[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018147294A1 - 筐体及び通信装置 - Google Patents

筐体及び通信装置 Download PDF

Info

Publication number
WO2018147294A1
WO2018147294A1 PCT/JP2018/004098 JP2018004098W WO2018147294A1 WO 2018147294 A1 WO2018147294 A1 WO 2018147294A1 JP 2018004098 W JP2018004098 W JP 2018004098W WO 2018147294 A1 WO2018147294 A1 WO 2018147294A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
less
main surface
radio wave
casing
Prior art date
Application number
PCT/JP2018/004098
Other languages
English (en)
French (fr)
Inventor
暁 留野
純 南舘
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2018147294A1 publication Critical patent/WO2018147294A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers

Definitions

  • the present invention relates to a housing and a communication device.
  • AIDC Automatic identification and data capture
  • AIDC The operation of AIDC is generally as follows. First, a radio wave or electromagnetic wave carrying information is transmitted from the reader / writer 5, and the antenna 7 in the IC tag 3 receives it. Subsequently, a radio wave or the like carrying information received by the antenna 7 is converted into an electric signal 79. Thereafter, an electric signal 79 carrying information is sent to the IC chip 9, and an electric signal obtained as a result of the information (hereinafter referred to as a reply electric signal 97) is returned to the antenna 7. The response electric signal 97 is converted into a radio wave or the like at the antenna 7, and the response radio wave or the like 75 is returned to the reader / writer 5. With these operations, information is exchanged between the reader / writer 5 and the IC tag 3.
  • the AIDC is widely used in individual management such as automatically distributing a large amount of cargo according to destination in logistics, and is also being used for history management of items and personal authentication.
  • IC tags used for AIDC are large from the viewpoint of operating power supply, and are classified into two types, an active method and a passive method.
  • An active IC tag has a built-in battery and operates with this battery. Therefore, it is suitable for long-distance communication, but has a demerit such as requiring battery replacement.
  • a passive IC tag does not contain a battery, operates in the IC tag using radio waves from a reader / writer, and operates accordingly.
  • passive IC tags are widely used in applications that do not require long-distance communication because they can be reduced in size and weight and are less expensive than active IC tags.
  • IC tags used for AIDC are classified into two types, electromagnetic induction and radio wave systems, from the viewpoint of radio waves used.
  • the electromagnetic induction method uses the HF band (High Frequency, short wave band, 13.56 MHz)
  • the radio wave method uses the UHF band (Ultra High Frequency, pole A short wave band, 860 to 960 MHz) is used.
  • plastic In the medical field, in order to improve the accuracy of measurement, plastic is being used as a material that can be easily discarded without using the sample bottle used.
  • a plastic sample bottle provided with an IC tag is considered as an inexpensive sample bottle that can be easily discarded (for example, Patent Document 1).
  • a plastic sample bottle to which an IC tag is attached encloses the IC tag in the plastic of the plastic sample bottle.
  • radio waves for information exchange and electromotive force are difficult to reach the IC tag due to interference and attenuation due to moisture in the plastic.
  • the relative permittivity of a general plastic container is 10 or less, water has a large relative permittivity of 80. Therefore, when radio waves or the like are transmitted through the plastic container, radio waves or the like are generated due to vibrations of water molecules. Interfere with. From the above, there are problems such as long data transmission and communication errors.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a housing and a communication device that do not interfere with radio waves or the like for information exchange or electromotive force and do not easily attenuate radio waves or the like. There is.
  • a communication device comprising: a reader / writer including a transmission / reception antenna capable of transmitting and receiving a signal carrying information on the radio wave transmission / reception antenna.
  • the present invention it is possible to provide a housing and a communication device that do not interfere with radio waves for exchanging information and for generating power, and that are difficult to attenuate radio waves.
  • FIG. 1 is a diagram for explaining a response method between an IC tag and a reader / writer in a communication apparatus.
  • 2 (a) to 2 (c) show one embodiment of the housing, FIG. 2 (a) is a perspective view, and FIG. 2 (b) is a sectional view taken along the line II-II in FIG. 2 (a).
  • FIG. 2C is a cross-sectional view similar to FIG. 2B in another embodiment.
  • 3A and 3B are explanatory views of the housing model, FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along the line III-III in FIG. 3A.
  • the transparent substrate for housing in the present invention (hereinafter sometimes simply referred to as a transparent substrate) is composed of a member having a water content of 1% by mass or less.
  • a transparent substrate is composed of a member having a water content of 1% by mass or less.
  • the water content is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.1% by mass or less.
  • the lower limit of the moisture content of the transparent base material for a casing of the present invention is not particularly limited, but the moisture content is preferably 0.002% by mass or more. 0.01 mass% or more is more preferable, and 0.015 mass% or more is further more preferable.
  • the “casing” refers to a box in which an article can be stored, and is a box manufactured using the transparent substrate for casing of the present invention.
  • the casing may be formed by combining other members with the flat transparent substrate for casing, or the casing may be formed by adding a bent portion to the transparent substrate for casing by, for example, a molding process.
  • casing of this invention is also equipped with the antenna for electromagnetic wave transmission / reception as mentioned later.
  • the material of the transparent substrate for housing is not particularly limited as long as the water content is satisfied.
  • resins such as polycarbonate, acrylic, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyester resin. . This is because it is inexpensive and easy to dispose of and can easily dispose of biological harmful substances.
  • resin polypropylene and polyethylene are more preferable from the viewpoint of moldability and chemical resistance.
  • the resin whose water content is to be obtained is heated at 150 ° C. in the moisture vaporizer, and the evaporated moisture is led to the Karl Fischer reagent.
  • the water content of this reagent can be estimated by volumetric titration in accordance with JIS K0113 (2005).
  • the linear transmittance of light having a wavelength of 600 nm at a thickness of 1 mm of the transparent substrate for housing is preferably 50% or more.
  • the transparent base material absorbs the measurement light, making it impossible to perform highly reliable measurement. Therefore, by setting the linear transmittance of light to be equal to or higher than the lower limit value, the measurement light is less likely to be interfered by the housing, and a highly reliable measurement can be performed.
  • the linear light transmittance is more preferably 60% or more, and further preferably 70% or more.
  • the housing 2 includes a radio wave transmitting / receiving antenna 7 and a housing transparent substrate 4 having a water content of 1% by mass or less.
  • the housing 2 has a first main surface 4a and a second main surface 4b. Further, the housing 2 includes a first principal surface 4a as a reference surface, and a radio wave transmitting / receiving antenna 7 on the second principal surface 4b side from the reference surface.
  • radio waves and the like for information exchange and electromotive force are less susceptible to interference and attenuation by the transparent substrate 4. For this reason, radio waves or the like can easily reach the IC tag 3, and data transmission can be shortened and errors can be suppressed.
  • the 1st main surface 4a is a surface which an operator can contact. Since the radio wave transmitting / receiving antenna 7 is located on the second main surface 4b side from the first main surface 4a touched by the operator, the radio wave transmitting / receiving antenna 7 does not protrude from the first main surface 4a. Further, the radio wave transmitting / receiving antenna 7 and the first main surface 4a can be flush with each other. As a result, the radio wave transmission / reception antenna 7 is less likely to be damaged, so that the accuracy of data transmission can be improved even after repeated use.
  • the radio wave transmitting / receiving antenna 7 is more preferably located closer to the second main surface 4b than the reference surface of the first main surface 4a.
  • the radio wave transmission / reception antenna 7 is covered with the transparent base material 4 or the like constituting the housing 2, so that the operator is less likely to touch the radio wave transmission / reception antenna 7 and is not easily damaged. For this reason, the accuracy of data transmission can be improved even by repeated use.
  • a removable lid may be provided at a location where the radio wave transmitting / receiving antenna 7 is present. As a result, the radio wave transmitting / receiving antenna 7 can be exchanged according to the radio wave used in the measuring instrument.
  • the radio wave transmitting / receiving antenna 7 and the IC tag 3 can be easily and safely collected when the contaminated sample container is discarded.
  • the radio wave transmission / reception antenna 7 is not limited to being installed on the side surface of the housing 2 as shown in FIGS. 2A to 2C, and may be installed on the bottom of the housing 2 without any particular limitation. .
  • the radio wave transmitting / receiving antenna 7 preferably constitutes the IC tag 3.
  • the IC tag 3 is a small device that includes a radio wave transmitting / receiving antenna 7 and an IC chip 9 and is packaged.
  • the IC tag 3 is generally packaged, and is not easily damaged even in a process of ⁇ 40 ° C. or higher and 150 ° C. or lower, and can withstand, for example, sterilization conditions. Even when the housing 2 of the present invention is a sample bottle, it can be incorporated if it is a small IC tag 3.
  • the radio wave transmission / reception antenna 7 preferably receives radio waves used for data reading and rewriting.
  • a radio wave or the like carrying information is transmitted from a reader / writer 5 incorporated in a measuring device or the like installed apart from the housing 2 and received by the radio wave transmitting / receiving antenna 7 in the housing.
  • the radio wave carrying the received information is converted into an electric signal by the radio wave transmitting / receiving antenna 7.
  • an electric signal 79 carrying information is sent to the IC chip 9, and an electric signal (hereinafter referred to as a reply electric signal 97) obtained as a result is sent to the radio wave transmitting / receiving antenna 7. return.
  • the response electric signal 97 is converted into a radio wave or the like in the radio wave transmitting / receiving antenna 7, and the response radio wave or the like 75 is returned to the reader / writer 5.
  • information is exchanged between the reader / writer 5 and the IC tag 3, and information between the measurement apparatus and the housing 2 can be synchronized.
  • the relationship between the sample information and the measurement result is clarified, the work efficiency can be improved, and erroneous work can be reduced.
  • the radio wave transmission / reception antenna receives radio waves used for power generation.
  • a radio wave transmission / reception antenna receives a radio wave or the like from a reader / writer incorporated in a measurement device or the like.
  • the radio wave transmission / reception antenna includes a coiled antenna, a dipole antenna, and a capacitor, and generates electricity by radio waves and the like.
  • the electrical energy obtained by this electromotive force can be used for data exchange with the IC chip and operated in a self-sufficient manner within the IC tag, for example.
  • the communication device 1 includes a radio wave transmission / reception antenna 7, a housing 2 having a housing transparent substrate having a water content of 1 mass% or less, and a reader / writer 5.
  • the housing 2 of the communication apparatus according to the present invention has a first main surface 4a and a second main surface 4b, the first main surface 4a is used as a reference surface, and radio waves are transmitted and received from the reference surface to the second main surface 4b side.
  • the antenna 7 is used.
  • a communication device 1 according to the present invention includes a reader / writer 5 including a transmission / reception antenna capable of transmitting and receiving a signal carrying information on a radio wave transmission / reception antenna 7.
  • radio waves for exchanging information and generating power, etc. Is less susceptible to interference and attenuation by the transparent substrate 4. For this reason, it becomes easy for radio waves or the like to reach the radio wave transmitting / receiving antenna 7, and data transmission can be shortened and errors can be suppressed.
  • the present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the gist of the present invention.
  • the general procedure, structure, and the like may be other structures as long as the object of the present invention can be achieved.
  • the transparent base material for the casing not only organic materials such as the resin described above but also inorganic materials such as ceramics and glass can be used.
  • the inorganic substance for which the water content is desired can be estimated by simultaneous thermogravimetric / differential thermal analysis (TG-DTA). For example, in TG-DTA, an inorganic substance is held at 120 ° C., the amount of change in weight before and after analysis is taken as the moisture content, and the moisture content can be obtained from the weight before analysis.
  • TG-DTA simultaneous thermogravimetric / differential thermal analysis
  • Glass composition that can be used for transparent substrates for housing
  • the glass include a composition expressed in mol% based on the oxide, 50 to 85% of SiO 2 , 0.1 to 25% of Al 2 O 3 , and 3 to 30 of Li 2 O + Na 2 O + K 2 O. %, MgO 0-25%, CaO 0-25% and ZrO 2 0-5%. More specifically, the following glass compositions may be mentioned.
  • “containing 0 to 25% of MgO” means that MgO is not essential but may contain up to 25%.
  • composition expressed in mol% based on the oxide, with SiO 2 63 to 73%, Al 2 O 3 0.1 to 5.2%, Na 2 O 10 to 16% and K 2 O Glass containing 0 to 1.5%, Li 2 O 0 to 5%, MgO 5 to 13% and CaO 4 to 10%.
  • the composition expressed in mol% on the basis of oxide is SiO 2 50-74%, Al 2 O 3 1-10%, Na 2 O 6-14%, K 2 O 3-11% , Li 2 O 0-5%, MgO 2-15%, CaO 0-6% and ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less A glass having a total content of Na 2 O and K 2 O of 12 to 25% and a total content of MgO and CaO of 7 to 15%.
  • the composition expressed in mol% based on oxide is SiO 2 68-80%, Al 2 O 3 4-10%, Na 2 O 5-15%, K 2 O 0-1%.
  • a colorant may be added in a range that maintains the optical characteristics as a desired casing and does not hinder achievement of the chemical strengthening characteristics.
  • Co 3 M 4 , MnO, MnO 2 , CuO, Cu 2 which are metal oxides of Co, Mn, Cu, V, Bi, Se, Ti, Ce, Er, and Nd that have absorption in the visible range.
  • the glass may contain SO 3 , chloride, fluoride, etc. as a fining agent during melting.
  • Al 2 O 3 is a component that improves the weather resistance of the glass, and is preferably 0.1% or more, more preferably 0.25% or more, more preferably 1% or more, more preferably 2% in terms of mol% on the basis of oxide. The above is more preferable, and 3% or more is particularly preferable.
  • Al 2 O 3 is preferably 25% or less, more preferably 16% or less, further preferably 10% or less, particularly preferably 8% or less, and 7% or less. Is particularly preferred, with 6% or less being most preferred.
  • B 2 O 3 is a component that constitutes the skeleton of the glass and improves the weather resistance, and is preferably 0.5% or more, more preferably 1% or more, and further preferably 2% or more in terms of mol% on the oxide basis. 3% or more is particularly preferable. In order to prevent striae due to volatilization, B 2 O 3 is preferably 15% or less, more preferably 12% or less, still more preferably 10% or less, and particularly preferably 9% or less.
  • MgO is a component for improving the meltability, and the lower limit is not particularly limited, but is preferably 1% or more, more preferably 5% or more, more preferably 7% or more, and more preferably 10% in terms of mol% on the oxide basis. The above is particularly preferable.
  • MgO is preferably 35% or less, more preferably 25% or less, further preferably 20% or less, particularly preferably 15% or less, and particularly preferably 12% or less.
  • CaO is a component for improving the meltability, and the lower limit value is not particularly limited, but is preferably 0.1% or more, more preferably 1% or more, and further preferably 2% or more in terms of mol% on the oxide basis.
  • CaO is preferably 25% or less, more preferably 15% or less, further preferably 13% or less, still more preferably 10% or less, and particularly preferably 9% or less.
  • SrO is a component that improves the meltability, and the lower limit is not particularly limited, but it is preferably 0.1% or more, more preferably 1% or more, and more preferably 2% or more in terms of mol% on the oxide basis, 3% or more is particularly preferable. In order to improve the weather resistance, SrO is preferably 10% or less, more preferably 8% or less, and particularly preferably 5% or less.
  • BaO is a component that improves the meltability, and the lower limit is not particularly limited, but it is preferably 0.1% or more, more preferably 1% or more, and further preferably 2% or more in terms of mol% on the oxide basis. In order to improve the weather resistance, BaO is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, particularly preferably 8% or less, and particularly preferably 5% or less.
  • Li 2 O is a component for improving the meltability, and is preferably 0.5% or more, more preferably 1% or more, and further preferably 3% or more in terms of mol% on the oxide basis. In order to improve the weather resistance, Li 2 O is preferably 25% or less, more preferably 20% or less, further preferably 15% or less, and particularly preferably 13% or less.
  • Na 2 O is a component that improves the meltability of the glass and is a component that forms a surface compressive stress layer by ion exchange, and is preferably 1% or more, more preferably 3% or more in terms of mol% on the oxide basis. 4% or more is more preferable, and 5% or more is particularly preferable. In order to improve the weather resistance, Na 2 O is preferably 20% or less, more preferably 17% or less, further preferably 15% or less, and particularly preferably 14% or less.
  • K 2 O is a component that improves the meltability and is a component that accelerates the ion exchange rate in chemical strengthening, and is preferably 0.1% or more, more preferably 0.2% or more in terms of mol% on the oxide basis. 0.3% or more is more preferable. In order to improve the weather resistance, K 2 O is preferably 15% or less, more preferably 10% or less, and even more preferably 8% or less.
  • P 2 O 5 is a component constituting the skeleton of the glass, and is preferably 0.5% or more, more preferably 2% or more, and further preferably 3% or more in terms of mol% based on the oxide. In order to improve the weather resistance, P 2 O 5 is preferably 10% or less, more preferably 8% or less.
  • Bi 2 O 3 is a component that can reduce the melting temperature of the glass, and is preferably 1% or more, more preferably 2% or more in terms of mol% based on oxide. Since coloring will become remarkable when it is 50% or more, 45% or less is preferable and 43% or less is more preferable.
  • Ga 2 O 3 is a component that adjusts the refractive index, and is preferably 1% or more, and more preferably 2% or more in terms of mol% based on oxide. 30% or less is preferable and 25% or less is more preferable.
  • PbO is a component that can reduce the melting temperature of the glass, but it is preferably not included.
  • ZrO 2 is a component that improves the chemical durability and increases the ion exchange rate, and the lower limit is not particularly limited, but is preferably 0.01% or more, expressed as mol% on the oxide basis, and 0.1% or more. Is more preferable, and 1.2% or more is more preferable.
  • the ZrO 2 in order to prevent the ZrO 2 remains in the glass as the non-melt preferably 5% or less, more preferably 4% or less, more preferably 3% or less.
  • TiO 2 is a component that improves the surface hardness and weather resistance, and the lower limit is not particularly limited, but is preferably 0.01% or more, expressed as mol% on the oxide basis, and 0.02% or more. More preferred. In order to improve the stability of the glass, TiO 2 is preferably 10% or less, more preferably 8% or less, further preferably 7% or less, and particularly preferably 5% or less.
  • CeO 2 is used as a glass refining agent, and the lower limit is not particularly limited, but is preferably 0.1% or more in terms of mol% based on oxide.
  • the upper limit is not particularly limited but is preferably 1% or less.
  • Ta 2 O 5 is a component that enhances chemical durability, and is preferably 1% or more, and more preferably 2% or more in terms of mol% on the basis of oxide. If it exceeds 10%, the melting temperature becomes high, so 10% or less is preferable, and 8% or less is more preferable.
  • the content of NiO is preferably 0.3% or less in terms of mol% based on oxide.
  • NiO is not only easily mixed from a manufacturing apparatus, but also glass is easily colored with a small amount. Mixing of NiO not only tends to attenuate radio waves, but also when measuring light is transmitted through a glass housing using glass for housing to perform optical measurements, the measurement light is absorbed by the glass and reliability is improved. High measurement cannot be performed. Therefore, by setting the content of NiO to the upper limit or less, radio waves for information exchange and electromotive force are less susceptible to interference and attenuation by glass. For this reason, radio waves or the like easily reach the IC tag, and data transmission can be shortened and errors can be suppressed.
  • the content of NiO in the housing is not easily interfered by the glass housing, so that highly reliable measurement can be performed.
  • the lower limit of NiO is not particularly limited, but the content is preferably 0.0001% or more, and more preferably 0.001% or more in terms of a molar percentage based on oxide.
  • the content of Cr 2 O 3 is preferably 0.3% or less in terms of mol% based on oxide.
  • Cr 2 O 3 is not only easily mixed from the manufacturing apparatus, but also glass is easily colored even with a small amount.
  • When Cr 2 O 3 is mixed not only is it easy to attenuate radio waves, but also when measuring light is transmitted through a glass housing made of glass for housing and optical measurement is performed, the measuring light is absorbed by the glass. This makes it impossible to perform highly reliable measurements. Therefore, by setting the content of Cr 2 O 3 to be equal to or less than the upper limit, radio waves for information exchange and electromotive force are less susceptible to interference and attenuation by glass. For this reason, radio waves or the like easily reach the IC tag, and data transmission can be shortened and errors can be suppressed.
  • the content of Cr 2 O 3 in the housing is not easily interfered with by the glass housing, and highly reliable measurement can be performed.
  • the lower limit of Cr 2 O 3 is not particularly limited, the content is preferably 0.0001% or more, and more preferably 0.001% or more, in terms of oxide-based mole percentage.
  • SO 3 is a component that acts as a fining agent, preferably 0.005% or more, more preferably 0.01% or more, more preferably 0.02% or more, and more preferably 0.03% in terms of mol% on the oxide basis. The above is particularly preferable. In order to reduce the number of bubbles in the glass, SO 3 is preferably 0.5% or less, more preferably 0.3% or less, further preferably 0.2% or less, and particularly preferably 0.1% or less.
  • each step is not particularly limited and may be appropriately selected, and conventionally known steps can be typically applied.
  • the raw materials of each component are prepared so as to have the composition described later, and heated and melted in a glass melting furnace.
  • the glass is homogenized by bubbling, stirring, adding a clarifying agent, etc., formed into a glass plate having a predetermined thickness by a conventionally known production method, and gradually cooled.
  • the glass production method include a float method, a press method, a fusion method, a downdraw method, and a rollout method.
  • a float method suitable for mass production is suitable.
  • continuous methods other than the float method that is, the fusion method and the downdraw method are also suitable.
  • the glass when used in a shape other than a flat shape, for example, a concave shape or a convex shape, the glass formed into a flat shape or a block shape is reheated and press-molded in a melted state, or the molten glass is pressed. By pouring out onto a mold and press molding, it is molded into a desired shape.
  • the moisture concentration in the glass may be managed using an index called ⁇ -OH value obtained by the equation (1).
  • ⁇ -OH value (1 / t) log 10 (T 1 / T 2 ) (1) (Where t is the glass thickness, the unit is mm, T 1 is the transmittance at 3846 cm ⁇ 1 by FT-IR, the unit is%, and T 2 is the minimum transmittance at around 3500 cm ⁇ 1 by FT-IR, the unit is %.)
  • the ⁇ -OH value is preferably 2 / mm or less, more preferably 1.5 / mm or less, and even more preferably 1 / mm or less.
  • the ⁇ -OH value is larger than the upper limit value, radio waves and the like are easily attenuated.
  • the mechanical strength that the effect gradually relaxes may weaken, and it is considered that the glass cannot be used under strong conditions such as during centrifugation.
  • the lower limit of the ⁇ -OH value is not particularly limited, but is preferably 0.2 / mm or more, and more preferably 0.3 / mm or more.
  • the glass softening point can be lowered, and the load on the apparatus or the like can be reduced, such that the heating temperature can be lowered during molding into a casing.
  • the ⁇ -OH value is controlled by reducing the use of raw materials with high water content, such as hydrates and hydroxides, suppressing moisture contamination in the raw materials, and controlling the amount of water vapor in the glass manufacturing facility. it can.
  • each step is not particularly limited and may be appropriately selected, and conventionally known steps can be typically applied.
  • raw material pellets are mixed so as to obtain desired characteristics, and heated and melted. This is formed into a plate-like or container-like molded product having a predetermined thickness by a conventionally known method and cooled.
  • the moisture in the resin controls the amount of water vapor at the time of molding, uses the one with less moisture contained in the pellets used as raw materials, heat-drys or vacuum-drys the molded product, absorbs water after molding to the housing
  • the amount of moisture can be controlled by forming a surface treatment layer so as not to occur.
  • the thickness of the housing transparent substrate is preferably 5 mm or less, more preferably 2 mm or less, further preferably 1.5 mm or less, and particularly preferably 0.8 mm or less. By making the thickness 5 mm or less, the processing becomes easy and the mass as the transparent substrate casing is reduced. Further, the thickness of the housing transparent substrate is preferably 0.1 mm or more, and more preferably 0.15 mm or more in order to increase rigidity.
  • the obtained transparent base material 4 or casing 2 is subjected to the following grinding / polishing processing, molding processing, strengthening processing, etc., followed by washing and drying, and then processing such as cutting and polishing. Good.
  • a molding process may be performed in order to produce the housing 2 by providing a bent portion to the housing transparent substrate 4.
  • the molding method used for the transparent substrate for a flat-plate housing includes a self-weight molding method, a vacuum molding method, a press molding method, a draw molding, a blow molding, an injection molding, and an extrusion molding, and the shape of the housing after molding.
  • a desired molding method may be selected according to the above.
  • the transparent base material 4 for the housing is placed on a predetermined mold corresponding to the shape of the housing 2 after molding, and then the transparent base material 4 is softened and bent by gravity to fit the mold. It is a method of forming into a predetermined shape. Thereby, the housing
  • the differential pressure molding method applies a differential pressure to the front and back surfaces of the transparent base material 4 in a state in which the transparent base material 4 for the case is softened, and bends the transparent base material 4 so as to conform to a mold. It is the method of shape
  • the transparent substrate 4 for the case is installed on a predetermined mold corresponding to the shape of the case 2, and a clamp mold or the like is provided on the transparent substrate 4. After the upper mold is installed and the periphery of the transparent base material 4 is sealed, the space between the mold and the transparent base material 4 is reduced by a pump to apply a differential pressure to the front and back surfaces of the transparent base material 4. Under the present circumstances, you may pressurize the upper surface side of the transparent base material 4 supplementarily. Thereby, the housing
  • blow molding which is an aspect of the differential pressure molding method, may be performed.
  • a gob is produced from a heated base material, and the gob is supplied to a predetermined molding die corresponding to the shape of the casing 2, and high-pressure air is supplied into the gob to expand the casing.
  • high pressure air may be supplied after the gob in the mold is molded with a rod-shaped mold such as a plunger. Thereby, the bottle-shaped housing
  • the housing transparent substrate 4 is placed between predetermined molds (lower mold, upper mold) corresponding to the shape of the molded casing 2 and the transparent substrate 4 is softened.
  • a press load is applied between the upper and lower molds, the transparent base material 4 is bent and conformed to the molds, and is molded into a predetermined shape.
  • Draw molding is a method in which a low-viscosity molded body molded on ceramics or refractory metal can be cooled while being stretched in the length direction and continuously formed into tubes and tufts of desired dimensions in tube-shaped molding. .
  • the differential pressure molding method and the press molding method are excellent as methods for molding the housing 2 into a predetermined shape, and one main surface of the housing 2 can be molded without contacting the molding die. Can reduce uneven defects such as dents.
  • An appropriate molding method may be selected according to the shape of the casing after molding, and two or more molding methods may be used in combination.
  • a physical strengthening method or a chemical strengthening method can be used as a strengthening treatment method for forming a surface compressive stress layer.
  • a workpiece whose glass main surface is tempered has high mechanical strength. Any tempering method may be adopted, but chemical tempering treatment is preferable when a glass having a small thickness and a large surface compressive stress (CS) value is obtained.
  • CS surface compressive stress
  • the physical strengthening treatment is a method of rapidly cooling the main surface of the inorganic glass heated to near the softening point by air cooling or the like.
  • the chemical strengthening treatment can be performed by a conventionally known method, and generally the glass is immersed in molten potassium nitrate. About 10% by mass of potassium carbonate or sodium carbonate may be used in this molten salt. Thereby, the crack of the surface layer of glass, etc. can be removed, and high strength glass is obtained. By mixing a silver component such as silver nitrate with potassium nitrate at the time of chemical strengthening, the glass is ion-exchanged to have silver ions on the surface and impart antibacterial properties.
  • the chemical strengthening treatment is not limited to once, and may be performed twice or more under different conditions, for example.
  • the inorganic glass has a compressive stress layer formed on the main surface, and the compressive stress (CS) of the compressive stress layer is preferably 500 MPa or more, more preferably 550 MPa or more, further preferably 600 MPa or more, and particularly preferably 700 MPa or more.
  • the compressive stress (CS) increases, the mechanical strength of the tempered glass increases.
  • the compressive stress (CS) becomes too high, the tensile stress inside the glass may become extremely high. Therefore, the compressive stress (CS) is preferably 1800 MPa or less, more preferably 1500 MPa or less, and even more preferably 1200 MPa or less.
  • the depth (DOL) of the compressive stress layer formed on the main surface of the inorganic glass is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the depth of the compressive stress layer (DOL) is preferably 180 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 80 ⁇ m or less, Typically, it is 50 ⁇ m or less.
  • the housing transparent substrate 4 or the housing 2 is particularly inorganic glass, at least one main surface thereof may be ground and polished.
  • a layer containing a large amount of a specific metal for example, tin
  • radio waves for information exchange and power generation are subject to interference and attenuation by this layer. Can be considered. For this reason, it is considered that by removing a layer containing a large amount of a specific metal by polishing or grinding, radio waves and the like can easily reach the IC tag, and data transmission can be shortened and errors can be suppressed.
  • the drilling process may be a machining process such as a drill or a cutter, or an etching process using a chemical such as hydrofluoric acid, and is not particularly limited.
  • End face processing process The end surface of the housing transparent substrate 4 or the housing 2 may be subjected to processing such as chamfering, and processing such as R chamfering and C chamfering is generally performed by mechanical grinding. Although it is preferable, it may be processed by etching or heating, and is not particularly limited.
  • FIG. 1 Showface treatment process
  • FIG. Examples of the surface treatment layer include an antiglare treatment layer, an antireflection treatment layer, an antifouling treatment layer, and a barrier layer, and these may be used in combination.
  • the surface on which the surface treatment layer is formed may be any surface of the housing transparent substrate 4 or the first main surface 4a or the second main surface 4b of the housing 2.
  • the antiglare treatment layer is a layer that mainly scatters reflected light and brings about an effect of reducing glare of reflected light due to reflection of a light source.
  • the antiglare treatment layer may be formed by processing the surface of the housing transparent substrate 4 itself or the housing 2 itself, or may be separately deposited.
  • As a method for forming the antiglare treatment layer for example, surface treatment is performed on at least a part of the transparent substrate 4 for the case or the case 2 by a chemical or physical method to form an uneven shape with a desired surface roughness. You can use the method you want.
  • a concavo-convex structure may be formed on the plate by applying or spraying a treatment liquid to at least a part of the housing transparent substrate 4 or the housing 2. Furthermore, you may form an uneven
  • a method for forming a concavo-convex structure by a chemical method specifically, a method of performing a frost treatment can be mentioned.
  • the frost treatment for example, when the object to be treated is glass in a mixed solution of hydrogen fluoride and ammonium fluoride, the glass is immersed and etched.
  • a method for forming a concavo-convex structure by a physical method for example, so-called sand blasting, in which crystalline silicon dioxide powder, silicon carbide powder, or the like is sprayed onto at least one main surface of the casing transparent substrate 4 or the casing 2 with pressurized air.
  • the frost treatment which is a chemical method, can be preferably used because microcracks are unlikely to occur on the surface of the object to be processed, and strength is unlikely to decrease.
  • the arithmetic average roughness Ra of the transparent substrate for casing 4 or the casing 2 of the present embodiment is not particularly limited, but is preferably 5000 nm or less, more preferably 3000 nm or less, and further preferably 2000 nm or less. It is possible to reduce the influence of radio waves and the like being scattered on the surface of the housing transparent substrate 4 or the housing 2, and it is possible to shorten the data transmission time and suppress errors.
  • the lower limit of the arithmetic average roughness Ra of the transparent base material 4 or the housing 2 of the present embodiment is not particularly limited, but is preferably 0.1 nm or more, more preferably 0.15 nm or more, and 0 More preferably, it is 5 nm or more.
  • the first main surface and the second main surface of the housing transparent substrate 4 or the housing 2 may have the same or different arithmetic average roughness Ra.
  • the maximum height roughness Rz of the first main surface 4a and the second main surface 4b is each independently preferably 5000 nm or less, more preferably 4500 nm or less, and even more preferably 4000 nm or less.
  • Rz is 5000 nm or less, it is possible to reduce the influence of radio waves and the like scattered on the surface of the housing transparent substrate 4 or the housing 2, and it is possible to shorten the data transmission time and suppress errors.
  • the maximum height roughness Rz of the first main surface and the second main surface is preferably 0.1 nm or more, more preferably 0.15 nm or more, and further preferably 0.3 nm or more.
  • the root mean square roughness Rq is preferably independently 0.3 nm or more and 5000 nm or less from the viewpoint of increasing the speed of data communication.
  • the maximum cross-sectional height roughness Rt is preferably 0.5 nm or more and 5000 nm or less from the viewpoint of speeding up data communication.
  • the maximum peak height roughness Rp is preferably 0.3 nm or more and 5000 nm or less from the viewpoint of speeding up data communication.
  • the maximum valley depth roughness Rv is preferably 0.3 nm or more and 5000 nm from the viewpoint of speeding up data communication.
  • the average length roughness Rsm is preferably 0.3 nm or more and 10,000 nm or less from the viewpoint of speeding up data communication.
  • the kurtosis roughness Rku is preferably 1 to 3 from the viewpoint of the operator's touch.
  • the skewness roughness Rsk is preferably ⁇ 1 to 1 from the viewpoint of the operator's tactile sensation.
  • the antireflection treatment layer is a layer that brings about an effect of reducing the reflectance, reduces the reflection of the measurement light transmitted through the sample bottle, and can improve the transmittance of the measurement light and improve the measurement result.
  • the antireflection treatment layer is an antireflection film, it is preferably formed on the first main surface 4a or the second main surface 4b of the housing transparent substrate 4 or the housing 2, but there is no limitation.
  • the configuration of the antireflection film is not limited as long as reflection of light can be suppressed. For example, a high refractive index layer having a refractive index of 1.9 or more at a wavelength of 550 nm and a low refractive index layer having a refractive index of 1.6 or less.
  • the antireflection treatment layer may be provided on a part of the casing transparent substrate 4 or the casing 2 and is preferably processed while avoiding the installation place of the radio wave transmitting / receiving antenna 7. For example, it is preferable not to provide an antireflection treatment layer on the first main surface 4a at the place where the radio wave transmitting / receiving antenna 7 is installed in order to suppress attenuation of radio waves and the like.
  • Antifouling treatment layer is a layer that suppresses the adhesion of organic and inorganic substances to the surface, or a layer that has the effect of easily removing adhering substances by cleaning such as wiping even when organic or inorganic substances adhere to the surface. That is.
  • the antifouling layer is formed as an antifouling film, it may be formed on the first main surface 4a and the second main surface 4b of the case transparent substrate 4 or the case 2, or on the other surface treatment layer. preferable.
  • the antifouling treatment layer is not limited as long as antifouling properties can be imparted. Among these, a fluorine-containing organic silicon compound film obtained by hydrolytic condensation reaction of a fluorine-containing organic silicon compound is preferable.
  • the antifouling treatment layer may be provided on a part of the transparent base material 4 for the case or a part of the case 2, and it is preferable that the antifouling treatment layer is processed while avoiding the installation place of the radio wave transmitting / receiving antenna 7. For example, it is preferable not to provide an antifouling treatment layer on the first main surface 4a at the place where the radio wave transmitting / receiving antenna 7 is installed in order to suppress interference due to static electricity.
  • a barrier layer is the diffusion suppression of components, such as ion eluting from the said glass, and the content to the glass which comprises the housing
  • a film such as SiO 2 or TiO 2 is preferable, and SiO 2 is more preferable.
  • the barrier film is preferably formed on the first main surface 4a and the second main surface 4b of the housing 2, and more preferably formed on the second main surface 4b.
  • the method of forming the barrier film there is no particular limitation on the method of forming the barrier film, and there is no particular limitation on the wet method such as dip coating or spray coating, or the dry method such as sputtering or chemical vapor deposition (CVD). Chemical vapor deposition (CVD) is preferred from the viewpoint of coating.
  • wet method such as dip coating or spray coating
  • dry method such as sputtering or chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the printing layer may be formed by various printing methods and inks (printing materials) depending on applications.
  • a printing method for example, spray printing, inkjet printing, or screen printing is used. By these methods, even a substrate having a large area can be printed well.
  • spray printing it is easy to print on the casing transparent substrate 4 or the casing 2 having a bent portion, and it is easy to adjust the surface roughness of the printing surface.
  • screen printing it is easy to form a desired printing pattern so that the average thickness is uniform over a wide substrate.
  • a plurality of inks may be used, but the same ink is preferable from the viewpoint of adhesion of the printed layer.
  • the ink forming the printing layer may be inorganic or organic.
  • the thickness of the printed layer is preferably 10 ⁇ m or more from the viewpoint of concealment, and preferably 100 ⁇ m or less from the viewpoint of design.
  • the print layer may be provided on a part of the casing transparent substrate 4 or the casing 2 and is preferably printed while avoiding the installation place of the radio wave transmitting / receiving antenna 7. For example, it is preferable not to provide a printing layer on the first main surface 4a at the installation location of the radio wave transmission / reception antenna 7 in order to suppress blocking of radio waves and the like.
  • the adhesive layer may be formed, for example, in order to fix the IC tag 3 to the housing transparent substrate 4 or the housing 2.
  • curing a liquid curable resin composition is mentioned.
  • the curable resin composition include a photocurable resin composition and a thermosetting resin composition.
  • the method for forming the adhesive layer include a die coater and a roll coater, but there is no particular limitation.
  • the thickness of the adhesive layer is preferably 1 ⁇ m or more in order to achieve reliable fixing, and is preferably 20 ⁇ m or less from the viewpoint of design.
  • the adhesive layer may be provided on a part of the housing transparent substrate 4 or the housing 2 and is preferably disposed avoiding the installation place of the radio wave transmitting / receiving antenna 7.
  • an adhesive layer is not provided on the first main surface 4a at the installation location of the radio wave transmission / reception antenna 7 in order to suppress blocking of radio waves and the like.
  • Examples of the present invention will be described. The present invention is not limited to the following examples. Examples 1 and 2 are examples, and example 3 is a comparative example.
  • Example 1 A polyvinyl chloride plate having a thickness of 3 mm manufactured by Takiron Co., Ltd. was processed so as to have a rectangular shape with a size of 50 mm ⁇ 50 mm. This was heated at a heating temperature of 80 ° C. for 2 hours and stored in a desiccator under a nitrogen atmosphere.
  • Example 2 A polycarbonate plate having a thickness of 3 mm manufactured by Takiron Co., Ltd. was processed so as to have a rectangular shape with a size of 50 mm ⁇ 50 mm. This was heated at a heating temperature of 80 ° C. for 2 hours and stored in a desiccator under a nitrogen atmosphere.
  • Example 3 An amorphous polyester resin plate with a thickness of 3 mm manufactured by Takiron Co., Ltd. was processed so as to have a rectangular shape with a size of 50 mm ⁇ 50 mm. This was heated at a heating temperature of 80 ° C. for 2 hours and stored in a desiccator under a nitrogen atmosphere.
  • the resin of Examples 1 to 3 is used as a casing transparent base material 4 which is a constituent member of the casing, and an IC tag 3 having a radio wave transmission / reception antenna and a shielding SUS case 6 as shown in FIG.
  • the housing model 20 was produced.
  • the IC tag 3 was fixed to the main surface of the housing transparent substrate 4 using an adhesive layer 8.
  • the reader / writer 5 that can transmit and receive signals in the state of the housing model 20
  • whether or not the IC tag 3 can respond through the transparent substrate 4 for housing was confirmed (response availability test).
  • the frequency of the radio wave used the UHF band (916 to 920 MHz).
  • XIT-261-G transmission output 250 mW
  • Dot-iN XS manufactured by XERAFY manufactured as the IC tag 3
  • the reader / writer 5 was arranged at a position spaced 300 mm away via the base material 4. Note that when the entire IC tag 3 was surrounded by the shielding SUS case 6, no response could be made between the IC tag 3 and the reader / writer 5.
  • the resin of each example is useful as a transparent substrate for a casing and a casing.
  • the transparent substrate for housing of the present invention is an electronic device such as an analysis sample bottle, an analysis sample tray, a packaging glass container, a display device, a mobile display device such as a smartphone or a tablet PC, a watch, a wristwatch, or a wearable display. It can be used as a housing. It can also be used as a housing as an in-vehicle authentication device or a charging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、情報のやり取りや起電のための電波等に干渉せず、電波等を減衰させにくい筐体(2)および通信装置(1)を提供することを目的とする。本発明は電波授受用アンテナ(7)と、含水量が1質量%以下の筐体用透明基材(4)と、を備える第1主面(4a)と第2主面(4b)とを有する筐体(2)であって、前記第1主面(4a)を基準面とし、前記基準面から前記第2主面(4b)側に、前記電波授受用アンテナ(7)を備えることを特徴とする筐体(2)に関する。

Description

筐体及び通信装置
 本発明は、筐体および通信装置に関する。
 非接触で人の手を介さず対象物を自動的に認識する、「自動認識技術(Automatic Identification and Data Capture;以下、AIDCと略す)」が利用されつつある。AIDCでは、図1に示すように対象物に付与されたICタグ3(Integrated Circuit Tag)と、ICタグ3の情報を読み出したり書き換えたりするリーダライタ5とを使用する。ICタグ3はアンテナ7とICチップ9とを備える。
 AIDCの動作は一般的に以下の通りである。まずリーダライタ5から情報を載せた電波や電磁波を送信し、ICタグ3中のアンテナ7が受信する。続いて、アンテナ7で受信した情報を載せた電波等を電気信号79に変換する。その後、情報を載せた電気信号79をICチップ9に送り、その結果の情報を得た電気信号(以下、返答電気信号97という)をアンテナ7に戻す。この返答電気信号97をアンテナ7において電波等に変換し、リーダライタ5に返答電波等75を戻す。これらの動作によりリーダライタ5とICタグ3との間で情報のやり取りがなされる。このAIDCは、例えば物流において多量の貨物を目的地別に自動的に振り分けるといった個体管理において広く活用され、他に物品などの履歴管理や個人認証などにも活用されつつある。
 AIDCに使用されるICタグは、動作電源の観点から大きく、アクティブ方式とパッシブ方式との2種類に分類される。アクティブ方式のICタグは電池を内蔵し、この電池により動作する。そのため長距離通信に適しているが、電池の交換を要するなどのデメリットを有する。一方、パッシブ方式のICタグは、電池を内蔵せず、リーダライタからの電波を用いてICタグ内で起電し、これにより動作する。
 一般的にパッシブ方式のICタグは、アクティブ方式に比べ、小型化、軽量化でき、安価であるため、長距離通信を必要としない用途において広く使用されている。
 AIDCに使用されるICタグは、使用する電波等の観点から、電磁誘導方式と電波方式との2種類に分類される。やり取り可能な通信距離、データ送信スピード、無線LAN等との干渉の観点から、電磁誘導方式ではHF帯(High Frequency、短波帯、13.56MHz)が、電波方式ではUHF帯(Ultra High Frequency、極短波帯、860~960MHz)が使用されている。
 近年では、ICタグは物流などだけでなく、多量のサンプル管理等を容易に実現できる観点から科学技術分野、特に医療分野等での使用が検討されつつある。
 科学技術分野では、多量のサンプルの入った試料瓶をオートサンプラーなどにより、自動で測定や計測を実施している。作業者は予め個々のサンプルの情報や管理番号を把握しておき、オートサンプラーの所定の位置にセットし、測定等を行う。測定等実施後に結果を得、予め把握していたサンプルの情報と結果とを作業者が照合し解析等を実施する。この際に、サンプルの情報と結果との照合においてミスが発生し再度測定することがあった。さらに医療分野では、サンプルの情報と結果との照合ミスで誤診断に繋がるといった課題があった。
 また医療分野では、測定の正確性を向上するために、使用する試料瓶については使いまわさずに、容易に廃棄可能な材質としてプラスチックが使用されつつある。
 上記の課題を解決するために、容易に廃棄可能で安価な試料瓶として、ICタグを付与したプラスチック製試料瓶が考えられている(例えば、特許文献1)。
日本国特許第5052079号公報
 ICタグを付与したプラスチック製試料瓶は、例えばICタグをプラスチック製試料瓶のプラスチック中に内包することとなる。しかしながら、情報のやり取りや起電のための電波等が、プラスチック中の水分による干渉や減衰でICタグに到達しにくくなる。一般的なプラスチック容器の比誘電率が10以下であるのに対し、水は比誘電率が80と大きいため、電波等をプラスチック容器に透過させようとすると、水分子の振動等により、電波等と干渉する。以上のことからデータ送信の長時間化、通信エラーなどの課題があった。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、情報のやり取りや起電のための電波等に干渉せず、電波等を減衰させにくい筐体および通信装置を提供することにある。
 本発明の上記目的は、下記構成により達成される。
(1) 電波授受用アンテナと、含水量が1質量%以下の筐体用透明基材と、を備える第1主面と第2主面とを有する筐体であって、
 前記第1主面を基準面とし、前記基準面から前記第2主面側に、前記電波授受用アンテナを備えることを特徴とする筐体。
(2) 前記筐体用透明基材が樹脂からなる、前記(1)に記載の筐体。
(3) 前記第1主面は、作業者が接触可能な面である、前記(1)または(2)に記載の筐体。
(4) 前記筐体用透明基材の含水量が、0.5質量%以下である、前記(1)~(3)のいずれか1に記載の筐体。
(5) 前記筐体用透明基材の、厚さ1mmにおける波長600nmの光の直線透過率が50%以上である、前記(1)~(4)のいずれか1に記載の筐体。
(6) 前記電波授受用アンテナはICタグを構成する、前記(1)~(5)のいずれか1に記載の筐体。
(7) 前記電波授受用アンテナは、データ読取書換に使用する電波を受信する、前記(1)~(6)のいずれか1に記載の筐体。
(8) 前記電波授受用アンテナは、起電に使用する電波を受信する、前記(1)~(7)のいずれか1に記載の筐体。
(9) 電波授受用アンテナと、含水量が1質量%以下の筐体用透明基材と、を備える第1主面と第2主面とを有する筐体であって、前記第1主面を基準面とし、前記基準面から前記第2主面側に、前記電波授受用アンテナを有する筐体と、
 前記電波授受用アンテナに情報を載せた信号を送受信できる送受信アンテナを備えたリーダライタと、を備えることを特徴とする通信装置。
 本発明によれば、情報のやり取りや起電のための電波等に干渉せず、電波等を減衰させにくい筐体および通信装置を提供できる。
図1は、通信装置におけるICタグとリーダライタとの応答方法を説明する図である。 図2(a)~(c)は筐体の一実施形態を示し、図2(a)は斜視図、図2(b)は図2(a)のII-II断面図である。図2(c)は他の実施形態における図2(b)と同様の断面図である。 図3(a)及び(b)は筐体モデルの説明図であり、図3(a)は斜視図、図3(b)は図3(a)のIII-III断面図である。
 以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されない。また、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形及び置換等を加えられる。
 (筐体用透明基材)
 本発明における筐体用透明基材(以下、単に透明基材と称することがある。)は、含水量が1質量%以下の部材からなる。本発明の筐体用透明基材を使用すると、電波等の減衰等の原因となる水分が透明基材中に少ないため、情報のやり取りや起電のための電波等が、透明基材中の水分により干渉や減衰を受けにくくなる。これにより、電波等がICタグに到達しやすくなり、データ送信の短時間化やエラーの抑制が可能である。含水量は0.5質量%以下が好ましく、0.2質量%以下がより好ましく、0.1質量%以下がさらに好ましい。
 本発明の筐体用透明基材の含水量の下限値は特に制限はないが、含水量は0.002質量%以上が好ましい。0.01質量%以上がより好ましく、0.015質量%以上がさらに好ましい。
 ここで、「筐体」とは物品を納められる箱を示し、本発明の筐体用透明基材を使用して作製された箱である。平板状の筐体用透明基材に他の部材を組み合わせて筐体を形成してもよく、筐体用透明基材を例えば成形プロセスにより屈曲部を付与して筐体を形成してもよい。
 なお、本願発明の筐体は後述の通り、電波授受用アンテナも備える。
 筐体用透明基材の材質は、上記含水量を満たせば特に限定されないが、例えばポリカーボネート、アクリル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエステル樹脂等の樹脂から適宜選択して用いることが好ましい。これは安価で使い捨てしやすく、生物学的有害物などを簡易に廃棄できるためである。樹脂では、成形加工性や耐薬品性の観点から、ポリプロピレンやポリエチレンがより好ましい。
 ここで、筐体用透明基材に樹脂を使用した場合、含水量を求めたい樹脂を水分気化装置内において150℃で加熱し、蒸発させた水分をカールフィッシャー試薬に導く。この試薬をJIS K0113(2005)に従って容量滴定法により含水量を見積もれる。
 筐体用透明基材の厚さ1mmにおける波長600nmの光の直線透過率は、50%以上が好ましい。筐体用透明基材を用いた筐体に測定光を透過させて光学測定等を実施する場合、測定光を透明基材が吸収し、信頼性の高い測定を実施できなくなる。そこで、光の直線透過率を下限値以上とすることで、測定光が筐体により干渉されにくくなり、信頼性の高い測定ができるようになる。光の直線透過率は、60%以上がより好ましく、70%以上がさらに好ましい。
 (筐体2)
 図2(a)に示すように、本発明に係る筐体2は、電波授受用アンテナ7と、含水量が1質量%以下の筐体用透明基材4と、を備える。筐体2は第1主面4aと第2主面4bとを有する。さらに、筐体2は第1主面4aを基準面とし、基準面から第2主面4b側に、電波授受用アンテナ7を備える。
 本発明の筐体2では、情報のやり取りや起電のための電波等が透明基材4による干渉や減衰を受けにくくなる。このため、電波等がICタグ3に到達しやすくなり、データ送信の短時間化やエラーの抑制が可能である。
 本発明の筐体2は、図2(b)に示すように、第1主面4aが、作業者が接触可能な面であることが好ましい。電波授受用アンテナ7が作業者の触れられる第1主面4aから第2主面4b側にあるため、電波授受用アンテナ7が第1主面4aから出っ張らない。また電波授受用アンテナ7と第1主面4aとを面一とできる。これにより電波授受用アンテナ7が損傷を受けにくくなるため、繰り返し使用でもデータ送信の精度向上を実現できる。
 電波授受用アンテナ7は、図2(c)に示すように、第1主面4aの基準面より第2主面4b側にあることがより好ましい。電波授受用アンテナ7は筐体2を構成する透明基材4などに覆われるなどにより、作業者が電波授受用アンテナ7にさらに触れにくくなり損傷を受けにくくなる。このため、繰り返し使用でもデータ送信の精度向上を実現できる。また、電波授受用アンテナ7の存在箇所に取り外し可能な蓋を設けてもよい。これにより測定機器で使用する電波に応じて電波授受用アンテナ7を交換できる。また、医療分野などに使用した場合、汚染されたサンプル容器を廃棄する際に、容易にかつ安全に電波授受用アンテナ7やICタグ3を回収できる。
 なお、電波授受用アンテナ7は、図2(a)~(c)に示すような筐体2の側面に設置することに限られず、筐体2の底部に設置してもよく特に制限はない。
 本発明の筐体2は、電波授受用アンテナ7がICタグ3を構成することが好ましい。ICタグ3は、電波授受用アンテナ7とICチップ9とを備え、パッケージ化された小型装置である。ICタグ3は一般的にパッケージ化されており、-40℃以上150℃以下の処理でも破損しにくく、例えば、滅菌処理の条件にも耐えられる。また、本発明の筐体2が試料瓶である場合でも、小型のICタグ3であれば組み込める。
 本発明の筐体2は、電波授受用アンテナ7が、データ読取書換に使用する電波を受信することが好ましい。図1のように、筐体2から離間して設置された測定装置などに組み込まれたリーダライタ5から情報を載せた電波等を送信し、筐体中の電波授受用アンテナ7が受信する。続いて、受信した情報を載せた電波等を電波授受用アンテナ7において電気信号に変換する。その後、例えばICタグ3内であれば、情報を載せた電気信号79をICチップ9に送り、その結果の情報を得た電気信号(以下、返答電気信号97という)を電波授受用アンテナ7に戻す。この返答電気信号97を電波授受用アンテナ7において電波等に変換し、リーダライタ5に返答電波等75を戻す。これらの動作によりリーダライタ5とICタグ3との間で情報のやり取りがなされ、測定装置と筐体2との情報を同期できる。これによりサンプルの情報と測定結果との関連性が明確化され、作業効率が向上できると共に、誤作業を低減できるようになる。
 本発明の筐体は、電波授受用アンテナが、起電に使用する電波を受信することが好ましい。測定装置などに組み込まれたリーダライタからの電波等を電波授受用アンテナが受信する。電波授受用アンテナは、コイル状アンテナやダイポール状アンテナやコンデンサを備え、これらと電波等により起電する。この起電により得られた電気エネルギーは、例えばICタグ内であれば、ICチップとのデータやり取りに使用され、自給的に動作できる。
 (通信装置1)
 本発明に係る通信装置1は、電波授受用アンテナ7及び含水量が1質量%以下の筐体用透明基材を有する筐体2と、リーダライタ5と、を備える。本発明に係る通信装置の筐体2は、第1主面4aと第2主面4bを有し、第1主面4aを基準面とし、基準面から第2主面4b側に、電波授受用アンテナ7を有する。本発明に係る通信装置1は、電波授受用アンテナ7に情報を載せた信号を送受信できる送受信アンテナを備えたリーダライタ5と、を備える。
 前記含水量の透明基材4及び電波授受用アンテナ7を備えた筐体2と、送受信アンテナを備えたリーダライタ5とを有する通信機器であるため、情報のやり取りや起電のための電波等が透明基材4による干渉や減衰を受けにくくなる。このため電波等が電波授受用アンテナ7に到達しやすくなり、データ送信の短時間化やエラーの抑制が可能である。
 <変形例>
 なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良ならびに設計の変更等が可能であり、その他、本発明の実施の際の具体的な手順、及び構造等は本発明の目的を達成できる範囲で他の構造等としてもよい。
 (筐体用透明基材)
 筐体用透明基材としては、先述した樹脂といった有機物だけでなく、セラミックスやガラスなどの無機物も使用できる。なお、筐体用透明基材に無機物を使用した場合、含水量を求めたい無機物について、熱重量・示差熱同時分析(TG-DTA)により見積もれる。例えば、TG-DTAにおいて、120℃で無機物を保持し、分析前後の重量変化量を含水量とし、分析前の重量とから含水率を求められる。
 [筐体用透明基材に使用できるガラス組成]
 ガラスの具体例としては、酸化物基準のモル%で表示した組成で、SiOを50~85%、Alを0.1~25%、LiO+NaO+KOを3~30%、MgOを0~25%、CaOを0~25%およびZrOを0~5%含むガラスが挙げられる。より具体的には、以下のガラスの組成が挙げられる。なお、例えば、「MgOを0~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。
(i)酸化物基準のモル%で表示した組成で、SiOを63~73%、Alを0.1~5.2%、NaOを10~16%、KOを0~1.5%、LiOを0~5%、MgOを5~13%及びCaOを4~10%を含むガラス。
(ii)酸化物基準のモル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、LiOを0~5%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス。
(iii)酸化物基準のモル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、LiOを0~5%、MgOを4~15%およびZrOを0~1%含有するガラス。
(iv)酸化物基準のモル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、LiOを0~5%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
 さらに、ガラスに着色を行い使用する際は、所望の筐体としての光学特性を維持する範囲や化学強化特性の達成を阻害しない範囲において着色剤を添加してもよい。例えば、可視域に吸収を持つ、Co、Mn、Cu、V、Bi、Se、Ti、Ce、Er、およびNdの金属酸化物である、Co、MnO、MnO、CuO、CuO、V、Bi、SeO、TiO、CeO、Er、Nd等が挙げられる。
 ガラスは、溶融の際の清澄剤としてSO、塩化物、フッ化物などを含有してよい。
 Alはガラスの耐候性を向上させる成分であり、酸化物基準のモル%表示で0.1%以上が好ましく、0.25%以上がより好ましく、1%以上がさらに好ましく、2%以上がよりさらに好ましく、3%以上が特に好ましい。ガラスの粘性を増大させずに溶融性を高めるためにもAlは25%以下が好ましく、16%以下がより好ましく、10%以下がさらに好ましく、8%以下が特に好ましく、7%以下がとりわけ好ましく、6%以下が最も好ましい。
 Bはガラスの骨格を構成するとともに耐候性を向上させる成分であり、酸化物基準のモル%表示で0.5%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましく、3%以上が特に好ましい。揮散による脈理を防ぐためにもBは15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましく、9%以下が特に好ましい。
 MgOは溶融性を向上させる成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で1%以上が好ましく、5%以上がより好ましく、7%以上がさらに好ましく、10%以上が特に好ましい。耐候性を向上させるためにもMgOは35%以下が好ましく、25%以下がより好ましく、20%以下がさらに好ましく、15%以下が特に好ましく、12%以下がとりわけ好ましい。
 CaOは溶融性を向上させる成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で0.1%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましい。耐候性を向上させるためにもCaOは25%以下が好ましく、15%以下がより好ましく、13%以下がさらに好ましく、10%以下がよりさらに好ましく、9%以下が特に好ましい。
 SrOは溶融性を向上させる成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で0.1%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましく、3%以上が特に好ましい。耐候性を向上させるためにもSrOは10%以下が好ましく、8%以下がより好ましく、5%以下が特に好ましい。
 BaOは溶融性を向上させる成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で0.1%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましい。耐候性を向上させるためにもBaOは15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましく、8%以下が特に好ましく、5%以下がとりわけ好ましい。
 LiOは溶融性を向上させるための成分であり、酸化物基準のモル%表示で0.5%以上が好ましく、1%以上がより好ましく、3%以上がさらに好ましい。耐候性を向上させるためにもLiOは25%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましく、13%以下が特に好ましい。
 NaOはガラスの溶融性を向上させる成分であるとともに、イオン交換により表面圧縮応力層を形成させる成分であり、酸化物基準のモル%表示で1%以上が好ましく、3%以上がより好ましく、4%以上がさらに好ましく、5%以上が特に好ましい。耐候性を向上させるためにNaOは20%以下が好ましく、17%以下がより好ましく、15%以下がさらに好ましく、14%以下が特に好ましい。
 KOは溶融性を向上させる成分であるとともに、化学強化におけるイオン交換速度を速める成分であり、酸化物基準のモル%表示で0.1%以上が好ましく、0.2%以上がより好ましく、0.3%以上がさらに好ましい。耐候性を向上させるためにKOは15%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましい。
 Pはガラスの骨格を構成する成分であり、酸化物基準のモル%表示で0.5%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。耐候性を向上させるためにPは10%以下が好ましく、8%以下より好ましい。
 Biはガラスの溶融温度を低減できる成分であり、酸化物基準のモル%表示で1%以上が好ましく、2%以上がより好ましい。50%以上だと着色が著しくなるため、45%以下が好ましく、43%以下がより好ましい。
 Gaは屈折率を調整する成分であり、酸化物基準のモル%表示で1%以上が好ましく、2%以上がより好ましい。30%以下が好ましく、25%以下がより好ましい。
 PbOはガラスの溶融温度を低減できる成分であるが、含まないことが好ましい。
 ZrOは化学的耐久性を向上させるとともにイオン交換速度を速める成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で0.01%以上が好ましく、0.1%以上がより好ましく、1.2%以上がさらに好ましい。ZrOが未溶融物としてガラス中に残ることを防ぐためにもZrOは好ましくは5%以下であり、より好ましくは4%以下であり、さらに好ましくは3%以下である。
 TiOは、表面硬度を向上させるとともに耐候性を向上させる成分であり、下限値は特に制限はないが、酸化物基準のモル%表示で0.01%以上が好ましく、0.02%以上がより好ましい。ガラスの安定性を向上させるためにもTiOは10%以下が好ましく、8%以下がより好ましく、7%以下がさらに好ましく、5%以下が特に好ましい。
 CeOはガラスの清澄剤として使用され、下限値は特に制限はないが、酸化物基準のモル%表示で0.1%以上が好ましい。上限値は特に制限はないが1%以下が好ましい。
 Taは化学的耐久性を高める成分であり、酸化物基準のモル%表示で1%以上が好ましく、2%以上がより好ましい。10%よりも多いと溶融温度が高くなるため、10%以下が好ましく、8%以下がより好ましい。
 NiOの含有量は酸化物基準のモル%表示で0.3%以下が好ましい。NiOは、製造装置から容易に混入しやすいだけでなく、少量の混入でもガラスを着色しやすい。NiOの混入は、電波等を減衰させやすいだけでなく、筐体用ガラスを用いたガラス筐体に測定光を透過させて光学測定等を実施する場合、測定光をガラスが吸収し、信頼性の高い測定を実施できなくなる。そこで、NiOの含有量を上限以下とすることで、情報のやり取りや起電のための電波等がガラスによる干渉や減衰をより受けにくくなる。このため、電波等がICタグに到達しやすくなり、データ送信の短時間化やエラーの抑制が可能である。さらに、光学測定の場合、筐体のNiOの含有量を上限以下とすることで、測定光がガラス筐体により干渉されにくくなり、信頼性の高い測定ができるようになる。
 NiOの下限値は特に制限はないが、酸化物基準のモル百分率表示で、含有量は0.0001%以上が好ましく、0.001%以上がより好ましい。
 Crの含有量は酸化物基準のモル%表示で0.3%以下が好ましい。Crは、製造装置から容易に混入しやすいだけでなく、少量の混入でもガラスを着色しやすい。Crの混入は、電波等を減衰させやすいだけでなく、筐体用ガラスを用いたガラス筐体に測定光を透過させて光学測定等を実施する場合、測定光をガラスが吸収し、信頼性の高い測定を実施できなくなる。そこで、Crの含有量を上限以下とすることで、情報のやり取りや起電のための電波等がガラスによる干渉や減衰をより受けにくくなる。このため、電波等がICタグに到達しやすくなり、データ送信の短時間化やエラーの抑制が可能である。さらに、光学測定の場合、筐体のCrの含有量を上限以下とすることで、測定光がガラス筐体により干渉されにくくなり、信頼性の高い測定ができるようになる。
 Crの下限値は特に制限はないが、酸化物基準のモル百分率表示で、含有量は0.0001%以上が好ましく、0.001%以上がより好ましい。
 SOは清澄剤として作用する成分であり、酸化物基準のモル%表示で0.005%以上が好ましく、0.01%以上がより好ましく、0.02%以上がさらに好ましく、0.03%以上が特に好ましい。ガラス内の泡の個数を減少させるためにもSOは0.5%以下が好ましく、0.3%以下がより好ましく、0.2%以下がさらに好ましく、0.1%以下が特に好ましい。
 [ガラスの製造方法]
 筐体用透明基材に使用できるガラスの製造方法では、各工程は特に限定されず適切に選択すればよく、典型的には従来公知の工程を適用できる。例えば、まず、各成分の原料を後述する組成となるように調合し、ガラス溶融窯で加熱溶融する。バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、従来公知の製造方法により所定の厚さのガラス板に成形し、徐冷する。
 ガラスの製造方法としては、例えば、フロート法、プレス法、フュージョン法、ダウンドロー法及びロールアウト法が挙げられる。特に、大量生産に適したフロート法が好適である。また、フロート法以外の連続法、すなわち、フュージョン法およびダウンドロー法も好適である。また、ガラスを平板状以外の、例えば凹状もしくは凸状に成形して用いる場合、平板状やブロック状等に成形したガラスを再加熱し、溶融させた状態でプレス成形したり、溶融ガラスをプレス型上に流し出し、プレス成形することで、所望の形状に成形される。
 ガラス中の水分濃度については、式(1)で求められるβ-OH値という指標を使用して管理すればよい。なお、含水量とβ-OH値とは相関関係がある。β-OH値が高いほど、含水量が多いとみなせる。
 β-OH値=(1/t)log10(T/T) ・・・(1)
(ただし、tはガラスの厚さで単位はmm、TはFT-IRによる3846cm-1における透過率で単位は%、TはFT-IRによる3500cm-1付近における最小透過率で単位は%である。)
 β-OH値が高いと電波等の減衰等の原因となるため、適正な範囲に制御することが好ましい。β-OH値は2/mm以下が好ましく、1.5/mm以下がより好ましく、1/mm以下がさらに好ましい。β-OH値が上限値より大きいと、電波等が減衰しやすい。またガラスを強化処理した場合に、その効果が徐々に緩和するといった機械的強度が弱まることがあり、遠心分離時など強い条件の元で使用に耐えないことが考えられる。
 β-OH値の下限値は特に制限はないが、0.2/mm以上が好ましく、0.3/mm以上がより好ましい。β-OH値が下限値以上であると、ガラスの軟化点を下げられ、筐体への成形時に加熱温度を下げられるといった、装置などへの負荷を低減できる。
 β-OH値は、水和物や水酸化物などの含水量の多い原料の使用を低減する、原料中への水分混入を抑制する、ガラス製造設備内の水蒸気量を制御する、などにより制御できる。
 [樹脂の製造方法]
 筐体用透明基材に使用できる樹脂の製造方法では、各工程は特に限定されず適切に選択すればよく、典型的には従来公知の工程を適用できる。例えば、まず、原料ペレットを所望の特性が得られるように混合し、加熱溶融する。これを従来公知の方法により所定の厚さの板状や容器状の成形品とし、冷却する。
 樹脂中の水分は、成形時の水蒸気量を制御する、原料に使用するペレット中に含まれる水分量の少ないものを使用する、成形品を加熱乾燥や真空乾燥する、筐体に成形後、吸水しないように表面処理層を形成する、などにより水分量を制御できる。
 [厚さ]
 筐体用透明基材の厚さは、5mm以下が好ましく、2mm以下がより好ましく、1.5mm以下がさらに好ましく、0.8mm以下が特に好ましい。厚さを5mm以下とすることにより、加工が容易になるほか、透明基材製筐体としての質量も小さくなる。また筐体用透明基材の厚さは、剛性を高めるため、0.1mm以上が好ましく、0.15mm以上がより好ましい。
 (加工)
 得られた筐体用透明基材4や筐体2に以下の研削・研磨加工処理し、成形処理し、強化処理等をした後、洗浄及び乾燥、その後、切断、研磨などの加工を施してよい。
 [成形処理]
 筐体用透明基材4に屈曲部を付与して筐体2を作製するために成形処理を実施してよい。例えば平板状の筐体用透明基材に使用する成形法としては、自重成形法、真空成形法、プレス成形法、ドロー成形、ブロー成形、射出成形、押出成形から、成形後の筐体の形状に応じて、所望の成形法を選択すればよい。
 自重成形法は、成形後の筐体2の形状に応じた所定の金型上に筐体用透明基材4を設置後、透明基材4を軟化させて、重力により曲げて金型になじませて、所定の形状に成形する方法である。これにより一部に屈曲部を付与した筐体2を作製できる。
 差圧成形法は、筐体用透明基材4を軟化させた状態で透明基材4の表裏面に差圧を与えて、透明基材4を曲げて金型になじませて、所定の形状に成形する方法である。差圧成形法の一態様である真空成形法では、筐体2の形状に応じた所定の成形型上に筐体用透明基材4を設置し、透明基材4上にクランプ金型などの上型を設置し、透明基材4の周辺をシールした後、成形型と透明基材4との空間をポンプで減圧することにより、透明基材4の表裏面に差圧を与える。この際に、補助的に、透明基材4の上面側を加圧してもよい。これにより複雑な屈曲部を付与した筐体2を作製できる。
 また、差圧成形法の一態様であるブロー成形を実施してよい。ブロー成形では加熱した基材原料からゴブを作製し、ゴブを筐体2の形状に応じた所定の成形型に供給し、ゴブ内に高圧空気を供給し膨らませ筐体2の形状とする。この際に、金型内のゴブをプランジャーなどの棒状金型で成形した後、高圧空気を供給してよい。これにより、瓶形状の筐体2を作製できる。
 プレス成形は、成形後の筐体2の形状に応じた所定の金型(下型、上型)間に筐体用透明基材4を設置し、透明基材4を軟化させた状態で、上下の金型間にプレス荷重を加えて、透明基材4を曲げて金型になじませて、所定の形状に成形する方法である。これにより寸法精度の高い筐体2を作製できる。
 ドロー成形は、管形状の成形において、セラミックスまたは耐熱金属の上で成形される低粘度の成形体を、長さ方向に引き伸ばしながら冷却して所望の寸法の管や房に連続成形できる方法である。
 これらのうち差圧成形法やプレス成形法は、筐体2の所定の形状に成形する方法として優れており、筐体2の一方の主面は成形型と接触せずに成形できるため、傷、へこみなどの凹凸状欠点を減らせる。
 なお、成形後の筐体の形状に応じて、適切な成形法を選択すればよく、2種以上の成形法を併用してもよい。
 (強化処理)
 筐体用透明基材4および筐体2が無機ガラスである場合、表面圧縮応力層を形成する強化処理方法として、物理強化法や化学強化法が利用できる。ガラス主面が強化処理された被加工物は、機械的強度が高くなる。いずれの強化手法を採用してもよいが、厚みが薄くかつ表面圧縮応力(CS)値が大きなガラスを得る場合には、化学強化処理が好ましい。
 [物理強化処理]
 物理強化処理(風冷強化処理)は、軟化点付近まで加熱した無機ガラスの主面を風冷などにより急速に冷却する手法である。
 [化学強化処理]
 無機ガラスを化学強化処理する場合、表面に圧縮応力層が形成され、強度及び耐擦傷性が高められる。化学強化処理においては、450℃弱の溶融塩で、無機ガラスの主面に存在するイオン半径が小さいアルカリ金属イオン(典型的にはLiイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(典型的にはLiイオンに対してはNaイオン又はKイオンであり、Naイオンに対してはKイオンである。)に交換することで、ガラス表面に圧縮応力層を形成する処理である。化学強化処理は従来公知の方法によって実施でき、一般的に硝酸カリウム溶融塩にガラスを浸漬する。この溶融塩に炭酸カリウムや炭酸ナトリウムを10質量%程度入れて使用してもよい。これによりガラスの表層のクラックなどを除去でき高強度のガラスが得られる。化学強化時に硝酸カリウムに硝酸銀などの銀成分を混合することで、ガラスがイオン交換され銀イオンを表面に有し抗菌性を付与できる。化学強化処理は1回に限らず、例えば異なる条件で2回以上実施してもよい。
 無機ガラスは主面に圧縮応力層が形成されており、その圧縮応力層の圧縮応力(CS)は、500MPa以上が好ましく、550MPa以上がより好ましく、600MPa以上がさらに好ましく、700MPa以上が特に好ましい。圧縮応力(CS)が高くなると強化ガラスの機械的強度が高くなる。一方、圧縮応力(CS)が高くなりすぎるとガラス内部の引張応力が極端に高くなるおそれがあるため、圧縮応力(CS)は1800MPa以下が好ましく、1500MPa以下がより好ましく、1200MPa以下がさらに好ましい。
 無機ガラスの主面に形成される圧縮応力層の深さ(DOL)は、5μm以上が好ましく、8μm以上がより好ましく、10μm以上がさらに好ましい。一方、DOLが大きくなりすぎるとガラス内部の引張応力が極端に高くなるおそれがあるため、圧縮応力層の深さ(DOL)は180μm以下が好ましく、150μm以下がより好ましく、80μm以下がさらに好ましく、典型的には50μm以下である。
 (研削・研磨加工工程)
 筐体用透明基材4または筐体2が特に無機ガラスである場合、その少なくとも一方の主面を研削・研磨加工を実施してもよい。筐体用透明基材4の主面に特定の金属(例えばスズ)などを多量に含む層がある場合、情報のやり取りや起電のための電波等が、この層による干渉や減衰を受けることが考えられる。このため、研磨や研削により特定の金属を多量に含む層を除くことで、電波等がICタグに到達しやすくなり、データ送信の短時間化やエラーの抑制ができると考えられる。
 (孔あけ加工工程)
 筐体用透明基材4または筐体2の少なくとも一部に孔を形成してもよい。孔は筐体用透明基材4または筐体2を貫通していても、貫通していなくてもよい。孔あけ加工は、ドリルやカッタなどの機械加工でも、フッ酸などの薬品を使用したエッチング加工でもよく、特に制限はない。
 (端面加工工程)
 筐体用透明基材4または筐体2の端面は、面取加工などの処理がなされていてもよく、機械的な研削により一般的にR面取、C面取と呼ばれる加工を行うのが好ましいが、エッチングや加熱で加工を行ってもよく、特に限定されない。
 (表面処理工程)
 筐体用透明基材4または筐体2について必要な個所に、各種表面処理層を形成する工程を実施してもよい。表面処理層としては、防眩処理層、反射防止処理層、防汚処理層、バリア層などが挙げられ、これらを併用してもよい。表面処理層を形成する面は、筐体用透明基材4または筐体2の第1主面4a又は第2主面4bのいずれの面でもよい。
 [防眩処理層]
 防眩処理層とは主に反射光を散乱させ、光源の映り込みによる反射光の眩しさを低減する効果をもたらす層のことである。防眩処理層は筐体用透明基材4自体または筐体2自体の表面を加工して形成してもよく、別途堆積形成してもよい。防眩処理層の形成方法として、例えば、筐体用透明基材4または筐体2の少なくとも一部に化学的あるいは物理的な方法で表面処理を施し、所望の表面粗さの凹凸形状を形成する方法を使用できる。また、形成方法として、筐体用透明基材4または筐体2の少なくとも一部に処理液を塗布あるいは噴霧して、板上に凹凸構造を形成してもよい。
 さらに熱的な方法により筐体用透明基材4または筐体2の少なくとも一部に凹凸構造を形成してもよい。
 化学的方法による凹凸構造形成方法として、具体的にはフロスト処理を施す方法が挙げられる。フロスト処理は、例えば、フッ化水素とフッ化アンモニウムの混合溶液に、被処理体がガラスの場合、ガラスを浸漬してエッチングする。
 物理的方法による凹凸構造形成方法として、例えば、結晶質二酸化ケイ素粉、炭化ケイ素粉等を加圧空気で筐体用透明基材4または筐体2の少なくとも一方の主面に吹きつけるいわゆるサンドブラスト処理や、結晶質二酸化ケイ素粉、炭化ケイ素粉等を付着させたブラシを水で湿らせて、筐体用透明基材4または筐体2の少なくとも一方の主面を研磨する方法等で行われる。
 なかでも、化学的方法であるフロスト処理は、被処理体表面にマイクロクラックを生じ難く、強度の低下が生じ難いため、好ましく利用できる。
 <算術平均粗さRa>
 本実施形態の筐体用透明基材4または筐体2の算術平均粗さRaは、特に制限はないが、5000nm以下が好ましく、3000nm以下がより好ましく、2000nm以下がさらに好ましい。電波等が筐体用透明基材4または筐体2の表面で散乱されるなどの影響を低減でき、データ送信の短時間化やエラーの抑制が可能である。また、本実施形態の筐体用透明基材4または筐体2の算術平均粗さRaの下限は、特に制限はないが、例えば0.1nm以上が好ましく、0.15nm以上がより好ましく、0.5nm以上がさらに好ましい。筐体用透明基材4または筐体2の第1主面と第2主面とは算術平均粗さRaが同じでも異なっていてもよい。
 <第1主面4aおよび第2主面4bのその他の粗さ>
 第1主面4aおよび第2主面4bの最大高さ粗さRzはそれぞれ独立して5000nm以下が好ましく、4500nm以下がより好ましく、4000nm以下がさらに好ましい。Rzが5000nm以下であれば、電波等が筐体用透明基材4または筐体2の表面で散乱されるなどの影響を低減でき、データ送信の短時間化やエラーの抑制が可能である。第1主面および第2主面の最大高さ粗さRzは0.1nm以上が好ましく、0.15nm以上がより好ましく、0.3nm以上がさらに好ましい。
 第1主面4aおよび第2主面4bの他の粗さとして、例えば、二乗平均平方根粗さRqは、データ通信の高速化の観点からそれぞれ独立して0.3nm以上5000nm以下が好ましい。最大断面高さ粗さRtは、データ通信の高速化の観点から0.5nm以上5000nm以下が好ましい。最大山高さ粗さRpは、データ通信の高速化の観点から0.3nm以上5000nm以下が好ましい。最大谷深さ粗さRvは、データ通信の高速化の観点から0.3nm以上5000nmが好ましい。平均長さ粗さRsmは、データ通信の高速化の観点から0.3nm以上10000nm以下が好ましい。クルトシス粗さRkuは、作業者の触感の観点で1~3が好ましい。スキューネス粗さRskは、作業者の触感などの観点から-1~1が好ましい。これらは粗さ曲線Rを元にした粗さであるが、これに相関したうねりWや断面曲線Pで規定してもよく、特に制限はない。
 [反射防止処理層]
 反射防止処理層とは、反射率低減の効果をもたらし、試料瓶を透過させる測定光の反射を低減するほか、測定光の透過率を向上でき、測定結果を向上できる層である。
 反射防止処理層が反射防止膜である場合、筐体用透明基材4または筐体2の第1主面4aまたは第2主面4bに形成されることが好ましいが制限は無い。反射防止膜の構成としては光の反射を抑制できれば限定されず、例えば、波長550nmでの屈折率が1.9以上の高屈折率層と屈折率が1.6以下の低屈折率層とを積層した構成、もしくは膜マトリックス中に中空粒子や空孔を混在させた波長550nmでの屈折率が1.2~1.4の層を含む構成とできる。
 反射防止処理層は、筐体用透明基材4または筐体2の一部に設けてもよく、電波授受用アンテナ7の設置場所を避けて処理することが好ましい。例えば、電波授受用アンテナ7の設置場所における第1主面4aには、電波等の減衰を抑制するために反射防止処理層を設けないことが好ましい。
 [防汚処理層]
 防汚処理層とは表面への有機物、無機物の付着を抑制する層、または、表面に有機物、無機物が付着した場合においても、ふき取り等のクリーニングにより付着物が容易に除去できる効果をもたらす層のことである。
 防汚処理層が防汚膜として形成される場合、筐体用透明基材4または筐体2の第1主面4aと第2主面4b上またはその他表面処理層上に形成されることが好ましい。防汚処理層としては、防汚性を付与できれば限定されない。中でも含フッ素有機ケイ素化合物を加水分解縮合反応により得られる含フッ素有機ケイ素化合物被膜が好ましい。
 防汚処理層は、筐体用透明基材4または筐体2の一部に設けてもよく、電波授受用アンテナ7の設置場所を避けて処理することが好ましい。例えば、電波授受用アンテナ7の設置場所における第1主面4aには、静電気による干渉を抑制するために防汚処理層を設けないことが好ましい。
 [バリア層]
 バリア層とは、筐体2を構成している透明基材4がガラスである場合に、当該ガラスから溶出するイオン等の成分の拡散抑制や、筐体2を構成しているガラスへの内容物による浸食抑制をもたらす層のことである。また、バリア層は、筐体2を構成している透明基材4が樹脂である場合に、当該樹脂への水蒸気などの吸着を抑制できる層である。
 バリア層としては、SiOやTiO等の膜が好ましく、SiOがより好ましい。バリア膜は筐体2の第1主面4aと第2主面4b上に形成されることが好ましく、第2主面4bに形成されていることがより好ましい。バリア膜の形成法は特に制限はなく、ディップコートやスプレーコートのような湿式法でも、スパッタリングや化学的気相蒸着法(CVD)のような乾式法でも特に制限はないが、均質に均一にコートできる観点から化学的気相蒸着法(CVD)が好ましい。
 (印刷層形成工程)
 印刷層は、用途に応じて種々の印刷方法、インキ(印刷材料)により形成されてよい。印刷方法としては、例えば、スプレー印刷、インクジェット印刷やスクリーン印刷が利用される。これらの方法により、面積の広い基材でも良好に印刷できる。特に、スプレー印刷では、屈曲部を有する筐体用透明基材4または筐体2に印刷しやすく、印刷面の表面粗さを調整しやすい。一方、スクリーン印刷では、広い基材に平均厚さが均一になるように所望の印刷パターンを形成しやすい。また、インキは、複数使用してよいが、印刷層の密着性の観点から同一のインキが好ましい。印刷層を形成するインキは、無機系でも有機系であってもよい。印刷層の厚さは隠蔽性の観点から10μm以上が好ましく、設計の観点から100μm以下が好ましい。
 印刷層は、筐体用透明基材4または筐体2の一部に設けてもよく、電波授受用アンテナ7の設置場所を避けて印刷することが好ましい。例えば、電波授受用アンテナ7の設置場所における第1主面4aには、電波等の遮断を抑制するために印刷層を設けないことが好ましい。
 (接着層形成工程)
 接着層は、例えばICタグ3を筐体用透明基材4または筐体2に固定するため、形成されてよい。接着層としては、特に制限はないが、例えば、液状の硬化性樹脂組成物を硬化して得られる透明樹脂層が挙げられる。硬化性樹脂組成物としては、光硬化性樹脂組成物、熱硬化性樹脂組成物などが挙げられる。また、あらかじめ別途フィルム状としたOCA樹脂を貼合してよい。接着層の形成方法としては、例えば、ダイコータ、ロールコータを使用するなどが挙げられるが、特に制限はない。接着層の厚さは確実な固定を達成するため1μm以上が好ましく、設計上の観点から20μm以下が好ましい。
 接着層は、筐体用透明基材4または筐体2の一部に設けてもよく、電波授受用アンテナ7の設置場所を避けて配置することが好ましい。例えば、電波授受用アンテナ7の設置場所における第1主面4aには、電波等の遮断を抑制するために接着層を設けないことが好ましい。
 本発明の実施例について説明する。本発明は以下の実施例に限定されるものではない。なお、例1および2は実施例、例3は比較例である。
 (例1)
 タキロン社製の板厚が3mmのポリ塩化ビニル板を、サイズが50mm×50mmの矩形形状となるように加工した。これを、加熱温度80℃において2時間加熱し、窒素雰囲気のデシケータ中に保管した。
 (例2)
 タキロン社製の板厚が3mmのポリカーボネート板を、サイズが50mm×50mmの矩形形状となるように加工した。これを、加熱温度80℃において2時間加熱し、窒素雰囲気のデシケータ中に保管した。
 (例3)
 タキロン社製の板厚が3mmの非晶質ポリエステル樹脂板を、サイズが50mm×50mmの矩形形状となるように加工した。これを、加熱温度80℃において2時間加熱し、窒素雰囲気のデシケータ中に保管した。
 [含水量測定]
 例1~3の樹脂について、水分気化装置にて150℃で加熱し、蒸発させた水分をカールフィッシャー試薬に導いた。それぞれのカールフィッシャー試薬に含まれる水分量をJIS-K0113(2005)に従って求め、例1~3それぞれの含水量を求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [応答可否試験]
 例1~3の樹脂について筐体の構成部材である筐体用透明基材4として使用し、図3(a)のように電波授受用アンテナを有するICタグ3と、遮蔽用SUSケース6を組み合わせて、筐体モデル20を作製した。ICタグ3は、図3(b)に示すように筐体用透明基材4の主面に接着層8を用いて固定した。筐体モデル20の状態で、信号を送受信できるリーダライタ5を使用して、筐体用透明基材4を介したICタグ3の応答可否を確認した(応答可否試験)。応答可否試験では電波の周波数はUHF帯(916~920MHz)を使用した。リーダライタ5としてWelcat社製XIT-261-G(送信出力250mW)を、ICタグ3としてXERAFY社製Dot-iN XSを使用し、筐体モデル20の状態で、ICタグ3から筐体用透明基材4を介して300mm離間させた位置にリーダライタ5を配置した。なお、遮蔽用SUSケース6でICタグ3全体を囲った場合には、ICタグ3とリーダライタ5との間で応答できなかった。
 例1および2の樹脂により作製した筐体モデルでは、リーダライタとICタグとが認証ミスなく高速応答した。一方、例3により作製した筐体モデルでは、リーダライタとICタグとが応答しにくかった。これは例3の樹脂中の含水量が多かったためと考えられる。
 以上より、各実施例の樹脂は、筐体用透明基材および筐体として有用である。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年2月13日出願の日本特許出願(特願2017-024493)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の筐体用透明基材は、分析用試料瓶、分析用試料皿、梱包用ガラス容器、ディスプレイ装置、スマートホンやタブレットPCなどのモバイルディスプレイ装置、時計、腕時計、ウェアラブルディスプレイなどの電子機器などの筐体として使用できる。また、車載用認証装置や充電装置としての筐体としても使用できる。
 1  通信装置
 2  筐体
 20 筐体モデル
 3  ICタグ
 4  (筐体用)透明基材
 5  リーダライタ
 7  アンテナ
 9  ICチップ 

Claims (9)

  1.  電波授受用アンテナと、含水量が1質量%以下の筐体用透明基材と、を備える第1主面と第2主面とを有する筐体であって、
     前記第1主面を基準面とし、前記基準面から前記第2主面側に、前記電波授受用アンテナを備えることを特徴とする筐体。
  2.  前記筐体用透明基材が樹脂からなる、請求項1に記載の筐体。
  3.  前記第1主面は、作業者が接触可能な面である、請求項1または2に記載の筐体。
  4.  前記筐体用透明基材の含水量が、0.5質量%以下である、請求項1~3のいずれか1項に記載の筐体。
  5.  前記筐体用透明基材の、厚さ1mmにおける波長600nmの光の直線透過率が50%以上である、請求項1~4のいずれか1項に記載の筐体。
  6.  前記電波授受用アンテナはICタグを構成する、請求項1~5のいずれか1項に記載の筐体。
  7.  前記電波授受用アンテナは、データ読取書換に使用する電波を受信する、請求項1~6のいずれか1項に記載の筐体。
  8.  前記電波授受用アンテナは、起電に使用する電波を受信する、請求項1~7のいずれか1項に記載の筐体。
  9.  電波授受用アンテナと、含水量が1質量%以下の筐体用透明基材と、を備える第1主面と第2主面とを有する筐体であって、前記第1主面を基準面とし、前記基準面から前記第2主面側に、前記電波授受用アンテナを有する筐体と、
     前記電波授受用アンテナに情報を載せた信号を送受信できる送受信アンテナを備えたリーダライタと、を備えることを特徴とする通信装置。
PCT/JP2018/004098 2017-02-13 2018-02-06 筐体及び通信装置 WO2018147294A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024493 2017-02-13
JP2017024493 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018147294A1 true WO2018147294A1 (ja) 2018-08-16

Family

ID=63108140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004098 WO2018147294A1 (ja) 2017-02-13 2018-02-06 筐体及び通信装置

Country Status (1)

Country Link
WO (1) WO2018147294A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273149A (ja) * 2009-05-22 2010-12-02 Nec Access Technica Ltd 無線装置、アンテナ付き筐体及びアンテナ組み込み方法
JP2012253702A (ja) * 2011-06-07 2012-12-20 Nec Casio Mobile Communications Ltd 空中線装置及びそれを用いた電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273149A (ja) * 2009-05-22 2010-12-02 Nec Access Technica Ltd 無線装置、アンテナ付き筐体及びアンテナ組み込み方法
JP2012253702A (ja) * 2011-06-07 2012-12-20 Nec Casio Mobile Communications Ltd 空中線装置及びそれを用いた電子機器

Similar Documents

Publication Publication Date Title
US11761799B2 (en) Sensor module and protective glass
JP7479549B2 (ja) 特別な面取り部の形状および高強度を有する超薄ガラス
KR102182662B1 (ko) 전자 디바이스 구조체 및 그 내부에 사용되는 극박 유리 시트
KR102433785B1 (ko) 적층 유리 제품 및 이의 형성방법
CN107443948B (zh) 带有印刷层的板及显示装置
JP7067648B2 (ja) カバー部材、これを有する携帯情報端末及び表示装置、並びに超音波装置
US20180257978A1 (en) Plate with print layer, display device using same, and glass with functional layer for in-vehicle display devices
JP2021523870A (ja) 耐衝撃性を有する超薄ガラス
JP2018177632A (ja) 加工部材の製造方法、板状部材及び開口部材
WO2014141981A1 (ja) 表示装置、表示装置の製造方法、タッチパネル、及び、タッチパネルの製造方法
US20180273422A1 (en) Glass manufacturing method
TW201434770A (zh) 化學鋼化的柔性超薄玻璃
KR20110137820A (ko) 안티글레어 표면을 갖는 유리 및 그 제조방법
CN116039378A (zh) 玻璃物品以及玻璃物品的制造方法
CN111727177B (zh) 保护玻璃和内嵌式液晶显示装置
JP6919662B2 (ja) ガラス筐体及び通信装置
CN113853359A (zh) 具有高弯曲强度的薄玻璃基板及其制备方法
TW202019840A (zh) 藉由結合重拉式及化學薄化製程增強玻璃的強度
KR20230084536A (ko) 폴더블 장치를 형성시키는 방법
CN211367395U (zh) 玻璃构造体
WO2018147294A1 (ja) 筐体及び通信装置
JP7305982B2 (ja) 凹凸形状付きガラス基体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP