WO2018143428A1 - 光トランシーバおよび変調制御方法 - Google Patents
光トランシーバおよび変調制御方法 Download PDFInfo
- Publication number
- WO2018143428A1 WO2018143428A1 PCT/JP2018/003651 JP2018003651W WO2018143428A1 WO 2018143428 A1 WO2018143428 A1 WO 2018143428A1 JP 2018003651 W JP2018003651 W JP 2018003651W WO 2018143428 A1 WO2018143428 A1 WO 2018143428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bias voltage
- optical
- mode
- phase
- offset value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
Definitions
- the present invention relates to modulation of an optical signal, and more particularly to a technique for correcting an optimum operating point of an optical modulator.
- the optical signal is generated by phase-modulating the light output from an ILTA (Integrable Tunable Laser Assembly), which is a light source, with a Mach-Zehnder type LN modulator using an LN (Lithium Niobate: LiNbO 3 ) crystal. Generated.
- ILTA Integrable Tunable Laser Assembly
- LN Lithium Niobate: LiNbO 3
- the optical modulator in the digital coherent system is controlled by applying a bias for controlling the three components in-phase component I (In-Phase), quadrature component Q (Quadrature) and phase component Ph (Phase). Is performed so that is output.
- Is in-phase component
- Q quadrature component
- Ph phase component Ph
- Is performed so that is output.
- a phenomenon in which the Q-phase component slightly deviates from the optimum value also occurs due to the influence of the I-phase component in the optical modulator.
- Such deviations are often resolved by manually offsetting the bias from the convergence point.
- the optimum bias of the I-phase component, the Q-phase component, and the Ph component varies due to deterioration over time, it is necessary to optimize the amount of offset according to the variation of the optimum bias.
- Patent Document 1 relates to an optical transmitter including an MZ type optical modulator having a function of correcting a deviation from an optimum bias.
- the optical modulator disclosed in Patent Document 1 changes the bias voltage applied to the optical modulator and measures the output light while sweeping the operating point of the optical modulator to determine the optimum bias compensation amount.
- Patent Document 2 and Patent Document 3 disclose techniques related to optimization of the bias voltage of the optical modulator of the optical transmitter similar to Patent Document 1.
- Patent Document 1, Patent Document 2 and Patent Document 3 are not sufficient in the following points.
- Patent Document 1, Patent Document 2 and Patent Document 3 the bias voltage of the Mach-Zehnder optical modulator is optimized. Regarding the influence of the I-phase component, the Q-phase component and the Ph component on each other, Not considered. For this reason, in Patent Document 1, Patent Document 2, and Patent Document 3, the I-phase component, the Q-phase component, and the Ph component affect each other, which may cause the operating point of the optical modulator to deviate from the optimum value. Therefore, the techniques of Patent Document 1, Patent Document 2 and Patent Document 3 are techniques for optimizing the bias voltage applied to the optical modulator with high accuracy when the characteristic variation of the optical modulator occurs. Not enough.
- the present invention suppresses the influence of the interaction of each component when the characteristic variation of the optical modulator occurs, and optimizes the bias voltage applied to the optical modulator with high accuracy. It is an object of the present invention to provide an optical transceiver that can be used and a control method thereof.
- the optical transceiver of the present invention includes optical modulation means, control means, and optimization means.
- the light modulation means demultiplexes the input light into light of an I (In-Phase) phase component and a Q (Quadrature) phase component, and applies a bias voltage to each of the demultiplexed light to perform modulation.
- the control unit controls the bias voltage applied in the light modulation unit for each component to be modulated.
- the optimization means optimizes the bias voltage in the first mode and the second mode.
- the first mode is a mode for setting a first bias voltage in which the bias voltage is optimized based on the optical signal output from the light modulation means.
- the second mode is a mode for optimizing the bias voltage by adjusting the offset amount from the first bias voltage for each component to be modulated based on the quality of the optical signal. Further, the control unit controls application of the bias voltage in the light modulation unit based on the second bias voltage obtained by correcting the first bias voltage set by the optimization unit based on the offset value.
- the modulation control method of the present invention demultiplexes input light into I-phase component and Q-phase component light.
- modulation is performed by applying a bias voltage controlled for each component to be modulated to each of the demultiplexed light.
- the modulation control method of the present invention outputs an optical signal obtained by combining modulated I-phase components and Q-phase components.
- the bias voltage is optimized by the first mode and the second mode.
- the first mode is a mode for setting a first bias voltage in which the bias voltage is optimized based on the optical signal output from the light modulation means.
- the second mode is a mode in which the bias voltage is optimized by adjusting the offset value from the first bias voltage for each component to be modulated based on the quality of the optical signal.
- the modulation control method of the present invention controls the application of the bias voltage based on the second bias voltage obtained by correcting the first bias voltage based on the offset value.
- the present invention it is possible to optimize the bias voltage to be applied to the optical modulator with high accuracy while suppressing the influence of the interaction of each component even if characteristic variation or the like occurs.
- FIG. 1 shows an outline of the configuration of the optical transceiver of this embodiment.
- the optical transceiver of this embodiment includes an optical modulation unit 1, a control unit 2, and an optimization unit 3.
- the light modulation means 1 is a means for demultiplexing the input light into light of an I (In-Phase) phase component and a Q (Quadrature) phase component, and a bias voltage is applied to each of the demultiplexed light to modulate it.
- the control unit 2 controls the bias voltage applied in the light modulation unit 1 for each component to be modulated.
- the optimization unit 3 optimizes the bias voltage in the first mode and the second mode.
- the first mode is a mode in which a first bias voltage is set by optimizing the bias voltage based on the optical signal output from the light modulation unit 1.
- the second mode is a mode in which the bias voltage is optimized by adjusting the offset value from the first bias voltage for each component to be modulated based on the quality of the optical signal.
- the control unit 2 controls the application of the bias voltage in the light modulation unit 1 based on the second bias voltage obtained by correcting the first bias voltage set by the optimization unit 3 based on the offset value.
- the optical transceiver according to the present embodiment optimizes the bias voltage in two stages: the first mode in which the optimization unit 3 sets the first bias voltage and the second mode in which the offset value of the first bias voltage is set. It has become.
- the control unit 2 controls the bias voltage applied to each component in the optical modulation unit 1 based on the bias voltage optimized by the optimization unit 3 in two stages.
- the optical transceiver of this embodiment can optimize the bias voltage even when there is an interaction with each component by optimizing the offset value for each component in the second mode.
- the optical transceiver according to the present embodiment can optimize the bias voltage applied to the optical modulator with high accuracy while suppressing the influence of the interaction of each component even if characteristic variation or the like occurs.
- FIG. 2 shows an outline of the configuration of the optical transceiver 10 of the present embodiment.
- the optical transceiver 10 of the present embodiment includes a light source unit 11, an optical modulation unit 12, a control unit 13, a storage unit 14, an optical reception unit 15, and a signal processing unit 16.
- the optical transceiver 10 generates a function of an optical transmitter that generates and outputs an optical signal to be transmitted via a transmission path based on an external signal input from the outside, and receives the function via the transmission path. It has a function as an optical receiver that decodes an optical signal and outputs it as an external signal.
- the optical transceiver 10 of this embodiment is an optical transceiver compatible with a digital coherent optical communication system. That is, the optical transceiver 10 according to the present embodiment uses the optical modulation unit 12 based on the data encoded by the signal processing unit 16 based on the external signal, and the Q phase that is the quadrature phase component of the I phase and the I phase. The light is modulated and output.
- the optical receiver 15 performs coherent detection of an optical signal received as an optical reception signal via a transmission path
- the signal processing unit 16 performs signal processing such as decoding. Is output as an external signal.
- the light source unit 11 has a function as a light source that outputs light of a carrier wave when transmitting an optical signal.
- the light source unit 11 of the present embodiment is configured as an ITLA (Integrable Tunable Laser Assembly).
- the light source unit 11 outputs continuity (CW: Continuous Wave).
- the light output from the light source unit 11 is input to the light modulation unit 12.
- the optical modulation unit 12 is an optical modulator that performs phase modulation on the CW light input from the light source unit 11 and generates an optical signal based on the control of the control unit 13.
- a Mach-Zehnder type LN (Lithium Niobate: LiNbO 3 ) modulator is used for the light modulator 12 of the present embodiment.
- the light modulator 12 may be replaced with another modulator using the electro-optic effect instead of the LN modulator.
- FIG. 3 schematically shows the configuration of the optical modulator of the present embodiment.
- the optical modulator includes two modulation units, an I-Ch modulation unit and a Q-Ch modulation unit, for the light branched into two optical paths.
- the optical modulator is a control in which a control signal based on code data encoded for transmission on a transmission path in each modulation unit is input as an I-Ch modulation signal and a Q-Ch modulation signal, respectively. It has a terminal.
- the optical modulator also includes a bias application terminal to which a control signal for applying a bias voltage in each modulator is input as an I-Ch bias voltage signal and a Q-Ch bias voltage signal.
- the phase adjustment unit that adjusts the phase difference between the I-phase and Q-phase signals includes a bias application terminal to which a Ph-Ch bias voltage signal is input as a control signal for controlling the bias voltage.
- the optical modulator modulates the input light in a state where a bias voltage is applied based on each control signal, and multiplexes and outputs so that the I-phase component and the Q-phase component are orthogonal.
- the light modulation unit 12 of the present embodiment corresponds to the light modulation unit 1 of the first embodiment.
- the control unit 13 has a function of controlling the modulation of the output light from the light source unit 11 in the light modulation unit 12 and a function of optimizing the bias voltage applied to the light modulation unit 12.
- FIG. 4 shows the configuration of the control unit 13 of the present embodiment. As shown in FIG. 4, the control unit 13 of this embodiment includes an optimization processing unit 21 and a modulator control unit 22.
- the optimization processing unit 21 has a function of optimizing the bias voltage applied to the light modulation unit 12.
- the optimization processing unit 21 determines the optimum value of the bias voltage to be applied to the I-phase and Q-phase modulation units and the phase modulation unit based on the waveform of the electrical signal input from the signal processing unit 16 and the reception quality of the signal. Set.
- the optimization processing unit 21 sets the optimum value of each bias voltage in two stages: A mode for optimizing the signal waveform and B mode for minimizing the signal BER (Bit Error Ratio). In other words, when the A mode is the first mode and the B mode is the second mode, the optimization processing unit 21 optimizes the reference value of the bias voltage in the first mode, and then performs the second mode. Optimize the offset value.
- the optimization processing unit 21 In the optimization in the A mode, the optimization processing unit 21 superimposes a low-frequency test signal on the optical signal in the optical modulation unit 12 via the modulator control unit 22. In the A mode, the optimization processing unit 21 sweeps each bias voltage, determines the I-phase and Q-phase signal waveforms and the bias voltage at which the phase difference between the I-phase and the Q-phase is in an ideal state. The bias voltage when it is determined to be a typical state is used as a reference value for the bias voltage of each component. The optimization processing unit 21 acquires the waveform of the low-frequency signal output from the light modulation unit 12 as an electrical signal via the light receiving unit 15 and the signal processing unit 16.
- the optimization processing unit 21 applies the bias voltage obtained by adding the offset value to the reference value of the bias voltage set in the A mode in the optical modulation unit 12 while changing the offset value. .
- the optimization processing unit 21 changes the offset value for each component, and monitors the change in the BER when the offset value is changed.
- the optimization processing unit 21 sets an offset value that minimizes the BER for each component as an offset value in the I-phase and Q-phase modulation units and the phase modulation unit.
- the optimization processing unit 21 writes data necessary for arithmetic processing for setting the reference value and offset value of the bias voltage and the set reference value and offset data of the bias voltage in the storage unit 14. In addition, the optimization processing unit 21 reads data necessary for arithmetic processing and control of the light modulation unit 12 from the storage unit 14.
- the optimization processing unit 21 is configured by, for example, a CPU (Central Processing Unit) that performs arithmetic processing.
- the optimization processing unit 21 of the present embodiment corresponds to the optimization unit 3 of the first embodiment.
- the modulator control unit 22 is a control circuit that controls the light modulation unit 12 based on the processing result of the optimization processing unit 21.
- the modulator control unit 22 outputs to the optical modulation unit 12 a bias voltage signal that controls application of a bias voltage in the I-Ch modulation unit, Q-ch modulation unit, and phase modulation unit of the optical modulation unit 12. Further, the modulator control unit 22 outputs a control signal for performing modulation in the I-Ch modulation unit and the Q-ch modulation unit of the optical modulation unit 12 to the optical modulation unit 12.
- the modulator control unit 22 controls the optical modulation unit 12 so that modulation based on code data input from the signal processing unit 16 is performed.
- the modulator controller 22 controls the optical modulator 12 so that a low-frequency test signal is superimposed on the optical signal based on the control of the optimization processor 21. Control.
- the modulator control unit 22 of the present embodiment corresponds to the control unit 2 of the first embodiment.
- the storage unit 14 has a function of storing each data necessary for controlling the light modulation unit 12 and optimizing the bias voltage.
- the storage unit 14 stores and reads data based on the control of the control unit 13.
- the storage unit 14 is configured by a nonvolatile semiconductor memory element capable of writing and reading data, such as a flash memory.
- the optical receiver 15 has a function of receiving an optical signal, converting it into an electrical signal, and outputting it to the signal processor 16.
- the optical receiver 15 receives an optical signal transmitted from an optical transmission device facing through the transmission path.
- the optical signal transmitted from the optical transceiver 10 is input to the optical receiver 15 after being folded back by a relay device or the like.
- the optical receiver 15 has a function of performing coherent detection of an optical reception signal, and includes a local light source and a light receiving element for the optical reception signal.
- the signal processor 16 has a function of processing a signal input from the optical receiver 15 and an external signal input from the outside.
- FIG. 5 shows the configuration of the signal processing unit 16 of the present embodiment. As shown in FIG. 5, the signal processing unit 16 of this embodiment includes a reception signal processing unit 31, a transmission signal processing unit 32, and a BER measurement unit 33.
- the received signal processing unit 31 separates the test signal for optimizing the bias voltage received by the optical receiving unit 15 into an I-phase component signal and a Q-phase component signal, and outputs them to the control unit 13.
- the reception signal processing unit 31 performs processing such as decoding of the optical reception signal received by the optical reception unit 15 and converts it into a signal to be output to the outside.
- the reception signal processing unit 31 outputs a signal converted into a signal to be output to the outside as an external signal.
- the transmission signal processing unit 32 converts an external signal input from the outside into code data for transmission through the transmission path, and outputs the code data to the control unit 13.
- the BER measuring unit 33 monitors the signal processing performed by the received signal processing unit 31 and calculates the BER of the optical signal input from the optical receiving unit 15.
- the BER measurement unit 33 outputs the calculated BER value to the control unit 13 based on a request from the control unit 13.
- the BER measurement unit 33 calculates the BER of each of the I-phase signal and the Q-phase signal and the BER of the Ph component. For example, the BER measurement unit 33 calculates the BER of the Ph component indicating the phase difference between the I phase and the Q phase by comparing the phase component of the detected signal with a predetermined reference to determine the presence or absence of an error.
- the signal processing unit 16 is configured by, for example, a DSP (Digital Signal Processor).
- the reception signal processing unit 31, the transmission signal processing unit 32, and the BER measurement unit 33 may be formed as circuit patterns on the same substrate, or may be formed as circuit patterns on different substrates. . Further, the signal processing of the signal processing unit 16 may be executed by a program executed using a CPU or a semiconductor memory element.
- FIG. 6 shows a main flow when the bias voltage is optimized.
- FIG. 7 shows an operation flow when performing optimization in the A mode.
- FIG. 8 shows an operation flow when performing optimization in the B mode.
- FIG. 9 shows an operation flow when an optimum offset value is set by feedback control in the B mode processing.
- the optical transceiver 10 When the optical transceiver 10 starts operation, the optical transceiver 10 performs the operation of optimizing the bias voltage shown in FIG.
- the control unit 13 When the operation for optimizing the bias voltage is started, the control unit 13 performs the control in the A mode and optimizes the bias voltage applied in the optical modulation unit 12 (step 111).
- the operation shown in FIG. 7 is executed.
- the control unit 13 controls the optical modulation unit 12 to superimpose a low-frequency test signal on the optical signal to be output.
- the control unit 13 sweeps the value of the bias voltage applied to the light modulation unit 12 and performs optimization control of the bias voltage based on the waveform change of the low frequency test signal input via the signal processing unit 16. (Step 121). For example, the control unit 13 sets the voltage at which the amplitude of the low-frequency test signal is minimum as the optimum value of the bias voltage.
- the low-frequency signal superimposed on the optical signal by the optical modulator 12 is turned back by a relay device or the like and input to the optical receiver 15.
- the communication management system transmits the optical signal from its own device by using a relay device having a function of returning the optical signal to the path toward the optical signal transmission source based on the control.
- the received optical signal can be received by the optical receiver 15.
- the optical signal received by the optical receiver 15 is converted into an electrical signal and input to the signal processor 16.
- the low frequency signal input to the signal processing unit 16 is processed by the signal processing unit 16 and input to the control unit 13.
- the control unit 13 determines whether the applied bias voltage is optimal based on the fluctuation of the waveform data.
- control unit 13 continues the operation of optimizing the bias voltage in the A mode.
- Step 122 If it is determined that the bias voltage is optimal (Yes in Step 122), the control unit 13 stores the value of the bias voltage determined to be optimal in the storage unit 14 (Step 123). When the bias voltage value determined to be optimal is stored in the storage unit 14, the control unit 13 stores the initial value of the offset value of the bias voltage in the storage unit 14 (step 124). The initial value of the offset value is set as 0.
- control unit 13 ends the control of optimizing the bias voltage in the A mode in step 111 in FIG. 6, and controls the optimization of the bias voltage in the B mode in step 112. To start.
- the operation shown in FIG. 8 is executed.
- the control unit 13 reads the value of BER from the signal processing unit 16 (step 131).
- the signal processing unit 16 measures the BER of the signal received via the optical receiving unit 15.
- the control unit 13 compares the BER value with a preset reference value.
- the reference value of BER is set as a value sufficient as the reception quality of the optical signal.
- the control unit 13 ends the control for optimizing the bias voltage in the B mode.
- the deviation from the optimum bias is also within the reference (Yes in step 113), so the control unit 13 ends the operation of optimizing the bias voltage and determines the optimum bias voltage.
- the light modulator 12 is controlled.
- control unit 13 starts control of an optimization operation for adjusting the offset value for each component by feedback control (step 133).
- control unit 13 When the control unit 13 starts the optimization operation of the B mode for adjusting the offset value for each component, the control unit 13 reads the bias reference value and the offset value data from the storage unit 14 (step 141). When the B mode is first executed immediately after startup, 0 is set as the offset value.
- control unit 13 controls the light modulation unit 12 by applying a bias voltage obtained by adjusting the bias reference value using the offset value to the bias terminal of the light modulation unit 12. (Step 142).
- the control unit 13 reads BER data from the signal processing unit 16 (step 143).
- the BER data read from the signal processing unit 16 is a BER obtained by controlling the light modulation unit 12 by applying a bias voltage adjusted by the offset value.
- the control unit 13 determines whether the BER read from the signal processing unit 16 is within the reference. When the BER is within the reference (Yes in Step 144), the control unit 13 stores the offset value in the storage unit 14 (Step 148). The operations from step 141 to step 148 are sequentially performed on the I-phase component, the Q-phase component, and the Ph component.
- the control unit 13 compares the BER newly acquired from the signal processing unit 16 with the BER acquired last time. When the newly acquired BER is equal to or higher than the previously acquired BER (No in step 145), the control unit 13 increases or decreases the offset value by the same amount in the opposite direction to the previous time.
- the increase / decrease direction and increase / decrease amount of the offset value when the offset value is first increased / decreased are set in advance.
- the control unit 13 adjusts the -1 mV offset value obtained by reversing the positive and negative values from the previous time.
- the control unit 13 stores the adjusted value in the storage unit 14.
- the control unit 13 performs the operation from step 143 again.
- control unit 13 increases or decreases the offset value by the same amount in the same direction as the previous time, and applies a bias voltage to the light modulation unit 12. Is applied (step 146).
- the control unit 13 increases the +1 mV offset value in the same manner.
- the control unit 13 stores the adjusted value in the storage unit 14.
- the control unit 13 performs the operation from step 143 again.
- the control unit 13 reads BER data from the signal processing unit 16 (step 143).
- the BER data read from the signal processing unit 16 is a BER obtained by controlling the light modulation unit 12 by applying a bias voltage adjusted by the offset value.
- the control unit 13 determines whether the BER read from the signal processing unit 16 is within the reference. When the BER is within the reference (Yes in Step 144), the control unit 13 stores the offset value in the storage unit 14 (Step 148). The operations from step 141 to step 148 are sequentially performed on the I-phase component, the Q-phase component, and the Ph component. When the BER is not within the reference (No in Step 144), the control unit 13 further varies the offset value and continues the operation of adjusting the offset value.
- control unit 13 ends the feedback control in step 112 of FIG. 8 and ends the control for optimizing the bias value in the B mode.
- the control unit 13 confirms that the bias voltage determined to be optimal, that is, the bias voltage obtained by correcting the reference value of the bias voltage with the offset value is within the reference.
- the control unit 13 performs again from the operation of optimizing the reference value of the bias voltage in the A mode.
- control unit 13 ends the operation of optimizing the bias voltage, and controls the light modulation unit 12 with the bias voltage determined to be optimal.
- the optical transceiver of the present embodiment optimizes the bias voltage in two stages: optimization of the bias voltage reference value by the A mode and optimization of the offset value from the bias voltage reference value by the B mode. .
- the optical transceiver 10 optimizes the reference value of the bias voltage in the A mode, and if the BER is within the reference when the control in the A mode is finished, the operation of optimizing the bias voltage is completed.
- the optical transceiver 10 optimizes the offset value of the bias voltage in the B mode.
- Optimize the bias voltage in consideration of the interaction of the I-phase component, the Q-phase component and the Ph component in the B mode that is, correct for the deviation of the optimum bias voltage as follows.
- the reference values of the bias voltages of the I-phase component, Q-phase component, and Ph component are set in the A mode
- the BER of the I-phase component, Q-phase component, and Ph component is confirmed.
- the offset value in the B mode is optimized for components whose BER is not the reference. For example, when the I-phase component is out of the standard and the Q-phase component and the Ph component satisfy the standard, only the I-phase component is optimized for the offset value by the B mode.
- the optical transceiver 10 of this embodiment receives an optical signal output from its own apparatus by the optical receiving unit 15, and the control unit 13 optimizes the reference value of the offset voltage based on the signal waveform as the A mode. .
- the optical transceiver 10 of the present embodiment optimizes the offset value of each component in the B mode based on the BER, that is, the signal quality, after optimization in the A mode.
- the optical transceiver 10 of the present embodiment can correct the bias voltage shift due to the interaction of the I-phase, the Q-phase, and the Ph component by optimizing the offset value of each component. Therefore, the optical transceiver 10 of the present embodiment can optimize the bias voltage with high accuracy even when there is an interaction between the I phase, the Q phase, and the Ph component.
- the optical transceiver 10 according to the present embodiment can optimize the bias voltage applied to the optical modulator with high accuracy while suppressing the influence of the interaction of each component even if characteristic variation or the like occurs.
- the optical transceiver 10 of the second embodiment acquires the data of the signal waveform and the reception quality by receiving the optical signal returned by the relay device after transmission from the own device, and obtains the reference value of the offset voltage. And offset value optimization.
- feedback control may be performed in the optical transceiver to optimize the reference value of the bias voltage in the A mode.
- the bias voltage is optimized based on the result of receiving the optical signal branched at the output portion of the light modulation unit 12 by the light receiving element.
- the reference value of the bias voltage in the A mode may be optimized based on the waveform of the optical signal received by the light receiving element provided in the light modulation unit.
- the optical transceiver 10 of the second embodiment acquires the BER information of the received signal by receiving the optical signal transmitted from the own device by the own device, but is received by the opposite optical transceiver via the transmission path.
- the offset value may be optimized based on the BER at the time. In such a configuration, signal information for optimizing the offset value is shared in advance between the optical transceiver on the receiving side and the transmitting side.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Nonlinear Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
[課題]特性変動等が生じても各成分の相互作用を抑制しつつ光変調器に印加するバイアス電圧を最適化することができる光トランシーバを提供する。 [解決手段]光トランシーバを、光変調手段1と、制御手段2と、最適化手段3とを備える構成とする。光変調手段1は、I相成分とQ相成分の光にそれぞれの光にバイアス電圧を印加して変調を施す。制御手段2は、バイアス電圧を、変調を施す成分ごとに制御する。最適化手段3は、第1のモードと第2のモードによってバイアス電圧を最適化する。第1のモードは、光信号に基づいてバイアス電圧を最適化した第1のバイアス電圧を設定するモードである。第2のモードは、第1のバイアス電圧からのオフセット値を、光信号の品質を基に変調を施す成分ごとに調整するモードである。また、制御手段2は、第1のバイアス電圧をオフセット値に基づいて補正した第2のバイアス電圧を基に、バイアス電圧の印加を制御する。
Description
本発明は、光信号の変調に関するものであり、特に、光変調器の最適な動作点を補正する技術に関するものである。
基幹系光ネットワークを中心に、大容量の伝送が可能なデジタルコヒーレント方式の光通信ネットワークシステムが用いられるようになっている。デジタルコヒーレント方式では、光源であるILTA(Integrable Tunable Laser Assembly)から出力した光に、LN(Lithium Niobate:LiNbO3)結晶を用いたマッハツェンダー型のLN変調器で位相変調を施すことで光信号が生成される。
デジタルコヒーレント方式における光変調器の制御は、同相成分I(In-Phase)、直交位相成分Q(Quadrature)および位相成分Ph(Phase)3つの成分を制御するバイアスを印加することで最適な光波形が出力されるように行われる。そのような光変調器では、光変調器内のI相成分の影響によって、Q相成分が最適値よりわずかにずれる現象も生じる。そのようなずれの解決は、収束点から手動でバイアスにオフセットをかけることで行われることが多い。しかし、経年劣化によって、I相成分、Q相成分およびPh成分の最適バイアスが変動するため、最適バイアスが変動に合わせてオフセットの量を最適化する必要がある。そのため、光変調器において、経年劣化等による最適値の変動の影響を抑制するため、I相成分、Q相成分およびPh成分の最適バイアスやオフセット値を最適化する技術の開発が行われている。そのような光変調器におけるI相成分、Q相成分およびPh成分の最適バイアスやオフセット値を最適化する技術としては、例えば、特許文献1のような技術が開示されている。
特許文献1は、最適バイアスからのずれを補正する機能を有するMZ型光変調器を備えた光送信機に関するものである。特許文献1の光変調器は、光変調器に印加するバイアス電圧を変化させ、光変調器の動作点を掃引しながら出力光の計測を行って最適なバイアスの補償量を決定している。また、特許文献2および特許文献3にも特許文献1と同様の光送信機の光変調器のバイアス電圧の最適化に関する技術が開示されている。
しかしながら、特許文献1、特許文献2および特許文献3の技術は次のような点で十分ではない。特許文献1、特許文献2および特許文献3では、マッハツェンダー型光変調器のバイアス電圧の最適化を行っているが、I相成分、Q相成分およびPh成分の各成分が互いに及ぼす影響については考慮されていない。そのため、特許文献1、特許文献2および特許文献3では、I相成分、Q相成分およびPh成分が互いに影響を及ぼすことで、光変調器の動作点が最適値からずれる恐れがある。そのため、特許文献1、特許文献2および特許文献3の技術は、光変調器の特性変動等が生じた際に、光変調器に印加するバイアス電圧を高い精度で最適化するための技術としては十分ではない。
本発明は、上記の課題を解決するため、光変調器の特性変動等が生じた際に、各成分の相互作用の影響を抑制し、光変調器に印加するバイアス電圧を高い精度で最適化することができる光トランシーバおよびその制御方法を提供することを目的としている。
上記の課題を解決するため、本発明の光トランシーバは、光変調手段と、制御手段と、最適化手段を備えている。光変調手段は、入力された光をI(In-Phase)相成分とQ(Quadrature)相成分の光に分波する手段と、分波したそれぞれの光にバイアス電圧を印加して変調を施す手段と、変調を施したI相成分とQ相成分の光を合波した光信号を出力する手段とを有する。制御手段は、光変調手段において印加されるバイアス電圧を、変調を施す成分ごとに制御する。最適化手段は、第1のモードと第2のモードによってバイアス電圧を最適化する。第1のモードは、光変調手段から出力される光信号に基づいてバイアス電圧を最適化した第1のバイアス電圧を設定するモードである。第2のモードは、第1のバイアス電圧からのオフセット量を、光信号の品質を基に変調を施す成分ごとに調整することでバイアス電圧を最適化するモードである。また、制御手段は、最適化手段によって設定された第1のバイアス電圧をオフセット値に基づいて補正した第2のバイアス電圧を基に、光変調手段におけるバイアス電圧の印加を制御する。
本発明の変調制御方法は、入力された光をI相成分とQ相成分の光に分波する。本発明の変調制御方法は、分波したそれぞれの光に変調を施す成分ごとに制御したバイアス電圧を印加して変調を施す。本発明の変調制御方法は、変調を施したI相成分とQ相成分の光を合波した光信号を出力する。本発明の変調制御方法は、第1のモードと、第2のモードによってバイアス電圧を最適化する。第1のモードは、光変調手段から出力される光信号に基づいてバイアス電圧を最適化した第1のバイアス電圧を設定するモードである。第2のモードは、第1のバイアス電圧からのオフセット値を、光信号の品質を基に変調を施す成分ごとに調整することでバイアス電圧を最適化するモードである。本発明の変調制御方法は、第1のバイアス電圧をオフセット値に基づいて補正した第2のバイアス電圧を基に、バイアス電圧の印加を制御する。
本発明によると、特性変動等が生じても、各成分の相互作用の影響を抑制しつつ光変調器に印加するバイアス電圧を高い精度で最適化することができる。
(第1の実施形態)
本発明の第1の実施形態について図を参照して詳細に説明する。図1は、本実施形態の光トランシーバの構成の概要を示したものである。本実施形態の光トランシーバは、光変調手段1と、制御手段2と、最適化手段3を備えている。光変調手段1は、入力された光をI(In-Phase)相成分とQ(Quadrature)相成分の光に分波する手段と、分波したそれぞれの光にバイアス電圧を印加して変調を施す手段と、変調を施したI相成分とQ相成分の光を合波した光信号を出力する手段とを有する。制御手段2は、光変調手段1において印加されるバイアス電圧を、変調を施す成分ごとに制御する。最適化手段3は、第1のモードと第2のモードによってバイアス電圧を最適化する。第1のモードは、光変調手段1から出力される光信号に基づいてバイアス電圧を最適化した第1のバイアス電圧を設定するモードである。第2のモードは、第1のバイアス電圧からのオフセット値を、光信号の品質を基に変調を施す成分ごとに調整することでバイアス電圧を最適化するモードである。また、制御手段2は、最適化手段3によって設定された第1のバイアス電圧をオフセット値に基づいて補正した第2のバイアス電圧を基に、光変調手段1におけるバイアス電圧の印加を制御する。
本発明の第1の実施形態について図を参照して詳細に説明する。図1は、本実施形態の光トランシーバの構成の概要を示したものである。本実施形態の光トランシーバは、光変調手段1と、制御手段2と、最適化手段3を備えている。光変調手段1は、入力された光をI(In-Phase)相成分とQ(Quadrature)相成分の光に分波する手段と、分波したそれぞれの光にバイアス電圧を印加して変調を施す手段と、変調を施したI相成分とQ相成分の光を合波した光信号を出力する手段とを有する。制御手段2は、光変調手段1において印加されるバイアス電圧を、変調を施す成分ごとに制御する。最適化手段3は、第1のモードと第2のモードによってバイアス電圧を最適化する。第1のモードは、光変調手段1から出力される光信号に基づいてバイアス電圧を最適化した第1のバイアス電圧を設定するモードである。第2のモードは、第1のバイアス電圧からのオフセット値を、光信号の品質を基に変調を施す成分ごとに調整することでバイアス電圧を最適化するモードである。また、制御手段2は、最適化手段3によって設定された第1のバイアス電圧をオフセット値に基づいて補正した第2のバイアス電圧を基に、光変調手段1におけるバイアス電圧の印加を制御する。
本実施形態の光トランシーバは、最適化手段3において第1のバイアス電圧を設定する第1のモードと、第1のバイアス電圧のオフセット値を設定する第2のモードの2段階でバイアス電圧を最適化している。本実施形態の光トランシーバは、最適化手段3が2段階で最適化したバイアス電圧を基に、制御手段2が光変調手段1において各成分に印加するバイアス電圧を制御している。本実施形態の光トランシーバは、第2のモードにおいて、成分ごとにオフセット値を最適化することで、各成分に相互作用があった場合にも、バイアス電圧をより最適化することができる。その結果、本実施形態の光トランシーバは、特性変動等が生じても各成分の相互作用の影響を抑制しつつ光変調器に印加するバイアス電圧を高い精度で最適化することができる。
(第2の実施形態)
本発明の第2の実施形態について図を参照して詳細に説明する。図2は、本実施形態の光トランシーバ10の構成の概要について示したものである。本実施形態の光トランシーバ10は、光源部11と、光変調部12と、制御部13と、記憶部14と、光受信部15と、信号処理部16を備えている。
本発明の第2の実施形態について図を参照して詳細に説明する。図2は、本実施形態の光トランシーバ10の構成の概要について示したものである。本実施形態の光トランシーバ10は、光源部11と、光変調部12と、制御部13と、記憶部14と、光受信部15と、信号処理部16を備えている。
本実施形態の光トランシーバ10は、外部から入力される外部信号を基に、伝送路を介して伝送する光信号を生成して出力する光送信機としての機能と、伝送路を介して受信する光信号の復号等を行って外部信号として出力する光受信機としての機能を有する。また、本実施形態の光トランシーバ10は、デジタルコヒーレント方式の光通信システムに対応した光トランシーバである。すなわち、本実施形態の光トランシーバ10は、外部信号を元に信号処理部16で符号化されたデータに基づいて、光変調部12において、I相と、I相の直交位相成分であるQ相の光に、それぞれ変調を施して出力する。また、本実施形態の光トランシーバ10は、光受信部15において、伝送路を介して光受信信号として受信する光信号のコヒーレント検波を行い、信号処理部16で復号等の信号処理を行った信号を外部信号として出力する。
光源部11は、光信号を送信する際の搬送波の光を出力する光源としての機能を有する。本実施形態の光源部11は、ITLA(Integrable Tunable Laser Assembly)として構成されている。光源部11は、連続(CW:Continuous Wave)を出力する。光源部11から出力された光は、光変調部12に入力される。
光変調部12は、制御部13の制御に基づいて、光源部11から入力されるCW光に位相変調を施して光信号を生成する光変調器である。本実施形態の光変調部12には、マッハツェンダー型のLN(Lithium Niobate:LiNbO3)変調器が用いられる。光変調部12には、LN変調器に代えて、電気光学効果を用いた他の変調器を用いてもよい。
図3は、本実施形態の光変調器の構成を模式的に示したものである。図3に示すように光変調器は、2つの光路に分岐された光にI-Ch変調部と、Q-Ch変調部の2つの変調部を備えている。光変調器は、それぞれの変調部において伝送路で伝送するための符号化が行われた符号データを基にした制御信号が、I-Ch変調信号およびQ-Ch変調信号としてそれぞれ入力される制御端子を備えている。また、光変調器は、それぞれの変調部においてバイアス電圧を印加するための制御信号がI-Chバイアス電圧信号、Q-Chバイアス電圧信号として入力されるバイアス印加端子を備えている。また、I相とQ相の信号の位相差を調整する位相調整部は、バイアス電圧を制御する制御信号としてPh-Chバイアス電圧信号が入力されるバイアス印加端子を備えている。光変調器は、各制御信号を基にバイアス電圧が印加された状態で、入力された光に変調を施し、I相成分とQ相成分が直交するように合波して出力する。また、本実施形態の光変調部12は、第1の実施形態の光変調手段1に相当する。
制御部13は、光変調部12における光源部11からの出力光の変調を制御する機能と、光変調部12に印加するバイアス電圧の最適化を行う機能を有する。図4は、本実施形態の制御部13の構成を示したものである。図4に示すとおり、本実施形態の制御部13は、最適化処理部21と、変調器制御部22を備えている。
最適化処理部21は、光変調部12に印加するバイアス電圧を最適化する機能を有する。最適化処理部21は、信号処理部16から入力される電気信号の波形と信号の受信品質を基に、I相およびQ相の変調部と位相変調部にそれぞれ印加するバイアス電圧の最適値を設定する。
最適化処理部21は、各バイアス電圧の最適値を、信号の波形を最適化するAモードと、信号のBER(Bit Error Ratio)を最小化するBモードの2段階によって設定する。すなわち、最適化処理部21は、Aモードを第1のモード、Bモードを第2のモードとすると、第1のモードによるバイアス電圧の基準値の最適化を行った後、第2のモードによるオフセット値の最適化を行う。
Aモードにおける最適化では、最適化処理部21は、変調器制御部22を介して光変調部12において光信号に低周波の試験信号を重畳する。Aモードにおいて、最適化処理部21は、各バイアス電圧を掃引し、I相およびQ相の信号の波形およびI相とQ相の位相差が理想的な状態になるバイアス電圧を判断し、理想的な状態と判断したときのバイアス電圧を各成分のバイアス電圧の基準値とする。最適化処理部21は、光変調部12から出力された低周波信号の波形を、光受信部15および信号処理部16を介して電気信号として取得する。
また、Bモードにおける最適化では、最適化処理部21は、Aモードにおいて設定されたバイアス電圧の基準値にオフセット値を加えたバイアス電圧を、オフセット値を変動させながら光変調部12において印加する。最適化処理部21は、成分ごとにオフセット値を変動させ、オフセット値を変動させた際にBERの変化を監視する。最適化処理部21は、成分ごとにBERが最小になるオフセット値を、I相およびQ相の変調部と、位相変調部におけるオフセット値としてそれぞれ設定する。
最適化処理部21は、バイアス電圧の基準値やオフセット値を設定する演算処理に必要なデータおよび設定したバイアス電圧の基準値およびオフセットのデータを記憶部14に書き込む。また、最適化処理部21は、演算処理や光変調部12の制御に必要なデータを記憶部14から読み出す。また、最適化処理部21は、例えば、演算処理を行うCPU(Central Processing Unit)によって構成されている。また、本実施形態の最適化処理部21は、第1の実施形態の最適化手段3に相当する。
変調器制御部22は、最適化処理部21の処理結果に基づいて、光変調部12を制御する制御回路である。変調器制御部22は、光変調部12のI-Ch変調部、Q-ch変調部および位相変調部におけるバイアス電圧の印加を制御するバイアス電圧信号を光変調部12に出力する。また、変調器制御部22は、光変調部12のI-Ch変調部およびQ-ch変調部において変調を施す際の制御信号を光変調部12に出力する。
変調器制御部22は、データ通信用の光信号の送信を行う場合には、信号処理部16から入力される符号データに基づいた変調が行われるように光変調部12を制御する。また、変調器制御部22は、バイアス電圧の最適化を行う際には、最適化処理部21の制御に基づいて、低周波の試験信号が光信号に重畳されるように光変調部12を制御する。また、本実施形態の変調器制御部22は、第1の実施形態の制御手段2に相当する。
記憶部14は、光変調部12の制御およびバイアス電圧の最適化に必要な各データを記憶する機能を有する。記憶部14は、制御部13の制御に基づいて、データの保存および読み出しを行う。記憶部14は、例えば、フラッシュメモリ等のデータの書き込みと読み出しが可能な不揮発性の半導体メモリ素子によって構成されている。
光受信部15は、光信号を受信し、電気信号に変換して信号処理部16に出力する機能を有する。光受信部15には、伝送路を介して対向する光伝送装置から送信されてくる光信号が入力される。また、バイアス電圧の最適化を行う際に、光受信部15には、光トランシーバ10から送信した光信号が、中継装置等で折り返されて入力される。光受信部15は、光受信信号のコヒーレント検波を行う機能を有し、局発光源および光受信信号の受光素子等を備えている。
信号処理部16は、光受信部15から入力された信号および外部から入力される外部信号の処理を行う機能を有する。図5は、本実施形態の信号処理部16の構成を示したものである。図5に示すように本実施形態の信号処理部16は、受信信号処理部31と、送信信号処理部32と、BER計測部33を備えている。
受信信号処理部31は、光受信部15が受信したバイアス電圧の最適化のための試験信号をI相成分とQ相成分の信号に分離して制御部13に出力する。また、受信信号処理部31は、光受信部15が受信した光受信信号の復号等の処理を行って、外部に出力する信号に変換する。受信信号処理部31は、外部に出力する信号に変換した信号を外部信号として出力する。
送信信号処理部32は、外部から入力される外部信号を、伝送路で伝送する際の符号データに変換し、符号データを制御部13に出力する。
BER計測部33は、受信信号処理部31で行われる信号処理を監視し、光受信部15から入力された光信号のBERを算出する。BER計測部33は、算出したBERの値を制御部13の要求に基づいて制御部13に出力する。BER計測部33は、I相の信号、Q相の信号のそれぞれのBERと、Ph成分のBERを算出する。BER計測部33は、例えば、I相とQ相間の位相差を示すPh成分のBERを、検出した信号の位相成分と所定の基準を比較することで誤りの有無を判断して算出する。
信号処理部16は、例えば、DSP(Digital Signal Processor)によって構成されている。受信信号処理部31、送信信号処理部32およびBER計測部33は、同一の基板上に回路パターンとして形成されていてもよく、また、それぞれ別の基板上に回路パターンとして形成されていてもよい。また、信号処理部16の信号処理は、CPUや半導体メモリ素子を用いて実行されるプログラムによって実行されてもよい。
本実施形態の光トランシーバ10において、光変調部12に印加するバイアス電圧の最適化を行う際の動作について説明する。図6、図7、図8および図9は、本実施形態の光トランシーバ10において、バイアス電圧の最適化を行う際の動作フローを示したものである。動作フローを示す各図のうち図6は、バイアス電圧の最適化を行う際のメインフローを示している。図7は、Aモードによる最適化を行う際の動作フローを示している。図8は、Bモードによる最適化を行う際の動作フローを示している。また、図9は、Bモードの処理において、フィードバック制御によって最適なオフセット値を設定する際の動作フローを示している。
光トランシーバ10が動作を開始すると、光トランシーバ10は、図6に示されているバイアス電圧の最適化の動作を行う。バイアス電圧の最適化の動作を開始すると、制御部13は、Aモードで制御を行って光変調部12において印加するバイアス電圧の最適化を行う(ステップ111)。
Aモードによるバイアス電圧の最適化の動作が開始されると、図7に示す動作が実行される。制御部13は、Aモードによるバイアス電圧の最適化の動作を開始すると、光変調部12を制御して出力する光信号に低周波の試験信号を重畳する。制御部13は、光変調部12に印加されるバイアス電圧の値を掃引し、信号処理部16を介して入力される低周波の試験信号の波形変化を基にバイアス電圧の最適化制御を行う(ステップ121)。制御部13は、例えば、低周波の試験信号の振幅が最小となる電圧をバイアス電圧の最適値とする。
光変調部12で光信号に重畳された低周波の信号は、中継装置等で折り返されて光受信部15に入力される。例えば、バイアス電圧の最適化を行う際に、通信管理システムに制御に基づいて光信号を、光信号の送信元へ向かう側の経路に折り返す機能を有する中継装置を用いることで、自装置から送信した光信号を光受信部15で受信することができる。
光受信部15で受信された光信号は、電気信号に変換されて信号処理部16に入力される。信号処理部16に入力された低周波信号は、信号処理部16において処理されて制御部13に入力される。低周波信号の波形のデータを受け取ると、制御部13は、波形データの変動を基に印加したバイアス電圧が最適であるかを判断する。
最適なバイアス電圧ではないと判断すると(ステップ122でNo)、制御部13は、Aモードによるバイアス電圧の最適化の動作を継続する。
最適なバイアス電圧と判断すると(ステップ122でYes)、制御部13は、最適と判断したバイアス電圧の値を記憶部14に保存する(ステップ123)。最適と判断したバイアス電圧の値を記憶部14に保存すると、制御部13は、バイアス電圧のオフセット値の初期値を記憶部14に保存する(ステップ124)。オフセット値の初期値は、0として設定される。
バイアス電圧のオフセット値の初期値を保存すると、制御部13は、図6のステップ111のAモードによるバイアス電圧の最適化の制御を終了し、ステップ112のBモードによるバイアス電圧の最適化の制御を開始する。
Bモードによるバイアス電圧の最適化の動作が開始されると、図8に示す動作が実行される。Bモードによるバイアス電圧の最適化の動作を開始すると、制御部13は、信号処理部16からBERの値を読み出す(ステップ131)。信号処理部16は、光受信部15を介して受信した信号のBERを計測している。
BERの値を読み出すと、制御部13は、BERの値をあらかじめ設定された基準値と比較する。BERの基準値は、光信号の受信品質として十分な値として設定されている。
BERの値が基準値以内であるとき(ステップ132でYes)、制御部13は、Bモードによるバイアス電圧の最適化の制御を終了する。このとき、図6のステップ113において、最適バイアスからのずれも基準以内(ステップ113でYes)となるので、制御部13は、バイアス電圧の最適化の動作を終了し最適と判断したバイアス電圧で光変調部12を制御する。
BERの値が基準値よりも大きいとき(ステップ132でNo)、制御部13は、フィードバック制御による成分ごとのオフセット値を調整する最適化動作の制御を開始する(ステップ133)。
Bモードによるオフセット値のフィードバック制御が開始されると、図9に示す動作が実行される。
制御部13は、成分ごとのオフセット値を調整するBモードの最適化動作を開始すると、記憶部14からバイアスの基準値とオフセット値のデータを読み出す(ステップ141)。立ち上げ直後に、最初にBモードを実行した際には、オフセット値は、0が設定されている。
バイアスの基準値とオフセット値のデータを読み出すと、制御部13は、バイアスの基準値をオフセット値で調整したバイアス電圧を、光変調部12のバイアス端子に印加して光変調部12を制御する(ステップ142)。
バイアスの基準値をオフセット値で調整したバイアス電圧を印加して光変調部12を制御すると、制御部13は、信号処理部16からBERのデータを読み出す(ステップ143)。このとき、信号処理部16から読み出させるBERのデータは、オフセット値で調整したバイアス電圧を印加して光変調部12を制御したBERである。
信号処理部16からBERを読み出すと、制御部13は、信号処理部16から読み出したBERが基準内であるかを判断する。BERが基準内であるとき(ステップ144でYes)、制御部13は、記憶部14にオフセット値を保存する(ステップ148)。ステップ141からステップ148の動作は、I相成分、Q相成分およびPh成分それぞれに順に行われる。
BERが基準内ではないとき(ステップ144でNo)、制御部13は、信号処理部16から新たに取得したBERと、前回取得したBERとを比較する。新たに取得したBERが前回取得したBER以上であるとき(ステップ145でNo)、制御部13は、オフセット値を前回と逆方向に同じ量、増減させる。最初にオフセット値を増減させる際のオフセット値の増減方向と増減量はあらかじめ設定されている。
制御部13は、例えば、前回、オフセット値を+1mVとした場合には、前回と正負を逆転させた-1mVオフセット値を調整する。オフセット値を調整すると、制御部13は、調整した後の値を記憶部14に保存する。制御部13は、オフセット値を変動させると、ステップ143からの動作を再び、行う。
信号処理部16から新たに読み出したBERが前回のBERより小さいとき(ステップ145でYes)、制御部13は、オフセット値を前回と同じ方向に同じ量、増減させて光変調部12にバイアス電圧を印加する(ステップ146)。
制御部13は、例えば、前回、オフセット値を+1mVとして場合には、同様に、+1mVオフセット値を増やす。オフセット値を調整すると、制御部13は、調整した後の値を記憶部14に保存する。制御部13は、オフセット値を変動させると、ステップ143からの動作を再び、行う。
すなわち、オフセット値を変動させたバイアス電圧を光変調部12に印加すると、制御部13は、信号処理部16からBERのデータを読み出す(ステップ143)。このとき、信号処理部16から読み出させるBERのデータは、オフセット値で調整したバイアス電圧を印加して光変調部12を制御したBERである。
信号処理部16からBERを読み出すと、制御部13は、信号処理部16から読み出したBERが基準内であるかを判断する。BERが基準内であるとき(ステップ144でYes)、制御部13は、記憶部14にオフセット値を保存する(ステップ148)。ステップ141からステップ148の動作は、I相成分、Q相成分およびPh成分それぞれに順に行われる。BERが基準内ではないとき(ステップ144でNo)、制御部13は、オフセット値をさらに変動させてオフセット値の調整の動作を継続する。
ステップ148で全ての成分について記憶部14にオフセット値が保存されると、制御部13は、図8のステップ112におけるフィードバック制御を終了し、Bモードによるバイアス値の最適化の制御を終了する。
Bモードによるバイアス値の最適化の制御を終了すると、制御部13は、最適と判断したバイアス電圧、すなわち、バイアス電圧の基準値をオフセット値で補正したバイアス電圧が基準内である確認する。バイアス電圧が基準内ではないとき(ステップ113でNo)、制御部13は、Aモードによるバイアス電圧の基準値の最適化の動作から再度、実施する。
バイアス電圧が基準内のとき(ステップ113でYes)、制御部13は、バイアス電圧の最適化の動作を終了し、最適と判断したバイアス電圧で光変調部12を制御する。
バイアス電圧の基準値およびオフセット値の最適化について、より具体的な例を基に説明する。本実施形態の光トランシーバは、バイアス電圧をAモードによりバイアス電圧の基準値の最適化と、Bモードによるバイアス電圧の基準値からのオフセット値の最適化の2段階で、バイアス電圧を最適化する。
光トランシーバ10は、Aモードでバイアス電圧の基準値を最適化し、Aモードによる制御を終えた際にBERが基準内であれば、バイアス電圧の最適化の動作を完了する。
また、Aモードによる制御を終えた際にBERが基準よりも大きいとき、光トランシーバ10は、Bモードで、バイアス電圧のオフセット値を最適化する。
BモードにおけるI相成分、Q相成分およびPh成分の相互作用を考慮した、バイアス電圧の最適化、すなわち、最適バイアス電圧のずれに対する補正は、次のように行う。AモードでI相成分、Q相成分およびPh成分のバイアス電圧の基準値が設定されると、I相成分、Q相成分およびPh成分のBERの確認が行われる。I相成分、Q相成分およびPh成分のBERを確認すると、BERが基準外の成分についてBモードによるオフセット値の最適化が行われる。例えば、I相成分が基準外で、Q相成分およびPh成分が基準を満たしているとき、I相成分のみBモードによるオフセット値の最適化が行われる。
Bモードによる最適化の動作が終わると、オフセット値で調整したバイアス電圧が、Aモードで調整したバイアス電圧の基準値から所定の範囲内であるかを確認する。これは、Bモードで補正を行ったとしても補正後のバイアス電圧は、Aモードで調整した基準点の近傍にあることを確認して、Bモードによる補正が正常に行われたことを判断するために行われる。
本実施形態の光トランシーバ10は、自装置から出力した光信号を光受信部15で受信し、制御部13において信号の波形を基にオフセット電圧の基準値の最適化をAモードとして行っている。また、本実施形態の光トランシーバ10は、Aモードにおける最適化の後、BER、すなわち、信号の品質を基に各成分のオフセット値の最適化をBモードとして行っている。本実施形態の光トランシーバ10は、各成分のオフセット値の最適化を行うことで、I相、Q相およびPh成分の相互作用によるバイアス電圧のずれを補正することができる。そのため、本実施形態の光トランシーバ10は、I相、Q相およびPh成分の相互作用がある場合でも、バイアス電圧を精度よく最適化することができる。その結果、本実施形態の光トランシーバ10は、特性変動等が生じても各成分の相互作用の影響を抑制しつつ光変調器に印加するバイアス電圧を高い精度で最適化することができる。
第2の実施形態の光トランシーバ10は、自装置から送信後に中継装置等で折り返された光信号を自装置で受信することによって信号の波形および受信品質のデータを取得し、オフセット電圧の基準値とオフセット値の最適化を行っている。そのような構成に代えて、図10に模式的に示すように、光トランシーバ内でフィードバック制御を行ってAモードにおけるバイアス電圧の基準値の最適化を行ってもよい。そのような構成とする場合には、例えば、光変調部12の出力部分で分岐した光信号を受光素子で受光した結果を基に、バイアス電圧の最適化が行われる。また、光変調部に備えられた受光素子で受光する光信号の波形に基づいて、Aモードにおけるバイアス電圧の基準値の最適化が行われてもよい。
第2の実施形態の光トランシーバ10は、自装置から送信した光信号を自装置で受信することによって受信信号のBERの情報を取得しているが、伝送路を介して対向する光トランシーバが受信した際のBERに基づいてオフセット値の最適化を行ってもよい。そのような構成とする場合には、受信側と送信側の光トランシーバの間で、オフセット値の最適化を行う際の信号の情報があらかじめ共有されている。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2017年2月6日に出願された日本出願特願2017-019218を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 光変調手段
2 制御手段
3 最適化手段
10 光トランシーバ
11 光源部
12 光変調部
13 制御部
14 記憶部
15 光受信部
16 信号処理部
21 最適化処理部
22 変調器制御部
31 受信信号処理部
32 送信信号処理部
33 BER計測部
2 制御手段
3 最適化手段
10 光トランシーバ
11 光源部
12 光変調部
13 制御部
14 記憶部
15 光受信部
16 信号処理部
21 最適化処理部
22 変調器制御部
31 受信信号処理部
32 送信信号処理部
33 BER計測部
Claims (10)
- 入力された光をI(In-Phase)相成分とQ(Quadrature)相成分の光に分波する手段と、分波したそれぞれの光にバイアス電圧を印加して変調を施す手段と、変調を施したI相成分とQ相成分の光を合波した光信号を出力する手段とを有する光変調手段と、
前記光変調手段において印加される前記バイアス電圧を、変調を施す成分ごとに制御する制御手段と、
前記光変調手段から出力される前記光信号に基づいて前記バイアス電圧を最適化した第1のバイアス電圧を設定する第1のモードと、前記第1のバイアス電圧からのオフセット値を、前記光信号の品質を基に前記変調を施す成分ごとに調整することで前記バイアス電圧を最適化する第2のモードによって前記バイアス電圧を最適化する最適化手段と、を備え、
前記制御手段は、前記最適化手段によって設定された前記第1のバイアス電圧を前記オフセット値に基づいて補正した第2のバイアス電圧を基に、前記光変調手段における前記バイアス電圧の印加を制御することを特徴とする光トランシーバ。 - 前記光変調手段は、前記I相成分と前記Q相成分を合波する際の位相差を調整する手段をさらに有し、
前記制御手段は、前記光変調手段における前記位相差の調整を、バイアス電圧を印加して制御する手段をさらに有し、
前記最適化手段は、前記第1のモードおよび前記第2のモードによって、前記光変調手段において前記位相差の調整する際のバイアス電圧の最適化をさらに行うことを特徴とする請求項1に記載の光トランシーバ。 - 前記制御手段は、前記第1のモードにおいて前記I相成分と前記Q相成分の波形が最適化されるように前記バイアス電圧の前記第1のバイアス電圧を設定し、前記第2のモードにおいて前記光信号のBER(Bit Error Ratio)を最小化するように前記オフセット値を設定することを特徴とする請求項1または2に記載の光トランシーバ。
- 送信した前記光信号を折り返した前記光信号を受信する受信手段と、
前記受信手段が受信した前記光信号から前記BERを算出する信号処理手段をさらに備え、
前記制御手段は、前記信号処理手段が算出した前記BERを最小化するように前記オフセット値を設定することを特徴とする請求項3に記載の光トランシーバ。 - 前記制御手段は、前記光信号の送信先から送られてくる前記光信号のBERを最小化するように前記オフセット値を設定することを特徴とする請求項3に記載の光トランシーバ。
- 前記制御手段は、前記第2のモードにおいて前記オフセット値の最適化を行った後に、前記第2のバイアス電圧が所定の基準範囲外であったときに前記第1のモードから前記バイアス電圧の最適化を再度、行うことを特徴とする請求項1から5いずれかに記載の光トランシーバ。
- 前記制御手段は、前記光変調手段において低周波信号を重畳するように制御することを特徴とする請求項1から6いずれかに記載の光トランシーバ。
- 入力された光をI相成分とQ相成分の光に分波し、
分波したそれぞれの光に変調を施す成分ごとに制御したバイアス電圧を印加して変調を施し、
変調を施したI相成分とQ相成分の光を合波した光信号を出力し、
前記光信号に基づいて前記バイアス電圧を最適化した第1のバイアス電圧を設定する第1のモードと、前記第1のバイアス電圧からのオフセット値を、前記光信号の品質を基に前記変調を施す成分ごとに調整することで前記バイアス電圧を最適化する第2のモードによって前記バイアス電圧を最適化し、
前記第1のバイアス電圧を前記オフセット値に基づいて補正した第2のバイアス電圧を基に、前記バイアス電圧の印加を制御することを特徴とする変調制御方法。 - 前記I相成分と前記Q相成分を合波する際の位相差をバイアス電圧の印加によって調整し、
前記第1のモードおよび前記第2のモードによって、前記位相差を調整するバイアス電圧の最適化をさらに行うことを特徴とする請求項8に記載の変調制御方法。 - 前記第1のモードにおいて前記I相成分と前記Q相成分の波形が最適化されるように前記バイアス電圧の第1の設定値を設定し、前記第2のモードにおいて前記光信号のBERを最小化するように前記オフセット値を設定することを特徴とする請求項8または9に記載の変調制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-019218 | 2017-02-06 | ||
JP2017019218 | 2017-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018143428A1 true WO2018143428A1 (ja) | 2018-08-09 |
Family
ID=63040586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003651 WO2018143428A1 (ja) | 2017-02-06 | 2018-02-02 | 光トランシーバおよび変調制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018143428A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023144868A1 (ja) * | 2022-01-25 | 2023-08-03 | 日本電信電話株式会社 | 光パルス生成装置及び生成方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015061271A (ja) * | 2013-09-20 | 2015-03-30 | 日本電信電話株式会社 | 光送信器、及び光信号生成方法 |
US9496962B1 (en) * | 2013-06-27 | 2016-11-15 | Clariphy Communications, Inc. | Systems and methods for biasing optical modulating devices |
-
2018
- 2018-02-02 WO PCT/JP2018/003651 patent/WO2018143428A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496962B1 (en) * | 2013-06-27 | 2016-11-15 | Clariphy Communications, Inc. | Systems and methods for biasing optical modulating devices |
JP2015061271A (ja) * | 2013-09-20 | 2015-03-30 | 日本電信電話株式会社 | 光送信器、及び光信号生成方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023144868A1 (ja) * | 2022-01-25 | 2023-08-03 | 日本電信電話株式会社 | 光パルス生成装置及び生成方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7907324B2 (en) | Optical modulator and controlling method and apparatus thereof | |
US10547388B2 (en) | Optical transmitter, optical transmission apparatus, and method of controlling optical transmitter | |
US8391724B2 (en) | Optical modulator, optical transmission device, and bias adjusting method | |
JP5195677B2 (ja) | 光信号送信装置および偏波多重光信号の制御方法 | |
WO2017082349A1 (ja) | 光送信器及びバイアス電圧の制御方法 | |
US8909067B2 (en) | Optical output module, optical transceiver, and optical transmission system | |
JP5340388B2 (ja) | 光送信装置および光送信方法 | |
JP5263205B2 (ja) | 光変調装置及び光変調方法 | |
US20100021182A1 (en) | Optical transmitter | |
JP6627640B2 (ja) | 光送信機 | |
WO2017056350A1 (ja) | プラガブル光モジュール及び光通信システム | |
US10042190B2 (en) | Second order detection of two orthogonal dithers for I/Q modulator bias control | |
US9584161B2 (en) | Transmission device | |
JP6417996B2 (ja) | 光送受信器および光送受信器の制御方法 | |
US10234704B2 (en) | Optical module that includes optical modulator and bias control method for optical modulator | |
JP5482351B2 (ja) | 光変調装置及び光変調方法 | |
WO2018143428A1 (ja) | 光トランシーバおよび変調制御方法 | |
JP4850767B2 (ja) | 分散予等化光送信器 | |
JP2011217003A (ja) | 光信号送信装置 | |
JP6368295B2 (ja) | 光送信器 | |
JP6690736B2 (ja) | プラガブル光モジュール及び光伝送システム | |
US10998978B1 (en) | Optical transmission apparatus and bias control method | |
WO2024166245A1 (ja) | 光通信システムにおける変調タイミング調整方法および装置 | |
JP6475567B2 (ja) | 光送信器 | |
JP7347532B2 (ja) | LiDAR装置、LiDARシステム及びLiDARによる測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18748744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18748744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |