[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018143777A1 - 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018143777A1
WO2018143777A1 PCT/KR2018/001587 KR2018001587W WO2018143777A1 WO 2018143777 A1 WO2018143777 A1 WO 2018143777A1 KR 2018001587 W KR2018001587 W KR 2018001587W WO 2018143777 A1 WO2018143777 A1 WO 2018143777A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
candidate
search space
pdcch candidates
aggregation level
Prior art date
Application number
PCT/KR2018/001587
Other languages
English (en)
French (fr)
Inventor
조순기
이윤정
서인권
황대성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/484,095 priority Critical patent/US10959219B2/en
Publication of WO2018143777A1 publication Critical patent/WO2018143777A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a method and apparatus for receiving a downlink control channel, and more particularly, to a method and apparatus for performing blind decoding on a search region in a downlink control region of at least one received symbol.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required in order to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a problem of the present invention is to perform blind decoding on a search region including a plurality of PDCCH candidates corresponding to an aggregation level in a received downlink control region, but having a PDCCH defined for each aggregation level. It is intended to provide a method and apparatus for sharing the channel estimation for the overlapping part among candidates and reducing blocking.
  • a method for receiving a downlink control channel includes receiving at least one symbol including a downlink control region and blind decoding of a search space among the downlink control regions. performing decoding, wherein the search region includes a plurality of PDCCH candidates corresponding to an aggregation level and including a control channel element (CCE), wherein each of the plurality of PDCCH candidates is at least one; It overlaps with the PDCCH candidate.
  • CCE control channel element
  • the plurality of PDCCH candidates includes a first PDCCH candidate corresponding to a first aggregation level and a second PDCCH candidate corresponding to a second aggregation level that is lower than the first aggregation level. 2 PDCCH candidates are arranged in the first PDCCH candidate.
  • the first aggregation level is a highest aggregation level among aggregation levels corresponding to the plurality of PDCCH candidates.
  • the first PDCCH candidate is a PDCCH candidate for a common search space
  • the second PDCCH candidate is a PDCCH candidate for a UE-specific search space. It features.
  • a second starting point which is a starting point of the second PDCCH candidate, may be arbitrarily based on at least one of a first starting point, the first aggregation level, and the second aggregation level, which are starting points of the first PDCCH candidate. Characterized in that it is determined.
  • the remaining PDCCH candidates except for the first PDCCH candidate and the second PDCCH candidate among the plurality of PDCCH candidates may be arbitrarily disposed to overlap all or part of the first PDCCH candidate.
  • each of the plurality of PDCCH candidates overlaps some or all of a virtual PDCCH candidate, and the virtual PDCCH candidate is a PDCCH candidate corresponding to a virtual aggregation level that is not monitored by the terminal. It is done.
  • the virtual aggregation level is higher than the highest aggregation level among aggregation levels corresponding to each of the plurality of PDCCH candidates.
  • the search space is divided into a first candidate search space and a second candidate search space separated from each other, and the first candidate search space corresponds to a first PDCCH candidate and the first candidate corresponding to a first aggregation level.
  • a fourth PDCCH candidate disposed within one PDCCH candidate and corresponding to a second aggregation level, wherein the second candidate search space is a third PDCCH candidate corresponding to a third aggregation level and a fourth lower level than the third aggregation level; And a fourth PDCCH candidate corresponding to an aggregation level, and a part or all of the fourth PDCCH candidates are disposed in the third PDCCH candidate.
  • the first aggregation level is the highest aggregation level among PDCCH candidates included in the first candidate discovery space
  • the second aggregation level is the highest aggregation among PDCCH candidates included in the second candidate discovery space. It is characterized by the level.
  • the downlink control region includes a first core set (COntrol REsource SET, CORESET) and a second core set (CORESET) including resources in which the search space is disposed, and the first candidate The search space is disposed in the first coreset, and the second candidate search space is disposed in the second coreset.
  • the number of PDCCH candidates included in each of the first candidate search space and the second candidate search space may correspond to the number of symbols included in each of the first coreset and the second coreset. It is characterized in that determined based on the resource.
  • the method may further include detecting downlink control information (DCI) based on a control channel element (CCE) detected by the blind decoding.
  • DCI downlink control information
  • CCE control channel element
  • a task is to perform blind decoding on a search region including a plurality of PDCCH candidates corresponding to an aggregation level in a received downlink control region, while overlapping portions of PDCCH candidates defined for each aggregation level. It is possible to share channel estimates and reduce blocking.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 7 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 8 is a conceptual diagram illustrating a carrier aggregation technique.
  • 9 to 30 are diagrams for describing a method of configuring a search region in a downlink subframe according to an embodiment of the present invention.
  • FIG. 31 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 * T s ) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 * T s ).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers * 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R0 to R3 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier * one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group. The number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 6 shows a resource unit used to configure a downlink control channel in an LTE system.
  • FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two
  • FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the downlink control channel is a resource element group (REG).
  • the REG consists of four neighboring resource elements (REs) with the exception of the RS.
  • REG is shown in bold in the figures.
  • PCFICH and PHICH include 4 REGs and 3 REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • the terminal To check whether a PDCCH consisting of CCEs is transmitted It is set to check the CCEs arranged in consecutive or specific rules. UE should consider to receive PDCCH The value can be plural.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space. For example, the LTE system defines a search area as shown in Table 1.
  • CCE Aggregation Level represents the number of CCEs constituting the PDCCH
  • CCE Aggregation Level represents a search area for
  • Silver aggregation level The number of PDCCH candidates to be monitored in the search region of.
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • the CCE may be distributed in a system band. More specifically, a plurality of logically continuous CCEs may be input to an interleaver, and the interleaver performs a function of mixing the input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • FIG. 7 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes: ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, Scheduling Request (SR), which is an uplink resource allocation request, etc. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • FIG. 8 is a conceptual diagram illustrating carrier aggregation.
  • Carrier aggregation includes a plurality of frequency blocks or (logically) cells in which a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • a terminal is composed of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
  • uplink resources or component carriers
  • downlink resources or component carriers
  • the entire system bandwidth has a bandwidth of up to 100 MHz as a logical band.
  • the entire system band includes five component carriers, each component carrier having a bandwidth of up to 20 MHz.
  • a component carrier includes one or more contiguous subcarriers that are physically contiguous.
  • each component carrier has the same bandwidth, this is only an example and each component carrier may have a different bandwidth.
  • each component carrier is shown as being adjacent to each other in the frequency domain, the figure is shown in a logical concept, each component carrier may be physically adjacent to each other, or may be separated.
  • the center frequency may be used differently for each component carrier or may use one common common carrier for component carriers that are physically adjacent to each other. For example, in FIG. 8, if all component carriers are physically adjacent to each other, a center carrier A may be used. In addition, assuming that the component carriers are not physically adjacent to each other, the center carrier A, the center carrier B, and the like may be used separately for each component carrier.
  • the component carrier may correspond to the system band of the legacy system.
  • provision of backward compatibility and system design may be facilitated in a wireless communication environment in which an evolved terminal and a legacy terminal coexist.
  • the frequency band used for communication with each terminal is defined in component carrier units.
  • UE A may use the entire system band 100 MHz and performs communication using all five component carriers.
  • Terminals B 1 to B 5 may use only 20 MHz bandwidth and perform communication using one component carrier.
  • Terminal C 1 and C 2 can be used for 40 MHz bandwidth and performs communication using two carrier components respectively.
  • the two component carriers may or may not be logically / physically adjacent to each other.
  • UE C 1 represents a case of using two component carriers which are not adjacent
  • UE C 2 represents a case of using two adjacent component carriers.
  • a method of scheduling a data channel by the control channel may be classified into a conventional linked carrier scheduling method and a cross carrier scheduling method.
  • link carrier scheduling like a conventional LTE system using a single component carrier, a control channel transmitted through a specific component carrier schedules only a data channel through the specific component carrier.
  • a control channel transmitted through a primary component carrier (Crimary CC) using a carrier indicator field (CIF) is transmitted through the primary component carrier or transmitted through another component carrier.
  • CMF carrier indicator field
  • a predetermined subframe The number of CCEs configured in Defined as 0, and the index is from 0 Assume that In this case, the search area in the 3GPP standard document (only, ) Aggregation level PDCCH candidate Is defined as in Equation 1 below.
  • Equation 1 Is a common search area If the CIF is not defined even in the terminal specific region, that is, the cross carrier scheduling scheme is not applied. Is set. On the other hand, if the CIF is defined in the terminal specific region, that is, if the cross-carrier scheduling scheme is applied, silver Is defined as here Means the CIF value.
  • the current wireless communication environment is rapidly increasing the data requirements for the cellular network due to the emergence and spread of various devices requiring M2M (Machine-to-Machine) communication and high data transmission.
  • M2M Machine-to-Machine
  • communication technologies are evolving into multi-antenna technology and multi-base station cooperative technology to increase data capacity within a limited frequency, such as carrier aggregation technology to efficiently use more frequency bands,
  • the communication environment evolves toward higher densities of accessible nodes around the user. Systems with such high density nodes can exhibit higher system performance by cooperation between furnaces.
  • each node acts as an independent base station (Base Station (BS), Advanced BS (ABS), Node-B (NB), eNode-B (eNB), Access Point (AP), etc.) It has much better performance than ever.
  • BS Base Station
  • ABS Advanced BS
  • NB Node-B
  • eNB eNode-B
  • AP Access Point
  • the downlink control for the operation purpose of the 1ms TTI criterion including the PDSCH / PUSCH is called DCI
  • the downlink control associated with the TTI shorter than the 1ms TTI is named sDCI. do.
  • a CCE which is a resource unit for transmitting a PDCCH
  • a CCE which is a resource unit for transmitting a PDCCH
  • a search space is defined as an area into which a CCE configured according to each AL can be contained, and the size of the search area is fixed. Since the length of the CCE containing one PDCCH varies according to the AL, the number of PDCCH candidates that may exist in the search region varies according to the AL.
  • a PDCCH candidate is a space where actual CCE can be contained, and the PDCCH candidates form a search space.
  • the UE may obtain its DCI information by receiving its PDCCH transmitted from the base station eNB, but is not correctly indicated on which PDCCH candidate is included in the PDCCH candidate. However, the UE may know the location of a search space in which the PDCCH can be transmitted, and the UE may acquire its own PDCCH by searching the search space by a method of blind decoding. In addition, the plurality of terminals may have respective search spaces, and the search spaces may overlap each other.
  • the UE When performing blind decoding on each PDCCH candidate, the UE performs channel estimation individually. That is, as the number of PDCCH candidates increases, the UE needs to perform channel estimation as much as the range corresponding to the number of PDCCH candidates, which is a process load of the UE. Correlated with
  • a channel estimation process In order to perform blind decoding performed by the UE to find its own PDCCH, a channel estimation process must be performed in advance.
  • One method for reducing the amount of such channel estimation is a hierarchical structure. Referring to FIG. 9, in a hierarchical structure, all hashing points of PDCCH candidates for each AL are the same, and channel estimation information for CCEs for each AL is shared. Can be. In this case, when the UE performs blind decoding to find its own PDCCH, an operation amount of channel estimation may be reduced. That is, since each PDCCH candidate for each AL has the same hashing point, there may be a PDCCH candidate set for PDCCH candidates corresponding to any one hashing point.
  • a plurality of UEs may determine a hashing point of a PDCCH candidate to blind decoding by a hashing function.
  • a hashing point of the PDCCH candidate may overlap the plurality of UEs.
  • a plurality of terminals may perform blind decoding on a set of PDCCH candidates having a predetermined hierarchical structure. In this case, if any one PDCCH candidate included in the PDCCH candidate set is allocated to a specific UE, other UEs blind decoding the corresponding PDCCH candidate set may not be assigned any PDCCH candidate among the PDCCH candidate sets. do. This case is called blocking.
  • the UE may acquire (or detect) downlink control information (DCI) based on the CCE included in the PDCCH.
  • DCI downlink control information
  • the present invention will be described below with a method for minimizing the above blocking while reusing channel estimation as much as possible.
  • a hashing point for the PDCCH candidate of the upper AL may be defined in advance.
  • the length L l of the PDCCH candidate of the lower AL has a length smaller than the length L h of the PDCCH candidate of the AL, and the PDCCH candidates of the lower AL may be arbitrarily disposed in the PDCCH candidate of the upper AL.
  • the PDCCH candidates of the lower AL may have a hashing point HP 1 according to Equation 3 below.
  • PDCCH candidates of the lower AL having such a hashing point HP l may be arranged in the PDCCH candidate of the upper AL. In such a structure, channel estimation results performed first for each AL may be reused.
  • L h is the length of the PDCCH candidate of the upper AL
  • HP h is the hashing point of the PDCCH candidate of the upper AL
  • the first parameter ⁇ indicates the PDCCH candidate of the lower AL within the PDCCH candidate of the upper AL.
  • a point parameter added for random placement may be defined by Equation 4 below.
  • the base station eNB knows HP h , L 1, and L and can define a first parameter ⁇ .
  • the UE may define the first parameter ⁇ using specific information such as an identification number or an identification index in a relationship with the base station.
  • the length of the PDCCH candidate of the highest upper AL is 8 CCEs, and a hashing point HP hst thereof may be defined by Equation 1 described above.
  • the PDCCH candidates of the lower AL may have a hashing point according to Equation 3 and may be randomized within 8 CCEs, which are PDCCH candidates for the highest AL.
  • ⁇ 7 can be defined.
  • PDCCH candidates for all ALs may be disposed within PDCCH candidates of the highest AL according to the first parameter ⁇ , and may have a hashing point that is not the same as the hashing point HP hst of the highest AL.
  • the highest AL may be AL 4, AL 2, AL 8 is not limited to the highest AL.
  • a part of the PDCCH candidates of the lower AL may be arbitrarily disposed to overlap with the PDCCH candidates of the upper AL.
  • the UE may reuse part of a channel estimation result performed in each AL, and may perform additional channel estimation only on some non-overlapping parts.
  • the hashing point HP l of the PDCCH candidate of the lower AL may be defined as in Equation 5.
  • the second parameter ⁇ is a point parameter added for randomly arranging a part of the PDCCH candidates of the lower AL overlapping with the PDCCH candidates of the upper AL and may be defined by Equation 6 below. Can be.
  • the base station eNB knows HP h , L 1 and L and can define a second parameter ⁇ .
  • the UE may define the first parameter ⁇ using specific information such as an identification number or an identification index in a relationship with the base station.
  • the length of the PDCCH candidate of the highest upper AL is 8 CCEs, and a hashing point HP hst thereof may be defined by Equation 1 described above.
  • PDCCH candidates of the lower AL may have a hashing point according to Equation 5 and may be randomized within 8 CCEs, which are the highest AL PDCCH candidates.
  • the PDCCH candidates for all ALs are partially overlapped with PDCCH candidates of the highest AL (or across the PDCCH candidates of the highest AL) according to the second parameter ⁇ , and thus the hashing point (HP hst ) of the highest AL. May have a hashing point that is not equal to On the other hand, the highest AL may be AL 4, AL 2, AL 8 is not limited to the highest AL.
  • the PDCCH candidate of the lower AL may be arbitrarily disposed inside or near the PDCCH candidate of the upper AL.
  • the PDCCH candidates of the lower AL may be freely arranged within a limit not to completely deviate from the PDCCH candidate of the upper AL.
  • the UE may apply channel estimation performed by the PDCCH candidate of the upper AL as it is. If the PDCCH candidate of the lower AL is present over the PDCCH candidate of the upper AL, the UE reuses channel estimation results performed in each AL for the overlapped portions and additional channel estimation for some non-overlapping portions. (channel estimation) may be performed.
  • the PDCCH candidates of the lower AL have a hashing point HP 1 according to Equation 7 below.
  • the third parameter ⁇ is a point parameter added to randomly place the PDCCH candidate of the lower AL in or near the PDCCH candidate of the upper AL and may be defined by Equation 8 below. .
  • the base station eNB knows HP h , L 1, and L, and may define a third parameter ⁇ .
  • the UE may define the third parameter ⁇ using specific information such as an identification number or an identification index in a relationship with the base station.
  • the length of the PDCCH candidate of the highest upper AL is 8 CCEs, and a hashing point HP hst thereof may be defined by Equation 1 described above.
  • PDCCH candidates of the lower AL may have a hashing point according to Equation 7 and may be randomized within 8 CCEs, which are PDCCH candidates for the highest AL.
  • the highest AL may be AL 4, AL 2, AL 8 is not limited to the highest AL.
  • the terminal may receive at least one symbol including a downlink control region from the base station, and may perform blind decoding on the search space among the received control regions.
  • the search space includes a plurality of PDCCH candidates corresponding to aggregation levels AL and including CCEs.
  • the UE may perform blind decoding on each of the plurality of PDCCH candidates in the search space and detect a PDCCH for itself among the plurality of PDCCH candidates.
  • the plurality of PDCCH candidates are arranged to overlap with any one PDCCH candidate.
  • the one PDCCH candidate may be a PDCCH candidate corresponding to the highest aggregation level (AL) of the plurality of PDCCH candidates.
  • the plurality of PDCCH candidates may include a first PDCCH candidate corresponding to a first aggregation level AL and a second PDCCH candidate corresponding to a second aggregation level AL.
  • the second PDCCH candidate is disposed to overlap with the first PDCCH candidate.
  • the PDCCH candidates in the search region may be configured in a hierarchical structure.
  • the first aggregation level AL may be higher than the second aggregation level AL and may be the highest aggregation level AL among a plurality of PDCCH candidates.
  • the first aggregation level AL may be AL 8 which is the highest aggregation level AL in the LTE system.
  • a starting point (or hashing point), which is a position where the first PDCCH candidate starts, may be defined first.
  • the second starting point which is the starting point of the second PDCCH candidate, is overlapped with the first PDCCH candidate so that the second PDCCH candidate is overlapped with the above Equations 3 to 4
  • At least one of Equation 8 may be arbitrarily determined depending on the first starting point of the first PDCCH candidate. That is, starting points of the plurality of PDCCH candidates excluding the first PDCCH candidate may be determined based on the first starting point, the corresponding aggregation level AL, and the aggregation level AL of the first PDCCH candidate by Equations 3 to 8. have.
  • some or all of the second PDCCH candidates may overlap with the first PDCCH candidate.
  • the UE performs the PDCCH of the highest aggregation level (AL) when blind decoding is performed on other PDCCH candidates.
  • Channel estimation information for the candidate may be reused.
  • starting points of PDCCH candidates may be specified differently from each other, thereby minimizing the fear of blocking.
  • a plurality of semi-hierarchical structures that group PDCCH candidates for each AL based on a hierarchical structure, but do not tie PDCCH candidates for all ALs together to form a set of ALs to form a hierarchical structure.
  • Semi-hierarchical structure can be constructed. Depending on how the AL is configured, or the number of semi-hierarchical structures that are grouped into a semi-hierarchical structure may vary.
  • AL-specific PDCCH candidates forming a semi-hierarchical structure have the same hashing point through the same hashing function.
  • AL PDCCH candidates that make up a semi-hierarchical structure set with n semi-hierarchical structures and each semi-hierarchical structure The hashing point of can be defined as HP sh-1 , ..., HP sh-n .
  • an AL group constituting a semi-hierarchical structure may use the same parameters for changing the hashing point along the AL.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • AL 1 and 4, 2, and 8 are configured as semi-hierarchical structures, or AL 1, 2, 4, and 8 are semi-hierarchical structures, respectively.
  • the hashing function for the hashing point of the PDCCH candidate of the AL in LTE is as follows.
  • the parameter to insert information about AL is L.
  • L is defined for each AL individually to have a hashing point (hashing point) for each AL PDCCH candidate, according to the present invention as shown in Figure 13 AL-constituting a semi-hierarchical structure (semi-hierarchical structure)
  • PDCCH candidates included for each AL group may be arranged at the same hashing point.
  • the PDCCH candidate of the lower AL when configuring a semi-hierarchical structure, when arranging the PDCCH candidates of the lower AL, they may be arbitrarily arranged near or inside the PDCCH candidates of the upper AL, as shown in FIG. Increase in randomness).
  • the PDCCH candidate of the lower AL does not have the same hashing point as the PDCCH candidate of the upper AL, and may be located anywhere within the upper AL PDCCH candidate or may be disposed over the PDCCH candidate of the upper AL. In this case, a parameter for an additional hashing point for the PDCCH candidate of the lower AL is needed.
  • the PDCCH candidate of the highest AL of the semi-hierarchical structure has a hashing function (HP sh-n ) according to Equation 9, using a basic hashing function, that is, the PDCCH candidate of the lower AL. Is a hashing point according to Equation 10 below ( )
  • the fourth parameter ⁇ is a point parameter added to randomly arrange the PDCCH candidates of the lower AL near the PDCCH candidates of the upper AL. This may be defined by Equation 11 as follows.
  • L 1 is the length of the PDCCH candidate of the lower AL
  • L h is the length of the PDCCH candidate of the upper AL.
  • the base station eNB knows HP h (or , HP sh-n ), L 1 and L, and may define the fourth parameter ⁇ .
  • the UE may define the fourth parameter ⁇ by using specific information such as an identification number or an identification index in a relationship with the base station.
  • the environment using the search space and PDCCH format defined in the current LTE-A is assumed that the environment using the search space and PDCCH format defined in the current LTE-A.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs
  • the lower AL is 4, 2, and 1, respectively, and a total of 4 levels of ALs are configured. It may consist of a first semi-hierarchical structure group 2 for AL 1 and 4 and a second semi-hierarchical structure group 2 for AL 2 and 8.
  • hashing points HP sh-1 and HP sh-2 for each of the upper ALs 4 and 8 may be defined using Equation 9 described above.
  • a hashing point for each of the lower ALs Al 1 and AL 2 may be obtained by the following equation.
  • each ⁇ 1 and ⁇ 2 can be defined by the following equation.
  • the PDCCH candidates of the lower AL are the PDCCH candidates of the highest AL for each semi-hierarchical structure group according to the fifth parameter ⁇ 1 , the sixth parameter ⁇ 2 , and Equation 12, as shown in FIG. 14. It can be placed inside or across.
  • starting points (or hashing points) of PDCCH candidates for all ALs may have the same hierarchical structure. That is, the starting point of the PDCCH candidates of all ALs may be equally defined by a hashing function of the PDCCH candidates of Max AL. In this case, Max AL does not mean the maximum value among the total AL but means the largest AL among the AL used. PDCCH candidates for each AL may be arranged consecutively with the same hashing point.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • two PDCCH candidates for AL 8 and two PDCCH candidates for AL 4, 2, and 1 are defined as 2, 6, and 6, respectively.
  • hashing points which are starting points of PDCCH candidates for each AL are the same, and the remaining PDCCH candidates for each AL may be sequentially disposed next to the corresponding AL PDCCH candidates.
  • the PDCCH candidates of the AL have the same hashing point regardless of the value of AL.
  • channel estimation values for PDCCH candidates can be easily shared for each AL.
  • each of the ALs there may be two or more PDCCH candidates for each AL.
  • all PDCCH candidates may be divided into two or more hierarchical structures instead of one hierarchical structure.
  • a hashing function may have at least one hashing function per hierarchical structure, a plurality of hashing functions are required.
  • Each hierarchical structure may have the same number of PDCCH candidates or different numbers of PDCCH candidates depending on the situation.
  • Each hierarchical structure may have a hashing function.
  • the hashing function means a hashing function for the PDCCH candidate that is a reference when constructing the hierarchical structure.
  • each hierarchical structure can have its own hashing function, even if it shares a hashing function. In this hierarchical structure, an offset value may be given to determine a hashing point of another hierarchical structure.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • two PDCCH candidates for AL 8 and two PDCCH candidates for AL 4, 2, and 1 are defined as 2, 6, and 6, respectively.
  • a search space may be composed of candidate search spaces (or hierarchical structures) corresponding to respective hierarchical structures.
  • the search space is one hierarchical structure composed of one PDCCH candidate of AL 8, one PDCCH candidate of AL 4, three PDCCH candidates of AL 2, and three PDCCH candidates of AL 1. It may include.
  • the search space includes one structure (or hierarchical structure group 1) having one PDCCH candidate of AL 8, one PDCCH candidate of AL 4, four PDCCH candidates of AL 2, and four PDCCH candidates of AL 1;
  • One structure (or hierarchical structure group 2) having one PDCCH candidate of AL 8, one PDCCH candidate of AL 4, two PDCCH candidates of AL 2, and two PDCCH candidates of AL 1 may be configured.
  • a candidate search space candidate for ALs includes a PDCCH candidate of a lower AL first and then a PDCCH candidate of the upper AL unconditionally including the lower AL PDCCH candidate. Can be arranged. There may be various forms of stacking PDCCH candidates of the upper AL, and when there are a plurality of PDCCH candidates of the lower AL, the PDCCH candidates of the AL may be arranged to be included in the PDCCH candidates of the upper AL. Two criteria may be considered for accumulating the PDCCH candidates of the AL.
  • the PDCCH candidates of the upper AL may be arranged to always cover the PDCCH candidates of the lower AL between adjacent levels, or the PDCCH candidates of adjacent ALs may be arranged so as not to overlap each other, but the PDCCH candidates of all lower ALs are placed in the PDCCH candidates of the highest AL. Can be arranged to overlap.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • two PDCCH candidates for AL 8 and two PDCCH candidates for AL 4, 2, and 1 are defined as 2, 6, and 6, respectively.
  • a search space candidate is a PDCCH layered in such a manner that a PDCCH candidate of AL 1 is disposed first, and then a PDCCH candidate of AL 2, a PDCCH candidate of AL 4, and a PDCCH candidate of AL 8 are stacked thereon. May include candidates.
  • the final form may be a form in which all of the PDCCH candidates of AL 1, 2, and 4 are included in the PDCCH candidate of AL 8.
  • the UE has a significant effect of maximizing reuse of channel estimation results between PDCCH candidates between ALs.
  • a hashing point (hereinafter, referred to as a candidate starting point) into which PDCCH candidates of a lower AL that may be placed inside the PDCCH candidate of the highest AL may be first specified, and the candidate The lower PDCCH candidates may be arranged by randomly selecting among the starting points. That is, PDCCH candidates for each AL may be arbitrarily arranged instead of being sequentially arranged in succession with each other. In this case, the candidate starting point may be determined according to the size of the PDCCH candidate of the lower AL within the PDCCH candidate of the upper AL, and may be arbitrarily determined. Alternatively, each CCE of the highest AL may be a candidate starting point of PDCCH candidates of the lower AL.
  • the PDCCH candidates for each AL may be arranged separately, so that the PDCCH candidates for the same AL may be arranged not consecutively.
  • PDCCH candidates of the lower AL may be arranged so that they do not overlap or overlap each other, and in the case of overlapping, candidate starting points may be arbitrarily determined, or each CCE of the upper AL may be the candidate starting point. Since a hashing point at which the PDCCH candidates of the lower AL can be placed must be determined within the PDCCH candidates of the upper AL, the PDCCH candidates of the upper AL may be considered to be placed first.
  • two hashing points for AL 4 may be defined within one PDCCH candidate for AL 8, 4 hashing points for the PDCCH candidate for AL 2, and hashing of the PDCCH candidate for AL 1 8 points can be defined.
  • PDCCH candidates for each AL may be arbitrarily disposed among hashing points corresponding to the AL. In this case, there is an effect that can minimize the problem of blocking (blocking) between AL.
  • the hierarchical structure of PDCCH candidates for ALs may be two or more (eg, a first candidate search space and a second candidate search space).
  • the number of PDCCH candidates for a given AL included in each candidate search space may be different for each hierarchical structure or may be the same.
  • the number of PDCCH candidates for a given AL may differ between hierarchical structures. In this case, it is possible to determine which PDCCH candidates are configured for a predetermined AL for each hierarchical structure.
  • PDCCH candidates of the first level of AL having a large number of PDCCH candidates are first arranged by a constant hashing function, and PDCCH candidates of the second level having different PDCCH candidates are considered in consideration of channel conditions or arbitrary decision methods.
  • the PDCCH candidate of the AL of the first level to be deployed may be determined.
  • the search space may be composed of a plurality of hierarchical structures including a first candidate search space and a second candidate search space, which are spaces separated from each other.
  • Each of the first candidate search space and the second candidate search space may include a plurality of PDCCH candidates corresponding to the aggregation level AL.
  • the first candidate search space may include a first PDCCH candidate corresponding to the first aggregation level AL and a second PDCCH candidate corresponding to the second aggregation level AL
  • the second candidate search space may include the first candidate search space.
  • the third PDCCH candidate corresponding to the third aggregation level AL and the fourth PDCCH candidate corresponding to the fourth aggregation level AL may be included. Meanwhile, there may be a plurality of PDCCH candidates corresponding to each aggregation level AL.
  • each of the first candidate search space and the second candidate search space may have a hierarchical structure.
  • the PDCCH candidates may be arranged such that the plurality of PDCCH candidates included in the search space overlap with any one of the PDCCH candidates.
  • the second PDCCH candidate overlaps with the first PDCCH candidate, and the remaining PDCCH candidates also overlap with the first PDCCH candidate.
  • the fourth PDCCH candidate overlaps with the third PDCCH candidate, and the remaining PDCCH candidates also overlap with the third PDCCH candidate.
  • the first aggregation level AL may be the highest aggregation level AL among the aggregation levels AL corresponding to the plurality of PDCCH candidates included in the first candidate search space
  • the third aggregation level AL may be It may be the highest aggregation level AL among the aggregation levels AL corresponding to the plurality of PDCCH candidates included in the second candidate search space.
  • the third aggregation level AL may be four.
  • a search space may be arranged using a plurality of CORESETs.
  • a search space may be configured in a separate hierarchical structure for each CORESET, and each hierarchical structure (or candidate search space) may have the same number of PDCCH candidates.
  • PDCCH candidates for each AL may be divided in each CORESET by the number of CORESETs, and in this case, the plurality of CORESETs may include the same number of PDCCH candidates for each AL.
  • the downlink control region may include a plurality of CORESETs, and the search space may be arranged separately from the plurality of CORESETs.
  • the two CORESETs include PDCCH candidates of a hierarchical structure, respectively, and have the same number of ALs as each other. PDCCH candidates may be included.
  • the search space may be configured with a separate hierarchical structure (or for candidate search spaces) for each CORESET. That is, the search space may include candidate search spaces having a hierarchical structure different from each other for each CORESET.
  • each candidate search space may be formed in a hierarchical structure in which PDCCH candidates of the highest or upper AL are arranged at least one in every CORESET.
  • PDCCH candidates of the lower AL may be arranged at least one for each hierarchical structure (or each candidate search space) or may not be arranged for any hierarchical structure.
  • the number of PDCCH candidates in the hierarchical structure (or candidate search space) arranged in each CORESET may be the same or different.
  • candidate search spaces of a hierarchical structure arranged in each CORESET are illustrated.
  • at least one candidate PDCCH candidate corresponding to all ALs may be included in candidate search spaces disposed in each CORESET.
  • at least one candidate search space disposed in each CORESET may be disposed only for PDCCH candidates for AL8, and one PDCCH candidate for the remaining AL may not be included in each candidate search space.
  • candidate search spaces arranged for each CORESET may be configured in a hierarchical structure having different types, and PDCCH candidates may be disposed in each of the candidate search spaces without considering whether it is an upper AL or a lower AL.
  • a limit value which is the minimum number of PDCCH candidates included in the candidate search space, may be predetermined.
  • the limit value may be set to include at least two PDCCH candidates for each candidate search space.
  • immediately adjacent ALs may not be included together.
  • the number of PDCCH candidates disposed in each of the candidate search spaces corresponding to each CORESET may be the same or different.
  • the search space includes three candidate search spaces included in each of three CORESETs.
  • the candidate search spaces in each CORESET have a hierarchical structure, but do not include PDCCH candidates for all ALs.
  • one CORESET may include a plurality of candidate search spaces, and in this case, AL between the candidate search spaces described with reference to FIGS. 19, 20, and 21 in configuring a search space for the one CORESET.
  • a method of arranging PDCCH candidates may be applied.
  • a search space having a hierarchical structure may be configured as a search space (CSS) or a UE-specific search space (USS).
  • the central PDCCH candidate located as a hashing point of the hierarchical structure may be selected from the PDCCH candidates included in the CSS to maximize recycling of channel estimation, which is an advantage of the hierarchical structure. Since this is a section in which blind decoding should always be performed on CSS, since channel estimation for PDCCH candidates included in CSS is necessarily performed once, channel estimation information performed on CCS may be reused in the USS.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • two PDCCH candidates for AL 8 and two PDCCH candidates for AL 4, 2, and 1 are defined as 2, 6, and 6, respectively.
  • a hashing point for a PDCCH candidate of AL8 when a hashing point for a PDCCH candidate of AL8 is based on a hierarchical search space, a hashing point may be specified using the PDCCH candidate of AL8 for CSS. That is, the PDCCH candidate of AL8 may be determined as the PDCCH candidate of AL8 for CCS in a hierarchical search space.
  • PDCCH candidates of the lower AL for the USS may be hierarchically arranged at a hashing point for the PDCCH candidate of the AL8 for the CCS. Since blind decoding is first performed on PDCCH candidates for AL8 of CSS, blind decoding of PDCCH candidates of lower AL corresponding to USS may reuse channel estimation information by blind decoding on AL8 of the CSS.
  • the search space may be configured in a hierarchical structure based on the largest AL that may exist in the corresponding CORESET. Or, if the CORESET is composed of one symbol, it may be difficult for the maximum search space that the UE can have all placed in the CORESET.
  • a PDCCH candidate of the largest AL may be disposed in a CORESET composed of one symbol, a maximum search space may be difficult to arrange in the CORESET due to lack of resources. That is, it may be difficult to arrange all the search spaces for the UE in CORESET having one symbol, and it may be difficult to arrange the PDCCH candidates of the highest AL.
  • a hierarchical structure of the arranged search spaces may be configured based on a hashing point which is a starting position.
  • the PDCCH candidate of the highest AL8 may be arranged or only up to the PDCCH candidate of AL4 according to resources in the CORESET.
  • the PDCCH candidate of AL8 may be arranged or only up to the PDCCH candidate of AL4 according to resources in the CORESET.
  • only one may be arranged according to a resource environment in CORESET.
  • the search area corresponding to the CORESET has a hierarchical structure based on the largest AL that may exist in the corresponding CORESET. Can be configured.
  • the search space may be divided into candidate search spaces for each symbol and disposed in CORESET.
  • the search space may include candidate search spaces configured in a hierarchical structure based on a start position (eg, a corresponding hashing point) of the PDCCH candidate of the best AL among the PDCCH candidates disposed in each symbol.
  • candidate search spaces in which symbols are asymmetrical to each other may be disposed. Even in a CORESET consisting of a plurality of symbols, only some PDCCH candidates may be arranged because resources are insufficient to arrange all search spaces. In this case, a hierarchical structure may be configured based on the start position of the PDCCH candidate of the best AL among the PDCCH candidates disposed in each symbol.
  • one search space may be configured by adding resources between symbols.
  • four CCEs of the first symbol and four CCEs of the second symbol may be used to form a PDCCH candidate of one AL8.
  • four CCEs of each symbol may be regarded as a PDCCH candidate of AL4, and a hierarchical structure may be configured for each symbol based on the start position (or hashing point) of the PDCCH candidate of Al4.
  • PDCCH candidates of each AL may be equally distributed to each symbol.
  • One, one, three, three PDCCH candidates for each of AL 8, 4, 2, and 1 may be disposed in one symbol.
  • a hierarchical structure may be configured based on the PDCCH candidate of AL8.
  • a PDCCH candidate of AL8 may be arranged in one symbol, but a PDCCH candidate of AL4 may be arranged in another symbol.
  • the search space may be configured in a hierarchical structure based on the PDCCH candidate of AL8 in the one symbol and the PDCCH candidate of AL 4 in the other symbol.
  • PDCCH candidates of two AL4 in each of the two symbols may correspond to PDCCH candidates of one AL8.
  • PDCCH candidates in each symbol may form a hierarchical structure based on the PDCCH candidate of AL4.
  • the downlink control area received by the terminal may include a plurality of core sets (COntrol RESET SET, CORESET) including resources in which the search space is disposed. That is, the downlink control region may include a first core set CORESET and a second core set CORESET.
  • the search space may be disposed separately from the first coreset and the second coreset. That is, the search space may be divided into a first candidate search space included in the first coreset and a second candidate search space included in the second coreset.
  • the first candidate search space includes a first PDCCH candidate corresponding to a first aggregation level AL and a second PDCCH candidate disposed in the first PDCCH candidate and corresponding to a second aggregation level AL.
  • the second candidate search space may include a third PDCCH candidate corresponding to a third aggregation level AL and a fourth PDCCH candidate disposed in the third PDCCH candidate.
  • each candidate search space may arrange PDCCH candidates to overlap based on PDCCH candidates corresponding to the highest aggregation level AL according to the above-described method.
  • the number of PDCCH candidates included in each of the first candidate search space and the second candidate search space is determined by the number of symbols included in each of the first coreset and the second coreset and the assignable resources. Can be determined based on this.
  • the PDCCH candidate corresponding to the highest aggregation level AL in the candidate search space may be a PDCCH candidate for CSS, and the PDCCH candidates corresponding to the remaining subset level AL may be PDCCH candidates for the USS.
  • the first PDCCH candidate in the first candidate search space of the first coreset, may be configured as a PDCCH candidate for a common search space, and the second PDCCH candidate is UE-specific. PDCCH candidates for a search space).
  • the present invention proposes a method of forming a hierarchical structure when arranging PDCCH candidates of various ALs.
  • the basic approach is that the PDCCH candidate of the lower AL is included in the PDCCH candidate of the upper AL, but it is necessary to define a more specific definition of the PDCCH candidates of the corresponding ALs.
  • the AL used in any CORESET is defined, not all ALs are configured for the UE. That is, even though AL 1, 2, 4, and 8 are defined in CORESET, the UE may be configured only up to AL 1, 2, and 4.
  • a hierarchical structure for the search space for a specific terminal may be defined based on the AL defined in the CORESET, it may be configured with a PDCCH candidate of the AL configured to the UE (UE).
  • the top AL that is the reference in the hierarchical search space is the "highest AL configured to the CORESET with non-zero candidate" in “CORESET", "the fixed top AL supported by the base station. (highest AL supported by the network (eg, 8) which is fixed) "and” configured by the network to use which AL to assume as the highest AL regardless of the CORESET configuration ".
  • a search space is defined so that PDCCH candidates of a lower AL are included in PDCCH candidates of a higher AL.
  • the PDCCH candidates of the remaining ALs except for the highest AL are located in the PDCCH candidates of the highest AL.
  • the search space may be configured in a hierarchical structure based on a virtually defined AL, not an AL that actually uses the highest AL. Except for the virtual AL in the final hierarchical structure, it may not be seen as a hierarchical structure.
  • the PDCCH candidates may overlap or be separated from each other within a certain range. Can be. In this case, the efficiency of channel estimation reuse, which is an advantage of the hierarchical structure, and the solution of the blocking problem can be simultaneously achieved.
  • the base station configures the virtual AL to the UE and then the virtual It can provide information that the AL does not actually use it. In this case, the UE can comfortably use the search space. Indication information on which AL is a virtual AL may be informed to the UE through RRC or higher layer signaling.
  • the length of the PDCCH candidate of the highest AL is 8 CCEs, and the lower ALs are 4, 2, and 1, respectively.
  • two PDCCH candidates for AL 8 and two PDCCH candidates for AL 4, 2, and 1 are defined as 2, 6, and 6, respectively.
  • the base station may set 16 as a virtual AL for the terminal.
  • Two PDCCH candidates of the virtual AL 16 may be referred to as hierarchical search spaces including up to the virtual AL 16.
  • the base station may be configured to actually use all 1, 2, 4, 8 of the UE (UE).
  • various methods of constructing a hierarchical structure may apply the method of constructing a hierarchical structure as described above.
  • the PDCCH candidates of the lower AL may be distributed and arranged in the PDCCH candidates of the upper AL in the search space.
  • the hierarchical structure using the virtual AL may be applied as follows.
  • PDCCH candidates of AL16 are arranged discontinuously, and the search space may be configured in a hierarchical structure for each PDCCH candidate.
  • a configuration space of lower ALs configured together with PDCCH candidates of each AL16 may be disproportionately arranged.
  • FIG. 1 One of two hierarchical structures related to this is shown in FIG.
  • an AL or PDCCH candidate to be monitored and an PDCCH candidate of AL or AL used only for grabbing a hashing point may be separately defined.
  • the corresponding division information may be informed to the UE through higher layer signaling or RRC. That is, for example, when the UE receives one PDCCH candidate for AL 8, three PDCCH candidates for AL4, and other PDCCH candidates for several AL1 and 2, the UE corresponds to one PDCCH candidate for AL8. It is not appropriate to cover all of the PDCCH candidates of at least AL 4.
  • a plurality of PDCCH candidates for AL 8 are configured, the PDCCH candidates to be monitored and the PDCCH candidates for catching hashing points are informed to create an appropriate hierarchical structure. This can be exploited while increasing the number of PDCCH candidates to be monitored.
  • the UE when the UE receives one PDCCH candidate for AL4, three PDCCH candidates for AL2, and a plurality of PDCCH candidates for AL1, the above-described methods
  • the PDCCH candidate of AL 4 can be defined to cover the PDCCH candidates of the lower AL from the beginning
  • the hierarchical structure is defined by defining AL8 to catch the hashing point. Can be configured.
  • the UE since information on the use and classification of the AL and PDCCH candidates may be transmitted to the UE through higher layer signaling or RRC, the UE does not monitor the PDCCH candidate of AL8 but is hierarchical in the search space. The advantage of the structure can be obtained.
  • PDCCH candidates for the lower AL may be arranged based on the virtual PDCCH candidates for the virtual AL. That is, each of the plurality of PDCCH candidates overlaps some or all of the virtual PDCCH candidates, and the virtual PDCCH candidates may be PDCCH candidates corresponding to the virtual aggregation level AL not monitored by the terminal.
  • the virtual aggregation level AL may be set higher than the aggregation level AL of the plurality of PDCCH candidates actually included in the search space.
  • the virtual aggregation level AL may be 16, and the length of the virtual PDCCH candidate may be 16 CCEs in length.
  • the highest level of the aggregation level AL may be 8 among the plurality of PDCCH candidates actually included in the search space.
  • the search space may be arranged in a state in which PDCCH candidates for aggregation level (AL) 8 are separated from each other within the virtual PDCCH candidate.
  • the virtual PDCCH candidate and the virtual aggregation level AL are not recognized as a unit of CCE that the UE searches for to detect the PDCCH.
  • the form of PDCCH candidates that can be allocated to a resource can be configured in a hierarchical form. That is, a hierarchical structure may also be applied to resource allocation for PDSCH.
  • the size of resources may be single or multiple REG / RBG.
  • these candidate resources can be defined for each resource size.
  • Some candidate resources may be one REG / RBG size, and other candidate resources may have multiple REG / RBG sizes.
  • the location of each candidate resource may be defined as a measurement structure.
  • a hierarchical structure may be formed based on the location of the candidate resource having the largest size.
  • the location of the candidate resource of the largest size may be defined as resource allocation in resource allocation types 0, 1 and 2 in LTE.
  • the second largest sized candidate resource may be defined within a range that does not deviate from the largest candidate resource.
  • the third largest candidate resource may be defined within the scope of the second largest candidate resource.
  • the positions of the candidate resources for the lower size may be defined in the same procedure as above.
  • all candidate resources can be shared for at least one REG / RBG, and a method for constructing this hierarchical resource allocation structure is a hierarchical discovery resource structure proposed in the present patent. The same method can be applied to construct a hierarchical search space structure.
  • examples of the proposed schemes described may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • the proposed schemes may be independently implemented, some proposed schemes may be implemented in combination (or merge).
  • Information on whether the proposed methods are applied may be defined so that the base station notifies the terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). .
  • the communication device 1200 includes a processor 1210, a memory 1220, an RF module 1230, a display module 1240, and a user interface module 1250.
  • the communication device 1200 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1200 may further include necessary modules. In addition, some modules in the communication device 1200 may be classified into more granular modules.
  • the processor 1210 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1210 may refer to the contents described with reference to FIGS. 1 to 30.
  • the memory 1220 is connected to the processor 1210 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1230 is connected to the processor 1210 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1230 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1240 is connected to the processor 1210 and displays various information.
  • the display module 1240 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1250 is connected to the processor 1210 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • the operation of the LTE system has been described, but the idea proposed by the present invention is not limited thereto, and it is obvious that the present invention may be applied to other communication systems, such as the fifth generation NewRAT.
  • the present invention may be applied to other communication systems, such as the fifth generation NewRAT.
  • URLLC Ultra-Reliable Low Latency Communication
  • MMTC Massive Machine Type Communication
  • eMBB enhanced mobile broadband
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 다양한 실시예에 따른 하향링크 제어 채널을 수신하는 방법 및 장치를 개시한다. 본 발명의 일 측면에 따른 하향링크 제어 채널을 수신하는 방법은 하향링크 제어 영역을 포함하는 서브 프레임을 수신하는 단계 및 상기 하향링크 제어 영역 중에서 탐색 공간(search space)에 대한 블라인드 디코딩(blind decoding)을 수행하는 단계를 포함하고, 상기 탐색 영역은 집합 레벨(Aggregation Level)별로 대응하고 CCE(Control Channel Element)를 포함하는 복수의 PDCCH 후보들을 포함하고, 상기 복수의 PDCCH 후보들 각각은 적어도 하나의 PDCCH 후보와 오버랩되는 방법 및 장치를 개시한다.

Description

무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
본 발명은 하향링크 제어 채널을 수신하는 방법 및 장치에 대한 것으로, 구체적으로, 수신된 적어도 하나의 심볼의 하향링크 제어 영역에서 탐색 영역에 대한 블라인드 디코딩을 수행하는 방법 및 이를 위한 장치에 대한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위하여는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
본 발명이 해결하고자 하는 과제는 본 발명에 따르면, 과제는 수신된 하향링크 제어 영역에서 집합 레벨에 대응하는 복수의 PDCCH 후보를 포함하는 탐색 영역에 대한 블라인드 디코딩을 수행하되, 집합 레벨 별로 정의된 PDCCH 후보들 간에 서로 중첩된 부분에 대한 채널 추정을 공유하고 블록킹을 감소시키는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다
본 발명의 일 측면에 따른 하향링크 제어 채널을 수신하는 방법은 하향링크 제어 영역을 포함하는 적어도 하나의 심볼을 수신하는 단계 및 상기 하향링크 제어 영역 중에서 탐색 공간(search space)에 대한 블라인드 디코딩(blind decoding)을 수행하는 단계를 포함하고, 상기 탐색 영역은 집합 레벨(Aggregation Level)별로 대응하고 CCE(Control Channel Element)를 포함하는 복수의 PDCCH 후보들을 포함하고, 상기 복수의 PDCCH 후보들 각각은 적어도 하나의 PDCCH 후보와 오버랩된다.
일 예에 따른 본 발명은 상기 복수의 PDCCH 후보들은 제1 집합 레벨에 대응하는 제1 PDCCH 후보 및 상기 제1 집합 레벨 보다 하위 레벨인 제2 집합 레벨에 대응하는 제2 PDCCH 후보를 포함하고 상기 제2 PDCCH 후보는 상기 제1 PDCCH 후보 내에 배치된 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 제1 집합 레벨은 상기 복수의 PDCCH 후보들에 대응하는 집합 레벨 중에서 최상위 집합 레벨인 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 제1 PDCCH 후보는 공통 탐색 공간(common search space)에 대한 PDCCH 후보이고, 상기 제2 PDCCH 후보는 단말 특정 탐색 공간(UE-specific search space)에 대한 PDCCH 후보인 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 제2 PDCCH 후보의 시작점인 제2 시작점은 상기 제1 PDCCH 후보의 시작점인 제1 시작점, 상기 제1 집합 레벨 및 상기 제2 집합 레벨 중 적어도 하나에 기초하여 임의적으로 결정되는 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 복수의 PDCCH 후보들 중 상기 제1 PDCCH 후보 및 상기 제2 PDCCH 후보를 제외한 나머지 PDCCH 후보는 상기 제1 PDCCH 후보와 전체 또는 일부가 겹쳐지도록 임의적으로 배치되는 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 복수의 PDCCH 후보들 각각은 가상의 PDCCH 후보와 일부 또는 전체가 오버랩되고, 상기 가상의 PDCCH 후보는 상기 단말이 모니터링하지 않는 가상의 집합 레벨에 대응하는 PDCCH 후보인 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 가상의 집합 레벨은 상기 복수의 PDCCH 후보들 각각에 대응하는 집합 레벨 중 최상위 집합 레벨보다 높은 레벨인 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 탐색 공간은 서로 분리된 제1 후보 탐색 공간 및 제2 후보 탐색 공간으로 구분되고, 상기 제1 후보 탐색 공간은 제1 집합 레벨에 대응하는 제1 PDCCH 후보 및 상기 제1 PDCCH 후보 내에 배치되고 제2 집합 레벨에 대응하는 제2 PDCCH 후보를 포함하고 상기 제2 후보 탐색 공간은 제3 집합 레벨에 대응하는 제3 PDCCH 후보 및 상기 제3 집합 레벨 보다 하위 레벨인 제4 집합 레벨에 대응하는 제4 PDCCH 후보를 포함하고 상기 제4 PDCCH 후보의 일부 또는 전체는 상기 제3 PDCCH 후보 내에 배치되는 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 제1 집합 레벨은 상기 제1 후보 탐색 공간에 포함된 PDCCH 후보들 중에서 최상위 집합 레벨이고, 상기 제2 집합 레벨은 상기 제2 후보 탐색 공간에 포함된 PDCCH 후보들 중에서 최상위 집합 레벨인 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 하향링크 제어 영역은 상기 탐색 공간이 배치되는 자원들을 포함하는 제1 코어셋(COntrol REsource SET, CORESET) 및 제2 코어셋(CORESET)을 포함하고, 상기 제1 후보 탐색 공간은 상기 제1 코어셋에 배치되고, 상기 제2 후보 탐색 공간은 상기 제2 코어셋에 배치된 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 제1 후보 탐색 공간 및 상기 제2 후보 탐색 공간 각각에 포함되는 PDCCH 후보의 개수는 상기 제1 코어셋 및 상기 제2 코어셋 각각에 포함된 심볼의 개수 및 할당 가능한 자원에 기초하여 결정되는 것을 특징으로 한다.
일 예에 따른 본 발명은 상기 블라인드 디코딩으로 검출된 CCE(Control Channel Element)에 기초하여 DCI(downlink control information)를 검출하는 단계를 더 포함한다.
본 발명에 따르면, 과제는 수신된 하향링크 제어 영역에서 집합 레벨에 대응하는 복수의 PDCCH 후보를 포함하는 탐색 영역에 대한 블라인드 디코딩을 수행하되, 집합 레벨 별로 정의된 PDCCH 후보들 간에 서로 중첩된 부분에 대한 채널 추정을 공유하고 블록킹을 감소시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.
도 7은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 8은 반송파 집성(carrier aggregation) 기법을 설명하는 개념도이다.
도 9 내지 도 30은 본 발명 일 실시예에 따른 하향링크 서브 프레임에서 검색 영역을 구성하는 방법을 설명하기 위한 도면이다.
도 31는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 보다 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200*Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360*Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz*2048)=3.2552*10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파*7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R0 내지 R3은 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파*하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 하향링크 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다. 특히, 도 6의 (a)는 기지국의 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 도 6의 (b)는 기지국의 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다.
도 6을 참조하면, 하향링크 제어 채널의 기본 자원 단위는 REG(Resource Element Group)이다. REG는 RS를 제외한 상태에서 4개의 이웃한 자원 요소(RE)로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.
단말은 자신에게
Figure PCTKR2018001587-appb-I000001
개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여
Figure PCTKR2018001587-appb-I000002
개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 단말이 PDCCH 수신을 위해 고려해야 하는
Figure PCTKR2018001587-appb-I000003
값은 복수가 될 수 있다. 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다. 일 예로, LTE 시스템은 검색 영역을 표 1과 같이 정의하고 있다.
Figure PCTKR2018001587-appb-T000001
여기에서, CCE 집성 레벨
Figure PCTKR2018001587-appb-I000004
은 PDCCH를 구성하는 CCE 개수를 나타내고,
Figure PCTKR2018001587-appb-I000005
은 CCE 집성 레벨
Figure PCTKR2018001587-appb-I000006
의 검색 영역을 나타내며,
Figure PCTKR2018001587-appb-I000007
은 집성 레벨
Figure PCTKR2018001587-appb-I000008
의 검색 영역에서 모니터링해야 하는 PDCCH 후보의 개수이다.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.
상기 CCE는 시스템 대역에 분산될 수 있다. 보다 구체적으로, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력될 수 있으며, 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.
도 7은 LTE 시스템에서 사용되는 상향 링크 서브프레임의 구조를 도시하는 도면이다.
도 7을 참조하면, 상향 링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향 링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향 링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
도 8은 반송파 집성(carrier aggregation)을 설명하는 개념도이다.
반송파 집성은 무선 통신 시스템이 보다 넓은 주파수 대역을 사용하기 위하여, 단말이 상향링크 자원(또는 콤포넌트 반송파) 및/또는 하향링크 자원(또는 콤포넌트 반송파)으로 구성된 주파수 블록 또는 (논리적 의미의) 셀을 복수 개 사용하여 하나의 커다란 논리 주파수 대역으로 사용하는 방법을 의미한다. 이하에서는 설명의 편의를 위하여 콤포넌트 반송파라는 용어로 통일하도록 한다.
도 8을 참조하면, 전체 시스템 대역(System Bandwidth; System BW)은 논리 대역으로서 최대 100 MHz의 대역폭을 가진다. 전체 시스템 대역은 다섯 개의 콤포넌트 반송파를 포함하고, 각각의 콤포넌트 반송파는 최대 20 MHz의 대역폭을 가진다. 콤포넌트 반송파는 물리적으로 연속된 하나 이상의 연속된 부반송파를 포함한다. 도 8에서는 각각의 콤포넌트 반송파가 모두 동일한 대역폭을 가지는 것으로 도시하였으나, 이는 예시일 뿐이며 각각의 콤포넌트 반송파는 서로 다른 대역폭을 가질 수 있다. 또한, 각각의 콤포넌트 반송파는 주파수 영역에서 서로 인접하고 있는 것으로 도시되었으나, 상기 도면은 논리적인 개념에서 도시한 것으로서, 각각의 콤포넌트 반송파는 물리적으로 서로 인접할 수도 있고, 떨어져 있을 수도 있다.
중심 반송파(Center frequency)는 각각의 콤포넌트 반송파에 대해 서로 다르게 사용하거나 물리적으로 인접된 콤포넌트 반송파에 대해 공통된 하나의 중심 반송파를 사용할 수도 있다. 일 예로, 도 8에서 모든 콤포넌트 반송파가 물리적으로 인접하고 있다고 가정하면 중심 반송파 A를 사용할 수 있다. 또한, 각각의 콤포넌트 반송파가 물리적으로 인접하고 있지 않은 경우를 가정하면 각각의 콤포넌트 반송파에 대해서 별도로 중심 반송파 A, 중심 반송파 B 등을 사용할 수 있다.
본 명세서에서 콤포넌트 반송파는 레거시 시스템의 시스템 대역에 해당될 수 있다. 콤포넌트 반송파를 레거시 시스템을 기준으로 정의함으로써 진화된 단말과 레거시 단말이 공존하는 무선 통신 환경에서 역지원성(backward compatibility)의 제공 및 시스템 설계가 용이해질 수 있다.
반송파 집성으로 전체 시스템 대역을 확장한 경우에 각 단말과의 통신에 사용되는 주파수 대역은 콤포넌트 반송파 단위로 정의된다. 단말 A는 전체 시스템 대역인 100 MHz를 사용할 수 있고 다섯 개의 콤포넌트 반송파를 모두 사용하여 통신을 수행한다. 단말 B1~B5는 20 MHz 대역폭만을 사용할 수 있고 하나의 콤포넌트 반송파를 사용하여 통신을 수행한다. 단말 C1 및 C2는 40 MHz 대역폭을 사용할 수 있고 각각 두 개의 콤포넌트 반송파를 이용하여 통신을 수행한다. 상기 두 개의 콤포넌트 반송파는 논리/물리적으로 인접하거나 인접하지 않을 수 있다. 단말 C1은 인접하지 않은 두 개의 콤포넌트 반송파를 사용하는 경우를 나타내고, 단말 C2는 인접한 두 개의 콤포넌트 반송파를 사용하는 경우를 나타낸다.
LTE 시스템의 경우 1개의 하향링크 콤포넌트 반송파와 1개의 상향링크 콤포넌트 반송파를 사용하는 반면, LTE-A 시스템의 경우 도 6과 같이 여러 개의 콤포넌트 반송파들이 사용될 수 있다. 이때 제어 채널이 데이터 채널을 스케줄링하는 방식은 기존의 링크 반송파 스케쥴링 (Linked carrier scheduling) 방식과 크로스 반송파 스케쥴링 (Cross carrier scheduling) 방식으로 구분될 수 있다.
보다 구체적으로, 링크 반송파 스케쥴링은 단일 콤포넌트 반송파를 사용하는 기존 LTE 시스템과 같이 특정 콤포넌트 반송파를 통하여 전송되는 제어채널은 상기 특정 콤포넌트 반송파를 통하여 데이터 채널만을 스케줄링 한다.
한편, 크로스 반송파 스케쥴링은 반송파 지시자 필드(Carrier Indicator Field; CIF)를 이용하여 주 콤포넌트 반송파(Primary CC)를 통하여 전송되는 제어채널이 상기 주 콤포넌트 반송파를 통하여 전송되는 혹은 다른 콤포넌트 반송파를 통하여 전송되는 데이터 채널을 스케줄링 한다.
이하에서는, 상술한 설명을 바탕으로 검색 영역에서 PDCCH 후보의 위치를 지정하는 방법을 설명한다.
우선, 소정의 서브프레임
Figure PCTKR2018001587-appb-I000009
에서 구성된 CCE들의 개수는
Figure PCTKR2018001587-appb-I000010
로 정의하며, 그 인덱스는 0부터
Figure PCTKR2018001587-appb-I000011
인 것으로 가정한다. 이 경우, 3GPP 표준문서에서는 검색 영역
Figure PCTKR2018001587-appb-I000012
(단,
Figure PCTKR2018001587-appb-I000013
)에서 해당 집성 레벨
Figure PCTKR2018001587-appb-I000014
의 PDCCH 후보
Figure PCTKR2018001587-appb-I000015
의 위치를 아래 수학식 1과 같이 정의하고 있다.
Figure PCTKR2018001587-appb-M000001
상기 수학식 1에서
Figure PCTKR2018001587-appb-I000016
은, 공통 검색 영역인 경우
Figure PCTKR2018001587-appb-I000017
으로 설정되고, 단말 특정 영역인 경우에도 상기 CIF가 정의되어 있지 않다면, 즉 교차 반송파 스케줄링 방식이 적용되지 않는 경우라면
Figure PCTKR2018001587-appb-I000018
으로 설정된다. 반면에, 단말 특정 영역인 경우 CIF가 정의되어 있다면, 즉 교차 반송파 스케줄링 방식이 적용된다면, 상기
Figure PCTKR2018001587-appb-I000019
Figure PCTKR2018001587-appb-I000020
로 정의된다. 여기서
Figure PCTKR2018001587-appb-I000021
는 CIF 값을 의미한다.
또한, 공통 검색 영역의 경우,
Figure PCTKR2018001587-appb-I000022
는 0으로 설정된다. 반면에, 단말 특정 검색 영역의 경우
Figure PCTKR2018001587-appb-I000023
는 아래 수학식 2와 같이 해쉬(hashing) 함수에 의하여 정의될 수 있다.
Figure PCTKR2018001587-appb-M000002
상기 수학식 2에서 A=39827, D=65537의 값으로 설정된다. 또한,
Figure PCTKR2018001587-appb-I000024
이며,
Figure PCTKR2018001587-appb-I000025
는 하나의 라디오 프레임 내에서 슬롯 인덱스를 지시한다. 또한,
Figure PCTKR2018001587-appb-I000026
으로 초기값이 설정될 수 있으며,
Figure PCTKR2018001587-appb-I000027
는 단말 식별자를 의미한다.
한편, 현재의 무선통신환경은 M2M(Machine-to-Machine) 통신 및 높은 데이터 전송량을 요구하는 다양한 디바이스의 출현 및 보급으로 셀룰러 망에 대한 데이터 요구량이 매우 빠르게 증가하고 있다. 높은 데이터 요구량을 만족시키기 위해 통신 기술은 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술 등과 한정된 주파수 내에서 데이터 용량을 높이기 위해 다중 안테나 기술, 다중 기지국 협력 기술 등으로 발전하고 있고, 통신 환경은 사용자 주변에 액세스 할 수 있는 노드의 밀도가 높아지는 방향으로 진화한다. 이러한 높은 밀도의 노드를 갖춘 시스템은 노들 간의 협력에 의해 더 높은 시스템 성능을 보일 수 있다. 이러한 방식은 각 노드가 독립적인 기지국(Base Station (BS), Advanced BS (ABS), Node-B (NB), eNode-B (eNB), Access Point (AP) 등)으로 동작하여 서로 협력하지 않을 때보다 훨씬 우수한 성능을 갖는다.
본 발명의 실시 예에 대한 본격적인 설명에 앞서, PDSCH/PUSCH를 포함하여 1ms TTI 기준의 동작 목적에 대한 하향링크 제어를 DCI로 명명하도록 하고, 1ms TTI 보다 짧은 TTI와 관련된 하향링크 제어를 sDCI로 명명한다.
The candidate space allocation with the higher AL candidate space
현재 LTE-A에서는 PDCCH를 전송하는 자원(resource) 단위인 CCE를, 연속된 CCE의 개수로 그룹을 나누어 집합 레벨(Aggregation level, AL)이라는 것을 정의하고 있다. LTE-A시스템에서는 AL을 4가지로 정의하며 각각 1, 2, 4, 8개의 CCE를 사용한다. 탐색 영역(search space)은 각 AL에 따라 구성되는 CCE가 들어갈 수 있는 영역으로 정의되고, 상기 탐색 영역의 크기는 고정되어 있다. AL에 따라 하나의 PDCCH를 담고 있는 CCE의 길이가 달라지므로, AL에 따라 탐색 영역 내에 존재할 수 있는 PDCCH 후보(PDCCH candidate)의 수가 달라진다. 여기서, PDCCH 후보(PDCCH candidate)란 실제 CCE가 들어있을 만한 공간으로서 상기 PDCCH 후보(PDCCH candidate)가 모여서 탐색 공간(search space)를 이룬다.
단말(UE)은 기지국(eNB)로부터 전송되는 자신의 PDCCH를 수신하여 DCI 정보를 획득할 수 있으나, 상기 자신의 PDCCH가 어느 PDCCH 후보(PDCCH candidate)에 포함되어 전달되는지에 대해 정확히 지시되지 않는다. 다만, 단말은 PDCCH가 전송될 수 있는 탐색 공간(search space)의 위치를 알 수 있으며, 단말은 상기 탐색 공간을 블라인드 디코딩(blind decoding)이라는 방법으로 탐색하여 자신의 PDCCH를 획득할 수 있다. 또한, 복수의 단말들은 각각의 탐색 공간(search space)을 가지게 되며 서로 탐색 공간이 겹칠 수도 있다.
각 PDCCH 후보(PDCCH candidate)에 대해서 블라인드(blind decoding)을 수행할 때, 단말(UE)은 채널 추정(channel estimation)을 개별적으로 수행하게 된다. 즉, 단말(UE)은 PDCCH 후보(PDCCH candidate)의 수가 증가할수록 채널 추정(channel estimation)을 PDCCH 후보(PDCCH candidate)의 수에 대응한 범위만큼 수행하여야 하고, 이는 UE의 프로세스 로드(processing load)와 상관성을 가지게 된다
단말(UE)이 자신의 PDCCH를 찾기 위해서 수행하는 블라인드 디코딩(blind decoding)을 위해서는 사전에 채널 추정(channel estimation) 과정을 수행해야 한다. 이러한 채널 추정(channel estimation)의 양을 줄이기 위한 하나의 방안으로 계층적 구조(hierarchical structure)가 있다. 도 9를 참조하면, 계층적 구조(Hierarchical structure)에서는 각 AL별 PDCCH 후보(PDCCH candidate)의 해싱 포인트(hashing point)가 모두 동일하며, 각 AL별 CCE에 대한 채널 추정(channel estimation)정보가 공유될 수 있다. 이 경우, 단말은 블라인드 디코딩(blind decoding)을 수행하여 자신의 PDCCH를 찾는데 있어서, 채널 추정(channel estimation)의 연산량이 감소될 수 있다. 즉, 각 AL별 PDCCH 후보가 동일한 해싱 포인트(hashing point)를 갖는바, 어느 하나의 해싱 포인트(hashing point)에 대응한 PDCCH 후보들에 대한 PDCCH 후보 세트가 존재할 수 있다.
계층적 구조(Hierarchical structure)는 상술한 이점이 있으나, 블록킹(blocking)의 문제가 발생될 수가 있다. 복수의 단말(UE)들은 해싱 함수(Hashing function)에 의해서 블라인드 디코딩(blind decoding)할 PDCCH 후보의 해싱 포인트(hashing point)를 결정할 수 있다. 상기 PDCCH 후보의 해싱 포인트(hashing point)는 상기 복수의 단말들(UE)끼리 겹쳐질 수도 있다. 복수의 단말들이 소정의 계층적 구조(Hierarchical structure) 형태의 PDCCH 후보들의 세트에 대해서 블라인드 디코딩(blind decoding)을 수행할 수 있다. 이 경우, 상기 PDCCH 후보 세트에 포함된 어느 하나의 PDCCH 후보가 어느 특정 UE에 할당된다면, 해당 PDCCH 후보 세트를 블라인드 디코딩(blind decoding)하는 다른 UE들은 상기 PDCCH 후보 세트 중 어떠한 PDCCH 후보도 할당 받지 못하게 된다. 이와 같은 경우를 블록킹(blocking)이라고 한다.
한편, 단말은 탐색 영역에서 자신의 PDCCH를 검출한 경우, 단말은 상기 PDCCH에 포함된 CCE에 기초하여 다운링크 제어 정보(DCI)를 획득(또는, 검출)할 수 있다.
본 발명은 채널 추정(channel estimation)을 최대한 재사용하면서 위와 같은 블록킹(blocking)을 최소화할 수 있는 방법을 이하에서 후술한다.
상위 AL의 PDCCH 후보에 대한 해싱 포인트(hashing point)를 미리 정의할 수 있다. 하위 AL의 PDCCH 후보의 길이(Ll)는 AL의 PDCCH 후보의 길이(Lh)보다 작은 길이를 가지며, 하위 AL의 PDCCH 후보들은 상위 AL의 PDCCH 후보 내에서 임의적으로 배치될 수 있다. 이를 위해, 하위 AL의 PDCCH 후보들은 하기와 같은 수학식 3에 따른 해싱 포인트(HPl)를 가질 수 있다. 이와 같은 해싱 포인트(HPl)를 갖는 하위 AL의 PDCCH 후보들은 상위 AL의 PDCCH 후보 내에서 배치될 수 있다. 이러한 구조에서는 각 AL 별로 먼저 수행한 채널 추정(channel estimation) 결과를 재사용할 수 있다.
Figure PCTKR2018001587-appb-M000003
여기서, Lh은 상위 AL의 PDCCH 후보의 길이이고, HPh는 상위 AL의 PDCCH 후보의 해싱 포인트(hashing point)이며, 제1 파라미터(α)는 상위 AL의 PDCCH 후보 내에 하위 AL의 PDCCH 후보를 임의적으로(random) 배치하기 위해 추가된 포인트 파라미터(point parameter)로서 다음과 같은 수학식 4로 정의할 수 있다.
Figure PCTKR2018001587-appb-M000004
기지국(eNB)은 HPh, Ll 및 L를 알고 있는 바, 제1 파라미터(α)를 정의할 수 있다. 단말(UE)은 기지국과의 관계에서 미리 정해진 식별 넘버(Identity number) 또는 식별 인덱스(Identity index) 등의 특정 정보를 이용하여 제1 파라미터(α)를 정의할 수 있다.
한편, 하기 표 2와 같은 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷(format)을 사용하는 환경을 가정한다. 가장 높은 상위 AL의 PDCCH 후보의 길이는 8 CCE이고, 이에 대한 해싱 포인트(HPhst)는 상술한 수학식 1에 의해 정의될 수 있다.
이 경우, 하위 AL의 PDCCH 후보들은 수학식 3에 의한 해싱 포인트를 갖고 상기 최상위 AL에 대한 PDCCH 후보인 8 CCE 내에 임의적으로(random)될 수 있다. 구체적으로, 수학식 4에 따른 AL 별 제1 파라 미터(α)는 AL = 4 일 때 0≤α≤4이고, AL = 2 일 때는 0≤α≤6이며, AL = 1 일 때는 0≤α≤7 로 정의될 수 있다.
도 10을 참조하면, 제1 파라미터(α)에 의해 모든 AL에 대한 PDCCH 후보들은 최상위 AL의 PDCCH 후보 내에 배치되며, 최상위 AL의 해싱 포인트(HPhst)와 동일하지 않은 해싱 포인트를 가질 수 있다. 한편, 상기 최상위 AL은 AL 4, AL 2일 수도 있고, AL 8로 최상위 AL이 한정되는 것은 아니다.
Number of CCEs Space size in terms of CCE Number of candidates Number of candidates
PDCCH format (Aggregation level) (n) Common UE-specific In common search space In UE-specific search space
0 1 - 6 - 6/1=6
1 2 - 12 - 12/2=6
2 4 16 8 16/4=4 8/4=2
3 8 16 16 16/2=2 16/8=2
도 11을 참조하면, 하위 AL의 PDCCH 후보의 일부가 상위 AL의 PDCCH 후보와 중첩되도록 임의적으로 배치할 수 있다. 이 경우, 단말은 각 AL에서 수행한 채널 추정(channel estimation) 결과의 일부를 재사용할 수 있고, 일부 중첩되지 않은 부분에 대해서만 추가적인 채널 추정(channel estimation)을 수행할 수 있다.
이 경우, 하위 AL의 PDCCH 후보의 해싱 포인트(HPl)은 수학식 5와 같이 정의될 수 있다.
Figure PCTKR2018001587-appb-M000005
제2 파리미터(β)는 상위 AL의 PDCCH 후보 내에 하위 AL의 PDCCH 후보의 일부가 겹쳐진 상태로 임의적으로(random) 배치하기 위해 추가된 포인트 파라미터(point parameter)로서 다음과 같은 수학식 6로 정의할 수 있다.
Figure PCTKR2018001587-appb-M000006
기지국(eNB)은 HPh, Ll 및 L를 알고 있는 바, 제2 파라미터(β)를 정의할 수 있다. 단말(UE)은 기지국과의 관계에서 미리 정해진 식별 넘버(Identity number) 또는 식별 인덱스(Identity index) 등의 특정 정보를 이용하여 제1 파라미터(β)를 정의할 수 있다.
한편, 상기 표 4와 같은 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷(format)을 사용하는 환경을 가정한다. 가장 높은 상위 AL의 PDCCH 후보의 길이는 8 CCE이고, 이에 대한 해싱 포인트(HPhst)는 상술한 수학식 1에 의해 정의될 수 있다.
이 경우, 하위 AL의 PDCCH 후보들은 수학식 5에 의한 해싱 포인트를 갖고 상기 최상위 AL PDCCH 후보인 8 CCE 내에 임의적으로(random)될 수 있다. 구체적으로, 수학식 6에 따른 AL 별 제2 파라 미터(β)는 AL = 4 일 때 -4<β≤0 또는 4≤β<8이고, AL = 2 일 때는 -2<β≤0 또는 6≤β<8이며, AL = 1 일 때는 -1<β≤0 또는 7≤β<8로 정의될 수 있다.
도 11을 참조하면, 제2 파라미터(β)에 의해 모든 AL에 대한 PDCCH 후보들은 일부가 최상위 AL의 PDCCH 후보와 중첩되면서(또는, 최상위 AL의 PDCCH 후보에 걸쳐서) 최상위 AL의 해싱 포인트(HPhst)와 동일하지 않은 해싱 포인트를 가질 수 있다. 한편, 상기 최상위 AL은 AL 4, AL 2일 수도 있고, AL 8로 최상위 AL이 한정되는 것은 아니다.
또는, 도 12에 도시된 바와 같이, 하위 AL의 PDCCH 후보는 상위 AL의 PDCCH 후보 안쪽 혹은 근처에 임의적으로 배치될 수 있다. 하위 AL의 PDCCH 후보는 상위 AL의 PDCCH 후보를 완전히 벗어나지 않는 한도 내에서 자유롭게 배치될 수 있다. 하위 AL의 PDCCH 후보가 상위 AL PDCCH 후보 내에 존재하게 될 경우, 단말은 상위 AL의 PDCCH 후보에서 수행한 채널 추정(channel estimation)을 그대로 적용할 수 있다. 하위 AL의 PDCCH 후보가 상위 AL의 PDCCH 후보에 걸쳐서 존재하게 될 경우, 단말은 중첩된 부분에 대해서 각 AL에서 수행한 채널 추정(channel estimation) 결과를 재사용하고 일부 중첩되지 않은 부분에 대해서 추가적인 채널 추정(channel estimation)을 수행할 수 있다.
이 경우, 하위 AL의 PDCCH 후보들은 하기와 같은 수학식 7에 따른 해싱 포인트(HPl)를 갖는다.
Figure PCTKR2018001587-appb-M000007
제3 파라미터(γ)는 상위 AL의 PDCCH 후보 내에 또는 근처에 하위 AL의 PDCCH 후보를 임의적으로(random) 배치하기 위해 추가된 포인트 파라미터(point parameter)로서 다음과 같은 수학식 8로 정의할 수 있다.
Figure PCTKR2018001587-appb-M000008
기지국(eNB)은 HPh, Ll 및 L를 알고 있는 바, 제3 파라미터(γ)를 정의할 수 있다. 단말(UE)은 기지국과의 관계에서 미리 정해진 식별 넘버(Identity number) 또는 식별 인덱스(Identity index) 등의 특정 정보를 이용하여 제3 파라미터(γ)를 정의할 수 있다.
한편, 상기 표 4와 같은 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷(format)을 사용하는 환경을 가정한다. 가장 높은 상위 AL의 PDCCH 후보의 길이는 8 CCE이고, 이에 대한 해싱 포인트(HPhst)는 상술한 수학식 1에 의해 정의될 수 있다.
이 경우, 하위 AL의 PDCCH 후보들은 수학식 7에 의한 해싱 포인트를 갖고 상기 최상위 AL에 대한 PDCCH 후보인 8 CCE 내에 임의적으로(random)될 수 있다. 구체적으로, 수학식 8에 따른 AL 별 제3 파라 미터(γ)는 AL = 4 일 때 -4<γ<8이고, AL = 2 일 때는 -2<γ<8이며, AL = 1 일 때는 -1<γ<8로 정의될 수 있다.
도 12을 참조하면, 제3 파라미터(γ)에 의해 모든 AL에 대한 PDCCH 후보들의 일부 또는 전체는 최상위 AL의 PDCCH 후보와 중첩(또는, 최상위 AL의 PDCCH 후보 근처에)되면서 최상위 AL의 해싱 포인트(HPhst)와 동일하지 않은 해싱 포인트를 가질 수 있다. 한편, 상기 최상위 AL은 AL 4, AL 2일 수도 있고, AL 8로 최상위 AL이 한정되는 것은 아니다.
다시 말하자면, 단말은 기지국으로부터 하향링크 제어 영역을 포함하는 적어도 하나의 심볼을 수신할 수 있고, 수신된 제어 영역 중 탐색 공간에 대한 블라인드 디코딩을 수행할 수 있다. 상기 탐색 공간은 집합 레벨(AL) 별로 대응하고 CCE를 포함하는 복수의 PDCCH 후보를 포함하고 있다. 단말은 상기 탐색 공간 내에서 복수의 PDCCH 후보 각각에 대한 블라인드 디코딩을 수행하고, 상기 복수의 PDCCH 후보들 중 자신을 위한 PDCCH를 검출할 수 있다. 이 때, 상기 복수의 PDCCH 후보들은 어느 하나의 PDCCH 후보와 오버랩되어 배치되어 있다. 상기 어느 하나의 PDCCH 후보는 상기 복수의 PDCCH 후보들 중 최상위 집합 레벨(AL)에 대응하는 PDCCH 후보일 수 있다.
예를 들면, 상기 복수의 PDCCH 후보들은 제1 집합 레벨(AL)에 대응하는 제1 PDCCH 후보 및 제2 집합 레벨(AL)에 대응하는 제2 PDCCH 후보를 포함할 수 있다. 상기 제2 PDCCH 후보는 상기 제1 PDCCH 후보와 중첩되어 배치된다. 이 경우, 탐색 영역에서 PDCCH 후보들은 계층적 구조로 구성될 수 있다. 제1 집합 레벨(AL)은 상기 제2 집합 레벨(AL)보다 상위 레벨이며 복수의 PDCCH 후보들 중에서 최상위 집합 레벨(AL)일 수 있다. 예를 들면, 상기 제1 집합 레벨(AL)은 LTE 시스템 상에서 최상위 집합 레벨(AL)인 AL 8일 수 있다.
제1 PDCCH 후보가 시작하는 위치인 시작점(또는, 해싱 포인트)는 먼저 정의될 수 있다. 제1 PDCCH 후보의 시작점인 제1 시작점이 정의되면, 상기 제2 PDCCH 후보가 상기 제1 PDCCH 후보와 오버랩(overlap)되도록, 상기 제2 PDCCH 후보의 시작점인 제2 시작점은 상기 수학식 3 내지 수학식 8 중 적어도 하나에 의해 제1 PDCCH 후보의 제1 시작점에 종속되어 임의적으로 결정될 수 있다. 즉, 제1 PDCCH 후보를 제외한 복수의 PDCCH 후보들의 시작점은 수학식 3 내지 8에 의해 상기 제1 시작점, 대응하는 집합 레벨(AL) 및 제1 PDCCH 후보의 집합 레벨(AL)에 기초하여 결정될 수 있다.
이 경우, 제2 PDCCH 후보의 일부 또는 전체가 상기 제1 PDCCH 후보와 오버랩될 수 있다. 이와 같은 방법으로, 상기 탐색 공간이 구성된 경우에 최상위 집합 레벨(AL)에 대응하는 PDCCH 후보에 대한 블라인드 디코딩이 수행되면, 단말은 다른 PDCCH 후보들에 대한 블라인드 디코딩시 상기 최상위 집합 레벨(AL)의 PDCCH 후보에 대한 채널 추정 정보를 재사용할 수 있다. 또한, 이 경우, PDCCH 후보들의 시작점은 서로 상이하게 지정될 수 있는바 블록킹의 우려를 최소화할 수 있다.
The semi-hierarchical structure grouping
계층적 구조(Hierarchical structure)를 기반으로 AL별 PDCCH 후보를 묶되, 모든 AL에 대한 PDCCH 후보를 묶는 것이 아닌 일부 AL끼리 세트를 이루어 계층적 구조(hierarchical structure)를 이루는 복수의 반-계층적 구조(semi-hierarchical structure)를 구성할 수 있다. AL을 구성하는 방식에 따라, 또는 반-계층적 구조(semi-hierarchical structure)로 묶게 되는 반-계층적 구조(semi-hierarchical structure)의 개수가 달라질 수 있다.
반-계층적 구조(semi-hierarchical structure)를 구성하는 AL별 PDCCH 후보들은 동일한 해싱 함수(hashing function)을 통해 동일한 해싱 포인트(hashing point)를 가지게 된다. n개의 반-계층적 구조(semi-hierarchical structure)가 반-계층적 구조 세트(semi-hierarchical structure set)를 구성하고, 각 반-계층적 구조(semi-hierarchical structure)를 구성하고 있는 AL PDCCH 후보들의 해싱 포인트(hashing point)는 HPsh-1,...,HPsh-n와 같이 정의할 수 있다.
해싱 함수(Hashing function)에서, 반-계층적 구조(semi-hierarchical structure)를 구성하는 AL 그룹은 해싱 포인트(hashing point)를 AL따라 변경시키는 파라미터(parameter)를 동일하게 사용할 수 있다.
현재의 LTE-A에서 정의한 탐색 공간과 PDCCH format을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. 일 실시예에 따른 본 발명은 AL 1과 4, 2와 8을 각각 반-계층적 구조(semi-hierarchical structure)로 구성하거나, AL 1과 2, 4와 8을 각각 반-계층적 구조(semi-hierarchical structure)로 구성하는 방안을 고려해 볼 수 있다.
상술한 바와 같이, LTE에서 AL의 PDCCH 후보의 해싱 포인트에 대한 해싱 함수(hashing function)는 다음과 같다.
Figure PCTKR2018001587-appb-M000009
위의 식에서 AL에 대한 정보를 삽입하는 파라미터(parameter)는 L이다. 기존에는 AL마다 L을 개별적으로 정의하여 AL PDCCH 후보 마다 해싱 포인트(hashing point)를 가지게 됐다면, 본 발명에 따르면 도 13에 도시된 바와 같이 반-계층적 구조(semi-hierarchical structure)를 구성하는 AL 그룹(또는 세트) 별로 동일한 L을 가지도록 하여, AL 그룹 별로 포함된 PDCCH 후보들은 동일한 해싱 포인트(hashing point)에 배치될 수 있다.
또는, 반-계층적 구조(semi-hierarchical structure)를 구성할 때 하위 AL의 PDCCH 후보를 배치함에 있어서, 도 14에 도시된 바와 같이 상위 AL의 PDCCH 후보 근처 또는 내부에서 임의적으로 배치할 수 있다(무작위성의 증가). 이 경우, 하위 AL의 PDCCH 후보는 상위 AL의 PDCCH 후보와 동일한 해싱 포인트(hashing point)를 가지지 않고, 상위 AL PDCCH 후보 내 아무 곳에나 위치하거나 상위 AL의 PDCCH 후보에 걸쳐서 배치될 수 있다. 이 경우 하위 AL의 PDCCH 후보를 위한 추가적인 해싱 포인트(hashing point)에 대한 파라미터가 필요하다.
반-계층적 구조(semi-hierarchical structure)의 최상위 AL의 PDCCH 후보는 기본적인 해싱 함수(hashing function)을 이용한, 즉 수학식 9에 따른 해싱 포인트(HPsh-n)를 가지며, 하위 AL의 PDCCH 후보는 아래의 수학식 10에 의한 해싱 포인트(
Figure PCTKR2018001587-appb-I000028
)를 갖게 된다.
Figure PCTKR2018001587-appb-M000010
제4 파라미터(ε)는 상위 AL의 PDCCH 후보의 근처에 하위 AL의 PDCCH 후보가 임의적으로(random) 배치시키기 위해서 추가되는 포인트 파라미터이다. 이는 다음과 같은 수학식 11에 의해 정의될 수 있다.
Figure PCTKR2018001587-appb-M000011
여기서, Ll 은 하위 AL의 PDCCH 후보의 길이이고, Lh는 상위 AL의 PDCCH 후보의 길이이다. 기지국(eNB)은 HPh(또는, HPsh-n), Ll 및 L를 알고 있는 바, 제4 파라미터(ε)를 정의할 수 있다. 단말(UE)은 기지국과의 관계에서 미리 정해진 식별 넘버(Identity number) 또는 식별 인덱스(Identity index) 등의 특정 정보를 이용하여 제4 파라미터(ε)를 정의할 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간과 PDCCH format을 사용하는 환경을 가정한다. 이 경우, 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL이 구성된다. AL 1과 4에 대해서는 제1 반-계층적 구조 그룹(semi-hierarchical structure group 1)으로, AL 2와 8에 대해서는 제2 반-계층적 구조 그룹(semi-hierarchical structure group 2)로 구성될 수 있고, 이 경우, 상위 AL 4와 8 각각에 대한 해싱 포인트들(HPsh-1, HPsh-2)은 상술한 수학식 9를 이용하여 정의할 수 있다.
이 경우, 하위 AL인 Al 1과 AL 2 각각에 대한 해싱 포인트(hashing point)는 다음과 같은 수학식으로 구할 수 있다.
Figure PCTKR2018001587-appb-M000012
이때 각 ε1와 ε2 다음과 같은 수학식으로 정의할 수 있다.
Figure PCTKR2018001587-appb-M000013
하위 AL의 PDCCH 후보들은 도 14에 도시된 바와 같이 상기 제5 파라미터(ε1) 및 상기 제6 파라미터(ε2) 및 상기 수학식 12에 의해서 각 반-계층적 구조 그룹 별 최상위 AL의 PDCCH 후보 내나 걸쳐서 배치될 수 있다.
The hierarchical structure that all ALs have same starting point
탐색 공간(Search space)에서 PDCCH 후보들을 배치함에 있어서, 모든 AL에 대한 PDCCH 후보들의 시작점(또는, 해싱 포인트)을 동일한 계층적 구조를 가질 수 있다. 즉, 모든 AL의 PDCCH 후보의 시작점은 Max AL의 PDCCH 후보의 해싱 함수(hashing function)에 의해 동일하게 정의될 수 있다. 여기서 Max AL이란 AL 전체 중 최대값을 의미하기 보다는 사용하는 AL 중 가장 큰 AL을 의미한다. 각 AL별 PDCCH 후보들은 같은 해싱 포인트(hashing point)를 가지고 연달아 배치될 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있다.
도 15를 참조하면, AL 별로 PDCCH 후보들의 시작점인 해싱 포인트(hashing point)는 같고, 각 AL 별로 남은 나머지 PDCCH 후보들은 대응하는 AL PDCCH 후보 옆으로 순차적으로 배치될 수 있다. 이 경우, AL의 PDCCH 후보들은 AL의 값과 무관하게 동일한 해싱 포인트(hashing point)를 가지게 되며, 이 경우, AL의 PDCCH 후보 별로 상이하게 해싱 포인트를 지정할 필요가 없다. 이 경우, AL별로 PDCCH 후보에 대한 채널 추정(channel estimation) 값을 용이하게 공유할 수 있다.
AL들 각각의 후보 탐색 공간(search space candidate)을 계층적 구조(hierarchical structure)로 배치할 때, AL 별 PDCCH 후보들은 2개 이상일 수 있다. 이 경우, 모든 PDCCH 후보들을 하나의 계층적 구조(hierarchical structure)로 구성하는 것이 아닌 2개 이상의 계층적 구조(hierarchical structure)로 나누어 구성할 수 있다. 이 경우 하나의 계층적 구조(hierarchical structure) 당 최소 하나의 해싱 포인트(hashing function)를 가질 수 있기 때문에 해싱 함수(hashing function)는 다수개가 필요하다. 각 계층적 구조(Hierarchical structure)끼리는 상황에 따라서 동일한 수의 PDCCH 후보를 가질 수도 있고 다른 수의 PDCCH 후보를 가질 수도 있다
복수의 CORESET(COntrol REsource SET) 각각에 계층적 구조의 탐색 공간들(multiple hierarchical structure)이 배치될 수 있다. 즉, 하나의 CORESET에 복수의 계층적 구조(또는, 복수의 후보 탐색 공간들)의 PDCCH 후보들이 배치될 수 있다. 복수의 CORESET에 계층적 구조의 PDCCH 후보들이 나뉘어져 배치될 경우, 각 계층적 구조마다 해싱 함수(hashing function)를 가질 수 있다. 이 때의 해싱 함수(hashing function)는 계층적 구조(hierarchical structure)를 구성할 때 기준이 되는 PDCCH 후보에 대한 해싱 함수(hashing function)를 의미한다. 하나의 CORESET에 다수의 계층적 구조(hierarchical structure)가 배치되더라도, 각각의 계층적 구조(hierarchical structure)는 각각의 해싱 함수(hashing function)를 가질 수 있고, 해싱 함수(hashing function)를 공유하더라도 기준이 되는 계층적 구조(hierarchical structure)에서 어떠한 오프셋(offset) 값을 주어 다른 계층적 구조(hierarchical structure)의 해싱 포인트(hashing point)를 정할 수도 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간과 PDCCH format을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있다.
도 16을 참조하면, 탐색 공간은 각 계층적 구조(hierarchical structure)에 대응하는 후보 탐색 공간(또는, 계층적 구조)들로 구성될 수 있다. 예를 들면, 탐색 공간은 AL 8의 PDCCH 후보 1개, AL 4의 PDCCH 후보 1개, AL 2의 PDCCH 후보 3개, AL 1의 PDCCH 후보 3개로 구성된 하나의 1개의 계층적 구조(hierarchical structure)를 포함할 수 있다. 또는, 상기 탐색 공간은 AL 8의 PDCCH 후보 1개, AL 4의 PDCCH 후보 1개, AL 2의 PDCCH 후보 4개, AL 1의 PDCCH 후보 4개를 가지는 구조 하나(또는 계층적 구조 그룹 1) 및 AL 8의 PDCCH 후보 1개, AL 4의 PDCCH 후보 1개, AL 2의 PDCCH 후보 2개, AL 1의 PDCCH 후보 2개를 가지는 구조 하나(또는, 계층적 구조 그룹 2)로 구성할 수도 있다.
도 17 (a) 및 (b)를 참조하면, AL들에 대한 후보 탐색 공간(search space candidate)은 하위 AL의 PDCCH 후보를 먼저 배치한 후 하위 AL PDCCH 후보를 무조건 포함하도록 상위 AL의 PDCCH 후보가 배치될 수 있다. 상위 AL의 PDCCH 후보를 쌓는 형태는 다양할 수 있으며 하위 AL의 PDCCH 후보가 다수일 경우, 상기 AL의 PDCCH 후보들은 모두 상위 AL의 PDCCH 후보 내에 포함이 되도록 배치될 수 있다. AL의 PDCCH 후보를 쌓는 기준은 두 가지로 고려될 수 있다. 인접한 레벨 간에서 상위 AL의 PDCCH 후보가 하위 AL의 PDCCH 후보를 항상 덮도록 배치될 수 있고, 또는 인접한 AL 간의 PDCCH 후보들이 서로 겹치지 않게 배치하되, 모든 하위 AL의 PDCCH 후보들이 최상위 AL의 PDCCH 후보에 대해서는 겹쳐지도록 배치될 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간과 PDCCH format을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있다.
도 17 (b)를 참조하면, 탐색 공간 후보는 먼저 AL 1의 PDCCH 후보가 배치된 후에 그 위로 AL 2의 PDCCH 후보, AL 4의 PDCCH 후보 및 AL 8의 PDCCH 후보가 쌓아지는 형식으로 계층화된 PDCCH 후보들을 포함할 수 있다. 이 경우, 최종 형태는 AL 8의 PDCCH 후보 내에 AL 1, 2, 4의 PDCCH 후보들 모두가 포함되는 형태일 수 있다. 이러한 구조에서 단말은 AL 간의 PDCCH 후보들 사이에서 채널 추정(channel estimation) 결과를 최대한 재사용할 수 있는 현저한 효과가 있다.
도 18을 참조하면, AL별 PDCCH 후보들을 배치할 때, 최상위 AL의 PDCCH 후보 내부에 배치될 수 있는 하위 AL의 PDCCH 후보들이 들어갈 수 있는 해싱 포인트(이하, 후보 시작점)를 먼저 지정하고, 상기 후보 시작점들 중에서 임의적으로 선택하여 하위 PDCCH 후보들을 배치할 수 있다. 즉, 각 AL에 대한 PDCCH 후보들이 서로 순차적으로 연속되어 배치되지 않고 임의적으로 배치될 수 있다. 이때, 상기 후보 시작점은 상위 AL의 PDCCH 후보 내에 하위 AL의 PDCCH 후보의 크기에 맞게 결정될 수 있고, 임의적으로 결정될 수 있다. 또는 최상위 AL의 각 CCE가 하위 AL의 PDCCH 후보들의 후보 시작점이 될 수 있다.
이 경우, 각 AL에 대한 PDCCH 후보들이 개별적으로 배치될 수 있는바, 동일 AL에 대한 PDCCH 후보들이 연속적이지 않게 배치될 수 있다. 하위 AL의 PDCCH 후보들은 서로가 겹치거나 겹치지 않게 배치될 수 있고, 겹치는 경우는 후보 시작점이 임의적으로 정해지거나, 상위 AL의 각 CCE가 상기 후보 시작점이 될 수 있다. 상위 AL의 PDCCH 후보 내에 하위 AL의 PDCCH 후보가 배치될 수 있는 해싱 포인트(hashing point)를 정해야 하므로 상위 AL의 PDCCH 후보를 먼저 배치하는 것을 고려할 수 있다.
일 예에 따르면, AL 8에 대한 하나의 PDCCH 후보 내에서 AL 4에 대한 해싱 포인트가 2개 정의될 수 있으며, AL 2에 대한 PDCCH 후보의 해싱 포인트는 4개, AL 1에 대한 PDCCH 후보의 해싱 포인트는 8개로 정의될 수 있다. 이 경우, 각 AL에 대한 PDCCH 후보들은 상기 AL에 대응하는 해싱 포인트들 중에서 임의적으로 배치될 수 있다. 이 경우, AL 간에 블록킹(blocking)의 문제를 최소화할 수 있는 효과가 있다.
또는, AL들의 PDCCH 후보들을 계층적 구조로 배치할 때에, AL들에 대한 PDCCH 후보들의 계층적 구조는 2개 이상(예컨대, 제1 후보 탐색 공간 및 제2 후보 탐색 공간)일 수 있다. 각 후보 탐색 공간에 포함되는 소정의 AL에 대한 PDCCH 후보 수는 각 계층적 구조마다 상이할 수 있고 같을 수도 있다. 예컨대, 각 계층적 구조 간에 소정의 AL에 대한 PDCCH 후보 수가 다를 수 있다. 이 경우, 각 계층적 구조 별로 소정의 AL에 대해 어떤 PDCCH 후보끼리 구성할지 결정할 수 있다. 예를 들면, PDCCH 후보 수가 많은 제1 레벨의 AL의 PDCCH 후보가 먼저 일정한 해싱 함수에 의해 배치되고, PDCCH 후보 수가 다른 제2 레벨의 PDCCH 후보는 채널 상황을 고려하거나 임의적인 결정 방법을 고려하여 함께 배치될 제1 레벨의 AL의 PDCCH 후보가 결정될 수 있다.
다시 말하자면, 탐색 공간은 서로 분리된 공간인 제1 후보 탐색 공간과 제2 후보 탐색 공간을 포함하는 복수의 계층적 구조로 구성될 수 있다. 제1 후보 탐색 공간 및 제2 후보 탐색 공간 각각은 집합 레벨(AL)에 대응하는 복수의 PDCCH 후보들을 포함할 수 있다. 즉, 제1 후보 탐색 공간은 제1 집합 레벨(AL)에 대응하는 제1 PDCCH 후보 및 제2 집합 레벨(AL)에 대응하는 제2 PDCCH 후보를 포함할 수 있고, 제2 후보 탐색 공간은 제3 집합 레벨(AL)에 대응하는 제3 PDCCH 후보 및 제4 집합 레벨(AL)에 대응하는 제4 PDCCH 후보를 포함할 수 있다. 한편, 각 집합 레벨(AL)에 대응하는 PDCCH 후보는 복수 개일 수도 있다.
이 경우, 제1 후보 탐색 공간 및 제2 후보 탐색 공간 각각은 계층적 구조로 구성될 수 있다. 구체적으로, 상술한 바와 같이 탐색 공간에 포함된 복수의 PDCCH 후보들은 어느 하나의 PDCCH 후보와 오버랩(overlap)되도록 PDCCH 후보들이 배치될 수 있다. 제1 후보 탐색 공간에서 제2 PDCCH 후보는 제1 PDCCH 후보와 오버랩(overlap)되며 나머지 PDCCH 후보들도 상기 제1 PDCCH 후보와 오버랩(overlap)된다. 마찬가지로, 제2 후보 탐색 공간에서 제4 PDCCH 후보는 제3 PDCCH 후보와 오버랩(overlap)되며, 나머지 PDCCH 후보들도 상기 제3 PDCCH 후보와 오버랩(overlap)된다.
여기서, 제1 집합 레벨(AL)은 상기 제1 후보 탐색 공간에 포함된 복수의 PDCCH 후보들에 대응하는 집합 레벨(AL) 중 최상위 집합 레벨(AL)일 수 있고, 제3 집합 레벨(AL)은 상기 제2 후보 탐색 공간에 포함된 복수의 PDCCH 후보들에 대응하는 집합 레벨(AL) 중 최상위 집합 레벨(AL)일 수 있다. 예를 들면, 제1 후보 탐색 공간에 포함된 복수의 PDCCH 후보들에 대응하는 집합 레벨(AL) 중 최상위 집합 레벨(AL)이 AL 8이면 상기 제1 집합 레벨(AL)은 8이고, 제2 후보 탐색 공간에 포함된 복수의 PDCCH 후보들에 대응하는 집합 레벨(AL) 중 최상위 집합 레벨(AL)이 AL 4이면 제3 집합 레벨(AL)은 4일 수 있다.
Hierarchical structure across the CORESET
도 19를 참조하면, 복수의 CORESET을 사용하여 탐색 공간(search space)를 배치할 수 있다. 각 CORESET별로 탐색 공간(search space)을 개별적인 계층적 구조로 구성할 수 있으며, 각 계층적 구조(또는, 후보 탐색 공간)는 동일한 수의 PDCCH 후보를 가지고 있을 수 있다. 이를 위해서, 각 AL에 대한 PDCCH 후보들을 CORESET의 숫자만큼 나누어 각 CORESET에 배치할 수 있고, 이 경우, 복수의 CORESET들은 서로 AL 별 PDCCH 후보들을 동일한 수로 포함할 수 있다. 다시 말하자면, 하향링크 제어 영역은 복수의 CORESET을 포함할 수 있고, 복수의 CORESET에 분리하여 상기 탐색 공간을 배치할 수 있다.
일 예에 따르면, 단말이 두 개의 CORESET에 대한 블라인드 디코딩(blind decoding)을 수행하여 DCI를 획득할 수 있는 경우, 두 개의 CORESET은 계층적 구조의 PDCCH 후보들이 각각 포함되고, AL 별로 서로 동일한 수의 PDCCH 후보가 포함될 수 있다.
또는, 탐색 공간은 각 CORESET별로 개별적인 계층적 구조(또는, 후보 탐색 공간들에 대한)로 구성될 수 있다. 즉, 탐색 공간은 각 CORESET별로 동일한 형태가 아닌 다른 형태의 계층적 구조의 후보 탐색 공간을 포함할 수 있다. 이 경우, 각 후보 탐색 공간은 최상위 또는 상위 AL의 PDCCH 후보들이 모든 CORESET에 적어도 하나씩 배치되는 형태의 계층적 구조로 형성될 수 있다. 하위 AL의 PDCCH 후보는 각 계층적 구조(또는, 각 후보 탐색 공간)마다 적어도 하나씩 배치하거나 어느 한 계층적 구조에 대해서는 배치되지 않을 수도 있다. 각 CORESET에 배치되는 계층적 구조(또는, 후보 탐색 공간)에 들어있는 PDCCH 후보 수는 서로 같거나 상이할 수 있다.
도 20을 참조하면, 각 CORESET에 배치된 계층적 구조의 후보 탐색 공간을 나타내고 있다. 도 20 (a)를 참조하면, 각 CORESET에 배치된 후보 탐색 공간들은 모든 AL에 대응하는 PDCCH 후보가 최소 1개 이상 포함될 수 있다. 도 20 (b)를 참조하면, 각 CORESET에 배치된 후보 탐색 공간들은 AL8에 대한 PDCCH 후보에 대해서만 최소 하나씩 배치되어 있고, 나머지 AL에 대한 PDCCH 후보는 각 후보 탐색 공간별로 하나씩 포함되지 않을 수 있다.
또는, 각 CORESET별로 배치된 후보 탐색 공간들은 서로 다른 형태의 계층적 구조로 구성될 수 있으며, PDCCH 후보들은 상위 AL이든 하위 AL 이든 고려하지 않고 상기 후보 탐색 공간 각각에 배치될 수 있고, 단, 각 후보 탐색 공간에 최소 포함되는 PDCCH 후보의 수인 제한값이 미리 정해져 있을 수 있다. 예컨대, 상기 제한값은 후보 탐색 공간 별로 적어도 2개 이상의 PDCCH 후보를 포함하도록 설정될 수 있다. 또한, 각 후보 탐색 공간에 대한 계층적 구조를 형성함에 있어서, 바로 인접한 AL끼리 함께 포함되지 않을 수 있다. 또한, 각 CORESET에 대응하는 후보 탐색 공간들 각각에 배치되는 PDCCH 후보의 수는 서로 같거나 상이할 수 있다.
도 21을 참조하면, 탐색 공간은 3개의 CORESET 각각에 포함된 3개의 후보 탐색 공간을 포함한다. 각 CORESET안의 후보 탐색 공간들은 계층적 구조를 가지고 있지만 모든 AL에 대한 PDCCH 후보를 포함하고 있지는 않다.
한편, 하나의 CORESET은 복수의 후보 탐색 공간들을 포함할 수 있으며, 이 경우, 상기 하나의 CORESET에 대한 탐색 공간을 구성함에 도 19, 도 20 및 도 21을 참조하여 설명한 후보 탐색 공간들 사이에 AL PDCCH 후보를 배치하는 방법이 적용될 수 있다.
도 22를 참조하면, 계층적 구조의 탐색 공간(Hierarchical search space)을 구성할 때, 하나의 탐색 공간(search space)만으로 구성할 수 있지만, 둘 이상의 탐색 공간(예를 들면, 공통 탐색 공간(Common search space, CSS) 또는 단말 특정 탐색 공간(USS, UE-specific search space))으로 하나의 계층적 구조의 탐색 공간을 구성할 수 있다. 이 경우, 계층적 구조의 해싱 포인트(hashing point)로서 위치하게 되는 중심 PDCCH 후보를 CSS에 포함된 PDCCH 후보 중에서 선택하여 계층적 구조의 장점인 채널 추정의 재활용을 극대화할 수 있다. 이는, CSS에 대해 항상 블라인드 디코딩을 수행해야 하는 구간이므로 CSS에 포함된 PDCCH 후보에 대한 대한 채널추정은 반드시 한번 수행되므로, CCS에 대해 수행된 채널 추정 정보를 USS에 재활용할 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있다.
일 예에 따르면, 계층적 탐색 공간(Hierarchical search space)에서 AL8의 PDCCH 후보에 대한 해싱 포인트를 기준으로 할 때, CSS에 대한 AL8의 PDCCH 후보를 이용하여 해싱 포인트(hashing point)를 지정할 수 있다. 즉, 계층적 탐색 공간(Hierarchical search space)에서 AL8의 PDCCH 후보는 CCS에 대한 AL8의 PDCCH 후보로 정할 수 있다. 이 경우, 계층적 탐색 공간은 상기 CCS에 대한 AL8의 PDCCH 후보에 대한 해싱 포인트에 USS에 대한 하위 AL의 PDCCH 후보들이 계층적으로 배치될 수 있다. CSS의 AL8에 대한 PDCCH 후보에 대해서 먼저 블라인드 디코딩을 수행하게 되는바, USS에 해당하는 하위 AL의 PDCCH 후보들의 블라인드 디코딩은 상기 CSS의 AL8에 대한 블라인드 디코딩에 의한 채널 추정 정보를 재사용할 수 있다.
Hierarchical structures according to the symbol number
단말(UE)에게 1 심볼(symbol)로 이루어진 CORESET이 할당이 된 경우, 탐색 공간은 해당 CORESET 내에 존재할 수 있는 가장 큰 AL을 기준으로 하는 계층적 구조로 구성될 수 있다. 또는, CORESET이 하나의 심볼(symbol)로 구성되어 있을 경우, UE가 가질 수 있는 최대한의 탐색 공간이 CORESET 안에 모두 배치되기 어려울 수 있다. 또한, 상기 하나의 심볼(symbol)로 구성된 CORESET에 가장 큰 AL의 PDCCH 후보가 배치될 수도 있지만, 자원(resource)의 부족으로 최대한의 탐색 공간이 상기 CORESET에 배치되기 어려울 수도 있다. 즉, 심볼(symbol)이 1개인 CORESET에 단말(UE)에 대한 탐색 공간이 전부 배치 되기 어려울 수도 있고, 최상위 AL의 PDCCH 후보가 배치되기 어려울 수도 있으므로, 이 경우, 배치된 탐색 공간에서 최상위 AL의 시작 위치인 해싱 포인트를 기준으로 상기 배치된 탐색 공간의 계층적 구조가 구성될 수 있다.
도 23 내지 도 25를 참조하면, CORESET으로 하나의 심볼(symbol)만 할당된 경우, CORESET 내의 자원(resource)에 따라 최상위 AL8의 PDCCH 후보가 배치되거나 AL4의 PDCCH 후보까지만 할당될 수도 있다. 또한, AL8의 PDCCH 후보도 최대 두 개가 있지만, CORESET 내의 자원(resource) 환경에 따라 한 개만 배치될 수도 있다.
도 26을 참조하면, 단말(UE)에게 1개 이상의 심볼(symbol)로 이루어진 CORESET이 할당된 경우, 상기 CORESET에 대응하는 탐색 영역은 해당 CORESET 내에 존재할 수 있는 가장 큰 AL을 기준으로 계층적 구조가 구성될 수 있다.
일 예에 따르면, 탐색 공간은 각 심볼(symbol) 별로 후보 탐색 공간으로 나눠져 CORESET에 배치될 수 있다. 이 경우, 탐색 공간은 각 심볼(symbol)내 배치된 PDCCH 후보들 중 최상의 AL의 PDCCH 후보의 시작 위치(예컨대, 대응하는 해싱 포인트)를 기준으로 계층적 구조로 구성된 후보 탐색 공간들을 포함할 수 있다.
또는, 심볼(symbol)들은 서로 비대칭인 후보 탐색 공간들이 배치될 수 있다. 복수의 심볼로 구성된 CORESET이라도 자원이 모든 탐색 공간을 배치하기에 부족하여 일부 PDCCH 후보만 배치될 수 있다. 이 경우, 각 심볼(symbol)내 배치된 PDCCH 후보 중에서 최상의 AL의 PDCCH 후보의 시작 위치(start position)를 기준으로 계층적 구조를 구성할 수 있다.
또는, 심볼 간 자원을 합하여 하나의 탐색 공간이 구성될 수 있다. 예를 들면, 첫 번째 심볼의 4개 CCE와 두 번째 심볼의 4개의 CCE를 이용하여 하나의 AL8의 PDCCH 후보를 형성할 수 있다. 이 경우, 각 심볼의 4개 CCE를 AL4의 PDCCH 후보로 볼 수 있고, 상기 Al4의 PDCCH 후보의 시작 위치(또는, 해싱 포인트)를 기준으로 계층적 구조를 각 심볼 별로 구성할 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있고, CORESET이 두 개의 심볼로 이루어졌다고 가정한다.
도 26을 참조하면, 각 심볼에 각 AL의 PDCCH 후보가 동일하게 분배되어 배치될 수 있다. 각 AL 8, 4, 2, 1에 대한 PDCCH 후보들이 1, 1, 3, 3개씩 하나의 심볼에 배치될 수 있다. 이 때, AL8의 PDCCH 후보를 기준으로 계층적 구조(hierarchical structure)를 구성할 수 있다.
도 27을 참조하면, 하나의 심볼에는 AL8의 PDCCH 후보가 배치될 수 있으나, 다른 하나의 심볼에는 AL4의 PDCCH 후보부터 배치될 수 있다. 이 경우, 탐색 공간은 상기 하나의 심볼에서는 AL8의 PDCCH 후보를 기준으로, 상기 다른 하나의 심볼에서는 AL 4의 PDCCH 후보를 기준으로 계층적 구조가 구성될 수 있다.
도 29를 참조하면, 두 symbol 각각에 있는 두 개의 AL4의 PDCCH 후보가 하나의 AL8의 PDCCH 후보와 대응될 수 있다. 이 경우, 각 심볼 내의 PDCCH 후보들은 AL4의 PDCCH 후보를 기준으로 계층적 구조를 구성할 수 있다.
다시 말하자면, 단말이 수신 받은 하향링크 제어 영역은 상기 탐색 공간이 배치되는 자원들을 포함하는 복수의 코어셋(COntrol REsource SET, CORESET)을 포함할 수 있다. 즉, 상기 하향링크 제어 영역은 제1 코어셋(CORESET) 및 제2 코어셋(CORESET)을 포함할 수 있다. 탐색 공간은 상기 제1 코어셋 및 상기 제2 코어셋에 분리되어 배치될 수 있다. 즉, 상기 탐색 공간은 상기 제1 코어셋에 포함된 제1 후보 탐색 공간 및 상기 제2 코어셋에 포함된 제2 후보 탐색 공간으로 분리되어 배치될 수 있다.
상술한 바와 같이, 상기 제1 후보 탐색 공간은 제1 집합 레벨(AL)에 대응하는 제1 PDCCH 후보 및 상기 제1 PDCCH 후보 내에 배치되고 제2 집합 레벨(AL)에 대응하는 제2 PDCCH 후보를 포함하고, 상기 제2 후보 탐색 공간은 제3 집합 레벨(AL)에 대응하는 제3 PDCCH 후보 및 상기 제3 PDCCH 후보 내에 배치되는 제4 PDCCH 후보를 포함할 수 있다. 이 경우, 각 후보 탐색 공간은 상술한 방법에 따라 최상위 집합 레벨(AL)에 대응하는 PDCCH 후보를 기준으로 중첩되도록 PDCCH 후보들을 배치할 수 있다.
또한, 이 경우, 상기 제1 후보 탐색 공간 및 상기 제2 후보 탐색 공간 각각에 포함되는 PDCCH 후보의 개수는 상기 제1 코어셋 및 상기 제2 코어셋 각각에 포함된 심볼의 개수 및 할당 가능한 자원에 기초하여 결정될 수 있다.
또한, 후보 탐색 공간에서 최상위 집합 레벨(AL)에 대응하는 PDCCH 후보는 CSS에 대한 PDCCH 후보이고, 나머지 하위 집합 레벨(AL)에 대응하는 PDCCH 후보들은 USS에 대한 PDCCH 후보들일 수 있다. 예컨대, 제1 코어셋의 제1 후보 탐색 공간에서 상기 제1 PDCCH 후보는 공통 탐색 공간(common search space)에 대한 PDCCH 후보로 구성될 수 있고, 제2 PDCCH 후보는 단말 특정 탐색 공간(UE-specific search space)에 대한 PDCCH 후보로 구성될 수 있다.
Virtual highest AL
본 발명에서는 여러 AL들의 PDCCH 후보들을 배치할 때, 계층적인 구조로 형성하는 방법들을 제안한다. 하위 AL의 PDCCH 후보가 상위 AL의 PDCCH 후보에 포함된다는 것을 기본적인 방법으로 접근하고 있는데, 해당 AL들의 PDCCH 후보에 대해서 좀더 구체적인 정의를 내릴 필요가 있다. 어떠한 CORESET에서 사용하는 AL이 정의가 되더라도, 단말(UE)에게 모든 AL이 설정(configure)되지 않는다. 즉, CORESET에 AL이 1, 2, 4, 8이 정의가 되었더라도, 단말(UE)는 AL 1, 2, 4까지만 설정(configure)될 수도 있다. 특정 단말에 대한 탐색 공간에 대한 계층적 구조를 디자인할 때에 CORESET에 정의된 AL을 기준으로 정의될 수도 있지만, 단말(UE)에게 설정(configure)된 AL의 PDCCH 후보를 가지고 구성될 수도 있다.
구체적으로, 계층적인 탐색 공간에서 기준이 되는 최상위 AL은 "CORESET에서 0이 아닌 PDCCH 후보로 최상위 AL(highest AL configured to the CORESET with non-zero candidate)", "기지국에 의해 지원되는 고정된 최상위 AL(highest AL supported by the network (e.g., 8) which is fixed)" 및 "CORESET에 대해 고려하지 않고 네트워크에 의해 최상위 AL로 가정하여 사용되도록 구성된 AL(configured by the network to use which AL to assume as the highest AL regardless of the CORESET configuration)"중 어느 하나로 정의될 수 있다.
계층적 구조를 구성할 때, 하위 AL의 PDCCH 후보는 상위 AL의 PDCCH 후보에 포함되도록 탐색 공간(search space)이 정의된다. 결국 최상위 AL을 제외한 나머지 AL의 PDCCH 후보들은 최상위 AL의 PDCCH 후보 내에 위치하게 된다. 이 경우, 탐색 공간은 최상위 AL을 실제 사용하는 AL이 아닌 가상으로 정의된 AL을 기준으로 계층적 구조(hierarchical structure)로 구성될 수 있다. 최종적인 계층적 구조(hierarchical structure)에서 가상의 AL을 제외하면, 계층적 구조(hierarchical structure)로 보여지지 않을 수 있으나, 이와 같이 구성하게 되면 PDCCH 후보들이 일정 범위 내에서 서로 겹쳐지거나 적당히 분리되어 있을 수 있다. 이 경우, 계층적 구조의 이점인 채널 추정 재사용의 효율성과 블록킹의 문제점의 해결을 동시에 달성할 수 있다.
상술한 바와 같이, 탐색 공간이 단말(UE)에게 설정(configure)된 AL의 PDCCH 후보를 가지고 계층적 구조로 구성될 때에는, 기지국은 UE에게 가상의 AL까지 설정(configure)해 준 후에 상기 가상의 AL이 실제로는 사용하지 않는다는 정보를 제공할 수 있다. 이 경우, 단말(UE)는 탐색 공간을 사용하는 데에 무리가 없다. 어떠한 AL이 가상 AL인지에 대한 지시(indication) 정보는 RRC 또는 higher layer signaling으로 단말에게 알려 줄 수 있다.
한편, 현재의 LTE-A에서 정의한 탐색 공간(search space)과 PDCCH 포맷을 사용하는 환경을 가정한다. 가장 높은 AL의 PDCCH 후보의 길이는 8 CCE만큼이고, 하위 AL은 각각 4, 2, 1 로써 총 4단계의 AL을 구성한다. LTE에서 AL 8의 PDCCH 후보는 2개, AL 4, 2, 1에 대한 PDCCH 후보는 각각 2개, 6개, 6개로 정의되어 있다.
도 30을 참조하면, 기지국은 단말에게 가상 AL로서 16을 설정할 수 있다. 가상 AL 16의 PDCCH 후보는 2개라고 하고 탐색 공간이 가상 AL 16까지 포함한 계층적 탐색 공간으로 구성될 수 있다. 이 때, 기지국이 단말(UE)에게 실제로 AL을 1, 2, 4, 8 모두 사용할 수 있다고 설정(configure)될 수 있다. 이 경우, 계층적 구조(Hierarchical structure)를 구성하는 여러 가지 방법은 상술한 바에 따른 계층적 구조의 구성 방법들을 적용할 수 있다. 예를 들면, 상술한 여러 가지 방법 중, 탐색 공간에서 하위 AL의 PDCCH 후보가 상위 AL의 PDCCH 후보 내에서 분산되어 배치될 수 있다. 이 경우, 가상 AL을 이용한 계층적 구조(hierarchical structure)는 다음과 같이 적용될 수 있다. AL16의 PDCCH 후보가 불연속적으로 배치되어 있고, 탐색 공간은 각 PDCCH 후보 별로 계층적 구조로 구성될 수 있다. 또한, 각 AL16의 PDCCH 후보와 함께 구성하는 하위 AL의 구성 공간도 불균형하게 배치될 수 있다. 이와 관련된 두 개의 계층적 구조 중 하나의 구조가 도 30에 도시되어 있다.
최상위 AL(Highest AL)의 PDCCH 후보가 차지하는 자원이 하위 AL의 PDCCH 후보들의 자원을 커버하기 적절하지 않은 경우, 상술한 바와 같이 가상의 또 다른 AL을 정의하여 가상 AL의 PDCCH 후보를 기반으로 계층적 구조를 만드는 법을 제안했었다.
또는, 다른 방안으로, 모니터링(monitoring)을 해야 할 AL 또는 PDCCH 후보와 해싱 포인트를 잡기 위한 목적으로만 사용하는 AL 또는 AL의 PDCCH 후보를 각각 별도로 정의할 수 있다. 해당 구분 정보는 상위 계층 시그널링(higher layer signaling)이나 RRC로 단말(UE)에게 알려줄 수 있다. 즉 일례로, 단말(UE)이 AL 8에 대한 1개의 PDCCH 후보와 AL4에 대한 3개의 PDCCH 후보, 그 외 여러 AL1, 2에 대한 PDCCH 후보들을 설정 받았을 경우, AL8에 대한 1개의 PDCCH 후보로는 적어도 AL 4의 PDCCH 후보들을 모두 커버(cover)하는데 적절하지 않다. 애초에 AL 8에 대한 다수의 PDCCH 후보를 설정(configure)하고, 이 PDCCH 후보 중에서 모니터링(monitoring)을 해야할 PDCCH 후보와 해싱 포인트를 잡기 위한 PDCCH 후보를 알려주어 적절한 계층적 구조를 만들게 되면 계층적 구조의 이점을 살릴 수 있으면서 모니터링(monitoring)해야할 PDCCH 후보의 수도 증가하지 않게 된다.
또 한 예로, 상술한 방법과 유사하게, 단말(UE)이 AL4에 대한 1개의 PDCCH 후보와 AL2에 대한 3개의 PDCCH 후보, 그 외 AL1에 대한 복수의 PDCCH 후보들을 설정 받았을 경우, 앞선 설명한 방법 들과 같이 AL 4의 PDCCH 후보를 처음부터 하위 AL의 PDCCH 후보들을 커버(cover)할 수 있을 만큼 정의할 수도 있지만, 해싱 포인트(hashing point)를 잡기 위한 AL8을 정의하여 계층적 구조(hierarchical structure)를 구성할 수 있다. 이 때에도 AL 및 PDCCH 후보의 용도 및 구분에 대한 정보는 상위 계층 시그널링(higher layer signaling)이나 RRC로 단말에게 전달될 수 있으므로, 단말은 AL8의 PDCCH 후보를 모니터링(monitoring)하지 않지만 탐색 공간의 계층적 구조의 이점을 획득할 수 있다.
다시 말하자면, 탐색 공간을 구성할 때에, 가상의 AL에 대한 가상의 PDCCH 후보를 기준으로 하위 AL에 대한 PDCCH 후보들을 배치할 수 있다. 즉, 상기 복수의 PDCCH 후보들 각각은 가상의 PDCCH 후보와 일부 또는 전체가 오버랩되고, 상기 가상의 PDCCH 후보는 상기 단말이 모니터링하지 않는 가상의 집합 레벨(AL)에 대응하는 PDCCH 후보일 수 있다. 이 경우, 상기 가상의 집합 레벨(AL)은 상기 탐색 공간에 실제로 포함된 복수의 PDCCH 후보들의 집합 레벨(AL)보다 상위 레벨로 설정될 수 있다. 예를 들면, 가상의 집합 레벨(AL)은 16이고, 가상의 PDCCH 후보의 길이는 16개의 CCE의 길이일 수 있다. 이 경우, 상기 탐색 공간에 실제로 포함된 복수의 PDCCH 후보들 중에서 집합 레벨(AL)의 최상위 레벨은 8일 수 있다. 이 경우, 탐색 공간은 상기 가상의 PDCCH 후보 내에서 집합 레벨(AL) 8에 대한 PDCCH 후보들이 서로 분리된 상태로 배치될 수 있다. 한편, 상기 가상의 PDCCH 후보 및 가상의 집합 레벨(AL)은 단말이 PDCCH를 검출하기 위해서 탐색하는 CCE의 단위로서 인식되지 않는다.
Application the hierarchical structure
자원 할당을 할 경우, 자원에 배치될 수 있는 PDCCH 후보의 형태를 계층적 형태로 구성할 수 있다. 즉, PDSCH를 위한 자원 할당(resource allocation)에도 계층적 구조가 적용될 수 있다.
배치해야 하는 자원의 최소단위가 REG 또는 RBG라고 할 때, 자원의 크기는 단일 또는 다수의 REG/RBG 일 수 있다. 자원이 배치 될 수 있는 영역을 후보 자원(resource candidate)이라고 할 때, 자원의 크기 별로 이러한 후보 자원들이 정의될 수 있다. 어떠한 후보 자원은 하나의 REG/RBG 크기일 수도 있고, 다른 후보 자원은 다수의 REG/RBG 크기를 가질 수도 있다. 이 경우, 각 후보 자원의 위치를 정해야 하는 경우, 각 후보 자원의 위치가 계측적 구조로 정의될 수 있다.
계층적 탐색 공간(Hierarchical search space)과 유사하게 가장 큰 크기를 가진 후보 자원의 위치를 기준으로 계층적 구조가 형성될 수 있다. 가장 큰 크기의 후보 자원의 위치는 LTE에서의 자원 할당 타입 0, 1, 2(resource allocation type 0, 1, 2)에서 자원 할당(resource allocation)을 하는 바와 같이 정의할 수 있다.
두 번째로 큰 크기의 후보 자원은 가장 큰 후보 자원을 벗어나지 않은 범위 내에서 위치가 정의될 수 있다. 세 번째로 큰 후보 자원은 두 번째로 큰 후보 자원의 범위 내에서 정의될 수 있다.
이와 같이 하위 크기에 대한 후보 자원도 위와 동일한 수순으로 위치가 정의될 수 있다. 동일한 크기의 후보 자원이 복수 개 있을 수 있고, 복수의 동일 크기의 후보 자원들에 대한 배치도 상술한 바와 같이 상위 크기 후보 자원들의 범위 내에서 위치가 정의될 수 있다. 이러한 방식으로 모든 후보 자원들이 적어도 하나의 REG/RBG에 대해서 공유하는 형태를 이룰 수 있고, 이러한 계층적 자원 할당 구조(hierarchical resource allocation structure)를 구성하는 방법은 본 특허에서 제안된 계층적 탐색 자원 구조(hierarchical search space structure)를 구성하는 방법을 동일하게 적용할 수 있다.
설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 제안 방법들의 적용 여부 정보 (혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (e.g., 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
도 31를 참조하면, 통신 장치(1200)는 프로세서(1210), 메모리(1220), RF 모듈(1230), 디스플레이 모듈(1240) 및 사용자 인터페이스 모듈(1250)을 포함한다.
통신 장치(1200)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1200)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1200)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1210)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1210)의 자세한 동작은 도 1 내지 도 30에 기재된 내용을 참조할 수 있다.
메모리(1220)는 프로세서(1210)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1230)은 프로세서(1210)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1230)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1240)은 프로세서(1210)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1240)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1250)은 프로세서(1210)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
상술한 본 발명의 실시 예들에서는 LTE 시스템에서의 동작을 중심으로 설명하였으나, 본 발명에서 제안하는 사상 등은 이에 한정되는 것은 아니며, 5세대 NewRAT과 같이, 다른 통신 시스템에도 적용이 가능함은 자명하다. 예를 들어, eMBB(enhanced mobile broadband)와 같은 기본적인 서비스 모드에서 URLLC(Ultra-Reliable Low Latency Communication) 및 mMTC(massive Machine Type Communication)에 대한 자원 정보를 지시하는 경우에도 상술한 방법의 조합이 확장 및 적용될 수 있음은 자명하다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서, 단말이 하향링크 제어 채널을 수신하는 방법에 있어서,
    하향링크 제어 영역을 포함하는 적어도 하나의 심볼을 수신하는 단계; 및
    상기 하향링크 제어 영역 중에서 탐색 공간(search space)에 대한 블라인드 디코딩(blind decoding)을 수행하는 단계;를 포함하고,
    상기 탐색 영역은 집합 레벨(Aggregation Level)별로 대응하고 CCE(Control Channel Element)를 포함하는 복수의 PDCCH 후보(Physical Downlink Control Channel candidate) 들을 포함하고,
    상기 복수의 PDCCH 후보들 각각은 적어도 하나의 PDCCH 후보와 오버랩(overlap)되는 하향링크 제어 채널을 수신하는 방법.
  2. 제1 항에 있어서,
    상기 복수의 PDCCH 후보들은 제1 집합 레벨에 대응하는 제1 PDCCH 후보 및 상기 제1 집합 레벨 보다 하위 레벨인 제2 집합 레벨에 대응하는 제2 PDCCH 후보를 포함하고,
    상기 제2 PDCCH 후보의 일부 또는 전체는 상기 제1 PDCCH 후보 내에 배치된 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  3. 제2항에 있어서,
    상기 제1 집합 레벨은 상기 복수의 PDCCH 후보들에 대응하는 집합 레벨 중에서 최상위 집합 레벨인 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  4. 제2항에 있어서,
    상기 제1 PDCCH 후보는 공통 탐색 공간(common search space)에 대한 PDCCH 후보이고,
    상기 제2 PDCCH 후보는 단말 특정 탐색 공간(UE-specific search space)에 대한 PDCCH 후보인 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  5. 제2항에 있어서,
    상기 제2 PDCCH 후보의 시작점인 제2 시작점은 상기 제1 PDCCH 후보의 시작점인 제1 시작점, 상기 제1 집합 레벨 및 상기 제2 집합 레벨 중 적어도 하나에 기초하여 임의적으로 결정되고,
    상기 제1 시작점과 상이한 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  6. 제2항에 있어서,
    상기 복수의 PDCCH 후보들 중 상기 제1 PDCCH 후보 및 상기 제2 PDCCH 후보를 제외한 나머지 PDCCH 후보는 상기 제1 PDCCH 후보와 전체 또는 일부가 오버랩되도록 임의적으로 배치되는 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  7. 제1항에 있어서,
    상기 복수의 PDCCH 후보들 각각은 가상의 PDCCH 후보와 일부 또는 전체가 오버랩되고,
    상기 가상의 PDCCH 후보는 상기 단말이 모니터링하지 않는 가상의 집합 레벨에 대응하는 PDCCH 후보인 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  8. 제7항에 있어서,
    상기 가상의 집합 레벨은 상기 복수의 PDCCH 후보들 각각에 대응하는 집합 레벨 중 최상위 집합 레벨보다 높은 레벨인 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  9. 제1항에 있어서,
    상기 탐색 공간은 서로 분리된 제1 후보 탐색 공간 및 제2 후보 탐색 공간으로 포함하고,
    상기 제1 후보 탐색 공간은 제1 집합 레벨에 대응하는 제1 PDCCH 후보 및 상기 제1 PDCCH 후보 내에 배치되고 상기 제1 집합 레벨 보다 하위 레벨인 제2 집합 레벨에 대응하는 제2 PDCCH 후보를 포함하고,
    상기 제2 후보 탐색 공간은 제3 집합 레벨에 대응하는 제3 PDCCH 후보 및 상기 제3 PDCCH 후보 내에 배치되고 상기 제3 집합 레벨 보다 하위 레벨인 제4 집합 레벨에 대응하는 제4 PDCCH 후보를 포함하는 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  10. 제9항에 있어서,
    상기 제1 집합 레벨은 상기 제1 후보 탐색 공간에 포함된 PDCCH 후보들 중에서 최상위 집합 레벨이고,
    상기 제2 집합 레벨은 상기 제2 후보 탐색 공간에 포함된 PDCCH 후보들 중에서 최상위 집합 레벨인 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  11. 제9항에 있어서,
    상기 하향링크 제어 영역은 상기 탐색 공간이 배치되는 자원들을 포함하는 제1 코어셋(COntrol REsource SET, CORESET) 및 제2 코어셋(CORESET)을 포함하고,
    상기 제1 후보 탐색 공간은 상기 제1 코어셋에 배치되고,
    상기 제2 후보 탐색 공간은 상기 제2 코어셋에 배치된 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  12. 제11항에 있어서,
    상기 제1 후보 탐색 공간 및 상기 제2 후보 탐색 공간 각각에 포함되는 PDCCH 후보의 개수는 상기 제1 코어셋 및 상기 제2 코어셋 각각에 포함된 심볼의 개수 및 할당 가능한 자원에 기초하여 결정되는 것을 특징으로 하는 하향링크 제어 채널을 수신하는 방법.
  13. 제1항에 있어서,
    상기 블라인드 디코딩으로 검출된 CCE(Control Channel Element)에 기초하여 DCI(downlink control information)를 검출하는 단계;를 더 포함하는 하향링크 제어 채널을 수신하는 방법.
  14. 무선 통신 시스템에서, 하향링크 제어 채널을 수신하는 단말에 있어서,
    기지국과 무선 신호를 송수신하는 RF 유닛; 및
    상기 RF 유닛을 제어하여 하향링크 제어 영역을 포함하는 적어도 하나의 심볼을 수신하고, 상기 하향링크 제어 영역 중에서 탐색 공간(search space)에 대한 블라인드 디코딩(Blind decoding)을 수행하는 프로세서;를 포함하고,
    상기 탐색 공간은 집합 레벨(Aggregation Level)별로 대응하고 CCE(Control Channel Element)를 포함하는 복수의 PDCCH 후보를 포함하고,
    상기 복수의 PDCCH 후보들 각각은 적어도 하나의 PDCCH 후보와 오버랩된 하향링크 제어 채널을 수신하는 단말.
PCT/KR2018/001587 2017-02-06 2018-02-06 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 WO2018143777A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/484,095 US10959219B2 (en) 2017-02-06 2018-02-06 Method for receiving downlink control channel in wireless communication system and device therefor

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201762454953P 2017-02-06 2017-02-06
US62/454,953 2017-02-06
US201762476706P 2017-03-24 2017-03-24
US62/476,706 2017-03-24
US201762507729P 2017-05-17 2017-05-17
US62/507,729 2017-05-17
US201762520445P 2017-06-15 2017-06-15
US62/520,445 2017-06-15
US201762539501P 2017-07-31 2017-07-31
US62/539,501 2017-07-31
US201762557134P 2017-09-11 2017-09-11
US62/557,134 2017-09-11
US201762567185P 2017-10-02 2017-10-02
US62/567,185 2017-10-02

Publications (1)

Publication Number Publication Date
WO2018143777A1 true WO2018143777A1 (ko) 2018-08-09

Family

ID=63040843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001587 WO2018143777A1 (ko) 2017-02-06 2018-02-06 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US10959219B2 (ko)
WO (1) WO2018143777A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495234A (zh) * 2019-01-08 2019-03-19 北京北方烽火科技有限公司 一种下行物理控制信道的检测方法及装置
AU2018262868B2 (en) * 2017-05-02 2022-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses for detecting control channels in wireless communication systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082970B2 (ja) * 2017-03-22 2022-06-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置、通信方法、および集積回路
WO2018175806A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Techniques to enable physical downlink control channel communications
EP3641441A4 (en) * 2017-06-16 2020-06-10 Panasonic Intellectual Property Corporation of America BASE STATION, TERMINAL AND COMMUNICATION METHOD
WO2019022489A1 (en) * 2017-07-25 2019-01-31 Lg Electronics Inc. METHOD AND APPARATUS FOR ACK / NACK CHANNEL DESIGN IN WIRELESS COMMUNICATION SYSTEM
EP4207651A1 (en) * 2017-09-15 2023-07-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information in wireless communication system
US11233688B2 (en) * 2018-02-23 2022-01-25 Qualcomm Incorporated Physical downlink control channel (PDCCH) aggregation level (AL) design for new radio (NR) ultra-reliable low latency communication (URLLC)
CN110536419B (zh) * 2018-05-23 2023-04-18 中兴通讯股份有限公司 一种波束恢复方法和装置
US11470596B2 (en) 2019-07-18 2022-10-11 Samsung Electronics Co., Ltd. Determination of start time of PDCCH monitoring occasion
KR20230129402A (ko) * 2021-01-07 2023-09-08 퀄컴 인코포레이티드 공통 제어 채널

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013096928A1 (en) * 2011-12-22 2013-06-27 Interdigital Patent Holdings, Inc. Control signaling in lte carrier aggregation
US10051618B2 (en) * 2016-07-01 2018-08-14 Intel IP Corporation Methods and devices for control channel decoding
US10595326B2 (en) * 2016-12-12 2020-03-17 Mediatek Inc. Methods of efficient downlink control information transmission

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Monitoring of DL Control Channel for NR", R1-1700620, 3GPP TSG RAN WG1 AH_NR MEETING, 10 January 2017 (2017-01-10), Spokane, USA, XP051203001 *
"On Dynamic Switching between Single & Aggregated DCI", R1-1700153, 3GPP TSG RAN WG1 AH_ NR MEETING, 10 January 2017 (2017-01-10), Spokane, USA, XP051202660 *
ETRI: "Discussion on Control Resource Set and DMRS for DL Control Channel", R1-1700581, 3GPP TSG RAN WG1 NR AD-HOC MEETING, 10 January 2017 (2017-01-10), Spokane, USA, XP051202969 *
NOKIA ET AL.: "Correction on PDCCH Candidate Configuration", R1-1611074, 3GPP TSG-RAN WG1 MEETING #86BIS, 4 November 2016 (2016-11-04), Lisbon, Portugal, XP051182276 *
NOKIA: "On the PDCCH Search Space Structure for NR", R1-1701011, 3GPP TSG-RAN WG1#NR, 10 January 2017 (2017-01-10), Spokane, WA, USA, XP051203301 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018262868B2 (en) * 2017-05-02 2022-12-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses for detecting control channels in wireless communication systems
US11902209B2 (en) 2017-05-02 2024-02-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatuses for detecting control channels in wireless communication systems
CN109495234A (zh) * 2019-01-08 2019-03-19 北京北方烽火科技有限公司 一种下行物理控制信道的检测方法及装置
CN109495234B (zh) * 2019-01-08 2021-07-06 武汉虹信科技发展有限责任公司 一种物理下行控制信道的检测方法及装置

Also Published As

Publication number Publication date
US10959219B2 (en) 2021-03-23
US20200008180A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018143777A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2018151533A1 (ko) 무선 통신 시스템에서, 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016043557A1 (en) Method and apparatus for configuring bandwidth including direct current subcarrier for low cost user equipment in wireless communication system
WO2016159697A1 (en) Method and apparatus for configuring frequency hopping pattern for mtc ue in wireless communication system
WO2018203621A1 (ko) 무선 통신 시스템에서 dm-rs의 송수신 방법 및 이를 위한 장치
WO2012128490A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
WO2018199684A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2017204511A1 (en) Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2011145823A2 (ko) 다중 캐리어를 위한 캐리어 지시 필드의 구성 방법 및 장치
WO2018221882A1 (ko) 무선 통신 시스템에서, 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2016093621A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2014185674A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2016159740A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2013066084A2 (ko) 하향링크 제어채널 모니터링 방법 및 무선기기
WO2013115571A1 (ko) Mtc 단말을 위한 연결 설정 방법 및 장치
WO2013151396A1 (ko) 무선통신 시스템에서 반송파 집성 방법 및 장치
WO2016048100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2012124923A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 방법 및 이를 위한 장치
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2012086883A1 (ko) 캐리어 접합 시스템에서, 컴포넌트 캐리어 할당 방법 및 장치
WO2013147532A1 (ko) 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
WO2018093103A1 (ko) 가용 자원에 대한 정보를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747659

Country of ref document: EP

Kind code of ref document: A1