[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018142607A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018142607A1
WO2018142607A1 PCT/JP2017/004186 JP2017004186W WO2018142607A1 WO 2018142607 A1 WO2018142607 A1 WO 2018142607A1 JP 2017004186 W JP2017004186 W JP 2017004186W WO 2018142607 A1 WO2018142607 A1 WO 2018142607A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
refrigerant
unit
source side
Prior art date
Application number
PCT/JP2017/004186
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 大河内
祐治 本村
森本 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018565219A priority Critical patent/JPWO2018142607A1/en
Priority to PCT/JP2017/004186 priority patent/WO2018142607A1/en
Priority to GB1909669.2A priority patent/GB2573224B/en
Publication of WO2018142607A1 publication Critical patent/WO2018142607A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • a refrigeration cycle circuit that circulates a heat source side refrigerant by pipe connection between an outdoor unit (outdoor unit) and a relay unit, a circulating heat source side refrigerant, a relay unit, and an indoor unit (indoor unit)
  • an air conditioner having a heat medium circulation circuit for circulating a heat medium (indoor-side refrigerant).
  • the outdoor unit and the relay unit are connected by piping
  • the relay unit and a plurality of indoor units are connected by piping.
  • a heat medium supplies warmth or cold to the indoor side, and performs air conditioning.
  • an air conditioner has been proposed in which energy is saved by reducing the conveyance power of the heat medium to be applied to a building multi-air conditioner (see, for example, Patent Document 1).
  • the reason why the air conditioner is composed of two circulation circuits is to use a refrigerant such as water that does not adversely affect the health of the users in the building as a heat medium that circulates indoors. .
  • the air conditioner of Patent Document 1 described above also includes a heat medium side switching device that switches the flow path of the heat medium in the relay unit. For this reason, the number of indoor units in the heat medium circuit is limited and is difficult to expand.
  • the air conditioning apparatus of Patent Document 1 described above performs a cooling and heating mixed operation in which some of the indoor units perform cooling and the other or some of the indoor units perform heating. It is a device that can.
  • an air conditioner as in Patent Document 1 may be required from the viewpoints of energy saving and safety as described above.
  • Patent Document 1 when an air conditioner as in Patent Document 1 is installed as it is in a facility that does not need to perform a cooling and heating mixed operation, an unnecessary device is generated among the devices that constitute the air conditioner.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an air conditioner that can easily change the circuit configuration in accordance with the application.
  • An air conditioner includes a compressor that compresses a heat source side refrigerant, a first refrigerant flow switching device that switches a circulation path of the heat source side refrigerant, a heat source side heat exchanger that exchanges heat between the heat source side refrigerant, and a heat source side refrigerant.
  • a heat source side refrigerant circulation circuit that circulates the heat source side refrigerant by pipe-connecting a heat exchanger between the heat source side and the heat source side refrigerant and a heat source different from the heat source side refrigerant
  • the compressor, the first refrigerant flow switching device and the heat source side heat exchanger are accommodated in the outdoor unit, and the heat exchanger related to heat medium and the expansion device are accommodated in the heat exchange unit, and use side heat exchange
  • the container is housed in the indoor unit
  • the refrigerant that switches the circulation path of the heat source side refrigerant between the outdoor unit and the heat exchange unit in the air conditioner that has the heat source side refrigerant circulation circuit and the heat medium circulation circuit to realize air conditioning, the refrigerant that switches the circulation path of the heat source side refrigerant between the outdoor unit and the heat exchange unit.
  • the circuit side flow path switching unit and the heat medium circuit side flow path switching unit that switches the circulation path of the heat medium between the heat exchange unit and the indoor unit are detachably installed. It is possible to easily change the circuit configuration according to the above.
  • FIG. 1 is a diagram showing an outline of an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated.
  • the air conditioner includes a refrigerant circulation circuit that circulates the heat source side refrigerant and a heat medium circulation circuit that circulates a heat medium such as water, and performs indoor cooling or heating.
  • Each indoor unit 3 can freely select cooling or heating.
  • an air conditioner according to Embodiment 1 includes one outdoor unit 1 serving as a heat source unit, a plurality of indoor units 3 serving as indoor units, a relay unit 2, and a heat medium circuit side flow path switching unit. 23 and a heat medium adjusting unit 24.
  • the relay unit 2 includes a heat exchange unit 22 having a refrigerant circuit side flow path switching unit 21 and a heat medium heat exchanger 25, and includes a heat source side refrigerant circulating in the refrigerant circuit and a heat medium circuit. It is a unit that relays heat transfer between circulating heat media.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 serving as a heat source side refrigerant flow path.
  • the relay unit 2 and each indoor unit 3 are connected by the heat medium piping 5 used as the flow path of a heat medium.
  • a plurality of relay units 2 can be connected to one outdoor unit 1. Further, for example, a plurality of heat medium circuit side flow path switching units 23 and heat medium adjustment units 24 can be connected to the relay unit 2.
  • the relay unit 2 is configured by combining the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22, but the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22 are separately provided. It is good also as a unit.
  • Examples of the heat source side refrigerant circulating in the refrigerant circuit include a single refrigerant such as R-22 and R-134a, a pseudo-azeotropic mixed refrigerant such as R-410A and R-404A, and a non-azeotropic refrigerant such as R-407C.
  • the heat medium circulating in the heat medium circuit for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of an additive having high anticorrosive effect and water, or the like can be used.
  • the air conditioner of Embodiment 1 can use a highly safe thing as a heat medium. For this reason, the air conditioning apparatus according to Embodiment 1 is safe even if, for example, the heat medium leaks into the indoor space 7 via the indoor unit 3.
  • the outdoor unit 1 circulates the heat source side refrigerant with the relay unit 2 through the refrigerant pipe 4. At this time, the heat source side refrigerant exchanges heat with the heat medium in the heat medium heat exchanger 25 in the relay unit 2 described later. The heat medium is heated or cooled by heat exchange.
  • the heat medium heated or cooled in the relay unit 2 is circulated between the indoor unit 3 and the indoor unit 3 through the heat medium pipe 5 by a pump 31 described later. At this time, the heat medium exchanges heat between the indoor unit 3 and the air in a use side heat exchanger 35 in the indoor unit 3 described later. The air exchanged with the heat medium is used for heating or cooling the indoor space 7.
  • FIG. 2 is a diagram showing an example of the configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the apparatus etc. which an air conditioning apparatus has is demonstrated. As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 4. The relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5.
  • the outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 19 in a housing.
  • the compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, and the accumulator 19 are pipe-connected by the refrigerant pipe 4 and mounted.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the compressor 10 may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 such as a four-way valve, as will be described later, is a flow of the heat source side refrigerant in the refrigerant circuit and a cooling operation mode (in a heating operation mode (a heating only operation mode or a heating main operation mode)). In the all-cooling operation mode or the cooling main operation mode), the flow of the heat source side refrigerant in the refrigerant circuit is switched.
  • the heat source side heat exchanger 12 performs heat exchange between air supplied from an outdoor blower (not shown) and the heat source side refrigerant, for example.
  • it functions as an evaporator and absorbs heat by the heat source side refrigerant.
  • the cooling operation mode it functions as a condenser or a radiator and dissipates heat to the heat source side refrigerant.
  • the accumulator 19 is provided on the suction side of the compressor 10. The accumulator 19 stores, for example, surplus refrigerant generated in a transition period when the operation changes, for example, between the heating operation mode and the cooling operation mode.
  • the outdoor unit 1 has a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d.
  • the refrigerant pipe 4 on the side where the heat source side refrigerant passes from the outdoor unit 1 to the relay unit 2 regardless of the operation mode The refrigerant pipe 4 on the side where the heat source side refrigerant passes from the relay unit 2 to the outdoor unit 1 can be made constant.
  • the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d are not essential devices for the air-conditioning apparatus according to Embodiment 1, and therefore can be omitted.
  • the indoor unit 3 has a use side heat exchanger 35 in the housing.
  • the use side heat exchanger 35 is connected to the heat medium pipe 5, and the heat medium passes therethrough.
  • the use side heat exchanger 35 performs heat exchange between air supplied from an indoor fan (not shown) and the heat medium. If the warm heat medium passes, the air is heated and the indoor space 7 is heated. Moreover, if a cold heat medium passes, air will be cooled and the indoor space 7 will be cooled.
  • FIG. 2 shows an example in which four indoor units 3 and relay units 2 are connected. It is illustrated as an indoor unit 3a, an indoor unit 3b, an indoor unit 3c, and an indoor unit 3d from the top of the page.
  • the use side heat exchanger 35 also has a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger from the upper side of the drawing. 35d.
  • the number of indoor units 3 connected to the relay unit 2 is not limited to the four units shown in FIG.
  • the relay unit 2 includes the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22.
  • the refrigerant circuit side flow path switching unit 21 is a unit obtained by modularizing a device that switches the flow path of the heat source side refrigerant passing through the relay unit 2.
  • the refrigerant circuit side channel switching unit 21 includes an opening / closing device 27, an opening / closing device 29, and a second refrigerant channel switching device 28 (second refrigerant channel switching device 28a, second refrigerant channel switching device 28b). .
  • the opening / closing device 27 and the opening / closing device 29 are configured to be opened / closed by energization, such as an electromagnetic valve, for example, and the opening / closing is controlled according to the operation mode, and the refrigerant flow path in the refrigerant circulation circuit is controlled. Switch.
  • the opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant in the relay unit 2.
  • the opening / closing device 29 is provided in a pipe (bypass pipe) connecting the refrigerant pipe 4 on the inlet side of the refrigerant on the heat source side and the refrigerant pipe 4 on the outlet side in the relay unit 2.
  • the two second refrigerant flow switching devices 28 are constituted by, for example, four-way valves.
  • the second refrigerant flow switching device 28 switches the flow of the heat source side refrigerant so that the heat medium heat exchanger 25 can be used as a condenser or an evaporator according to the operation mode.
  • the second refrigerant flow switching device 28a is provided in a portion on the downstream side of the heat medium heat exchanger 25a in the flow of the heat source side refrigerant in the cooling operation mode.
  • the second refrigerant flow switching device 28b is provided in a portion on the downstream side of the heat medium heat exchanger 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the heat exchange unit 22 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the refrigerant circulation circuit and the heat medium circulating in the heat medium circulation circuit.
  • the heat exchange unit 22 includes two heat medium heat exchangers 25 (heat medium heat exchanger 25a and heat medium heat exchanger 25b), two expansion devices 26 (expansion device 26a and expansion device 26b), and two pumps 31 ( A pump 31a and a pump 31b).
  • the heat medium heat exchanger 25 (heat medium heat exchanger 25a, heat medium heat exchanger 25b) performs heat exchange between the heat source side refrigerant and the heat medium, and transfers heat from the heat source side refrigerant side to the heat medium side.
  • the heat medium heat exchanger 25 functions as a condenser or a radiator, and dissipates heat to the heat source side refrigerant.
  • it functions as an evaporator and makes a heat source side refrigerant
  • the heat medium heat exchanger 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circulation circuit.
  • the heat medium heat exchanger 25a functions as an evaporator and cools the heat medium in the all-cooling operation mode and the cooling / heating mixed operation mode (cooling main operation mode, heating main operation mode). In the heating only operation mode, it functions as a condenser or a radiator and heats the heat medium.
  • the heat medium heat exchanger 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit. In the heating only operation mode and the cooling / heating mixed operation mode, the heating medium functions as a condenser or a heat radiator. Further, in the cooling only operation mode, it functions as an evaporator and cools the heat medium.
  • the two expansion devices 26 (the expansion device 26a and the expansion device 26b) function as a pressure reducing valve and an expansion valve, and are devices for expanding the pressure by reducing the heat source side refrigerant.
  • the expansion device 26a is provided on the upstream side of the heat medium heat exchanger 25a in the flow of the heat source side refrigerant in the cooling operation mode.
  • the expansion device 26b is provided on the upstream side of the heat medium heat exchanger 25b in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 26 may be a device such as an electronic expansion valve that can control the opening degree to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant.
  • the two pumps 31 suck the heat medium, pressurize it, and circulate it through the heat medium circulation circuit.
  • the pump 31 a is provided in the heat medium pipe 5 between the heat medium heat exchanger 25 a and the second heat medium flow switching device 33.
  • the pump 31 b is provided in the heat medium pipe 5 between the heat medium heat exchanger 25 b and the second heat medium flow switching device 33.
  • the pump 31 is preferably a device that is configured by a capacity-controllable pump or the like and that can adjust the flow rate according to the size of the thermal load on the indoor unit 3 side.
  • the heat medium circuit side flow path switching unit 23 is a unit obtained by modularizing a device that switches the flow path of the heat medium passing through the relay unit 2.
  • the heat medium circuit side flow switching unit 23 according to the first embodiment includes four first heat medium flow switching devices 32 (first heat medium flow switching device 32a to first heat medium flow switching device 32d) and four. There are two second heat medium flow switching devices 33 (second heat medium flow switching device 33a to second heat medium flow switching device 33d).
  • the first heat medium flow switching device 32 is constituted by, for example, a three-way valve.
  • the first heat medium flow switching device 32 switches the heat medium flow channel in the heat medium circulation circuit in conjunction with the second heat medium flow switching device 33.
  • the first heat medium flow switching device 32 is connected to the use side heat exchanger 35 of the indoor unit 3 via the heat medium heat exchanger 25a, the heat medium heat exchanger 25b, and the heat medium flow rate adjustment device 34, respectively. It is provided on the heat medium outflow side of the side heat exchanger 35. Then, the first heat medium flow switching device 32 switches so that the heat medium flowing out from the indoor unit 3 flows to the heat medium heat exchanger 25a or the heat medium heat exchanger 25b.
  • the first heat medium flow switching device 32 is installed according to each indoor unit 3. In FIG.
  • the first heat medium flow switching device 32a the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium corresponding to each indoor unit 3 from the upper side of the drawing.
  • Four first heat medium flow switching devices 32 of the flow switching device 32d are shown.
  • the switching of the flow path in the first heat medium flow switching device 32 includes not only selectively switching between the heat medium heat exchanger 25a or the heat medium heat exchanger 25b but also switching the flow rate. .
  • the second heat medium flow switching device 33 is composed of, for example, a three-way valve.
  • the second heat medium flow switching device 33 switches the heat medium flow channel in the heat medium circulation circuit in conjunction with the first heat medium flow switching device 32.
  • the second heat medium flow switching device 33 is connected to the heat medium heat exchanger 25 a, the heat medium heat exchanger 25 b, and the use side heat exchanger 35 of the indoor unit 3, and the heat medium flow into the use side heat exchanger 35.
  • the second heat medium flow switching device 33 switches the heat medium flowing out of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to flow into the indoor unit 3.
  • the second heat medium flow switching device 33 is installed according to each indoor unit 3. In FIG.
  • Four second heat medium flow switching devices 33 of the flow switching device 33d are shown. Further, the switching of the flow path in the second heat medium flow switching device 33 not only selectively switches the heat medium inflow from the heat medium heat exchanger 25a or the heat medium heat exchanger 25b, but also the ratio of the inflow Including the case of switching.
  • the heat medium adjusting unit 24 is a unit obtained by modularizing a device that adjusts the amount of heat medium flowing into and out of each indoor unit 3 through the relay unit 2.
  • the heat medium adjustment unit 24 according to the first embodiment includes four heat medium flow control devices 34 (heat medium flow control devices 34a to 34d).
  • the heat medium flow control device 34 includes a two-way valve that can control the opening area.
  • the heat medium flow control device 34 controls the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the heat medium flow control device 34 is connected between the use side heat exchanger 35 and the first heat medium flow switching device 32. Then, the heat medium flow control device 34 adjusts the amount of the heat medium that passes through the indoor unit 3 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out.
  • the heat exchange can be performed according to the indoor load.
  • the heat medium flow control device 34 is installed according to each indoor unit 3.
  • a heat medium flow control device 34a corresponding to the indoor unit 3
  • a heat medium flow control device 34b corresponding to the indoor unit 3
  • a heat medium flow control device 34c corresponding to the indoor unit 3
  • a heat medium flow control device 34d are shown from the upper side of the drawing.
  • the heat medium flow control device 34 fully closes the heat medium flow control device 34 to supply the heat medium to the indoor unit 3. Can be stopped.
  • the heat medium flow control device 34 may be provided between the use side heat exchanger 35 and the second heat medium flow switching device 33. When the first heat medium flow switching device 32 or the second heat medium flow switching device 33 can substitute for the function of the heat medium flow control device 34, the installation of the heat medium flow control device 34 may be omitted.
  • the relay unit 2 is provided with two temperature sensors 40 (a temperature sensor 40a and a temperature sensor 40b).
  • Information (temperature information) detected by the temperature sensor 40 is sent to a control device (not shown) that controls the overall operation of the air conditioner, and the driving frequency of the compressor 10, the rotational speed of the blower not shown, It is used for control of switching of the 1 refrigerant flow switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3, etc. Will be.
  • the two temperature sensors 40 detect the temperature of the heat medium flowing out from the heat medium heat exchanger 25, that is, the temperature of the heat medium at the outlet of the heat medium heat exchanger 25, and may be composed of, for example, a thermistor.
  • the temperature sensor 40a is provided in the heat medium pipe 5 on the inlet side of the pump 31a.
  • the temperature sensor 40b is provided in the heat medium pipe 5 on the inlet side of the pump 31b.
  • FIG. 3 is a diagram showing a refrigerant flow in the heating only operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 illustrates an example in which all the indoor units 3 perform heating.
  • the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow
  • the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and the check valve 13c, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and passes through the relay unit 2.
  • the first refrigerant flow switching device 11 flows out of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. Has been switched.
  • the gaseous heat source side refrigerant that has flowed into the relay unit 2 is branched and flows into the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, respectively.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are each switched to the heating side.
  • the opening / closing device 27 is closed.
  • the gaseous heat-source-side refrigerant that has passed through the second refrigerant flow switching devices 28a and 28b passes through the heat medium heat exchangers 25a and 25b, and at this time, heat exchange with the heat medium is performed.
  • the heat-source-side refrigerant that has passed through the heat medium heat exchangers 25a and 25b becomes a high-temperature and high-pressure liquid refrigerant.
  • the heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion devices 26a and 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature low-pressure gas-liquid two-phase heat-source-side refrigerant that has passed through the expansion devices 26 a and 26 b merges and flows out from the relay unit 2. At this time, the opening / closing device 29 is closed.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13b and passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas.
  • the heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
  • the heat medium exchanges heat with a high-temperature and high-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a high-temperature heat medium.
  • the heat medium heated to high temperature in the heat medium heat exchangers 25a and 25b is conveyed to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively.
  • the transported heat medium passes through the second heat medium flow switching device 33 of the heat medium circuit side flow switching unit 23 connected to each indoor unit 3, and each indoor unit 3 is heated by the heat medium flow control device 34.
  • the flow rate of the heat medium flowing into the is adjusted.
  • the second heat medium flow switching device 33 can supply the heat medium conveyed from both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to the heat medium flow control device 34 and the indoor unit 3.
  • the opening degree is adjusted according to the intermediate opening degree or the temperature of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b.
  • the heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is heated by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35.
  • the heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34.
  • the transported heat medium flows into the heat medium heat exchangers 25 a and 25 b through the first heat medium flow switching device 32 of the heat medium circuit side flow switching unit 23 and is supplied to the indoor space 7 through the indoor unit 3.
  • the amount of heat received is received from the refrigerant side, and conveyed again to the pump 31a and the pump 31b.
  • FIG. 4 is a diagram showing a refrigerant flow in the heating main operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and the check valve 13c, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and passes through the relay unit 2.
  • the first refrigerant flow switching device 11 switches so that the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. It has been.
  • the heat source side refrigerant becomes a high-temperature and high-pressure liquid refrigerant, and the heat medium is heated.
  • the heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the expansion device 26b is controlled so that the degree of supercooling of the outlet refrigerant of the heat medium heat exchanger 25b becomes a target value.
  • the heat-source-side refrigerant that has become a low-temperature and low-pressure two-phase refrigerant passes through the expansion device 26a, flows into the heat medium heat exchanger 25a, performs heat exchange with the heat medium, and cools the heat medium.
  • the expansion device 26a is fully opened.
  • the opening / closing device 29 and the opening / closing device 27 are closed. Then, the refrigerant that has passed through the second refrigerant flow switching device 28 a flows out from the relay unit 2.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13b and passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas.
  • the heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
  • the heat medium is cooled in the heat medium heat exchanger 25a and heated in the heat medium heat exchanger 25b.
  • the heat medium cooled in the heat medium heat exchanger 25a is conveyed by the pump 31a.
  • the heated heat medium is conveyed by the pump 31b.
  • the transported heat medium passes through the second heat medium flow switching device 33 connected to each indoor unit 3.
  • the heat medium flow control device 34 adjusts the flow rate of the heat medium flowing into each indoor unit 3.
  • each second heat medium flow switching device 33 when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. Then, the heat medium flows out of the relay unit 2, passes through the heat medium pipe 5 outside the relay unit 2, and flows into the indoor unit 3.
  • the heat medium flowing into the indoor unit 3 undergoes heat exchange with the air in the indoor space 7 in the use side heat exchanger 35. Indoor heating or cooling is performed by the air in the indoor space 7 subjected to heat exchange.
  • the heat medium subjected to heat exchange flows out of the indoor unit 3.
  • the heat medium flowing out of the indoor unit 3 passes through the heat medium pipe 5 outside the relay unit 2 and flows into the relay unit 2.
  • the heat medium flowing into the relay unit 2 passes through the first heat medium flow switching device 32.
  • first heat medium flow switching device 32 when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected.
  • the heat medium that has passed through each flow path is heated or cooled by heat exchange in the heat medium heat exchanger 25.
  • FIG. 5 is a diagram showing a refrigerant flow in the cooling only operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 illustrates an example in which all the indoor units 3 perform cooling.
  • the thick line in the refrigerant circulation circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow
  • the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12.
  • the heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12.
  • the heat source side refrigerant is a liquid refrigerant.
  • the heat-source-side refrigerant that has passed through the heat-source-side heat exchanger 12 passes through the check valve 13a and flows out of the outdoor unit 1.
  • the heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2.
  • the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
  • the heat-source-side refrigerant that has flowed into the relay unit 2 branches after passing through the opening / closing device 27, and then passes through the expansion device 26a and the expansion device 26b.
  • the heat-source-side refrigerant that has passed through the expansion devices 26a and 26b is decompressed, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b.
  • the heat source side refrigerant that has passed through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b undergoes heat exchange with the heat medium.
  • the expansion device 26a and the expansion device 26b are controlled so that the degree of superheat of the heat source side refrigerant on the heat medium outflow side of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b becomes a target value.
  • the opening / closing device 29 is closed.
  • the heat-source-side refrigerant that has passed through the heat medium heat exchangers 25a and 25b merges after passing through the second refrigerant flow switching devices 28a and 28b, and flows out from the relay unit 2.
  • the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are each switched to the cooling side.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13c, the first refrigerant flow switching device 11 and the accumulator 19 and is compressed by the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1. Inhaled by the machine 10.
  • the heat medium exchanges heat with the low-temperature and low-pressure heat source side refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, and becomes a low-temperature heat medium.
  • the heat medium that has been lowered in temperature by the heat medium heat exchangers 25a and 25b is transferred to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively.
  • the transported heat medium passes through the second heat medium flow switching device 33 of the heat medium circuit side flow switching unit 23 connected to each indoor unit 3, and each indoor unit 3 is heated by the heat medium flow control device 34.
  • the flow rate of the heat medium flowing into the is adjusted.
  • the second heat medium flow switching device 33 can supply the heat medium conveyed from both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to the heat medium flow control device 34 and the indoor unit 3.
  • the opening degree is adjusted according to the intermediate opening degree or the temperature of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b.
  • the heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35.
  • the heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34.
  • the transported heat medium flows into the heat medium heat exchanger 25a and the heat medium heat exchanger 25b through the first heat medium flow switching device 32 of the heat medium circuit side flow path switching unit 23, and passes through the indoor unit 3 to the room.
  • the amount of heat supplied to the space 7 is received from the refrigerant side and again conveyed to the pump 31a and the pump 31b.
  • FIG. 6 is a diagram showing a refrigerant flow in the cooling main operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12.
  • the heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12.
  • the heat source side refrigerant is a liquid refrigerant.
  • the heat-source-side refrigerant that has passed through the heat-source-side heat exchanger 12 passes through the check valve 13a and flows out of the outdoor unit 1.
  • the heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2.
  • the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
  • the heat-source-side refrigerant that has flowed into the relay unit 2 passes through the second refrigerant flow switching device 28b and flows into the heat medium heat exchanger 25b. At this time, the second refrigerant flow switching device 28a is switched to the cooling-side flow path. The second refrigerant flow switching device 28b is switched to the heating-side flow path.
  • the heat-source-side refrigerant that has flowed into the heat medium heat exchanger 25b exchanges heat with the heat medium.
  • the heat source side refrigerant becomes a high-temperature and high-pressure liquid refrigerant, and the heat medium is heated.
  • the heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the expansion device 26b is controlled so that the degree of superheat of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a becomes a target value.
  • the refrigerant that has become a low-temperature and low-pressure two-phase refrigerant passes through the heat medium heat exchanger 25a, exchanges heat with the heat medium in the refrigerant-water heat exchanger, and then flows out from the relay unit 2.
  • the opening / closing device 29 is closed.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13c, the first refrigerant flow switching device 11 and the accumulator 19 and is compressed by the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1. Inhaled by the machine 10.
  • the heat medium is cooled in the heat medium heat exchanger 25a and heated in the heat medium heat exchanger 25b.
  • the heat medium cooled in the heat medium heat exchanger 25a is conveyed by the pump 31a.
  • the heated heat medium is conveyed by the pump 31b.
  • the transported heat medium passes through the second heat medium flow switching device 33 connected to each indoor unit 3.
  • the heat medium flow control device 34 adjusts the flow rate of the heat medium flowing into each indoor unit 3.
  • each second heat medium flow switching device 33 when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. Then, the heat medium flows out of the relay unit 2, passes through the heat medium pipe 5 outside the relay unit 2, and flows into the indoor unit 3.
  • the heat medium flowing into the indoor unit 3 undergoes heat exchange with the air in the indoor space 7 in the use side heat exchanger 35. Indoor heating or cooling is performed by the air in the indoor space 7 subjected to heat exchange.
  • the heat medium subjected to heat exchange flows out of the indoor unit 3.
  • the heat medium flowing out of the indoor unit 3 passes through the heat medium pipe 5 outside the relay unit 2 and flows into the relay unit 2.
  • the heat medium flowing into the relay unit 2 passes through the first heat medium flow switching device 32.
  • first heat medium flow switching device 32 when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected.
  • the heat medium that has passed through each flow path is heated or cooled by heat exchange in the heat medium heat exchanger 25.
  • FIG. 7 is a diagram illustrating another form of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner may be configured as shown in FIG. it can.
  • FIG. 7 a case where the heat exchange unit 22 having one heat medium heat exchanger 25 and one expansion device 26 is provided in the relay unit 2 will be described.
  • the relay unit 2 of the air conditioner of FIG. 7 is configured without the refrigerant circuit side flow path switching unit 21 installed in the air conditioner of FIG. Therefore, on the refrigerant circuit side, the refrigerant pipe 4 outside the relay unit 2 is directly connected to the heat medium heat exchanger 25 and the expansion device 26 of the heat exchange unit 22. On the heat medium circuit side, the heat medium circuit side flow path switching unit 23 installed in the air conditioner of FIG. 2 is not installed. Therefore, on the refrigerant circulation circuit side, the refrigerant pipe 4 outside the heat medium adjusting unit 24 and the relay unit 2 is directly connected to the heat medium heat exchanger 25 and the pump 31 included in the heat exchange unit 22. It becomes. Installation of the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d in the outdoor unit 1 is omitted.
  • the units in the relay unit 2 By configuring the units in the relay unit 2 with necessary units depending on the specifications and applications of the operation of the air conditioner, it is possible to share equipment in the air conditioners having different specifications and applications. . Moreover, since the conveyance power of the heat medium can be reduced, energy saving can be achieved. Furthermore, user safety can be taken into account by using a heat medium such as water.
  • FIG. 8 is a diagram showing a refrigerant flow in the heating operation mode of the air conditioner according to another embodiment of the present invention.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow
  • the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and flows into the relay unit 2.
  • the first refrigerant flow switching device 11 flows out of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. Has been switched.
  • the gaseous heat source side refrigerant flowing into the relay unit 2 passes through the heat medium heat exchanger 25a. At this time, heat exchange with the heat medium is performed.
  • the heat-source-side refrigerant that has passed through the heat medium heat exchanger 25a becomes a high-temperature and high-pressure liquid refrigerant.
  • the heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26a, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase heat source side refrigerant that has passed through the expansion device 26 a flows out of the relay unit 2.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas.
  • the heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
  • the heat medium exchanges heat with a high-temperature and high-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a high-temperature heat medium.
  • the heat medium heated to high temperature in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b is transferred to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively.
  • the flow rate of the heat medium flowing into each indoor unit 3 is adjusted by the heat medium flow rate adjusting device 34.
  • the heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is heated by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35.
  • the heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34.
  • the conveyed heat medium passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, is heated, and is again conveyed by the pump 31a and the pump 31b.
  • FIG. 9 is a diagram showing the flow of the refrigerant during the cooling operation mode of the air conditioner according to the first embodiment of the present invention.
  • the direction in which the heat source side refrigerant flows is indicated by a solid line arrow
  • the direction in which the heat medium flows is indicated by a broken line arrow.
  • the compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant.
  • the discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12.
  • the heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12.
  • the heat source side refrigerant is a liquid refrigerant.
  • the heat source side refrigerant that has passed through the heat source side heat exchanger 12 flows out of the outdoor unit 1.
  • the heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2.
  • the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
  • the heat source side refrigerant flowing into the relay unit 2 passes through the expansion device 26a.
  • the heat-source-side refrigerant that has passed through the expansion device 26a is decompressed, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and passes through the heat medium heat exchanger 25a.
  • the heat source side refrigerant that has passed through the heat medium heat exchanger 25a undergoes heat exchange with the heat medium.
  • the expansion device 26a is controlled such that the degree of superheat of the heat source side refrigerant on the heat medium outflow side of the heat medium heat exchanger 25a becomes a target value.
  • the heat-source-side refrigerant that has passed through the heat medium heat exchanger 25a flows out from the relay unit 2.
  • the heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1.
  • the low-temperature and low-pressure heat source side refrigerant that has flowed into the outdoor unit 1 passes through the first refrigerant flow switching device 11 and the accumulator 19, and the low-temperature and low-pressure heat source side refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10.
  • the heat medium exchanges heat with the low-temperature and low-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a low-temperature heat medium.
  • the heat medium having a low temperature in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b is conveyed to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively.
  • the flow rate of the heat medium flowing into each indoor unit 3 is adjusted by the heat medium flow rate adjusting device 34.
  • the heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35.
  • the heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34.
  • the conveyed heat medium passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, is cooled, and is again conveyed by the pump 31a and the pump 31b.
  • the relay unit 2 is modularized into the refrigerant circuit side flow path switching unit 21, the heat exchange unit 22, the heat medium circuit side flow path switching unit 23, and the heat. Since the medium adjustment unit 24 is configured and the unit is attached or detached according to the operation mode of the air conditioner, the circuit configuration can be changed according to the application. Further, since it is not necessary to install a unit that is not necessary for the configuration, the installation area, cost, and the like can be suppressed.
  • FIG. 10 is a diagram showing a configuration of another air-conditioning apparatus according to Embodiment 1 of the present invention. Furthermore, by configuring the heat medium circuit side flow path switching unit 23 and the heat medium adjustment unit 24 as a separate unit from the relay unit 2, a plurality of heat medium circuit side flow path switching units 23a and heat mediums can be used in a cooling / heating mixed operation. The number of indoor units 3 can be increased by connecting the circuit side flow path switching unit 23b, the heat medium adjusting unit 24a, and the heat medium adjusting unit 24b in parallel.
  • the heat medium is circulated in the indoor unit 3 for heating or cooling the air in the air space 7 and the heat source side refrigerant is not circulated, the heat source side refrigerant is prevented from leaking into the indoor space 7. Can increase safety. Moreover, since the piping which circulates a heat medium can be shortened rather than an air conditioning apparatus like a chiller, conveyance power can be decreased.
  • FIG. FIG. 11 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • heat exchange having one heat medium heat exchanger 25 and one expansion device 26 in the relay unit 2 for the air conditioner that does not need to perform the cooling and heating mixed operation.
  • a unit 22 was provided.
  • the heat exchange unit 22 in the relay unit 2 has two heat medium heat exchangers 25 and two expansion devices 26, respectively.
  • the relay unit 2 has two heat medium heat exchangers 25 and two expansion devices 26, so that the heat exchange capacity of the heat medium heat exchanger 25 can be increased. For this reason, more heat can be supplied from the refrigerant circuit side to the heat medium circuit side. Therefore, the number of indoor units 3 in the heat medium circulation circuit can be increased.
  • FIG. 12 is a diagram showing a configuration of another air conditioner according to Embodiment 2 of the present invention. As shown in FIG. 12, if there is a refrigerant circuit side flow path switching unit 21, in the outdoor unit 1, the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, The check valve 13d may remain attached. For this reason, an air conditioning apparatus can be comprised, without changing the structure of the outdoor unit 1.
  • FIG. 12 is a diagram showing a configuration of another air conditioner according to Embodiment 2 of the present invention. As shown in FIG. 12, if there is a refrigerant circuit side flow path switching unit 21, in the outdoor unit 1, the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, The check valve 13d may remain attached. For this reason, an air conditioning apparatus can be comprised, without changing the structure of the outdoor unit 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air conditioner according to the present invention is configured with a heat-source-side refrigerant circulation circuit through which a heat-source-side refrigerant circulates and a heat medium circulation circuit through which a heat medium circulates, wherein: a compressor, a first refrigerant flow path switching device, and a heat-source-side heat exchanger are housed in an outdoor unit; an inter-heat medium heat exchanger and a throttle device are housed in a heat exchange unit; and a use-side heat exchanger is housed in an indoor unit, the air conditioner being provided with a refrigerant-circuit-side flow path switching unit that is connected through piping between the outdoor unit and the heat exchange unit, that is removably installed, and that has a second refrigerant flow path switching device for switching the circulation path of the heat-source-side refrigerant in the heat-source-side refrigerant circulation circuit, and provided with a heat-medium-circuit-side switching unit that is connected through piping between the heat exchange unit and the indoor unit, that is removably installed, and that has a heat medium flow path switching device for switching the circulation path of the heat medium in the heat medium circulation circuit.

Description

空気調和装置Air conditioner
 この発明は、たとえば、ビル用マルチエアコンなどに適用する空気調和装置に関するものである。 The present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
 たとえば、室外ユニット(室外機)と中継ユニットとの間を配管接続して熱源側冷媒を循環させる冷凍サイクル回路(冷媒循環回路)と、循環する熱源側冷媒と、中継ユニットと室内ユニット(室内機)との間を配管接続して熱媒体(屋内側冷媒)を循環させる熱媒体循環回路とを有する空気調和装置がある。熱源側冷媒循環回路は室外機と中継機とが配管接続され、熱媒体循環回路は、中継機と複数の室内機とが配管接続されている。そして、中継機が有する熱媒体熱交換器における熱源側冷媒と熱媒体との熱交換により、熱媒体が室内側に温熱または冷熱を供給して空気調和を行う。ここで、たとえば、ビル用マルチエアコンなどに適用するため、熱媒体の搬送動力を低減させて省エネルギをはかるようにした空気調和装置が提案されている(たとえば、特許文献1参照)。2つの循環回路で空気調和装置を構成しているのは、ビル内の利用者の健康などに悪影響を及ぼさないような水などの冷媒を、屋内側を循環する熱媒体として利用するためである。 For example, a refrigeration cycle circuit (refrigerant circulation circuit) that circulates a heat source side refrigerant by pipe connection between an outdoor unit (outdoor unit) and a relay unit, a circulating heat source side refrigerant, a relay unit, and an indoor unit (indoor unit) And an air conditioner having a heat medium circulation circuit for circulating a heat medium (indoor-side refrigerant). In the heat source side refrigerant circulation circuit, the outdoor unit and the relay unit are connected by piping, and in the heat medium circulation circuit, the relay unit and a plurality of indoor units are connected by piping. And by heat exchange with the heat source side refrigerant | coolant and heat medium in the heat medium heat exchanger which a relay machine has, a heat medium supplies warmth or cold to the indoor side, and performs air conditioning. Here, for example, an air conditioner has been proposed in which energy is saved by reducing the conveyance power of the heat medium to be applied to a building multi-air conditioner (see, for example, Patent Document 1). The reason why the air conditioner is composed of two circulation circuits is to use a refrigerant such as water that does not adversely affect the health of the users in the building as a heat medium that circulates indoors. .
国際公開第2010/049998号International Publication No. 2010/049998
 ここで、上述した特許文献1の空気調和装置は、中継ユニット内に、熱媒体の流路を切り替える熱媒体側切替装置も含まれている。このため、熱媒体回路における室内機の数が制限され、拡張し難い。 Here, the air conditioner of Patent Document 1 described above also includes a heat medium side switching device that switches the flow path of the heat medium in the relay unit. For this reason, the number of indoor units in the heat medium circuit is limited and is difficult to expand.
 また、上述した特許文献1の空気調和装置は、複数の室内ユニットのうち、一部の室内ユニットが冷房を行い、他の一部または全部の室内ユニットが暖房を行う冷暖混在運転を行うことができる装置である。ここで、たとえば、冷暖混在運転を行う必要がない設備であっても、上述したような省エネルギ、安全性などの観点から、特許文献1のような空気調和装置が要求される場合がある。 Moreover, the air conditioning apparatus of Patent Document 1 described above performs a cooling and heating mixed operation in which some of the indoor units perform cooling and the other or some of the indoor units perform heating. It is a device that can. Here, for example, even in a facility that does not need to perform a cooling and heating mixed operation, an air conditioner as in Patent Document 1 may be required from the viewpoints of energy saving and safety as described above.
 しかしながら、冷暖混在運転を行う必要がない設備に、特許文献1のような空気調和装置をそのまま設置したときに、空気調和装置を構成する機器の中で、不要となる機器が生じる。 However, when an air conditioner as in Patent Document 1 is installed as it is in a facility that does not need to perform a cooling and heating mixed operation, an unnecessary device is generated among the devices that constitute the air conditioner.
 この発明は、上記の課題を解決するためになされたもので、用途などに応じて、回路構成の変更などを容易に行うことができる空気調和装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an air conditioner that can easily change the circuit configuration in accordance with the application.
 この発明に係る空気調和装置は、熱源側冷媒を圧縮する圧縮機、熱源側冷媒の循環経路を切り替える第1冷媒流路切替装置、熱源側冷媒を熱交換させる熱源側熱交換器、熱源側冷媒を圧力調整する絞り装置および熱源側冷媒と熱源側冷媒と異なる熱媒体との熱交換を行う熱媒体間熱交換器を配管接続して、熱源側冷媒を循環させる熱源側冷媒循環回路と、熱媒体間熱交換器、熱媒体を加圧するポンプおよび熱媒体と空調対象空間に係る空気との熱交換を行う利用側熱交換器を配管接続して、熱媒体を循環させる熱媒体循環回路とを構成し、圧縮機、第1冷媒流路切替装置および熱源側熱交換器は、室外ユニットに収容され、熱媒体間熱交換器、および絞り装置は、熱交換ユニットに収容され、利用側熱交換器は、室内ユニットに収容されており、室外ユニットと熱交換ユニットとの間に配管接続され、取り外し可能に設置され、熱源側冷媒循環回路における熱源側冷媒の循環経路を切り替える第2冷媒流路切替装置を有する冷媒回路側流路切替ユニットと、熱交換ユニットと室内ユニットとの間に配管接続され、取り外し可能に設置され、熱媒体循環回路における熱媒体の循環経路を切り替える熱媒体流路切替装置を有する熱媒体回路側流路切替ユニットとを備えるものである。 An air conditioner according to the present invention includes a compressor that compresses a heat source side refrigerant, a first refrigerant flow switching device that switches a circulation path of the heat source side refrigerant, a heat source side heat exchanger that exchanges heat between the heat source side refrigerant, and a heat source side refrigerant. A heat source side refrigerant circulation circuit that circulates the heat source side refrigerant by pipe-connecting a heat exchanger between the heat source side and the heat source side refrigerant and a heat source different from the heat source side refrigerant A medium heat exchanger, a pump for pressurizing the heat medium, and a heat medium circuit for circulating the heat medium by pipe-connecting a heat exchanger and a use side heat exchanger that performs heat exchange between the air in the air-conditioning target space The compressor, the first refrigerant flow switching device and the heat source side heat exchanger are accommodated in the outdoor unit, and the heat exchanger related to heat medium and the expansion device are accommodated in the heat exchange unit, and use side heat exchange The container is housed in the indoor unit A refrigerant circuit side channel having a second refrigerant channel switching device that is connected between the outdoor unit and the heat exchange unit, is detachably installed, and switches the circulation path of the heat source side refrigerant in the heat source side refrigerant circuit. A heat medium circuit side channel having a heat medium channel switching device that is connected between the switching unit, the heat exchange unit, and the indoor unit and that is detachably installed and switches the circulation path of the heat medium in the heat medium circuit And a switching unit.
 この発明によれば、熱源側冷媒循環回路と熱媒体循環回路とを有して空気調和を実現する空気調和装置において、室外ユニットと熱交換ユニットとの間で熱源側冷媒の循環経路を切り替える冷媒回路側流路切替ユニットと、熱交換ユニットと室内ユニットとの間で熱媒体の循環経路を切り替える熱媒体回路側流路切替ユニットを、取り外し可能に設置されるようにしたので、必要な運転機能などに応じて回路構成の変更などを容易に行うことができる。 According to this invention, in the air conditioner that has the heat source side refrigerant circulation circuit and the heat medium circulation circuit to realize air conditioning, the refrigerant that switches the circulation path of the heat source side refrigerant between the outdoor unit and the heat exchange unit. The circuit side flow path switching unit and the heat medium circuit side flow path switching unit that switches the circulation path of the heat medium between the heat exchange unit and the indoor unit are detachably installed. It is possible to easily change the circuit configuration according to the above.
この発明の実施の形態1に係る空気調和装置の設置例の概略を示す図である。It is a figure which shows the outline of the example of installation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the heating only operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of heating main operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the cooling only operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the cooling main operation mode of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の別形態について説明する図である。It is a figure explaining another form of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る別形態の空気調和装置の暖房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the heating operation mode of the air conditioning apparatus of another form which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る別形態の空気調和装置の冷房運転モード時における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the air_conditioning | cooling operation mode of the air conditioner of another form which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る他の空気調和装置の構成を示す図である。It is a figure which shows the structure of the other air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る他の空気調和装置の構成を示す図である。It is a figure which shows the structure of the other air conditioning apparatus which concerns on Embodiment 2 of this invention.
 以下、発明の実施の形態に係る空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Hereinafter, an air conditioner according to an embodiment of the invention will be described with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. In the drawings, the size relationship of each component may be different from the actual one. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Further, the pressure and temperature levels are not particularly determined in relation to absolute values, but are relatively determined in the state and operation of the apparatus. In addition, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted.
実施の形態1.
 図1は、この発明の実施の形態1に係る空気調和装置の設置例の概略を示す図である。図1に基づいて、実施の形態1に係る空気調和装置の設置例について説明する。空気調和装置は、熱源側冷媒を循環させる冷媒循環回路および水などの熱媒体を循環させる熱媒体循環回路を備え、室内の冷房または暖房を行う。そして、各室内ユニット3は、冷房または暖房を自由に選択することができる。
Embodiment 1 FIG.
1 is a diagram showing an outline of an installation example of an air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated. The air conditioner includes a refrigerant circulation circuit that circulates the heat source side refrigerant and a heat medium circulation circuit that circulates a heat medium such as water, and performs indoor cooling or heating. Each indoor unit 3 can freely select cooling or heating.
 図1においては、実施の形態1に係る空気調和装置は、熱源機となる1台の室外ユニット1、室内機となる複数台の室内ユニット3、中継ユニット2、熱媒体回路側流路切替ユニット23および熱媒体調整ユニット24を有している。中継ユニット2は、後述するように、冷媒回路側流路切替ユニット21および熱媒体熱交換器25を有する熱交換ユニット22で構成され、冷媒循環回路を循環する熱源側冷媒と熱媒体循環回路を循環する熱媒体との間の伝熱の中継を行うユニットである。室外ユニット1と中継ユニット2とは、熱源側冷媒の流路となる冷媒配管4で接続されている。また、中継ユニット2と各室内ユニット3とは、熱媒体の流路となる熱媒体配管5で接続されている。 In FIG. 1, an air conditioner according to Embodiment 1 includes one outdoor unit 1 serving as a heat source unit, a plurality of indoor units 3 serving as indoor units, a relay unit 2, and a heat medium circuit side flow path switching unit. 23 and a heat medium adjusting unit 24. As will be described later, the relay unit 2 includes a heat exchange unit 22 having a refrigerant circuit side flow path switching unit 21 and a heat medium heat exchanger 25, and includes a heat source side refrigerant circulating in the refrigerant circuit and a heat medium circuit. It is a unit that relays heat transfer between circulating heat media. The outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 4 serving as a heat source side refrigerant flow path. Moreover, the relay unit 2 and each indoor unit 3 are connected by the heat medium piping 5 used as the flow path of a heat medium.
 ここで、1台の室外ユニット1に対して、複数台の中継ユニット2を接続することができる。また、たとえば、中継ユニット2に対して、複数の熱媒体回路側流路切替ユニット23および熱媒体調整ユニット24を接続することができる。また、ここでは、冷媒回路側流路切替ユニット21と熱交換ユニット22とを合わせた中継ユニット2を構成しているが、冷媒回路側流路切替ユニット21と熱交換ユニット22とを、それぞれ別々のユニットとしてもよい。 Here, a plurality of relay units 2 can be connected to one outdoor unit 1. Further, for example, a plurality of heat medium circuit side flow path switching units 23 and heat medium adjustment units 24 can be connected to the relay unit 2. In addition, here, the relay unit 2 is configured by combining the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22, but the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22 are separately provided. It is good also as a unit.
 冷媒循環回路を循環する熱源側冷媒としては、たとえば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒やその混合物、CO2、プロパンなどの自然冷媒などを用いることができる。 Examples of the heat source side refrigerant circulating in the refrigerant circuit include a single refrigerant such as R-22 and R-134a, a pseudo-azeotropic mixed refrigerant such as R-410A and R-404A, and a non-azeotropic refrigerant such as R-407C. Use mixed refrigerants, refrigerants containing a double bond in the chemical formula, such as CF 3 CF═CH 2, which have a relatively low global warming potential, mixtures thereof, natural refrigerants such as CO 2 and propane, etc. Can do.
 熱媒体循環回路を循環する熱媒体としては、たとえば、ブライン(不凍液)、水、ブラインと水との混合液、防食効果が高い添加剤と水との混合液などを用いることができる。このように、実施の形態1の空気調和装置は、安全性の高いものを熱媒体に使用することができる。このため、実施の形態1に係る空気調和装置は、たとえば、熱媒体が室内ユニット3を介して室内空間7に漏洩したとしても、安全である。 As the heat medium circulating in the heat medium circuit, for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of an additive having high anticorrosive effect and water, or the like can be used. Thus, the air conditioner of Embodiment 1 can use a highly safe thing as a heat medium. For this reason, the air conditioning apparatus according to Embodiment 1 is safe even if, for example, the heat medium leaks into the indoor space 7 via the indoor unit 3.
 次に、図1に基づいて、空気調和装置の動作について説明する。室外ユニット1は、冷媒配管4を通して中継ユニット2との間で熱源側冷媒を循環させる。このとき、熱源側冷媒は、後述する中継ユニット2内の熱媒体熱交換器25において、熱媒体との間で熱交換を行う。熱媒体は、熱交換によって加熱または冷却される。 Next, the operation of the air conditioner will be described with reference to FIG. The outdoor unit 1 circulates the heat source side refrigerant with the relay unit 2 through the refrigerant pipe 4. At this time, the heat source side refrigerant exchanges heat with the heat medium in the heat medium heat exchanger 25 in the relay unit 2 described later. The heat medium is heated or cooled by heat exchange.
 中継ユニット2において加熱または冷却された熱媒体は、後述するポンプ31により、熱媒体配管5を通して室内ユニット3との間で熱媒体を循環させる。このとき、熱媒体は、後述する室内ユニット3内の利用側熱交換器35において、空気との間で室内ユニット3の熱交換を行う。熱媒体との間で熱交換された空気は、室内空間7の暖房または冷房に供される。 The heat medium heated or cooled in the relay unit 2 is circulated between the indoor unit 3 and the indoor unit 3 through the heat medium pipe 5 by a pump 31 described later. At this time, the heat medium exchanges heat between the indoor unit 3 and the air in a use side heat exchanger 35 in the indoor unit 3 described later. The air exchanged with the heat medium is used for heating or cooling the indoor space 7.
 図2は、この発明の実施の形態1に係る空気調和装置の構成の一例を示す図である。図2に基づいて、空気調和装置が有する機器などの構成について説明する。前述したように、室外ユニット1と中継ユニット2とが、冷媒配管4で接続されている。また、中継ユニット2と各室内ユニット3とが熱媒体配管5で接続されている。 FIG. 2 is a diagram showing an example of the configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the apparatus etc. which an air conditioning apparatus has is demonstrated. As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 4. The relay unit 2 and each indoor unit 3 are connected by a heat medium pipe 5.
[室外ユニット1]
 室外ユニット1は、筐体内に、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ19を有している。圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ19は、冷媒配管4で配管接続され、搭載されている。圧縮機10は、熱源側冷媒を、吸入し、圧縮して、高温および高圧状態にして吐出する。ここで、圧縮機10は、たとえば、容量制御可能なインバータ圧縮機などで構成するとよい。また、四方弁などの第1冷媒流路切替装置11は、後述するように、暖房運転モード(全暖房運転モードまたは暖房主体運転モード)における冷媒循環回路の熱源側冷媒の流れと冷房運転モード(全冷房運転モードまたは冷房主体運転モード)における冷媒循環回路の熱源側冷媒の流れとを切り替える。
[Outdoor unit 1]
The outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 19 in a housing. The compressor 10, the first refrigerant flow switching device 11, the heat source side heat exchanger 12, and the accumulator 19 are pipe-connected by the refrigerant pipe 4 and mounted. The compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state. Here, the compressor 10 may be configured by, for example, an inverter compressor capable of capacity control. Further, the first refrigerant flow switching device 11 such as a four-way valve, as will be described later, is a flow of the heat source side refrigerant in the refrigerant circuit and a cooling operation mode (in a heating operation mode (a heating only operation mode or a heating main operation mode)). In the all-cooling operation mode or the cooling main operation mode), the flow of the heat source side refrigerant in the refrigerant circuit is switched.
 熱源側熱交換器12は、たとえば、室外側送風機(図示せず)から供給される空気と熱源側冷媒との間で熱交換を行う。暖房運転モードにおいては、蒸発器として機能し、熱源側冷媒に吸熱させる。また、冷房運転モードにおいては、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。アキュムレータ19は、圧縮機10の吸入側に設けられている。アキュムレータ19は、たとえば、暖房運転モードと冷房運転モードとの違い、運転が変化するときの過渡期などに生じる余剰冷媒を蓄える。 The heat source side heat exchanger 12 performs heat exchange between air supplied from an outdoor blower (not shown) and the heat source side refrigerant, for example. In the heating operation mode, it functions as an evaporator and absorbs heat by the heat source side refrigerant. Further, in the cooling operation mode, it functions as a condenser or a radiator and dissipates heat to the heat source side refrigerant. The accumulator 19 is provided on the suction side of the compressor 10. The accumulator 19 stores, for example, surplus refrigerant generated in a transition period when the operation changes, for example, between the heating operation mode and the cooling operation mode.
 また、室外ユニット1は、第1接続配管4a、第2接続配管4bおよび逆止弁13a~13dを有している。第1接続配管4a、第2接続配管4bおよび逆止弁13a~13dが設けられることで、運転モードに関係なく、室外ユニット1から中継ユニット2に熱源側冷媒が通過する側の冷媒配管4と、中継ユニット2から室外ユニット1に熱源側冷媒が通過する側の冷媒配管4とを一定にすることができる。ここで、第1接続配管4a、第2接続配管4bおよび逆止弁13a~13dは、実施の形態1の空気調和装置に必須の機器ではないので、設置を省略することができる。 Further, the outdoor unit 1 has a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d. By providing the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, the refrigerant pipe 4 on the side where the heat source side refrigerant passes from the outdoor unit 1 to the relay unit 2 regardless of the operation mode, The refrigerant pipe 4 on the side where the heat source side refrigerant passes from the relay unit 2 to the outdoor unit 1 can be made constant. Here, the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d are not essential devices for the air-conditioning apparatus according to Embodiment 1, and therefore can be omitted.
[室内ユニット3]
 室内ユニット3は、筐体内に、利用側熱交換器35を有している。利用側熱交換器35は、熱媒体配管5と接続されており、熱媒体が通過する。利用側熱交換器35は、室内側送風機(図示せず)から供給される空気と熱媒体との間で熱交換を行う。暖かい熱媒体が通過すれば、空気は加熱され、室内空間7は暖房される。また、冷たい熱媒体が通過すれば、空気は冷却され、室内空間7は冷房される。
[Indoor unit 3]
The indoor unit 3 has a use side heat exchanger 35 in the housing. The use side heat exchanger 35 is connected to the heat medium pipe 5, and the heat medium passes therethrough. The use side heat exchanger 35 performs heat exchange between air supplied from an indoor fan (not shown) and the heat medium. If the warm heat medium passes, the air is heated and the indoor space 7 is heated. Moreover, if a cold heat medium passes, air will be cooled and the indoor space 7 will be cooled.
 ここで、図2では、4台の室内ユニット3と中継ユニット2とが接続されている例を示している。紙面上から室内ユニット3a、室内ユニット3b、室内ユニット3c、室内ユニット3dとして図示している。また、室内ユニット3a~室内ユニット3dに応じて、利用側熱交換器35も、紙面上側から利用側熱交換器35a、利用側熱交換器35b、利用側熱交換器35c、利用側熱交換器35dとしている。ここで、図1と同様に、中継ユニット2と接続される室内ユニット3の接続台数は、図2に示されている4台に限定するものではない。 Here, FIG. 2 shows an example in which four indoor units 3 and relay units 2 are connected. It is illustrated as an indoor unit 3a, an indoor unit 3b, an indoor unit 3c, and an indoor unit 3d from the top of the page. In accordance with the indoor unit 3a to the indoor unit 3d, the use side heat exchanger 35 also has a use side heat exchanger 35a, a use side heat exchanger 35b, a use side heat exchanger 35c, and a use side heat exchanger from the upper side of the drawing. 35d. Here, as in FIG. 1, the number of indoor units 3 connected to the relay unit 2 is not limited to the four units shown in FIG.
[中継ユニット2]
 次に、中継ユニット2の構成について説明する。中継ユニット2は、前述したように、冷媒回路側流路切替ユニット21および熱交換ユニット22を有している。冷媒回路側流路切替ユニット21は、中継ユニット2内を通過する熱源側冷媒の流路を切り替える機器をモジュール化したユニットである。冷媒回路側流路切替ユニット21は、開閉装置27および開閉装置29並びに第2冷媒流路切替装置28(第2冷媒流路切替装置28a、第2冷媒流路切替装置28b)を有している。開閉装置27および開閉装置29は、たとえば、電磁弁などのように、通電により開閉動作が可能なもので構成されており、運転モードに応じて開閉が制御され、冷媒循環回路における冷媒流路の切り替える。開閉装置27は、中継ユニット2における熱源側冷媒の流入口側における冷媒配管4に設けられている。また、開閉装置29は、中継ユニット2における熱源側冷媒の流入口側の冷媒配管4と流出口側の冷媒配管4とを接続した配管(バイパス配管)に設けられている。2つの第2冷媒流路切替装置28(第2冷媒流路切替装置28a、第2冷媒流路切替装置28b)は、たとえば四方弁などで構成される。第2冷媒流路切替装置28は、運転モードに応じて、熱媒体熱交換器25が凝縮器または蒸発器として用いることができるように熱源側冷媒の流れを切り替える。第2冷媒流路切替装置28aは、冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体熱交換器25aの下流側となる部分に設けられている。また、第2冷媒流路切替装置28bは、全冷房運転モード時の熱源側冷媒の流れにおいて、熱媒体熱交換器25bの下流側となる部分に設けられている。
[Relay unit 2]
Next, the configuration of the relay unit 2 will be described. As described above, the relay unit 2 includes the refrigerant circuit side flow path switching unit 21 and the heat exchange unit 22. The refrigerant circuit side flow path switching unit 21 is a unit obtained by modularizing a device that switches the flow path of the heat source side refrigerant passing through the relay unit 2. The refrigerant circuit side channel switching unit 21 includes an opening / closing device 27, an opening / closing device 29, and a second refrigerant channel switching device 28 (second refrigerant channel switching device 28a, second refrigerant channel switching device 28b). . The opening / closing device 27 and the opening / closing device 29 are configured to be opened / closed by energization, such as an electromagnetic valve, for example, and the opening / closing is controlled according to the operation mode, and the refrigerant flow path in the refrigerant circulation circuit is controlled. Switch. The opening / closing device 27 is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant in the relay unit 2. The opening / closing device 29 is provided in a pipe (bypass pipe) connecting the refrigerant pipe 4 on the inlet side of the refrigerant on the heat source side and the refrigerant pipe 4 on the outlet side in the relay unit 2. The two second refrigerant flow switching devices 28 (second refrigerant flow switching device 28a, second refrigerant flow switching device 28b) are constituted by, for example, four-way valves. The second refrigerant flow switching device 28 switches the flow of the heat source side refrigerant so that the heat medium heat exchanger 25 can be used as a condenser or an evaporator according to the operation mode. The second refrigerant flow switching device 28a is provided in a portion on the downstream side of the heat medium heat exchanger 25a in the flow of the heat source side refrigerant in the cooling operation mode. Further, the second refrigerant flow switching device 28b is provided in a portion on the downstream side of the heat medium heat exchanger 25b in the flow of the heat source side refrigerant in the cooling only operation mode.
 熱交換ユニット22は、冷媒循環回路を循環する熱源側冷媒と熱媒体循環回路を循環する熱媒体との伝熱に係る機器を有するユニットである。熱交換ユニット22は、2つの熱媒体熱交換器25(熱媒体熱交換器25a、熱媒体熱交換器25b)、2つの絞り装置26(絞り装置26a、絞り装置26b)および2つのポンプ31(ポンプ31a、ポンプ31b)を有している。 The heat exchange unit 22 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the refrigerant circulation circuit and the heat medium circulating in the heat medium circulation circuit. The heat exchange unit 22 includes two heat medium heat exchangers 25 (heat medium heat exchanger 25a and heat medium heat exchanger 25b), two expansion devices 26 (expansion device 26a and expansion device 26b), and two pumps 31 ( A pump 31a and a pump 31b).
 熱媒体熱交換器25(熱媒体熱交換器25a、熱媒体熱交換器25b)は、熱源側冷媒と熱媒体との熱交換を行って、熱源側冷媒側から熱媒体側に熱を伝える。熱媒体熱交換器25は、熱媒体を加熱する場合には、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、熱媒体を冷却する場合には、蒸発器として機能し、熱源側冷媒に吸熱させる。 The heat medium heat exchanger 25 (heat medium heat exchanger 25a, heat medium heat exchanger 25b) performs heat exchange between the heat source side refrigerant and the heat medium, and transfers heat from the heat source side refrigerant side to the heat medium side. When heating the heat medium, the heat medium heat exchanger 25 functions as a condenser or a radiator, and dissipates heat to the heat source side refrigerant. Moreover, when cooling a heat medium, it functions as an evaporator and makes a heat source side refrigerant | coolant absorb heat.
 ここで、熱媒体熱交換器25aは、冷媒循環回路における絞り装置26aと第2冷媒流路切替装置28aとの間に設けられている。熱媒体熱交換器25aは、全冷房運転モードおよび冷暖房混在運転モード(冷房主体運転モード、暖房主体運転モード)時においては、蒸発器として機能し、熱媒体を冷却する。また、全暖房運転モード時においては、凝縮器または放熱器として機能し、熱媒体を加熱する。また、熱媒体熱交換器25bは、冷媒循環回路における絞り装置26bと第2冷媒流路切替装置28bとの間に設けられている。全暖房運転モードおよび冷房暖房混在運転モード時においては、凝縮器または放熱器として機能し、熱媒体を加熱する。また、全冷房運転モード時においては、蒸発器として機能し、熱媒体を冷却する。 Here, the heat medium heat exchanger 25a is provided between the expansion device 26a and the second refrigerant flow switching device 28a in the refrigerant circulation circuit. The heat medium heat exchanger 25a functions as an evaporator and cools the heat medium in the all-cooling operation mode and the cooling / heating mixed operation mode (cooling main operation mode, heating main operation mode). In the heating only operation mode, it functions as a condenser or a radiator and heats the heat medium. The heat medium heat exchanger 25b is provided between the expansion device 26b and the second refrigerant flow switching device 28b in the refrigerant circulation circuit. In the heating only operation mode and the cooling / heating mixed operation mode, the heating medium functions as a condenser or a heat radiator. Further, in the cooling only operation mode, it functions as an evaporator and cools the heat medium.
 また、2つの絞り装置26(絞り装置26a、絞り装置26b)は、減圧弁、膨張弁として機能し、熱源側冷媒を減圧して膨張させる装置である。絞り装置26aは、冷房運転モード時の熱源側冷媒の流れにおいて熱媒体熱交換器25aの上流側に設けられている。また、絞り装置26bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体熱交換器25bの上流側に設けられている。ここで、絞り装置26は、たとえば、開度を任意の大きさに制御することができ、熱源側冷媒の流量などを任意に調整することができる電子式膨張弁などのような装置がよい。 Further, the two expansion devices 26 (the expansion device 26a and the expansion device 26b) function as a pressure reducing valve and an expansion valve, and are devices for expanding the pressure by reducing the heat source side refrigerant. The expansion device 26a is provided on the upstream side of the heat medium heat exchanger 25a in the flow of the heat source side refrigerant in the cooling operation mode. The expansion device 26b is provided on the upstream side of the heat medium heat exchanger 25b in the flow of the heat source side refrigerant during the cooling operation. Here, for example, the expansion device 26 may be a device such as an electronic expansion valve that can control the opening degree to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant.
 2つのポンプ31(ポンプ31a、ポンプ31b)は、熱媒体を吸引し、加圧して熱媒体循環回路を循環させる。ポンプ31aは、熱媒体熱交換器25aと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ポンプ31bは、熱媒体熱交換器25bと第2熱媒体流路切替装置33との間における熱媒体配管5に設けられている。ここで、ポンプ31は、たとえば、容量制御可能なポンプなどで構成し、室内ユニット3側の熱負荷の大きさによって、流量を調整できる装置がよい。 The two pumps 31 (pump 31a and pump 31b) suck the heat medium, pressurize it, and circulate it through the heat medium circulation circuit. The pump 31 a is provided in the heat medium pipe 5 between the heat medium heat exchanger 25 a and the second heat medium flow switching device 33. The pump 31 b is provided in the heat medium pipe 5 between the heat medium heat exchanger 25 b and the second heat medium flow switching device 33. Here, for example, the pump 31 is preferably a device that is configured by a capacity-controllable pump or the like and that can adjust the flow rate according to the size of the thermal load on the indoor unit 3 side.
[熱媒体回路側流路切替ユニット23]
 熱媒体回路側流路切替ユニット23は、中継ユニット2内を通過する熱媒体の流路を切り替える機器をモジュール化したユニットである。実施の形態1の熱媒体回路側流路切替ユニット23は、4つの第1熱媒体流路切替装置32(第1熱媒体流路切替装置32a~第1熱媒体流路切替装置32d)および4つの第2熱媒体流路切替装置33(第2熱媒体流路切替装置33a~第2熱媒体流路切替装置33d)を有している。
[Heat medium circuit side flow path switching unit 23]
The heat medium circuit side flow path switching unit 23 is a unit obtained by modularizing a device that switches the flow path of the heat medium passing through the relay unit 2. The heat medium circuit side flow switching unit 23 according to the first embodiment includes four first heat medium flow switching devices 32 (first heat medium flow switching device 32a to first heat medium flow switching device 32d) and four. There are two second heat medium flow switching devices 33 (second heat medium flow switching device 33a to second heat medium flow switching device 33d).
 第1熱媒体流路切替装置32は、たとえば、三方弁などで構成されている。第1熱媒体流路切替装置32は、第2熱媒体流路切替装置33と連動して、熱媒体循環回路における熱媒体の流路を切り替える。第1熱媒体流路切替装置32は、熱媒体熱交換器25a、熱媒体熱交換器25bおよび熱媒体流量調整装置34を介して室内ユニット3の利用側熱交換器35とそれぞれ接続され、利用側熱交換器35の熱媒体流出側に設けられている。そして、第1熱媒体流路切替装置32は、室内ユニット3から流出する熱媒体が、熱媒体熱交換器25aまたは熱媒体熱交換器25bに流れるように切り替える。ここで、第1熱媒体流路切替装置32は、各室内ユニット3に応じて設置されている。図2では、各室内ユニット3に対応して、紙面上側から第1熱媒体流路切替装置32a、第1熱媒体流路切替装置32b、第1熱媒体流路切替装置32cおよび第1熱媒体流路切替装置32dの4つの第1熱媒体流路切替装置32が示されている。また、第1熱媒体流路切替装置32における流路の切替には、熱媒体熱交換器25aまたは熱媒体熱交換器25bとを択一的に切り替えるだけでなく、流す割合を切り替える場合も含む。 The first heat medium flow switching device 32 is constituted by, for example, a three-way valve. The first heat medium flow switching device 32 switches the heat medium flow channel in the heat medium circulation circuit in conjunction with the second heat medium flow switching device 33. The first heat medium flow switching device 32 is connected to the use side heat exchanger 35 of the indoor unit 3 via the heat medium heat exchanger 25a, the heat medium heat exchanger 25b, and the heat medium flow rate adjustment device 34, respectively. It is provided on the heat medium outflow side of the side heat exchanger 35. Then, the first heat medium flow switching device 32 switches so that the heat medium flowing out from the indoor unit 3 flows to the heat medium heat exchanger 25a or the heat medium heat exchanger 25b. Here, the first heat medium flow switching device 32 is installed according to each indoor unit 3. In FIG. 2, the first heat medium flow switching device 32a, the first heat medium flow switching device 32b, the first heat medium flow switching device 32c, and the first heat medium corresponding to each indoor unit 3 from the upper side of the drawing. Four first heat medium flow switching devices 32 of the flow switching device 32d are shown. The switching of the flow path in the first heat medium flow switching device 32 includes not only selectively switching between the heat medium heat exchanger 25a or the heat medium heat exchanger 25b but also switching the flow rate. .
 第2熱媒体流路切替装置33は、たとえば、三方弁などで構成されている。第2熱媒体流路切替装置33は、第1熱媒体流路切替装置32と連動して、熱媒体循環回路における熱媒体の流路を切り替える。第2熱媒体流路切替装置33は、熱媒体熱交換器25a、熱媒体熱交換器25bおよび室内ユニット3の利用側熱交換器35とそれぞれ接続され、利用側熱交換器35の熱媒体流入側に設けられている。そして、第2熱媒体流路切替装置33は、熱媒体熱交換器25aおよび熱媒体熱交換器25bを流出する熱媒体を、室内ユニット3に流入させるように切り替える。ここで、第2熱媒体流路切替装置33は、各室内ユニット3に応じて設置されている。図2では、各室内ユニット3に対応して、紙面上側から第2熱媒体流路切替装置33a、第2熱媒体流路切替装置33b、第2熱媒体流路切替装置33cおよび第2熱媒体流路切替装置33dの4つの第2熱媒体流路切替装置33が示されている。また、第2熱媒体流路切替装置33における流路の切替には、熱媒体熱交換器25aまたは熱媒体熱交換器25bからの熱媒体流入を択一的に切り替えるだけでなく、流入する割合を切り替える場合も含む。 The second heat medium flow switching device 33 is composed of, for example, a three-way valve. The second heat medium flow switching device 33 switches the heat medium flow channel in the heat medium circulation circuit in conjunction with the first heat medium flow switching device 32. The second heat medium flow switching device 33 is connected to the heat medium heat exchanger 25 a, the heat medium heat exchanger 25 b, and the use side heat exchanger 35 of the indoor unit 3, and the heat medium flow into the use side heat exchanger 35. On the side. Then, the second heat medium flow switching device 33 switches the heat medium flowing out of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to flow into the indoor unit 3. Here, the second heat medium flow switching device 33 is installed according to each indoor unit 3. In FIG. 2, the second heat medium flow switching device 33a, the second heat medium flow switching device 33b, the second heat medium flow switching device 33c, and the second heat medium corresponding to each indoor unit 3 from the upper side of the drawing. Four second heat medium flow switching devices 33 of the flow switching device 33d are shown. Further, the switching of the flow path in the second heat medium flow switching device 33 not only selectively switches the heat medium inflow from the heat medium heat exchanger 25a or the heat medium heat exchanger 25b, but also the ratio of the inflow Including the case of switching.
[熱媒体調整ユニット24]
 熱媒体調整ユニット24は、中継ユニット2を通過して各室内ユニット3に流入出する熱媒体の量を調整する機器をモジュール化したユニットである。実施の形態1の熱媒体調整ユニット24は、4つの熱媒体流量調整装置34(熱媒体流量調整装置34a~熱媒体流量調整装置34d)を有している。
[Heat medium adjustment unit 24]
The heat medium adjusting unit 24 is a unit obtained by modularizing a device that adjusts the amount of heat medium flowing into and out of each indoor unit 3 through the relay unit 2. The heat medium adjustment unit 24 according to the first embodiment includes four heat medium flow control devices 34 (heat medium flow control devices 34a to 34d).
 熱媒体流量調整装置34は、開口面積を制御できる二方弁などで構成されている。熱媒体流量調整装置34は、熱媒体配管5に流れる熱媒体の流量を制御する。熱媒体流量調整装置34は、利用側熱交換器35と第1熱媒体流路切替装置32との間に接続されている。そして、熱媒体流量調整装置34は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度により、室内ユニット3を通過させる熱媒体の量を調整し、利用側熱交換器35が、室内負荷に応じた熱交換を行えるようにする。ここで、熱媒体流量調整装置34は、各室内ユニット3に応じて設置されている。図2では、室内ユニット3に対応して、紙面上側から熱媒体流量調整装置34a、熱媒体流量調整装置34b、熱媒体流量調整装置34cおよび熱媒体流量調整装置34dが示されている。また、熱媒体流量調整装置34は、室内ユニット3において、停止、サーモOFFなどの負荷を必要としていないときは、熱媒体流量調整装置34を全閉にして、室内ユニット3への熱媒体供給を止めることができる。さらに、熱媒体流量調整装置34を利用側熱交換器35と第2熱媒体流路切替装置33との間に設けてもよい。第1熱媒体流路切替装置32または第2熱媒体流路切替装置33が熱媒体流量調整装置34の機能を代替できる場合には、熱媒体流量調整装置34の設置を省略することもできる。 The heat medium flow control device 34 includes a two-way valve that can control the opening area. The heat medium flow control device 34 controls the flow rate of the heat medium flowing through the heat medium pipe 5. The heat medium flow control device 34 is connected between the use side heat exchanger 35 and the first heat medium flow switching device 32. Then, the heat medium flow control device 34 adjusts the amount of the heat medium that passes through the indoor unit 3 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out. The heat exchange can be performed according to the indoor load. Here, the heat medium flow control device 34 is installed according to each indoor unit 3. 2, corresponding to the indoor unit 3, a heat medium flow control device 34a, a heat medium flow control device 34b, a heat medium flow control device 34c, and a heat medium flow control device 34d are shown from the upper side of the drawing. Further, when the indoor unit 3 does not require a load such as stop or thermo OFF, the heat medium flow control device 34 fully closes the heat medium flow control device 34 to supply the heat medium to the indoor unit 3. Can be stopped. Further, the heat medium flow control device 34 may be provided between the use side heat exchanger 35 and the second heat medium flow switching device 33. When the first heat medium flow switching device 32 or the second heat medium flow switching device 33 can substitute for the function of the heat medium flow control device 34, the installation of the heat medium flow control device 34 may be omitted.
 また、中継ユニット2には、2つの温度センサ40(温度センサ40a、温度センサ40b)が設けられている。温度センサ40で検出された情報(温度情報)は、空気調和装置の動作を統括制御する制御装置(図示せず)に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切替、ポンプ31の駆動周波数、第2冷媒流路切替装置28の切替、熱媒体の流路の切替、室内ユニット3の熱媒体流量の調整などの制御に利用されることになる。2つの温度センサ40は、熱媒体熱交換器25から流出した熱媒体、つまり熱媒体熱交換器25の出口における熱媒体の温度を検出するものであり、たとえばサーミスターなどで構成するとよい。温度センサ40aは、ポンプ31aの入口側における熱媒体配管5に設けられている。温度センサ40bは、ポンプ31bの入口側における熱媒体配管5に設けられている。 Further, the relay unit 2 is provided with two temperature sensors 40 (a temperature sensor 40a and a temperature sensor 40b). Information (temperature information) detected by the temperature sensor 40 is sent to a control device (not shown) that controls the overall operation of the air conditioner, and the driving frequency of the compressor 10, the rotational speed of the blower not shown, It is used for control of switching of the 1 refrigerant flow switching device 11, driving frequency of the pump 31, switching of the second refrigerant flow switching device 28, switching of the flow path of the heat medium, adjustment of the heat medium flow rate of the indoor unit 3, etc. Will be. The two temperature sensors 40 detect the temperature of the heat medium flowing out from the heat medium heat exchanger 25, that is, the temperature of the heat medium at the outlet of the heat medium heat exchanger 25, and may be composed of, for example, a thermistor. The temperature sensor 40a is provided in the heat medium pipe 5 on the inlet side of the pump 31a. The temperature sensor 40b is provided in the heat medium pipe 5 on the inlet side of the pump 31b.
 図3は、この発明の実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す図である。図3では、すべての室内ユニット3が暖房を行っている例について説明する。ここで、図3において、冷媒循環回路における太線は、全暖房運転モードにおいて、熱源側冷媒が通過する冷媒配管4を示している。また、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 3 is a diagram showing a refrigerant flow in the heating only operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 3 illustrates an example in which all the indoor units 3 perform heating. Here, in FIG. 3, the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode. Further, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11および逆止弁13cを通過して室外ユニット1から流出し、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。ここで、第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の冷媒を室外ユニット1内の熱源側熱交換器12を通過せずに室外ユニット1外に流出するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and the check valve 13c, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and passes through the relay unit 2. Flow into. Here, the first refrigerant flow switching device 11 flows out of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. Has been switched.
 中継ユニット2に流入した気体の熱源側冷媒は、分岐され、それぞれ第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bに流入する。ここで、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは、それぞれ暖房側に切り替えられている。また、開閉装置27は閉止されている。第2冷媒流路切替装置28aおよび28bをそれぞれ通過した気体の熱源側冷媒は、熱媒体熱交換器25aおよび25bを通過し、このとき、熱媒体との熱交換が行われる。熱媒体熱交換器25aおよび25bを通過した熱源側冷媒は、高温高圧の液冷媒となる。高温高圧の液冷媒となった熱源側冷媒は、絞り装置26aおよび26bを通過することにより減圧され、低温低圧の気液二相冷媒となる。絞り装置26aおよび26bを通過した低温低圧の気液二相の熱源側冷媒は、合流して中継ユニット2から流出する。このとき、開閉装置29は閉止している。 The gaseous heat source side refrigerant that has flowed into the relay unit 2 is branched and flows into the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b, respectively. Here, the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are each switched to the heating side. The opening / closing device 27 is closed. The gaseous heat-source-side refrigerant that has passed through the second refrigerant flow switching devices 28a and 28b passes through the heat medium heat exchangers 25a and 25b, and at this time, heat exchange with the heat medium is performed. The heat-source-side refrigerant that has passed through the heat medium heat exchangers 25a and 25b becomes a high-temperature and high-pressure liquid refrigerant. The heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion devices 26a and 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature low-pressure gas-liquid two-phase heat-source-side refrigerant that has passed through the expansion devices 26 a and 26 b merges and flows out from the relay unit 2. At this time, the opening / closing device 29 is closed.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、逆止弁13bを通過して熱源側熱交換器12を通過する。このとき、室外空間6の空気と熱交換が行われ、低温低圧の気体の熱源側冷媒となる。熱源側冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13b and passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas. The heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
 次に、全暖房運転モードにおける熱媒体の流れについて説明する。上記に説明した通り、熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bにおいて、高温高圧の気体の冷媒と熱交換を行い、高温の熱媒体となる。熱媒体熱交換器25aおよび、25bにて高温とされた熱媒体はそれぞれ熱媒体熱交換器25a、25bに接続されているポンプ31a、31bにより室内ユニット3へ搬送される。搬送された熱媒体は各室内ユニット3に接続されている熱媒体回路側流路切替ユニット23の第2熱媒体流路切替装置33を通過し、熱媒体流量調整装置34にて各室内ユニット3へ流入する熱媒体流量が調整される。このとき、第2熱媒体流路切替装置33は、熱媒体熱交換器25aおよび熱媒体熱交換器25bの両方から搬送される熱媒体を、熱媒体流量調整装置34および室内ユニット3に供給できるよう中間開度または熱媒体熱交換器25aおよび熱媒体熱交換器25bの熱媒体流出口における熱媒体の温度に応じた開度調整が行われる。熱媒体配管5にて接続された室内ユニット3へ流入した熱媒体は利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで暖房が行われる。利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5および熱媒体流量調整装置34を通して、中継ユニット2内へ搬送される。搬送された熱媒体は、熱媒体回路側流路切替ユニット23の第1熱媒体流路切替装置32を通じて熱媒体熱交換器25a、25bのそれぞれへと流入され室内ユニット3を通じて室内空間7へ供給した分の熱量を冷媒側から受け取り、再度、ポンプ31aおよびポンプ31bへ搬送される。 Next, the flow of the heat medium in the heating only operation mode will be described. As described above, the heat medium exchanges heat with a high-temperature and high-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a high-temperature heat medium. The heat medium heated to high temperature in the heat medium heat exchangers 25a and 25b is conveyed to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively. The transported heat medium passes through the second heat medium flow switching device 33 of the heat medium circuit side flow switching unit 23 connected to each indoor unit 3, and each indoor unit 3 is heated by the heat medium flow control device 34. The flow rate of the heat medium flowing into the is adjusted. At this time, the second heat medium flow switching device 33 can supply the heat medium conveyed from both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to the heat medium flow control device 34 and the indoor unit 3. The opening degree is adjusted according to the intermediate opening degree or the temperature of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b. The heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is heated by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35. The heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34. The transported heat medium flows into the heat medium heat exchangers 25 a and 25 b through the first heat medium flow switching device 32 of the heat medium circuit side flow switching unit 23 and is supplied to the indoor space 7 through the indoor unit 3. The amount of heat received is received from the refrigerant side, and conveyed again to the pump 31a and the pump 31b.
 図4は、この発明の実施の形態1に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す図である。ここで、図4において、冷媒循環回路における太線は、全暖房運転モードにおいて、熱源側冷媒が通過する冷媒配管4を示している。また、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 4 is a diagram showing a refrigerant flow in the heating main operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention. Here, in FIG. 4, the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode. Further, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11および逆止弁13cを通過して室外ユニット1から流出し、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の冷媒を室外ユニット1内の熱源側熱交換器12を通過せずに室外ユニット1外に流出するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and the check valve 13c, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and passes through the relay unit 2. Flow into. The first refrigerant flow switching device 11 switches so that the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. It has been.
 中継ユニット2へ流入し、第2冷媒流路切替装置28bを通過した高温高圧の気体冷媒は、熱媒体熱交換器25bへ流入し、熱媒体と熱交換を行う。このとき、熱源側冷媒は高温高圧の液冷媒となり、熱媒体は加熱される。高温高圧の液冷媒となった熱源側冷媒は絞り装置26bを通過することにより減圧され、低温低圧の気液二相冷媒へとなる。なお、このとき、絞り装置26bは、熱媒体熱交換器25bの出口冷媒の過冷却度が目標値になるように制御されている。そして、低温低圧の二相冷媒となった熱源側冷媒は、絞り装置26aを通過し、熱媒体熱交換器25aに流入し、熱媒体と熱交換を行い、熱媒体を冷却する。このとき、絞り装置26aは、全開となっている。また、開閉装置29および開閉装置27は閉止している。そして、第2冷媒流路切替装置28aを通過した冷媒は、中継ユニット2から流出する。 The high-temperature and high-pressure gaseous refrigerant that flows into the relay unit 2 and passes through the second refrigerant flow switching device 28b flows into the heat medium heat exchanger 25b and performs heat exchange with the heat medium. At this time, the heat source side refrigerant becomes a high-temperature and high-pressure liquid refrigerant, and the heat medium is heated. The heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. At this time, the expansion device 26b is controlled so that the degree of supercooling of the outlet refrigerant of the heat medium heat exchanger 25b becomes a target value. The heat-source-side refrigerant that has become a low-temperature and low-pressure two-phase refrigerant passes through the expansion device 26a, flows into the heat medium heat exchanger 25a, performs heat exchange with the heat medium, and cools the heat medium. At this time, the expansion device 26a is fully opened. The opening / closing device 29 and the opening / closing device 27 are closed. Then, the refrigerant that has passed through the second refrigerant flow switching device 28 a flows out from the relay unit 2.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、逆止弁13bを通過して熱源側熱交換器12を通過する。このとき、室外空間6の空気と熱交換が行われ、低温低圧の気体の熱源側冷媒となる。熱源側冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13b and passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas. The heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
 次に暖房主体モードにおける熱媒体の流れについて説明する。上述したように、熱媒体は、熱媒体熱交換器25aにおいて冷却され、熱媒体熱交換器25bにおいて、加熱される。熱媒体熱交換器25aにおいて冷却された熱媒体は、ポンプ31aにより搬送される。また、熱媒体熱交換器25bにおいて、加熱された熱媒体は、ポンプ31bにより搬送される。搬送された熱媒体は各室内ユニット3に接続されている第2熱媒体流路切替装置33を通過する。このとき、熱媒体流量調整装置34において、各室内ユニット3へ流入する熱媒体の流量が調整される。ここで、各第2熱媒体流路切替装置33において、対応する室内ユニット3が暖房を行っているときは、熱媒体熱交換器25bおよびポンプ31bが接続されている流路と通じるように切替えられる。また、対応する室内ユニット3が冷房を行っているときは、熱媒体熱交換器25aおよびポンプ31aが接続されている流路と通じるように切替えられる。そして、熱媒体は、中継ユニット2を流出し、中継ユニット2外の熱媒体配管5を通過して室内ユニット3に流入する。 Next, the flow of the heat medium in the heating main mode will be described. As described above, the heat medium is cooled in the heat medium heat exchanger 25a and heated in the heat medium heat exchanger 25b. The heat medium cooled in the heat medium heat exchanger 25a is conveyed by the pump 31a. In the heat medium heat exchanger 25b, the heated heat medium is conveyed by the pump 31b. The transported heat medium passes through the second heat medium flow switching device 33 connected to each indoor unit 3. At this time, the heat medium flow control device 34 adjusts the flow rate of the heat medium flowing into each indoor unit 3. Here, in each second heat medium flow switching device 33, when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. Then, the heat medium flows out of the relay unit 2, passes through the heat medium pipe 5 outside the relay unit 2, and flows into the indoor unit 3.
 室内ユニット3に流入した熱媒体は、利用側熱交換器35において、室内空間7の空気との熱交換が行われる。熱交換された室内空間7の空気により、室内の暖房または冷房が行われる。熱交換された熱媒体は、室内ユニット3を流出する。室内ユニット3を流出した熱媒体は、中継ユニット2外の熱媒体配管5を通過して中継ユニット2に流入する。 The heat medium flowing into the indoor unit 3 undergoes heat exchange with the air in the indoor space 7 in the use side heat exchanger 35. Indoor heating or cooling is performed by the air in the indoor space 7 subjected to heat exchange. The heat medium subjected to heat exchange flows out of the indoor unit 3. The heat medium flowing out of the indoor unit 3 passes through the heat medium pipe 5 outside the relay unit 2 and flows into the relay unit 2.
 中継ユニット2に流入した熱媒体は、第1熱媒体流路切替装置32を通過する。ここで、各第1熱媒体流路切替装置32において、対応する室内ユニット3が暖房を行っているときは、熱媒体熱交換器25bおよびポンプ31bが接続されている流路と通じるように切替えられる。また、対応する室内ユニット3が冷房を行っているときは、熱媒体熱交換器25aおよびポンプ31aが接続されている流路と通じるように切替えられる。それぞれの流路を通過した熱媒体は、熱媒体熱交換器25における熱交換により、加熱または冷却される。 The heat medium flowing into the relay unit 2 passes through the first heat medium flow switching device 32. Here, in each first heat medium flow switching device 32, when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. The heat medium that has passed through each flow path is heated or cooled by heat exchange in the heat medium heat exchanger 25.
 図5は、この発明の実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す図である。図5では、すべての室内ユニット3が冷房を行っている例について説明する。ここで、図5において、冷媒循環回路における太線は、全暖房運転モードにおいて、熱源側冷媒が通過する冷媒配管4を示している。また、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 5 is a diagram showing a refrigerant flow in the cooling only operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 5 illustrates an example in which all the indoor units 3 perform cooling. Here, in FIG. 5, the thick line in the refrigerant circulation circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode. Further, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11を通過して熱源側熱交換器12を通過する。熱源側冷媒は、熱源側熱交換器12を通過することにより、室外空間6の空気との熱交換が行われる。熱源側冷媒は、液冷媒となる。熱源側熱交換器12を通過した熱源側冷媒は、逆止弁13aを通過し、室外ユニット1から流出する。室外ユニット1から流出した熱源側冷媒は、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。ここで、第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の熱源側冷媒を熱源側熱交換器12を通過するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12. The heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12. The heat source side refrigerant is a liquid refrigerant. The heat-source-side refrigerant that has passed through the heat-source-side heat exchanger 12 passes through the check valve 13a and flows out of the outdoor unit 1. The heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2. Here, the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
 中継ユニット2に流入した熱源側冷媒は開閉装置27を通過した後、分岐し、絞り装置26aおよび絞り装置26bを通過する。絞り装置26aおよび26bを通過した熱源側冷媒は、減圧され、低温低圧の気液二相冷媒となって、熱媒体熱交換器25aおよび熱媒体熱交換器25bを通過する。熱媒体熱交換器25aおよび熱媒体熱交換器25bを通過した熱源側冷媒は、熱媒体との熱交換が行われる。このとき、絞り装置26aおよび絞り装置26bは、熱媒体熱交換器25aおよび熱媒体熱交換器25bの熱媒体流出側における熱源側冷媒の過熱度が目標値になるように制御される。また、開閉装置29は閉止されている。熱媒体熱交換器25aおよび25bを通過した熱源側冷媒は第2冷媒流路切替装置28aおよび28bを通過してから合流し、中継ユニット2から流出する。ここで、第2冷媒流路切替装置28aおよび第2冷媒流路切替装置28bは、それぞれ冷房側に切り替えられている。 The heat-source-side refrigerant that has flowed into the relay unit 2 branches after passing through the opening / closing device 27, and then passes through the expansion device 26a and the expansion device 26b. The heat-source-side refrigerant that has passed through the expansion devices 26a and 26b is decompressed, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b. The heat source side refrigerant that has passed through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b undergoes heat exchange with the heat medium. At this time, the expansion device 26a and the expansion device 26b are controlled so that the degree of superheat of the heat source side refrigerant on the heat medium outflow side of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b becomes a target value. The opening / closing device 29 is closed. The heat-source-side refrigerant that has passed through the heat medium heat exchangers 25a and 25b merges after passing through the second refrigerant flow switching devices 28a and 28b, and flows out from the relay unit 2. Here, the second refrigerant flow switching device 28a and the second refrigerant flow switching device 28b are each switched to the cooling side.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、室外ユニット1に流入した低温低圧の熱源側冷媒は、逆止弁13c、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13c, the first refrigerant flow switching device 11 and the accumulator 19 and is compressed by the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1. Inhaled by the machine 10.
 次に、全冷房運転モードにおける熱媒体の流れについて説明する。上記に説明した通り、熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bにおいて、低温低圧の熱源側冷媒と熱交換を行い、低温の熱媒体となる。熱媒体熱交換器25aおよび、25bにて低温とされた熱媒体はそれぞれ熱媒体熱交換器25aおよび25bに接続されているポンプ31aおよび31bにより室内ユニット3へ搬送される。搬送された熱媒体は各室内ユニット3に接続されている熱媒体回路側流路切替ユニット23の第2熱媒体流路切替装置33を通過し、熱媒体流量調整装置34にて各室内ユニット3へ流入する熱媒体流量が調整される。このとき、第2熱媒体流路切替装置33は、熱媒体熱交換器25aおよび熱媒体熱交換器25bの両方から搬送される熱媒体を、熱媒体流量調整装置34および室内ユニット3に供給できるよう中間開度または熱媒体熱交換器25aおよび熱媒体熱交換器25bの熱媒体流出口における熱媒体の温度に応じた開度調整が行われる。熱媒体配管5にて接続された室内ユニット3へ流入した熱媒体は利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで冷房が行われる。利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5および熱媒体流量調整装置34を通して、中継ユニット2内へ搬送される。搬送された熱媒体は熱媒体回路側流路切替ユニット23の第1熱媒体流路切替装置32を通じて熱媒体熱交換器25aおよび熱媒体熱交換器25bのそれぞれへと流入され室内ユニット3を通じて室内空間7へ供給した分の熱量を冷媒側から受け取り、再度、ポンプ31aおよびポンプ31bへ搬送される。 Next, the flow of the heat medium in the cooling only operation mode will be described. As described above, the heat medium exchanges heat with the low-temperature and low-pressure heat source side refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, and becomes a low-temperature heat medium. The heat medium that has been lowered in temperature by the heat medium heat exchangers 25a and 25b is transferred to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively. The transported heat medium passes through the second heat medium flow switching device 33 of the heat medium circuit side flow switching unit 23 connected to each indoor unit 3, and each indoor unit 3 is heated by the heat medium flow control device 34. The flow rate of the heat medium flowing into the is adjusted. At this time, the second heat medium flow switching device 33 can supply the heat medium conveyed from both the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to the heat medium flow control device 34 and the indoor unit 3. The opening degree is adjusted according to the intermediate opening degree or the temperature of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a and the heat medium heat exchanger 25b. The heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35. The heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34. The transported heat medium flows into the heat medium heat exchanger 25a and the heat medium heat exchanger 25b through the first heat medium flow switching device 32 of the heat medium circuit side flow path switching unit 23, and passes through the indoor unit 3 to the room. The amount of heat supplied to the space 7 is received from the refrigerant side and again conveyed to the pump 31a and the pump 31b.
 図6は、この発明の実施の形態1に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す図である。ここで、図6において、冷媒循環回路における太線は、全暖房運転モードにおいて、熱源側冷媒が通過する冷媒配管4を示している。また、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 6 is a diagram showing a refrigerant flow in the cooling main operation mode of the air-conditioning apparatus according to Embodiment 1 of the present invention. Here, in FIG. 6, the thick line in the refrigerant circuit indicates the refrigerant pipe 4 through which the heat source side refrigerant passes in the heating only operation mode. Further, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11を通過して熱源側熱交換器12を通過する。熱源側冷媒は、熱源側熱交換器12を通過することにより、室外空間6の空気との熱交換が行われる。熱源側冷媒は、液冷媒となる。熱源側熱交換器12を通過した熱源側冷媒は、逆止弁13aを通過し、室外ユニット1から流出する。室外ユニット1から流出した熱源側冷媒は、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。ここで、第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の熱源側冷媒を熱源側熱交換器12を通過するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12. The heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12. The heat source side refrigerant is a liquid refrigerant. The heat-source-side refrigerant that has passed through the heat-source-side heat exchanger 12 passes through the check valve 13a and flows out of the outdoor unit 1. The heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2. Here, the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
 中継ユニット2に流入した熱源側冷媒は、第2冷媒流路切替装置28bを通過して、熱媒体熱交換器25bへ流入する。このとき、第2冷媒流路切替装置28aは冷房側の流路に切り替えられている。また、第2冷媒流路切替装置28bは暖房側の流路に切り替えられている。熱媒体熱交換器25bへ流入した熱源側冷媒は、熱媒体と熱交換を行う。熱源側冷媒は高温高圧の液冷媒となり、熱媒体は加熱される。高温高圧の液冷媒となった熱源側冷媒は絞り装置26bを通過することにより減圧され、低温低圧の気液二相冷媒へとなる。このとき、絞り装置26bは、熱媒体熱交換器25aの熱媒体流出口における熱媒体の過熱度が目標値になるように制御されている。そして、低温低圧の二相冷媒となった冷媒は熱媒体熱交換器25aを通過し、冷媒-水熱交換器内で熱媒体と熱交換を行った後、中継ユニット2から流出する。ここで、開閉装置29は閉となっている。 The heat-source-side refrigerant that has flowed into the relay unit 2 passes through the second refrigerant flow switching device 28b and flows into the heat medium heat exchanger 25b. At this time, the second refrigerant flow switching device 28a is switched to the cooling-side flow path. The second refrigerant flow switching device 28b is switched to the heating-side flow path. The heat-source-side refrigerant that has flowed into the heat medium heat exchanger 25b exchanges heat with the heat medium. The heat source side refrigerant becomes a high-temperature and high-pressure liquid refrigerant, and the heat medium is heated. The heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. At this time, the expansion device 26b is controlled so that the degree of superheat of the heat medium at the heat medium outlet of the heat medium heat exchanger 25a becomes a target value. The refrigerant that has become a low-temperature and low-pressure two-phase refrigerant passes through the heat medium heat exchanger 25a, exchanges heat with the heat medium in the refrigerant-water heat exchanger, and then flows out from the relay unit 2. Here, the opening / closing device 29 is closed.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、室外ユニット1に流入した低温低圧の熱源側冷媒は、逆止弁13c、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the check valve 13c, the first refrigerant flow switching device 11 and the accumulator 19 and is compressed by the low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1. Inhaled by the machine 10.
 次に冷房主体モードにおける熱媒体の流れについて説明する。上述したように、熱媒体は、熱媒体熱交換器25aにおいて冷却され、熱媒体熱交換器25bにおいて、加熱される。熱媒体熱交換器25aにおいて冷却された熱媒体は、ポンプ31aにより搬送される。また、熱媒体熱交換器25bにおいて、加熱された熱媒体は、ポンプ31bにより搬送される。搬送された熱媒体は各室内ユニット3に接続されている第2熱媒体流路切替装置33を通過する。このとき、熱媒体流量調整装置34において、各室内ユニット3へ流入する熱媒体の流量が調整される。ここで、各第2熱媒体流路切替装置33において、対応する室内ユニット3が暖房を行っているときは、熱媒体熱交換器25bおよびポンプ31bが接続されている流路と通じるように切り替えられる。また、対応する室内ユニット3が冷房を行っているときは、熱媒体熱交換器25aおよびポンプ31aが接続されている流路と通じるように切り替えられる。そして、熱媒体は、中継ユニット2を流出し、中継ユニット2外の熱媒体配管5を通過して室内ユニット3に流入する。 Next, the flow of the heat medium in the cooling main mode will be described. As described above, the heat medium is cooled in the heat medium heat exchanger 25a and heated in the heat medium heat exchanger 25b. The heat medium cooled in the heat medium heat exchanger 25a is conveyed by the pump 31a. In the heat medium heat exchanger 25b, the heated heat medium is conveyed by the pump 31b. The transported heat medium passes through the second heat medium flow switching device 33 connected to each indoor unit 3. At this time, the heat medium flow control device 34 adjusts the flow rate of the heat medium flowing into each indoor unit 3. Here, in each second heat medium flow switching device 33, when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. Then, the heat medium flows out of the relay unit 2, passes through the heat medium pipe 5 outside the relay unit 2, and flows into the indoor unit 3.
 室内ユニット3に流入した熱媒体は、利用側熱交換器35において、室内空間7の空気との熱交換が行われる。熱交換された室内空間7の空気により、室内の暖房または冷房が行われる。熱交換された熱媒体は、室内ユニット3を流出する。室内ユニット3を流出した熱媒体は、中継ユニット2外の熱媒体配管5を通過して中継ユニット2に流入する。 The heat medium flowing into the indoor unit 3 undergoes heat exchange with the air in the indoor space 7 in the use side heat exchanger 35. Indoor heating or cooling is performed by the air in the indoor space 7 subjected to heat exchange. The heat medium subjected to heat exchange flows out of the indoor unit 3. The heat medium flowing out of the indoor unit 3 passes through the heat medium pipe 5 outside the relay unit 2 and flows into the relay unit 2.
 中継ユニット2に流入した熱媒体は、第1熱媒体流路切替装置32を通過する。ここで、各第1熱媒体流路切替装置32において、対応する室内ユニット3が暖房を行っているときは、熱媒体熱交換器25bおよびポンプ31bが接続されている流路と通じるように切替えられる。また、対応する室内ユニット3が冷房を行っているときは、熱媒体熱交換器25aおよびポンプ31aが接続されている流路と通じるように切替えられる。それぞれの流路を通過した熱媒体は、熱媒体熱交換器25における熱交換により、加熱または冷却される。 The heat medium flowing into the relay unit 2 passes through the first heat medium flow switching device 32. Here, in each first heat medium flow switching device 32, when the corresponding indoor unit 3 is heating, switching is performed so as to communicate with the flow path to which the heat medium heat exchanger 25b and the pump 31b are connected. It is done. Further, when the corresponding indoor unit 3 is performing cooling, the indoor unit 3 is switched so as to communicate with the flow path to which the heat medium heat exchanger 25a and the pump 31a are connected. The heat medium that has passed through each flow path is heated or cooled by heat exchange in the heat medium heat exchanger 25.
 図7は、この発明の実施の形態1に係る空気調和装置の別形態について説明する図である。冷媒循環回路と熱媒体循環回路とを有する構成を維持したままで、冷暖混在運転を行わなくてもよい空気調和装置とする場合には、図7に示すように空気調和装置を構成することができる。ここで、図7においては、中継ユニット2内に、熱媒体熱交換器25および絞り装置26をそれぞれ1台有する熱交換ユニット22が設けられた場合について説明する。 FIG. 7 is a diagram illustrating another form of the air-conditioning apparatus according to Embodiment 1 of the present invention. In the case of an air conditioner that does not need to perform the cooling and heating mixed operation while maintaining the configuration having the refrigerant circulation circuit and the heat medium circulation circuit, the air conditioner may be configured as shown in FIG. it can. Here, in FIG. 7, a case where the heat exchange unit 22 having one heat medium heat exchanger 25 and one expansion device 26 is provided in the relay unit 2 will be described.
 図7の空気調和装置の中継ユニット2においては、図2の空気調和装置において設置されていた冷媒回路側流路切替ユニット21が設置されずに構成されている。このため、冷媒循環回路側においては、熱交換ユニット22が有する熱媒体熱交換器25および絞り装置26に、中継ユニット2外部の冷媒配管4が直接的に配管接続される構成となる。また、熱媒体循環回路側においては、図2の空気調和装置において設置されていた熱媒体回路側流路切替ユニット23が設置されずに構成されている。このため、冷媒循環回路側においては、熱交換ユニット22が有する熱媒体熱交換器25およびポンプ31に、熱媒体調整ユニット24および中継ユニット2外部の冷媒配管4が直接的に配管接続される構成となる。室外ユニット1における、第1接続配管4a、第2接続配管4bおよび逆止弁13a~13dは、設置を省略している。 The relay unit 2 of the air conditioner of FIG. 7 is configured without the refrigerant circuit side flow path switching unit 21 installed in the air conditioner of FIG. Therefore, on the refrigerant circuit side, the refrigerant pipe 4 outside the relay unit 2 is directly connected to the heat medium heat exchanger 25 and the expansion device 26 of the heat exchange unit 22. On the heat medium circuit side, the heat medium circuit side flow path switching unit 23 installed in the air conditioner of FIG. 2 is not installed. Therefore, on the refrigerant circulation circuit side, the refrigerant pipe 4 outside the heat medium adjusting unit 24 and the relay unit 2 is directly connected to the heat medium heat exchanger 25 and the pump 31 included in the heat exchange unit 22. It becomes. Installation of the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d in the outdoor unit 1 is omitted.
 空気調和装置の運転の仕様、用途などにより、中継ユニット2内のユニットを、必要となるユニットで構成することにより、仕様、用途などが異なる空気調和装置において、機器の共有などを行うことができる。また、熱媒体の搬送動力を低減させることができるので、省エネルギをはかることができる。さらに、水などの熱媒体を用いることで、利用者の安全性に配慮することができる。 By configuring the units in the relay unit 2 with necessary units depending on the specifications and applications of the operation of the air conditioner, it is possible to share equipment in the air conditioners having different specifications and applications. . Moreover, since the conveyance power of the heat medium can be reduced, energy saving can be achieved. Furthermore, user safety can be taken into account by using a heat medium such as water.
 図8は、この発明の実施の形態1に係る別形態の空気調和装置の暖房運転モード時における冷媒の流れを示す図である。ここで、図8において、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 8 is a diagram showing a refrigerant flow in the heating operation mode of the air conditioner according to another embodiment of the present invention. Here, in FIG. 8, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11を通過して室外ユニット1から流出し、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。ここで、第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の冷媒を室外ユニット1内の熱源側熱交換器12を通過せずに室外ユニット1外に流出するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11, flows out of the outdoor unit 1, passes through the refrigerant pipe 4 outside the outdoor unit 1, and flows into the relay unit 2. Here, the first refrigerant flow switching device 11 flows out of the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 10 out of the outdoor unit 1 without passing through the heat source side heat exchanger 12 in the outdoor unit 1. Has been switched.
 中継ユニット2に流入した気体の熱源側冷媒は、熱媒体熱交換器25aを通過する。このとき、熱媒体との熱交換が行われる。熱媒体熱交換器25aを通過した熱源側冷媒は、高温高圧の液冷媒となる。高温高圧の液冷媒となった熱源側冷媒は、絞り装置26aを通過することにより減圧され、低温低圧の気液二相冷媒となる。絞り装置26aを通過した低温低圧の気液二相の熱源側冷媒は、中継ユニット2から流出する。 The gaseous heat source side refrigerant flowing into the relay unit 2 passes through the heat medium heat exchanger 25a. At this time, heat exchange with the heat medium is performed. The heat-source-side refrigerant that has passed through the heat medium heat exchanger 25a becomes a high-temperature and high-pressure liquid refrigerant. The heat-source-side refrigerant that has become a high-temperature and high-pressure liquid refrigerant is decompressed by passing through the expansion device 26a, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase heat source side refrigerant that has passed through the expansion device 26 a flows out of the relay unit 2.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、熱源側熱交換器12を通過する。このとき、室外空間6の空気と熱交換が行われ、低温低圧の気体の熱源側冷媒となる。熱源側冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant flowing into the outdoor unit 1 passes through the heat source side heat exchanger 12. At this time, heat exchange with the air in the outdoor space 6 is performed, and the heat source side refrigerant is a low-temperature and low-pressure gas. The heat source side refrigerant passes through the first refrigerant flow switching device 11 and the accumulator 19 and is sucked into the compressor 10.
 次に、暖房運転モードにおける熱媒体の流れについて説明する。上記に説明した通り、熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bにおいて、高温高圧の気体の冷媒と熱交換を行い、高温の熱媒体となる。熱媒体熱交換器25aおよび熱媒体熱交換器25bにて高温とされた熱媒体はそれぞれ熱媒体熱交換器25a、25bに接続されているポンプ31a、31bにより室内ユニット3へ搬送される。このとき、熱媒体流量調整装置34にて各室内ユニット3へ流入する熱媒体流量が調整される。熱媒体配管5にて接続された室内ユニット3へ流入した熱媒体は利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで暖房が行われる。利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5および熱媒体流量調整装置34を通して、中継ユニット2内へ搬送される。中継ユニット2に送られた冷媒は、搬送された熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bを通過して加熱され、再度、ポンプ31aおよびポンプ31bにより搬送される。 Next, the flow of the heat medium in the heating operation mode will be described. As described above, the heat medium exchanges heat with a high-temperature and high-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a high-temperature heat medium. The heat medium heated to high temperature in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b is transferred to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively. At this time, the flow rate of the heat medium flowing into each indoor unit 3 is adjusted by the heat medium flow rate adjusting device 34. The heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is heated by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35. The heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34. In the refrigerant sent to the relay unit 2, the conveyed heat medium passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, is heated, and is again conveyed by the pump 31a and the pump 31b.
 図9は、この発明の実施の形態1に係る別形態の空気調和装置の冷房運転モード時における冷媒の流れを示す図である。ここで、図9において、熱源側冷媒が流れる方向を実線矢印で示し、熱媒体が流れる方向を破線矢印で示している。 FIG. 9 is a diagram showing the flow of the refrigerant during the cooling operation mode of the air conditioner according to the first embodiment of the present invention. Here, in FIG. 9, the direction in which the heat source side refrigerant flows is indicated by a solid line arrow, and the direction in which the heat medium flows is indicated by a broken line arrow.
 圧縮機10は、熱源側冷媒を圧縮し、高温および高圧の気体の熱源側冷媒を吐出する。吐出された高温および高圧の冷媒は、第1冷媒流路切替装置11を通過して熱源側熱交換器12を通過する。熱源側冷媒は、熱源側熱交換器12を通過することにより、室外空間6の空気との熱交換が行われる。熱源側冷媒は、液冷媒となる。熱源側熱交換器12を通過した熱源側冷媒は、室外ユニット1から流出する。室外ユニット1から流出した熱源側冷媒は、室外ユニット1外の冷媒配管4を通過して、中継ユニット2に流入する。ここで、第1冷媒流路切替装置11は、圧縮機10から吐出された高温高圧の気体の熱源側冷媒を熱源側熱交換器12を通過するように切り替えられている。 The compressor 10 compresses the heat source side refrigerant and discharges the high temperature and high pressure gas heat source side refrigerant. The discharged high-temperature and high-pressure refrigerant passes through the first refrigerant flow switching device 11 and passes through the heat source side heat exchanger 12. The heat source side refrigerant exchanges heat with the air in the outdoor space 6 by passing through the heat source side heat exchanger 12. The heat source side refrigerant is a liquid refrigerant. The heat source side refrigerant that has passed through the heat source side heat exchanger 12 flows out of the outdoor unit 1. The heat source side refrigerant flowing out of the outdoor unit 1 passes through the refrigerant pipe 4 outside the outdoor unit 1 and flows into the relay unit 2. Here, the first refrigerant flow switching device 11 is switched so that the high-temperature and high-pressure gas heat source-side refrigerant discharged from the compressor 10 passes through the heat source-side heat exchanger 12.
 中継ユニット2に流入した熱源側冷媒は、絞り装置26aを通過する。絞り装置26aを通過した熱源側冷媒は、減圧され、低温低圧の気液二相冷媒となって、熱媒体熱交換器25aを通過する。熱媒体熱交換器25aを通過した熱源側冷媒は、熱媒体との熱交換が行われる。このとき、絞り装置26aは、熱媒体熱交換器25aの熱媒体流出側における熱源側冷媒の過熱度が目標値になるように制御される。熱媒体熱交換器25aを通過した熱源側冷媒は、中継ユニット2から流出する。 The heat source side refrigerant flowing into the relay unit 2 passes through the expansion device 26a. The heat-source-side refrigerant that has passed through the expansion device 26a is decompressed, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and passes through the heat medium heat exchanger 25a. The heat source side refrigerant that has passed through the heat medium heat exchanger 25a undergoes heat exchange with the heat medium. At this time, the expansion device 26a is controlled such that the degree of superheat of the heat source side refrigerant on the heat medium outflow side of the heat medium heat exchanger 25a becomes a target value. The heat-source-side refrigerant that has passed through the heat medium heat exchanger 25a flows out from the relay unit 2.
 中継ユニット2から流出した熱源側冷媒は、外部の冷媒配管4を通過して、室外ユニット1に流入する。室外ユニット1に流入した低温低圧の熱源側冷媒は、室外ユニット1に流入した低温低圧の熱源側冷媒は、第1冷媒流路切替装置11およびアキュムレータ19を通過して、圧縮機10に吸入される。 The heat-source-side refrigerant that has flowed out of the relay unit 2 passes through the external refrigerant pipe 4 and flows into the outdoor unit 1. The low-temperature and low-pressure heat source side refrigerant that has flowed into the outdoor unit 1 passes through the first refrigerant flow switching device 11 and the accumulator 19, and the low-temperature and low-pressure heat source side refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10. The
 次に、冷房運転モードにおける熱媒体の流れについて説明する。上記に説明した通り、熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bにおいて、低温低圧の気体の冷媒と熱交換を行い、低温の熱媒体となる。熱媒体熱交換器25aおよび熱媒体熱交換器25bにて低温とされた熱媒体はそれぞれ熱媒体熱交換器25a、25bに接続されているポンプ31a、31bにより室内ユニット3へ搬送される。このとき、熱媒体流量調整装置34にて各室内ユニット3へ流入する熱媒体流量が調整される。熱媒体配管5にて接続された室内ユニット3へ流入した熱媒体は利用側熱交換器35にて室内空間7の室内空気と熱交換を行うことで冷房が行われる。利用側熱交換器35にて熱交換された熱媒体は、熱媒体配管5および熱媒体流量調整装置34を通して、中継ユニット2内へ搬送される。中継ユニット2に送られた冷媒は、搬送された熱媒体は、熱媒体熱交換器25aおよび熱媒体熱交換器25bを通過して冷却され、再度、ポンプ31aおよびポンプ31bにより搬送される。 Next, the flow of the heat medium in the cooling operation mode will be described. As described above, the heat medium exchanges heat with the low-temperature and low-pressure gaseous refrigerant in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b to become a low-temperature heat medium. The heat medium having a low temperature in the heat medium heat exchanger 25a and the heat medium heat exchanger 25b is conveyed to the indoor unit 3 by pumps 31a and 31b connected to the heat medium heat exchangers 25a and 25b, respectively. At this time, the flow rate of the heat medium flowing into each indoor unit 3 is adjusted by the heat medium flow rate adjusting device 34. The heat medium flowing into the indoor unit 3 connected by the heat medium pipe 5 is cooled by exchanging heat with the indoor air in the indoor space 7 by the use side heat exchanger 35. The heat medium exchanged by the use-side heat exchanger 35 is conveyed into the relay unit 2 through the heat medium pipe 5 and the heat medium flow control device 34. As for the refrigerant sent to the relay unit 2, the conveyed heat medium passes through the heat medium heat exchanger 25a and the heat medium heat exchanger 25b, is cooled, and is again conveyed by the pump 31a and the pump 31b.
 以上のように、実施の形態1の空気調和装置によれば、中継ユニット2を、モジュール化した冷媒回路側流路切替ユニット21、熱交換ユニット22、熱媒体回路側流路切替ユニット23および熱媒体調整ユニット24で構成し、空気調和装置の運転形態などに合わせて、ユニットの取り付けまたは取り外しを行うようにしたので、用途に応じて、回路構成を変更することができる。また、構成に必要がないユニットを設置しなくてすむので、設置面積、コストなどを抑えることができる。 As described above, according to the air conditioning apparatus of the first embodiment, the relay unit 2 is modularized into the refrigerant circuit side flow path switching unit 21, the heat exchange unit 22, the heat medium circuit side flow path switching unit 23, and the heat. Since the medium adjustment unit 24 is configured and the unit is attached or detached according to the operation mode of the air conditioner, the circuit configuration can be changed according to the application. Further, since it is not necessary to install a unit that is not necessary for the configuration, the installation area, cost, and the like can be suppressed.
 図10は、この発明の実施の形態1に係る他の空気調和装置の構成を示す図である。さらに、熱媒体回路側流路切替ユニット23および熱媒体調整ユニット24を中継ユニット2と別のユニットで構成することで、冷暖混在運転において、複数の熱媒体回路側流路切替ユニット23aと熱媒体回路側流路切替ユニット23bおよび熱媒体調整ユニット24aと熱媒体調整ユニット24bとを並列に接続し、室内ユニット3の数を増やすことができる。 FIG. 10 is a diagram showing a configuration of another air-conditioning apparatus according to Embodiment 1 of the present invention. Furthermore, by configuring the heat medium circuit side flow path switching unit 23 and the heat medium adjustment unit 24 as a separate unit from the relay unit 2, a plurality of heat medium circuit side flow path switching units 23a and heat mediums can be used in a cooling / heating mixed operation. The number of indoor units 3 can be increased by connecting the circuit side flow path switching unit 23b, the heat medium adjusting unit 24a, and the heat medium adjusting unit 24b in parallel.
 さらに、空内空間7の空気を加熱または冷却するための室内ユニット3には熱媒体が循環することとなり、熱源側冷媒が循環しないため、熱源側冷媒が室内空間7に漏れることをを抑制することができ、安全性を高めることができる。また、チラーのような空気調和装置よりも熱媒体を循環する配管を短くできるため、搬送動力を少なくすることができる。 Furthermore, since the heat medium is circulated in the indoor unit 3 for heating or cooling the air in the air space 7 and the heat source side refrigerant is not circulated, the heat source side refrigerant is prevented from leaking into the indoor space 7. Can increase safety. Moreover, since the piping which circulates a heat medium can be shortened rather than an air conditioning apparatus like a chiller, conveyance power can be decreased.
実施の形態2.
 図11は、この発明の実施の形態2に係る空気調和装置の構成を示す図である。上述した実施の形態1の空気調和装置においては、冷暖混在運転を行わなくてもよい空気調和装置について、中継ユニット2内に、熱媒体熱交換器25および絞り装置26をそれぞれ1台有する熱交換ユニット22が設けられたものであった。実施の形態2の空気調和装置では、中継ユニット2内の熱交換ユニット22が、熱媒体熱交換器25および絞り装置26をそれぞれ2台有するものとする。
Embodiment 2. FIG.
FIG. 11 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention. In the air conditioner of the first embodiment described above, heat exchange having one heat medium heat exchanger 25 and one expansion device 26 in the relay unit 2 for the air conditioner that does not need to perform the cooling and heating mixed operation. A unit 22 was provided. In the air conditioner according to Embodiment 2, the heat exchange unit 22 in the relay unit 2 has two heat medium heat exchangers 25 and two expansion devices 26, respectively.
 中継ユニット2内において、熱媒体熱交換器25および絞り装置26をそれぞれ2台有することで、熱媒体熱交換器25における熱交換能力を高めることができる。このため、冷媒循環回路側から、熱媒体循環回路側に、より多くの熱供給を行うことができる。したがって、熱媒体循環回路における室内ユニット3の数を増やすことができる。 The relay unit 2 has two heat medium heat exchangers 25 and two expansion devices 26, so that the heat exchange capacity of the heat medium heat exchanger 25 can be increased. For this reason, more heat can be supplied from the refrigerant circuit side to the heat medium circuit side. Therefore, the number of indoor units 3 in the heat medium circulation circuit can be increased.
 図12は、この発明の実施の形態2に係る他の空気調和装置の構成を示す図である。図12のように、冷媒回路側流路切替ユニット21があれば、室外ユニット1において、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13cおよび逆止弁13dを取り付けたままでもよい。このため、室外ユニット1の構成を変更することなく、空気調和装置を構成することができる。 FIG. 12 is a diagram showing a configuration of another air conditioner according to Embodiment 2 of the present invention. As shown in FIG. 12, if there is a refrigerant circuit side flow path switching unit 21, in the outdoor unit 1, the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, The check valve 13d may remain attached. For this reason, an air conditioning apparatus can be comprised, without changing the structure of the outdoor unit 1. FIG.
 1 室外ユニット、2 中継ユニット、3,3a,3b,3c,3d 室内ユニット、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a,13b,13c,13d 逆止弁、19 アキュムレータ、21 冷媒回路側流路切替ユニット、22 熱交換ユニット、23,23a,23b 熱媒体回路側流路切替ユニット、24,24a,24b 熱媒体調整ユニット、25,25a,25b 熱媒体熱交換器、26,26a,26b 絞り装置、27,29 開閉装置、28,28a,28b 第2冷媒流路切替装置、31,31a,31b ポンプ、32,32a,32b,32c,32d 第1熱媒体流路切替装置、33,33a,33b,33c,33d 第2熱媒体流路切替装置、34,34a,34b,34c,34d 熱媒体流量調整装置、35,35a,35b,35c,35d 利用側熱交換器、40,40a,40b 温度センサ。 1 outdoor unit, 2 relay unit, 3, 3a, 3b, 3c, 3d indoor unit, 4 refrigerant piping, 4a first connection piping, 4b second connection piping, 5 heat medium piping, 6 outdoor space, 7 indoor space, 10 Compressor, 11 First refrigerant flow switching device, 12 Heat source side heat exchanger, 13a, 13b, 13c, 13d Check valve, 19 Accumulator, 21 Refrigerant circuit side flow switching unit, 22 Heat exchange unit, 23, 23a , 23b Heat medium circuit side flow path switching unit, 24, 24a, 24b Heat medium adjustment unit, 25, 25a, 25b Heat medium heat exchanger, 26, 26a, 26b throttle device, 27, 29 switchgear, 28, 28a, 28b Second refrigerant flow switching device, 31, 31a, 31b pump, 32, 32a, 32b, 32c, 32d First heat medium Channel switching device, 33, 33a, 33b, 33c, 33d Second heat medium channel switching device, 34, 34a, 34b, 34c, 34d Heat medium flow control device, 35, 35a, 35b, 35c, 35d Use side heat Exchanger, 40, 40a, 40b Temperature sensor.

Claims (2)

  1.  熱源側冷媒を圧縮する圧縮機、前記熱源側冷媒の循環経路を切り替える第1冷媒流路切替装置、前記熱源側冷媒を熱交換させる熱源側熱交換器、前記熱源側冷媒を圧力調整する絞り装置および前記熱源側冷媒と前記熱源側冷媒と異なる熱媒体との熱交換を行う熱媒体間熱交換器を配管接続して、前記熱源側冷媒を循環させる熱源側冷媒循環回路と、
     前記熱媒体間熱交換器、前記熱媒体を加圧するポンプおよび前記熱媒体と空調対象空間に係る空気との熱交換を行う利用側熱交換器を配管接続して、前記熱媒体を循環させる熱媒体循環回路とを構成し、
     前記圧縮機、前記第1冷媒流路切替装置および前記熱源側熱交換器は、室外ユニットに収容され、
     前記熱媒体間熱交換器、および前記絞り装置は、熱交換ユニットに収容され、
     前記利用側熱交換器は、室内ユニットに収容されており、
     前記室外ユニットと前記熱交換ユニットとの間に配管接続され、取り外し可能に設置され、熱源側冷媒循環回路における前記熱源側冷媒の循環経路を切り替える第2冷媒流路切替装置を有する冷媒回路側流路切替ユニットと、
     前記熱交換ユニットと前記室内ユニットとの間に配管接続され、取り外し可能に設置され、前記熱媒体循環回路における前記熱媒体の循環経路を切り替える熱媒体流路切替装置を有する熱媒体回路側流路切替ユニットと
    を備える空気調和装置。
    Compressor for compressing heat source side refrigerant, first refrigerant flow switching device for switching circulation path of heat source side refrigerant, heat source side heat exchanger for heat exchange of heat source side refrigerant, throttle device for adjusting pressure of heat source side refrigerant And a heat source side refrigerant circulation circuit that circulates the heat source side refrigerant by pipe-connecting a heat exchanger between heat media that performs heat exchange between the heat source side refrigerant and a heat medium different from the heat source side refrigerant,
    Heat that circulates the heat medium by pipe-connecting the heat exchanger between heat medium, a pump that pressurizes the heat medium, and a use side heat exchanger that performs heat exchange between the heat medium and the air in the air-conditioning target space A medium circulation circuit,
    The compressor, the first refrigerant flow switching device and the heat source side heat exchanger are accommodated in an outdoor unit,
    The heat exchanger related to heat medium, and the expansion device are accommodated in a heat exchange unit,
    The use side heat exchanger is housed in an indoor unit,
    Refrigerant circuit side flow having a second refrigerant flow switching device that is connected between the outdoor unit and the heat exchange unit and is detachably installed to switch the circulation path of the heat source side refrigerant in the heat source side refrigerant circulation circuit. A path switching unit;
    A heat medium circuit side flow path having a heat medium flow switching device that is connected between the heat exchange unit and the indoor unit, is detachably installed, and switches the heat medium circulation path in the heat medium circulation circuit. An air conditioner comprising a switching unit.
  2.  複数の前記熱媒体回路側流路切替ユニットが、前記熱交換ユニットと並列に配管接続される請求項1に記載の空気調和装置。 The air conditioning apparatus according to claim 1, wherein a plurality of the heat medium circuit side flow path switching units are connected by piping in parallel with the heat exchange unit.
PCT/JP2017/004186 2017-02-06 2017-02-06 Air conditioner WO2018142607A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018565219A JPWO2018142607A1 (en) 2017-02-06 2017-02-06 Air conditioner
PCT/JP2017/004186 WO2018142607A1 (en) 2017-02-06 2017-02-06 Air conditioner
GB1909669.2A GB2573224B (en) 2017-02-06 2017-02-06 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004186 WO2018142607A1 (en) 2017-02-06 2017-02-06 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018142607A1 true WO2018142607A1 (en) 2018-08-09

Family

ID=63040405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004186 WO2018142607A1 (en) 2017-02-06 2017-02-06 Air conditioner

Country Status (3)

Country Link
JP (1) JPWO2018142607A1 (en)
GB (1) GB2573224B (en)
WO (1) WO2018142607A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050007A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
WO2010128557A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
WO2014045358A1 (en) * 2012-09-20 2014-03-27 三菱電機株式会社 Air conditioner device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223774A (en) * 1989-02-27 1990-09-06 Toshiba Corp Air-conditioning machine
JP5884855B2 (en) * 2014-05-30 2016-03-15 ダイキン工業株式会社 Refrigerant flow path switching unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050007A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
WO2010128557A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
WO2014045358A1 (en) * 2012-09-20 2014-03-27 三菱電機株式会社 Air conditioner device

Also Published As

Publication number Publication date
GB2573224A (en) 2019-10-30
GB2573224B (en) 2021-02-10
JPWO2018142607A1 (en) 2019-11-07
GB201909669D0 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN105917174B (en) The control method of air-conditioning device and air-conditioning device
JP5745651B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
JP5595521B2 (en) Heat pump equipment
US20140360218A1 (en) Air-conditioning apparatus
US9816736B2 (en) Air-conditioning apparatus
EP2927612A1 (en) Air conditioning device
WO2012172605A1 (en) Air conditioner
US9857113B2 (en) Air-conditioning apparatus
JP6490232B2 (en) Air conditioner
WO2016208042A1 (en) Air-conditioning device
JP6576603B1 (en) Air conditioner
WO2014083679A1 (en) Air conditioning device, and design method therefor
JP6012875B2 (en) Air conditioner
WO2016157481A1 (en) Air-conditioning device
WO2015087421A1 (en) Air conditioner
WO2018142607A1 (en) Air conditioner
JP6062030B2 (en) Air conditioner
WO2022162864A1 (en) Air-conditioning device
WO2023007700A1 (en) Air conditioner
JPWO2019026276A1 (en) Refrigeration cycle equipment
GB2627390A (en) Air conditioner
WO2015079531A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201909669

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170206

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895420

Country of ref document: EP

Kind code of ref document: A1