる。 Accordingly, the minute optical resonator structure can be provided in the pixel 702 (i, j), the pixel 702 (i, j + 1), and the pixel 702 (i, j + 2). The pixel 702 (i, j) can increase the color purity of red and make the display vivid. In addition, the pixel 702 (i, j + 1) can increase the color purity of green and make the display vivid. The pixel 702 (i, j + 2) can increase the color purity of blue and make the display vivid.
または、所定の波長の光を他の光より効率よく取り出すことができる。または、スペクトルの半値幅が狭い光を取り出すことができる。または、鮮やかな色の光を取り出すことができる。 Alternatively, light with a predetermined wavelength can be extracted more efficiently than other light. Alternatively, light with a narrow half-width of the spectrum can be extracted. Alternatively, brightly colored light can be extracted.
また表示パネル700_1のように、導電膜551_1(i,j)に接して導電膜551_2(i,j)を設ける積層構造としてもよい(図2(B)参照)。ここで、導電膜551_1(i,j)と、導電膜551_2(i,j)とは異なる材料であると好ましい。なお、導電膜551_1(i,j)と、導電膜551_2(i,j)は同じ材料としてもよい。導電膜551_1(i,j+2)においても同様である。 Alternatively, as in the display panel 700_1, a stacked structure in which the conductive film 551_2 (i, j) is provided in contact with the conductive film 551_1 (i, j) may be used (see FIG. 2B). Here, the conductive film 551_1 (i, j) and the conductive film 551_2 (i, j) are preferably different materials. Note that the conductive film 551_1 (i, j) and the conductive film 551_2 (i, j) may be formed of the same material. The same applies to the conductive film 551_1 (i, j + 2).
表示素子550(i,j)において、半光透過性・半光反射性を備える導電膜551_0(i,j)と、光透過性を備える導電膜551_1(i,j)と、光透過性を備える導電膜551_2(i,j)とを、電極551(i,j)に用いることができる。表示素子550(i,j+2)においても同様である。 In the display element 550 (i, j), the conductive film 551_0 (i, j) having semi-light transmittance and semi-light reflectivity, the conductive film 551_1 (i, j) having light transmittance, The provided conductive film 551_2 (i, j) can be used for the electrode 551 (i, j). The same applies to the display element 550 (i, j + 2).
光透過性を備える導電膜551_1(i,j)は、半光透過性・半光反射性を備える導電膜551_0(i,j)および発光層553の間に挟まれる領域を備える。また、光透過性を備える導電膜551_2(i,j)は、光透過性を備える導電膜551_1(i,j)および発光層553の間に挟まれる領域を備える。この場合において、発光層553、光透過性を備える導電膜551_1(i,j)および光透過性を備える導電膜551_2(i,j)の積層膜を光透過性を有する膜とみなすことができる。表示素子550(i,j+2)においても同様である。
The light-transmitting conductive film 551_1 (i, j) includes a region sandwiched between the light-transmitting
表示素子550(i,j+1)において、半光透過性・半光反射性を備える導電膜551_0(i,j+1)と、光透過性を備える導電膜551_1(i,j+1)とを、電極551(i,j+1)に用いることができる。 In the display element 550 (i, j + 1), a conductive film 551_0 (i, j + 1) having a semi-light transmitting property and a semi-light reflecting property and a conductive film 551_1 (i, j + 1) having a light transmitting property are connected to an electrode 551 ( i, j + 1).
光透過性を備える導電膜551_1(i,j+1)は、半光透過性・半光反射性を備える導電膜551_0(i,i+1)および発光層553の間に挟まれる領域を備える。この場合において、発光層553および光透過性を備える導電膜551_1(i,j+1)の積層膜を光透過性を有する膜とみなすことができる。
The light-transmitting conductive film 551_1 (i, j + 1) includes a region sandwiched between the light-transmitting layer 553_0 (i, i + 1) and the light-emitting
実施の形態2で説明するが、電極551(i,j)が、表示パネル700_1のような、積層構造を有する場合、電極551(i,j)の作製工程の簡略化に有効である。
As described in
<画素の構成例1>
例えば、白色の光を発する発光層を発光層553に用いることができる(図2(B)参照)。
<Pixel Configuration Example 1>
For example, a light-emitting layer that emits white light can be used for the light-emitting layer 553 (see FIG. 2B).
画素702(i,j)は赤色の着色膜CF1(R)を備え、赤色の光を射出する機能を備える(図2(B)参照)。画素702(i,j+1)は緑色の着色膜CF1(G)を備え、緑色の光を射出する機能を備える。画素702(i,j+2)は青色の着色膜CF1(B)を備え、青色の光を射出する機能を備える。副画素は、互いに絶縁膜528で区切られている。発光層553は、画素702(i,j)において配設される領域、画素702(i,j+1)において配設される領域、画素702(i,j+2)において配設される領域、を有する。
The pixel 702 (i, j) includes a red colored film CF1 (R) and has a function of emitting red light (see FIG. 2B). The pixel 702 (i, j + 1) includes a green coloring film CF1 (G) and has a function of emitting green light. The pixel 702 (i, j + 2) includes a blue colored film CF1 (B) and has a function of emitting blue light. The sub-pixels are separated from each other by an insulating
画素702(i,j)において、発光層553は、例えば188nmの膜厚とすることができる。導電膜551_1(i,j)は、例えば膜厚50nmの、インジウムと錫と珪素とを有する酸化物導電膜を用いることができる。導電膜551_2(i,j)は、例えば膜厚62nmの、インジウムと亜鉛とを有する酸化物導電膜を用いることができる。画素702(i,j+2)においても同様である。
In the pixel 702 (i, j), the
画素702(i,j+1)において、発光層553は、例えば188nmの膜厚とすることができる。導電膜551_1(i,j+1)は、例えば膜厚50nmの、インジウムと錫と珪素とを有する酸化物導電膜を用いることができる。
In the pixel 702 (i, j + 1), the
上記膜厚による各副画素の構成により、画素702(i,j)は赤色の色純度を高め、画素702(i,j+1)は緑色の色純度を高め、画素702(i,j+1)は青色の色純度を高め、いずれの表示も鮮やかにすることができる。 With the configuration of each sub-pixel based on the film thickness, the pixel 702 (i, j) has a higher red color purity, the pixel 702 (i, j + 1) has a higher green color purity, and the pixel 702 (i, j + 1) has a blue color purity. The color purity of the display can be increased and any display can be made vivid.
<表示パネルの構成例2>
本実施の形態で説明する表示パネル700は、画素702(i,j)を有する(図3(A)または図17参照)。
<Configuration Example 2 of Display Panel>
A
<画素の構成例2>
画素702(i,j)は、表示素子550(i,j)を備える(図3(C)参照)。また、画素702(i,j)は、画素回路530(i,j)を備える。
<Pixel Configuration Example 2>
The pixel 702 (i, j) includes a display element 550 (i, j) (see FIG. 3C). In addition, the pixel 702 (i, j) includes a pixel circuit 530 (i, j).
画素回路530(i,j)は導電膜を備える。当該導電膜は可視光を透過する領域を備えてもよい。例えば、可視光を透過する導電膜を導電膜512A、導電膜512Bおよび導電膜504に用いることができる(図4(A)参照)。
The pixel circuit 530 (i, j) includes a conductive film. The conductive film may include a region that transmits visible light. For example, a conductive film that transmits visible light can be used for the
なお、導電膜512A、導電膜512Bおよび導電膜504は、いずれもトランジスタMの電極の機能を備える。または、導電膜512A、導電膜512Bおよび導電膜504は、いずれも画素回路530(i,j)の配線の機能を備える(図4(A)または図4(B)参照)。
Note that each of the
<表示素子の構成例2>
表示素子550(i,j)は画素回路530(i,j)と電気的に接続される(図3(C)参照)。例えば、表示素子550(i,j)は、接続部522Aにおいて、画素回路530(i,j)と電気的に接続される。具体的には、表示素子550(i,j)の電極551(i,j)は、トランジスタMの導電膜512Aと電気的に接続される。
<Configuration Example 2 of Display Element>
The display element 550 (i, j) is electrically connected to the pixel circuit 530 (i, j) (see FIG. 3C). For example, the display element 550 (i, j) is electrically connected to the pixel circuit 530 (i, j) at the
表示素子550(i,j)は、基板770に向かって可視光を射出する機能を備える(図3(C)、図4(A)参照)。このとき光L1の射出する経路に、着色膜CF1(R)を設けることができる。表示素子550(i,j+1)、表示素子550(i,j+2)も同様とする。 The display element 550 (i, j) has a function of emitting visible light toward the substrate 770 (see FIGS. 3C and 4A). At this time, the colored film CF1 (R) can be provided in the path through which the light L1 is emitted. The same applies to the display element 550 (i, j + 1) and the display element 550 (i, j + 2).
<画素回路の構成例1>
画素回路530(i,j)は、トランジスタMを備え、トランジスタMは、半導体膜508、導電膜512A、導電膜512Bおよびゲート電極として機能する導電膜504を備える。
<Configuration Example 1 of Pixel Circuit>
The pixel circuit 530 (i, j) includes a transistor M. The transistor M includes a
半導体膜508は、導電膜512Aと電気的に接続される領域508A、導電膜512Bと電気的に接続される領域508Bを備える(図4(B)参照)。
The
半導体膜508は、領域508Aおよび領域508Bの間にゲート電極として機能する導電膜504と重なる領域508Cを備える。
The
画素回路530(i,j)は表示素子550(i,j)を駆動する機能を備える(図7参照)。 The pixel circuit 530 (i, j) has a function of driving the display element 550 (i, j) (see FIG. 7).
スイッチ、トランジスタ、ダイオード、抵抗素子、インダクタまたは容量素子等を画素回路530(i,j)に用いることができる。 A switch, a transistor, a diode, a resistor, an inductor, a capacitor, or the like can be used for the pixel circuit 530 (i, j).
例えば、単数または複数のトランジスタをスイッチに用いることができる。または、並列に接続された複数のトランジスタ、直列に接続された複数のトランジスタ、直列と並列が組み合わされて接続された複数のトランジスタを、一のスイッチに用いることができる。 For example, one or more transistors can be used for the switch. Alternatively, a plurality of transistors connected in parallel, a plurality of transistors connected in series, and a plurality of transistors connected in combination of series and parallel can be used for one switch.
例えば、画素回路530(i,j)は、信号線S2(j)、走査線G2(i)および導電膜ANOと電気的に接続される(図7参照)。なお、導電膜512Bは、接続部522Bにおいて導電膜ANOと電気的に接続される(図4(A)および図7参照)。
For example, the pixel circuit 530 (i, j) is electrically connected to the signal line S2 (j), the scanning line G2 (i), and the conductive film ANO (see FIG. 7). Note that the
画素回路530(i,j)は、スイッチSW2、トランジスタMおよび容量素子C21を含む(図7参照)。 The pixel circuit 530 (i, j) includes a switch SW2, a transistor M, and a capacitor C21 (see FIG. 7).
例えば、走査線G2(i)と電気的に接続されるゲート電極と、信号線S2(j)と電気的に接続される第1の電極と、を有するトランジスタを、スイッチSW2に用いることができる。 For example, a transistor including a gate electrode electrically connected to the scan line G2 (i) and a first electrode electrically connected to the signal line S2 (j) can be used for the switch SW2. .
トランジスタMは、スイッチSW2に用いるトランジスタの第2の電極と電気的に接続されるゲート電極と、導電膜ANOと電気的に接続される第1の電極と、を有する。 The transistor M includes a gate electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a first electrode that is electrically connected to the conductive film ANO.
なお、半導体膜をゲート電極との間に挟むように設けられた導電膜を備えるトランジスタを、トランジスタMに用いることができる。例えば、トランジスタMのゲート電極と同じ電位を供給することができる配線と電気的に接続される導電膜を当該導電膜に用いることができる。 Note that a transistor including a conductive film provided so that a semiconductor film is interposed between a gate electrode and the gate electrode can be used for the transistor M. For example, a conductive film that is electrically connected to a wiring that can supply the same potential as the gate electrode of the transistor M can be used for the conductive film.
容量素子C21は、スイッチSW2に用いるトランジスタの第2の電極と電気的に接続される第1の電極と、トランジスタMの第1の電極と電気的に接続される第2の電極と、を有する。 The capacitor C21 includes a first electrode electrically connected to the second electrode of the transistor used for the switch SW2, and a second electrode electrically connected to the first electrode of the transistor M. .
また、表示素子550(i,j)の電極551(i,j)をトランジスタMの第2の電極と電気的に接続し、表示素子550(i,j)の電極552を導電膜VCOM2と電気的に接続する。これにより、表示素子550(i,j)を駆動することができる。
In addition, the electrode 551 (i, j) of the display element 550 (i, j) is electrically connected to the second electrode of the transistor M, and the
<画素の構成例3>
画素702(i,j)は絶縁膜573を備える(図5参照)。例えば、単数の膜または複数の膜を積層した積層膜を絶縁膜573に用いることができる。具体的には、絶縁膜573Aおよび絶縁膜573Bを積層した積層膜を絶縁膜573に用いることができる。
<Pixel Configuration Example 3>
The pixel 702 (i, j) includes an insulating film 573 (see FIG. 5). For example, a single film or a stacked film in which a plurality of films are stacked can be used for the insulating
画素702(i,j)は、絶縁膜518を備える。なお、絶縁膜573は、例えば、表示領域231の外側で絶縁膜518と接する領域を備える。
The pixel 702 (i, j) includes an insulating
表示素子550(i,j)は絶縁膜573および絶縁膜518に挟まれる領域を備える。
The display element 550 (i, j) includes a region sandwiched between the insulating
表示素子550(i,j)は電極551(i,j)、発光層553、および電極552を備える。発光層553は、電極551(i,j)および電極552の間に挟まれる領域を備える。発光層553は、有機化合物を含む。
The display element 550 (i, j) includes an electrode 551 (i, j), a
これにより、表示素子への不純物の拡散を抑制することができる。その結果、利便性または信頼性に優れた新規な表示装置を提供することができる。 Thereby, diffusion of impurities to the display element can be suppressed. As a result, a novel display device that is highly convenient or reliable can be provided.
<表示パネルの構成例3>
また、本実施の形態で説明する表示パネル700は、表示領域231を有する(図17参照)。
<Configuration Example 3 of Display Panel>
In addition, the
<表示領域の構成例>
表示領域231は、一群の複数の画素702(i,1)乃至画素702(i,n)と、他の一群の複数の画素702(1,j)乃至画素702(m,j)と、走査線G2(i)と、信号線S2(j)と、を有する(図17参照)。また、導電膜VCOM2と、導電膜ANOと、を有する。なお、iは1以上m以下の整数であり、jは1以上n以下の整数であり、mおよびnは1以上の整数である。
<Configuration example of display area>
The
一群の複数の画素702(i,1)乃至画素702(i,n)は画素702(i,j)を含み、一群の複数の画素702(i,1)乃至画素702(i,n)は行方向(図中に矢印R1で示す方向)に配設される。 A group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes a pixel 702 (i, j), and a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes Arranged in the row direction (direction indicated by arrow R1 in the figure).
他の一群の複数の画素702(1,j)乃至画素702(m,j)は画素702(i,j)を含み、他の一群の複数の画素702(1,j)乃至画素702(m,j)は行方向と交差する列方向(図中に矢印C1で示す方向)に配設される。 The other group of the plurality of pixels 702 (1, j) to 702 (m, j) includes the pixel 702 (i, j), and the other group of the plurality of pixels 702 (1, j) to 702 (m , J) are arranged in a column direction (direction indicated by an arrow C1 in the drawing) intersecting the row direction.
走査線G2(i)は、行方向に配設される一群の複数の画素702(i,1)乃至画素702(i,n)と電気的に接続される。 The scan line G2 (i) is electrically connected to a group of the plurality of pixels 702 (i, 1) to 702 (i, n) arranged in the row direction.
信号線S2(j)は、列方向に配設される他の一群の複数の画素702(1,j)乃至画素702(m,j)と電気的に接続される。 The signal line S2 (j) is electrically connected to another group of the plurality of pixels 702 (1, j) to 702 (m, j) arranged in the column direction.
<表示パネルの構成例4>
また、本実施の形態で説明する表示パネル700は、駆動回路GDまたは駆動回路SDを備えることができる(図3(A)および図17参照)。
<Configuration Example 4 of Display Panel>
In addition, the
<駆動回路GD>
駆動回路GDは、制御情報に基づいて選択信号を供給する機能を有する。
<Drive circuit GD>
The drive circuit GD has a function of supplying a selection signal based on the control information.
一例を挙げれば、制御情報に基づいて、30Hz以上、好ましくは60Hz以上の頻度で一の走査線に選択信号を供給する機能を備える。これにより、動画像をなめらかに表示することができる。 For example, a function of supplying a selection signal to one scanning line at a frequency of 30 Hz or higher, preferably 60 Hz or higher is provided based on the control information. Thereby, a moving image can be displayed smoothly.
例えば、制御情報に基づいて、30Hz未満、好ましくは1Hz未満より好ましくは一分に一回未満の頻度で一の走査線に選択信号を供給する機能を備える。これにより、フリッカーが抑制された状態で静止画像を表示することができる。 For example, it has a function of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute based on the control information. Thereby, a still image can be displayed in a state where flicker is suppressed.
また、表示パネルは、複数の駆動回路を有することができる。例えば、表示パネル700Bは、駆動回路GDAおよび駆動回路GDBを有する(図18参照)。
In addition, the display panel can include a plurality of driver circuits. For example, the
また、例えば、複数の駆動回路を備える場合、駆動回路GDAが選択信号を供給する頻度と、駆動回路GDBが選択信号を供給する頻度とを、異ならせることができる。具体的には、静止画像を表示する一の領域に選択信号を供給する頻度より高い頻度で、動画像を表示する他の領域に選択信号を供給することができる。これにより、一の領域にフリッカーが抑制された状態で静止画像を表示し、他の領域に滑らかに動画像を表示することができる。 For example, when a plurality of drive circuits are provided, the frequency with which the drive circuit GDA supplies the selection signal and the frequency with which the drive circuit GDB supplies the selection signal can be made different. Specifically, the selection signal can be supplied to another region displaying the moving image at a frequency higher than the frequency of supplying the selection signal to one region displaying the still image. Thereby, a still image can be displayed in a state where flicker is suppressed in one area, and a moving image can be displayed smoothly in another area.
<駆動回路SD>
駆動回路SDは、駆動回路SD1と、駆動回路SD2と、を有する。駆動回路SD1は、情報V11に基づいて画像信号を供給する機能を有し、駆動回路SD2は、情報V12に基づいて画像信号を供給する機能を有する(図22または図23参照)。
<Drive circuit SD>
The drive circuit SD includes a drive circuit SD1 and a drive circuit SD2. The drive circuit SD1 has a function of supplying an image signal based on the information V11, and the drive circuit SD2 has a function of supplying an image signal based on the information V12 (see FIG. 22 or FIG. 23).
駆動回路SD1または駆動回路SD2は、画像信号を生成する機能と、当該画像信号を一の表示素子と電気的に接続される画素回路に供給する機能を備える。具体的には、極性が反転する信号を生成する機能を備える。これにより、例えば、液晶表示素子を駆動することができる。 The drive circuit SD1 or the drive circuit SD2 has a function of generating an image signal and a function of supplying the image signal to a pixel circuit that is electrically connected to one display element. Specifically, it has a function of generating a signal whose polarity is inverted. Thereby, for example, a liquid crystal display element can be driven.
例えば、シフトレジスタ等のさまざまな順序回路等を駆動回路SDに用いることができる。 For example, various sequential circuits such as a shift register can be used for the drive circuit SD.
例えば、駆動回路SD1および駆動回路SD2が集積された集積回路を、駆動回路SDに用いることができる。具体的には、シリコン基板上に形成された集積回路を駆動回路SDに用いることができる。 For example, an integrated circuit in which the drive circuit SD1 and the drive circuit SD2 are integrated can be used for the drive circuit SD. Specifically, an integrated circuit formed on a silicon substrate can be used for the drive circuit SD.
例えば、COG(Chip on glass)法またはCOF(Chip on Film)法を用いて、集積回路を端子に実装することができる。具体的には、異方性導電膜を用いて、集積回路を端子に実装することができる。 For example, an integrated circuit can be mounted on a terminal by using a COG (Chip on glass) method or a COF (Chip on Film) method. Specifically, an integrated circuit can be mounted on a terminal using an anisotropic conductive film.
<表示パネルの構成例5>
また、本実施の形態で説明する表示パネル700は、端子519B、基板570、基板770、接合層505、機能膜770P等を備える(図4(A)または図5参照)。
<Configuration Example 5 of Display Panel>
In addition, the
<端子519B>
端子519Bは、例えば、導電膜511Bを備える。端子519Bは、例えば、信号線S2(j)と電気的に接続することができる。
<
The terminal 519B includes a
<基板570、基板770>
基板770は、基板570と重なる領域を備える。基板770は、基板570との間に表示素子550(i,j)を挟む領域を備える。
<
The
基板770の、表示素子550(i,j)と重なる領域において、例えば、複屈折が抑制された材料を用いることができる。
In the region of the
<接合層505>
接合層505は、基板770および基板570を貼り合せる機能を備える。
<
The
<機能膜770P等>
機能膜770Pは、表示素子550(i,j)と重なる領域を備える。
<
The
<構成要素の例>
表示パネル700は、基板570、基板770または接合層505を有する。
<Examples of components>
The
また、表示パネル700は、絶縁膜521A、絶縁膜521B、絶縁膜528、絶縁膜516、絶縁膜503または絶縁膜506を有する。
The
また、表示パネル700は、信号線S2(j)、走査線G2(i)または導電膜ANOを有する。
In addition, the
また、表示パネル700は、端子519Bまたは導電膜511Bを有する。
In addition, the
また、表示パネル700は、画素回路530(i,j)またはトランジスタMを有する。
The
また、表示パネル700は、表示素子550(i,j)、電極551(i,j)、電極552または発光層553(j)を有する。
The
また、表示パネル700は、絶縁膜573を有する。
In addition, the
また、表示パネル700は、駆動回路GDまたは駆動回路SDを有する。
In addition, the
<基板570>
作製工程中の熱処理に耐えうる程度の耐熱性を有する材料を基板570に用いることができる。
<
A material having heat resistance high enough to withstand heat treatment in the manufacturing process can be used for the
例えば、厚さ0.7mm以下厚さ0.1mm以上の材料を基板570に用いることができる。具体的には、厚さ0.1mm程度まで研磨又はエッチングした材料を用いることができる。
For example, a material having a thickness of 0.7 mm or less and a thickness of 0.1 mm or more can be used for the
例えば、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の面積が大きなガラス基板を基板570に用いることができる。これにより、大型の表示装置を作製することができる。
For example, the areas of the sixth generation (1500 mm × 1850 mm), the seventh generation (1870 mm × 2200 mm), the eighth generation (2200 mm × 2400 mm), the ninth generation (2400 mm × 2800 mm), the tenth generation (2950 mm × 3400 mm), etc. A large glass substrate can be used for the
有機材料、無機材料または有機材料と無機材料等の複合材料等を基板570に用いることができる。例えば、ガラス、セラミックス、金属等の無機材料を基板570に用いることができる。
An organic material, an inorganic material, a composite material of an organic material and an inorganic material, or the like can be used for the
具体的には、無アルカリガラス、ソーダ石灰ガラス、カリガラス、クリスタルガラス、アルミノ珪酸ガラス、強化ガラス、化学強化ガラス、石英またはサファイア等を、基板570に用いることができる。具体的には、無機酸化物膜、無機窒化物膜または無機酸窒化物膜等を、基板570に用いることができる。例えば、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を、基板570に用いることができる。ステンレス・スチールまたはアルミニウム等を、基板570に用いることができる。
Specifically, alkali-free glass, soda-lime glass, potash glass, crystal glass, aluminosilicate glass, tempered glass, chemically tempered glass, quartz, sapphire, or the like can be used for the
例えば、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等を基板570に用いることができる。これにより、半導体素子を基板570に形成することができる。
For example, a single crystal semiconductor substrate made of silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, an SOI substrate, or the like can be used for the
例えば、樹脂、樹脂フィルムまたはプラスチック等の有機材料を基板570に用いることができる。具体的には、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネートまたはアクリル樹脂等の樹脂フィルムまたは樹脂板を、基板570に用いることができる。
For example, an organic material such as a resin, a resin film, or plastic can be used for the
例えば、金属板、薄板状のガラス板または無機材料等の膜を樹脂フィルム等に貼り合わせた複合材料を基板570に用いることができる。例えば、繊維状または粒子状の金属、ガラスもしくは無機材料等を樹脂フィルムに分散した複合材料を、基板570に用いることができる。例えば、繊維状または粒子状の樹脂もしくは有機材料等を無機材料に分散した複合材料を、基板570に用いることができる。
For example, a composite material in which a film such as a metal plate, a thin glass plate, or an inorganic material is attached to a resin film or the like can be used for the
また、単層の材料または複数の層が積層された材料を、基板570に用いることができる。例えば、基材と基材に含まれる不純物の拡散を防ぐ絶縁膜等が積層された材料を、基板570に用いることができる。具体的には、ガラスとガラスに含まれる不純物の拡散を防ぐ酸化シリコン層、窒化シリコン層または酸化窒化シリコン層等から選ばれた一または複数の膜が積層された材料を、基板570に用いることができる。または、樹脂と樹脂を透過する不純物の拡散を防ぐ酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜等が積層された材料を、基板570に用いることができる。
Further, a single layer material or a material in which a plurality of layers is stacked can be used for the
具体的には、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネート若しくはアクリル樹脂等の樹脂フィルム、樹脂板または積層材料等を基板570に用いることができる。
Specifically, a resin film such as polyester, polyolefin, polyamide, polyimide, polycarbonate, or an acrylic resin, a resin plate, a laminated material, or the like can be used for the
具体的には、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリカーボネート、ポリウレタン、アクリル樹脂、エポキシ樹脂もしくはシリコーン等のシロキサン結合を有する樹脂を含む材料を基板570に用いることができる。
Specifically, a material containing a resin having a siloxane bond such as polyester, polyolefin, polyamide (nylon, aramid, or the like), polyimide, polycarbonate, polyurethane, acrylic resin, epoxy resin, or silicone can be used for the
具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)またはアクリル樹脂等を基板570に用いることができる。または、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等を用いることができる。
Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, or the like can be used for the
また、紙または木材などを基板570に用いることができる。
Further, paper, wood, or the like can be used for the
例えば、可撓性を有する基板を基板570に用いることができる。
For example, a flexible substrate can be used for the
なお、トランジスタまたは容量素子等を基板に直接形成する方法を用いることができる。また、例えば作製工程中に加わる熱に耐熱性を有する工程用の基板にトランジスタまたは容量素子等を形成し、形成されたトランジスタまたは容量素子等を基板570に転置する方法を用いることができる。これにより、例えば可撓性を有する基板にトランジスタまたは容量素子等を形成できる。
Note that a method of directly forming a transistor, a capacitor, or the like over a substrate can be used. Alternatively, for example, a method in which a transistor, a capacitor, or the like is formed over a substrate for a process that has heat resistance to heat applied during the manufacturing process, and the formed transistor, capacitor, or the like is transferred to the
<基板770>
例えば、基板570に用いることができる材料を基板770に用いることができる。例えば、基板570に用いることができる材料から選択された光透過性を備える材料を、基板770に用いることができる。または、片側の表面に、例えば1μm以下の反射防止膜が形成された材料を基板770に用いることができる。具体的には、誘電体を3層以上、好ましくは5層以上、より好ましくは15層以上積層した積層膜を基板770に用いることができる。これにより、反射率を0.5%以下好ましくは0.08%以下に抑制することができる。
<
For example, a material that can be used for the
例えば、アルミノ珪酸ガラス、強化ガラス、化学強化ガラスまたはサファイア等を、表示パネルの使用者に近い側に配置される基板770に好適に用いることができる。これにより、使用に伴う表示パネルの破損や傷付きを防止することができる。
For example, aluminosilicate glass, tempered glass, chemically tempered glass, sapphire, or the like can be suitably used for the
例えば、樹脂フィルムを基板770に好適に用いることができる。これにより、重量を低減することができる。または、例えば、落下に伴う破損等の発生頻度を低減することができる。
For example, a resin film can be preferably used for the
また、例えば、厚さ0.7mm以下厚さ0.1mm以上の材料を基板770に用いることができる。具体的には、厚さを薄くするために研磨した基板を用いることができる。これにより、重量を低減することができる。
For example, a material having a thickness of 0.7 mm or less and a thickness of 0.1 mm or more can be used for the
<絶縁膜521A、絶縁膜521B>
例えば、絶縁性の無機材料、絶縁性の有機材料または無機材料と有機材料を含む絶縁性の複合材料を、絶縁膜521Aまたは絶縁膜521Bに用いることができる。
<Insulating
For example, an insulating inorganic material, an insulating organic material, or an insulating composite material including an inorganic material and an organic material can be used for the insulating
具体的には、無機酸化物膜、無機窒化物膜または無機酸化窒化物膜等またはこれらから選ばれた複数を積層した積層材料を、絶縁膜521Aまたは絶縁膜521Bに用いることができる。
Specifically, an inorganic oxide film, an inorganic nitride film, an inorganic oxynitride film, or the like, or a stacked material in which a plurality selected from these films is stacked can be used for the insulating
例えば、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等またはこれらから選ばれた複数を積層した積層材料を含む膜を、絶縁膜521Aまたは絶縁膜521Bに用いることができる。なお、窒化シリコン膜は緻密な膜であり、不純物の拡散を抑制する機能に優れる。
For example, a film including a silicon oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxide film, or the like, or a stacked material in which a plurality of layers selected from these are stacked can be used for the insulating
例えば、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネート、ポリシロキサン若しくはアクリル樹脂等またはこれらから選択された複数の樹脂の積層材料もしくは複合材料などを絶縁膜521Aまたは絶縁膜521Bに用いることができる。また、感光性を有する材料を用いて形成してもよい。これにより、絶縁膜521Aまたは絶縁膜521Bは、例えば、絶縁膜521Aまたは絶縁膜521Bと重なるさまざまな構造に由来する段差を平坦化することができる。
For example, polyester, polyolefin, polyamide, polyimide, polycarbonate, polysiloxane, acrylic resin, or the like, or a laminated material or a composite material of a plurality of resins selected from these can be used for the insulating
なお、ポリイミドは熱的安定性、絶縁性、靱性、低誘電率、低熱膨張率、耐薬品性などの特性において他の有機材料に比べて優れた特性を備える。これにより、特にポリイミドを絶縁膜521Aまたは絶縁膜521B等に好適に用いることができる。
Note that polyimide has characteristics superior to other organic materials in characteristics such as thermal stability, insulation, toughness, low dielectric constant, low thermal expansion coefficient, and chemical resistance. Thereby, polyimide can be suitably used for the insulating
例えば、感光性を有する材料を用いて形成された膜を絶縁膜521Aまたは絶縁膜521Bに用いることができる。具体的には、感光性のポリイミドまたは感光性のアクリル樹脂等を用いて形成された膜を絶縁膜521Aまたは絶縁膜521Bに用いることができる。
For example, a film formed using a photosensitive material can be used for the insulating
例えば、光透過性を有する材料を絶縁膜521Aまたは絶縁膜521Bに用いることができる。具体的には、窒化シリコンを絶縁膜521Aまたは絶縁膜521Bに用いることができる。
For example, a light-transmitting material can be used for the insulating
<絶縁膜528>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜528に用いることができる。具体的には、ポリイミドを含む膜を絶縁膜528に用いることができる。
<Insulating
For example, a material that can be used for the insulating
<絶縁膜518>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜518に用いることができる。
<Insulating
For example, a material that can be used for the insulating
例えば、酸素、水素、水、アルカリ金属、アルカリ土類金属等の拡散を抑制する機能を備える材料を絶縁膜518に用いることができる。具体的には、窒化物絶縁膜を絶縁膜518に用いることができる。例えば、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等を絶縁膜518に用いることができる。これにより、トランジスタの半導体膜への不純物の拡散を抑制することができる。例えば、トランジスタの半導体膜に用いる酸化物半導体膜からトランジスタの外部への酸素の拡散を抑制することができる。または、トランジスタの外部から酸化物半導体膜への水素または水等の拡散を抑制することができる。
For example, a material having a function of suppressing diffusion of oxygen, hydrogen, water, alkali metal, alkaline earth metal, or the like can be used for the insulating
例えば、水素または窒素を供給する機能を有する材料を絶縁膜518に用いることができる。これにより、絶縁膜518に接する膜に水素または窒素を供給することができる。例えば、酸化物半導体膜に接するように絶縁膜518を形成し、当該酸化物半導体膜に水素または窒素を供給することができる。または、当該酸化物半導体膜に導電性を付与することができる。または、当該酸化物半導体膜を第2のゲート電極に用いることができる。
For example, a material having a function of supplying hydrogen or nitrogen can be used for the insulating
<絶縁膜516>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜516に用いることができる。具体的には、作製方法が異なる膜を積層した積層膜を絶縁膜516に用いることができる。
<Insulating
For example, a material that can be used for the insulating
例えば、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコンまたは酸化窒化シリコン等を含む第1の膜と、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコンまたは酸化窒化シリコン等を含む第2の膜とを積層した積層膜を、絶縁膜516に用いることができる。
For example, a first film containing silicon oxide or silicon oxynitride having a thickness of 5 nm to 150 nm, preferably 5 nm to 50 nm, and a silicon oxide having a thickness of 30 nm to 500 nm, preferably 50 nm to 400 nm Alternatively, a stacked film in which a second film containing silicon oxynitride or the like is stacked can be used for the insulating
具体的には、ESR測定により観測することができるシリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が3×1017spins/cm3以下である膜を第1の膜に用いると好ましい。これにより、例えば、トランジスタの半導体膜に用いる酸化物半導体膜を、絶縁膜の形成にともなう損傷から、保護することができる。または、シリコンの欠陥に捉えられる酸素を低減することができる。または、酸素の透過または移動を容易にすることができる。 Specifically, a film in which the spin density of a signal appearing at g = 2.001 derived from a dangling bond of silicon that can be observed by ESR measurement is 3 × 10 17 spins / cm 3 or less is a first film. It is preferable to use it. Accordingly, for example, an oxide semiconductor film used for a semiconductor film of a transistor can be protected from damage caused by formation of the insulating film. Alternatively, oxygen captured by silicon defects can be reduced. Alternatively, permeation or movement of oxygen can be facilitated.
また、例えば、ESR測定により観測することができるシリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が1.5×1018spins/cm3未満、さらには1×1018spins/cm3以下である材料を第2の膜に用いると好ましい。 For example, the spin density of a signal appearing at g = 2.001 derived from a dangling bond of silicon that can be observed by ESR measurement is less than 1.5 × 10 18 spins / cm 3 , and further 1 × 10 18. A material having a spins / cm 3 or less is preferably used for the second film.
<絶縁膜503>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜503に用いることができる。具体的には、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム、酸化シリコンまたは酸化窒化シリコン等を絶縁膜503に用いることができる。これにより、例えば、トランジスタの半導体膜への不純物の拡散を抑制することができる。
<Insulating
For example, a material that can be used for the insulating
<絶縁膜506>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜506に用いることができる。具体的には、酸素の透過を抑制する機能を備える第1の膜と、酸素を供給する機能を備える第2の膜とを積層した積層膜を、絶縁膜506に用いることができる。これにより、例えば、トランジスタの半導体膜に用いる酸化物半導体膜に酸素を拡散することができる。
<Insulating
For example, a material that can be used for the insulating
具体的には、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜または酸化ネオジム膜を含む膜を絶縁膜506に用いることができる。
Specifically, silicon oxide film, silicon oxynitride film, silicon nitride oxide film, silicon nitride film, aluminum oxide film, hafnium oxide film, yttrium oxide film, zirconium oxide film, gallium oxide film, tantalum oxide film, magnesium oxide film A film including a lanthanum oxide film, a cerium oxide film, or a neodymium oxide film can be used for the insulating
例えば、酸素雰囲気下において形成された膜を第2の膜に用いることができる。または、成膜後に酸素を導入した膜を第2の膜に用いることができる。具体的には、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、プラズマ処理等を用いて成膜後に酸素を導入することができる。 For example, a film formed in an oxygen atmosphere can be used for the second film. Alternatively, a film into which oxygen is introduced after film formation can be used for the second film. Specifically, oxygen can be introduced after film formation by ion implantation, ion doping, plasma immersion ion implantation, plasma treatment, or the like.
<絶縁膜573>
例えば、絶縁膜521Aまたは絶縁膜521Bに用いることができる材料を絶縁膜573に用いることができる。具体的には、絶縁膜573Aおよび絶縁膜573Bを積層した積層膜を絶縁膜573に用いることができる。
<Insulating
For example, a material that can be used for the insulating
例えば、酸化物または窒化物を絶縁膜573に用いることができる。具体的には、酸化アルミニウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、窒化シリコンまたは窒化アルミニウム等を絶縁膜573に用いることができる。
For example, an oxide or a nitride can be used for the insulating
具体的には、1×10−2g/(m2・day)未満、好ましくは、5×10−3g/(m2・day)以下、好ましくは1×10−4g/(m2・day)以下、好ましくは1×10−5g/(m2・day)以下、好ましくは1×10−6g/(m2・day)以下の水蒸気透過率を備える膜を、絶縁膜573に用いる。 Specifically, it is less than 1 × 10 −2 g / (m 2 · day), preferably 5 × 10 −3 g / (m 2 · day) or less, preferably 1 × 10 −4 g / (m 2 Day), preferably a film having a water vapor transmission rate of 1 × 10 −5 g / (m 2 · day) or less, preferably 1 × 10 −6 g / (m 2 · day) or less. Used for.
例えば、スパッタリング法を用いて形成することができる膜を絶縁膜573Bに用いることができる。また、原子層堆積法(Atomic Layer Deposition法;ALD法)を用いて形成することができる膜を絶縁膜573Aに用いることができる。これにより、例えば、スパッタリング法を用いて形成される絶縁膜に生じる密度が低い領域を、原子層堆積法を用いて形成される緻密な絶縁膜で覆うことができる。または、スパッタリング法を用いて形成される絶縁膜に生じる不純物が拡散しやすい領域を、原子層堆積法を用いて形成される不純物の拡散しにくい膜で覆うことができる。または、外部から表示素子への不純物の拡散を抑制することができる。
For example, a film that can be formed by a sputtering method can be used for the insulating
具体的には、50nm以上1000nm以下、好ましくは100nm以上300nm以下の厚さの酸化アルミニウムを含む膜を、絶縁膜573Bに用いることができる。また、1nm以上100nm以下、好ましくは5nm以上50nm以下の厚さの酸化アルミニウムを含む膜を、絶縁膜573Aに用いることができる。
Specifically, a film containing aluminum oxide with a thickness of 50 nm to 1000 nm, preferably 100 nm to 300 nm can be used for the insulating
<配線、端子、導電膜>
導電性を備える材料を配線等に用いることができる。具体的には、導電性を備える材料を、信号線S2(j)、走査線G2(i)、導電膜ANO、端子519Bまたは導電膜511B等に用いることができる。
<Wiring, terminal, conductive film>
A conductive material can be used for the wiring or the like. Specifically, a material having conductivity can be used for the signal line S2 (j), the scanning line G2 (i), the conductive film ANO, the terminal 519B, the
例えば、無機導電性材料、有機導電性材料、金属または導電性セラミックスなどを配線等に用いることができる。 For example, an inorganic conductive material, an organic conductive material, a metal, a conductive ceramic, or the like can be used for the wiring.
具体的には、アルミニウム、金、白金、銀、銅、クロム、タンタル、チタン、モリブデン、タングステン、ニッケル、鉄、コバルト、パラジウムまたはマンガンから選ばれた金属元素などを、配線等に用いることができる。または、上述した金属元素を含む合金などを、配線等に用いることができる。特に、銅とマンガンの合金がウエットエッチング法を用いた微細加工に好適である。 Specifically, a metal element selected from aluminum, gold, platinum, silver, copper, chromium, tantalum, titanium, molybdenum, tungsten, nickel, iron, cobalt, palladium, or manganese can be used for the wiring or the like. . Alternatively, an alloy containing the above metal element can be used for the wiring or the like. In particular, an alloy of copper and manganese is suitable for fine processing using a wet etching method.
具体的には、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等を配線等に用いることができる。 Specifically, a two-layer structure in which a titanium film is laminated on an aluminum film, a two-layer structure in which a titanium film is laminated on a titanium nitride film, a two-layer structure in which a tungsten film is laminated on a titanium nitride film, a tantalum nitride film or A two-layer structure in which a tungsten film is stacked on a tungsten nitride film, a titanium film, and a three-layer structure in which an aluminum film is stacked on the titanium film and a titanium film is further formed thereon can be used for wiring or the like. .
具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物を、配線等に用いることができる。 Specifically, a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide to which gallium is added can be used for the wiring or the like.
具体的には、グラフェンまたはグラファイトを含む膜を配線等に用いることができる。 Specifically, a film containing graphene or graphite can be used for the wiring or the like.
例えば、酸化グラフェンを含む膜を形成し、酸化グラフェンを含む膜を還元することにより、グラフェンを含む膜を形成することができる。還元する方法としては、熱を加える方法や還元剤を用いる方法等を挙げることができる。 For example, by forming a film containing graphene oxide and reducing the film containing graphene oxide, the film containing graphene can be formed. Examples of the reduction method include a method of applying heat and a method of using a reducing agent.
例えば、金属ナノワイヤーを含む膜を配線等に用いることができる。具体的には、銀を含むナノワイヤーを用いることができる。 For example, a film containing metal nanowires can be used for wiring or the like. Specifically, a nanowire containing silver can be used.
具体的には、導電性高分子を配線等に用いることができる。 Specifically, a conductive polymer can be used for wiring or the like.
なお、例えば、導電材料ACF1を用いて、端子519Bとフレキシブルプリント基板FPC1を電気的に接続することができる。具体的には、端子519Bとフレキシブルプリント基板FPC1を導電材料CPを用いて電気的に接続することができる。 Note that, for example, the conductive material ACF1 can be used to electrically connect the terminal 519B and the flexible printed circuit board FPC1. Specifically, the terminal 519B and the flexible printed circuit board FPC1 can be electrically connected using the conductive material CP.
<機能膜770P>
例えば、反射防止フィルム、偏光フィルムまたは位相差フィルム等を機能膜770Pに用いることができる。
<
For example, an antireflection film, a polarizing film, a retardation film, or the like can be used for the
具体的には、円偏光フィルムを機能膜770Pに用いることができる。
Specifically, a circularly polarizing film can be used for the
また、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、反射防止膜(アンチ・リフレクション膜)、非光沢処理膜(アンチ・グレア膜)、使用に伴う傷の発生を抑制するハードコート膜などを、機能膜770Pに用いることができる。
In addition, antistatic film that suppresses adhesion of dust, water-repellent film that makes it difficult to adhere dirt, antireflection film (anti-reflection film), non-glossy film (anti-glare film), and scratches caused by use A hard coat film or the like that suppresses the above can be used for the
<表示素子550(i,j)>
例えば、光を射出する機能を備える表示素子を表示素子550(i,j)に用いることができる。具体的には、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、発光ダイオードまたはQDLED(Quantum Dot LED)等を、表示素子550(i,j)に用いることができる。
<Display element 550 (i, j)>
For example, a display element having a function of emitting light can be used for the display element 550 (i, j). Specifically, an organic electroluminescence element, an inorganic electroluminescence element, a light emitting diode, a QDLED (Quantum Dot LED), or the like can be used for the display element 550 (i, j).
例えば、発光性の有機化合物を発光層553(j)に用いることができる。 For example, a light-emitting organic compound can be used for the light-emitting layer 553 (j).
例えば、量子ドットを発光層553(j)に用いることができる。これにより、半値幅が狭く、鮮やかな色の光を発することができる。 For example, quantum dots can be used for the light-emitting layer 553 (j). Thereby, the half value width is narrow and it is possible to emit brightly colored light.
<発光層>
例えば、白色の光を射出するように積層された積層材料等を、発光層553(j)に用いることができる。
<Light emitting layer>
For example, a stacked material or the like stacked so as to emit white light can be used for the light-emitting layer 553 (j).
例えば、信号線S2(j)に沿って列方向に長い帯状の積層材料を、発光層553(j)に用いることができる。 For example, a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j).
例えば、副画素毎に異なる発光層を形成しても良い。このとき、赤色の光を射出するように積層された積層材料を発光層553(j)に、緑色の光を射出するように積層された積層材料を発光層553(j+1)に、青色の光を射出するように積層された積層材料等を発光層553(j+2)に、用いることができる。 For example, a different light emitting layer may be formed for each subpixel. At this time, the laminated material laminated so as to emit red light is applied to the light emitting layer 553 (j), the laminated material laminated so as to emit green light is applied to the light emitting layer 553 (j + 1), and blue light is emitted. Or the like can be used for the light-emitting layer 553 (j + 2).
このとき、信号線S2(j)に沿って列方向に長い帯状の積層材料を、発光層553(j)、発光層553(j+1)、発光層553(j+2)に用いることができる。 At this time, a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j), the light-emitting layer 553 (j + 1), and the light-emitting layer 553 (j + 2).
<電極551(i,j)、電極552>
例えば、配線等に用いることができる材料から選択された、可視光について光透過性を有する材料を、電極551(i,j)に用いることができる。
<Electrode 551 (i, j),
For example, a material having a light-transmitting property with respect to visible light selected from materials that can be used for wirings or the like can be used for the electrode 551 (i, j).
具体的には、導電性酸化物またはインジウムを含む導電性酸化物、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などを、電極551(i,j)に用いることができる。または、光が透過する程度に薄い金属膜を電極551(i,j)に用いることができる。または、光の一部を透過し、光の他の一部を反射する金属膜を電極551(i,j)に用いることができる。これにより、微小光共振器構造を表示素子550(i,j)に設けることができる。その結果、所定の波長の光を他の光より効率よく取り出すことができる。 Specifically, a conductive oxide or a conductive oxide containing indium, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or the like is used as the electrode 551 (i, j). Can be used. Alternatively, a metal film that is thin enough to transmit light can be used for the electrode 551 (i, j). Alternatively, a metal film that transmits part of light and reflects another part of light can be used for the electrode 551 (i, j). Thereby, the minute optical resonator structure can be provided in the display element 550 (i, j). As a result, light with a predetermined wavelength can be extracted more efficiently than other light.
例えば、配線等に用いることができる材料を電極552に用いることができる。具体的には、光反射性の材料、換言すれば可視光について反射性を有する材料、を電極552に用いることができる。
For example, a material that can be used for wiring or the like can be used for the
<駆動回路GD>
シフトレジスタ等のさまざまな順序回路等を駆動回路GDに用いることができる。例えば、トランジスタMD、容量素子等を駆動回路GDに用いることができる。具体的には、スイッチSW2に用いることができるトランジスタまたはトランジスタMと同一の工程で形成することができる半導体膜を備えるトランジスタを用いることができる。
<Drive circuit GD>
Various sequential circuits such as a shift register can be used for the drive circuit GD. For example, a transistor MD, a capacitor, or the like can be used for the drive circuit GD. Specifically, a transistor that can be used for the switch SW2 or a transistor including a semiconductor film that can be formed in the same process as the transistor M can be used.
例えば、トランジスタMと同一の構成を、トランジスタMDに用いることができる。 For example, the same structure as the transistor M can be used for the transistor MD.
例えば、トランジスタMに用いることができるトランジスタと異なる構成をトランジスタMDに用いることができる。具体的には、金属膜を導電膜512C、導電膜512Dおよび導電膜504Eに用いることができる(図4(C)参照)。これにより、配線としての機能を兼ねる導電膜の電気抵抗を低減することができる。または、領域508Cに向かって進行する外光を遮光することができる。または、外光に起因するトランジスタの電気特性の異常を防ぐことができる。または、トランジスタの信頼性を向上することができる。
For example, a different structure from the transistor that can be used for the transistor M can be used for the transistor MD. Specifically, a metal film can be used for the
<トランジスタ>
例えば、同一の工程で形成することができる半導体膜を駆動回路および画素回路のトランジスタに用いることができる。
<Transistor>
For example, a semiconductor film that can be formed in the same process can be used for a transistor in a driver circuit and a pixel circuit.
例えば、ボトムゲート型のトランジスタまたはトップゲート型のトランジスタなどを駆動回路のトランジスタまたは画素回路のトランジスタに用いることができる。 For example, a bottom-gate transistor, a top-gate transistor, or the like can be used as a driver circuit transistor or a pixel circuit transistor.
ところで、例えば、アモルファスシリコンを半導体に用いるボトムゲート型のトランジスタの製造ラインは、酸化物半導体を半導体に用いるボトムゲート型のトランジスタの製造ラインに容易に改造できる。また、例えばポリシリコンを半導体に用いるトップゲート型の製造ラインは、酸化物半導体を半導体に用いるトップゲート型のトランジスタの製造ラインに容易に改造できる。いずれの改造も、既存の製造ラインを有効に活用することができる。 By the way, for example, a bottom-gate transistor production line using amorphous silicon as a semiconductor can be easily modified to a bottom-gate transistor production line using an oxide semiconductor as a semiconductor. For example, a top gate type production line using polysilicon as a semiconductor can be easily modified to a top gate type transistor production line using an oxide semiconductor as a semiconductor. Both modifications can make effective use of existing production lines.
例えば、酸化物半導体を半導体膜に用いるトランジスタを利用することができる。具体的には、インジウムを含む酸化物半導体またはインジウムとガリウムと亜鉛を含む酸化物半導体を半導体膜に用いることができる。 For example, a transistor in which an oxide semiconductor is used for a semiconductor film can be used. Specifically, an oxide semiconductor containing indium or an oxide semiconductor containing indium, gallium, and zinc can be used for the semiconductor film.
一例を挙げれば、オフ状態におけるリーク電流が、半導体膜にアモルファスシリコンを用いたトランジスタより小さいトランジスタを用いることができる。具体的には、酸化物半導体を半導体膜に用いたトランジスタを用いることができる。 As an example, a transistor whose leakage current in an off state is smaller than that of a transistor using amorphous silicon as a semiconductor film can be used. Specifically, a transistor in which an oxide semiconductor is used for a semiconductor film can be used.
これにより、アモルファスシリコンを半導体膜に用いたトランジスタを利用する画素回路と比較して、画素回路が画像信号を保持することができる時間を長くすることができる。具体的には、フリッカーの発生を抑制しながら、選択信号を30Hz未満、好ましくは1Hz未満より好ましくは一分に一回未満の頻度で供給することができる。その結果、情報処理装置の使用者に蓄積する疲労を低減することができる。また、駆動に伴う消費電力を低減することができる。 Accordingly, as compared with a pixel circuit using a transistor using amorphous silicon as a semiconductor film, the time during which the pixel circuit can hold an image signal can be lengthened. Specifically, the selection signal can be supplied at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute while suppressing the occurrence of flicker. As a result, fatigue accumulated in the user of the information processing apparatus can be reduced. In addition, power consumption associated with driving can be reduced.
例えば、半導体膜508、導電膜504、導電膜512Aおよび導電膜512Bを備えるトランジスタをトランジスタMに用いることができる(図4(B)参照)。なお、絶縁膜506は、半導体膜508および導電膜504の間に挟まれる領域を備える。
For example, a transistor including the
導電膜504は、半導体膜508と重なる領域を備える。導電膜504はゲート電極の機能を備える。絶縁膜506はゲート絶縁膜の機能を備える。
The
導電膜512Aおよび導電膜512Bは、半導体膜508と電気的に接続される。導電膜512Aはソース電極の機能またはドレイン電極の機能の一方を備え、導電膜512Bはソース電極の機能またはドレイン電極の機能の他方を備える。
The
また、導電膜524を有するトランジスタを、駆動回路または画素回路のトランジスタに用いることができる(図4(B)または図4(C)参照)。導電膜524は、導電膜504との間に半導体膜508を挟む領域を備える。なお、絶縁膜516は、導電膜524および半導体膜508の間に挟まれる領域を備える。また、例えば、導電膜504と同じ電位を供給する配線に導電膜524を電気的に接続することができる。
A transistor including the
例えば、タンタルおよび窒素を含む厚さ10nmの膜と、銅を含む厚さ300nmの膜と、を積層した導電膜を、トランジスタMDの導電膜504Eに用いることができる。なお、銅を含む膜は、絶縁膜506との間に、タンタルおよび窒素を含む膜を挟む領域を備える。
For example, a conductive film in which a 10-nm-thick film containing tantalum and nitrogen and a 300-nm-thick film containing copper are stacked can be used for the
例えば、シリコンおよび窒素を含む厚さ400nmの膜と、シリコン、酸素および窒素を含む厚さ200nmの膜と、を積層した積層膜を絶縁膜506に用いることができる。なお、シリコンおよび窒素を含む膜は、半導体膜508との間に、シリコン、酸素および窒素を含む膜を挟む領域を備える。
For example, a stacked film in which a 400-nm-thick film containing silicon and nitrogen and a 200-nm-thick film containing silicon, oxygen, and nitrogen are stacked can be used for the insulating
例えば、インジウム、ガリウムおよび亜鉛を含む厚さ25nmの膜を、半導体膜508に用いることができる。
For example, a 25-nm-thick film containing indium, gallium, and zinc can be used for the
例えば、タングステンを含む厚さ50nmの膜と、アルミニウムを含む厚さ400nmの膜と、チタンを含む厚さ100nmの膜と、をこの順で積層した導電膜を、トランジスタMDの導電膜512Cまたは導電膜512Dに用いることができる。なお、タングステンを含む膜は、半導体膜508と接する領域を備える。
For example, a conductive film in which a 50-nm-thick film containing tungsten, a 400-nm-thick film containing aluminum, and a 100-nm-thick film containing titanium are stacked in this order, the
<表示パネルの構成例6>
本発明の一態様の表示パネルの構成について、図8および図9を参照しながら説明する。
<Configuration Example 6 of Display Panel>
The structure of the display panel of one embodiment of the present invention is described with reference to FIGS.
図8および図9は表示パネルの構成を説明する断面図である。図8(A)は図3(A)の切断線X1−X2、切断線X3−X4、図6の切断線X5−X6に相当する位置における断面図であり、図8(B)および図8(C)はいずれも図8(A)の一部を説明する図である。 8 and 9 are cross-sectional views illustrating the structure of the display panel. 8A is a cross-sectional view at a position corresponding to the cutting line X1-X2, the cutting line X3-X4, and the cutting line X5-X6 in FIG. 6, and FIG. 8B and FIG. (C) is a figure explaining a part of FIG. 8 (A).
図9は図6の切断線X7−X8、図3(A)の切断線X9−X10に相当する位置における断面図である。 9 is a cross-sectional view at a position corresponding to the cutting line X7-X8 in FIG. 6 and the cutting line X9-X10 in FIG.
本実施の形態で説明する表示パネルは、トップゲート型のトランジスタを備える点が、図4および図5を用いて説明する表示パネルと異なる。 The display panel described in this embodiment is different from the display panel described with reference to FIGS. 4 and 5 in that a top-gate transistor is provided.
<表示パネルの構成例7>
本発明の一態様の表示パネルの構成について、図10を参照しながら説明する。
<Configuration Example 7 of Display Panel>
The structure of the display panel of one embodiment of the present invention is described with reference to FIGS.
図10は、本発明の一態様の表示パネルの構成を説明する図である。図10(A1)および図10(A2)は、画素900を表示面側から見たときの上面概略図である。図10(B)は図10(A2)の切断線A−Bにおける断面図である。
FIG. 10 illustrates a structure of a display panel of one embodiment of the present invention. 10A1 and 10A2 are schematic top views when the
<画素の構成例4>
図10(A1)に、画素900を表示面側から見たときの上面概略図を示す。図10(A1)に示す画素900は、3つの副画素を有する。各副画素には、発光素子930EL(図10(A1)および図10(A2)には図示しない)、トランジスタ910、及びトランジスタ912が設けられている。また、図10(A1)に示す各副画素では、発光素子930ELの発光領域(発光領域916R、発光領域916G、または発光領域916B)を示している。なお、発光素子930ELは、トランジスタ910及びトランジスタ912側に光を射出する、所謂ボトムエミッション型の発光素子とする。
<Pixel Configuration Example 4>
FIG. 10A1 is a schematic top view when the
また、画素900は、配線902、配線904、及び配線906等を有する。配線902は、例えば走査線として機能する。配線904は、例えば信号線として機能する。配線906は、例えば発光素子に電位を供給する電源線として機能する。また、配線902と配線904とは、互いに交差する部分を有する。また、配線902と配線906とは、互いに交差する部分を有する。なお、ここでは、配線902と配線904、及び配線902と配線906とが交差する構成について例示したが、これに限定されず、配線904と配線906とが交差する構成としてもよい。
The
トランジスタ910は、選択トランジスタとして機能する。トランジスタ910のゲートは、配線902と電気的に接続されている。トランジスタ910のソースまたはドレインの一方は、配線904と電気的に接続されている。
The
トランジスタ912は、発光素子に流れる電流を制御するトランジスタである。トランジスタ912のゲートは、トランジスタ910のソースまたはドレインの他方と電気的に接続されている。トランジスタ912のソースまたはドレインの一方は配線906と電気的に接続され、他方は発光素子930ELの一対の電極の一方と電気的に接続されている。
The
図10(A1)では、発光領域916R、発光領域916G、及び発光領域916Bが、それぞれ縦方向に長い短冊状の形状を有し、横方向にストライプ状に配列している。
In FIG. 10A1, the light-emitting
ここで、配線902、配線904、及び配線906は遮光性を有する。またこれ以外の層、すなわち、トランジスタ910、トランジスタ912、トランジスタに接続する配線、コンタクト、容量等を構成する各層には、光透過性を有する膜を用いると好適である。図10(A2)は、図10(A1)に示す画素900を、可視光を透過する透過領域900tと、可視光を遮る遮光領域900sと、に分けて明示した例である。このように、光透過性を有する膜を用いてトランジスタを作製することで、各配線が設けられる部分以外を透過領域900tとすることができる。また、発光素子の発光領域を、トランジスタ、トランジスタに接続する配線、コンタクト、容量などと重ねることができるため、画素の開口率を高めることができる。
Here, the
なお、画素の面積に対する透過領域の面積の割合が高いほど、発光素子の光取り出し効率を高めることができる。例えば、画素の面積に対する、透過領域の面積の割合は、1%以上95%以下、好ましくは10%以上90%以下、より好ましくは20%以上80%以下とすることができる。特に40%以上または50%以上とすることが好ましく、60%以上80%以下であるとより好ましい。 Note that the higher the ratio of the area of the transmissive region to the area of the pixel, the higher the light extraction efficiency of the light emitting element. For example, the ratio of the area of the transmissive region to the area of the pixel can be 1% to 95%, preferably 10% to 90%, more preferably 20% to 80%. In particular, it is preferably 40% or more or 50% or more, and more preferably 60% or more and 80% or less.
また、図10(A2)に示す一点鎖線A−Bの切断面に相当する断面図を図10(B)に示す。なお、図10(B)では、上面図において図示していない、発光素子930EL、容量素子913、及び駆動回路部901などの断面も合わせて図示している。駆動回路部901としては、走査線駆動回路部または信号線駆動回路部として用いることができる。また、駆動回路部901は、トランジスタ911を有する。
FIG. 10B is a cross-sectional view corresponding to a cross-sectional surface taken along dashed-dotted line AB in FIG. 10A2. Note that in FIG. 10B, cross sections of the light-emitting element 930EL, the
図10(B)に示すように、発光素子930ELからの光は、破線の矢印に示す方向に射出される。発光素子930ELの光は、トランジスタ910、トランジスタ912、及び容量素子913等を介して外部に取り出される。したがって、容量素子913を構成する膜などについても、光透過性を有すると好ましい。容量素子913が有する光透過性の領域の面積が広いほど、発光素子930ELから射出される光の減衰を抑制することができる。
As shown in FIG. 10B, light from the light-emitting element 930EL is emitted in the direction indicated by the dashed arrow. Light from the light-emitting element 930EL is extracted to the outside through the
なお、駆動回路部901においては、トランジスタ911については、遮光性であってもよい。駆動回路部901のトランジスタ911などを遮光性とすることで、駆動回路部の信頼性や、駆動能力を高めることができる。すなわち、トランジスタ911を構成するゲート電極、ソース電極、及びドレイン電極に、遮光性を有する導電膜を用いることが好ましい。またこれらに接続される配線も同様に、遮光性を有する導電膜を用いることが好ましい。
Note that in the
また、図10に示すトランジスタ、配線、容量素子等には、以下に示す材料を用いることができる。 For the transistor, the wiring, the capacitor, and the like illustrated in FIG. 10, the following materials can be used.
トランジスタが有する半導体膜は、光透過性を有する半導体材料を用いて形成することができる。光透過性を有する半導体材料としては、金属酸化物、または酸化物半導体(Oxide Semiconductor)等が挙げられる。酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。 The semiconductor film included in the transistor can be formed using a light-transmitting semiconductor material. As the light-transmitting semiconductor material, a metal oxide, an oxide semiconductor, or the like can be given. The oxide semiconductor preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind selected from the above or a plurality of kinds may be included.
トランジスタが有する導電膜は、光透過性を有する導電性材料を用いて形成することができる。光透過性を有する導電性材料は、インジウム、亜鉛、錫の中から選ばれた一種、または複数種を含むことが好ましい。具体的には、In酸化物、In−Sn酸化物(ITO:Indium Tin Oxideともいう)、In−Zn酸化物、In−W酸化物、In−W−Zn酸化物、In−Ti酸化物、In−Sn−Ti酸化物、In−Sn−Si酸化物、Zn酸化物、Ga−Zn酸化物などが挙げられる。 The conductive film included in the transistor can be formed using a light-transmitting conductive material. The light-transmitting conductive material preferably contains one or more selected from indium, zinc, and tin. Specifically, In oxide, In—Sn oxide (also referred to as ITO: Indium Tin Oxide), In—Zn oxide, In—W oxide, In—W—Zn oxide, In—Ti oxide, In-Sn-Ti oxide, In-Sn-Si oxide, Zn oxide, Ga-Zn oxide, and the like can be given.
また、トランジスタが有する導電膜に、不純物元素を含有させる等して低抵抗化させた酸化物半導体を用いてもよい。当該低抵抗化させた酸化物半導体は、酸化物導電体(OC:Oxide Conductor)ということができる。 Alternatively, an oxide semiconductor whose resistance is reduced by adding an impurity element to the conductive film included in the transistor may be used. The low-resistance oxide semiconductor can be referred to as an oxide conductor (OC).
例えば、酸化物導電体は、酸化物半導体に酸素欠損を形成し、当該酸素欠損に水素を添加することで、伝導帯近傍にドナー準位が形成される。酸化物半導体にドナー準位が形成されることで、酸化物半導体は、導電性が高くなり導電体化する。 For example, in an oxide conductor, an oxygen vacancy is formed in an oxide semiconductor, and hydrogen is added to the oxygen vacancy, whereby a donor level is formed in the vicinity of the conduction band. When the donor level is formed in the oxide semiconductor, the oxide semiconductor has high conductivity and becomes a conductor.
なお、酸化物半導体は、エネルギーギャップが大きい(例えば、エネルギーギャップが2.5eV以上である)ため、可視光に対して光透過性を有する。また、上述したように酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体である。したがって、酸化物導電体は、ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導体と同程度の光透過性を有する。 Note that an oxide semiconductor has a large energy gap (e.g., an energy gap of 2.5 eV or more), and thus has an optical transparency with respect to visible light. As described above, the oxide conductor is an oxide semiconductor having a donor level in the vicinity of the conduction band. Therefore, the oxide conductor is less affected by the absorption due to the donor level and has a light transmittance comparable to that of the oxide semiconductor with respect to visible light.
また、酸化物導電体は、トランジスタが有する半導体膜に含まれる金属元素を一種類以上有することが好ましい。同一の金属元素を有する酸化物半導体を、トランジスタを構成する層のうち2層以上に用いることで、製造装置(例えば、成膜装置、加工装置等)を2以上の工程で共通で用いることが可能となるため、製造コストを抑制することができる。 In addition, the oxide conductor preferably includes one or more metal elements contained in a semiconductor film included in the transistor. By using an oxide semiconductor including the same metal element for two or more layers included in a transistor, a manufacturing apparatus (eg, a film formation apparatus or a processing apparatus) can be used in common for two or more steps. Since it becomes possible, manufacturing cost can be suppressed.
本実施の形態に示す表示装置が有する画素の構成とすることで、発光素子から射出される光を効率よく使用することができる。したがって、消費電力が抑制された、優れた表示装置を提供することができる。 With the structure of the pixel included in the display device described in this embodiment, light emitted from the light-emitting element can be used efficiently. Therefore, an excellent display device in which power consumption is suppressed can be provided.
また、本発明の一態様の表示装置は、さまざまな規格の色域を再現することができる。例えば、テレビ放送で使われるPAL(Phase Alternating Line)規格およびNTSC(National Television System Committee)規格、パーソナルコンピュータ、デジタルカメラ、プリンタなどの電子機器に用いる表示装置で広く使われているsRGB(standard RGB)規格およびAdobe RGB規格、HDTV(High Definition Television、ハイビジョンともいう)で使われるITU−R BT.709(International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television) 709)規格、デジタルシネマ映写で使われるDCI−P3(Digital Cinema Initiatives P3)規格、UHDTV(Ultra High Definition Television、スーパーハイビジョンともいう)で使われるITU−RBT.2020(REC.2020(Recommendation 2020))規格などの色域を再現することができる。 The display device of one embodiment of the present invention can reproduce color gamuts of various standards. For example, PAL (Phase Alternating Line) standard and NTSC (National Television System Committee) standard used in TV broadcasting, sRGB (standard RGB) widely used in electronic devices such as personal computers, digital cameras, and printers And ITU-R BT. Used in the Adobe RGB standard and HDTV (also known as High Definition Television). 709 (International Telecommunication Union Radiocommunication Sector Broadcasting Service (Television) 709) Standard, DCI-P3 (DigitalCineMitiTitiHit3P) RBT. A color gamut such as 2020 (REC. 2020 (Recommendation 2020)) standard can be reproduced.
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
(実施の形態2)
<画素の作製方法例1>
本実施の形態では、表示素子550(i,j)、表示素子550(i,j+1)、表示素子550(i,j+2)の作製方法について説明する。特に多階調(高階調)マスクを用いる作製方法について説明する。
(Embodiment 2)
<Example 1 of pixel manufacturing method>
In this embodiment, a method for manufacturing the display element 550 (i, j), the display element 550 (i, j + 1), and the display element 550 (i, j + 2) will be described. In particular, a manufacturing method using a multi-tone (high-tone) mask will be described.
図11は表示パネル700_1の構成を説明する断面図である。 FIG. 11 is a cross-sectional view illustrating a structure of the display panel 700_1.
図11の画素702(i,j)と示される部分は、図6に示される画素702(i,j)の切断線X5−X5Mの断面図である。図6に示される画素702(i,j)と同様に、画素702(i,j+1)、画素702(i,j+2)に切断線X5−X5Mを設けたとき、それらの各断面を図11に並べて示している。ただし機能膜770Pは図11中には示していない。
A portion indicated by a pixel 702 (i, j) in FIG. 11 is a cross-sectional view taken along a cutting line X5-X5M of the pixel 702 (i, j) shown in FIG. Similarly to the pixel 702 (i, j) shown in FIG. 6, when the cutting line X5-X5M is provided in the pixel 702 (i, j + 1) and the pixel 702 (i, j + 2), their respective cross sections are shown in FIG. Shown side by side. However, the
表示素子550(i,j)は、電極551(i,j)として、導電膜551_0(i,j)と、導電膜551_1(i,j)と、導電膜551_2(i,j)を有する。表示素子550(i,j+1)は、電極551(i,j+1)として、導電膜551_0(i,j+1)と、導電膜551_1(i,j+1)を有する。表示素子550(i,j+2)は、電極551(i,j+2)として、導電膜551_0(i,j+2)と、導電膜551_1(i,j+2)と、導電膜551_2(i,j+2)を有する。 The display element 550 (i, j) includes a conductive film 551_0 (i, j), a conductive film 551_1 (i, j), and a conductive film 551_2 (i, j) as electrodes 551 (i, j). The display element 550 (i, j + 1) includes a conductive film 551_0 (i, j + 1) and a conductive film 551_1 (i, j + 1) as the electrode 551 (i, j + 1). The display element 550 (i, j + 2) includes a conductive film 551_0 (i, j + 2), a conductive film 551_1 (i, j + 2), and a conductive film 551_2 (i, j + 2) as electrodes 551 (i, j + 2).
図12(A)、(B)、図14(A)、(B)、は表示パネルの作製方法を説明する断面図である。 12A, 12B, 14A, and 14B are cross-sectional views illustrating a method for manufacturing a display panel.
図12(A)は、絶縁膜521B上に、導電膜551_0と、その上方に導電膜551_1と、その上方に導電膜551_2と、が成膜された状態である。各材料は、例えば実施の形態1にて導電膜551_0(i,j)と、導電膜551_1(i,j)と、導電膜551_2(i,j)として示された材料を用いることができる。
FIG. 12A illustrates a state in which a conductive film 551_0, a conductive film 551_1 above and a conductive film 551_2 are formed over the insulating
導電膜551_1と、導電膜551_2の各膜厚については、例えば実施の形態1や、実施例にて示される例と同様に設定することができる。
The film thicknesses of the conductive film 551_1 and the conductive film 551_2 can be set, for example, in the same manner as in
導電膜551_1と、導電膜551_2とを、ウエットエッチングに用いる所定の溶液にて同一条件にてエッチングしたとき、導電膜551_1のエッチングレートは、導電膜551_2のエッチングレートより小さい材料を用いると好ましい。または、導電膜551_1は導電膜551_2より、一の溶液を用いた場合のエッチングレートが小さいと好ましい。 When the conductive film 551_1 and the conductive film 551_2 are etched with a predetermined solution used for wet etching under the same conditions, a material whose etching rate is lower than that of the conductive film 551_2 is preferably used. Alternatively, the conductive film 551_1 preferably has a lower etching rate when the same solution is used than the conductive film 551_2.
例えば導電膜551_1は、例えば重量比にて、In2O3を85%、SnO2を10%、SiO2を5%有するターゲットを用いて、アルゴンガスと酸素ガスを用いたスパッタ法にて、膜厚50nmで形成することができる。また導電膜551_2は、例えば組成にてIn2O3を25%、ZnOを75%有するターゲットを用いて、アルゴンガスと酸素ガスを用いたスパッタ法にて、膜厚62nmで形成することができる。 For example, the conductive film 551_1 is formed by sputtering using argon gas and oxygen gas using a target having 85% In 2 O 3 , 10% SnO 2 , and 5% SiO 2 in a weight ratio, for example. The film can be formed with a thickness of 50 nm. The conductive film 551_2 can be formed with a film thickness of 62 nm by a sputtering method using an argon gas and an oxygen gas with a target having a composition of 25% In 2 O 3 and 75% ZnO, for example. .
このとき室温のシュウ酸(5重量%以下のシュウ酸、95重量%以上の水を含有する混合溶液)を用いた場合のエッチングレートは、導電膜551_1においては227nm/minであり、導電膜551_2においては400nm/minより大きい。 At this time, the etching rate in the case of using oxalic acid at room temperature (a mixed solution containing 5% by weight or less of oxalic acid and 95% by weight or more of water) is 227 nm / min in the conductive film 551_1, and the conductive film 551_2. Is larger than 400 nm / min.
また室温の混酸アルミ液(80重量%未満のリン酸、10重量%未満の酢酸、及び5重量%未満の硝酸、5重量%以上の水を含有する混合溶液)を用いた場合のエッチングレートは、導電膜551_1においては5nm/minであり、導電膜551_2においては350nm/minより大きい。 Etching rate when using mixed acid aluminum liquid at room temperature (mixed solution containing less than 80% phosphoric acid, less than 10% acetic acid, less than 5% nitric acid and 5% by weight water) In the conductive film 551_1, it is 5 nm / min, and in the conductive film 551_2, it is higher than 350 nm / min.
また85%リン酸を水で1/100に希釈した室温の0.85%リン酸を用いた場合のエッチングレートは、導電膜551_1においては1nm/minであり、導電膜551_2においては66.9nm/minである。 The etching rate when 0.85% phosphoric acid at room temperature obtained by diluting 85% phosphoric acid to 1/100 with water is 1 nm / min for the conductive film 551_1 and 66.9 nm for the conductive film 551_2. / Min.
例えば導電膜551_1を、In2O3と、SnO2とを含む結晶性の導電膜で形成し、導電膜551_2をIn2O3と、SnO2と、SiO2と、を含む非結晶性の導電膜で形成しても良い。 For example, the conductive film 551_1 is formed using a crystalline conductive film containing In 2 O 3 and SnO 2, and the conductive film 551_2 is an amorphous film containing In 2 O 3 , SnO 2 , and SiO 2 . You may form with a electrically conductive film.
例えば導電膜551_1をIn2O3とZnOを含む導電膜で形成し、導電膜551_2を導電膜551_1よりZnO含有量が小さい、In2O3とZnOを含む導電膜で形成してもよい。 For example, the conductive film 551_1 may be formed using a conductive film containing In 2 O 3 and ZnO, and the conductive film 551_2 may be formed using a conductive film containing In 2 O 3 and ZnO whose ZnO content is lower than that of the conductive film 551_1.
なお、ここでの導電膜551_1、及び導電膜551_2のエッチングは、ウエットエッチングに限定されずドライエッチングを用いてもよい。但し導電膜551_1と、導電膜551_2とを、同一条件にてドライエッチングしたとき、導電膜551_1のエッチングレートは、導電膜551_2のエッチングレートより小さい材料を用いると好ましい。または、導電膜551_1は導電膜551_2より、一のエッチング雰囲気におけるエッチングレートが小さいと好ましい。 Note that the etching of the conductive film 551_1 and the conductive film 551_2 is not limited to wet etching and may be dry etching. However, when the conductive film 551_1 and the conductive film 551_2 are dry-etched under the same conditions, it is preferable to use a material whose etching rate is lower than that of the conductive film 551_2. Alternatively, the conductive film 551_1 preferably has a lower etching rate in one etching atmosphere than the conductive film 551_2.
ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例えば塩素(Cl2)、三塩化硼素(BCl3)、四塩化珪素(SiCl4)、四塩化炭素(CCl4)など)が好ましい。 As an etching gas used for dry etching, a gas containing chlorine (chlorine-based gas such as chlorine (Cl 2 ), boron trichloride (BCl 3 ), silicon tetrachloride (SiCl 4 ), carbon tetrachloride (CCl 4 ), or the like) Is preferred.
また、ドライエッチングに用いるその他のエッチングガスとして、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF4)、六弗化硫黄(SF6)、三弗化窒素(NF3)、トリフルオロメタン(CHF3)など)、臭化水素(HBr)、酸素(O2)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガスを添加したガス、などを用いることができる。 Other etching gases used for dry etching include fluorine-containing gases (fluorine-based gases such as carbon tetrafluoride (CF 4 ), sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), trifluoro Methane (CHF 3 ), hydrogen bromide (HBr), oxygen (O 2 ), a gas obtained by adding a rare gas such as helium (He) or argon (Ar) to these gases, or the like can be used.
次いで、レジストマスク541を、導電膜551_2上に形成する(図12(B)参照)。
Next, a resist
レジストマスク541は、画素702(i,j+1)と重なる領域にレジストの膜厚が薄い領域を有する。画素702(i,j+1)と重なる領域は凹部ともいえる。本実施の形態では、レジストマスク541の形成に、多階調(高階調)マスクを用いた露光を用いる。このとき、レジストの厚さが異なるレジストマスク541を形成できる。
The resist
多階調(高階調)マスクを用いる露光について、説明する。 Exposure using a multi-tone (high-tone) mask will be described.
まず、レジストマスクを形成するためレジストを形成する。レジストは、ポジ型レジスト又はネガ型レジストを用いることができる。ここでは、ポジ型レジストを用いて示す。レジストはスピンコート法で形成してもよいし、インクジェット法で選択的に形成してもよい。レジストをインクジェット法で選択的に形成すると、不要箇所へのレジスト形成を削減することができるので、材料の無駄を軽減することができる。 First, a resist is formed to form a resist mask. As the resist, a positive resist or a negative resist can be used. Here, a positive resist is used. The resist may be formed by a spin coating method or may be selectively formed by an ink jet method. When the resist is selectively formed by an ink-jet method, formation of the resist in unnecessary portions can be reduced, so that waste of materials can be reduced.
次に、露光マスクとして多階調マスクを用いて、レジストに光を照射して、レジストを露光する。 Next, using a multi-tone mask as an exposure mask, the resist is irradiated with light to expose the resist.
多階調マスクとは、露光部分、中間露光部分、及び未露光部分に3つの露光レベルを行うことが可能なマスクであり、透過した光が複数の強度となる露光マスクである。一度の露光及び現像工程により、複数の厚さの領域を有するレジストマスクを形成することが可能である。よって、多階調マスクを用いることで、リソグラフィ工程の回数を削減でき、工程を簡略化できる。 A multi-tone mask is a mask capable of performing three exposure levels on an exposed portion, an intermediate exposed portion, and an unexposed portion, and is an exposure mask in which transmitted light has a plurality of intensities. With a single exposure and development process, a resist mask having a plurality of thickness regions can be formed. Therefore, by using a multi-tone mask, the number of lithography processes can be reduced and the process can be simplified.
多階調マスクの代表例としては、図13(A)に示すようなグレートーンマスク10a、図13(C)に示すようなハーフトーンマスク10bがある。
Typical examples of the multi-tone mask include a gray-
図13(A)に示すように、グレートーンマスク10aは、光透過性基板13及び光透過性基板13の上に形成される遮光膜15を備える。また、グレートーンマスク10aは、遮光膜が設けられた遮光部17、遮光膜のパターンにより設けられた回折格子部18及び遮光膜が設けられない透過部19を有する。
As shown in FIG. 13A, the gray tone mask 10 a includes a
光透過性基板13は、石英等の光透過性基板を用いることができる。遮光膜15は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成することができる。
The
グレートーンマスク10aに露光光を照射した場合の、光の透過率TRを図13(B)に示す。図13(B)に示すように、遮光部17では光の透過率21は0%である。透過部19では光の透過率21は略100%である。また、回折格子部18では光の透過率21は10%以上70%以下の範囲で調整可能である。回折格子部18においては、スリット、ドット、メッシュ等の光透過部の間隔を露光に用いる光の解像度限界以下の間隔にしている。そして、回折格子部18は、スリット、ドット又はメッシュの間隔及びピッチを調整することで、光の透過率を制御できる。なお、回折格子部18は、周期的なスリット、ドット、メッシュ、または非周期的なスリット、ドット、メッシュのどちらも用いることができる。
FIG. 13B shows light transmittance TR when the gray-
図13(C)に示すように、ハーフトーンマスク10bは、光透過性基板13及び光透過性基板13の上に形成される遮光膜25及び半光透過膜23を備える。また、ハーフトーンマスク10bは、遮光膜25及び半光透過膜23が設けられた遮光部27、遮光膜25が設けられずかつ半光透過膜23が設けられた半光透過部28、及び遮光膜25及び半光透過膜23が設けられない透過部29を有する。
As shown in FIG. 13C, the
ハーフトーンマスク10bに露光光を照射した場合の、光の透過率を図13(D)に示す。
図13(D)に示すように、遮光部27では光の透過率31は0%であり、透過部29では光の透過率31は略100%である。また、半光透過部28では光の透過率31は10%以上70%以下の範囲で調整可能である。半光透過部28においては、半光透過膜23の材料により、光の透過率を制御できる。
FIG. 13D shows the light transmittance when the
As shown in FIG. 13D, the
半光透過膜23は、MoSiN、MoSi、MoSiO、MoSiON、CrSiなどを用いることができる。遮光膜25は、クロムや酸化クロム等の光を吸収する遮光材料を用いることができる。
For the
多階調マスクを用いて露光した後、現像することで、図12(B)に示すように膜厚の異なる領域を有するレジストマスクを形成することができる。 By developing after exposure using a multi-tone mask, a resist mask having regions with different thicknesses can be formed as shown in FIG.
なお、多階調マスクとして、レジストの膜厚が2種類の例を示したが、本発明の形態はこれに限られない。複数の光の透過率を有する回折格子部18又は半光透過膜23を用いることにより、3種類以上の膜厚を有するレジストを形成できる。
Note that, as the multi-tone mask, two types of resist film thicknesses are shown, but the embodiment of the present invention is not limited to this. By using the diffraction
次に、レジストマスク541をマスクに、導電膜551_0と、導電膜551_1と、導電膜551_2と、の一部を除去し、画素702(i,j)においては導電膜551_0(i,j)と、導電膜551_1(i,j)と、導電膜551_2(i,j)と、を形成する。画素702(i,j+1)、画素702(i,j+2)においても同様である。但し、画素702(i,j+1)においては導電膜551_2(i,j+1)が形成されており、以下の工程で導電膜551_2(i,j+1)の除去を行う。
Next, part of the conductive film 551_0, the conductive film 551_1, and the conductive film 551_2 is removed using the resist
導電膜551_0と、導電膜551_1と、導電膜551_2の加工には、ウエットエッチングを用いることができる。ただし、加工方法としてはこれに限定されず、例えば、ドライエッチングを用いてもよい。 Wet etching can be used for processing the conductive films 551_0, 551_1, and 551_2. However, the processing method is not limited to this, and dry etching may be used, for example.
次に、レジストマスク541を後退させることで一部を除去し、レジストマスクの面積を縮小する。ここでいう後退とは、膜厚を減らすことである。上記除去により、レジストマスク542が形成される(図14(A)参照)。
Next, a part of the resist
レジストマスクの一部の除去にはアッシング装置を用いることができる。アッシングにより、レジストマスクの面積が縮小するとともに、レジストマスクの厚さが薄くなる場合がある。 An ashing apparatus can be used to remove part of the resist mask. Ashing may reduce the area of the resist mask and reduce the thickness of the resist mask.
例えば、アッシングとして、酸素、オゾンなどのガスに紫外線などの光を照射し、ガスと有機物を化学反応させて有機物を除去する光励起アッシングを用いてもよい。アッシングとして、酸素、オゾンなどのガスを高周波などでプラズマ化し、そのプラズマを利用して有機物を除去するプラズマアッシングを用いてもよい。 For example, as the ashing, photoexcited ashing may be used in which a gas such as oxygen or ozone is irradiated with light such as ultraviolet rays, and the gas and the organic substance are chemically reacted to remove the organic substance. As ashing, plasma ashing may be used in which a gas such as oxygen or ozone is turned into plasma at a high frequency and the organic matter is removed using the plasma.
レジストマスク541のレジストマスクが薄い領域は、該アッシングによりレジストが除去され、図14(A)に示すようにレジストマスクが分離する。これにより、画素702(i,j+1)と重なる領域のレジストマスクが除去され、画素702(i,j+1)の導電膜551_2(i,j+1)が露出する。
In the resist
次に、レジストマスク542をマスクに、導電膜551_2(i,j+1)をエッチングする。
Next, the conductive film 551_2 (i, j + 1) is etched using the resist
エッチングは、例えば室温のシュウ酸、または室温の混酸アルミ、または85%リン酸を1%に希釈した室温の溶液、を用いることができる。このとき、導電膜551_2(i,j)より、導電膜551_2(i,i+1)の方がエッチングレートは大きいため、導電膜551_2(i,j)を消失させることなく、好適に加工ができる。 For the etching, for example, room temperature oxalic acid, room temperature mixed acid aluminum, or room temperature solution in which 85% phosphoric acid is diluted to 1% can be used. At this time, since the conductive film 551_2 (i, i + 1) has a higher etching rate than the conductive film 551_2 (i, j), the conductive film 551_2 (i, j) can be preferably processed without being lost.
次にレジストマスク542を除去する(図14(B)参照)。
Next, the resist
次に、発光層553、電極552、を形成する。さらに、接合層505を用いて基板570を、基板770と接合する。さらに、機能膜770Pを形成する。このような工程により、表示パネル700_1を作製することができる。
Next, the light-emitting
(実施の形態3)
本実施の形態では、実施の形態1とは異なる表示パネルについて説明する。
(Embodiment 3)
In this embodiment, a display panel different from that in
<画素の構成例5>
本発明の一態様の表示パネル700_2には、赤色の光を射出するように積層された材料を発光層553(j)に、緑色の光を射出するように積層された材料を発光層553(j+1)に、青色の光を射出するように積層された材料を発光層553(j+2)に、用いることができる(図15(A)、(B)参照)。
<Pixel Configuration Example 5>
In the display panel 700_2 of one embodiment of the present invention, the light-emitting layer 553 (j) includes a material stacked so as to emit red light, and the light-emitting layer 553 ( A material stacked to emit blue light at j + 1) can be used for the light-emitting layer 553 (j + 2) (see FIGS. 15A and 15B).
画素702(i,j)は発光層553(j)を、画素702(i,j+1)は発光層553(j+1)を、画素702(i,j+2)は発光層553(j)を備える。 The pixel 702 (i, j) includes a light emitting layer 553 (j), the pixel 702 (i, j + 1) includes a light emitting layer 553 (j + 1), and the pixel 702 (i, j + 2) includes a light emitting layer 553 (j).
これにより、画素702(i,j)を用いて赤色の表示をすることができる。画素702(i,j+1)を用いて緑色の表示をすることができる。画素702(i,j+2)を用いて青色の表示をすることができる。 Accordingly, red display can be performed using the pixel 702 (i, j). Green display can be performed using the pixel 702 (i, j + 1). Blue display can be performed using the pixel 702 (i, j + 2).
このとき、発光層553(j)、発光層553(j+1)、発光層553(j+2)、の膜厚方向における各光学距離を、画素の構成例1と同等にする。 At this time, the optical distances in the film thickness direction of the light-emitting layer 553 (j), the light-emitting layer 553 (j + 1), and the light-emitting layer 553 (j + 2) are made equal to those in the pixel configuration example 1.
図15(B)に示すように、着色膜CF1(R)、着色膜CF1(G)及び着色膜CF1(B)を設けない構成としてもよい。また、表示素子550における、他の構成については、表示パネル700と同じ構成とする。
As illustrated in FIG. 15B, the coloring film CF1 (R), the coloring film CF1 (G), and the coloring film CF1 (B) may not be provided. The other structure of the
上記膜厚による各副画素の構成により、画素702(i,j)は赤色の色純度を高め、画素702(i,j+1)は緑色の色純度を高め、画素702(i,j+1)は青色の色純度を高め、いずれの表示も鮮やかにすることができる。 With the configuration of each sub-pixel based on the film thickness, the pixel 702 (i, j) has a higher red color purity, the pixel 702 (i, j + 1) has a higher green color purity, and the pixel 702 (i, j + 1) has a blue color purity. The color purity of the display can be increased and any display can be made vivid.
<画素の構成例6>
また、表示パネル700_4(図16(A)参照)のように、表示素子550(i,j)から光L2が、画素回路530(i,j)が配設される方向とは逆の方向に、射出される構造としてもよい。このとき画素回路530(i,j)を、電極551(i,j)との間に光反射性を有する電極552を挟むように設ける。このとき光L2の射出する経路に、着色膜CF1(R)を設けることができる。表示素子550(i,j+1)、表示素子550(i,j+2)も同様とする。
<Pixel Configuration Example 6>
Further, as in the display panel 700_4 (see FIG. 16A), the light L2 from the display element 550 (i, j) is in a direction opposite to the direction in which the pixel circuit 530 (i, j) is provided. It is good also as a structure inject | emitted. At this time, the pixel circuit 530 (i, j) is provided so that the
このとき表示素子550(i,j)には、導電膜551_1(i,j)と、導電膜551_0(i,j)との間に、発光層553を配設させると好適である(図16(B)参照)。表示素子550(i,j+1)、表示素子550(i,j+2)についても同様である。
At this time, it is preferable that the light-emitting
表示パネル700_4は、画素回路530(i,j)が、射出光を遮らない個所に配置されるため、表示パネル700に比べて開口率を向上させることができる。
In the display panel 700_4, since the pixel circuit 530 (i, j) is disposed at a position where the emitted light is not blocked, the aperture ratio can be improved as compared with the
(実施の形態4)
本実施の形態では、本発明の一態様で開示されるトランジスタの半導体層に用いることができる金属酸化物について説明する。なお、トランジスタの半導体層に金属酸化物を用いる場合、当該金属酸化物を酸化物半導体と読み替えてもよい。
(Embodiment 4)
In this embodiment, a metal oxide that can be used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention will be described. Note that in the case where a metal oxide is used for the semiconductor layer of the transistor, the metal oxide may be read as an oxide semiconductor.
酸化物半導体は、単結晶酸化物半導体と、非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。 An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor. As the non-single-crystal oxide semiconductor, a CAAC-OS (c-axis-aligned crystal oxide semiconductor), a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like oxide OS) : Amorphous-like oxide semiconductor) and amorphous oxide semiconductor.
また、本発明の一態様で開示されるトランジスタの半導体層には、CAC−OS(Cloud−Aligned Composite)を用いてもよい。 Alternatively, a CAC-OS (Cloud-Aligned Composite) may be used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention.
なお、本発明の一態様で開示されるトランジスタの半導体層は、上述した非単結晶酸化物半導体またはCAC−OSを好適に用いることができる。また、非単結晶酸化物半導体としては、nc−OSまたはCAAC−OSを好適に用いることができる。 Note that the above-described non-single-crystal oxide semiconductor or CAC-OS can be preferably used for the semiconductor layer of the transistor disclosed in one embodiment of the present invention. As the non-single-crystal oxide semiconductor, nc-OS or CAAC-OS can be preferably used.
なお、本発明の一態様では、トランジスタの半導体層として、CAC−OSを用いると好ましい。CAC−OSを用いることで、トランジスタに高い電気特性または高い信頼性を付与することができる。 Note that in one embodiment of the present invention, a CAC-OS is preferably used as the semiconductor layer of the transistor. With the use of the CAC-OS, high electrical characteristics or high reliability can be imparted to the transistor.
以下では、CAC−OSの詳細について説明する。 Details of the CAC-OS will be described below.
CAC−OSまたはCAC−metal oxideは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタのチャネル形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 The CAC-OS or the CAC-metal oxide has a conductive function in part of the material and an insulating function in part of the material, and has a function as a semiconductor in the whole material. Note that in the case where a CAC-OS or a CAC-metal oxide is used for a channel formation region of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is a carrier. This function prevents electrons from flowing. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 In addition, the CAC-OS or the CAC-metal oxide has a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 In CAC-OS or CAC-metal oxide, the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel formation region of a transistor, high current driving force, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be referred to as a matrix composite (metal matrix composite) or a metal matrix composite (metal matrix composite).
CAC−OSは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下またはその近傍のサイズで混合した状態をモザイク状またはパッチ状ともいう。 The CAC-OS is one structure of a material in which an element constituting a metal oxide is unevenly distributed with a size of 0.5 nm to 10 nm, preferably, 1 nm to 2 nm or near. In the following, in a metal oxide, one or more metal elements are unevenly distributed, and a region having the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm or near. The mixed state is also called mosaic or patch.
なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種または複数種が含まれていてもよい。 Note that the metal oxide preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind or plural kinds selected from may be included.
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2OZ2(X2、Y2、及びZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4OZ4(X4、Y4、及びZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2OZ2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。 For example, a CAC-OS in In-Ga-Zn oxide (In-Ga-Zn oxide among CAC-OSs may be referred to as CAC-IGZO in particular) is an indium oxide (hereinafter referred to as InO). X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.), gallium An oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or a gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter, click Also called Udo-like.) A.
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。 That, CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite metal oxide having a structure that is mixed. Note that in this specification, for example, the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
なお、IGZOは通称であり、In、Ga、Zn、及びOによる1つの化合物をいう場合がある。代表例として、InGaO3(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)O3(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。 Note that IGZO is a common name and sometimes refers to one compound of In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (−1 ≦ x0 ≦ 1, m0 is an arbitrary number) A crystalline compound may be mentioned.
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC(c−axis aligned crystal)構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。 The crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC (c-axis aligned crystal) structure. The CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
一方、CAC−OSは、金属酸化物の材料構成に関する。CAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。 On the other hand, CAC-OS relates to a material structure of a metal oxide. CAC-OS refers to a region that is observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn, and O, and nanoparticles that are partially composed mainly of In. The region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。 Note that the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions. For example, a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
なお、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。 Incidentally, GaOX3 is a region which is a main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。 Instead of gallium, selected from aluminum, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. In the case where one or a plurality of types are included, the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In. The region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。 The CAC-OS can be formed by a sputtering method, for example, without heating the substrate. In the case where a CAC-OS is formed by a sputtering method, any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good. Further, the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、及びc軸方向の配向は見られないことが分かる。 The CAC-OS has a feature that a clear peak is not observed when measurement is performed using a θ / 2θ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、及び断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。 In addition, in the CAC-OS, an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。 Further, for example, in a CAC-OS in an In—Ga—Zn oxide, a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。 CAC-OS has a structure different from that of an IGZO compound in which metal elements are uniformly distributed, and has a property different from that of an IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and a region in which each element is a main component. Has a mosaic structure.
ここで、InX2ZnY2OZ2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2OZ2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2OZ2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。 Here, the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than a region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility (μ) can be realized.
一方、GaOX3などが主成分である領域は、InX2ZnY2OZ2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。 On the other hand, areas such GaOX3 is the main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, a region containing GaOX3 or the like as a main component is distributed in the oxide semiconductor, whereby leakage current can be suppressed and a favorable switching operation can be realized.
従って、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2OZ2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、及び高い電界効果移動度(μ)を実現することができる。 Therefore, when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (Ion) and high field effect mobility (μ) can be realized.
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。 In addition, a semiconductor element using a CAC-OS has high reliability. Therefore, the CAC-OS is optimal for various semiconductor devices including a display.
本実施の形態は、他の実施の形態と適宜組み合わせることができる。 This embodiment can be combined with any of the other embodiments as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様の表示装置の構成について、図17および図18を参照しながら説明する。
(Embodiment 5)
In this embodiment, the structure of the display device of one embodiment of the present invention will be described with reference to FIGS.
図17は本発明の一態様の表示装置の構成を説明するブロック図である。 FIG. 17 is a block diagram illustrating a structure of a display device of one embodiment of the present invention.
図18(A)は図17に示す表示パネルの構成とは異なる構成を説明するブロック図である。図18(B−1)乃至図18(B−3)は本発明の一態様の表示装置の外観を説明する図である。 FIG. 18A is a block diagram illustrating a structure different from the structure of the display panel illustrated in FIG. 18B-1 to 18B-3 illustrate the appearance of a display device of one embodiment of the present invention.
<表示装置の構成例>
本実施の形態で説明する表示装置は、制御部238と、表示パネル700と、を有する(図17参照)。
<Configuration example of display device>
The display device described in this embodiment includes a
<制御部238>
制御部238は、画像情報V1および制御情報SSを供給される機能を備える。
<
The
制御部238は、画像情報V1に基づいて情報V12を生成する機能を備える。制御部238は、情報V12を供給する機能を備える。
The
例えば、制御部238は、伸張回路234および画像処理回路235Mを備える。
For example, the
<表示パネル700>
表示パネル700は、情報V12を供給される機能を備える。また、表示パネル700は、画素702(i,j)を備える。
<
The
画素702(i,j)は、表示素子550(i,j)を備える。 The pixel 702 (i, j) includes a display element 550 (i, j).
表示素子550(i,j)は、情報V12に基づいて表示する機能を備え、表示素子550(i,j)は発光素子である。 The display element 550 (i, j) has a function of displaying based on the information V12, and the display element 550 (i, j) is a light emitting element.
例えば、実施の形態1で説明する表示パネルを表示パネル700に用いることができる。または、表示パネル700Bに用いることができる。例えば、テレビジョン受像システム(図18(B−1)参照)、映像モニター(図18(B−2)参照)またはノートブックコンピュータ(図18(B−3)参照)などを提供することができる。
For example, the display panel described in
これにより、表示素子を用いて画像情報を表示することができる。その結果、利便性または信頼性に優れた新規な表示装置を提供することができる。 Thereby, image information can be displayed using a display element. As a result, a novel display device that is highly convenient or reliable can be provided.
<伸張回路234>
伸張回路234は、圧縮された状態で供給される画像情報V1を伸張する機能を備える。伸張回路234は、記憶部を備える。記憶部は、例えば伸張された画像情報を記憶する機能を備える。
<
The
<画像処理回路235M>
画像処理回路235Mは、例えば、領域を備える。
<
The
領域は、例えば、画像情報V1に含まれる情報を記憶する機能を備える。 The area has a function of storing information included in the image information V1, for example.
画像処理回路235Mは、例えば、所定の特性曲線に基づいて画像情報V1を補正して情報V12を生成する機能と、情報V12を供給する機能と、を備える。具体的には、表示素子550(i,j)が良好な画像を表示するように、情報V12を生成する機能を備える。
The
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
(実施の形態6)
本実施の形態では、本発明の一態様の入出力装置の構成について、図19を参照しながら説明する。
(Embodiment 6)
In this embodiment, the structure of the input / output device of one embodiment of the present invention is described with reference to FIGS.
図19は本発明の一態様の入出力装置の構成を説明するブロック図である。 FIG. 19 is a block diagram illustrating a structure of the input / output device of one embodiment of the present invention.
<入出力装置の構成例>
本実施の形態で説明する入出力装置は、入力部240と、表示部230と、を有する(図19参照)。例えば、実施の形態1に記載の表示パネル700を表示部230に用いることができる。
<Configuration example of input / output device>
The input / output device described in this embodiment includes an
入力部240は検知領域241を備える。入力部240は検知領域241に近接するものを検知する機能を備える。
The
検知領域241は、画素702(i,j)と重なる領域を備える。
The
<入力部240>
入力部240は検知領域241を備える。入力部240は発振回路OSCおよび検知回路DCを備えることができる(図19参照)。
<
The
<検知領域241>
検知領域241は、例えば、単数または複数の検知素子を備えることができる。
<
The
検知領域241は、一群の検知素子775(g,1)乃至検知素子775(g,q)と、他の一群の検知素子775(1,h)乃至検知素子775(p,h)と、を有する(図19参照)。なお、gは1以上p以下の整数であり、hは1以上q以下の整数であり、pおよびqは1以上の整数である。
The
一群の検知素子775(g,1)乃至検知素子775(g,q)は、検知素子775(g,h)を含み、行方向(図中に矢印R2で示す方向)に配設される。なお、図19に矢印R2で示す方向は、図19に矢印R1で示す方向と同じであっても良いし、異なっていてもよい。 The group of sensing elements 775 (g, 1) to 775 (g, q) includes the sensing elements 775 (g, h) and are arranged in the row direction (direction indicated by an arrow R2 in the drawing). Note that the direction indicated by the arrow R2 in FIG. 19 may be the same as or different from the direction indicated by the arrow R1 in FIG.
また、他の一群の検知素子775(1,h)乃至検知素子775(p,h)は、検知素子775(g,h)を含み、行方向と交差する列方向(図中に矢印C2で示す方向)に配設される。 Further, another group of the detection elements 775 (1, h) to 775 (p, h) includes the detection elements 775 (g, h), and the column direction (in the drawing, indicated by an arrow C2) that intersects the row direction. (Direction shown).
<検知素子>
検知素子は近接するポインタを検知する機能を備える。例えば、指やスタイラスペン等をポインタに用いることができる。例えば、金属片またはコイル等を、スタイラスペンに用いることができる。
<Sensing element>
The detection element has a function of detecting an adjacent pointer. For example, a finger or a stylus pen can be used as the pointer. For example, a metal piece or a coil can be used for the stylus pen.
具体的には、静電容量方式の近接センサ、電磁誘導方式の近接センサ、光学方式の近接センサ、抵抗膜方式の近接センサなどを、検知素子に用いることができる。 Specifically, a capacitive proximity sensor, an electromagnetic induction proximity sensor, an optical proximity sensor, a resistive proximity sensor, or the like can be used as the detection element.
また、複数の方式の検知素子を併用することもできる。例えば、指を検知する検知素子と、スタイラスペンを検知する検知素子とを、併用することができる。これにより、ポインタの種類を判別することができる。または、判別したポインタの種類に基づいて、異なる命令を検知情報に関連付けることができる。具体的には、ポインタに指を用いたと判別した場合は、検知情報をジェスチャーと関連付けることができる。または、ポインタにスタイラスペンを用いたと判別した場合は、検知情報を描画処理と関連付けることができる。 A plurality of types of sensing elements can also be used in combination. For example, a detection element that detects a finger and a detection element that detects a stylus pen can be used in combination. Thereby, the type of the pointer can be determined. Alternatively, different instructions can be associated with the detection information based on the determined type of pointer. Specifically, when it is determined that a finger is used as the pointer, the detection information can be associated with the gesture. Alternatively, when it is determined that the stylus pen is used as the pointer, the detection information can be associated with the drawing process.
具体的には、静電容量方式または光学方式の近接センサを用いて、指を検知することができる。または、電磁誘導方式または光学方式の近接センサを用いて、スタイラスペンを検知することができる。 Specifically, a finger can be detected by using a capacitive or optical proximity sensor. Alternatively, the stylus pen can be detected using an electromagnetic induction type or optical type proximity sensor.
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
(実施の形態7)
本実施の形態では、本発明の一態様の入出力パネルの構成について、図20乃至図21を参照しながら説明する。
(Embodiment 7)
In this embodiment, the structure of the input / output panel of one embodiment of the present invention is described with reference to FIGS.
図20は本発明の一態様の入出力装置に用いることができる入出力パネルの構成を説明する図である。図20(A)は入出力パネルの上面図である。図20(B)および図20(C)は図20(A)の一部を説明する投影図である。 FIG. 20 illustrates the structure of an input / output panel that can be used for the input / output device of one embodiment of the present invention. FIG. 20A is a top view of the input / output panel. 20B and 20C are projection views for explaining a part of FIG.
図21は本発明の一態様の入出力装置に用いることができる入出力パネルの構成を説明する図である。図21(A)は制御線および検知信号線の隣接部の上面図である。図21(B)は隣接部に生じる電界を模式的に説明する投影図である。 FIG. 21 illustrates a structure of an input / output panel that can be used in the input / output device of one embodiment of the present invention. FIG. 21A is a top view of adjacent portions of the control line and the detection signal line. FIG. 21B is a projection diagram schematically illustrating the electric field generated in the adjacent portion.
<入出力パネルの構成例>
本実施の形態で説明する入出力パネルは、検知領域241を有する点が、例えば、実施の形態1において説明する表示パネル700とは異なる。ここでは、異なる部分について詳細に説明し、同様の構成を用いることができる部分について上記の説明を援用する。
<Configuration example of input / output panel>
The input / output panel described in this embodiment is different from, for example, the
<検知領域241>
検知領域241は、制御線CL(g)、検知信号線ML(h)および導電膜を備える。導電膜は検知素子775(g,h)を備える(図19および図20(A)参照)。
<
The
例えば、複数の領域に分割された導電膜を検知領域241に用いることができる(図19または図20参照)。これにより、複数の領域のそれぞれに異なる電位を供給することができる。 For example, a conductive film divided into a plurality of regions can be used for the detection region 241 (see FIG. 19 or FIG. 20). Thereby, different potentials can be supplied to each of the plurality of regions.
具体的には、制御線CL(g)に用いることができる導電膜と、検知信号線ML(h)に用いることができる導電膜と、に分割された導電膜を検知領域241に用いることができる。また、複数の領域に分割された導電膜のそれぞれに、例えば、矩形の導電膜を用いることができる(図21および図4(A)、図5参照)。これにより、分割された導電膜を検知素子の電極に用いることができる。または、異なる電位を制御線に供給することができる。または、インセル型の入出力パネルを提供することができる。または、入出力パネルを構成する部材を削減することができる。
Specifically, a conductive film that is divided into a conductive film that can be used for the control line CL (g) and a conductive film that can be used for the detection signal line ML (h) is used for the
例えば、制御線CL(g)に用いることができる導電膜と、検知信号線ML(h)に用いることができる導電膜と、検知信号線ML(h+1)に用いることができる導電膜と、に分割された導電膜は、隣接部X0において互いに隣接する(図20(A)、図20(C)または図21参照)。 For example, a conductive film that can be used for the control line CL (g), a conductive film that can be used for the detection signal line ML (h), and a conductive film that can be used for the detection signal line ML (h + 1). The divided conductive films are adjacent to each other in the adjacent portion X0 (see FIG. 20A, FIG. 20C, or FIG. 21).
検知素子775(g,h)は、制御線CL(g)および検知信号線ML(h)と電気的に接続される(図20(A)参照)。 The detection element 775 (g, h) is electrically connected to the control line CL (g) and the detection signal line ML (h) (see FIG. 20A).
なお、制御線CL(g)は制御信号を供給する機能を備え、検知信号線ML(h)は、検知信号を供給される機能を備える。 Note that the control line CL (g) has a function of supplying a control signal, and the detection signal line ML (h) has a function of supplying a detection signal.
<検知素子775(g,h)>
検知素子775(g,h)は、制御信号および画素702(i,j)と重なる領域に近接するものとの距離に基づいて変化する検知信号を供給する機能を備える。また、検知素子775(g,h)は、電極C(g)と、電極M(h)と、を備える(図21(B)参照)。
<Detection element 775 (g, h)>
The detection element 775 (g, h) has a function of supplying a detection signal that changes based on a control signal and a distance from an area close to the region overlapping with the pixel 702 (i, j). In addition, the detection element 775 (g, h) includes an electrode C (g) and an electrode M (h) (see FIG. 21B).
電極C(g)は画素702(i,j)と重なる領域に光透過性を有する領域を備え、電極C(g)は制御線CL(g)と電気的に接続される。なお、電極C(g)を制御電極ということができる。また、制御線CL(g)に用いる導電膜と同一の導電膜を電極C(g)に用いて、制御線CL(g)と電極C(g)を一体にすることができる。 The electrode C (g) includes a light-transmitting region in a region overlapping with the pixel 702 (i, j), and the electrode C (g) is electrically connected to the control line CL (g). The electrode C (g) can be referred to as a control electrode. Further, the same conductive film as that used for the control line CL (g) can be used for the electrode C (g), so that the control line CL (g) and the electrode C (g) can be integrated.
電極M(h)は、画素702(i,j)と重なる領域に光透過性を有する領域を備える(図4(A)および図5参照)。また、電極M(h)は検知信号線ML(h)と電気的に接続される。また、電極M(h)は画素702(i,j)と重なる領域に近接するものによって一部が遮られる電界を、電極C(g)との間に形成するように配置される(図21(B)参照)。なお、電極M(h)を検知電極ということができる。また、検知信号線ML(h)に用いる導電膜と同一の導電膜を電極M(h)に用いて、検知信号線ML(h)と電極M(h)を一体にすることができる。 The electrode M (h) includes a light-transmitting region in a region overlapping with the pixel 702 (i, j) (see FIGS. 4A and 5). The electrode M (h) is electrically connected to the detection signal line ML (h). In addition, the electrode M (h) is disposed so as to form an electric field between the electrode C (g) and a part of the electrode M (h) that is blocked by an element close to the region overlapping with the pixel 702 (i, j) (FIG. 21). (See (B)). The electrode M (h) can be referred to as a detection electrode. Further, the same conductive film as that used for the detection signal line ML (h) is used for the electrode M (h), so that the detection signal line ML (h) and the electrode M (h) can be integrated.
例えば、制御線CL(g)に制御信号を供給すると、電極C(g)と電極M(h)の間または電極C(g)と電極M(h+1)の間に電界が形成される(図21(B)参照)。また、例えば、電極C(g)と電極M(h)の間に形成される電界の一部は、近接する指等によって遮られる。 For example, when a control signal is supplied to the control line CL (g), an electric field is formed between the electrode C (g) and the electrode M (h) or between the electrode C (g) and the electrode M (h + 1) (FIG. 21 (B)). For example, a part of the electric field formed between the electrode C (g) and the electrode M (h) is blocked by a nearby finger or the like.
これにより、表示部を用いて画像情報を表示しながら、表示部と重なる領域に近接するものを検知することができる。または、表示部に近接させる指などをポインタに用いて、位置情報を入力することができる。または、位置情報を表示部に表示する画像情報に関連付けることができる。その結果、利便性または信頼性に優れた新規な入出力装置を提供することができる。 Accordingly, it is possible to detect an object that is close to a region overlapping with the display unit while displaying image information using the display unit. Alternatively, position information can be input using a finger or the like that is brought close to the display portion as a pointer. Alternatively, the position information can be associated with image information displayed on the display unit. As a result, a novel input / output device that is highly convenient or reliable can be provided.
<発振回路OSC>
発振回路OSCは、制御線CL(g)と電気的に接続され、制御信号を供給する機能を備える。例えば、矩形波、のこぎり波また三角波等を制御信号に用いることができる。
<Oscillation circuit OSC>
The oscillation circuit OSC is electrically connected to the control line CL (g) and has a function of supplying a control signal. For example, a rectangular wave, a sawtooth wave, a triangular wave, or the like can be used as the control signal.
<検知回路DC>
検知回路DCは、検知信号線ML(h)と電気的に接続され、検知信号線ML(h)の電位の変化に基づいて検知信号を供給する機能を備える。なお、検知信号は、例えば、位置情報P1を含む。
<Detection circuit DC>
The detection circuit DC is electrically connected to the detection signal line ML (h) and has a function of supplying a detection signal based on a change in potential of the detection signal line ML (h). The detection signal includes, for example, position information P1.
<表示部230>
例えば、実施の形態1において説明する表示パネルを表示部230に用いることができる。または、実施の形態5において説明する表示装置を表示部230に用いることができる。
<
For example, the display panel described in
<検知素子775(g,h)>
検知素子775(g,h)は、電極C(g)および検知信号線ML(h)を備える。
<Detection element 775 (g, h)>
The detection element 775 (g, h) includes an electrode C (g) and a detection signal line ML (h).
例えば、光透過性を備える導電膜を、電極C(g)および検知信号線ML(h)に用いることができる。または、画素702(i,j)と重なる領域に開口部を備える導電膜を、電極C(g)および検知信号線ML(h)に用いることができる。これにより、表示パネルの表示を遮ることなく、表示パネルと重なる領域に近接するものを検知することができる。 For example, a light-transmitting conductive film can be used for the electrode C (g) and the detection signal line ML (h). Alternatively, a conductive film including an opening in a region overlapping with the pixel 702 (i, j) can be used for the electrode C (g) and the detection signal line ML (h). Accordingly, it is possible to detect an object close to a region overlapping with the display panel without blocking the display on the display panel.
なお、検知領域241は、一群の検知素子775(g,1)乃至検知素子775(g,q)と、他の一群の検知素子775(1,h)乃至検知素子775(p,h)と、を有する(図19参照)。なお、gは1以上p以下の整数であり、hは1以上q以下の整数であり、pおよびqは1以上の整数である。
The
一群の検知素子775(g,1)乃至検知素子775(g,q)は、検知素子775(g,h)を含み、行方向(図中に矢印R2で示す方向)に配設される。なお、図19に矢印R2で示す方向は、図19に矢印R1で示す方向と同じであっても良いし、異なっていてもよい。 The group of sensing elements 775 (g, 1) to 775 (g, q) includes the sensing elements 775 (g, h) and are arranged in the row direction (direction indicated by an arrow R2 in the drawing). Note that the direction indicated by the arrow R2 in FIG. 19 may be the same as or different from the direction indicated by the arrow R1 in FIG.
また、他の一群の検知素子775(1,h)乃至検知素子775(p,h)は、検知素子775(g,h)を含み、行方向と交差する列方向(図中に矢印C2で示す方向)に配設される。 Further, another group of the detection elements 775 (1, h) to 775 (p, h) includes the detection elements 775 (g, h), and the column direction (in the drawing, indicated by an arrow C2) that intersects the row direction. (Direction shown).
行方向に配設される一群の検知素子775(g,1)乃至検知素子775(g,q)は、制御線CL(g)と電気的に接続される電極C(g)を含む(図20(B)または図20(C)参照)。例えば、同一の工程で形成することができる導電膜を、制御線CL(g)および電極C(g)に用いることができる。 The group of sensing elements 775 (g, 1) to 775 (g, q) arranged in the row direction includes an electrode C (g) electrically connected to the control line CL (g) (FIG. 20 (B) or FIG. 20 (C)). For example, a conductive film that can be formed in the same step can be used for the control line CL (g) and the electrode C (g).
列方向に配設される他の一群の検知素子775(1,h)乃至検知素子775(p,h)は、検知信号線ML(h)と電気的に接続される電極M(h)を含む。例えば、同一の工程で形成することができる導電膜を、検知信号線ML(h)および電極M(h)に用いることができる。 Another group of the detection elements 775 (1, h) to 775 (p, h) arranged in the column direction has electrodes M (h) electrically connected to the detection signal lines ML (h). Including. For example, a conductive film that can be formed in the same process can be used for the detection signal line ML (h) and the electrode M (h).
検知信号線ML(h)は、導電膜BR(g,h)を含む(図20(B)および図6参照)。導電膜BR(g,h)は、制御線CL(g)と重なる領域を備える。 The detection signal line ML (h) includes a conductive film BR (g, h) (see FIG. 20B and FIG. 6). The conductive film BR (g, h) includes a region overlapping with the control line CL (g).
なお、検知素子775(g,h)は絶縁膜を備える。絶縁膜は、検知信号線ML(h)および導電膜BR(g,h)の間に挟まれる領域を備える。これにより、検知信号線ML(h)および導電膜BR(g,h)の短絡を防止することができる。 Note that the detection element 775 (g, h) includes an insulating film. The insulating film includes a region sandwiched between the detection signal line ML (h) and the conductive film BR (g, h). Thereby, short circuit of the detection signal line ML (h) and the conductive film BR (g, h) can be prevented.
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
(実施の形態8)
本発明の一態様の表示パネルについては、実施の形態1乃至実施の形態7と異なる構成としても良い。
(Embodiment 8)
The display panel of one embodiment of the present invention may have a structure different from those in
本実施の形態では、液晶材料を含む層を用いた反射型の表示素子750(i,j)と、光を射出する機能を備える表示素子550(i,j)と、の双方を有する表示パネル700_3の構成について、図22乃至図29を参照しながら説明する。 In this embodiment, a display panel having both a reflective display element 750 (i, j) using a layer containing a liquid crystal material and a display element 550 (i, j) having a function of emitting light. The structure of 700_3 will be described with reference to FIGS.
表示パネル700_3は、演算装置等から、情報V11および情報V12を取得する機能を備える。上記演算装置は、表示パネル700_3が映像等を所望の表示方法で表示できるように、情報V11および情報V12を生成することができる。例えば、映像のうち動画情報を情報V11に含ませ、静止画情報を情報V12に含ませる、等である。 The display panel 700_3 has a function of acquiring information V11 and information V12 from an arithmetic device or the like. The arithmetic device can generate the information V11 and the information V12 so that the display panel 700_3 can display an image or the like by a desired display method. For example, moving image information is included in the information V11, still image information is included in the information V12, and the like.
表示パネル700_3は、情報V11に基づいて、表示素子750(i,j)を表示し、情報V12に基づいて、表示素子550(i,j)を表示する。 The display panel 700_3 displays the display element 750 (i, j) based on the information V11, and displays the display element 550 (i, j) based on the information V12.
図22は本発明の一態様の表示装置の構成を説明するブロック図である。表示装置は表示パネルを有する。 FIG. 22 is a block diagram illustrating a structure of a display device of one embodiment of the present invention. The display device has a display panel.
図23は本発明の一態様の表示装置の表示パネルの構成を説明するブロック図である。図23は図22に示す構成とは異なる構成を説明するブロック図である。 FIG. 23 is a block diagram illustrating a structure of a display panel of a display device of one embodiment of the present invention. FIG. 23 is a block diagram illustrating a configuration different from the configuration shown in FIG.
図24は本発明の一態様の表示装置に用いることができる表示パネルの構成を説明する図である。図24(A)は表示パネルの上面図であり、図24(B)は図24(A)に示す表示パネルの画素の一部を説明する上面図である。図24(C)は図24(B)に示す画素の構成を説明する模式図である。 FIG. 24 illustrates a structure of a display panel that can be used for the display device of one embodiment of the present invention. FIG. 24A is a top view of the display panel, and FIG. 24B is a top view illustrating part of the pixels of the display panel illustrated in FIG. FIG. 24C is a schematic diagram illustrating the structure of the pixel illustrated in FIG.
図25および図26は表示パネルの構成を説明する断面図である。図25(A)は図24(A)の切断線X1−X2、切断線X3−X4、切断線X5−X6における断面図であり、図25(B)は図25(A)の一部を説明する図である。 25 and 26 are cross-sectional views illustrating the structure of the display panel. 25A is a cross-sectional view taken along cutting line X1-X2, cutting line X3-X4, and cutting line X5-X6 in FIG. 24A. FIG. 25B is a partial view of FIG. It is a figure explaining.
図26(A)は図24(A)の切断線X7−X8、切断線X9−X10における断面図であり、図26(B)は図26(A)の一部を説明する図である。 26A is a cross-sectional view taken along cutting lines X7-X8 and X9-X10 in FIG. 24A, and FIG. 26B is a diagram for explaining part of FIG.
図27(A)は図24(B)に示す表示パネルの画素の一部を説明する下面図であり、図27(B)は図27(A)に示す構成の一部を省略して説明する下面図である。 27A is a bottom view illustrating part of the pixels of the display panel illustrated in FIG. 24B, and FIG. 27B is illustrated with a part of the structure illustrated in FIG. 27A omitted. FIG.
図28は本発明の一態様の表示パネルが備える画素回路の構成を説明する回路図である。 FIG. 28 is a circuit diagram illustrating a structure of a pixel circuit included in the display panel of one embodiment of the present invention.
図29は表示パネルの画素に用いることができる光反射膜の形状を説明する模式図である。 FIG. 29 is a schematic diagram illustrating the shape of a light reflecting film that can be used for a pixel of a display panel.
なお、本明細書において、1以上の整数を値にとる変数を符号に用いる場合がある。例えば、1以上の整数の値をとる変数pを含む(p)を、最大p個の構成要素のいずれかを特定する符号の一部に用いる場合がある。また、例えば、1以上の整数の値をとる変数mおよび変数nを含む(m,n)を、最大m×n個の構成要素のいずれかを特定する符号の一部に用いる場合がある。 In the present specification, a variable having an integer value of 1 or more may be used for the sign. For example, (p) including a variable p that takes an integer value of 1 or more may be used as a part of a code that identifies any of the maximum p components. Further, for example, a variable m that takes an integer value of 1 or more and (m, n) including a variable n may be used as part of a code that identifies any of the maximum m × n components.
<表示パネルの構成例8>
本実施の形態で説明する表示パネル700_3は、表示領域231を有する(図22参照)。また、表示パネル700_3は、駆動回路GDまたは駆動回路SDを備えることができる。
<Configuration Example 8 of Display Panel>
A display panel 700_3 described in this embodiment includes a display region 231 (see FIG. 22). In addition, the display panel 700_3 can include the driver circuit GD or the driver circuit SD.
また、表示パネルは、複数の駆動回路を有することができる。例えば、表示パネル700_3Bは、駆動回路GDAおよび駆動回路GDBを有する(図23参照)。 In addition, the display panel can include a plurality of driver circuits. For example, the display panel 700_3B includes a driver circuit GDA and a driver circuit GDB (see FIG. 23).
<表示領域231>
表示領域231は、一群の複数の画素702(i,1)乃至画素702(i,n)と、他の一群の複数の画素702(1,j)乃至画素702(m,j)と、走査線G1(i)と、を有する(図22、図27または図28参照)。また、走査線G2(i)と、配線CSCOMと、第3の導電膜ANOと、信号線S2(j)と、を有する。なお、iは1以上m以下の整数であり、jは1以上n以下の整数であり、mおよびnは1以上の整数である。
<
The
一群の複数の画素702(i,1)乃至画素702(i,n)は画素702(i,j)を含み、一群の複数の画素702(i,1)乃至画素702(i,n)は行方向(図中に矢印R1で示す方向)に配設される。 A group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes a pixel 702 (i, j), and a group of the plurality of pixels 702 (i, 1) to 702 (i, n) includes Arranged in the row direction (direction indicated by arrow R1 in the figure).
他の一群の複数の画素702(1,j)乃至画素702(m,j)は画素702(i,j)を含み、他の一群の複数の画素702(1,j)乃至画素702(m,j)は行方向と交差する列方向(図中に矢印C1で示す方向)に配設される。 The other group of the plurality of pixels 702 (1, j) to 702 (m, j) includes the pixel 702 (i, j), and the other group of the plurality of pixels 702 (1, j) to 702 (m , J) are arranged in a column direction (direction indicated by an arrow C1 in the drawing) intersecting the row direction.
走査線G1(i)および走査線G2(i)は、行方向に配設される一群の複数の画素702(i,1)乃至画素702(i,n)と電気的に接続される。 The scan line G1 (i) and the scan line G2 (i) are electrically connected to a group of the plurality of pixels 702 (i, 1) to 702 (i, n) arranged in the row direction.
列方向に配設される他の一群の複数の画素702(1,j)乃至画素702(m,j)は、信号線S1(j)および信号線S2(j)と電気的に接続される。 Another group of the plurality of pixels 702 (1, j) to 702 (m, j) arranged in the column direction is electrically connected to the signal line S1 (j) and the signal line S2 (j). .
<駆動回路GD>
駆動回路GDは、制御情報に基づいて選択信号を供給する機能を有する。
<Drive circuit GD>
The drive circuit GD has a function of supplying a selection signal based on the control information.
一例を挙げれば、制御情報に基づいて、30Hz以上、好ましくは60Hz以上の頻度で一の走査線に選択信号を供給する機能を備える。これにより、動画像をなめらかに表示することができる。 For example, a function of supplying a selection signal to one scanning line at a frequency of 30 Hz or higher, preferably 60 Hz or higher is provided based on the control information. Thereby, a moving image can be displayed smoothly.
例えば、制御情報に基づいて、30Hz未満、好ましくは1Hz未満より好ましくは一分に一回未満の頻度で一の走査線に選択信号を供給する機能を備える。これにより、フリッカーが抑制された状態で静止画像を表示することができる。 For example, it has a function of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute based on the control information. Thereby, a still image can be displayed in a state where flicker is suppressed.
また、例えば、複数の駆動回路を備える場合、駆動回路GDAが選択信号を供給する頻度と、駆動回路GDBが選択信号を供給する頻度を、異ならせることができる。具体的には、フリッカーが抑制された状態で静止画像を表示する領域より高い頻度で、動画像を滑らかに表示する領域に選択信号を供給することができる。 For example, when a plurality of drive circuits are provided, the frequency with which the drive circuit GDA supplies the selection signal and the frequency with which the drive circuit GDB supplies the selection signal can be different. Specifically, the selection signal can be supplied to the area where the moving image is smoothly displayed at a higher frequency than the area where the still image is displayed with the flicker suppressed.
<駆動回路SD、駆動回路SD1、駆動回路SD2>
駆動回路SDは、駆動回路SD1と、駆動回路SD2と、を有する。駆動回路SD1は、情報V11に基づいて画像信号を供給する機能を有し、駆動回路SD2は、情報V12に基づいて画像信号を供給する機能を有する(図22参照)。
<Drive circuit SD, drive circuit SD1, drive circuit SD2>
The drive circuit SD includes a drive circuit SD1 and a drive circuit SD2. The drive circuit SD1 has a function of supplying an image signal based on the information V11, and the drive circuit SD2 has a function of supplying an image signal based on the information V12 (see FIG. 22).
駆動回路SD1は、一の表示素子と電気的に接続される画素回路に供給する画像信号を生成する機能を備える。具体的には、極性が反転する信号を生成する機能を備える。これにより、例えば、液晶表示素子を駆動することができる。 The drive circuit SD1 has a function of generating an image signal to be supplied to a pixel circuit that is electrically connected to one display element. Specifically, it has a function of generating a signal whose polarity is inverted. Thereby, for example, a liquid crystal display element can be driven.
駆動回路SD2は、一の表示素子とは異なる方法を用いて表示をする他の表示素子と電気的に接続される画素回路に供給する画像信号を生成する機能を備える。例えば、有機EL素子を駆動することができる。 The drive circuit SD2 has a function of generating an image signal to be supplied to a pixel circuit that is electrically connected to another display element that performs display using a method different from that of one display element. For example, an organic EL element can be driven.
例えば、シフトレジスタ等のさまざまな順序回路等を駆動回路SDに用いることができる。 For example, various sequential circuits such as a shift register can be used for the drive circuit SD.
例えば、駆動回路SD1および駆動回路SD2が集積された集積回路を、駆動回路SDに用いることができる。具体的には、シリコン基板上に形成された集積回路を駆動回路SDに用いることができる。 For example, an integrated circuit in which the drive circuit SD1 and the drive circuit SD2 are integrated can be used for the drive circuit SD. Specifically, an integrated circuit formed on a silicon substrate can be used for the drive circuit SD.
例えば、COG(Chip on glass)法またはCOF(Chip on Film)法を用いて、集積回路を端子にすることが実装できる。具体的には、異方性導電膜を用いて、集積回路を端子に実装することができる。 For example, an integrated circuit can be implemented as a terminal using a COG (Chip on glass) method or a COF (Chip on Film) method. Specifically, an integrated circuit can be mounted on a terminal using an anisotropic conductive film.
<画素の構成例>
画素702(i,j)は、表示素子750(i,j)、表示素子550(i,j)および機能層520の一部を備える(図24(C)、図25(A)および図26(A)参照)。
<Pixel configuration example>
The pixel 702 (i, j) includes a display element 750 (i, j), a display element 550 (i, j), and a part of the functional layer 520 (FIGS. 24C, 25A, and 26). (See (A)).
<機能層>
機能層520は、第1の導電膜と、第2の導電膜と、絶縁膜501Cと、画素回路530(i,j)と、を含む(図25(A)および図25(B)参照)。また、機能層520は、絶縁膜521と、絶縁膜528と、絶縁膜518および絶縁膜516を含む。
<Functional layer>
The
なお、機能層520は、基板570および基板770の間に挟まれる領域を備える。
Note that the
<絶縁膜501C>
絶縁膜501Cは、第1の導電膜および第2の導電膜の間に挟まれる領域を備え、絶縁膜501Cは開口部591Aを備える(図26(A)参照)。
<Insulating
The insulating
<第1の導電膜>
例えば、表示素子750(i,j)の第1の電極751(i,j)を、第1の導電膜に用いることができる。第1の導電膜は、第1の電極751(i,j)と電気的に接続される。
<First conductive film>
For example, the first electrode 751 (i, j) of the display element 750 (i, j) can be used for the first conductive film. The first conductive film is electrically connected to the first electrode 751 (i, j).
<第2の導電膜>
例えば、導電膜512Bを第2の導電膜に用いることができる。第2の導電膜は、第1の導電膜と重なる領域を備える。第2の導電膜は、開口部591Aにおいて第1の導電膜と電気的に接続される。ところで、絶縁膜501Cに設けられた開口部591Aにおいて第2の導電膜と電気的に接続される第1の導電膜を、貫通電極ということができる。
<Second conductive film>
For example, the
第2の導電膜は、画素回路530(i,j)と電気的に接続される。例えば、画素回路530(i,j)のスイッチSW1に用いるトランジスタのソース電極またはドレイン電極として機能する導電膜を、第2の導電膜に用いることができる。 The second conductive film is electrically connected to the pixel circuit 530 (i, j). For example, a conductive film functioning as a source electrode or a drain electrode of a transistor used for the switch SW1 of the pixel circuit 530 (i, j) can be used for the second conductive film.
<画素回路>
画素回路530(i,j)は、表示素子750(i,j)および表示素子550(i,j)を駆動する機能を備える(図28参照)。
<Pixel circuit>
The pixel circuit 530 (i, j) has a function of driving the display element 750 (i, j) and the display element 550 (i, j) (see FIG. 28).
スイッチ、トランジスタ、ダイオード、抵抗素子、インダクタまたは容量素子等を画素回路530(i,j)に用いることができる。 A switch, a transistor, a diode, a resistor, an inductor, a capacitor, or the like can be used for the pixel circuit 530 (i, j).
例えば、単数または複数のトランジスタをスイッチに用いることができる。または、並列に接続された複数のトランジスタ、直列に接続された複数のトランジスタ、直列と並列が組み合わされて接続された複数のトランジスタを、一のスイッチに用いることができる。 For example, one or more transistors can be used for the switch. Alternatively, a plurality of transistors connected in parallel, a plurality of transistors connected in series, and a plurality of transistors connected in combination of series and parallel can be used for one switch.
例えば、画素回路530(i,j)は、信号線S1(j)、信号線S2(j)、走査線G1(i)、走査線G2(i)、配線CSCOMおよび第3の導電膜ANOと電気的に接続される(図28参照)。なお、導電膜512Aは、信号線S1(j)と電気的に接続される(図26(A)および図28参照)。
For example, the pixel circuit 530 (i, j) includes the signal line S1 (j), the signal line S2 (j), the scanning line G1 (i), the scanning line G2 (i), the wiring CSCOM, and the third conductive film ANO. Electrically connected (see FIG. 28). Note that the
画素回路530(i,j)は、スイッチSW1、容量素子C11を含む(図28参照)。 The pixel circuit 530 (i, j) includes a switch SW1 and a capacitor C11 (see FIG. 28).
画素回路530(i,j)は、スイッチSW2、トランジスタMおよび容量素子C12を含む。 Pixel circuit 530 (i, j) includes switch SW2, transistor M, and capacitor C12.
例えば、走査線G1(i)と電気的に接続されるゲート電極と、信号線S1(j)と電気的に接続される第1の電極と、を有するトランジスタを、スイッチSW1に用いることができる。 For example, a transistor including a gate electrode electrically connected to the scan line G1 (i) and a first electrode electrically connected to the signal line S1 (j) can be used for the switch SW1. .
容量素子C11は、スイッチSW1に用いるトランジスタの第2の電極と電気的に接続される第1の電極と、配線CSCOMと電気的に接続される第2の電極と、を有する。 The capacitor C11 includes a first electrode that is electrically connected to the second electrode of the transistor used for the switch SW1, and a second electrode that is electrically connected to the wiring CSCOM.
例えば、走査線G2(i)と電気的に接続されるゲート電極と、信号線S2(j)と電気的に接続される第1の電極と、を有するトランジスタを、スイッチSW2に用いることができる。 For example, a transistor including a gate electrode electrically connected to the scan line G2 (i) and a first electrode electrically connected to the signal line S2 (j) can be used for the switch SW2. .
トランジスタMは、スイッチSW2に用いるトランジスタの第2の電極と電気的に接続されるゲート電極と、第3の導電膜ANOと電気的に接続される第1の電極と、を有する。 The transistor M includes a gate electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a first electrode that is electrically connected to the third conductive film ANO.
なお、半導体膜をゲート電極との間に挟むように設けられた導電膜を備えるトランジスタを、トランジスタMに用いることができる。例えば、トランジスタMのゲート電極と同じ電位を供給することができる配線と電気的に接続される導電膜を当該導電膜に用いることができる。 Note that a transistor including a conductive film provided so that a semiconductor film is interposed between a gate electrode and the gate electrode can be used for the transistor M. For example, a conductive film that is electrically connected to a wiring that can supply the same potential as the gate electrode of the transistor M can be used for the conductive film.
容量素子C12は、スイッチSW2に用いるトランジスタの第2の電極と電気的に接続される第1の電極と、トランジスタMの第1の電極と電気的に接続される第2の電極と、を有する。 The capacitor C12 includes a first electrode that is electrically connected to the second electrode of the transistor used for the switch SW2, and a second electrode that is electrically connected to the first electrode of the transistor M. .
なお、表示素子750(i,j)の第1の電極を、スイッチSW1に用いるトランジスタの第2の電極と電気的に接続する。また、表示素子750(i,j)の第2の電極を、配線VCOM1と電気的に接続する。これにより、表示素子750(i,j)を駆動することができる。 Note that the first electrode of the display element 750 (i, j) is electrically connected to the second electrode of the transistor used for the switch SW1. In addition, the second electrode of the display element 750 (i, j) is electrically connected to the wiring VCOM1. Accordingly, the display element 750 (i, j) can be driven.
また、表示素子550(i,j)の第3の電極551(i,j)をトランジスタMの第2の電極と電気的に接続し、表示素子550(i,j)の第4の電極552を第4の導電膜VCOM2と電気的に接続する。これにより、表示素子550(i,j)を駆動することができる。
In addition, the third electrode 551 (i, j) of the display element 550 (i, j) is electrically connected to the second electrode of the transistor M, and the
<表示素子750(i,j)>
例えば、光の反射または透過を制御する機能を備える表示素子を、表示素子750(i,j)に用いることができる。具体的には、反射型の液晶表示素子を表示素子750(i,j)に用いることができる。または、シャッター方式のMEMS表示素子等を用いることができる。反射型の表示素子を用いることにより、表示パネルの消費電力を抑制することができる。
<Display element 750 (i, j)>
For example, a display element having a function of controlling reflection or transmission of light can be used for the display element 750 (i, j). Specifically, a reflective liquid crystal display element can be used for the display element 750 (i, j). Alternatively, a shutter-type MEMS display element or the like can be used. By using a reflective display element, power consumption of the display panel can be suppressed.
表示素子750(i,j)は、第1の電極751(i,j)、第2の電極752および液晶材料を含む層753を備える。第2の電極752は、第1の電極751(i,j)との間に液晶材料の配向を制御する電界が形成されるように配置される(図25(A)および図26(A)参照)。
The display element 750 (i, j) includes a first electrode 751 (i, j), a
なお、表示素子750(i,j)は、配向膜AF1および配向膜AF2を備える。配向膜AF2は、配向膜AF1との間に液晶材料を含む層753を挟む領域を備える。
Note that the display element 750 (i, j) includes an alignment film AF1 and an alignment film AF2. The alignment film AF2 includes a region in which a
<表示素子550(i,j)>
例えば、光を射出する機能を備える表示素子を表示素子550(i,j)に用いることができる。具体的には、有機EL素子等を用いることができる。
<Display element 550 (i, j)>
For example, a display element having a function of emitting light can be used for the display element 550 (i, j). Specifically, an organic EL element or the like can be used.
表示素子550(i,j)は、絶縁膜501Cに向けて光を射出する機能を備える(図25(A)参照)。
The display element 550 (i, j) has a function of emitting light toward the insulating
表示素子550(i,j)は、表示素子750(i,j)を用いた表示を視認できる範囲の一部において、当該表示素子550(i,j)を用いた表示を視認できるように配設される。例えば、外光を反射する強度を制御して画像情報を表示する表示素子750(i,j)に外光が入射し反射する方向を、破線の矢印で図中に示す(図26(A)参照)。また、表示素子750(i,j)を用いた表示を視認できる範囲の一部に表示素子550(i,j)が光を射出する方向を、実線の矢印で図中に示す(図25(A)参照)。 The display element 550 (i, j) is arranged so that the display using the display element 550 (i, j) can be visually recognized in a part of the range where the display using the display element 750 (i, j) can be visually recognized. Established. For example, the direction in which external light is incident and reflected on the display element 750 (i, j) that displays image information by controlling the intensity of reflecting external light is indicated by a dashed arrow in the figure (FIG. 26A). reference). In addition, the direction in which the display element 550 (i, j) emits light to a part of the range where the display using the display element 750 (i, j) can be visually recognized is indicated by a solid arrow in the drawing (FIG. 25 ( A)).
表示素子550(i,j)は、第3の電極551(i,j)と、第4の電極552と、発光層553(j)と、を備える(図25(A)参照)。
The display element 550 (i, j) includes a third electrode 551 (i, j), a
第4の電極552は、第3の電極551(i,j)と重なる領域を備える。
The
発光層553(j)は、第3の電極551(i,j)および第4の電極552の間に挟まれる領域を備える。
The light-emitting layer 553 (j) includes a region sandwiched between the third electrode 551 (i, j) and the
第3の電極551(i,j)は、接続部522において、画素回路530(i,j)と電気的に接続される。なお、第3の電極551(i,j)は、第3の導電膜ANOと電気的に接続され、第4の電極552は、第4の導電膜VCOM2と電気的に接続される(図28参照)。
The third electrode 551 (i, j) is electrically connected to the pixel circuit 530 (i, j) at the
<中間膜>
また、本実施の形態で説明する表示パネルは、中間膜754Aと、中間膜754Bと、中間膜754Cと、を有する。
<Intermediate film>
In addition, the display panel described in this embodiment includes an
中間膜754Aは、絶縁膜501Cとの間に第1の導電膜を挟む領域を備え、中間膜754Aは、第1の電極751(i,j)と接する領域を備える。中間膜754Bは導電膜511Bと接する領域を備える。中間膜754Cは導電膜511Cと接する領域を備える。
The
<絶縁膜501A>
また、本実施の形態で説明する表示パネルは、絶縁膜501Aを有する(図25(A)参照)。
<Insulating
In addition, the display panel described in this embodiment includes an insulating
絶縁膜501Aは、第1の開口部592A、第2の開口部592Bおよび開口部592Cを備える(図25(A)または図26(A)参照)。
The insulating
第1の開口部592Aは、中間膜754Aおよび第1の電極751(i,j)と重なる領域または中間膜754Aおよび絶縁膜501Cと重なる領域を備える。
The
第2の開口部592Bは、中間膜754Bおよび導電膜511Bと重なる領域を備える。
The
また、開口部592Cは、中間膜754Cおよび導電膜511Cと重なる領域を備える。
The
また、絶縁膜501Aは、導電膜511Bとの間に絶縁膜501Cを挟む領域を備える。絶縁膜501Aは、絶縁膜501Cの開口部591Bにおいて導電膜511Bと接する。絶縁膜501Aは、絶縁膜501Cの開口部591Cにおいて導電膜511Cと接する。
The insulating
絶縁膜501Aは、第1の開口部592Aの周縁に沿って、中間膜754Aおよび絶縁膜501Cの間に挟まれる領域を備え、絶縁膜501Aは、第2の開口部592Bの周縁に沿って、中間膜754Bおよび導電膜511Bの間に挟まれる領域を備える。
The insulating
<絶縁膜521、絶縁膜528、絶縁膜518、絶縁膜516等>
絶縁膜521は、画素回路530(i,j)および表示素子550(i,j)の間に挟まれる領域を備える。
<Insulating Film 521, Insulating
The insulating film 521 includes a region sandwiched between the pixel circuit 530 (i, j) and the display element 550 (i, j).
絶縁膜528は、絶縁膜521および基板570の間に配設され、表示素子550(i,j)と重なる領域に開口部を備える。
The insulating
第3の電極551(i,j)の周縁に沿って形成される絶縁膜528は、第3の電極551(i,j)および第4の電極552の短絡を防止する。
An insulating
絶縁膜518は、絶縁膜521および画素回路530(i,j)の間に挟まれる領域を備える。
The insulating
絶縁膜516は、絶縁膜518および画素回路530(i,j)の間に挟まれる領域を備える。
The insulating
<端子等>
また、本実施の形態で説明する表示パネルは、端子519Bおよび端子519Cを有する。
<Terminal etc.>
In addition, the display panel described in this embodiment includes a terminal 519B and a terminal 519C.
端子519Bは、導電膜511Bと、中間膜754Bと、を備え、中間膜754Bは、導電膜511Bと接する領域を備える。端子519Bは、例えば信号線S1(j)と電気的に接続される。
The terminal 519B includes a
端子519Cは、導電膜511Cと、中間膜754Cと、を備え、中間膜754Cは、導電膜511Cと接する領域を備える。導電膜511Cは、例えば配線VCOM1と電気的に接続される。
The terminal 519C includes a conductive film 511C and an
導電材料CPは、端子519Cと第2の電極752の間に挟まれ、端子519Cと第2の電極752を電気的に接続する機能を備える。例えば、導電性の粒子を導電材料CPに用いることができる。
The conductive material CP is sandwiched between the terminal 519C and the
<基板等>
また、本実施の形態で説明する表示パネルは、基板570と、基板770と、を有する。
<Board etc.>
In addition, the display panel described in this embodiment includes a
基板770は、基板570と重なる領域を備える。基板770は、基板570との間に機能層520を挟む領域を備える。
The
<接合層、封止材、構造体等>
また、本実施の形態で説明する表示パネルは、接合層505と、封止材705と、構造体KB1と、を有する。
<Junction layer, sealing material, structure, etc.>
In addition, the display panel described in this embodiment includes a
接合層505は、機能層520および基板570の間に挟まれる領域を備え、機能層520および基板570を貼り合せる機能を備える。
The
封止材705は、機能層520および基板770の間に挟まれる領域を備え、機能層520および基板770を貼り合わせる機能を備える。
The sealing
構造体KB1は、機能層520および基板770の間に所定の間隙を設ける機能を備える。
The structure KB1 has a function of providing a predetermined gap between the
<機能膜等>
また、本実施の形態で説明する表示パネルは、遮光膜BMと、絶縁膜771と、機能膜770Pと、機能膜770Dと、を有する。また、着色膜CF1および着色膜CF2を有する。
<Functional membranes, etc.>
In addition, the display panel described in this embodiment includes a light-blocking film BM, an insulating
遮光膜BMは、表示素子750(i,j)と重なる領域に開口部を備える。着色膜CF2は、絶縁膜501Cおよび表示素子550(i,j)の間に配設され、開口部751Hと重なる領域を備える(図25(A)参照)。
The light shielding film BM includes an opening in a region overlapping with the display element 750 (i, j). The coloring film CF2 is provided between the insulating
絶縁膜771は、着色膜CF1と液晶材料を含む層753の間または遮光膜BMと液晶材料を含む層753の間に挟まれる領域を備える。これにより、着色膜CF1の厚さに基づく凹凸を平坦にすることができる。または、遮光膜BMまたは着色膜CF1等から液晶材料を含む層753への不純物の拡散を、抑制することができる。
The insulating
機能膜770Pは、表示素子750(i,j)と重なる領域を備える。
The
機能膜770Dは、表示素子750(i,j)と重なる領域を備える。機能膜770Dは、表示素子750(i,j)との間に基板770を挟むように配設される。これにより、例えば、表示素子750(i,j)が反射する光を拡散することができる。
The
<構成要素の例>
表示パネル700_3は、基板570、基板770、構造体KB1、封止材705または接合層505を有する。
<Examples of components>
The display panel 700_3 includes the
また、表示パネル700_3は、機能層520、絶縁膜521または絶縁膜528を有する。
The display panel 700_3 includes the
また、表示パネル700_3は、信号線S1(j)、信号線S2(j)、走査線G1(i)、走査線G2(i)、配線CSCOMまたは第3の導電膜ANOを有する。 The display panel 700_3 includes the signal line S1 (j), the signal line S2 (j), the scanning line G1 (i), the scanning line G2 (i), the wiring CSCOM, or the third conductive film ANO.
また、表示パネル700_3は、第1の導電膜または第2の導電膜を有する。 The display panel 700_3 includes a first conductive film or a second conductive film.
また、表示パネル700_3は、端子519B、端子519C、導電膜511Bまたは導電膜511Cを有する。
The display panel 700_3 includes the terminal 519B, the terminal 519C, the
また、表示パネル700_3は、画素回路530(i,j)またはスイッチSW1を有する。 In addition, the display panel 700_3 includes the pixel circuit 530 (i, j) or the switch SW1.
また、表示パネル700_3は、表示素子750(i,j)、第1の電極751(i,j)、光反射膜、開口部、液晶材料を含む層753または第2の電極752を有する。
The display panel 700_3 includes the display element 750 (i, j), the first electrode 751 (i, j), the light reflecting film, the opening, the
また、表示パネル700_3は、配向膜AF1、配向膜AF2、着色膜CF1、着色膜CF2、遮光膜BM、絶縁膜771、機能膜770Pまたは機能膜770Dを有する。
The display panel 700_3 includes the alignment film AF1, the alignment film AF2, the coloring film CF1, the coloring film CF2, the light-shielding film BM, the insulating
また、表示パネル700_3は、表示素子550(i,j)、第3の電極551(i,j)、第4の電極552または発光層553(j)を有する。
The display panel 700_3 includes the display element 550 (i, j), the third electrode 551 (i, j), the
また、表示パネル700_3は、絶縁膜501Aおよび絶縁膜501Cを有する。
The display panel 700_3 includes the insulating
また、表示パネル700_3は、駆動回路GDまたは駆動回路SDを有する。 In addition, the display panel 700_3 includes the driver circuit GD or the driver circuit SD.
<構造体KB1>
例えば、有機材料、無機材料または有機材料と無機材料の複合材料を構造体KB1等に用いることができる。これにより、所定の間隔を、構造体KB1等を挟む構成の間に設けることができる。
<Structure KB1>
For example, an organic material, an inorganic material, or a composite material of an organic material and an inorganic material can be used for the structure KB1 or the like. Thereby, a predetermined space | interval can be provided between the structures which pinch | interpose structure KB1 grade | etc.,.
具体的には、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリカーボネート、ポリシロキサン若しくはアクリル樹脂等またはこれらから選択された複数の樹脂の複合材料などを構造体KB1に用いることができる。また、感光性を有する材料を用いて形成してもよい。 Specifically, polyester, polyolefin, polyamide, polyimide, polycarbonate, polysiloxane, acrylic resin, or a composite material of a plurality of resins selected from these can be used for the structure KB1. Alternatively, a material having photosensitivity may be used.
<封止材705>
無機材料、有機材料または無機材料と有機材料の複合材料等を封止材705等に用いることができる。
<
An inorganic material, an organic material, a composite material of an inorganic material and an organic material, or the like can be used for the
例えば、熱溶融性の樹脂または硬化性の樹脂等の有機材料を、封止材705等に用いることができる。
For example, an organic material such as a heat-meltable resin or a curable resin can be used for the sealing
例えば、反応硬化型接着剤、光硬化型接着剤、熱硬化型接着剤または/および嫌気型接着剤等の有機材料を封止材705等に用いることができる。
For example, an organic material such as a reactive curable adhesive, a photocurable adhesive, a thermosetting adhesive, and / or an anaerobic adhesive can be used for the sealing
具体的には、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等を含む接着剤を封止材705等に用いることができる。
Specifically, an adhesive including epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin, and the like. Can be used for the sealing
<接合層505>
例えば、封止材705に用いることができる材料を接合層505に用いることができる。
<
For example, a material that can be used for the
<絶縁膜521>
例えば、絶縁膜521A,Bに用いる材料を、用いることができる。
<Insulating film 521>
For example, a material used for the insulating
<絶縁膜528>
例えば、絶縁膜521に用いることができる材料を絶縁膜528等に用いることができる。具体的には、厚さ1μmのポリイミドを含む膜を絶縁膜528に用いることができる。
<Insulating
For example, a material that can be used for the insulating film 521 can be used for the insulating
<絶縁膜501A>
例えば、絶縁膜521に用いることができる材料を絶縁膜501Aに用いることができる。また、例えば、水素を供給する機能を備える材料を絶縁膜501Aに用いることができる。
<Insulating
For example, a material that can be used for the insulating film 521 can be used for the insulating
具体的には、シリコンおよび酸素を含む材料と、シリコンおよび窒素を含む材料と、を積層した材料を、絶縁膜501Aに用いることができる。例えば、加熱等により水素を放出し、放出した水素を他の構成に供給する機能を備える材料を、絶縁膜501Aに用いることができる。具体的には、作製工程中に取り込まれた水素を加熱等により放出し、他の構成に供給する機能を備える材料を絶縁膜501Aに用いることができる。
Specifically, a material in which a material containing silicon and oxygen and a material containing silicon and nitrogen are stacked can be used for the insulating
例えば、原料ガスにシラン等を用いる化学気相成長法により形成されたシリコンおよび酸素を含む膜を、絶縁膜501Aに用いることができる。
For example, a film containing silicon and oxygen formed by a chemical vapor deposition method using silane or the like as a source gas can be used for the insulating
具体的には、シリコンおよび酸素を含む厚さ200nm以上600nm以下の材料と、シリコンおよび窒素を含む厚さ200nm程度の材料と、を積層した材料を絶縁膜501Aに用いることができる。
Specifically, a material in which a material including silicon and oxygen having a thickness of 200 nm to 600 nm and a material including silicon and nitrogen and having a thickness of about 200 nm can be used for the insulating
<絶縁膜501C>
例えば、絶縁膜521に用いることができる材料を絶縁膜501Cに用いることができる。具体的には、シリコンおよび酸素を含む材料を絶縁膜501Cに用いることができる。これにより、画素回路または表示素子550(i,j)等への不純物の拡散を抑制することができる。
<Insulating
For example, a material that can be used for the insulating film 521 can be used for the insulating
例えば、シリコン、酸素および窒素を含む厚さ200nmの膜を絶縁膜501Cに用いることができる。
For example, a 200-nm-thick film containing silicon, oxygen, and nitrogen can be used for the insulating
<中間膜754A、中間膜754B、中間膜754C>
例えば、10nm以上500nm以下、好ましくは10nm以上100nm以下の厚さを有する膜を、中間膜754A、中間膜754Bまたは中間膜754Cに用いることができる。なお、本明細書において、中間膜754A、中間膜754Bまたは中間膜754Cを中間膜という。
<
For example, a film having a thickness of 10 nm to 500 nm, preferably 10 nm to 100 nm can be used for the
例えば、水素を透過または供給する機能を備える材料を中間膜に用いることができる。 For example, a material having a function of permeating or supplying hydrogen can be used for the intermediate film.
例えば、導電性を備える材料を中間膜に用いることができる。 For example, a material having conductivity can be used for the intermediate film.
例えば、光透過性を備える材料を中間膜に用いることができる。 For example, a material having optical transparency can be used for the intermediate film.
具体的には、インジウムおよび酸素を含む材料、インジウム、ガリウム、亜鉛および酸素を含む材料またはインジウム、スズおよび酸素を含む材料等を中間膜に用いることができる。なお、これらの材料は水素を透過する機能を備える。 Specifically, a material containing indium and oxygen, a material containing indium, gallium, zinc and oxygen, a material containing indium, tin and oxygen, or the like can be used for the intermediate film. Note that these materials have a function of permeating hydrogen.
具体的には、インジウム、ガリウム、亜鉛および酸素を含む厚さ50nmの膜または厚さ100nmの膜を中間膜に用いることができる。 Specifically, a 50 nm-thick film or a 100 nm-thick film containing indium, gallium, zinc, and oxygen can be used as the intermediate film.
なお、エッチングストッパーとして機能する膜が積層された材料を中間膜に用いることができる。具体的には、インジウム、ガリウム、亜鉛および酸素を含む厚さ50nmの膜と、インジウム、スズおよび酸素を含む厚さ20nmの膜と、をこの順で積層した積層材料を中間膜に用いることができる。 Note that a material in which a film functioning as an etching stopper is stacked can be used for the intermediate film. Specifically, a laminated material obtained by laminating a film having a thickness of 50 nm containing indium, gallium, zinc, and oxygen and a film having a thickness of 20 nm containing indium, tin, and oxygen in this order is used for the intermediate film. it can.
<配線、端子、導電膜>
導電性を備える材料を配線等に用いることができる。具体的には、導電性を備える材料を、信号線S1(j)、信号線S2(j)、走査線G1(i)、走査線G2(i)、配線CSCOM、第3の導電膜ANO、端子519B、端子519C、導電膜511Bまたは導電膜511C等に用いることができる。
<Wiring, terminal, conductive film>
A conductive material can be used for the wiring or the like. Specifically, a material having conductivity is formed using a signal line S1 (j), a signal line S2 (j), a scanning line G1 (i), a scanning line G2 (i), a wiring CSCOM, a third conductive film ANO, It can be used for the terminal 519B, the terminal 519C, the
例えば、無機導電性材料、有機導電性材料、金属または導電性セラミックスなどを配線等に用いることができる。 For example, an inorganic conductive material, an organic conductive material, a metal, a conductive ceramic, or the like can be used for the wiring.
具体的には、アルミニウム、金、白金、銀、銅、クロム、タンタル、チタン、モリブデン、タングステン、ニッケル、鉄、コバルト、パラジウムまたはマンガンから選ばれた金属元素などを、配線等に用いることができる。または、上述した金属元素を含む合金などを、配線等に用いることができる。特に、銅とマンガンの合金がウエットエッチング法を用いた微細加工に好適である。 Specifically, a metal element selected from aluminum, gold, platinum, silver, copper, chromium, tantalum, titanium, molybdenum, tungsten, nickel, iron, cobalt, palladium, or manganese can be used for the wiring or the like. . Alternatively, an alloy containing the above metal element can be used for the wiring or the like. In particular, an alloy of copper and manganese is suitable for fine processing using a wet etching method.
具体的には、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等を配線等に用いることができる。 Specifically, a two-layer structure in which a titanium film is laminated on an aluminum film, a two-layer structure in which a titanium film is laminated on a titanium nitride film, a two-layer structure in which a tungsten film is laminated on a titanium nitride film, a tantalum nitride film or A two-layer structure in which a tungsten film is stacked on a tungsten nitride film, a titanium film, and a three-layer structure in which an aluminum film is stacked on the titanium film and a titanium film is further formed thereon can be used for wiring or the like. .
具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物を、配線等に用いることができる。 Specifically, a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, or zinc oxide to which gallium is added can be used for the wiring or the like.
具体的には、グラフェンまたはグラファイトを含む膜を配線等に用いることができる。 Specifically, a film containing graphene or graphite can be used for the wiring or the like.
例えば、酸化グラフェンを含む膜を形成し、酸化グラフェンを含む膜を還元することにより、グラフェンを含む膜を形成することができる。還元する方法としては、熱を加える方法や還元剤を用いる方法等を挙げることができる。 For example, by forming a film containing graphene oxide and reducing the film containing graphene oxide, the film containing graphene can be formed. Examples of the reduction method include a method of applying heat and a method of using a reducing agent.
例えば、金属ナノワイヤーを含む膜を配線等に用いることができる。具体的には、銀を含むナノワイヤーを用いることができる。 For example, a film containing metal nanowires can be used for wiring or the like. Specifically, a nanowire containing silver can be used.
具体的には、導電性高分子を配線等に用いることができる。 Specifically, a conductive polymer can be used for wiring or the like.
なお、例えば、導電材料ACF1を用いて、端子519Bとフレキシブルプリント基板FPC1を電気的に接続することができる。 Note that, for example, the conductive material ACF1 can be used to electrically connect the terminal 519B and the flexible printed circuit board FPC1.
<第1の導電膜、第2の導電膜>
例えば、配線等に用いることができる材料を第1の導電膜または第2の導電膜に用いることができる。
<First conductive film, second conductive film>
For example, a material that can be used for a wiring or the like can be used for the first conductive film or the second conductive film.
また、第1の電極751(i,j)または配線等を第1の導電膜に用いることができる。 In addition, the first electrode 751 (i, j), the wiring, or the like can be used for the first conductive film.
また、スイッチSW1に用いることができるトランジスタのソース電極またはドレイン電極として機能する導電膜512Bまたは配線等を第2の導電膜に用いることができる。
In addition, a
<表示素子750(i,j)>
例えば、光の反射または透過を制御する機能を備える表示素子を、表示素子750(i,j)に用いることができる。例えば、液晶素子と偏光板を組み合わせた構成またはシャッター方式のMEMS表示素子等を用いることができる。具体的には、反射型の液晶表示素子を表示素子750(i,j)に用いることができる。反射型の表示素子を用いることにより、表示パネルの消費電力を抑制することができる。
<Display element 750 (i, j)>
For example, a display element having a function of controlling reflection or transmission of light can be used for the display element 750 (i, j). For example, a structure in which a liquid crystal element and a polarizing plate are combined or a shutter-type MEMS display element or the like can be used. Specifically, a reflective liquid crystal display element can be used for the display element 750 (i, j). By using a reflective display element, power consumption of the display panel can be suppressed.
例えば、IPS(In−Plane−Switching)モード、TN(Twisted Nematic)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどの駆動方法を用いて駆動することができる液晶素子を用いることができる。 For example, IPS (In-Plane-Switching) mode, TN (Twisted Nematic) mode, FFS (Fringe Field Switched) mode, ASM (Axially Symmetrically Applied Micro-cell) mode, OCB (OpticBridge) mode. A liquid crystal element that can be driven using a driving method such as a Crystal) mode or an AFLC (Antiferroelectric Liquid Crystal) mode can be used.
また、例えば垂直配向(VA)モード、具体的には、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ECB(Electrically Controlled Birefringence)モード、CPA(Continuous Pinwheel Alignment)モード、ASV(Advanced Super−View)モードなどの駆動方法を用いて駆動することができる液晶素子を用いることができる。 In addition, for example, vertical alignment (VA) mode, specifically, MVA (Multi-Domain Vertical Alignment) mode, PVA (Patterned Vertical Alignment) mode, ECB (Electrically Controlled Birefringence ACP mode, CPB mode) A liquid crystal element that can be driven by a driving method such as an (Advanced Super-View) mode can be used.
表示素子750(i,j)は、第1の電極751(i,j)と、第2の電極752と、液晶材料を含む層753と、を有する。液晶材料を含む層753は、第1の電極751(i,j)および第2の電極752の間の電圧を用いて配向を制御することができる液晶材料を含む。例えば、液晶材料を含む層753の厚さ方向(縦方向ともいう)、縦方向と交差する方向(横方向または斜め方向ともいう)の電界を、液晶材料の配向を制御する電界に用いることができる。
The display element 750 (i, j) includes a first electrode 751 (i, j), a
<液晶材料を含む層753>
例えば、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を、液晶材料を含む層に用いることができる。または、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す液晶材料を用いることができる。または、ブルー相を示す液晶材料を用いることができる。
<
For example, a thermotropic liquid crystal, a low molecular liquid crystal, a polymer liquid crystal, a polymer dispersed liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like can be used for the layer containing a liquid crystal material. Alternatively, a liquid crystal material exhibiting a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like can be used. Alternatively, a liquid crystal material exhibiting a blue phase can be used.
<第1の電極751(i,j)>
例えば、配線等に用いる材料を第1の電極751(i,j)に用いることができる。具体的には、光反射膜を第1の電極751(i,j)に用いることができる。例えば、光透過性を備える導電膜と、開口部を備える光反射膜と、を積層した材料を第1の電極751(i,j)に用いることができる。
<First electrode 751 (i, j)>
For example, a material used for a wiring or the like can be used for the first electrode 751 (i, j). Specifically, a light reflecting film can be used for the first electrode 751 (i, j). For example, a material in which a conductive film having light transmittance and a light reflecting film having an opening are stacked can be used for the first electrode 751 (i, j).
<光反射膜>
例えば、可視光を反射する材料を光反射膜に用いることができる。具体的には、銀を含む材料を光反射膜に用いることができる。例えば、銀およびパラジウム等を含む材料または銀および銅等を含む材料を光反射膜に用いることができる。
<Light reflecting film>
For example, a material that reflects visible light can be used for the light reflecting film. Specifically, a material containing silver can be used for the light reflecting film. For example, a material containing silver and palladium or a material containing silver and copper can be used for the light reflecting film.
光反射膜は、例えば、液晶材料を含む層753を透過してくる光を反射する。これにより、表示素子750(i,j)を反射型の液晶素子にすることができる。また、例えば、表面に凹凸を備える材料を、光反射膜に用いることができる。これにより、入射する光をさまざまな方向に反射して、白色の表示をすることができる。
The light reflecting film reflects, for example, light transmitted through the
例えば、第1の導電膜または第1の電極751(i,j)等を光反射膜に用いることができる。 For example, the first conductive film, the first electrode 751 (i, j), or the like can be used for the light reflecting film.
例えば、液晶材料を含む層753と第1の電極751(i,j)の間に挟まれる領域を備える膜を、光反射膜に用いることができる。または、液晶材料を含む層753との間に光透過性を有する第1の電極751(i,j)を挟む領域を備える膜を、光反射膜を用いることができる。
For example, a film including a region between the
光反射膜は、例えば表示素子550(i,j)が射出する光を遮らない領域が形成される形状を備える。 For example, the light reflecting film has a shape in which a region that does not block the light emitted from the display element 550 (i, j) is formed.
例えば、単数または複数の開口部を備える形状を光反射膜に用いることができる。 For example, a shape having one or a plurality of openings can be used for the light reflecting film.
多角形、四角形、楕円形、円形または十字等の形状を開口部に用いることができる。また、細長い筋状、スリット状、市松模様状の形状を開口部751Hに用いることができる。
A shape such as a polygon, a rectangle, an ellipse, a circle, or a cross can be used for the opening. In addition, an elongated stripe shape, a slit shape, or a checkered shape can be used for the
非開口部の総面積に対する開口部751Hの総面積の比の値が大きすぎると、表示素子750(i,j)を用いた表示が暗くなってしまう。
If the value of the ratio of the total area of the
また、非開口部の総面積に対する開口部751Hの総面積の比の値が小さすぎると、表示素子550(i,j)を用いた表示が暗くなってしまう。または、表示素子550(i,j)の信頼性を損なう場合がある。
In addition, if the ratio of the total area of the
例えば、画素702(i,j)に隣接する画素702(i,j+1)の開口部751Hは、画素702(i,j)の開口部751Hを通る行方向(図中に矢印R1で示す方向)に延びる直線上に配設されない(図29(A)参照)。または、例えば、画素702(i,j)に隣接する画素702(i+1,j)の開口部751Hは、画素702(i,j)の開口部751Hを通る、列方向(図中に矢印C1で示す方向)に延びる直線上に配設されない(図29(B)参照)。
For example, the
例えば、画素702(i,j+2)の開口部751Hは、画素702(i,j)の開口部751Hを通る、行方向に延びる直線上に配設される(図29(A)参照)。また、画素702(i,j+1)の開口部751Hは、画素702(i,j)の開口部751Hおよび画素702(i,j+2)の開口部751Hの間において当該直線と直交する直線上に配設される。
For example, the
または、例えば、画素702(i+2,j)の開口部751Hは、画素702(i,j)の開口部751Hを通る、列方向に延びる直線上に配設される(図29(B)参照)。また、例えば、画素702(i+1,j)の開口部751Hは、画素702(i,j)の開口部751Hおよび画素702(i+2,j)の開口部751Hの間において当該直線と直交する直線上に配設される。
Alternatively, for example, the
なお、例えば、表示素子550(i,j)が射出する光を遮らない領域751Eが形成されるように、端部が切除されたような形状を備える材料を、光反射膜に用いることができる(図29(C)参照)。具体的には、列方向(図中に矢印C1で示す方向)が短くなるように端部が切除された第1の電極751(i,j)を光反射膜に用いることができる。
Note that, for example, a material having a shape in which an end portion is cut off so that a
<第2の電極752>
例えば、導電性を備える材料を、第2の電極752に用いることができる。可視光について光透過性を備える材料を、第2の電極752に用いることができる。
<
For example, a material having conductivity can be used for the
例えば、導電性酸化物、光が透過する程度に薄い金属膜または金属ナノワイヤーを第2の電極752に用いることができる。
For example, a conductive oxide, a metal film that is thin enough to transmit light, or a metal nanowire can be used for the
具体的には、インジウムを含む導電性酸化物を第2の電極752に用いることができる。または、厚さ1nm以上10nm以下の金属薄膜を第2の電極752に用いることができる。また、銀を含む金属ナノワイヤーを第2の電極752に用いることができる。
Specifically, a conductive oxide containing indium can be used for the
具体的には、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛、アルミニウムを添加した酸化亜鉛などを、第2の電極752に用いることができる。
Specifically, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, zinc oxide to which aluminum is added, or the like can be used for the
<配向膜AF1、配向膜AF2>
例えば、ポリイミド等を含む材料を配向膜AF1または配向膜AF2に用いることができる。具体的には、液晶材料が所定の方向に配向するようにラビング処理または光配向技術を用いて形成された材料を用いることができる。
<Alignment film AF1 and alignment film AF2>
For example, a material containing polyimide or the like can be used for the alignment film AF1 or the alignment film AF2. Specifically, a material formed using a rubbing process or a photo-alignment technique so that the liquid crystal material is aligned in a predetermined direction can be used.
例えば、可溶性のポリイミドを含む膜を配向膜AF1または配向膜AF2に用いることができる。これにより、配向膜AF1または配向膜AF2を形成する際に必要とされる温度を低くすることができる。その結果、配向膜AF1または配向膜AF2を形成する際に他の構成に与える損傷を軽減することができる。 For example, a film containing soluble polyimide can be used for the alignment film AF1 or the alignment film AF2. Thereby, the temperature required for forming the alignment film AF1 or the alignment film AF2 can be lowered. As a result, damage to other components when forming the alignment film AF1 or the alignment film AF2 can be reduced.
<着色膜CF1、着色膜CF2>
所定の色の光を透過する材料を着色膜CF1または着色膜CF2に用いることができる。これにより、着色膜CF1または着色膜CF2を例えばカラーフィルターに用いることができる。例えば、青色、緑色または赤色の光を透過する材料を着色膜CF1または着色膜CF2に用いることができる。また、黄色の光または白色の光等を透過する材料を着色膜CF1または着色膜CF2に用いることができる。
<Colored film CF1, colored film CF2>
A material that transmits light of a predetermined color can be used for the colored film CF1 or the colored film CF2. Thereby, the colored film CF1 or the colored film CF2 can be used for a color filter, for example. For example, a material that transmits blue, green, or red light can be used for the colored film CF1 or the colored film CF2. Further, a material that transmits yellow light, white light, or the like can be used for the colored film CF1 or the colored film CF2.
なお、照射された光を所定の色の光に変換する機能を備える材料を着色膜CF2に用いることができる。具体的には、量子ドットを着色膜CF2に用いることができる。これにより、色純度の高い表示をすることができる。 Note that a material having a function of converting irradiated light into light of a predetermined color can be used for the colored film CF2. Specifically, quantum dots can be used for the colored film CF2. Thereby, display with high color purity can be performed.
<遮光膜BM>
光の透過を妨げる材料を遮光膜BMに用いることができる。これにより、遮光膜BMを例えばブラックマトリクスに用いることができる。
<Light shielding film BM>
A material that prevents light transmission can be used for the light-shielding film BM. Thereby, the light shielding film BM can be used for, for example, a black matrix.
<絶縁膜771>
例えば、ポリイミド、エポキシ樹脂、アクリル樹脂等を絶縁膜771に用いることができる。
<Insulating
For example, polyimide, epoxy resin, acrylic resin, or the like can be used for the insulating
<機能膜770P、機能膜770D>
例えば、反射防止フィルム、偏光フィルム、位相差フィルム、光拡散フィルムまたは集光フィルム等を機能膜770Pまたは機能膜770Dに用いることができる。
<
For example, an antireflection film, a polarizing film, a retardation film, a light diffusion film, a light collecting film, or the like can be used for the
具体的には、2色性色素を含む膜を機能膜770Pまたは機能膜770Dに用いることができる。または、基材の表面と交差する方向に沿った軸を備える柱状構造を有する材料を、機能膜770Pまたは機能膜770Dに用いることができる。これにより、光を軸に沿った方向に透過し易く、他の方向に散乱し易くすることができる。
Specifically, a film containing a dichroic dye can be used for the
また、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜などを、機能膜770Pに用いることができる。
In addition, an antistatic film that suppresses adhesion of dust, a water-repellent film that makes it difficult to adhere dirt, a hard coat film that suppresses generation of scratches due to use, and the like can be used for the
具体的には、円偏光フィルムを機能膜770Pに用いることができる。また、光拡散フィルムを機能膜770Dに用いることができる。
Specifically, a circularly polarizing film can be used for the
<表示素子550(i,j)>
例えば、発光素子を表示素子550(i,j)に用いることができる。具体的には、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子または発光ダイオードなどを、表示素子550(i,j)に用いることができる。
<Display element 550 (i, j)>
For example, a light-emitting element can be used for the display element 550 (i, j). Specifically, an organic electroluminescent element, an inorganic electroluminescent element, a light-emitting diode, or the like can be used for the display element 550 (i, j).
例えば、発光性の有機化合物を発光層553(j)に用いることができる。 For example, a light-emitting organic compound can be used for the light-emitting layer 553 (j).
例えば、量子ドットを発光層553(j)に用いることができる。これにより、半値幅が狭く、鮮やかな色の光を発することができる。 For example, quantum dots can be used for the light-emitting layer 553 (j). Thereby, the half value width is narrow and it is possible to emit brightly colored light.
例えば、青色の光を射出するように積層された積層材料、緑色の光を射出するように積層された積層材料または赤色の光を射出するように積層された積層材料等を、発光層553(j)に用いることができる。 For example, a light-emitting layer 553 (a laminated material laminated so as to emit blue light, a laminated material laminated so as to emit green light, or a laminated material laminated so as to emit red light) j).
例えば、信号線S2(j)に沿って列方向に長い帯状の積層材料を、発光層553(j)に用いることができる。 For example, a strip-shaped stacked material that is long in the column direction along the signal line S2 (j) can be used for the light-emitting layer 553 (j).
また、例えば、白色の光を射出するように積層された積層材料を、発光層553(j)に用いることができる。具体的には、青色の光を射出する蛍光材料を含む発光層と、緑色および赤色の光を射出する蛍光材料以外の材料を含む層または黄色の光を射出する蛍光材料以外の材料を含む層と、を積層した積層材料を、発光層553(j)に用いることができる。 For example, a stacked material stacked so as to emit white light can be used for the light-emitting layer 553 (j). Specifically, a light emitting layer containing a fluorescent material that emits blue light, a layer containing a material other than a fluorescent material that emits green and red light, or a layer containing a material other than a fluorescent material that emits yellow light Can be used for the light-emitting layer 553 (j).
例えば、配線等に用いることができる材料を第3の電極551(i,j)に用いることができる。 For example, a material that can be used for a wiring or the like can be used for the third electrode 551 (i, j).
例えば、配線等に用いることができる材料から選択された、可視光について光透過性を有する材料を、第3の電極551(i,j)に用いることができる。 For example, a material that has a light-transmitting property with respect to visible light and is selected from materials that can be used for wirings or the like can be used for the third electrode 551 (i, j).
具体的には、導電性酸化物またはインジウムを含む導電性酸化物、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などを、第3の電極551(i,j)に用いることができる。または、光が透過する程度に薄い金属膜を第3の電極551(i,j)に用いることができる。または、光の一部を透過し、光の他の一部を反射する金属膜を第3の電極551(i,j)に用いることができる。これにより、微小共振器構造を表示素子550(i,j)に設けることができる。その結果、所定の波長の光を他の光より効率よく取り出すことができる。 Specifically, a conductive oxide or a conductive oxide containing indium, indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide to which gallium is added, or the like is used for the third electrode 551 (i , J). Alternatively, a metal film that is thin enough to transmit light can be used for the third electrode 551 (i, j). Alternatively, a metal film that transmits part of light and reflects the other part of light can be used for the third electrode 551 (i, j). Thereby, a microresonator structure can be provided in the display element 550 (i, j). As a result, light with a predetermined wavelength can be extracted more efficiently than other light.
例えば、配線等に用いることができる材料を第4の電極552に用いることができる。具体的には、光反射性の材料、換言すれば可視光について反射性を有する材料を、第4の電極552に用いることができる。
For example, a material that can be used for a wiring or the like can be used for the
<駆動回路GD>
例えば、スイッチSW1に用いることができるトランジスタと異なる構成をトランジスタMDに用いることができる。具体的には、導電膜524を有するトランジスタをトランジスタMDに用いることができる(図25(B)参照)。
<Drive circuit GD>
For example, a different structure from the transistor that can be used for the switch SW1 can be used for the transistor MD. Specifically, a transistor including the
なお、トランジスタMと同一の構成を、トランジスタMDに用いることができる。 Note that the same structure as the transistor M can be used for the transistor MD.
表示パネル700_3の構造(図25(A)、図26(A)参照)は、表示パネル700の構造(図4(A)、図5参照)に比べて、表示素子750(i,j)を有する分、工程に要するマスク枚数が増える。実施の形態1乃至実施の形態3に示すような構造を表示パネルに有することで、微小光共振器を形成しても工程を増えることはなく、製造コストの低減に有効である。
The structure of the display panel 700_3 (see FIGS. 25A and 26A) includes the display element 750 (i, j) as compared to the structure of the display panel 700 (see FIGS. 4A and 5). Therefore, the number of masks required for the process increases. By having the structure as shown in
(実施の形態9)
本実施の形態では、本発明の一態様の情報処理装置の構成について、図30乃至図32を参照しながら説明する。
(Embodiment 9)
In this embodiment, a structure of an information processing device of one embodiment of the present invention will be described with reference to FIGS.
図30(A)は本発明の一態様の情報処理装置の構成を説明するブロック図である。図30(B)および図30(C)は、情報処理装置200の外観の一例を説明する投影図である。
FIG. 30A is a block diagram illustrating a structure of an information processing device of one embodiment of the present invention. FIG. 30B and FIG. 30C are projection views for explaining an example of the appearance of the
図31は、本発明の一態様のプログラムを説明するフローチャートである。図31(A)は、本発明の一態様のプログラムの主の処理を説明するフローチャートであり、図31(B)は、割り込み処理を説明するフローチャートである。 FIG. 31 is a flowchart illustrating a program according to one embodiment of the present invention. FIG. 31A is a flowchart for describing main processing of the program of one embodiment of the present invention, and FIG. 31B is a flowchart for describing interrupt processing.
図32は、本発明の一態様のプログラムを説明する図である。図32(A)は、本発明の一態様のプログラムの割り込み処理を説明するフローチャートであり、図32(B)は、本発明の一態様の情報処理装置の動作を説明するタイミングチャートである。 FIG. 32 is a diagram illustrating a program according to one embodiment of the present invention. FIG. 32A is a flowchart for describing interrupt processing of a program according to one embodiment of the present invention, and FIG. 32B is a timing chart illustrating operation of the information processing device according to one embodiment of the present invention.
<情報処理装置の構成例1>
本実施の形態で説明する情報処理装置200は、入出力装置220と、演算装置210と、を有する(図30(A)参照)。入出力装置は、演算装置210と電気的に接続される。また、情報処理装置200は筐体を備えることができる(図30(B)または図30(C)参照)。
<Configuration example 1 of information processing apparatus>
The
入出力装置220は表示部230および入力部240を備える(図30(A)参照)。入出力装置220は検知部250を備える。また、入出力装置220は通信部290を備えることができる。
The input /
入出力装置220は画像情報V1または制御情報SSを供給される機能を備え、位置情報P1または検知情報SE1を供給する機能を備える。
The input /
演算装置210は位置情報P1または検知情報SE1を供給される機能を備える。演算装置210は画像情報V1を供給する機能を備える。演算装置210は、例えば、位置情報P1または検知情報SE1に基づいて動作する機能を備える。
The
なお、筐体は入出力装置220または演算装置210を収納する機能を備える。または、筐体は表示部230または演算装置210を支持する機能を備える。
Note that the housing has a function of housing the input /
表示部230は画像情報V1に基づいて画像を表示する機能を備える。表示部230は制御情報SSに基づいて画像を表示する機能を備える。
The
入力部240は、位置情報P1を供給する機能を備える。
The
検知部250は検知情報SE1を供給する機能を備える。検知部250は、例えば、情報処理装置200が使用される環境の照度を検出する機能を備え、照度情報を供給する機能を備える。
The
これにより、情報処理装置は、情報処理装置が使用される環境において、情報処理装置の筐体が受ける光の強さを把握して動作することができる。または、情報処理装置の使用者は、表示方法を選択することができる。その結果、利便性または信頼性に優れた新規な情報処理装置を提供することができる。 Thereby, the information processing apparatus can operate by grasping the intensity of light received by the casing of the information processing apparatus in an environment where the information processing apparatus is used. Alternatively, the user of the information processing apparatus can select a display method. As a result, a novel information processing apparatus that is highly convenient or reliable can be provided.
以下に、情報処理装置を構成する個々の要素について説明する。なお、これらの構成は明確に分離できず、一つの構成が他の構成を兼ねる場合や他の構成の一部を含む場合がある。例えばタッチセンサが表示パネルに重ねられたタッチパネルは、表示部であるとともに入力部でもある。 Below, each element which comprises information processing apparatus is demonstrated. Note that these configurations cannot be clearly separated, and one configuration may serve as another configuration or may include a part of another configuration. For example, a touch panel in which a touch sensor is superimposed on a display panel is not only a display unit but also an input unit.
<構成例>
本発明の一態様の情報処理装置200は、筐体または演算装置210を有する。
<Configuration example>
The
演算装置210は、演算部211、記憶部212、伝送路214、入出力インターフェース215を備える。
The
また、本発明の一態様の情報処理装置は、入出力装置220を有する。
Further, the information processing device of one embodiment of the present invention includes the input /
入出力装置220は、表示部230、入力部240、検知部250および通信部290を備える。
The input /
<情報処理装置>
本発明の一態様の情報処理装置は、演算装置210または入出力装置220を備える。
<Information processing device>
The information processing device of one embodiment of the present invention includes the
<演算装置210>
演算装置210は、演算部211および記憶部212を備える。また、伝送路214および入出力インターフェース215を備える。
<
The
<演算部211>
演算部211は、例えばプログラムを実行する機能を備える。
<
The
<記憶部212>
記憶部212は、例えば演算部211が実行するプログラム、初期情報、設定情報または画像等を記憶する機能を有する。
<
The
具体的には、ハードディスク、フラッシュメモリまたは酸化物半導体を含むトランジスタを用いたメモリ等を用いることができる。 Specifically, a hard disk, a flash memory, a memory including a transistor including an oxide semiconductor, or the like can be used.
<入出力インターフェース215、伝送路214>
入出力インターフェース215は端子または配線を備え、情報を供給し、情報を供給される機能を備える。例えば、伝送路214と電気的に接続することができる。また、入出力装置220と電気的に接続することができる。
<I /
The input /
伝送路214は配線を備え、情報を供給し、情報を供給される機能を備える。例えば、入出力インターフェース215と電気的に接続することができる。また、演算部211または記憶部212と電気的に接続することができる。
The
<入出力装置220>
入出力装置220は、表示部230、入力部240、検知部250または通信部290を備える。例えば、実施の形態6において説明する入出力装置を用いることができる。これにより、消費電力を低減することができる。
<Input /
The input /
<表示部230>
表示部230は、制御部238と、駆動回路GDと、駆動回路SDと、表示パネル700と、を有する(図17参照)。例えば、実施の形態5で説明する表示装置を表示部230に用いることができる。
<
The
<入力部240>
さまざまなヒューマンインターフェイス等を入力部240に用いることができる(図30参照)。
<
Various human interfaces or the like can be used for the input unit 240 (see FIG. 30).
例えば、キーボード、マウス、タッチセンサ、マイクまたはカメラ等を入力部240に用いることができる。なお、表示部230に重なる領域を備えるタッチセンサを用いることができる。表示部230と表示部230に重なる領域を備えるタッチセンサを備える入出力装置を、タッチパネルまたはタッチスクリーンということができる。
For example, a keyboard, mouse, touch sensor, microphone, camera, or the like can be used for the
例えば、使用者は、タッチパネルに触れた指をポインタに用いて様々なジェスチャー(タップ、ドラッグ、スワイプまたはピンチイン等)をすることができる。 For example, the user can make various gestures (tap, drag, swipe, pinch in, etc.) using a finger touching the touch panel as a pointer.
例えば、演算装置210は、タッチパネルに接触する指の位置または軌跡等の情報を解析し、解析結果が所定の条件を満たすとき、特定のジェスチャーが供給されたとすることができる。これにより、使用者は、所定のジェスチャーにあらかじめ関連付けられた所定の操作命令を、当該ジェスチャーを用いて供給できる。
For example, the
一例を挙げれば、使用者は、画像情報の表示位置を変更する「スクロール命令」を、タッチパネルに沿ってタッチパネルに接触する指を移動するジェスチャーを用いて供給できる。 For example, the user can supply a “scroll command” for changing the display position of the image information using a gesture for moving a finger that touches the touch panel along the touch panel.
<検知部250>
検知部250は、周囲の状態を検知して検知情報を供給する機能を備える。具体的には、照度情報、姿勢情報、圧力情報、位置情報等を供給できる。
<
The
例えば、光検出器、姿勢検出器、加速度センサ、方位センサ、GPS(Global positioning System)信号受信回路、圧力センサ、温度センサ、湿度センサまたはカメラ等を、検知部250に用いることができる。
For example, a light detector, an attitude detector, an acceleration sensor, an orientation sensor, a GPS (Global positioning System) signal receiving circuit, a pressure sensor, a temperature sensor, a humidity sensor, a camera, or the like can be used for the
<通信部290>
通信部290は、ネットワークに情報を供給し、ネットワークから情報を取得する機能を備える。
<
The
<プログラム>
本発明の一態様のプログラムは、下記のステップを有する(図31(A)参照)。
<Program>
The program of one embodiment of the present invention includes the following steps (see FIG. 31A).
[第1のステップ]
第1のステップにおいて、設定を初期化する(図31(A)(S1)参照)。
[First step]
In the first step, the settings are initialized (see FIGS. 31A and S1).
例えば、起動時に表示する所定の画像情報と、当該画像情報を表示する所定のモードと、当該画像情報を表示する所定の表示方法を特定する情報と、を記憶部212から取得する。具体的には、一の静止画像情報または他の動画像情報を所定の画像情報に用いることができる。また、第1のモードまたは第2のモードを所定のモードに用いることができる。
For example, predetermined image information to be displayed at startup, a predetermined mode for displaying the image information, and information for specifying a predetermined display method for displaying the image information are acquired from the
[第2のステップ]
第2のステップにおいて、割り込み処理を許可する(図31(A)(S2)参照)。なお、割り込み処理が許可された演算装置は、主の処理と並行して割り込み処理を行うことができる。割り込み処理から主の処理に復帰した演算装置は、割り込み処理をして得た結果を主の処理に反映することができる。
[Second step]
In the second step, interrupt processing is permitted (see FIGS. 31A and S2). Note that an arithmetic unit that is permitted to perform interrupt processing can perform interrupt processing in parallel with main processing. The arithmetic unit that has returned to the main process from the interrupt process can reflect the result obtained by the interrupt process to the main process.
なお、カウンタの値が初期値であるとき、演算装置に割り込み処理をさせ、割り込み処理から復帰する際に、カウンタを初期値以外の値としてもよい。これにより、プログラムを起動した後に常に割り込み処理をさせることができる。 Note that when the counter value is an initial value, the arithmetic unit performs interrupt processing, and when returning from the interrupt processing, the counter may be set to a value other than the initial value. As a result, interrupt processing can always be performed after the program is started.
[第3のステップ]
第3のステップにおいて、第1のステップまたは割り込み処理において選択された、所定のモードまたは所定の表示方法を用いて画像情報を表示する(図31(A)(S3)参照)。なお、所定のモードは画像情報を表示するモードを特定し、所定の表示方法は画像情報を表示する方法を特定する。また、例えば、画像情報V1または情報V12を表示する情報に用いることができる。
[Third step]
In the third step, the image information is displayed using the predetermined mode or the predetermined display method selected in the first step or the interruption process (see FIGS. 31A and 31). The predetermined mode specifies a mode for displaying image information, and the predetermined display method specifies a method for displaying image information. Further, for example, it can be used as information for displaying the image information V1 or the information V12.
例えば、画像情報V1を表示する一の方法を、第1のモードに関連付けることができる。または、画像情報V1を表示する他の方法を第2のモードに関連付けることができる。これにより、選択されたモードに基づいて表示方法を選択することができる。 For example, one method for displaying the image information V1 can be associated with the first mode. Alternatively, another method for displaying the image information V1 can be associated with the second mode. Thereby, a display method can be selected based on the selected mode.
<第1のモード>
具体的には、30Hz以上、好ましくは60Hz以上の頻度で一の走査線に選択信号を供給し、選択信号に基づいて表示をする方法を、第1のモードに関連付けることができる。
<First mode>
Specifically, a method of supplying a selection signal to one scanning line at a frequency of 30 Hz or more, preferably 60 Hz or more, and displaying based on the selection signal can be associated with the first mode.
例えば、30Hz以上、好ましくは60Hz以上の頻度で選択信号を供給すると、動画像の動きを滑らかに表示することができる。 For example, when the selection signal is supplied at a frequency of 30 Hz or higher, preferably 60 Hz or higher, the motion of the moving image can be displayed smoothly.
例えば、30Hz以上、好ましくは60Hz以上の頻度で画像を更新すると、使用者の操作に滑らかに追従するように変化する画像を、使用者が操作中の情報処理装置200に表示することができる。
For example, when an image is updated at a frequency of 30 Hz or higher, preferably 60 Hz or higher, an image that changes so as to smoothly follow the user's operation can be displayed on the
<第2のモード>
具体的には、30Hz未満、好ましくは1Hz未満より好ましくは一分に一回未満の頻度で一の走査線に選択信号を供給し、選択信号に基づいて表示をする方法を、第2のモードに関連付けることができる。
<Second mode>
Specifically, a method of supplying a selection signal to one scanning line at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute, and performing display based on the selection signal is described in the second mode. Can be associated with
30Hz未満、好ましくは1Hz未満より好ましくは一分に一回未満の頻度で選択信号を供給すると、フリッカーまたはちらつきが抑制された表示をすることができる。また、消費電力を低減することができる。 When the selection signal is supplied at a frequency of less than 30 Hz, preferably less than 1 Hz, more preferably less than once per minute, a display in which flicker or flicker is suppressed can be displayed. In addition, power consumption can be reduced.
例えば、情報処理装置200を時計に用いる場合、1秒に一回の頻度または1分に一回の頻度等で表示を更新することができる。
For example, when the
ところで、例えば、発光素子を表示素子に用いる場合、発光素子をパルス状に発光させて、画像情報を表示することができる。具体的には、パルス状に有機EL素子を発光させて、その残光を表示に用いることができる。有機EL素子は優れた周波数特性を備えるため、発光素子を駆動する時間を短縮し、消費電力を低減することができる場合がある。または、発熱が抑制されるため、発光素子の劣化を軽減することができる場合がある。 By the way, for example, when a light-emitting element is used as a display element, the light-emitting element can emit light in a pulse shape to display image information. Specifically, the organic EL element can emit light in a pulse shape, and the afterglow can be used for display. Since the organic EL element has excellent frequency characteristics, there are cases where the time for driving the light emitting element can be shortened and the power consumption can be reduced. Alternatively, heat generation is suppressed, so that deterioration of the light-emitting element can be reduced in some cases.
[第4のステップ]
第4のステップにおいて、終了命令が供給された場合は第5のステップに進み、終了命令が供給されなかった場合は第3のステップに進むように選択する(図31(A)(S4)参照)。
[Fourth step]
In the fourth step, if the end instruction is supplied, the process proceeds to the fifth step, and if the end instruction is not supplied, the process proceeds to the third step (see FIGS. 31A and S4). ).
例えば、割り込み処理において供給された終了命令を判断に用いてもよい。 For example, an end command supplied in the interrupt process may be used for determination.
[第5のステップ]
第5のステップにおいて、終了する(図31(A)(S5)参照)。
[Fifth step]
In the fifth step, the process ends (see FIGS. 31A and S5).
<割り込み処理>
割り込み処理は以下の第6のステップ乃至第8のステップを備える(図31(B)参照)。
<Interrupt processing>
The interrupt process includes the following sixth to eighth steps (see FIG. 31B).
[第6のステップ]
第6のステップにおいて、例えば、検知部250を用いて、情報処理装置200が使用される環境の照度を検出する(図31(B)(S6)参照)。なお、環境の照度に代えて環境光の色温度や色度を検出してもよい。
[Sixth Step]
In the sixth step, for example, the
[第7のステップ]
第7のステップにおいて、検出した照度情報に基づいて表示方法を決定する(図31(B)(S7)参照)。例えば、表示の明るさを暗すぎないように、または明るすぎないように決定する。
[Seventh Step]
In the seventh step, a display method is determined based on the detected illuminance information (see FIGS. 31B and S7). For example, the display brightness is determined not to be too dark or too bright.
なお、第6のステップにおいて環境光の色温度や環境光の色度を検出した場合は、表示の色味を調節してもよい。 When the color temperature of ambient light or the chromaticity of ambient light is detected in the sixth step, the display color may be adjusted.
[第8のステップ]
第8のステップにおいて、割り込み処理を終了する(図31(B)(S8)参照)。
[Eighth step]
In the eighth step, the interrupt process is terminated (see FIGS. 31B and S8).
<情報処理装置の構成例2>
本発明の一態様の情報処理装置の別の構成について、図32を参照しながら説明する。
<Configuration Example 2 of Information Processing Device>
Another structure of the information processing device of one embodiment of the present invention is described with reference to FIG.
図32(A)は、本発明の一態様のプログラムを説明するフローチャートである。図32(A)は、図31(B)に示す割り込み処理とは異なる割り込み処理を説明するフローチャートである。 FIG. 32A is a flowchart illustrating a program of one embodiment of the present invention. FIG. 32A is a flowchart for explaining interrupt processing different from the interrupt processing shown in FIG.
なお、情報処理装置の構成例3は、供給された所定のイベントに基づいて、モードを変更するステップを割り込み処理に有する点が、図31(B)を参照しながら説明する割り込み処理とは異なる。ここでは、異なる部分について詳細に説明し、同様の構成を用いることができる部分について上記の説明を援用する。 The configuration example 3 of the information processing device is different from the interrupt processing described with reference to FIG. 31B in that the interrupt processing includes a step of changing the mode based on the supplied predetermined event. . Here, different portions will be described in detail, and the above description will be applied to portions that can use the same configuration.
<割り込み処理>
割り込み処理は以下の第6のステップ乃至第8のステップを備える(図32(A)参照)。
<Interrupt processing>
The interrupt process includes the following sixth to eighth steps (see FIG. 32A).
[第6のステップ]
第6のステップにおいて、所定のイベントが供給された場合は、第7のステップに進み、所定のイベントが供給されなかった場合は、第8のステップに進む(図32(A)(U6)参照)。例えば、所定の期間に所定のイベントが供給されたか否かを条件に用いることができる。具体的には、5秒以下、1秒以下または0.5秒以下好ましくは0.1秒以下であって0秒より長い期間を所定の期間とすることができる。
[Sixth Step]
In the sixth step, if a predetermined event is supplied, the process proceeds to the seventh step. If a predetermined event is not supplied, the process proceeds to the eighth step (see FIGS. 32A and U6). ). For example, it can be used as a condition whether or not a predetermined event is supplied during a predetermined period. Specifically, the predetermined period can be a period of 5 seconds or less, 1 second or less, or 0.5 seconds or less, preferably 0.1 seconds or less and longer than 0 seconds.
[第7のステップ]
第7のステップにおいて、モードを変更する(図32(A)(U7)参照)。具体的には、第1のモードを選択していた場合は、第2のモードを選択し、第2のモードを選択していた場合は、第1のモードを選択する。
[Seventh Step]
In the seventh step, the mode is changed (see FIGS. 32A and U7). Specifically, when the first mode is selected, the second mode is selected, and when the second mode is selected, the first mode is selected.
例えば、表示部230の一部の領域について、表示モードを変更することができる。具体的には、駆動回路GDA、駆動回路GDB、駆動回路GDCおよび駆動回路GDDを備える表示部230の駆動回路GDBが選択信号を供給する領域について、表示モードを変更することができる(図32(B)参照)。
For example, the display mode can be changed for some areas of the
例えば、所定のイベントが、駆動回路GDBが選択信号を供給する領域の入力部240に供給された場合に、当該領域の表示モードを変更することができる。具体的には、駆動回路GDBが供給する選択信号の頻度を変更することができる。これにより、例えば、駆動回路GDBが選択信号を供給する領域の表示を、駆動回路GDA、駆動回路GDCおよび駆動回路GDDを動作することなく更新することができる。または、駆動回路が消費する電力を抑制することができる。
For example, when a predetermined event is supplied to the
[第8のステップ]
第8のステップにおいて、割り込み処理を終了する(図32(A)(U8)参照)。なお、主の処理を実行している期間に割り込み処理を繰り返し実行してもよい。
[Eighth step]
In the eighth step, the interrupt process is terminated (see FIGS. 32A and U8). Note that interrupt processing may be repeatedly executed during a period in which main processing is being executed.
<所定のイベント>
例えば、マウス等のポインティング装置を用いて供給する、「クリック」や「ドラッグ」等のイベント、指等をポインタに用いてタッチパネルに供給する、「タップ」、「ドラッグ」または「スワイプ」等のイベントを用いることができる。
<Predetermined event>
For example, an event such as “click” or “drag” supplied using a pointing device such as a mouse, an event such as “tap”, “drag” or “swipe” supplied to a touch panel using a finger or the like as a pointer Can be used.
また、例えば、ポインタが指し示すスライドバーの位置、スワイプの速度、ドラッグの速度等を用いて、所定のイベントに関連付けられた命令の引数を与えることができる。 Further, for example, an argument of a command associated with a predetermined event can be given using the position of the slide bar pointed to by the pointer, the swipe speed, the drag speed, or the like.
例えば、検知部250が検知した情報をあらかじめ設定された閾値と比較して、比較結果をイベントに用いることができる。
For example, the information detected by the
具体的には、筐体に押し込むことができるように配設されたボタン等に接する感圧検知器等を検知部250に用いることができる。
Specifically, a pressure-sensitive detector or the like that contacts a button or the like that can be pushed into the housing can be used for the
<所定のイベントに関連付ける命令>
例えば、終了命令を、特定のイベントに関連付けることができる。
<Instruction associated with a predetermined event>
For example, an end instruction can be associated with a particular event.
例えば、表示されている一の画像情報から他の画像情報に表示を切り替える「ページめくり命令」を、所定のイベントに関連付けることができる。なお、「ページめくり命令」を実行する際に用いるページをめくる速度などを決定する引数を、所定のイベントを用いて与えることができる。 For example, a “page turning command” for switching display from one displayed image information to another image information can be associated with a predetermined event. Note that an argument that determines a page turning speed used when executing the “page turning instruction” can be given using a predetermined event.
例えば、一の画像情報の表示されている一部分の表示位置を移動して、一部分に連続する他の部分を表示する「スクロール命令」などを、所定のイベントに関連付けることができる。なお、「スクロール命令」を実行する際に用いる表示位置を移動する速度などを決定する引数を、所定のイベントを用いて与えることができる。 For example, a “scroll command” for moving the display position of a part of one image information displayed to display another part continuous to the part can be associated with a predetermined event. It should be noted that an argument that determines the speed of moving the display position used when executing the “scroll command” can be given using a predetermined event.
例えば、表示方法を設定する命令または画像情報を生成する命令などを、所定のイベントに関連付けることができる。なお、生成する画像の明るさを決定する引数を所定のイベントに関連付けることができる。また、生成する画像の明るさを決定する引数を、検知部250が検知する環境の明るさに基づいて決定してもよい。
For example, a command for setting a display method or a command for generating image information can be associated with a predetermined event. An argument that determines the brightness of the image to be generated can be associated with a predetermined event. Further, an argument for determining the brightness of the image to be generated may be determined based on the brightness of the environment detected by the
例えば、プッシュ型のサービスを用いて配信される情報を、通信部290を用いて取得する命令などを、所定のイベントに関連付けることができる。
For example, a command for acquiring information distributed using a push-type service using the
なお、情報を取得する資格の有無を、検知部250が検知する位置情報を用いて判断してもよい。具体的には、ユーザーが特定の教室、学校、会議室、企業、建物等の内部または領域にいる場合に、情報を取得する資格を有すると判断してもよい。これにより、例えば、学校または大学等の教室で配信される教材を受信して、情報処理装置200を教科書等に用いることができる(図30(C)参照)。または、企業等の会議室で配信される資料を受信して、会議資料に用いることができる。
In addition, you may determine the presence or absence of the qualification to acquire information using the positional information which the
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
(実施の形態10)
本実施の形態では、本発明の一態様の情報処理装置の構成について、図33および図34を参照しながら説明する。
(Embodiment 10)
In this embodiment, a structure of an information processing device of one embodiment of the present invention will be described with reference to FIGS.
図33および図34は、本発明の一態様の情報処理装置の構成を説明する図である。図33(A)は情報処理装置のブロック図であり、図33(B)乃至図33(E)は情報処理装置の構成を説明する斜視図である。また、図34(A)乃至図34(E)は情報処理装置の構成を説明する斜視図である。 33 and 34 illustrate a structure of the information processing device of one embodiment of the present invention. FIG. 33A is a block diagram of an information processing device, and FIGS. 33B to 33E are perspective views illustrating the configuration of the information processing device. FIGS. 34A to 34E are perspective views illustrating the configuration of the information processing apparatus.
<情報処理装置>
本実施の形態で説明する情報処理装置5200Bは、演算装置5210と、入出力装置5220とを、有する(図33(A)参照)。
<Information processing device>
An
演算装置5210は、操作情報を供給される機能を備え、操作情報に基づいて画像情報を供給する機能を備える。
The
入出力装置5220は、表示部5230、入力部5240、検知部5250、通信部5290、操作情報を供給する機能および画像情報を供給される機能を備える。また、入出力装置5220は、検知情報を供給する機能、通信情報を供給する機能および通信情報を供給される機能を備える。
The input /
入力部5240は操作情報を供給する機能を備える。例えば、入力部5240は、情報処理装置5200Bの使用者の操作に基づいて操作情報を供給する。
The
具体的には、キーボード、ハードウェアボタン、ポインティングデバイス、タッチセンサ、音声入力装置、視線入力装置などを、入力部5240に用いることができる。
Specifically, a keyboard, hardware buttons, a pointing device, a touch sensor, a voice input device, a line-of-sight input device, or the like can be used for the
表示部5230は表示パネルおよび画像情報を表示する機能を備える。例えば、実施の形態1において説明する表示パネルを表示部5230に用いることができる。
The
検知部5250は検知情報を供給する機能を備える。例えば、情報処理装置が使用されている周辺の環境を検知して、検知情報として供給する機能を備える。
The
具体的には、照度センサ、撮像装置、姿勢検出装置、圧力センサ、人感センサなどを検知部5250に用いることができる。
Specifically, an illuminance sensor, an imaging device, a posture detection device, a pressure sensor, a human sensor, or the like can be used for the
通信部5290は通信情報を供給される機能および供給する機能を備える。例えば、無線通信または有線通信により、他の電子機器または通信網と接続する機能を備える。具体的には、無線構内通信、電話通信、近距離無線通信などの機能を備える。
The
<情報処理装置の構成例1>
例えば、円筒状の柱などに沿った外形を表示部5230に適用することができる(図33(B)参照)。また、使用環境の照度に応じて、表示方法を変更する機能を備える。また、人の存在を検知して、表示内容を変更する機能を備える。これにより、例えば、建物の柱に設置することができる。または、広告または案内等を表示することができる。または、デジタル・サイネージ等に用いることができる。
<Configuration example 1 of information processing apparatus>
For example, an outer shape along a cylindrical column or the like can be applied to the display portion 5230 (see FIG. 33B). In addition, it has a function of changing the display method according to the illuminance of the usage environment. It also has a function of detecting the presence of a person and changing the display content. Thereby, it can install in the pillar of a building, for example. Alternatively, an advertisement or a guide can be displayed. Alternatively, it can be used for digital signage and the like.
<情報処理装置の構成例2>
例えば、使用者が使用するポインタの軌跡に基づいて画像情報を生成する機能を備える(図33(C)参照)。具体的には、対角線の長さが20インチ以上、好ましくは40インチ以上、より好ましくは55インチ以上の表示パネルを用いることができる。または、複数の表示パネルを並べて1つの表示領域に用いることができる。または、複数の表示パネルを並べてマルチスクリーンに用いることができる。これにより、例えば、電子黒板、電子掲示板、電子看板等に用いることができる。
<Configuration Example 2 of Information Processing Device>
For example, a function of generating image information based on a locus of a pointer used by the user is provided (see FIG. 33C). Specifically, a display panel having a diagonal line length of 20 inches or more, preferably 40 inches or more, more preferably 55 inches or more can be used. Alternatively, a plurality of display panels can be arranged and used for one display area. Alternatively, a plurality of display panels can be arranged and used for a multi-screen. Thereby, it can use for an electronic blackboard, an electronic bulletin board, an electronic signboard, etc., for example.
<情報処理装置の構成例3>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図33(D)参照)。これにより、例えば、スマートウオッチの消費電力を低減することができる。または、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をスマートウオッチに表示することができる。
<Configuration Example 3 of Information Processing Device>
For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 33D). Thereby, for example, the power consumption of the smart watch can be reduced. Alternatively, for example, an image can be displayed on the smart watch so that the image can be suitably used even in an environment with strong outside light such as outdoors on a sunny day.
<情報処理装置の構成例4>
表示部5230は、例えば、筐体の側面に沿って緩やかに曲がる曲面を備える(図33(E)参照)。または、表示部5230は表示パネルを備え、表示パネルは、例えば、前面、側面および上面に表示する機能を備える。これにより、例えば、携帯電話の前面だけでなく、側面および上面に画像情報を表示することができる。
<Configuration Example 4 of Information Processing Device>
The
<情報処理装置の構成例5>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図34(A)参照)。これにより、スマートフォンの消費電力を低減することができる。または、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をスマートフォンに表示することができる。
<Configuration Example 5 of Information Processing Device>
For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34A). Thereby, the power consumption of a smart phone can be reduced. Alternatively, for example, an image can be displayed on a smartphone so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
<情報処理装置の構成例6>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図34(B)参照)。これにより、晴天の日に屋内に差し込む強い外光が当たっても好適に使用できるように、映像をテレビジョンシステムに表示することができる。
<Configuration Example 6 of Information Processing Device>
For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34B). Thereby, an image can be displayed on the television system so that it can be suitably used even when it is exposed to strong external light that is inserted indoors on a sunny day.
<情報処理装置の構成例7>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図34(C)参照)。これにより、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をタブレットコンピュータに表示することができる。
<Configuration Example 7 of Information Processing Device>
For example, a function of changing a display method in accordance with the illuminance of the usage environment is provided (see FIG. 34C). Thereby, for example, an image can be displayed on a tablet computer so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
<情報処理装置の構成例8>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図34(D)参照)。これにより、例えば、晴天の屋外等の外光の強い環境においても好適に閲覧できるように、被写体をデジタルカメラに表示することができる。
<Configuration Example 8 of Information Processing Device>
For example, a function of changing a display method according to the illuminance of the usage environment is provided (see FIG. 34D). Thereby, for example, the subject can be displayed on the digital camera so that it can be viewed properly even in an environment with strong external light such as outdoors on a sunny day.
<情報処理装置の構成例9>
例えば、使用環境の照度に応じて、表示方法を変更する機能を備える(図34(E)参照)。これにより、例えば、晴天の屋外等の外光の強い環境においても好適に使用できるように、画像をパーソナルコンピュータに表示することができる。
<Configuration Example 9 of Information Processing Device>
For example, a function of changing a display method in accordance with the illuminance of the usage environment is provided (see FIG. 34E). Thereby, for example, an image can be displayed on a personal computer so that it can be suitably used even in an environment with strong external light such as outdoors on a sunny day.
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。 Note that this embodiment can be combined with any of the other embodiments described in this specification as appropriate.
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。 For example, in this specification and the like, when X and Y are explicitly described as being connected, X and Y are electrically connected, and X and Y are functional. And the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relationship, for example, the connection relationship shown in the figure or text, and anything other than the connection relation shown in the figure or text is also described in the figure or text.
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。 Here, X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。 As an example of the case where X and Y are directly connected, an element that enables electrical connection between X and Y (for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, etc.) Element, light emitting element, load, etc.) are not connected between X and Y, and elements (for example, switches, transistors, capacitive elements, inductors) that enable electrical connection between X and Y X and Y are not connected via a resistor element, a diode, a display element, a light emitting element, a load, or the like.
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。 As an example of the case where X and Y are electrically connected, an element (for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display, etc.) that enables electrical connection between X and Y is shown. More than one element, light emitting element, load, etc.) can be connected between X and Y. Note that the switch has a function of controlling on / off. That is, the switch is in a conductive state (on state) or a non-conductive state (off state), and has a function of controlling whether or not to pass a current. Alternatively, the switch has a function of selecting and switching a path through which a current flows. Note that the case where X and Y are electrically connected includes the case where X and Y are directly connected.
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(CA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。 As an example of the case where X and Y are functionally connected, a circuit (for example, a logic circuit (an inverter, a NAND circuit, a NOR circuit, etc.) that enables a functional connection between X and Y, signal conversion, etc. Circuit (CA conversion circuit, AD conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes signal potential level, etc.), voltage source, current source, switching Circuit, amplifier circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, memory circuit, control circuit, etc.) One or more can be connected between them. As an example, even if another circuit is interposed between X and Y, if the signal output from X is transmitted to Y, X and Y are functionally connected. To do. Note that the case where X and Y are functionally connected includes the case where X and Y are directly connected and the case where X and Y are electrically connected.
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。 In addition, when it is explicitly described that X and Y are electrically connected, a case where X and Y are electrically connected (that is, there is a separate connection between X and Y). And X and Y are functionally connected (that is, they are functionally connected with another circuit between X and Y). And the case where X and Y are directly connected (that is, the case where another element or another circuit is not connected between X and Y). It shall be disclosed in the document. In other words, when it is explicitly described that it is electrically connected, the same contents as when it is explicitly described only that it is connected are disclosed in this specification and the like. It is assumed that
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。 Note that for example, the source (or the first terminal) of the transistor is electrically connected to X through (or not through) Z1, and the drain (or the second terminal or the like) of the transistor is connected to Z2. Through (or without), Y is electrically connected, or the source (or the first terminal, etc.) of the transistor is directly connected to a part of Z1, and another part of Z1 Is directly connected to X, and the drain (or second terminal, etc.) of the transistor is directly connected to a part of Z2, and another part of Z2 is directly connected to Y. Then, it can be expressed as follows.
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。 For example, “X and Y, and the source (or the first terminal or the like) and the drain (or the second terminal or the like) of the transistor are electrically connected to each other. The drain of the transistor (or the second terminal, etc.) and the Y are electrically connected in this order. ” Or “the source (or the first terminal or the like) of the transistor is electrically connected to X, the drain (or the second terminal or the like) of the transistor is electrically connected to Y, and X or the source ( Or the first terminal or the like, the drain of the transistor (or the second terminal, or the like) and Y are electrically connected in this order. Or “X is electrically connected to Y through the source (or the first terminal) and the drain (or the second terminal) of the transistor, and X is the source of the transistor (or the first terminal). Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order. By using the same expression method as in these examples and defining the order of connection in the circuit configuration, the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are separated. Apart from that, the technical scope can be determined.
または、別の表現方法として、例えば、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(又は第1の端子など)とトランジスタのドレイン(又は第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(又は第1の端子など)からトランジスタのドレイン(又は第2の端子など)への電気的パスであり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(又は第2の端子など)からトランジスタのソース(又は第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。 Alternatively, as another expression method, for example, “a source (or a first terminal or the like of a transistor) is electrically connected to X through at least a first connection path, and the first connection path is The second connection path does not have a second connection path, and the second connection path includes a transistor source (or first terminal or the like) and a transistor drain (or second terminal or the like) through the transistor. The first connection path is a path through Z1, and the drain (or the second terminal, etc.) of the transistor is electrically connected to Y through at least the third connection path. The third connection path is connected and does not have the second connection path, and the third connection path is a path through Z2. " Or, “the source (or the first terminal or the like) of the transistor is electrically connected to X via Z1 by at least a first connection path, and the first connection path is a second connection path. The second connection path has a connection path through the transistor, and the drain (or the second terminal, etc.) of the transistor is at least connected to Z2 by the third connection path. , Y, and the third connection path does not have the second connection path. Or “the source of the transistor (or the first terminal or the like) is electrically connected to X through Z1 by at least a first electrical path, and the first electrical path is a second electrical path Does not have an electrical path, and the second electrical path is an electrical path from the source (or first terminal or the like) of the transistor to the drain (or second terminal or the like) of the transistor; The drain (or the second terminal or the like) of the transistor is electrically connected to Y through Z2 by at least a third electrical path, and the third electrical path is a fourth electrical path. The fourth electrical path is an electrical path from the drain (or second terminal or the like) of the transistor to the source (or first terminal or the like) of the transistor. can do. Using the same expression method as those examples, by defining the connection path in the circuit configuration, the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are distinguished. The technical scope can be determined.
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。 In addition, these expression methods are examples, and are not limited to these expression methods. Here, it is assumed that X, Y, Z1, and Z2 are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, and the like).
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。 In addition, even when the components shown in the circuit diagram are electrically connected to each other, even when one component has the functions of a plurality of components. There is also. For example, in the case where a part of the wiring also functions as an electrode, one conductive film has both the functions of the constituent elements of the wiring function and the electrode function. Therefore, the term “electrically connected” in this specification includes in its category such a case where one conductive film has functions of a plurality of components.
本実施例においては、本発明の一態様である表示パネル700_1(図2(B)参照)の有する、表示素子550(i,j)、表示素子550(i,j+1)、表示素子550(i,j+2)、の構成の微小光共振器構造の効果について評価した結果を示す。 In this embodiment, the display element 550 (i, j), the display element 550 (i, j + 1), and the display element 550 (i) included in the display panel 700_1 (see FIG. 2B) which is one embodiment of the present invention. , J + 2), the result of evaluating the effect of the micro-optical resonator structure.
表示素子550(i,j)、表示素子550(i,j+1)、表示素子550(i,j+2)を構成する要素として、導電膜551_1(i,j)としてインジウムと錫と珪素とを有する酸化物導電膜を想定した。また導電膜551_2(i,j)は、インジウムと亜鉛とを有する酸化物導電膜を想定した。 As an element constituting the display element 550 (i, j), the display element 550 (i, j + 1), and the display element 550 (i, j + 2), an oxide having indium, tin, and silicon as the conductive film 551_1 (i, j) A physical conductive film was assumed. The conductive film 551_2 (i, j) is an oxide conductive film containing indium and zinc.
図35に、光透過性基板上にインジウムと錫と珪素とを有する酸化物導電膜を膜厚100nmにて成膜し、得られた透過率より算出した屈折率特性N1を示す。また光透過性基板上にインジウムと亜鉛とを有する酸化物導電膜を膜厚100nmにて成膜し、得られた透過率より算出した屈折率特性N2を示す。図35の横軸は光の波長(nm)であり、縦軸は屈折率である。光透過性基板として、石英基板を用いた。 FIG. 35 shows a refractive index characteristic N1 calculated from the transmittance obtained by forming an oxide conductive film containing indium, tin, and silicon on a light-transmitting substrate with a thickness of 100 nm. In addition, an oxide conductive film containing indium and zinc is formed to a thickness of 100 nm on a light-transmitting substrate, and a refractive index characteristic N2 calculated from the obtained transmittance is shown. The horizontal axis of FIG. 35 is the wavelength (nm) of light, and the vertical axis is the refractive index. A quartz substrate was used as the light transmissive substrate.
インジウムと錫と珪素とを有する酸化物導電膜は、重量比にて、In2O3を85%、SnO2を10%、SiO2を5%有するターゲットを用いて、アルゴンガスと酸素ガスを用いたスパッタ法にて形成した。またインジウムと亜鉛とを有する酸化物導電膜は、組成にて、In2O3を25%、ZnOを75%有するターゲットを用いて、アルゴンガスと酸素ガスを用いたスパッタ法にて形成した。 An oxide conductive film having indium, tin, and silicon is formed by using a target having 85% In 2 O 3 , 10% SnO 2 , and 5% SiO 2 by weight ratio, and using argon gas and oxygen gas. It formed by the used sputtering method. An oxide conductive film containing indium and zinc was formed by a sputtering method using an argon gas and an oxygen gas by using a target having a composition of 25% In 2 O 3 and 75% ZnO.
図35に示されるように、屈折率特性N1、屈折率特性N2には、波長分散がある。 As shown in FIG. 35, the refractive index characteristic N1 and the refractive index characteristic N2 have wavelength dispersion.
本実施例の計算で用いた微小光共振器構造の構成と、微小光共振器構造の効果について、構造MS1と、構造MS2との比較による説明を行う。 The structure of the micro optical resonator structure used in the calculation of this example and the effect of the micro optical resonator structure will be described by comparing the structure MS1 and the structure MS2.
構造MS1は、表示素子550(i,j)、表示素子550(i,j+2)を想定し(図2(B)参照)、膜厚188nmの発光層553と、導電膜551_1(i,j)として膜厚50nmのインジウムと錫と珪素とを有する酸化物導電膜と、導電膜551_2(i,j)として膜厚62nmのインジウムと亜鉛とを有する酸化物導電膜とが積層された構造である(図36(A)参照)。
The structure MS1 assumes a display element 550 (i, j) and a display element 550 (i, j + 2) (see FIG. 2B). A light-emitting
構造MS2は、表示素子550(i,j+1)を想定し(図2(B)参照)、膜厚188nmの膜厚の発光層553と、導電膜551_1(i,j)として膜厚50nmのインジウムと錫と珪素とを有する酸化物導電膜と、が積層された構造である(図36(B)参照)。
The structure MS2 assumes a display element 550 (i, j + 1) (see FIG. 2B), a light-emitting
電極552は膜厚200nmの銀からなる膜とした。導電膜551_0(i,j)は、膜厚25nmの、銀を含む膜とした。屈折率は銀の物性値を用いた。その上に、導電層554として、膜厚70nmの、インジウムと錫と珪素とを有する酸化物導電膜が積層された構造を想定した。屈折率は、図35に示すとおりとした。また、その上に、絶縁膜555として、屈折率1.5の膜が積層された構造を想定した(図36(A)、(B)参照)。
The
上記膜厚は、下記に示すような、各色における各材料の屈折率を想定して設定されたものである。 The film thickness is set assuming the refractive index of each material in each color as shown below.
赤色を表す波長λとしてλ=610nmが通常評価されるが、BT2020規格の色域を実現するためには、赤色は長波長側であるλ=640nmで評価することが望ましい。同様に青色を表す波長λとしてλ=460nmが通常評価されるが、短波長側であるλ=450nmで評価することが望ましい。 Λ = 610 nm is usually evaluated as the wavelength λ representing red, but in order to realize the color gamut of the BT2020 standard, it is desirable to evaluate red at λ = 640 nm, which is the longer wavelength side. Similarly, λ = 460 nm is usually evaluated as the wavelength λ representing blue, but it is desirable to evaluate at λ = 450 nm on the short wavelength side.
図35に示すように、インジウムと錫と珪素とを有する酸化物導電膜の屈折率は、およそ赤色であるλ=640nmの光において屈折率が1.95、およそ緑色であるλ=530nmの光において屈折率が2.01、およそ青色であるλ=450nmの光において屈折率が2.07であった。 As shown in FIG. 35, the refractive index of the oxide conductive film having indium, tin, and silicon is 1.95 in the light of λ = 640 nm which is approximately red, and the light of λ = 530 nm which is approximately green. The refractive index was 2.01, and the refractive index was 2.07 in the light of λ = 450 nm which is approximately blue.
図35に示すように、インジウムと亜鉛とを有する酸化物導電膜の屈折率は、およそ赤色であるλ=640nmの光において屈折率が2.04、およそ緑色であるλ=530nmの光において屈折率が2.10、およそ青色であるλ=450nmの光において屈折率が2.19であった。 As shown in FIG. 35, the refractive index of the oxide conductive film containing indium and zinc is approximately 2.04 for the light of λ = 640 nm that is red, and is refracted for the light of λ = 530 nm that is approximately green. The refractive index was 2.19 in the light of λ = 450 nm with a refractive index of 2.10 and approximately blue.
発光層は、いずれの上記波長においても、およそ屈折率1.8である。 The light emitting layer has a refractive index of about 1.8 at any of the above wavelengths.
導電膜551_1(i,j)及び導電膜551_2(i,j)の膜厚において、それぞれ0nm以上5nm以下の誤差があっても、各副画素の色に対して微小光共振器構造を構成するには有効である。 Even if there is an error of 0 nm or more and 5 nm or less in the film thicknesses of the conductive film 551_1 (i, j) and the conductive film 551_2 (i, j), a minute optical resonator structure is configured for the color of each subpixel. Is effective.
構造MS1、構造MS2において、絶縁膜555中に到達する光の強度(光強度)を計算した。図36(C)に光強度の計算結果を示す。図36(C)において、横軸が発光層553から射出される光の波長(nm)を、縦軸が絶縁膜555に到達する光強度を、それぞれ表している。
In the structures MS1 and MS2, the light intensity (light intensity) reaching the insulating
発光層553は、白色光を射出するものとした。図36(C)において光強度は、発光層553から射出される光のスペクトルにより変化する。そのため図36(C)の縦軸は定性的な値を意味し、発光極大波長の正確な位置は、光のスペクトルにより異なる場合がある。なお、図36(C)はサイバネットシステム社製のSETFOSという計算ソフトを用いて計算を行った結果である。
The
図36(C)に示す発光スペクトルピークの計算結果は上記誤差を含んではいるが、構造MS1において、赤色を示す430nm以上460nm以下の波長領域の波長の強度と、青色を示す630nm以上670nm以下の波長領域の波長の強度が大きいことがわかる。すなわち、構造MS1を有する画素は、発光極大波長を上記波長領域のいずれかに有するスペクトルを備える光を射出することができる。 The calculation result of the emission spectrum peak shown in FIG. 36C includes the above error, but in the structure MS1, the intensity of the wavelength in the wavelength region of 430 nm to 460 nm showing red and the wavelength of 630 nm to 670 nm showing blue are shown. It can be seen that the intensity of the wavelength in the wavelength region is large. That is, the pixel having the structure MS1 can emit light having a spectrum having a light emission maximum wavelength in any of the wavelength regions.
導電膜551_1(i,j)、導電膜551_2(i,j)、発光層553、の膜厚を上記値より大きく設定すると、可視光領域に幾つも強まる波長ができる。換言すれば、反射電極と半透過電極間との間の、半透過電極の膜厚方向に沿った、距離d0または距離d1を大きくすると、表示素子の発光強度において青色と赤色を共に大きくできるものの、青色と赤色の間にも、発光強度が大きくなる光が出てくる。
When the film thicknesses of the conductive film 551_1 (i, j), the conductive film 551_2 (i, j), and the light-emitting
そのため、上記構造MS1、構造MS2の材料および膜厚の設定は、微小光共振器構造が純度の高い色を発光するためには有効である。 Therefore, the setting of the materials and film thicknesses of the structures MS1 and MS2 is effective for the micro optical resonator structure to emit high-purity color.
微小光共振器構造は、反射電極と、半透過導電膜との間の、表示する光の各波長における光学距離を所定の値とすることにより、例えば赤色の光であれば、光R01と光R02とを共振させることができる。 The minute optical resonator structure has a predetermined value for the optical distance at each wavelength of light to be displayed between the reflective electrode and the semi-transmissive conductive film. R02 can resonate.
例えば、構造MS1において、赤色である波長640nmでの光学距離は、556.18nmであった。構造MS2において、緑色である波長530nmでの光学距離は、438.9nmであった。構造MS1において、青色である波長450nmでの光学距離は577.68nmであった。 For example, in the structure MS1, the optical distance at a wavelength of 640 nm which is red is 556.18 nm. In structure MS2, the optical distance at a wavelength of 530 nm, which is green, was 438.9 nm. In structure MS1, the optical distance at a wavelength of 450 nm which is blue was 577.78 nm.
導電膜551_1(i,j)、導電膜551_2(i,j)、発光層553、の材料を変える場合、各膜の屈折率及び膜厚は、上記の規格化された光学距離が変化しないように設定することで、同じ微小光共振器構造の効果を得ることができる。
When the materials of the conductive film 551_1 (i, j), the conductive film 551_2 (i, j), and the light-emitting
本実施例に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The structure described in this example can be combined as appropriate with any of the structures described in the other embodiments.
ACF1 導電材料
AF1 配向膜
AF2 配向膜
ANO 導電膜
B01 光
B02 光
BM 遮光膜
BR 導電膜
C 電極
C1 矢印
C2 矢印
C11 容量素子
C12 容量素子
C21 容量素子
CF1 着色膜
CF2 着色膜
CP 導電材料
CSCOM 配線
d0 距離
d1 距離
フレキシブルプリント基板FPC1
G01 光
G1 走査線
G02 光
G2 走査線
GD 駆動回路
GDA 駆動回路
GDB 駆動回路
GDC 駆動回路
GDD 駆動回路
KB1 構造体
L1 光
L2 光
M トランジスタ
M(h) 電極
MD トランジスタ
ML 検知信号線
MS1 構造
MS2 構造
N1 屈折率特性
N2 屈折率特性
P1 位置情報
R01 光
R1 矢印
R02 光
R2 矢印
S1 信号線
S2 信号線
SD 駆動回路
SD1 駆動回路
SD2 駆動回路
SE1 検知情報
SS 制御情報
SW1 スイッチ
SW2 スイッチ
V1 画像情報
V11 情報
V12 情報
VCOM1 配線
VCOM2 導電膜
X0 隣接部
10a グレートーンマスク
10b ハーフトーンマスク
13 光透過性基板
15 遮光膜
17 遮光部
18 回折格子部
19 透過部
23 半光透過膜
25 遮光膜
27 遮光部
28 半光透過部
29 透過部
200 情報処理装置
210 演算装置
211 演算部
212 記憶部
214 伝送路
215 入出力インターフェース
220 入出力装置
230 表示部
231 表示領域
234 伸張回路
235M 画像処理回路
238 制御部
240 入力部
241 検知領域
250 検知部
290 通信部
501A 絶縁膜
501B 絶縁膜
501C 絶縁膜
503 絶縁膜
504 導電膜
504E 導電膜
505 接合層
506 絶縁膜
508 半導体膜
508A 領域
508B 領域
508C 領域
511B 導電膜
511C 導電膜
512A 導電膜
512B 導電膜
512C 導電膜
512D 導電膜
516 絶縁膜
518 絶縁膜
519B 端子
519C 端子
520 機能層
521 絶縁膜
521A 絶縁膜
521B 絶縁膜
522 接続部
522A 接続部
522B 接続部
524 導電膜
528 絶縁膜
530 画素回路
541 レジストマスク
542 レジストマスク
550 表示素子
551 電極
551_0 導電膜
551_1 導電膜
551_2 導電膜
552 電極
553 層
553M 中心部
554 導電層
555 絶縁膜
570 基板
573 絶縁膜
573A 絶縁膜
573B 絶縁膜
591A 開口部
591B 開口部
591C 開口部
592A 開口部
592B 開口部
592C 開口部
700 表示パネル
700_1 表示パネル
700_2 表示パネル
700_3 表示パネル
700_3B 表示パネル
700_4 表示パネル
700B 表示パネル
702 画素
703 画素
705 封止材
719 端子
750 表示素子
751 電極
751E 領域
751H 開口部
752 電極
753 層
754A 中間膜
754B 中間膜
754C 中間膜
770 基板
770D 機能膜
770P 機能膜
771 絶縁膜
775 検知素子
900 画素
900s 遮光領域
900t 透過領域
901 駆動回路部
902 配線
904 配線
906 配線
910 トランジスタ
911 トランジスタ
912 トランジスタ
913 容量素子
916B 発光領域
916G 発光領域
916R 発光領域
930EL 発光素子
5200B 情報処理装置
5210 演算装置
5220 入出力装置
5230 表示部
5240 入力部
5250 検知部
5290 通信部
ACF1 Conductive material AF1 Alignment film AF2 Alignment film ANO Conductive film B01 Light B02 Light BM Light shielding film BR Conductive film C Electrode C1 Arrow C2 Arrow C11 Capacitance element C12 Capacitance element C21 Capacitance element CF1 Colored film CF2 Colored film CP Conductive material CSCOM Wiring d0 Distance d1 distance flexible printed circuit board FPC1
G01 light G1 scanning line G02 light G2 scanning line GD drive circuit GDA drive circuit GDB drive circuit GDC drive circuit GDD drive circuit KB1 structure L1 light L2 light M transistor M (h) electrode MD transistor ML detection signal line MS1 structure MS2 structure N1 Refractive index characteristic N2 Refractive index characteristic P1 Position information R01 Light R1 Arrow R02 Light R2 Arrow S1 Signal line S2 Signal line SD Drive circuit SD1 Drive circuit SD2 Drive circuit SE1 Detection information SS Control information SW1 Switch SW2 Switch V1 Image information V11 Information V12 Information VCOM1 Wiring VCOM2 Conductive film X0 Adjacent part 10a Gray tone mask 10b Halftone mask 13 Light transmissive substrate 15 Light shielding film 17 Light shielding part 18 Diffraction grating part 19 Transmission part 23 Semi light transmission film 25 Light shielding film 27 Light shielding film 27 Light unit 28 Semi-light transmission unit 29 Transmission unit 200 Information processing device 210 Calculation device 211 Calculation unit 212 Storage unit 214 Transmission path 215 Input / output interface 220 Input / output device 230 Display unit 231 Display area 234 Expansion circuit 235M Image processing circuit 238 Control unit 240 Input unit 241 Detection region 250 Detection unit 290 Communication unit 501A Insulating film 501B Insulating film 501C Insulating film 503 Insulating film 504 Conductive film 504E Conductive film 505 Bonding layer 506 Insulating film 508 Semiconductor film 508A Region 508B Region 508C Region 511B Conductive film 511C Conductive Film 512A conductive film 512B conductive film 512C conductive film 512D conductive film 516 insulating film 518 insulating film 519B terminal 519C terminal 520 functional layer 521 insulating film 521A insulating film 521B insulating film 522 Connection part 522A Connection part 522B Connection part 524 Conductive film 528 Insulating film 530 Pixel circuit 541 Resist mask 542 Resist mask 550 Display element 551 Electrode 551_0 Conductive film 551_1 Conductive film 551_2 Conductive film 552 Electrode 553 Layer 553M Central part 554 Conductive layer 555 Insulating film 570 Substrate 573 Insulating film 573A Insulating film 573B Insulating film 591A Opening 591B Opening 591C Opening 592A Opening 592B Opening 592C Opening 700 Display panel 700_1 Display panel 700_2 Display panel 700_3 Display panel 700_3B Display panel 700_4 Display panel 700B Display panel 700B 702 Pixel 703 Pixel 705 Sealing material 719 Terminal 750 Display element 751 Electrode 751E Region 751H Opening 752 Electricity Pole 753 Layer 754A Intermediate film 754B Intermediate film 754C Intermediate film 770 Substrate 770D Functional film 770P Functional film 771 Insulating film 775 Sensing element 900 Pixel 900s Light-shielding area 900t Transmission area 901 Driving circuit 902 Wiring 904 Wiring 906 Wiring 910 Transistor 911 Transistor 912 Transistor 913 Capacitance element 916B Light emitting area 916G Light emitting area 916R Light emitting area 930EL Light emitting element 5200B Information processing device 5210 Arithmetic device 5220 Input / output device 5230 Display unit 5240 Input unit 5250 Detection unit 5290 Communication unit
Claims (8)
前記第1の画素及び前記第2の画素はそれぞれ、発光層と、第1の導電膜と、第2の導電膜と、第3の導電膜と、を有し、
前記第1の導電膜は、光透過性および光反射性を備え、
前記第2の導電膜は、光反射性を備え、
前記第3の導電膜は、光透過性を備え、
前記第1の導電膜は、前記第2の導電膜との間に、前記第3の導電膜を挟むように形成され、
前記発光層は、前記第2の導電膜と、前記第3の導電膜との間に挟まれるように形成され、
前記第1の画素は、前記第1の導電膜と前記第2の導電膜との間に、第1の距離を備え、
前記第2の画素は、前記第1の導電膜と前記第2の導電膜との間に、第2の距離を備え、
前記第2の距離は、前記第1の距離と等しく、
前記第1の画素は、発光極大波長を波長630nm以上670nm以下の波長領域に有するスペクトルを備える光を射出し、
前記第2の画素は、発光極大波長を波長430nm以上460nm以下の波長領域に有するスペクトルを備える光を射出する表示パネル。 A first pixel and a second pixel;
Each of the first pixel and the second pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film,
The first conductive film has light transmittance and light reflectivity,
The second conductive film has light reflectivity,
The third conductive film is light transmissive,
The first conductive film is formed so as to sandwich the third conductive film between the second conductive film,
The light emitting layer is formed so as to be sandwiched between the second conductive film and the third conductive film,
The first pixel includes a first distance between the first conductive film and the second conductive film,
The second pixel includes a second distance between the first conductive film and the second conductive film,
The second distance is equal to the first distance;
The first pixel emits light having a spectrum having a light emission maximum wavelength in a wavelength region of 630 nm to 670 nm.
The second pixel is a display panel that emits light having a spectrum having a light emission maximum wavelength in a wavelength region of 430 nm to 460 nm.
前記第1の画素及び前記第2の画素はそれぞれ、発光層と、第1の導電膜と、第2の導電膜と、第3の導電膜と、を有し、
前記第1の導電膜は、光反射性を備え、
前記第2の導電膜は、光透過性および光反射性を備え、
前記第3の導電膜は、光透過性を備え、
前記第1の導電膜は、前記第2の導電膜との間に、前記第3の導電膜を挟むように形成され、
前記発光層は、前記第2の導電膜と、前記第3の導電膜との間に挟まれるように形成され、
前記第1の画素は、前記第1の導電膜と前記第2の導電膜との間に、第1の距離を備え、
前記第2の画素は、前記第1の導電膜と前記第2の導電膜との間に、第2の距離を備え、
前記第2の距離は、前記第1の距離と等しく、
前記第1の画素は、発光極大波長を波長630nm以上670nm以下の波長領域に有するスペクトルを備える光を射出し、
前記第2の画素は、発光極大波長を波長430nm以上460nm以下の波長領域に有するスペクトルを備える光を射出する表示パネル。 A first pixel and a second pixel;
Each of the first pixel and the second pixel includes a light emitting layer, a first conductive film, a second conductive film, and a third conductive film,
The first conductive film has light reflectivity,
The second conductive film has light transmittance and light reflectivity,
The third conductive film is light transmissive,
The first conductive film is formed so as to sandwich the third conductive film between the second conductive film,
The light emitting layer is formed so as to be sandwiched between the second conductive film and the third conductive film,
The first pixel includes a first distance between the first conductive film and the second conductive film,
The second pixel includes a second distance between the first conductive film and the second conductive film,
The second distance is equal to the first distance;
The first pixel emits light having a spectrum having a light emission maximum wavelength in a wavelength region of 630 nm to 670 nm.
The second pixel is a display panel that emits light having a spectrum having a light emission maximum wavelength in a wavelength region of 430 nm to 460 nm.
さらに第3の画素を有し、
前記第3の画素は、前記発光層と、前記第1の導電膜と、前記第2の導電膜と、前記第3の導電膜と、を有し、
前記第3の画素は、前記第1の導電膜と前記第2の導電膜との間に、第3の距離を備え、
前記第3の距離は、前記第1の距離と異なり、
前記第3の画素は、緑色の光を射出する表示パネル。 In claim 1 or claim 2,
A third pixel;
The third pixel includes the light emitting layer, the first conductive film, the second conductive film, and the third conductive film,
The third pixel includes a third distance between the first conductive film and the second conductive film,
The third distance is different from the first distance,
The third pixel is a display panel that emits green light.
さらに第4の導電膜を有し、
前記第4の導電膜は、光透過性を備え、
前記第1の画素において、前記第4の導電膜は、前記発光層と、前記第3の導電膜との間に挟まれるように配置され、
前記第2の画素において、前記第4の導電膜は、前記発光層と、前記第3の導電膜との間に挟まれるように配置され、
前記第1の画素において、前記第3の導電膜は、第1の膜厚を備え、
前記第2の画素において、前記第3の導電膜は、第2の膜厚を備え、
前記第1の画素において、前記第4の導電膜は、第3の膜厚を備え、
前記第2の画素において、前記第4の導電膜は、第4の膜厚を備え、
前記第1の膜厚は前記第2の膜厚と等しく、
前記第3の膜厚は前記第4の膜厚と等しい表示パネル。 In claim 1 or claim 2,
A fourth conductive film;
The fourth conductive film has optical transparency.
In the first pixel, the fourth conductive film is disposed so as to be sandwiched between the light emitting layer and the third conductive film,
In the second pixel, the fourth conductive film is disposed so as to be sandwiched between the light emitting layer and the third conductive film,
In the first pixel, the third conductive film has a first film thickness,
In the second pixel, the third conductive film has a second film thickness,
In the first pixel, the fourth conductive film has a third film thickness,
In the second pixel, the fourth conductive film has a fourth film thickness,
The first film thickness is equal to the second film thickness,
A display panel in which the third film thickness is equal to the fourth film thickness.
前記第3の導電膜は、前記第4の導電膜より、一のエッチング雰囲気におけるエッチングレートが小さい表示パネル。 In claim 4,
The display panel of the third conductive film has a lower etching rate in one etching atmosphere than the fourth conductive film.
前記第3の導電膜は、前記第4の導電膜より、一の溶液を用いた場合のエッチングレートが小さい表示パネル。 In claim 4,
The third conductive film is a display panel having a lower etching rate when one solution is used than the fourth conductive film.
前記第1の導電膜の上方に第2の導電膜を形成する工程と、
前記第2の導電膜の上方に第3の導電膜を形成する工程と、
前記第3の導電膜の上方に、第1の領域と、前記第1の領域における厚さよりも小さな厚さを有する第2の領域と、を有するマスクを形成する工程と、
前記第1の導電膜と、前記第2の導電膜と、前記第3の導電膜と、の前記マスクと重ならない部分を除去する第1の工程と、
前記第1の工程の後、前記マスクを後退させることにより前記第2の領域の前記マスクを除去する第2の工程と、
前記第2の工程の後、前記第3の導電膜の前記第2の領域と重なる部分を除去する第3の工程と、
前記第3の工程の後、前記マスクを除去する工程と、
前記第2の導電膜、または前記第3の導電膜の上方に、発光層を形成する工程と、
前記発光層の上に、第4の導電膜を形成する工程と、を含むことを特徴とする表示パネルの作製方法。 Forming a first conductive film;
Forming a second conductive film above the first conductive film;
Forming a third conductive film above the second conductive film;
Forming a mask having a first region and a second region having a thickness smaller than the thickness of the first region above the third conductive film;
A first step of removing a portion of the first conductive film, the second conductive film, and the third conductive film that does not overlap the mask;
After the first step, a second step of removing the mask in the second region by retracting the mask;
After the second step, a third step of removing a portion of the third conductive film overlapping the second region;
Removing the mask after the third step;
Forming a light emitting layer above the second conductive film or the third conductive film;
Forming a fourth conductive film over the light-emitting layer. A method for manufacturing a display panel, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019500048A JP7112383B2 (en) | 2017-02-17 | 2018-02-07 | Display panel manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017027897 | 2017-02-17 | ||
JP2017-027897 | 2017-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018150294A1 true WO2018150294A1 (en) | 2018-08-23 |
Family
ID=63170173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/050746 WO2018150294A1 (en) | 2017-02-17 | 2018-02-07 | Display panel, information processing device and method for producing display panel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7112383B2 (en) |
WO (1) | WO2018150294A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197010A (en) * | 2003-12-26 | 2005-07-21 | Sanyo Electric Co Ltd | Manufacturing method of display device |
JP2006302506A (en) * | 2005-04-15 | 2006-11-02 | Sony Corp | Display device and manufacturing method of display device |
JP2007026852A (en) * | 2005-07-15 | 2007-02-01 | Seiko Epson Corp | ORGANIC ELECTROLUMINESCENT DEVICE, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE, AND ELECTRONIC DEVICE |
JP2008210740A (en) * | 2007-02-28 | 2008-09-11 | Seiko Epson Corp | Display device |
US20090115706A1 (en) * | 2007-11-05 | 2009-05-07 | Samsung Electronics Co., Ltd. | Organic light emitting diode display and method for manufacturing the same |
JP2009217948A (en) * | 2008-03-07 | 2009-09-24 | Hitachi Displays Ltd | Organic light-emitting device |
JP2011165664A (en) * | 2010-02-12 | 2011-08-25 | Samsung Mobile Display Co Ltd | Organic light emitting display device |
JP2012216519A (en) * | 2011-03-25 | 2012-11-08 | Semiconductor Energy Lab Co Ltd | Light-emitting panel, light-emitting device, and method of manufacturing light-emitting panel |
JP2017037288A (en) * | 2015-04-13 | 2017-02-16 | 株式会社半導体エネルギー研究所 | Display panel, data processor, and method for manufacturing display panel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004079422A (en) | 2002-08-21 | 2004-03-11 | Tdk Corp | Organic el element |
JP2009151293A (en) | 2007-11-30 | 2009-07-09 | Semiconductor Energy Lab Co Ltd | Display device, method for manufacturing display device, and electronic apparatus |
JP2011060549A (en) | 2009-09-09 | 2011-03-24 | Fujifilm Corp | Optical member for organic el device, and organic el device |
-
2018
- 2018-02-07 WO PCT/IB2018/050746 patent/WO2018150294A1/en active Application Filing
- 2018-02-07 JP JP2019500048A patent/JP7112383B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197010A (en) * | 2003-12-26 | 2005-07-21 | Sanyo Electric Co Ltd | Manufacturing method of display device |
JP2006302506A (en) * | 2005-04-15 | 2006-11-02 | Sony Corp | Display device and manufacturing method of display device |
JP2007026852A (en) * | 2005-07-15 | 2007-02-01 | Seiko Epson Corp | ORGANIC ELECTROLUMINESCENT DEVICE, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE, AND ELECTRONIC DEVICE |
JP2008210740A (en) * | 2007-02-28 | 2008-09-11 | Seiko Epson Corp | Display device |
US20090115706A1 (en) * | 2007-11-05 | 2009-05-07 | Samsung Electronics Co., Ltd. | Organic light emitting diode display and method for manufacturing the same |
JP2009217948A (en) * | 2008-03-07 | 2009-09-24 | Hitachi Displays Ltd | Organic light-emitting device |
JP2011165664A (en) * | 2010-02-12 | 2011-08-25 | Samsung Mobile Display Co Ltd | Organic light emitting display device |
JP2012216519A (en) * | 2011-03-25 | 2012-11-08 | Semiconductor Energy Lab Co Ltd | Light-emitting panel, light-emitting device, and method of manufacturing light-emitting panel |
JP2017037288A (en) * | 2015-04-13 | 2017-02-16 | 株式会社半導体エネルギー研究所 | Display panel, data processor, and method for manufacturing display panel |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018150294A1 (en) | 2019-12-19 |
JP7112383B2 (en) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102643613B1 (en) | Display device, display module, and electronic device | |
US20180095559A1 (en) | Display Panel, Display Device, Input/Output Device, and Data Processing Device | |
KR20190069465A (en) | Display device, display module, electronic device, and touch panel input system | |
US12078893B2 (en) | Display panel, display device, input/output device, and data processing device | |
JP7641724B2 (en) | Functional panel, display device, input/output device, information processing device | |
JPWO2019025917A1 (en) | Semiconductor device and display device | |
JP6948841B2 (en) | Information processing device and its display method | |
JP2017204641A (en) | Semiconductor device and display device having semiconductor device | |
JP6917222B2 (en) | Display device | |
WO2018185585A1 (en) | Display device, input-output device, and information processing device | |
JP6884537B2 (en) | Display device | |
JP2018077361A (en) | Display panel, display device, input/output device, and information processing device | |
JP6910832B2 (en) | Display device, input / output device, information processing device | |
JP7112383B2 (en) | Display panel manufacturing method | |
JP2019040027A (en) | Display device, input/output device, and information processing device | |
JP2018072751A (en) | Display panel, display device, input/output device, and information processing device | |
JP2018097024A (en) | Display panel, display device, input/output device, and information processing device | |
US12360420B2 (en) | Display panel, display device, input/output device, and data processing device | |
WO2017051289A1 (en) | Display panel | |
JP2018072462A (en) | Display device | |
JP6839973B2 (en) | Display panel | |
JP2018049071A (en) | Display device | |
JP2018163731A (en) | Display panel, information processing device, and method for producing display panel | |
CN117476701A (en) | Display device | |
JP2018077360A (en) | Display panel, display device, input/output device, and information processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18753844 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019500048 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18753844 Country of ref document: EP Kind code of ref document: A1 |