[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018143344A1 - 半導体製造方法および半導体製造装置 - Google Patents

半導体製造方法および半導体製造装置 Download PDF

Info

Publication number
WO2018143344A1
WO2018143344A1 PCT/JP2018/003408 JP2018003408W WO2018143344A1 WO 2018143344 A1 WO2018143344 A1 WO 2018143344A1 JP 2018003408 W JP2018003408 W JP 2018003408W WO 2018143344 A1 WO2018143344 A1 WO 2018143344A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond
semiconductor
support
substrate support
Prior art date
Application number
PCT/JP2018/003408
Other languages
English (en)
French (fr)
Inventor
恵右 仲村
吹田 宗義
章文 今井
健一郎 倉橋
友宏 品川
喬 松田
晃治 吉嗣
柳生 栄治
邦彦 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/474,639 priority Critical patent/US11107685B2/en
Priority to GB1908089.4A priority patent/GB2573215B/en
Priority to JP2018565646A priority patent/JP6671518B2/ja
Publication of WO2018143344A1 publication Critical patent/WO2018143344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/18, H10D48/04 and H10D48/07, with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/447Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428 involving the application of pressure, e.g. thermo-compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a semiconductor manufacturing method and a semiconductor manufacturing apparatus for bonding a semiconductor substrate and a diamond substrate, for example.
  • a bonding surface between a diamond substrate and a semiconductor substrate is activated without interposing an adhesive layer between the diamond substrate that is the first substrate and the semiconductor substrate that is the second substrate, and the diamond substrate and the semiconductor.
  • a surface activated bonding method in which a substrate is chemically bonded is known.
  • the bonding surface between the diamond substrate and the semiconductor substrate is flattened with an arithmetic average surface roughness (Ra) of 30 nm or less, and then the diamond substrate and the semiconductor substrate are placed in a vacuum.
  • the diamond substrate Since the diamond substrate has a large warp compared to the silicon substrate, in order to activate and chemically bond the bonding surface between the diamond substrate and the semiconductor substrate, the diamond substrate and the semiconductor substrate are thick. It is necessary to apply pressure in the vertical direction to bring the diamond substrate and the semiconductor substrate into close contact. However, since the diamond substrate is a brittle material, the diamond substrate cannot withstand the deformation caused by the applied pressure, and there is a problem that the diamond substrate may be damaged.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the occurrence of damage to the diamond substrate when the diamond substrate and the semiconductor substrate are chemically bonded.
  • a semiconductor manufacturing method and a semiconductor manufacturing apparatus are provided.
  • a semiconductor substrate is placed on a first substrate placement step in which a diamond substrate is placed on a first substrate support, and a second substrate support placed opposite to the first substrate support.
  • a first substrate placement step in which a diamond substrate is placed on a first substrate support, and a second substrate support placed opposite to the first substrate support.
  • the second substrate arranging step, the first substrate arranging step, and the second substrate arranging step one or both of the first substrate supporting table and the second substrate supporting table are moved, and the diamond substrate and the semiconductor substrate are moved.
  • the supporting table moving step of bringing the semiconductor substrate into close contact with the semiconductor substrate in the thickness direction and the surface of the first substrate supporting table facing the second substrate supporting table are opposed to the first substrate supporting table of the diamond substrate.
  • the surface of the second substrate support facing the first substrate support is defined as a diamond on the semiconductor substrate.
  • the diamond substrate and the semiconductor substrate can be brought into close contact with each other by applying a large pressure to the diamond substrate and the semiconductor substrate without deforming the diamond substrate. It is possible to reduce the occurrence of breakage in the diamond substrate when these are chemically bonded.
  • FIG. 1 It is the schematic which shows the semiconductor manufacturing apparatus concerning Embodiment 1 of this invention. It is an enlarged view which shows the inside of the lower substrate support stand of FIG. It is an enlarged view which shows the modification inside a lower board
  • Embodiment 1 As a semiconductor electronic device operating in a high output region, a field effect transistor composed of a wide band gap semiconductor such as gallium nitride (GaN) is used.
  • GaN gallium nitride
  • the output of the semiconductor electronic element is high, the temperature of the semiconductor electronic element rises, and the characteristics and reliability of the semiconductor electronic element deteriorate.
  • a specific example of suppressing the temperature rise of the semiconductor electronic device it has been proposed to install a heat dissipation material on the gallium nitride substrate.
  • Diamond is used as the heat dissipation material. Since diamond has a high thermal conductivity, it is an optimum material for heat dissipation. Adhesion or bonding of the diamond substrate and the semiconductor substrate constituting the nitride semiconductor element improves heat dissipation from the nitride semiconductor element.
  • the diamond substrate is manufactured by a chemical vapor deposition (CVD) method. The diamond substrate is used for a heat sink, an optical window for a high intensity laser, and the like.
  • the bonding surface between the diamond substrate and the semiconductor substrate is activated without interposing an adhesive layer between the diamond substrate and the semiconductor substrate, so that the diamond substrate and the semiconductor are activated.
  • a surface activated bonding method in which a substrate is chemically bonded has been proposed.
  • the semiconductor manufacturing apparatus and semiconductor manufacturing method according to Embodiment 1 of the present invention uses a surface activated bonding method.
  • FIG. 1 is a schematic diagram showing a semiconductor manufacturing apparatus according to Embodiment 1 of the present invention.
  • the semiconductor manufacturing apparatus includes a container 1, a gate valve 2 provided in the container 1, and a load lock chamber 3 connected to the container 1 through the gate valve 2.
  • the semiconductor manufacturing apparatus includes a lower substrate support 4 that is a first substrate support, and an upper substrate support 5 that is a second substrate support provided to face the lower substrate support 4. Yes.
  • a diamond substrate 6 as a first substrate is supported on the lower substrate support 4.
  • the upper substrate support 5 supports a semiconductor substrate 7 that is a second substrate.
  • the lower substrate support 4 is movable in a direction toward and away from the upper substrate support 5. Further, the shape of the surface 41 of the lower substrate support 4 that is a surface facing the diamond substrate 6 in the lower substrate support 4 is deformable.
  • the lower substrate support 4 is disposed inside the container 1.
  • the upper substrate support 5 is movable in a direction toward and away from the lower substrate support 4. Moreover, the shape of the surface 51 which is the surface which opposes the semiconductor substrate 7 in the upper substrate support stand 5 is deformable.
  • the upper substrate support 5 is disposed inside the container 1.
  • the semiconductor manufacturing apparatus includes a lower substrate support base drive unit 8 that moves the lower substrate support base 4, a lower substrate support base drive control unit 9 that controls driving of the lower substrate support base drive unit 8, and an upper substrate support base. 5, and an upper substrate support drive controller 11 that controls the drive of the upper substrate support drive 10.
  • the lower substrate support base drive unit 8 and the upper substrate support base drive unit 10 constitute a support base drive unit.
  • the semiconductor manufacturing apparatus includes a beam source 12 that emits a rare gas beam, a vacuum pump 13 that evacuates the interior of the container 1, and a vacuum pump 14 that evacuates the interior of the load lock chamber 3. I have.
  • FIG. 2 is an enlarged view showing the inside of the lower substrate support 4 of FIG.
  • the surface 41 in contact with the diamond substrate 6 in the lower substrate support 4 is made of a deformable material such as a resin, a thin metal, or a laminate of metal and resin.
  • a cavity 42 is formed inside the lower substrate support 4.
  • the first mechanism portion is constituted by a mechanism for introducing high-pressure gas or liquid into the cavity 42.
  • the first mechanism unit deforms the surface 41 which is the surface facing the upper substrate support 5 in the lower substrate support 4 according to the shape of the surface facing the lower substrate support 4 in the diamond substrate 6.
  • Examples of the gas introduced into the cavity 42 include air, and examples of the liquid introduced into the cavity 42 include oil.
  • the second mechanism part is constituted by a mechanism for introducing a high-pressure gas or liquid into the cavity of the upper substrate support 5.
  • the second mechanism portion has a surface 51 that is a surface of the upper substrate support 5 facing the lower substrate support 4, and a surface of the semiconductor substrate 7 that faces the diamond substrate 6 is a surface of the diamond substrate 6 that faces the semiconductor substrate 7.
  • a parallel curved surface Parallel Surface
  • Examples of the gas introduced into the cavity of the upper substrate support 5 include air
  • examples of the liquid introduced into the cavity 42 include oil.
  • FIG. 3 is an enlarged view showing a modification inside the lower substrate support 4 of FIG.
  • the semiconductor manufacturing apparatus may include one or more lower actuators 15 that change the shape of the surface 41 of the lower substrate support 4. When the lower actuator 15 is driven, the surface 41 is deformed. In this case, a 1st mechanism part is comprised from a lower actuator.
  • the semiconductor manufacturing apparatus may include one or more upper actuators that change the shape of the surface 51 of the upper substrate support 5.
  • the second mechanism unit is constituted by the upper actuator.
  • the semiconductor manufacturing apparatus includes a lower substrate support base surface shape control unit 16 that controls driving of the first mechanism unit, and an upper substrate support base surface shape control unit 17 that controls driving of the second mechanism unit. And.
  • the lower substrate support 4 has built-in electrodes (not shown). When a voltage is applied to the electrode built in the lower substrate support 4, charges are induced on the contact surface between the diamond substrate 6 and the lower substrate support 4, and the generated electrostatic force causes the diamond substrate 6 to Fixed to the lower substrate support 4.
  • the upper substrate support 5 has built-in electrodes (not shown) in the same manner as the lower substrate support 4. When a voltage is applied to the electrode built in the upper substrate support 5, charges are induced on the contact surface between the semiconductor substrate 7 and the upper substrate support 5, and the generated electrostatic force causes the semiconductor substrate 7 to Fixed to the upper substrate support 5.
  • the lower substrate support table drive unit 8 moves the lower substrate support table 4, and the upper substrate support table drive unit 10 moves the upper substrate support table 5, whereby the diamond substrate 6 fixed to the lower substrate support table 4 and the upper substrate
  • the semiconductor substrate 7 fixed to the substrate support 5 is brought into close contact with the semiconductor substrate 7 in a state where pressure is applied in the thickness direction of the semiconductor substrate 7.
  • the magnitude of pressure applied to the diamond substrate 6 and the semiconductor substrate 7 is controlled by the lower substrate support base drive controller 9 and the upper substrate support base drive controller 11.
  • the semiconductor manufacturing apparatus includes both the lower substrate support base drive unit 8 and the upper substrate support base drive unit 10
  • the lower substrate support base drive unit 8 and the upper substrate support base drive unit are described.
  • the structure provided only with any one of the parts 10 may be sufficient.
  • the semiconductor manufacturing apparatus may be configured such that only one of the diamond substrate 6 and the semiconductor substrate 7 can be moved in a direction toward or away from the other.
  • FIG. 4 is a flowchart showing a semiconductor manufacturing method in which the diamond substrate 6 and the semiconductor substrate 7 are chemically bonded using the semiconductor manufacturing apparatus of FIG.
  • the diamond substrate 6 and the semiconductor substrate 7 are arranged in the load lock chamber 3, and then, in step S101, the vacuum pump 13 is driven to evacuate the inside of the container 1, and in step S102, the vacuum pump 14 is driven. The inside of the load lock chamber 3 is evacuated.
  • step S103 the diamond substrate 6 is moved to the surface 41 of the lower substrate support 4 and step S104.
  • step S104 the semiconductor substrate 7 is moved to the surface 51 of the upper substrate support 5.
  • the first substrate placement step is configured from the step S103.
  • the process of step S104 constitutes a second substrate placement process.
  • step S105 the surface 41 of the lower substrate support 4 is deformed so as to be a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the lower substrate support 4.
  • the surface 41 which is the surface facing the upper substrate support 5 in the lower substrate support 4
  • the process of step S105 constitutes a first substrate support base deformation process.
  • FIG. 5 is a diagram showing the process of step S105 of FIG.
  • step S105 the diamond substrate 6 is placed on the surface 41 of the lower substrate support 4 from the state where nothing is arranged on the surface 41 of the lower substrate support 4 as shown in (A), as shown in (B). And the surface 41 of the lower substrate support 4 is deformed as shown in FIG.
  • the shape of the surface of the diamond substrate 6 facing the lower substrate support 4 is measured in advance using a laser displacement meter or the like. Is done.
  • Introduction of gas or liquid into the cavity 42 of the lower substrate support 4 or driving of the lower actuator 15 is controlled by the lower substrate support surface shape control unit 16.
  • the diamond substrate 6 may be disposed on the lower substrate support 4 after being deformed according to the shape of the surface of the diamond substrate 6 facing the lower substrate support 4.
  • step S105 As shown in FIG. 4, after the gap between the diamond substrate 6 and the lower substrate support 4 is minimized by step S105, a voltage is applied to the electrode built in the lower substrate support 4 in step S106.
  • the diamond substrate 6 is fixed to the lower substrate support 4 by the electrostatic force generated by this.
  • step S107 the semiconductor substrate 7 is fixed to the upper substrate support 5 by electrostatic force generated by applying a voltage to the electrode built in the upper substrate support 5.
  • Single crystal AlGaN and single crystal GaN were heteroepitaxially grown on the surface 51 of the upper substrate support 5 via a buffer layer made of aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) on the Si substrate.
  • the semiconductor substrate 7 is disposed, and the semiconductor substrate 7 is fixed to the upper substrate support 5 by electrostatic force generated by applying a voltage to an electrode built in the upper substrate support 5.
  • step S108 with the diamond substrate 6 fixed to the lower substrate support 4, the diamond substrate 6 is irradiated with a neutral particle beam or a charged particle beam from the beam source 12, and the surface of the diamond substrate 6 is irradiated.
  • the chemically active dangling bonds are exposed on the surface of the diamond substrate 6.
  • a first substrate surface activation step for activating the surface of the diamond substrate 6 is configured.
  • step S109 the semiconductor substrate 7 is irradiated with a neutral particle beam or a charged particle beam from the beam source 12 with the semiconductor substrate 7 being fixed to the upper substrate support 5; Impurities on the surface of the semiconductor substrate 7 are removed, and chemically active dangling bonds are exposed on the surface of the semiconductor substrate 7.
  • the process of step S109 constitutes a second substrate surface activation process for activating the surface of the semiconductor substrate 7.
  • an inert gas such as argon (Ar) having low reactivity with the diamond substrate 6 and the semiconductor substrate 7 as a raw material for the neutral particle beam and the charged particle beam.
  • an inert gas such as argon (Ar) having low reactivity with the diamond substrate 6 and the semiconductor substrate 7 as a raw material for the neutral particle beam and the charged particle beam.
  • step S110 the lower substrate support 4 is moved in a direction approaching the upper substrate support 5. In other words, in step S110, the lower substrate support 4 is raised.
  • step S111 the upper substrate support 5 is moved in a direction approaching the lower substrate support 4. In other words, in step S111, the upper substrate support 5 is lowered.
  • step S112 the lower substrate support 4 and the upper substrate support 5 are brought into close contact with each other so that the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other.
  • Step S112 includes a second substrate support base deformation step.
  • FIG. 6 is a diagram showing steps from step S110 to step S114 in FIG.
  • step S112 as shown in (A), it is a surface facing the lower substrate support 4 in the upper substrate support 5 as shown in (B) from a state where the diamond substrate 6 and the semiconductor substrate 7 are separated from each other.
  • the surface 51 is deformed so that the surface of the semiconductor substrate 7 facing the diamond substrate 6 becomes a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the semiconductor substrate 7.
  • step S112 both the lower substrate support 4 and the upper substrate support 5 are moved to bring the diamond substrate 6 and the semiconductor substrate 7 closer to each other, and the diamond substrate 6 and the semiconductor substrate 7 are moved in the thickness direction. Are brought into close contact with each other under pressure.
  • Step S112 includes a support stage moving step. Thereby, the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other.
  • the pressure applied to the surface of the diamond substrate 6 and the surface of the semiconductor substrate 7 is adjusted in the range of 10 kPa to 100 MPa.
  • the upper substrate support 5 has a surface 51 that can be deformed into an arbitrary shape, so that the surface of the semiconductor substrate 7 is parallel to the surface of the diamond substrate 6.
  • the surface of the diamond substrate 6 facing the lower substrate support 4 is in contact with the entire surface of the lower substrate support 4 facing the diamond substrate 6, and is in contact with the upper substrate support 5 of the semiconductor substrate 7. Since the opposing surface is in contact with the entire surface of the upper substrate support 5 facing the semiconductor substrate 7, the bonding surface between the diamond substrate 6 and the lower substrate support 4 is large. An adhesion force is uniformly applied in the width direction. Thereby, good bondability is obtained.
  • a heating mechanism is built in the lower substrate support 4 and the upper substrate support 5, and in step S112, the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other while being heated in a range of 100 ° C. to 500 ° C.
  • the adhesion between the substrate 6 and the semiconductor substrate 7 may be improved.
  • the surfaces of the diamond substrate 6 and the semiconductor substrate 7 are subjected to planarization in advance so that the arithmetic average roughness (Ra) is 30 nm or less.
  • a thin film such as amorphous silicon or silicon oxide may be formed in advance as an adhesive layer on the surface of either or both of the diamond substrate 6 and the semiconductor substrate 7.
  • the semiconductor substrate 7 is desirably thinned in advance so that the dimension in the thickness direction is 20 ⁇ m or less so that the semiconductor substrate 7 is not damaged when deformed into a shape substantially parallel to the diamond substrate 6. .
  • the Si and buffer layer at the center of the semiconductor substrate 7 are removed, leaving only the AlGaN / GaN epitaxial layer, and within 5 mm of the outer edge 71 of the semiconductor substrate 7. In this area, the Si substrate may be left to ensure mechanical strength, and the semiconductor substrate 7 may be handled easily. In that case, it is necessary to make the outer diameter of the diamond substrate 6 to be bonded smaller than the inner diameter of the semiconductor substrate 7 from which the Si portion is removed.
  • the configuration shown in FIG. 7 is merely an example, and may be thinned so that Si at the center of the semiconductor substrate 7 and a part of the buffer layer remain.
  • step S113 the voltage applied to the electrode of the upper substrate support 5 is released, the electrostatic force is released, and the upper substrate support 5 is released. Thereby, the fixing of the bonding substrate 18 to the upper substrate support 5 is released.
  • step S114 the lower substrate support 4 is lowered and the upper substrate support 5 is raised.
  • step S114 the lower substrate support 4 and the upper substrate support 5 are moved so that the lower substrate support 4 and the upper substrate support 5 are separated from each other. As a result, the bonding substrate 18 is detached from the upper substrate support 5 and placed on the lower substrate support 4.
  • step S115 the voltage applied to the electrode of the lower substrate support 4 is released, the electrostatic force is released, and the diamond substrate 6 is released from being fixed to the lower substrate support 4. Thereby, the fixing of the bonding substrate 18 to the lower substrate support 4 is released.
  • step S116 the gate valve is opened, and the bonding substrate 18 is moved from the container 1 to the load lock chamber 3.
  • step S117 the load lock chamber 3 is opened to the atmosphere, and the bonding substrate 18 is taken out from the load lock chamber 3.
  • a large pressure is applied to diamond substrate 6 and semiconductor substrate 7 without deforming diamond substrate 6, and diamond substrate 6 and semiconductor Since the substrate 7 can be brought into close contact with each other, it is possible to reduce the occurrence of damage to the diamond substrate 6 when the diamond substrate 6 and the semiconductor substrate 7 are chemically bonded.
  • the deformation of the diamond substrate 6 can be minimized, the occurrence of damage to the diamond substrate 6 is suppressed even when a large adhesion force is applied.
  • a large pressure is applied to the diamond substrate 6 and the semiconductor substrate 7 without deforming the diamond substrate 6, so that the diamond substrate 6 and the semiconductor substrate 7 are bonded. Since it can be adhered, it is possible to reduce the occurrence of breakage in the diamond substrate 6 when the diamond substrate 6 and the semiconductor substrate 7 are chemically bonded.
  • the diamond substrate 6 is mounted on the lower substrate support 4 and the semiconductor substrate 7 is fixed to the upper substrate support 5.
  • the vertical relationship may be reversed.
  • the upper substrate support 5 to which the semiconductor substrate 7 is fixed has been described as having a deformable structure having an arbitrary shape.
  • FIG. 5 may be provided with a soft layer 52 made of silicon rubber or the like.
  • the soft layer 52 is deformed so that the surface of the diamond substrate 6 that faces the semiconductor substrate 7 is opposed to the surface of the semiconductor substrate 7 that faces the diamond substrate 6.
  • the semiconductor substrate 7 is deformed so that becomes a parallel curved surface or a parallel surface.
  • a hollow portion 53 may be formed in the central portion of the upper substrate support 5. In this case, as shown in FIG.
  • the semiconductor substrate 7 can be deformed in accordance with the warped shape of the diamond substrate 6 placed on the lower substrate support 4.
  • the upper substrate support 5 supports the semiconductor substrate 7 so that the surface of the semiconductor substrate 7 facing the diamond substrate 6 can be deformed, and the diamond substrate 6 and the semiconductor substrate 7 are pressurized in the thickness direction.
  • the surface of the semiconductor substrate 7 facing the diamond substrate 6 using the pressure may be a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the semiconductor substrate 7.
  • the semiconductor manufacturing apparatus may not include the second mechanism unit.
  • the exemplified diamond substrate 6 may be either single crystal diamond or polycrystalline diamond, and may be a silicon substrate or a diamond substrate hetero-grown on a metal substrate.
  • the semiconductor substrate 7 is not limited to the GaN-based material, and may be another semiconductor substrate.
  • a GaN-based material is epitaxially grown on the surface of the silicon substrate, whereby a semiconductor composed of a GaN-based epitaxial layer, a silicon substrate and a diamond substrate 6 is obtained. Can be manufactured.
  • the diamond substrate 6 and the semiconductor substrate 7 are irradiated with a neutral particle beam or a charged particle beam, and chemically active dangling bonds are respectively applied to the surfaces of the diamond substrate 6 and the semiconductor substrate 7.
  • the plasma is excited and ion bombardment or chemically active species in the plasma is used so that chemically active dangling bonds are formed on the surfaces of the diamond substrate 6 and the semiconductor substrate 7.
  • a method for bonding substrates by exposing them and bonding them together has been described.
  • the surfaces of the diamond substrate 6 and the semiconductor substrate 7 are modified with a hydroxyl group by oxygen plasma treatment and hydrofluoric acid solution treatment, and then the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other.
  • the diamond substrate 6 and the semiconductor substrate 7 may be bonded together by bonding.
  • oxygen plasma treatment and hydrofluoric acid solution treatment are used, the process is performed before step S101, and the surface-treated diamond substrate 6 and semiconductor substrate 7 are bonded to each other using a semiconductor manufacturing apparatus. Also good.
  • the configuration in which the diamond substrate 6 is disposed so as to protrude upward has been described.
  • the diamond substrate 6 may be disposed so as to protrude downward.
  • FIG. FIG. 11 is a diagram showing a diamond substrate in a semiconductor manufacturing apparatus according to Embodiment 2 of the present invention.
  • the semiconductor manufacturing apparatus includes a diamond substrate fixing jig 19 to which the diamond substrate 6 is fixed.
  • the diamond substrate fixing jig 19 constitutes a first substrate fixing jig.
  • the diamond substrate fixing jig 19 is made of a hard material such as glass.
  • the surface of the diamond substrate fixing jig 19 that contacts the diamond substrate 6 is a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 that faces the diamond substrate fixing jig 19.
  • the surface of the diamond substrate fixing jig 19 away from the diamond substrate 6 is a flat surface.
  • a plurality of different shapes are used in advance.
  • the diamond substrate fixing jig 19 is prepared, and one having a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the diamond substrate fixing jig 19 is selected.
  • a mechanism that can be deformed so as to be a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the diamond substrate fixing jig 19 may be incorporated in the diamond substrate fixing jig 19.
  • FIG. 12 is a view showing a semiconductor substrate in the semiconductor manufacturing apparatus according to Embodiment 2 of the present invention.
  • the semiconductor manufacturing apparatus includes a support substrate 20 provided on the upper substrate support 5 and to which the semiconductor substrate 7 is fixed, and a soft adhesive layer 21 disposed between the support substrate 20 and the semiconductor substrate 7.
  • the upper substrate support 5 supports the semiconductor substrate 7 so that the surface of the semiconductor substrate 7 facing the diamond substrate 6 can be deformed, and pressure is applied to the diamond substrate 6 and the semiconductor substrate 7 in the thickness direction. At that time, the pressure is used to make the surface of the semiconductor substrate 7 facing the diamond substrate 6 parallel or curved with respect to the surface of the diamond substrate 6 facing the semiconductor substrate 7.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 13 is a flowchart showing a semiconductor manufacturing method in which the diamond substrate 6 and the semiconductor substrate 7 are chemically bonded using the semiconductor manufacturing apparatus according to the second embodiment of the present invention. Steps S201 to S211 are the same as steps S101 to S111 in the first embodiment.
  • step S212 the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other by bringing the lower substrate support 4 and the upper substrate support 5 into close contact.
  • FIG. 14 is a diagram showing steps from step S210 to step S214 in FIG. FIG. 14 corresponds to FIG. 6 in the first embodiment.
  • the same members as those in the first embodiment are given the same reference numerals. Further, detailed description of the same members as those in the first embodiment will be omitted, and differences from the first embodiment will be described.
  • step S212 as shown in (A), the diamond substrate 6 and the diamond substrate fixing jig 19 are fixed to the lower substrate support base 4, and the semiconductor substrate 7, the soft adhesive layer 21, and the support substrate 20 are connected to the upper substrate support base 5. Secure to. Thereafter, as shown in (B), the lower substrate support 4 and the upper substrate support 5 are moved, and the diamond substrate 6 and the semiconductor substrate 7 are moved in a direction approaching each other. Are bonded together at a pressure in the range of 10 kPa to 100 MPa. At this time, since the diamond substrate 6 is fixed to the diamond substrate fixing jig 19, even if a large pressure is applied to the diamond substrate 6, the deformation of the diamond substrate 6 is suppressed to the minimum.
  • Step S212 includes a second substrate support table deformation process and a support table movement process.
  • step S213 to step S217 are the same as step S113 to step S117 in the first embodiment.
  • the diamond substrate 6 is not deformed.
  • the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other, and a good bonded substrate 18 can be obtained.
  • the diamond substrate 6 is not deformed.
  • the diamond substrate 6 and the semiconductor substrate 7 are brought into close contact with each other, and a good bonded substrate 18 can be obtained.
  • the configuration of the semiconductor manufacturing apparatus including the diamond substrate fixing jig 19, the soft adhesive layer 21, and the support substrate 20 has been described.
  • FIG. FIG. 15 is a flowchart showing a semiconductor manufacturing method in which the diamond substrate 6 and the semiconductor substrate 7 are chemically bonded using the semiconductor manufacturing apparatus according to the third embodiment of the present invention.
  • the configuration of the lower substrate support 4 in the semiconductor manufacturing apparatus used in the third embodiment is the same as that shown in FIG. 2 in the first embodiment.
  • Steps S301 to S309 in the third embodiment differ from the steps S101 to S111 in the first embodiment in the following points. That is, the third embodiment includes a step S105 in which the surface 41 of the lower substrate support 4 is deformed to be a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the lower substrate support 4. Absent. Further, the third embodiment does not include step S106 for fixing the diamond substrate 6 to the lower substrate support 4 by the electrostatic force generated by applying a voltage to the electrode built in the lower substrate support 4. .
  • FIG. 16 is a diagram showing processes from step S308 to step S313 in FIG. FIG. 16 corresponds to FIG. 6 in the first embodiment.
  • the same members as those in the first embodiment are given the same reference numerals. Further, detailed description of the same members as those in the first embodiment will be omitted, and differences from the first embodiment will be described.
  • step S310 as shown in (B), when the diamond substrate 6 and the semiconductor substrate 7 come into contact or immediately before they come into contact, the lower substrate support table 4 and the upper substrate support table 5 are temporarily stopped from rising.
  • step S311 the pressure of the cavity 42 of the lower substrate support 4 and the pressure of the cavity of the upper substrate support 5 are increased.
  • the pressure of the cavity 42 of the lower substrate support 4 and the pressure of the cavity of the upper substrate support 5 are adjusted so that the pressure of the cavity 42 of the lower substrate support 4 is lower than the pressure of the cavity of the upper substrate support 5.
  • Each of the pressures is controlled.
  • the lower substrate support table 4 is such that the pressure with which the lower substrate support table 4 pushes the diamond substrate 6 toward the semiconductor substrate 7 is smaller than the pressure with which the upper substrate support table 5 presses the semiconductor substrate 7 toward the diamond substrate 6.
  • Each of the pressure of the cavity 42 of the support table 4 and the pressure of the cavity of the upper substrate support table 5 is controlled.
  • step S311 the surface of the lower substrate support 4 is adjusted so that the surface of the diamond substrate 6 facing the semiconductor substrate 7 and the surface of the semiconductor substrate 7 facing the diamond substrate 6 are in close contact with each other at a pressure in the range of 10 kPa to 100 MPa. Raising and lowering of the upper substrate support 5 are performed. Using the pressure applied to the diamond substrate 6 and the semiconductor substrate 7 in the thickness direction, the surface 41 of the lower substrate support 4 is deformed according to the shape of the surface of the diamond substrate 6 facing the lower substrate support 4. At the same time, the surface 51 of the upper substrate support 5 is deformed so that the surface of the semiconductor substrate 7 facing the diamond substrate 6 is a parallel curved surface or parallel to the surface of the diamond substrate 6 facing the semiconductor substrate 7. To do.
  • the surface of the semiconductor substrate 7 facing the diamond substrate 6 is deformed to be a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the semiconductor substrate 7.
  • the lower substrate support 4 is less than the pressure by which the diamond substrate 6 is pushed toward the semiconductor substrate 7, and the upper substrate support 5 is less than the pressure at which the semiconductor substrate 7 is pushed toward the diamond substrate 6.
  • the deformation of the semiconductor substrate 7 in which the surface of the semiconductor substrate 7 facing the diamond substrate 6 is a parallel curved surface or parallel to the surface of the diamond substrate 6 facing the semiconductor substrate 7 is called autonomous deformation.
  • Step S311 includes a support stage moving step.
  • the support stage moving process includes a simultaneous deformation process.
  • Steps S312 to S315 are steps of releasing the electrostatic force in the lower substrate support 4 and releasing the fixation between the lower substrate support 4 and the bonding substrate 18 as compared with steps S113 to S117 of the first embodiment. The only difference is that S115 is not provided.
  • the pressure of the cavity 42 of the lower substrate support 4 and the pressure of the cavity of the upper substrate support 5 are controlled.
  • the surface of the semiconductor substrate 7 facing the diamond substrate 6 so that the surface of the semiconductor substrate 7 facing the diamond substrate 6 becomes a parallel curved surface or a parallel surface with respect to the surface of the diamond substrate 6 facing the semiconductor substrate 7. Can be deformed autonomously.
  • the lower substrate support 4 and the upper substrate support are arranged such that the surface of the semiconductor substrate 7 facing the diamond substrate 6 becomes a parallel curved surface or a parallel surface with respect to the shape of the surface of the diamond substrate 6 facing the semiconductor substrate 7.
  • a complicated structure for deforming the table 5 becomes unnecessary.
  • the semiconductor manufacturing apparatus can have a simpler structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Die Bonding (AREA)

Abstract

ダイヤモンド基板と半導体基板とを化学的に結合させる際にダイヤモンド基板に破損が生じることを低減させることができる半導体製造装置を得る。ダイヤモンド基板を支持する下部基板支持台と、半導体基板を支持する上部基板支持台と、下部基板支持台および上部基板支持台を移動させて、ダイヤモンド基板と半導体基板とを厚さ方向について圧力が加えられた状態で密着させる支持台駆動部と、上部基板支持台における下部基板支持台に対向する面を、半導体基板におけるダイヤモンド基板に対向する面がダイヤモンド基板における半導体基板に対向する面に対して平行曲面または平行面となるように変形させる第2機構部とを備えている。

Description

半導体製造方法および半導体製造装置
 この発明は、例えば、半導体基板とダイヤモンド基板とを接着させる半導体製造方法および半導体製造装置に関する。
 従来、第1基板であるダイヤモンド基板と第2基板である半導体基板との間に接着層を介在させることなく、ダイヤモンド基板と半導体基板との間の接合面を活性化させて、ダイヤモンド基板と半導体基板とを化学的に結合させる表面活性化接合法が知られている。この表面活性化接合法では、ダイヤモンド基板と半導体基板との間の接合面を、算術平均表面粗さ(Ra)を30nm以下に平坦化させ、その後、ダイヤモンド基板および半導体基板を真空中に置いた状態で、ダイヤモンド基板と半導体基板との間の接合面に希ガスビームを照射し、ダイヤモンド基板と半導体基板との間の接合面を活性化させて、ダイヤモンド基板と半導体基板とを化学的に結合させる(例えば、特許文献1参照)。
特許第4654389号公報
 ダイヤモンド基板は、シリコン基板と比較して大きな反りを有しているので、ダイヤモンド基板と半導体基板との接合面を活性化させて化学的に結合させるためには、ダイヤモンド基板と半導体基板とを厚さ方向に圧力を加えて、ダイヤモンド基板と半導体基板とを密着させる必要がある。しかしながら、ダイヤモンド基板は脆性材料であるので、ダイヤモンド基板が加えられる圧力による変形に耐えることができず、ダイヤモンド基板に破損が生じてしまう恐れがあるという課題があった。
 この発明は、上述のような課題を解決するためになされたものであり、その目的は、ダイヤモンド基板と半導体基板とを化学的に結合させる際にダイヤモンド基板に破損が生じることを低減させることができる半導体製造方法および半導体製造装置を提供するものである。
 この発明に係る半導体製造方法は、第1基板支持台にダイヤモンド基板を配置する第1基板配置工程と、第1基板支持台に対向して設けられた第2基板支持台に半導体基板を配置する第2基板配置工程と、第1基板配置工程および第2基板配置工程の後に、第1基板支持台および第2基板支持台の何れか一方または両方を移動させて、ダイヤモンド基板と半導体基板とを半導体基板の厚さ方向に圧力が加えられた状態で密着させる支持台移動工程と、第1基板支持台における第2基板支持台に対向する面を、ダイヤモンド基板における第1基板支持台に対向する面の形状に合わせて変形させる第1基板支持台変形工程と、第1基板支持台変形工程の後、第2基板支持台における第1基板支持台に対向する面を、半導体基板におけるダイヤモンド基板に対向する面がダイヤモンド基板における半導体基板に対向する面に対して平行曲面または平行面となるように変形させる第2基板支持台変形工程とを備えている。
 この発明に係る半導体製造方法によれば、ダイヤモンド基板を変形させることなく、大きな圧力をダイヤモンド基板および半導体基板に加えて、ダイヤモンド基板と半導体基板とを密着させることができるので、ダイヤモンド基板と半導体基板とを化学的に結合させる際にダイヤモンド基板に破損が生じることを低減させることができる。
この発明の実施の形態1に係る半導体製造装置を示す概略図である。 図1の下部基板支持台の内部を示す拡大図である。 図1の下部基板支持台の内部の変形例を示す拡大図である。 図1の半導体製造装置を用いてダイヤモンド基板と半導体基板とを化学的に接合させる半導体製造方法を示すフローチャートである。 図4のステップS105の工程を示す図である。 図4のステップS110からステップS114までの工程を示す図である。 図1の半導体基板の変形例を示す図である。 図1の上部基板支持台の変形例を示す図である。 図1の上部基板支持台の変形例を示す図である。 図9の上部基板支持台を用いて半導体基板を変形させる様子を示す図である。 この発明の実施の形態2に係る半導体製造装置におけるダイヤモンド基板を示す図である。 この発明実施の形態2に係る半導体製造装置における半導体基板を示す図である。 この発明の実施の形態2に係る半導体製造装置を用いてダイヤモンド基板と半導体基板とを化学的に接合させる半導体製造方法を示すフローチャートである。 図13のステップS210からステップS214までの工程を示す図である。 この発明の実施の形態3に係る半導体製造装置を用いてダイヤモンド基板と半導体基板とを化学的に接合させる半導体製造方法を示すフローチャートである。 図15のステップS308からステップS313までの工程を示す図である。
 以下、本発明の各実施の形態に係る半導体製造装置について、図面に基づいて詳細に説明する。図中、同一符号は、同一または対応する部分を示している。なお、本発明は、各実施の形態により限定されるものではない。また、各実施の形態で用いられる半導体製造装置を示す図は、模式的なものであり、長さ方向、奥行方向および高さ方向のそれぞれの寸法の関係、比率は、現実のものと異なる。
 実施の形態1.
 高出力領域で動作する半導体電子素子として、窒化ガリウム(GaN)などのワイドバンドギャップ半導体から構成された電界効果型トランジスタが用いられている。半導体電子素子の出力が高出力である場合に、半導体電子素子の温度が上昇し、半導体電子素子の特性および信頼性が低下する。半導体電子素子の温度の上昇を抑制するためには、放熱性が高い材料または構造を半導体電子素子における発熱部近傍に設置することが重要である。半導体電子素子の温度の上昇を抑制する具体例としては、窒化ガリウム基板に放熱用材料を設置することが提案されている。
 放熱用材料としては、ダイヤモンドが用いられる。ダイヤモンドは、高い熱伝導率を有しているので、放熱用材料として最適な物質である。ダイヤモンド基板と、窒化物半導体素子を構成する半導体基板とを接着または接合させることによって、窒化物半導体素子からの放熱性が向上する。ダイヤモンド基板は、化学気相成長(CVD)法で作製される。ダイヤモンド基板は、ヒートシンク、高強度レーザ用の光学窓などに使用される。
 ダイヤモンド基板と、窒化ガリウム基板などの半導体基板との貼り合わせには、熱伝導グリース、熱伝導シリコンゴムを接着層として挟み込んだり、または、熱伝導性接着剤、半田を用いて接着したりする方法がある。しかしながら、これらの方法では、ダイヤモンド基板と半導体基板との間に、グリース、シリコンゴム、接着剤または半田の接着層が介在しており、かつ、この接着層は、ダイヤモンドと比べて熱伝導性が大きく劣る。その結果、ダイヤモンド基板と半導体基板との間の熱抵抗が増大し、ダイヤモンド基板を用いた半導体基板の放熱効率が低下する。
 ダイヤモンドの優れた熱伝導率を発揮させるためには、ダイヤモンド基板と半導体基板との間に接着層を介在させることなく、ダイヤモンド基板と半導体基板との接合面を活性化させて、ダイヤモンド基板と半導体基板とを化学的に結合させる表面活性化接合法が提案されている。この発明の実施の形態1に係る半導体製造装置および半導体製造方法は、表面活性化接合法を用いたものである。
 図1はこの発明の実施の形態1に係る半導体製造装置を示す概略図である。半導体製造装置は、容器1と、容器1に設けられたゲートバルブ2と、ゲートバルブ2を介して容器1に接続されたロードロック室3とを備えている。
 また、半導体製造装置は、第1基板支持台である下部基板支持台4と、下部基板支持台4に対向して設けられた、第2基板支持台である上部基板支持台5とを備えている。下部基板支持台4には、第1基板であるダイヤモンド基板6が支持される。上部基板支持台5には、第2基板である半導体基板7が支持される。
 下部基板支持台4は、上部基板支持台5に対して近づく方向および離れる方向に移動可能となっている。また、下部基板支持台4は、下部基板支持台4におけるダイヤモンド基板6に対向する面である表面41の形状が変形可能となっている。下部基板支持台4は、容器1の内部に配置されている。
 上部基板支持台5は、下部基板支持台4に対して近づく方向および離れる方向に移動可能となっている。また、上部基板支持台5は、上部基板支持台5における半導体基板7に対向する面である表面51の形状が変形可能となっている。上部基板支持台5は、容器1の内部に配置されている。
 また、半導体製造装置は、下部基板支持台4を移動させる下部基板支持台駆動部8と、下部基板支持台駆動部8の駆動を制御する下部基板支持台駆動制御部9と、上部基板支持台5を移動させる上部基板支持台駆動部10と、上部基板支持台駆動部10の駆動を制御する上部基板支持台駆動制御部11とを備えている。下部基板支持台駆動部8および上部基板支持台駆動部10から、支持台駆動部が構成されている。
 また、半導体製造装置は、容器1に設けられ、希ガスビームを発するビーム源12と、容器1の内部を真空にする真空ポンプ13と、ロードロック室3の内部を真空にする真空ポンプ14とを備えている。
 図2は図1の下部基板支持台4の内部を示す拡大図である。下部基板支持台4におけるダイヤモンド基板6に接触する表面41は、樹脂、薄板の金属、金属と樹脂との積層体などの変形可能な材料から構成されている。また、下部基板支持台4の内部には、空洞42が形成されている。空洞42に高圧の気体または液体を導入することによって、表面41が任意の形状に変形可能である。空洞42に高圧の気体または液体を導入する機構から第1機構部が構成されている。第1機構部は、下部基板支持台4における上部基板支持台5に対向する面である表面41を、ダイヤモンド基板6における下部基板支持台4に対向する面の形状に合わせて変形させる。空洞42に導入される気体としては、空気などが挙げられ、空洞42に導入される液体としては、油などが挙げられる。
 図示していないが、上部基板支持台5の内部にも空洞が形成されており、この空洞に高圧の気体または液体を導入することによって、上部基板支持台5の表面51が任意の形状に変形可能である。上部基板支持台5の空洞に高圧の気体または液体を導入する機構から第2機構部が構成されている。第2機構部は、上部基板支持台5における下部基板支持台4に対向する面である表面51を、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面(Parallel Surface)または平行面となるように変形させる。上部基板支持台5の空洞に導入される気体としては、空気などが挙げられ、空洞42に導入される液体としては、油などが挙げられる。
 図3は図1の下部基板支持台4の内部の変形例を示す拡大図である。半導体製造装置は、下部基板支持台4の表面41の形状を変化させる1つまたは複数の下部アクチュエータ15を備えてもよい。下部アクチュエータ15が駆動することによって、表面41が変形する。この場合、下部アクチュエータから第1機構部が構成される。また、図示していないが、半導体製造装置は、上部基板支持台5の表面51の形状を変化させる1つまたは複数の上部アクチュエータを備えてもよい。この場合、上部アクチュエータから第2機構部が構成される。
 図1に示すように、半導体製造装置は、第1機構部の駆動を制御する下部基板支持台表面形状制御部16と、第2機構部の駆動を制御する上部基板支持台表面形状制御部17とを備えている。
 下部基板支持台4には、図示しない電極が内蔵されている。下部基板支持台4に内蔵された電極に電圧が印加されることによって、ダイヤモンド基板6と下部基板支持台4との間の接触面に電荷が誘起され、発生する静電力によって、ダイヤモンド基板6が下部基板支持台4に対して固定される。
 上部基板支持台5は、下部基板支持台4と同様に、図示しない電極が内蔵されている。上部基板支持台5に内蔵された電極に電圧が印加されることによって、半導体基板7と上部基板支持台5との間の接触面に電荷が誘起され、発生する静電力によって、半導体基板7が上部基板支持台5に対して固定される。
 下部基板支持台駆動部8が下部基板支持台4を移動させ、上部基板支持台駆動部10が上部基板支持台5を移動させることによって、下部基板支持台4に固定されたダイヤモンド基板6と上部基板支持台5に固定された半導体基板7とが、半導体基板7の厚さ方向について圧力が加えられた状態で密着される。ダイヤモンド基板6および半導体基板7に加えられる圧力の大きさは、下部基板支持台駆動制御部9および上部基板支持台駆動制御部11によって制御される。
 なお、この例では、半導体製造装置が、下部基板支持台駆動部8および上部基板支持台駆動部10の両方を備えた構成について説明するが、下部基板支持台駆動部8および上部基板支持台駆動部10の何れか一方のみを備えた構成であってもよい。つまり、半導体製造装置は、ダイヤモンド基板6および半導体基板7の何れか一方のみを、他方に近づいたり離れたりする方向に移動できる構成であってもよい。
 次に、半導体製造装置を用いてダイヤモンド基板6と半導体基板7とを化学的に結合させる半導体製造方法について説明する。図4は図1の半導体製造装置を用いてダイヤモンド基板6と半導体基板7とを化学的に接合させる半導体製造方法を示すフローチャートである。まず、ダイヤモンド基板6および半導体基板7をロードロック室3に配置し、その後、ステップS101において、真空ポンプ13を駆動させて容器1の内部を真空にし、ステップS102において、真空ポンプ14を駆動させてロードロック室3の内部を真空にする。
 その後、ゲートバルブ2を開けて、ダイヤモンド基板6および半導体基板7をロードロック室3から容器1に移動させ、ステップS103において、ダイヤモンド基板6を下部基板支持台4の表面41に移動させ、ステップS104において、半導体基板7を上部基板支持台5の表面51に移動させる。ステップS103の工程から、第1基板配置工程が構成されている。ステップS104の工程から、第2基板配置工程が構成されている。ダイヤモンド基板6および半導体基板7がロードロック室3から容器1に移動した後に、ゲートバルブ2を閉じる。
 その後、ステップS105において、下部基板支持台4の表面41を、ダイヤモンド基板6における下部基板支持台4に対向する面に対して平行曲面または平行面となるように、変形させる。言い換えれば、下部基板支持台4における上部基板支持台5に対向する面である表面41を、ダイヤモンド基板6における下部基板支持台4に対向する面の形状に合わせて変形させる。ステップS105の工程から、第1基板支持台変形工程が構成されている。
 図5は図4のステップS105の工程を示す図である。ステップS105では、(A)に示すように、下部基板支持台4の表面41に何も配置されていない状態から、(B)に示すように、下部基板支持台4の表面41にダイヤモンド基板6を配置して、さらに、(C)に示すように、下部基板支持台4の表面41を変形させる。ダイヤモンド基板6が下部基板支持台4の表面41に配置された後に、ダイヤモンド基板6における下部基板支持台4に対向する面の形状、つまり、反り形状は、レーザ変位計などを用いて事前に測定される。下部基板支持台4の空洞42への気体もしくは液体の導入、または、下部アクチュエータ15の駆動は、下部基板支持台表面形状制御部16によって制御される。この例では、ダイヤモンド基板6を下部基板支持台4の表面41に配置した後に、下部基板支持台4の表面41を変形させる方法について説明するが、先に下部基板支持台4の表面41を、ダイヤモンド基板6における下部基板支持台4に対向する面の形状に合わせて変形させた後に、ダイヤモンド基板6を下部基板支持台4に配置する方法であってもよい。
 図4に示すように、ステップS105によってダイヤモンド基板6と下部基板支持台4との間の空隙が極小となった後、ステップS106において、下部基板支持台4に内蔵された電極に電圧を印加することによって発生した静電力によってダイヤモンド基板6を下部基板支持台4に対して固定する。
 その後、ステップS107において、上部基板支持台5に内蔵された電極に電圧を印加することによって発生した静電力によって半導体基板7を上部基板支持台5に対して固定する。
 上部基板支持台5の表面51には、Si基板上に窒化アルミニウム(AlN)、アルミニウム窒化ガリウム(AlGaN)から構成されたバッファ層を介して、単結晶AlGaN、および単結晶GaNをヘテロエピタキシャル成長させた半導体基板7が配置され、上部基板支持台5に内蔵された電極に電圧を印加することによって発生した静電力によって半導体基板7を上部基板支持台5に対して固定する。
 その後、ステップS108において、ダイヤモンド基板6が下部基板支持台4に対して固定された状態で、ダイヤモンド基板6にビーム源12から中性粒子ビームまたは荷電粒子ビームを照射して、ダイヤモンド基板6の表面の不純物を除去し、ダイヤモンド基板6の表面に化学的に活性な未結合手を露出させる。ステップS108の工程から、ダイヤモンド基板6の表面を活性化させる第1基板表面活性化工程が構成されている。
 また、ステップS108と同時に、ステップS109において、半導体基板7が上部基板支持台5に対して固定された状態で、半導体基板7にビーム源12から中性粒子ビームまたは荷電粒子ビームを照射して、半導体基板7の表面の不純物を除去し、半導体基板7の表面に化学的に活性な未結合手を露出させる。ステップS109の工程から、半導体基板7の表面を活性化させる第2基板表面活性化工程が構成されている。
 中性粒子ビーム、荷電粒子ビームの原料としては、ダイヤモンド基板6および半導体基板7との反応性が低いアルゴン(Ar)などの不活性ガスを用いることが望ましい。また、下部基板支持台4と上部基板支持台5との間にプラズマを励起して、イオン衝撃またはプラズマ中の化学活性種を用いることで、ダイヤモンド基板6および半導体基板7のそれぞれの表面の不純物を除去し、ダイヤモンド基板6の表面および半導体基板7の表面に化学的に活性な未結合手を露出させてもよい。
 その後、ステップS110において、下部基板支持台4を上部基板支持台5に近づく方向に移動させる。言い換えれば、ステップS110では、下部基板支持台4を上昇させる。
 ステップS110と同時に、ステップS111において、上部基板支持台5を下部基板支持台4に近づく方向に移動させる。言い換えれば、ステップS111では、上部基板支持台5を下降させる。
 その後、ステップS112において、下部基板支持台4と上部基板支持台5とを密着させることによってダイヤモンド基板6と半導体基板7とを密着させ、同時に上部基板支持台5の表面51をダイヤモンド基板6の表面に対して平行曲面または平行面となるように変形させる。ステップS112には、第2基板支持台変形工程が含まれる。
 図6は図4のステップS110からステップS114までの工程を示す図である。ステップS112では、(A)に示すように、ダイヤモンド基板6と半導体基板7とか離れた状態から、(B)に示すように、上部基板支持台5における下部基板支持台4に対向する面である表面51を、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となるように変形させる。
 また、ステップS112では、下部基板支持台4および上部基板支持台5の両方を移動させて、ダイヤモンド基板6と半導体基板7とを接近させ、さらに、ダイヤモンド基板6と半導体基板7とを厚さ方向について圧力が加えられた状態で互いに密着させる。ステップS112には、支持台移動工程が含まれる。これにより、ダイヤモンド基板6と半導体基板7とが密着される。ダイヤモンド基板6の表面と半導体基板7の表面とに加えられる圧力は、10kPaから100MPaの範囲で調整される。ここで、上部基板支持台5は、下部基板支持台4と同様に、表面51が任意の形状に変形可能となっているので、半導体基板7の表面は、ダイヤモンド基板6の表面に対して平行曲面または平行面となるように変形した状態で、ダイヤモンド基板6に密着される。その結果、ダイヤモンド基板6および半導体基板7のそれぞれの表面における未結合手同士が化学的に結合する。これにより、(C)に示すように、ダイヤモンド基板6および半導体基板7が一体化した接合基板18が形成される。
 ダイヤモンド基板6における下部基板支持台4に対向する面は、下部基板支持台4におけるダイヤモンド基板6に対向する面に対して全面に渡って接触し、また、半導体基板7における上部基板支持台5に対向する面は、上部基板支持台5における半導体基板7に対向する面に対して全面に渡って接触しているので、ダイヤモンド基板6と下部基板支持台4との間の接合面には、大きな密着力が幅方向に均一に印加される。これにより良好な接合性が得られる。
 なお、下部基板支持台4および上部基板支持台5に加熱機構を内蔵させ、ステップS112において、ダイヤモンド基板6および半導体基板7を100℃から500℃の範囲で昇温した状態で密着させることでダイヤモンド基板6と半導体基板7との密着性を向上させてもよい。
 なお、良好な接合性を得るためには、ダイヤモンド基板6および半導体基板7のそれぞれの表面は、算術平均粗さ(Ra)が30nm以下となるように、事前に平坦化加工を施すことが望ましい。また、ダイヤモンド基板6および半導体基板7の両方または何れか一方の表面に接着層として、非晶質シリコン、酸化シリコンなどの薄膜を事前に形成してもよい。
 半導体基板7をダイヤモンド基板6と略平行な形状に変形させる際に損傷することがないように、半導体基板7は、厚さ方向の寸法が20μm以下となるように事前に薄板化することが望ましい。半導体基板7を薄板化するにあたっては、図7に示すように、半導体基板7の中央部のSiおよびバッファ層を除去し、AlGaN/GaNエピタキシャル層のみを残し、半導体基板7の外縁71の5mm以内の領域については、Si基板を残して機械強度を確保し、半導体基板7の取り扱いを容易にするようにしてもよい。その際は、接合するダイヤモンド基板6の外径は、半導体基板7のSi部を除去した内径よりも小さくする必要がある。なお、図7に示す構成は、あくまでも一例であり、半導体基板7の中央部のSiおよびバッファ層の一部が残る程度の薄板化であってもよい。
 図4に示すように、ダイヤモンド基板6と半導体基板7との接合後は、ステップS113において、上部基板支持台5の電極に印加した電圧を解除して、静電力を開放して上部基板支持台5に対する半導体基板7の固定を解除する。これにより、上部基板支持台5に対する接合基板18の固定が開放される。
 その後、ステップS114において、下部基板支持台4を降下させ、上部基板支持台5を上昇させる。ステップS114では、下部基板支持台4と上部基板支持台5とが離れるように、下部基板支持台4および上部基板支持台5を移動させる。これにより、接合基板18は、上部基板支持台5から離脱し、下部基板支持台4に載せられた状態となる。
 その後、ステップS115において、下部基板支持台4の電極に印加した電圧を解除して、静電力を開放して下部基板支持台4に対するダイヤモンド基板6の固定を解除する。これにより、下部基板支持台4に対する接合基板18の固定が開放される。
 その後、ステップS116において、ゲートバルブを開けて、接合基板18を容器1からロードロック室3に移動させる。その後、ステップS117において、ロードロック室3を大気開放し、接合基板18をロードロック室3から取り出す。以上により、半導体清掃装置を用いてダイヤモンド基板6と半導体基板7とを化学的に結合させる半導体製造方法が終了する。
 以上説明したように、この発明の実施の形態1に係る半導体製造装置によれば、ダイヤモンド基板6を変形させることなく、大きな圧力をダイヤモンド基板6および半導体基板7に加えて、ダイヤモンド基板6と半導体基板7とを密着させることができるので、ダイヤモンド基板6と半導体基板7とを化学的に結合させる際にダイヤモンド基板6に破損が生じることを低減させることができる。
 また、ダイヤモンド基板6の変形を最小限にすることができるので、大きな密着力を印加しても、ダイヤモンド基板6の損傷が生じることが抑制される。
 また、この発明の実施の形態1に係る半導体製造方法によれば、ダイヤモンド基板6を変形させることなく、大きな圧力をダイヤモンド基板6および半導体基板7に加えて、ダイヤモンド基板6と半導体基板7とを密着させることができるので、ダイヤモンド基板6と半導体基板7とを化学的に結合させる際にダイヤモンド基板6に破損が生じることを低減させることができる。
 なお、上記実施の形態1では、下部基板支持台4にダイヤモンド基板6を載置し、上部基板支持台5に半導体基板7を固定する構成について説明したが、ダイヤモンド基板6と半導体基板7との上下関係は、逆にしてもよい。
 また、上記実施の形態1では、半導体基板7が固定される上部基板支持台5は、任意の形状の変形可能である構造について説明したが、例えば、図8に示すように、上部基板支持台5の表層部に、シリコンゴムなどから構成される軟質層52を備えた構成であってもよい。この場合、ダイヤモンド基板6と半導体基板7とを密着させる際に、軟質層52が変形することによってダイヤモンド基板6における半導体基板7に対向する面に対して半導体基板7におけるダイヤモンド基板6に対向する面が平行曲面または平行面となるように、半導体基板7が変形する。また、図9に示すように、上部基板支持台5の中央部分に中空部53を形成してもよい。この場合、図10に示すように、下部基板支持台4に載置されたダイヤモンド基板6の反り形状に合わせて、半導体基板7が変形できる。この場合、ダイヤモンド基板6と半導体基板7とに強い密着力が印加できるように、中空部53には、気体を導入して、ダイヤモンド基板6および半導体基板7に圧力を印加できる構造にするのが望ましい。
 言い換えれば、上部基板支持台5は、半導体基板7におけるダイヤモンド基板6に対向する面が変形可能となるように半導体基板7を支持し、ダイヤモンド基板6と半導体基板7とが厚さ方向について圧力が加えられる時に、その圧力を用いて半導体基板7におけるダイヤモンド基板6に対向する面をダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面にする構成であってもよい。この場合、半導体製造装置は、第2機構部を備えなくてよい。
 また、上記実施の形態1では、例示したダイヤモンド基板6は単結晶ダイヤモンド、または多結晶ダイヤモンドの何れであってもよく、シリコン基板、金属基板上にヘテロ成長させたダイヤモンド基板であってもよい。
 また、半導体基板7は、GaN系材料に限定されず、他の半導体基板であってもよい。例えば、ダイヤモンド基板6および第2基板であるシリコン基板を互いに接合した後に、シリコン基板の表面にGaN系材料をエピタキシャル成長させることによって、GaN系エピタキシャル層、シリコン基板およびダイヤモンド基板6から構成される半導体を製造することができる。
 また、上記実施の形態1では、ダイヤモンド基板6および半導体基板7に中性粒子ビームまたは荷電粒子ビームを照射して、ダイヤモンド基板6および半導体基板7のそれぞれの表面に化学的に活性な未結合手を露出させ、それぞれを結合させることによって基板接合を行う方法について説明した。また、上記実施の形態1では、プラズマを励起して、イオン衝撃またはプラズマ中の化学活性種を用いることで、ダイヤモンド基板6および半導体基板7のそれぞれの表面に化学的に活性な未結合手を露出させ、それぞれを結合させることによって基板接合を行う方法について説明した。これらに限らず、例えば、酸素プラズマ処理およびフッ酸溶液処理によってダイヤモンド基板6および半導体基板7のそれぞれの表面を水酸基により修飾した上で、ダイヤモンド基板6および半導体基板7のそれぞれを互いに密着させ、水素結合によってダイヤモンド基板6および半導体基板7のそれぞれを接合する方法であってもよい。酸素プラズマ処理およびフッ酸溶液処理を用いる場合には、その工程は、ステップS101の前に実施し、表面処理済みのダイヤモンド基板6および半導体基板7を、半導体製造装置を用いて、基板接合してもよい。
 また、上記実施の形態1では、ダイヤモンド基板6が上向きに凸となるように配置される構成について説明したが、ダイヤモンド基板6が下向きに凸となるように配置される構成であってもよい。
 実施の形態2.
 図11はこの発明の実施の形態2に係る半導体製造装置におけるダイヤモンド基板を示す図である。半導体製造装置は、ダイヤモンド基板6が固定されるダイヤモンド基板固定治具19を備えている。ダイヤモンド基板固定治具19から第1基板固定治具が構成されている。
 ダイヤモンド基板固定治具19は、ガラスなどの硬質材料から構成されている。ダイヤモンド基板固定治具19におけるダイヤモンド基板6に接触する面は、ダイヤモンド基板6におけるダイヤモンド基板固定治具19に対向する面に対して平行曲面または平行面となっている。ダイヤモンド基板固定治具19におけるダイヤモンド基板6から離れた面は、平面となっている。ダイヤモンド基板固定治具19におけるダイヤモンド基板6に接触する面を、ダイヤモンド基板6におけるダイヤモンド基板固定治具19に対向する面に対して平行曲面または平行面とするためには、事前に複数の異なる形状のダイヤモンド基板固定治具19を準備し、その中からダイヤモンド基板6におけるダイヤモンド基板固定治具19に対向する面に対して平行曲面または平行面となるものを選択する。なお、ダイヤモンド基板6におけるダイヤモンド基板固定治具19に対向する面に対して平行曲面または平行面となるように変形できる機構をダイヤモンド基板固定治具19に内蔵してもよい。
 図12はこの発明実施の形態2に係る半導体製造装置における半導体基板を示す図である。半導体製造装置は、上部基板支持台5に設けられ半導体基板7が固定される支持基板20と、支持基板20と半導体基板7との間に配置される軟質接着層21とを備えている。上部基板支持台5は、半導体基板7におけるダイヤモンド基板6に対向する面が変形可能となるように半導体基板7を支持しており、ダイヤモンド基板6と半導体基板7とが厚さ方向について圧力が加えられる時に、その圧力を用いて半導体基板7におけるダイヤモンド基板6に対向する面をダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面にする。その他の構成は、実施の形態1と同様である。
 次に、半導体製造装置を用いてダイヤモンド基板6と半導体基板7とを化学的に結合させる半導体製造方法について説明する。図13はこの発明の実施の形態2に係る半導体製造装置を用いてダイヤモンド基板6と半導体基板7とを化学的に接合させる半導体製造方法を示すフローチャートである。ステップS201からステップS211までは、実施の形態1におけるステップS101からステップS111までと同様である。
 ステップS212において、下部基板支持台4と上部基板支持台5とを密着させることによってダイヤモンド基板6と半導体基板7とを密着させる。図14は図13のステップS210からステップS214までの工程を示す図である。図14は、実施の形態1における図6に対応する。図14において、実施の形態1と同じ部材については、同じ符号を付している。また、実施の形態1と同じ部材については、詳細な説明を省略し、実施の形態1と異なる点について説明する。
 ステップS212では、(A)に示すように、ダイヤモンド基板6およびダイヤモンド基板固定治具19を下部基板支持台4に固定し、半導体基板7、軟質接着層21および支持基板20を上部基板支持台5に固定する。その後、(B)に示すように、下部基板支持台4および上部基板支持台5を移動させて、ダイヤモンド基板6と半導体基板7とを互いに近づく方向に移動させ、ダイヤモンド基板6と半導体基板7とを10kPaから100MPaの範囲の圧力で密着させて接合させる。このとき、ダイヤモンド基板6はダイヤモンド基板固定治具19に固定されているので、ダイヤモンド基板6に大きな圧力が印加されても、ダイヤモンド基板6の変形が最小限に抑制される。その結果、ダイヤモンド基板6に損傷が生じることが抑制される。また、軟質接着層21には大きな圧力が印加されるので、軟質接着層21には変形が生じ、これにともなって、半導体基板7は、ダイヤモンド基板6の形状に略平行な形状に変形する。半導体基板7は、ダイヤモンド基板6の形状に略平行な形状に変形した状態でダイヤモンド基板6に接合される。その後、(C)に示すように、上部基板支持台5から接合基板18を取り外す。ステップS212には、第2基板支持台変形工程および支持台移動工程が含まれる。
 図13に示すように、ステップS212の後、ステップS213からステップS217は、実施の形態1におけるステップS113からステップS117と同様である。
 以上説明したように、この発明の実施の形態2に係る半導体製造装置によれば、第1機構部および第2機構部を備えていない場合であっても、ダイヤモンド基板6を変形させることなく、大きな圧力をダイヤモンド基板6および半導体基板7に印加して、ダイヤモンド基板6と半導体基板7とを密着させて、良好な接合基板18を得ることができる。
 以上説明したように、この発明の実施の形態2に係る半導体製造方法によれば、第1機構部および第2機構部を備えていない場合であっても、ダイヤモンド基板6を変形させることなく、大きな圧力をダイヤモンド基板6および半導体基板7に印加して、ダイヤモンド基板6と半導体基板7とを密着させて、良好な接合基板18を得ることができる。
 なお、この発明の実施の形態2では、ダイヤモンド基板固定治具19と、軟質接着層21および支持基板20とを備えた半導体製造装置の構成について説明したが、これに限らず、例えば、実施の形態1に記載の下部基板支持台4と、実施の形態2に記載の軟質接着層21および支持基板20とを備えた半導体製造装置の構成、または、実施の形態1に記載の上部基板支持台5と、実施の形態2に記載のダイヤモンド基板固定治具19とを備えた半導体製造装置の構成であってもよい。
 実施の形態3.
 図15はこの発明の実施の形態3に係る半導体製造装置を用いてダイヤモンド基板6と半導体基板7とを化学的に接合させる半導体製造方法を示すフローチャートである。実施の形態3において用いられる半導体製造装置における下部基板支持台4の構成は、実施の形態1における図2に示すものと同様である。実施の形態3におけるステップS301からステップS309は、実施の形態1におけるステップS101からステップS111と比較して、下記の点が異なる。すなわち、実施の形態3は、下部基板支持台4の表面41を、ダイヤモンド基板6における下部基板支持台4に対向する面に対して平行曲面または平行面となるように変形させるステップS105を備えていない。また、実施の形態3は、下部基板支持台4に内蔵された電極に電圧を印加することによって発生した静電力によってダイヤモンド基板6を下部基板支持台4に対して固定するステップS106を備えていない。
 図16は図15のステップS308からステップS313までの工程を示す図である。図16は、実施の形態1における図6に対応する。図16において、実施の形態1と同じ部材については、同じ符号を付している。また、実施の形態1と同じ部材については、詳細な説明を省略し、実施の形態1と異なる点について説明する。
 ステップS310では、(B)に示すように、ダイヤモンド基板6と半導体基板7とが接触する時または接触する直前において、下部基板支持台4の上昇および上部基板支持台5の下降を一旦停止させる。
 その後、ステップS311において、下部基板支持台4の空洞42の圧力および上部基板支持台5の空洞の圧力のそれぞれが増加される。この場合に、下部基板支持台4の空洞42の圧力が上部基板支持台5の空洞の圧力よりも低くなるように、下部基板支持台4の空洞42の圧力および上部基板支持台5の空洞の圧力のそれぞれが制御される。言い換えれば、下部基板支持台4がダイヤモンド基板6を半導体基板7に向かって押す圧力が、上部基板支持台5が半導体基板7をダイヤモンド基板6に向かって押す圧力よりも小さくなるように、下部基板支持台4の空洞42の圧力および上部基板支持台5の空洞の圧力のそれぞれが制御される。
 また、ステップS311において、ダイヤモンド基板6における半導体基板7に対向する面と半導体基板7におけるダイヤモンド基板6に対向する面とが10kPaから100MPaの範囲の圧力で密着するように、下部基板支持台4の上昇および上部基板支持台5の下降が行われる。ダイヤモンド基板6と半導体基板7とに厚さ方向に加えられる圧力を用いて、下部基板支持台4の表面41がダイヤモンド基板6における下部基板支持台4に対向する面の形状に合わせて変形する。また、同時に、上部基板支持台5の表面51は、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となるように変形する。これにより、半導体基板7におけるダイヤモンド基板6に対向する面は、ダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となるように変形する。下部基板支持台4がダイヤモンド基板6を半導体基板7に向かって押す圧力を上部基板支持台5が半導体基板7をダイヤモンド基板6に向かって押す圧力よりも小さくしてダイヤモンド基板6と半導体基板7とを密着させ、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となる半導体基板7の変形は、自律変形と呼ばれる。
 半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となることによって、半導体基板7におけるダイヤモンド基板6に対向する面は、ダイヤモンド基板6における半導体基板7に対向する面に密着する。その結果、ダイヤモンド基板6および半導体基板7が互いに接合される。ステップS311には、支持台移動工程が含まれる。支持台移動工程には同時変形工程が含まれる。ステップS312からステップS315は、実施の形態1のステップS113からステップS117と比較して、下部基板支持台4において静電力を開放し、下部基板支持台4と接合基板18との固定を開放するステップS115を備えない点のみが異なる。
 以上説明したように、この発明の実施の形態3に係る半導体製造方法によれば、下部基板支持台4の空洞42の圧力と上部基板支持台5の空洞の圧力とを制御する。これにより、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面に対して平行曲面または平行面となるように、半導体基板7におけるダイヤモンド基板6に対向する面を自律変形させることが可能となる。これにより、半導体基板7におけるダイヤモンド基板6に対向する面がダイヤモンド基板6における半導体基板7に対向する面の形状に対して平行曲面または平行面となるように、下部基板支持台4および上部基板支持台5を変形させる複雑な構造が不要となる。その結果、半導体製造装置をより単純な構造とすることができる。
 1 容器、2 ゲートバルブ、3 ロードロック室、4 下部基板支持台、5 上部基板支持台、6 ダイヤモンド基板、7 半導体基板、8 下部基板支持台駆動部、9 下部基板支持台駆動制御部、10 上部基板支持台駆動部、11 上部基板支持台駆動制御部、12 ビーム源、13 真空ポンプ、14 真空ポンプ、15 下部アクチュエータ、16 下部基板支持台表面形状制御部、17 上部基板支持台表面形状制御部、18 接合基板、19 ダイヤモンド基板固定治具、20 支持基板、21 軟質接着層、41 表面、42 空洞、51 表面、52 軟質層、53 中空部、71 外縁、72 軟質層。

Claims (10)

  1.  第1基板支持台にダイヤモンド基板を配置する第1基板配置工程と、
     前記第1基板支持台に対向して設けられた第2基板支持台に半導体基板を配置する第2基板配置工程と、
     前記第1基板配置工程および前記第2基板配置工程の後に、前記第1基板支持台および前記第2基板支持台の何れか一方または両方を移動させて、前記ダイヤモンド基板と前記半導体基板とを前記半導体基板の厚さ方向に圧力が加えられた状態で密着させる支持台移動工程と、
     前記第1基板支持台における前記第2基板支持台に対向する面を、前記ダイヤモンド基板における前記第1基板支持台に対向する面の形状に合わせて変形させる第1基板支持台変形工程と、
     前記第1基板支持台変形工程の後、前記第2基板支持台における前記第1基板支持台に対向する面を、前記半導体基板における前記ダイヤモンド基板に対向する面が前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面となるように変形させる第2基板支持台変形工程と
     を備えた半導体製造方法。
  2.  前記第1基板支持台変形工程では、前記第1基板配置工程の前に、前記ダイヤモンド基板における前記第1基板支持台に対向する面に対して平行曲面または平行面となるように、前記第1基板支持台における前記第2基板支持台に対向する面を変形させる請求項1に記載の半導体製造方法。
  3.  第1基板支持台にダイヤモンド基板を配置する第1基板配置工程と、
     前記第1基板支持台に対向して設けられた第2基板支持台に半導体基板を配置する第2基板配置工程と、
     前記第1基板配置工程および前記第2基板配置工程の後に、前記第1基板支持台および前記第2基板支持台の何れか一方または両方を移動させて、前記ダイヤモンド基板と前記半導体基板とを前記半導体基板の厚さ方向に圧力が加えられた状態で密着させる支持台移動工程と
     を備え、
     前記支持台移動工程には、前記ダイヤモンド基板と前記半導体基板とに前記厚さ方向に加えられる圧力を用いて、前記第1基板支持台における前記第2基板支持台に対向する面を前記ダイヤモンド基板における前記第1基板支持台に対向する面の形状に合わせて変形させ、同時に、前記第2基板支持台における前記第1基板支持台に対向する面を、前記半導体基板における前記ダイヤモンド基板に対向する面が前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面となるように変形させる同時変形工程が含まれる半導体製造方法。
  4.  前記同時変形工程では、前記第1基板支持台が前記ダイヤモンド基板を前記半導体基板に向かって押す圧力を前記第2基板支持台が前記半導体基板を前記ダイヤモンド基板に向かって押す圧力よりも小さくして前記ダイヤモンド基板と前記半導体基板とを密着させ、前記半導体基板における前記ダイヤモンド基板に対向する面が前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面となるように変形させる請求項3に記載の半導体製造方法。
  5.  請求項1から請求項4までの何れか一項に記載の半導体製造方法であって、
     前記半導体基板の厚さ方向の寸法は、20μm以下である半導体製造方法。
  6.  前記ダイヤモンド基板の表面を活性化させる第1基板表面活性化工程をさらに備えた請求項1から請求項5までの何れか一項に記載の半導体製造方法。
  7.  ダイヤモンド基板を支持する第1基板支持台と、
     前記第1基板支持台に対向して設けられ、半導体基板を支持する第2基板支持台と、
     前記第1基板支持台および前記第2基板支持台の何れか一方または両方を移動させて、前記ダイヤモンド基板と前記半導体基板とを前記半導体基板の厚さ方向について圧力が加えられた状態で密着させる支持台駆動部と、
     前記第2基板支持台における前記第1基板支持台に対向する面を、前記半導体基板における前記ダイヤモンド基板に対向する面が前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面となるように変形させる第2機構部と
     を備えた半導体製造装置。
  8.  ダイヤモンド基板を支持する第1基板支持台と、
     前記第1基板支持台に対向して設けられ、半導体基板を支持する第2基板支持台と、
     前記第1基板支持台および前記第2基板支持台の何れか一方または両方を移動させて、前記ダイヤモンド基板と前記半導体基板とを前記半導体基板の厚さ方向について圧力が加えられた状態で密着させる支持台駆動部と
     を備え、
     前記第2基板支持台は、前記半導体基板における前記ダイヤモンド基板に対向する面が変形可能となるように前記半導体基板を支持しており、前記ダイヤモンド基板と前記半導体基板とが前記厚さ方向について圧力が加えられる時に、前記圧力を用いて前記半導体基板における前記ダイヤモンド基板に対向する面を前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面にする半導体製造装置。
  9.  前記第1基板支持台における前記第2基板支持台に対向する面を、前記ダイヤモンド基板における前記第1基板支持台に対向する面に合わせて変形させる第1機構部をさらに備えた請求項7または請求項8に記載の半導体製造装置。
  10.  ダイヤモンド基板を支持する第1基板支持台と、
     前記第1基板支持台に対向して設けられ、半導体基板を支持する第2基板支持台と、
     前記第1基板支持台および前記第2基板支持台の何れか一方または両方を移動させて、前記ダイヤモンド基板と前記半導体基板とを前記半導体基板の厚さ方向について圧力が加えられた状態で密着させる支持台駆動部と、
     前記ダイヤモンド基板と前記第1基板支持台との間に設けられ、前記ダイヤモンド基板に対向する面が前記ダイヤモンド基板における前記第1基板支持台に対向する面に対して平行曲面または平行面である第1基板固定治具と
     を備え、
     前記第2基板支持台は、前記半導体基板における前記ダイヤモンド基板に対向する面が変形可能となるように前記半導体基板を支持しており、前記ダイヤモンド基板と前記半導体基板とが前記厚さ方向について圧力が加えられる時に、前記圧力を用いて前記半導体基板における前記ダイヤモンド基板に対向する面を前記ダイヤモンド基板における前記半導体基板に対向する面に対して平行曲面または平行面にする半導体製造装置。
PCT/JP2018/003408 2017-02-02 2018-02-01 半導体製造方法および半導体製造装置 WO2018143344A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/474,639 US11107685B2 (en) 2017-02-02 2018-02-01 Semiconductor manufacturing method and semiconductor manufacturing device
GB1908089.4A GB2573215B (en) 2017-02-02 2018-02-01 Semiconductor manufacturing method and semiconductor manufacturing device
JP2018565646A JP6671518B2 (ja) 2017-02-02 2018-02-01 半導体製造方法および半導体製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-017352 2017-02-02
JP2017017352 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018143344A1 true WO2018143344A1 (ja) 2018-08-09

Family

ID=63039857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003408 WO2018143344A1 (ja) 2017-02-02 2018-02-01 半導体製造方法および半導体製造装置

Country Status (4)

Country Link
US (1) US11107685B2 (ja)
JP (1) JP6671518B2 (ja)
GB (1) GB2573215B (ja)
WO (1) WO2018143344A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137052A1 (ja) * 2018-12-25 2020-07-02 株式会社Sumco 多結晶ダイヤモンド自立基板及びその製造方法
JPWO2020230520A1 (ja) * 2019-05-10 2020-11-19
JP2021013007A (ja) * 2019-07-04 2021-02-04 公立大学法人大阪 半導体デバイスの製造方法及び半導体デバイス
WO2022168217A1 (ja) * 2021-02-04 2022-08-11 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
US12087726B2 (en) 2019-11-08 2024-09-10 Ev Group E. Thallner Gmbh Device and method for joining substrates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118099001A (zh) * 2017-09-21 2024-05-28 Ev 集团 E·索尔纳有限责任公司 接合基板的装置和方法
WO2020226093A1 (ja) * 2019-05-08 2020-11-12 東京エレクトロン株式会社 接合装置、接合システム及び接合方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654389B2 (ja) * 2006-01-16 2011-03-16 株式会社ムサシノエンジニアリング ダイヤモンドヒートスプレッダの常温接合方法,及び半導体デバイスの放熱部
JP2011249576A (ja) * 2010-05-27 2011-12-08 Kobe Steel Ltd ダイヤモンド・アルミニウム接合体及びその製造方法
WO2016093284A1 (ja) * 2014-12-10 2016-06-16 株式会社ニコン 基板重ね合わせ装置および基板重ね合わせ方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355822A (ja) * 1989-07-25 1991-03-11 Shin Etsu Handotai Co Ltd 半導体素子形成用基板の製造方法
US5273553A (en) * 1989-08-28 1993-12-28 Kabushiki Kaisha Toshiba Apparatus for bonding semiconductor substrates
JP3239884B2 (ja) 1989-12-12 2001-12-17 ソニー株式会社 半導体基板の製造方法
JPH05217819A (ja) 1992-01-31 1993-08-27 Canon Inc 半導体基板貼り合わせ装置
JPH09260539A (ja) 1996-03-27 1997-10-03 Matsushita Electric Ind Co Ltd サブマウント装置および半導体装置ならびにそれらの製造方法
CN102687268A (zh) * 2010-01-12 2012-09-19 诺瓦特安斯集团有限公司 带有热扩散器的半导体结构及其制造方法
US9455229B2 (en) * 2012-04-27 2016-09-27 Namiki Seimitsu Houseki Kabushiki Kaisha Composite substrate manufacturing method, semiconductor element manufacturing method, composite substrate, and semiconductor element
US8946052B2 (en) * 2012-09-26 2015-02-03 Sandia Corporation Processes for multi-layer devices utilizing layer transfer
EP2936550B1 (en) * 2012-12-18 2021-05-19 RFHIC Corporation Substrates for semiconductor devices
US10065395B2 (en) * 2013-05-31 2018-09-04 Kyocera Corporation Composite substrate and method for manufacturing same
US20140370624A1 (en) * 2013-06-18 2014-12-18 International Business Machines Corporation Wafer alignment and bonding tool for 3d integration
US9490158B2 (en) * 2015-01-08 2016-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bond chuck, methods of bonding, and tool including bond chuck
GB201610886D0 (en) * 2016-06-22 2016-08-03 Element Six Tech Ltd Bonding of diamond wafers to carrier substrates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654389B2 (ja) * 2006-01-16 2011-03-16 株式会社ムサシノエンジニアリング ダイヤモンドヒートスプレッダの常温接合方法,及び半導体デバイスの放熱部
JP2011249576A (ja) * 2010-05-27 2011-12-08 Kobe Steel Ltd ダイヤモンド・アルミニウム接合体及びその製造方法
WO2016093284A1 (ja) * 2014-12-10 2016-06-16 株式会社ニコン 基板重ね合わせ装置および基板重ね合わせ方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557588B (zh) * 2018-12-25 2024-05-31 胜高股份有限公司 多晶金刚石自立基板及其制造方法
JP2020102598A (ja) * 2018-12-25 2020-07-02 株式会社Sumco 多結晶ダイヤモンド自立基板及びその製造方法
WO2020137052A1 (ja) * 2018-12-25 2020-07-02 株式会社Sumco 多結晶ダイヤモンド自立基板及びその製造方法
CN113557588A (zh) * 2018-12-25 2021-10-26 胜高股份有限公司 多晶金刚石自立基板及其制造方法
JP7115297B2 (ja) 2018-12-25 2022-08-09 株式会社Sumco 多結晶ダイヤモンド自立基板及びその製造方法
JPWO2020230520A1 (ja) * 2019-05-10 2020-11-19
JP7071775B2 (ja) 2019-05-10 2022-05-19 国立研究開発法人産業技術総合研究所 ダイヤモンド結晶体を備える複合体
JP2021013007A (ja) * 2019-07-04 2021-02-04 公立大学法人大阪 半導体デバイスの製造方法及び半導体デバイス
JP7389472B2 (ja) 2019-07-04 2023-11-30 公立大学法人大阪 半導体デバイスの製造方法及び半導体デバイス
US12087726B2 (en) 2019-11-08 2024-09-10 Ev Group E. Thallner Gmbh Device and method for joining substrates
JP7579336B2 (ja) 2019-11-08 2024-11-07 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 基板を結合する装置および方法
JP7475503B2 (ja) 2021-02-04 2024-04-26 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法
WO2022168217A1 (ja) * 2021-02-04 2022-08-11 三菱電機株式会社 半導体基板の製造方法および半導体装置の製造方法

Also Published As

Publication number Publication date
JP6671518B2 (ja) 2020-03-25
GB2573215A (en) 2019-10-30
US20190362974A1 (en) 2019-11-28
GB2573215B (en) 2021-11-17
GB201908089D0 (en) 2019-07-24
US11107685B2 (en) 2021-08-31
JPWO2018143344A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018143344A1 (ja) 半導体製造方法および半導体製造装置
US7550052B2 (en) Method of producing a complex structure by assembling stressed structures
US7479441B2 (en) Method and apparatus for flag-less water bonding tool
KR102009551B1 (ko) 기질을 결합하기 위한 방법 및 장치
US8389379B2 (en) Method for making a stressed structure designed to be dissociated
JP2004153159A (ja) 半導体ウェハの保護部材貼着方法及びその装置
JP2013526021A (ja) 一時的にボンディングされたウエハをデボンディングするための改善された装置と方法
JP2015523712A (ja) 光電子工学デバイスを形成するための技術
JP2011200933A (ja) 接合方法
KR102114500B1 (ko) 전열 시트 부착 방법
US8434538B2 (en) Bonding apparatus and bonding method
KR101832016B1 (ko) 시트 부착 장치 및 부착 방법
JP6454812B1 (ja) ワーク転写用チャック及びワーク転写方法
JP4624836B2 (ja) 貼り合わせウエーハの製造方法及びそれに用いるウエーハ保持用治具
JP2015128149A (ja) 複合体およびその製造方法ならびに複合基板の製造方法
JP2009071145A (ja) 半導体ウエハ等の板状部材のダイシングテープ貼付け方法及び装置
KR102047587B1 (ko) 영구적 접합 방법 및 장치
KR20120087462A (ko) 기판합착장치 및 기판합착방법
CN116982143A (zh) 转印装置及转印方法
KR101288864B1 (ko) 기판합착장치
JP2011155099A (ja) シート貼付装置およびシート貼付方法
WO2013105614A1 (ja) 半導体基板、薄膜トランジスタ、半導体回路、液晶表示装置、エレクトロルミネセンス装置、半導体基板の製造方法、及び半導体基板の製造装置
JP2003273049A (ja) ウエハの真空貼付装置
JP4852476B2 (ja) 薄膜形成装置および薄膜形成方法
JP5797863B1 (ja) 接合部材製造装置及び接合部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565646

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201908089

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180201

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748740

Country of ref document: EP

Kind code of ref document: A1