[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018142544A1 - Solar cell module and method for manufacturing solar cell module - Google Patents

Solar cell module and method for manufacturing solar cell module Download PDF

Info

Publication number
WO2018142544A1
WO2018142544A1 PCT/JP2017/003818 JP2017003818W WO2018142544A1 WO 2018142544 A1 WO2018142544 A1 WO 2018142544A1 JP 2017003818 W JP2017003818 W JP 2017003818W WO 2018142544 A1 WO2018142544 A1 WO 2018142544A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
surface side
receiving surface
type
cell module
Prior art date
Application number
PCT/JP2017/003818
Other languages
French (fr)
Japanese (ja)
Inventor
柳浦 聡
隆 石原
伊藤 直樹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/003818 priority Critical patent/WO2018142544A1/en
Priority to JP2018565170A priority patent/JPWO2018142544A1/en
Publication of WO2018142544A1 publication Critical patent/WO2018142544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module including a plurality of solar cells and a method for manufacturing the solar cell module.
  • the solar cell module is required to have high reliability and high photoelectric conversion efficiency.
  • the most common deterioration in solar cell modules is disconnection of the connection between solar cells. It is known that the main cause of the disconnection failure is a defect in the connection portion and a disconnection failure in the tab line.
  • Tab wire breakage is due to fatigue of the tab wire, and in particular, a large curvature that is disposed from the surface of one solar cell to the back surface of the other solar cell among adjacent solar cells. It is easy to occur in part.
  • solar cells with different polarities are alternately arranged, that is, p-type solar cells and n-type solar cells are alternately arranged, and the surface of one solar cell to the other solar cell. It is known that it is possible to eliminate the wrapping of the tab line to the back surface of the cell.
  • Patent Document 1 an n-type solar cell in which an n-type silicon substrate is used and a light-receiving surface is a positive electrode and a back surface is negative, and a p-type silicon substrate is used and a light-receiving surface is a negative electrode and a back surface is a positive electrode.
  • a solar cell module in which the p-type solar cells are arranged alternately is disclosed.
  • the bus bar electrode portions on the light receiving surface side of adjacent solar cells are connected to each other by a surface-side connection tab made of a metal wire.
  • the bus-bar electrode parts of the back surface side of an adjacent photovoltaic cell are connected by the back surface side connection tab which consists of striped metal foil.
  • the bus bar electrode portions on the light receiving surface side of the adjacent solar cells are connected to each other by the front surface side connection tab made of a metal ribbon, and the back surface side of the adjacent solar cell is The bus bar electrode portions are connected to each other by a back surface side connection tab made of a striped metal foil. That is, since adjacent photovoltaic cells are connected via the bus electrode and the connection tab, significant improvement in photoelectric conversion efficiency cannot be expected. In addition, since the number of front side connection tabs is smaller than the number of back side connection tabs, effective current transfer from the current source to the front side connection tabs is possible due to the small number of front side connection tabs on the front side. Since the distance becomes longer, the electrical resistance increases and a significant improvement in photoelectric conversion efficiency cannot be expected.
  • a multi-wire method in which a large number of metal wire wires are directly joined to the grid electrode on the solar cell without using the bus bar electrode has attracted attention.
  • the multi-wire method since the effective distance of current movement from the current source to the metal wire wire is shortened by increasing the number of metal wires of the metal wire, the electric resistance is reduced and the solar cell module is It becomes possible to increase the photoelectric conversion efficiency.
  • Patent Document 2 discloses a photovoltaic cell having a transparent conductive film on the surface, a finger electrode provided in contact with the transparent conductive film and serving as a collecting electrode, and orthogonal to the finger electrode.
  • a solar cell module having a plurality of metal wires arranged as interconnectors and having finger electrodes formed in a broken line shape is disclosed.
  • This invention is made
  • a solar cell module includes an n-type first crystalline solar cell having a light-receiving surface as a positive electrode, and alternating first crystalline solar cells. And a p-type second crystalline solar cell in which the light receiving surface side is the negative electrode.
  • the solar cell module connects the electrodes on the light receiving surface side of the adjacent first crystal solar cell and second crystal solar cell, and has a circular shape with a diameter in the range of 0.2 mm to 1.0 mm.
  • a plurality of light-receiving surface side connection wirings made of six or more metal metal wire wires having a cross-section, and the light-receiving surface sides of the adjacent first crystal solar cells and second crystal solar cells.
  • a back-side connection wiring made of a metal film for connecting the back-side electrodes to each other.
  • the solar cell module according to the present invention has an effect that the photoelectric conversion efficiency and the reliability can be improved.
  • the schematic top view which looked at the array wiring of the solar cell array of the solar cell module concerning Embodiment 1 of this invention from the light-receiving surface side The schematic bottom view which looked at the array wiring of the solar cell array of the solar cell module concerning Embodiment 1 of this invention from the back surface side facing a light-receiving surface side Schematic sectional view showing the solar cell module according to the first embodiment of the present invention.
  • the schematic top view which looked at the n-type photovoltaic cell concerning Embodiment 1 of this invention from the light-receiving surface side The schematic bottom view which looked at the n-type photovoltaic cell concerning Embodiment 1 of this invention from the back surface side facing a light-receiving surface side Schematic sectional view showing an n-type solar cell according to the first embodiment of the present invention.
  • the schematic top view which looked at the p-type photovoltaic cell concerning Embodiment 1 of this invention from the light-receiving surface side The schematic bottom view which looked at the p-type photovoltaic cell concerning Embodiment 1 of this invention from the back surface side Schematic sectional view showing a p-type solar cell according to the first embodiment of the present invention.
  • Schematic sectional view showing another configuration example of the p-type solar cell according to the first embodiment of the present invention Schematic bottom view showing an example of an electrode-integrated back sheet in which the metal film and the back sheet according to the first embodiment of the present invention are integrated. Schematic sectional view showing an example of an electrode-integrated backsheet in which the metal film and the backsheet according to the first embodiment of the present invention are integrated.
  • the schematic top view which shows the state by which the n-type photovoltaic cell concerning Embodiment 1 of this invention and the p-type photovoltaic cell were connected by the metal wire wire.
  • the schematic cross section which shows the state by which the n-type photovoltaic cell concerning Embodiment 1 of this invention and the p-type photovoltaic cell were connected by the metal wire wire.
  • the schematic top view which shows the laminated body before the lamination concerning Embodiment 1 of this invention Schematic sectional view showing the laminate before lamination according to the first embodiment of the present invention.
  • the schematic bottom view which looked at the solar cell array produced by arrange
  • FIG. 1 is a schematic top view of an array wiring of a solar cell array of a solar cell module 1 according to a first embodiment of the present invention as viewed from the light receiving surface side.
  • FIG. 2 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back surface side facing the light receiving surface side.
  • FIG. 3 is a schematic cross-sectional view showing the solar cell module 1 according to the first embodiment of the present invention, which is a cross-sectional view taken along the line III-III in FIG.
  • two orthogonal directions indicated by arrows X and Y are referred to as a column direction and a row direction, respectively.
  • the figure seen from the light-receiving surface side is a top view
  • the figure seen from the opposite side is a bottom view.
  • the solar cell module 1 is configured by n-type solar cells 10n and p-type solar cells 10p, which are two types of solar cells 10 arranged in a matrix in the column direction and the row direction.
  • a solar cell array The n-type solar cell 10n is a first crystalline solar cell in which an n-type crystalline silicon substrate is used, a light receiving surface is a positive electrode, and a back surface opposite to the light receiving surface is a negative electrode.
  • the p-type solar cell 10p is a second crystalline solar cell in which a p-type crystalline silicon substrate is used, the light receiving surface is a negative electrode, and the back surface is a positive electrode.
  • the solar battery cell 10n and the p-type solar battery cell 10p may be simply referred to as the solar battery cell 10.
  • n-type solar cells 10n and p-type solar cells 10p are alternately arranged.
  • a plurality of n-type solar cells 10n and p-type solar cells 10p arranged in each row are adjacent to each other by a plurality of metal wire lines 11 that are light-receiving surface side connection wires and a metal film 12 that is a back surface side connection wire.
  • the cells 10 are electrically connected in series.
  • the solar cells 10 at the end of each row are electrically connected in series with the solar cells 10 at the end of adjacent rows and the horizontal tab wires 13. Thereby, all the photovoltaic cells 10 in the solar cell module 1 are electrically connected in series. Moreover, the cable which is not shown in figure which connects to a terminal box is connected to the metal film 12 of the photovoltaic cell 10 located in the both ends of series connection.
  • the positive electrode on the light-receiving surface side of the n-type solar cell 10n is disposed on the light-receiving surface side of the n-type solar cell 10n and the p-type solar cell 10p adjacent in each row.
  • a plurality of metal wire wires 11 are provided to electrically connect the negative electrode on the light receiving surface side of the p-type solar battery cell 10p in series.
  • the electrodes of the solar battery cell 10 are omitted. The detail of the electrode of the photovoltaic cell 10 is mentioned later.
  • the metal wire lines 11 extend parallel to each other along the column direction.
  • a set of solar battery cells 10 is configured by adjacent n-type solar battery cells 10n and p-type solar battery cells 10p connected to each other by metal wire wires 11. That is, the metal wire 11 is joined to the positive electrode provided on the light receiving surface of the n-type solar cell 10n and the negative electrode on the light receiving surface side of the p-type solar cell 10p in the same set.
  • the plurality of n-type solar cells 10n and the p-type solar cells 10p in each row are electrically connected in series by a multi-wire method using the plurality of metal wire wires 11.
  • the negative electrode on the back side of the n-type solar cell 10n A metal film 12 that electrically connects the positive electrode on the back surface side of the p-type solar battery cell 10p in series is provided.
  • the metal films 12 extend in parallel to each other along the row direction.
  • the metal film 12 electrically connects the electrode on the back surface side of one solar cell 10 and the electrode on the back surface side of the other solar cell 10 in a set of solar cells 10 adjacent to each other in different sets. Connecting. That is, the metal wire 11 is joined to the positive electrode provided on the light receiving surface of the n-type solar cell 10n and the negative electrode on the light receiving surface side of the p-type solar cell 10p in the same set.
  • the plurality of solar cells 10 are sealed with a sealing material 22 made of a light-transmitting resin, and a glass substrate 21 that is a light-transmitting light-receiving surface side protection member is provided on the light-receiving surface side of the sealing material 22.
  • a back sheet 23 which is a back surface side protection member, is provided on the back surface side of the sealing material 22.
  • a thermosetting resin having translucency such as an ethylene vinyl acetate copolymer (Ethylene-Vinyl Acetate: EVA) can be used.
  • a light-transmitting material such as transparent glass or transparent film can be used for the light-receiving surface side protection member.
  • a single layer resin sheet or a laminated resin sheet in which a plurality of resin sheets are laminated can be used.
  • a back sheet made of polyethylene terephthalate (PET) is used.
  • FIG. 4 is a schematic top view of the n-type solar battery cell 10n according to the first embodiment of the present invention as viewed from the light-receiving surface side.
  • FIG. 5 is a schematic bottom view of the n-type solar cell 10n according to the first embodiment of the present invention as viewed from the back surface side facing the light receiving surface side.
  • FIG. 6 is a schematic cross-sectional view showing the n-type solar cell 10n according to the first embodiment of the present invention, and is a cross-sectional view taken along the line VI-VI in FIG.
  • the n-type solar battery cell 10n has a structure of a general solar battery cell that is mass-produced as an n-type solar battery cell, and has a maximum photoelectric conversion efficiency of about 20%.
  • the n-type solar battery cell 10n is a crystalline solar battery cell using a crystalline semiconductor substrate.
  • p-type impurity diffusion layer 32 which is an impurity diffusion layer, is formed by boron diffusion on the light-receiving surface side of n-type silicon layer 31 made of an n-type silicon substrate, which is an n-type semiconductor substrate.
  • the n-type silicon substrate may be a single crystal silicon substrate or a polycrystalline silicon substrate.
  • a depletion layer 33 is formed in the vicinity of the junction surface between the n-type silicon layer 31 and the p-type impurity diffusion layer 32.
  • minute unevenness (not shown) is formed as a texture structure. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
  • an antireflection film may be provided on the surface of the n-type silicon layer 31 on the light receiving surface side.
  • the plurality of grid electrodes 34 are provided in electrical connection with the p-type impurity diffusion layer 32 on the bottom surface. That is, the plurality of grid electrodes 34 constitute a light receiving surface electrode that functions as a positive electrode.
  • a back surface aluminum electrode 35 made of an electrode material containing aluminum and glass is provided on the back surface side of the n-type solar cell 10n, that is, the back surface side of the n-type silicon layer 31, covering the entire back surface. That is, the back surface aluminum electrode 35 constitutes a back surface electrode that functions as a negative electrode.
  • the plurality of metal wire lines 11 are arranged on the grid electrode 34 in a state where the longitudinal direction of the metal wire line 11 and the longitudinal direction of the grid electrode 34 of the n-type solar battery cell 10n are orthogonal to each other.
  • the arrangement position of the metal wire 11 on the light receiving surface side of the n-type solar cell 10n is indicated by a dotted line.
  • the metal film 12 is arrange
  • the arrangement position of the metal film 12 on the back surface side of the n-type solar battery cell 10n is indicated by a dotted line.
  • FIG. 7 is a schematic top view of the p-type solar battery cell 10p according to the first embodiment of the present invention as viewed from the light-receiving surface side.
  • FIG. 8 is a schematic bottom view of the p-type solar battery cell 10p according to the first embodiment of the present invention viewed from the back side.
  • FIG. 9 is a schematic cross-sectional view showing the p-type solar cell 10p according to the first embodiment of the present invention, and is a cross-sectional view taken along the line IX-IX in FIG.
  • the p-type solar battery cell 10p is a crystalline solar battery cell using a crystalline semiconductor substrate.
  • n-type impurity diffusion layer 42 which is an impurity diffusion layer, is formed by phosphorous diffusion on the light-receiving surface side of p-type silicon layer 41 made of a p-type silicon substrate that is a p-type semiconductor substrate. ing.
  • a depletion layer 43 is formed near the junction surface between the p-type silicon layer 41 and the n-type impurity diffusion layer 42. Further, on the surface of the p-type silicon layer 41 on the light-receiving surface side, fine unevenness (not shown) is formed as a texture structure.
  • the micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
  • An antireflection film may be provided on the light receiving surface side of the p-type silicon layer 41.
  • a plurality of grid electrodes 44 made of an electrode material containing silver and glass and having an elongated shape are provided on the bottom surface. Are electrically connected to the n-type impurity diffusion layer 42. That is, the plurality of grid electrodes 44 constitute a light receiving surface electrode that functions as a negative electrode.
  • a back surface passivation film 46 made of a silicon nitride film is provided on the entire back surface of the p-type silicon layer 41.
  • a silicon oxide film may be used for the back surface passivation film 46.
  • the back surface passivation film 46 is provided with a dot-like contact hole 46 a that reaches the back surface of the p-type silicon layer 41.
  • a back surface aluminum electrode 45 made of an electrode material containing aluminum and glass is provided to fill the contact hole 46a and cover the entire surface of the back surface passivation film 46. That is, the back surface aluminum electrode 45 constitutes a back surface electrode that works as a positive electrode.
  • the plurality of metal wire lines 11 are arranged on the grid electrode 44 in a state where the longitudinal direction of the metal wire line 11 and the longitudinal direction of the grid electrode 44 of the p-type solar battery cell 10p are orthogonal to each other.
  • FIG. 7 the arrangement
  • the metal film 12 is arrange
  • FIG. 8 the arrangement
  • an alloy layer 47 of aluminum and silicon is formed between the p-type silicon layer 41 and the back surface aluminum electrode 45. Further, in a region adjacent to the alloy layer 47 on the back surface side of the p-type silicon layer 41, aluminum is diffused from the back surface aluminum electrode 45 to the back surface side of the p-type silicon layer 41, so that the p-type impurity is higher than the p-type silicon layer 41.
  • a back surface field (BSF) layer 48 that is a p + region having a high concentration is formed. The back surface aluminum electrode 45 is electrically connected to the p-type silicon layer 41 through the alloy layer 47 and the BSF layer 48.
  • the p-type solar cell 10p shown in FIGS. 7 to 9 is a back-passive type cell (Passivated Emitter and Rear Cell: PERC) formed in the same size as the n-type solar cell 10n.
  • PERC Passivated Emitter and Rear Cell
  • the recombination occurring at the interface between the p-type silicon layer on the back surface of the solar cell and the aluminum electrode is reduced by using a passivation film provided on the back surface of the solar cell, thereby improving the photoelectric conversion efficiency.
  • It is a solar cell that can be used.
  • the photoelectric conversion efficiency of a general p-type single crystal solar cell that does not have a passivation film on the back surface is about 16%.
  • the PERC cell it is possible to improve the photoelectric conversion efficiency up to about 20%.
  • the n-type solar cell generates a larger current than the p-type solar cell. For this reason, when n-type solar cells 10n and p-type solar cells 10p are alternately connected in series, the amount of current generated by n-type solar cells 10n and the current generated by p-type solar cells 10p The amount of current is different from the amount. A loss occurs in the photoelectric conversion efficiency of the solar cell module due to the difference in current amount, that is, the output difference. Further, when there is a difference between the amount of current generated by the n-type solar cell 10n and the amount of current generated by the p-type solar cell 10p, even if a bypass diode is provided, the amount of current generated is small. Type solar cells tend to be hot spots.
  • the p-type photovoltaic cell 10p uses the p-type photovoltaic cell of the type which can implement
  • the n-type solar cell 10n is an n-type solar cell having a maximum photoelectric conversion efficiency of about 20%.
  • the p-type solar battery cell 10p which is a PERC cell also has a photoelectric conversion efficiency of about 20%.
  • the difference in the amount of current during power generation between the n-type solar cell 10n and the p-type solar cell 10p is within ⁇ 5%.
  • FIG. 10 is a schematic cross-sectional view showing another configuration example of the p-type solar battery cell 10p according to the first embodiment of the present invention.
  • a p-type solar cell of a type capable of realizing high photoelectric conversion efficiency in order to bring the power generation characteristic of the p-type solar battery cell 10p close to the power generation characteristic of the n-type solar battery cell 10n in addition to the above-described PERC cell, Q. manufactured by Q Cell Corporation shown in FIG.
  • Q. manufactured by Q Cell Corporation shown in FIG.
  • the ANTUM cell registered trademark
  • a solar battery cell that reflects light passing through the silicon substrate and reuses it for power generation can be used.
  • a plurality of n-type impurity diffusion layers 52, depletion layers 53, and light-receiving surface electrodes are provided on the light-receiving surface side of a p-type silicon layer 51 made of a p-type silicon substrate which is a p-type semiconductor substrate.
  • Grid electrode 54 is provided on the back side of the p-type silicon layer 51.
  • a metal layer is provided as a reflective coating layer 56 between the p-type silicon layer 51 and the back surface aluminum electrode 55.
  • the photoelectric conversion efficiency can be improved by reflecting the light passing through the p-type silicon layer 51 to the back side by the reflective coating layer 56 and reusing it for power generation.
  • this technique has a great effect when applied to a thin solar cell that easily transmits light.
  • the effect of improving photoelectric conversion efficiency is great.
  • the reflective coating layer 56 can be formed, for example, by forming a metal film on the back side of the p-type silicon layer 51.
  • the solar cell having the same structure as the p-type solar cell and the n-type solar cell.
  • the cell size of the p-type solar cell may be larger than the cell size of the n-type solar cell. That is, the current value of each solar cell is controlled by the difference in cell size between the p-type solar cell and the n-type solar cell having the same power generation characteristic, and the power generation characteristic of the p-type solar cell is changed to the n-type solar cell. It is also possible to approximate the power generation characteristics of the battery cell.
  • the metal wire 11 is a metal wiring made of a metal wire.
  • the cross-sectional shape of the metal wire 11 is preferably circular. Since the cross-sectional shape of the metal wire line 11 is circular, sunlight hitting the metal wire line 11 becomes reflected light that is reflected in various directions, and the reflected light is incident on the solar battery cell 10 and has a photoelectric conversion efficiency. Contributes to improvement.
  • the cross-sectional shape of the metal wire line 11 is an ellipse
  • the plurality of metal wire lines 11 are arranged so that the arrangement direction of the plurality of metal wire lines 11 is along the long axis direction of the ellipse
  • the area shaded by the metal wire 11 on the light receiving surface 10 increases. Thereby, the sunlight which injects into the photovoltaic cell 10 decreases, and the photoelectric conversion efficiency of the photovoltaic cell 10 falls.
  • the plurality of metal wire wires 11 are arranged so that the arrangement direction of the plurality of metal wires 11 is along the minor axis direction of the ellipse, the contact area between the metal wire wire 11 and the grid electrode is reduced.
  • the cross-sectional shape of the metal wire wire 11 is circular, the balance between the photoelectric conversion efficiency of the solar battery cell 10 and the connection reliability between the metal wire wire 11 and the grid electrode is appropriately maintained. Furthermore, it is not necessary to align the cross section in the circumferential direction when connecting to the grid electrode.
  • the diameter of the metal wire 11 is preferably in the range of 0.2 mm to 1.0 mm. That is, the diameter of the metal wire 11 used in the multi-wire system has an appropriate range.
  • the diameter of the metal wire 11 is thinner than 0.2 mm, the contact area with the grid electrodes 34 and 44 is reduced. Thereby, since the joining area of the metal wire line 11 and the grid electrodes 34 and 44 is reduced, the metal wire line 11 is easily detached from the grid electrodes 34 and 44. Connection reliability is poor.
  • the diameter of the metal wire line 11 is thicker than 1.0 mm, the area
  • the number of metal wire wires 11 is preferably in the range of 6 to 16 in the case of a 156 mm square solar battery cell 10 having, for example, round chamfered shapes at four corners.
  • the number of metal wire wires 11 is seven.
  • the number of the metal wire lines 11 is less than 6, it is easily influenced by the resistance component of the grid electrodes 34 and 44, and the photoelectric conversion efficiency is lowered.
  • the number of the metal wire lines 11 is greater than 17, the resistance components of the grid electrodes 34 and 44 decrease, but the area shaded by the metal wire lines 11 on the light receiving surface of the solar battery cell 10 increases. Thereby, the sunlight which injects into the photovoltaic cell 10 decreases, and the photoelectric conversion efficiency of the photovoltaic cell 10 falls.
  • a metal wire 11 for example, a copper wire having high conductivity is used.
  • a connection method between the metal wire line 11 and the grid electrodes 34 and 44 a bonding method in which a bonding object is interposed between the metal wire line 11 and the grid electrodes 34 and 44 can be used.
  • a solder, a conductive adhesive, a metal paste, an anisotropic conductive film is provided between the metal wire wire 11 and the grid electrodes 34, 44.
  • ACF isotropic Conductive Film
  • solder, conductive adhesive, metal paste, ACF or conductive double-sided tape the connection between the metal wire 11 and the grid electrodes 34 and 44 can be strengthened.
  • the metal wire line 11 is brought into contact with the grid electrodes 34 and 44 from above the metal wire line 11 and the grid electrodes 34 and 44.
  • a method of pressing with a tape, a sheet, or a gel can be used.
  • the metal wire wire 11 and the grid electrodes 34 and 44 are pressed from above the tape, a sheet, or a gel, the tape, the sheet, or the gel is transparent and excellent in light transmittance.
  • pressure welding using a sealing material can be used.
  • the metal wire wire 11 that has been pre-coated with solder is heated while pressing the metal wire wire 11 against the grid electrodes 34 and 44, so that the solder is melted and the metal wire wire 11 is grid-off. Bonded to the electrodes 34 and 44.
  • the metal film 12 is made of a foil, a film, or a film, and is a metal wiring that is wider than the metal wire line 11.
  • the metal foil, the metal film, or the metal film is collectively referred to as a metal film. Since the metal film 12 has a flat film shape and makes a surface connection with the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10, the connection resistance with the back surface aluminum electrodes 35 and 45 can be reduced. In addition, the stress applied to the solar battery cell 10 can be reduced.
  • copper having high conductivity is used as the material of the metal film 12.
  • a copper foil that is a metal foil is used as the metal film 12.
  • the quantity of the metal film 12 which connects the photovoltaic cells 10 is not specifically limited, One or more sheets may be sufficient and two or more sheets may be sufficient.
  • a plurality of ribbon-shaped metal films 12 may be used.
  • a single copper foil is used as the metal film 12.
  • the metal film 12 preferably has a shape that maintains low electrical resistance bonding and does not apply stress to the solar battery cell 10. That is, in the case of a solar battery module structure using an opaque back sheet, the back surface of the solar battery cell 10 does not need to transmit sunlight, so that the connection between adjacent solar battery cells 10 is a multi-wire system. There is no need to use it. And the stress concerning the photovoltaic cell 10 can be reduced by using foil-shaped, film-shaped, or film-shaped connection wiring, and the malfunction by a cell crack can be reduced.
  • the thickness of the metal film 12 is preferably 0.02 mm or more and 0.3 mm or less.
  • the thickness of the metal film 12 is less than 0.02 mm, the electric resistance of the metal film 12 is increased, and the handling of the metal film 12 becomes difficult.
  • the thickness of the metal film 12 is thicker than 0.3 mm, it is caused by a step formed by the surface of the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10 and the metal film 12 at the time of lamination. Stress is applied to the solar cells 10, and cell cracks are likely to occur in the solar cells 10. Further, considering the conductivity of the metal film 12, a thickness of the metal film 12 of 0.3 mm or less is sufficient.
  • a metal foil or a metal ribbon as a single metal film 12 provided separately from the back sheet is used as the back surface aluminum electrode 35 on the back surface of the solar cell 10.
  • 45 can be bonded to the surface.
  • a bonding method in which a bonding material is interposed between the metal film 12 and the back surface aluminum electrodes 35 and 45 can be used.
  • solder, conductive adhesive, metal paste, ACF or conductive double-sided tape can be used as a joint to be inserted between the metal film 12 and the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10.
  • an electrode-integrated back sheet in which the metal film 12 and the back sheet are integrated is placed on the surfaces of the back surface aluminum electrodes 35 and 45, and a solar cell module is laminated to form a metal film.
  • 12 is a method of connecting the solar cells 10 to each other.
  • a method of integrating the metal film 12 and the back sheet a method of performing metal plating on one side of the back sheet, a method of thermocompression bonding a metal foil to the back sheet, and a back sheet of the metal film 12 using an adhesive It is possible to apply a method such as pasting to. In any method, after the metal foil is integrated with the back sheet, the metal foil must be patterned by etching.
  • FIG. 11 is a schematic bottom view showing an example of an electrode-integrated back sheet in which the metal film 12 and the back sheet 23 according to the first embodiment of the present invention are integrated.
  • 12 is a schematic cross-sectional view showing an example of an electrode-integrated back sheet in which the metal film 12 and the back sheet 23 according to the first embodiment of the present invention are integrated, and is a cross-sectional view taken along the line IIX-IIX in FIG. FIG.
  • the electrode-integrated back sheet 24 shown in FIG. 11 and FIG. 12 has an adhesive layer 61 formed on one side of a pre-formed back sheet 23, and the metal film 12 is fixed to one side of the back sheet 23 via the adhesive layer 61. It is formed by. By fixing the metal film 12 to the back sheet 23 in advance, the metal film 12 and the back surface aluminum electrode 45 can be easily joined.
  • the thickness of the adhesive layer 61 is preferably 15 ⁇ m or more and 50 ⁇ m or less. When the thickness of the adhesive layer 61 is less than 15 ⁇ m, it is difficult to handle the material constituting the adhesive layer 61.
  • the thickness of the adhesive layer 61 is greater than 50 ⁇ m, it becomes difficult for the adhesive layer 61 to be deformed along the metal film 12, the displacement due to thermal expansion becomes large, the back surface of the solar cell module becomes soft, and the cell due to external force Problems such as easy cracking occur.
  • a method similar to the joining of the metal wire wire 11 and the grid electrodes 34 and 44 may be used. it can.
  • the plane between the back surface aluminum electrodes 35 and 45 and the metal film 12 is used.
  • the surface of the back surface aluminum electrodes 35 and 45 and the surface of the metal film 12 are connected.
  • the stress applied to the solar cell 10 is widely dispersed, and the solar cell The effect that the cell crack of the cell 10 hardly occurs is obtained.
  • the bonding between the metal film 12 and the back surface aluminum electrodes 35 and 45 is preferably a number of point connections.
  • solder paste is printed on the back surface aluminum electrodes 35 and 45 in a grid pattern at intervals of 10 mm, and the metal film 12 is connected to the back surface aluminum electrodes 35 and 45 through the solder paste.
  • ACF or conductive adhesive In the case of using ACF or conductive adhesive, it is costly to apply ACF or conductive adhesive to the entire surface of the metal film 12, and the solar film is caused by the difference in thermal expansion between the metal film 12 and the back surface aluminum electrodes 35 and 45. Cell cracks may occur in the battery cell 10. For this reason, even when ACF or conductive adhesive is used, the ACF or conductive adhesive is not disposed on the entire surface of the metal film 12, and the ACF or conductive adhesive is applied with a gap in the plane of the metal film 12. It is preferable that the metal film 12 and the back surface aluminum electrodes 35 and 45 are joined partially.
  • the metal film 12 needs to select the material which does not cause the conductive defect by oxidation, such as nickel (Ni) plating copper foil, tin (Sn) plating copper foil, and silver (Ag) plating copper foil.
  • n-type solar cells 10n and p-type solar cells 10p are alternately arranged as the solar cells 10 arranged in the same row. This eliminates the need to pass the metal wire line 11 from the light receiving surface side to the back surface side between the adjacent n-type solar cell 10n and the p-type solar cell 10p, and the metal wire line 11 is not bent.
  • the grid electrode 34 of the n-type solar cell 10n and the grid electrode 44 of the p-type solar cell 10p are connected in a straight line state.
  • n-type solar cells 10n and p-type solar cells 10p which are PERC cells, are formed by a known method.
  • FIG. 13 is a schematic top view showing a state in which the n-type solar battery cell 10n and the p-type solar battery cell 10p according to the first embodiment of the present invention are connected by the metal wire wire 11.
  • FIG. 14 is a schematic cross-sectional view showing a state where the n-type solar battery cell 10n and the p-type solar battery cell 10p according to the first embodiment of the present invention are connected by the metal wire wire 11, and is shown in FIG. It is sectional drawing in a XIV line.
  • the n-type solar battery cell 10n and the p-type solar battery cell 10p are arranged adjacent to each other with the light-receiving surface side facing upward as shown in FIGS.
  • the n-type solar battery cell 10n and the p-type solar battery cell 10p have a longitudinal direction of the grid electrode 34 of the n-type solar battery cell 10n and a longitudinal direction of the grid electrode 44 of the p-type solar battery cell 10p. They are arranged in the same direction and orthogonal to the arrangement direction of the n-type solar cells 10n and the p-type solar cells 10p. Thereby, the group of the photovoltaic cell 10 is formed. Similarly, 25 sets of solar battery cells 10 are formed.
  • the metal wire wire 11 which is the solder plating copper wire by which the surface of the copper wire with a diameter of 0.2 mm is plated is the grid electrode 34 of the n-type solar cell 10n and the grid electrode of the p-type solar cell 10p. It is arranged on the grid electrode 34 and on the grid electrode 44 in a state orthogonal to 44. And the metal wire line 11 is made into the grid electrode 34 and a grid electrode by heat-melting the solder of the surface of the metal wire line 11 pressing down the metal wire line 11 from the top so that a position shift of the metal wire line 11 may not be caused.
  • the n-type solar cell 10n and the p-type solar cell 10p are connected by the metal wire 11 as shown in FIGS.
  • a pressure-sensitive adhesive dissolved in a solvent is applied to the surface on the side of the sealing material 22 in the back sheet for a solar cell made of PET, and the pressure-sensitive adhesive layer 61 having a thickness of about 35 ⁇ m is formed by drying the solvent.
  • the metal film 12 made of nickel (Ni) plated rolled copper foil is disposed on the adhesive layer 61, and the metal film 12 is bonded to the back sheet 23 by the adhesive layer 61.
  • an electrode-integrated back sheet 24 in which the metal film 12 and the back sheet 23 are integrated is formed.
  • FIG. 15 is a schematic top view showing the laminate 25 before lamination according to the first embodiment of the present invention.
  • 16 is a schematic cross-sectional view showing the laminate 25 before lamination according to the first embodiment of the present invention, and is a cross-sectional view taken along the line XVI-XVI in FIG.
  • FIG. 15 shows a state in which the back sheet 23 and the adhesive layer 61 are seen through the electrode integrated back sheet 24.
  • a solar cell sealing material sheet 22a made of an EVA sheet is placed on a glass substrate 21 made of white glass, which is a light-receiving surface side protection member.
  • 25 sets of solar battery cells 10 are arranged on the sheet of the sealing material 22 in an array with the metal wire 11 side facing the glass substrate 21 side.
  • the horizontal tab wire 13 and the terminal box cable for connecting to the terminal box are arranged on the sheet of the sealing material 22.
  • An electrode-integrated back sheet 24 is placed on the metal film 12 in accordance with the back surface aluminum electrode 35 of the n-type solar cell 10n and the back surface aluminum electrode 45 of the p-type solar cell 10p, and the laminate shown in FIGS. The previous laminate 25 is formed. Then, the laminated body 25 before lamination is thermocompression-bonded by pressurizing and heating, for example, at 150 ° C. for 30 minutes with a vacuum thermal laminator, so that the solar cell module 1 having the structure shown in FIGS. 1 to 3 is obtained. Thereafter, a terminal box (not shown) connected to the terminal box cable is disposed on the electrode-integrated back sheet 24.
  • the n-type solar cell 10n and the p-type solar cell are arranged by alternately arranging the n-type solar cell 10n and the p-type solar cell 10p.
  • the metal wire line 11 and the metal film 12, which are wirings for electrically connecting the battery cells 10p in series, can all be used in a straight state without bending. Thereby, the stress concerning the photovoltaic cell 10 resulting from the bending of the wiring which connects the adjacent photovoltaic cell 10 can be reduced, and the cell crack of the photovoltaic cell 10 can be prevented.
  • the solar cell module 1 concerning this Embodiment 1, in the photovoltaic cell 10, by using a multi-wire system for the connection of the n-type photovoltaic cell 10n and the p-type photovoltaic cell 10p in the light-receiving surface side. Since the effective current travel distance from the power generation position to the metal wire 11 is shortened, the electrical resistance is reduced and the photoelectric conversion efficiency of the solar cell module 1 can be improved.
  • the surface connection by the metal film 12 which has a flat film shape for the connection of the n-type solar cell 10n and the p-type solar cell 10p in the light-receiving surface side. Therefore, the connection resistance between the metal film 12 and the back surface aluminum electrodes 35 and 45 can be lowered, and the stress applied to the solar battery cell 10 can be reduced.
  • the solar cell module 1 concerning this Embodiment 1, while preventing the cell crack of the photovoltaic cell 10 resulting from the connection of adjacent photovoltaic cells 10, the photoelectric conversion efficiency of the photovoltaic cell 10 is improved.
  • a solar cell module that can be improved and can improve photoelectric conversion efficiency and reliability can be obtained.
  • Example 1 A solar cell module was produced according to the method for manufacturing a solar cell module according to the first embodiment described above, and the solar cell module of Example 1 was obtained.
  • the n-type solar cell 10n and the p-type solar cell 10p solar cells having a size of 156 mm square and a thickness of 175 ⁇ m were used.
  • the difference in the amount of current during power generation between the n-type solar cell 10n and the p-type solar cell 10p is set to be within ⁇ 5%.
  • the metal wire 11 seven solder plated copper wires having a diameter of 0.2 mm were used.
  • dissolved with the solvent is apply
  • an adhesive layer 61 having a thickness of about 50 ⁇ m was formed.
  • the electrode-integrated back sheet 24 was formed by placing a Ni-plated rolled copper foil having a thickness of 0.06 mm on the adhesive layer 61.
  • the glass substrate white plate glass having an outer diameter of 1600 mm ⁇ 800 mm and a thickness of 3.2 mm was used.
  • the sealing material sheet 22a a sealing material sheet for solar cells made of EVA having a thickness of 0.6 mm was used.
  • Example 2 Except for using “six solder-plated copper wires having a diameter of 1.0 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wires 11, the same as in Example 1. Thus, a solar cell module was produced and used as the solar cell module of Example 2.
  • Example 3 In Example 3, a solar cell module was produced in the same manner as in Example 1 except for the following steps, and a solar cell module of Example 3 was obtained.
  • FIG. 17 is a schematic view of a solar cell array 62 produced by disposing the ribbon-like metal film 12 on the back surfaces of the n-type solar cell 10n and the p-type solar cell 10p in Example 3 as viewed from the back surface side. There is a bottom view.
  • FIG. 18 is a schematic cross-sectional view of a solar cell array 62 produced by disposing the ribbon-like metal film 12 on the back surfaces of the n-type solar cell 10n and the p-type solar cell 10p in Example 3.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
  • Example 3 a set of 25 solar cells 10 connected as shown in FIG. 13 and FIG. 14 was arranged in 10 columns ⁇ 5 rows with the back side facing upward, and the horizontal tab wires 13 and terminal box cables were arranged. .
  • a tin (Sn) plated copper foil having a width of 10 mm and a thickness of 50 ⁇ m is used as the metal film 12 on the back surface aluminum electrode 35 of the n-type solar cell 10 n and the p-type solar cell.
  • the battery cells 10p were placed in two rows on the back surface aluminum electrode 45.
  • An ACF 63 is disposed on one surface of the tin (Sn) plated copper foil on the solar battery cell 10 side.
  • FIG. 19 is a schematic top view showing the laminate 64 before lamination in Example 3.
  • 20 is a schematic cross-sectional view showing the laminate 64 before lamination in Example 3, and is a cross-sectional view taken along the line XX-XX in FIG.
  • FIG. 21 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module of Example 3 as viewed from the back surface side.
  • 22 is a schematic cross-sectional view showing the solar cell module of Example 3, and is a cross-sectional view taken along line XXII-XXII in FIG.
  • the encapsulant sheet 22a, the solar cell array 62, the encapsulant sheet 22a, and the back sheet 23 are laminated in this order to form a laminate 64 before lamination shown in FIGS. did. Then, the laminated body 64 before lamination was thermocompression-bonded by pressurizing and heating with a vacuum thermal laminator to obtain a solar cell module of Example 3 having the structure shown in FIGS. 21 and 22.
  • FIG. 23 is a schematic top view showing the laminate 66 before lamination in the fourth embodiment.
  • 24 is a schematic cross-sectional view showing the laminated body 66 before lamination in Example 4, and is a cross-sectional view taken along line XXIV-XXIV in FIG.
  • FIG. 25 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module of Example 4 as viewed from the back side.
  • 26 is a schematic cross-sectional view showing the solar cell module of Example 4, and is a cross-sectional view taken along line XXVI-XXVI in FIG.
  • Example 4 first, in the same manner as in Example 1, n-type solar cells 10n and p-type solar cells 10p were connected by metal wire 11 to form 25 sets of solar cells 10.
  • a solar cell sealing material sheet 22a made of a thermally crosslinkable polyolefin having a thickness of 0.8 mm and a heat softening temperature of about 60 ° C. was placed on a glass substrate 21 made of white plate glass.
  • 25 sets of solar battery cells 10 were arranged on the sheet of the sealing material 22 in an array with the metal wire 11 side facing the glass substrate 21 side. Further, the horizontal tab wire 13 and the terminal box cable for connecting to the terminal box were arranged on the sheet of the sealing material 22.
  • a metal film 12 made of electrolytic copper foil having a thickness of 70 ⁇ m and plated with nickel (Ni) is applied to the back surface aluminum electrode 35 of the n-type solar cell 10n and the back surface aluminum electrode 45 of the p-type solar cell 10p. It put together and joined with the horizontal tab wire
  • a laminated backsheet 65 having a two-layer structure was placed to form a laminate 66 before lamination as shown in FIGS.
  • the laminated backsheet 65 includes an inner backsheet layer 65a made of thermoplastic polyolefin and disposed on the inner side of the solar cell module 1, and an outer backsheet layer made of polyethylene terephthalate and disposed on the outer surface side of the solar cell module 1.
  • a laminated back sheet 65 laminated with 65b was used.
  • the laminated body 66 before lamination is subjected to thermocompression bonding by pressurizing and heating, for example, at 150 ° C. for 30 minutes with a vacuum thermal laminator, whereby the solar cell module having the structure shown in FIGS. 25 and 26 is obtained.
  • a terminal box (not shown) connected to the terminal box cable was disposed on the laminated back sheet 65.
  • the sealing material sheet 22a for a solar cell made of thermally crosslinkable polyolefin having a thermal softening temperature of about 60 ° C. is melted. Then, the solar battery cell 10 is covered.
  • the polyolefin of the inner backsheet layer 65a softens and exhibits adhesiveness but does not melt and flow. For this reason, the polyolefin of the inner backsheet layer 65 a does not enter between the back surface aluminum electrode 35 of the n-type solar cell 10 n and the back surface aluminum electrode 45 of the p-type solar cell 10 p and the metal film 12. Thereby, since the metal film 12 is reliably pressed against the back surface aluminum electrode 35 and the back surface aluminum electrode 45, good electrical bonding between the back surface aluminum electrode 35 and the back surface aluminum electrode 45 and the metal film 12 can be realized.
  • Comparative Example 1 In the comparative example 1, the p-type solar cells in which the n-type and p-type components of the above-described n-type solar cell 10n are reversed are arranged in 10 columns ⁇ 5 rows and are generally used. A battery module was produced.
  • the p-type solar cell has an outer diameter of 156 mm square and a thickness of 175 ⁇ m, the n-type impurity diffusion layer provided on the light-receiving surface of the p-type silicon substrate is the negative electrode, and the back surface of the p-type silicon substrate is the positive electrode Has been.
  • a plurality of grid electrodes formed by printing and baking silver paste and four bus electrodes extending in a direction perpendicular to the grid electrodes are provided.
  • a back surface aluminum electrode is formed on the entire surface in the same manner as the n-type solar cell 10n, and four bus electrodes are formed thereon.
  • Adjacent p-type solar cells in the same row are soldered with four tab wires to the light receiving surface side bus electrode of one p-type solar cell and the back surface side bus electrode of the other p-type solar cell. So that they are electrically connected in series.
  • the tab wire is a copper wire coated with solder, and is joined to the bus electrode by melting the solder.
  • the tab line is arranged to be largely bent so as to pass from the light receiving surface side to the back surface side between adjacent p-type solar cells.
  • the p-type solar cells at the ends of adjacent rows are electrically connected in series by horizontal tabs that are solder-coated copper wires. Thereby, all the p-type solar cells are electrically connected in series.
  • Comparative Example 2 Only the same p-type solar cells as in Comparative Example 1 were arranged in 10 columns ⁇ 5 rows, and an EVA sealing material having a thickness of 0.4 mm was placed on the p-type solar cells, and the thickness was further 0.2 mm.
  • a solar cell module was produced by the multi-wire method in the same manner as in Example 1 except that the PET back sheet was placed and thermocompression bonded by pressurizing and heating with a vacuum thermal laminator.
  • Comparative Example 3 Similar to Comparative Example 1, except that “six solder plated copper wires with a diameter of 1.0 mm” were used as the metal wire wires 11 instead of “seven solder plated copper wires with a diameter of 0.2 mm”. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 3.
  • Comparative Example 4 Except for using “seven solder-plated copper wires having a diameter of 0.15 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wires 11, the same manner as in Example 1 was used. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 4.
  • Comparative Example 5 Except for using “six solder-plated copper wires having a diameter of 1.5 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wire 11, the same manner as in Example 1 was used. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 5.
  • FIG. 27 is a diagram showing the results of evaluation tests of the solar cell modules of Examples 1 to 4 and Comparative Examples 1 to 5.
  • the solar cell module of Example 1 does not need to pass the metal wire line 11 from the light receiving surface side to the back surface side between adjacent n-type solar cells 10n and p-type solar cells 10p, and uses bus electrodes. Therefore, alignment to the bus electrode is also unnecessary. For this reason, in the solar cell module of Example 1, the connection failure of the metal wire 11, that is, the metal wire 11 is not disconnected. Moreover, the solar cell module of Example 1 was 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, and the photoelectric conversion efficiency was improved by 12.5%.
  • the solar cell module of Example 2 has the same configuration as that of the solar cell module of Example 1 except that the diameter and number of the metal wire wires 11 are different. For this reason, in the solar cell module of Example 2, the connection failure of the metal wire 11 is eliminated. Moreover, the solar cell module of Example 2 becomes 1.1 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 10.0%.
  • the solar cell module of Example 3 employs the same multi-wire method as the solar cell module of Example 1. For this reason, in the solar cell module of Example 3, the connection failure of the metal wire 11 is eliminated. Moreover, the solar cell module of Example 3 becomes 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 12.5%.
  • the solar cell module of Example 4 employs the same multi-wire method as the solar cell module of Example 1. For this reason, the solar cell module of Example 4 has lost the connection defect of the metal wire wire 11. FIG. Moreover, the solar cell module of Example 4 becomes 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 12.5%.
  • the solar cell modules of Examples 1, 2, 3, and 4 have a high initial maximum output, and a decrease in the maximum output after the heat cycle is not recognized.
  • the solar cell modules of Comparative Examples 1, 2, 3, 4, and 5 a significant decrease in the maximum output was observed after the heat cycle.
  • the solar cell module of Comparative Example 1 had a lower initial maximum output than that of the Example adopting the multi-wire method. From this result, it can be seen that the multi-wire method is effective in improving the power generation efficiency. As a result of the analysis, the solar cell module of Comparative Example 1 is considered to have good reliability because cell cracks after the heat cycle were not observed.
  • the solar cell module of the comparative example 4 is based on the analysis result of the maximum output after the heat cycle, due to poor connection between the metal wire wire 11 and the grid electrode, that is, the metal wire wire 11 is disconnected from the grid electrode. It turned out that the output has fallen. The reason why the cell crack of the solar cell module of Comparative Example 4 was not recognized is considered to be due to stress relaxation accompanying connection failure.
  • the cell crack of the solar cell module remained at 50 locations, but the initial maximum output was low.
  • the solar cell module of Comparative Example 5 adopts the multi-wire method similarly to the solar cell module of Example 1, but because the metal wire is too thick, the sunlight incident on the solar cell is not enough.
  • the decrease in the photoelectric conversion efficiency of the solar cells is considered to be the main factor for the low initial maximum output.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 solar cell module 10 solar cell, 10n n-type solar cell, 10p p-type solar cell, 11 metal wire wire, 12 metal film, 13 horizontal tab wire, 21 glass substrate, 22 sealing material, 22a sealing Material sheet, 23 back sheet, 24 electrode integrated back sheet, 25, 64, 66 laminate, 31 n-type silicon layer, 32 p-type impurity diffusion layer, 33, 43, 53 depletion layer, 34, 44, 54 grid electrode , 35, 45, 55 Back surface aluminum electrode, 41 p-type silicon layer, 42 n-type impurity diffusion layer, 46 back surface passivation film, 46a contact hole, 47 alloy layer, 48 back surface electric field layer, 51 p-type silicon layer, 52 n-type Impurity diffusion layer, 56 reflective coating layer, 61 adhesive layer, 62 solar cell array Lee, 65 laminated backsheet, 65a inner backsheet layer, 65b outer backsheet layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell module (1), provided with: n-type first crystalline solar cells in which the light-receiving surface side serves as the positive electrode; and p-type second crystalline solar cells in which the light-receiving surface side serves as the negative electrode, the second crystalline solar cells being arranged so as to alternate with the first crystalline secondary cells. The solar cell module (1) is characterized in being provided with: a plurality of light-receiving surface-side connection wires connecting the respective light-receiving surface-side electrodes of adjacent first and second crystalline solar cells and comprising six or more metal wire lines (11) which are made of a metal and which have a circular cross-section having a diameter in the range of 0.2-1.0 mm; and reverse surface-side connection wires comprising metal films (12) connecting the respective reverse surface-side electrodes of adjacent first and second crystalline solar cells, the reverse surface side being opposite the light-receiving surface side.

Description

太陽電池モジュールおよび太陽電池モジュールの製造方法Solar cell module and method for manufacturing solar cell module
 本発明は、複数の太陽電池セルを備えた太陽電池モジュールおよび太陽電池モジュールの製造方法に関するものである。 The present invention relates to a solar cell module including a plurality of solar cells and a method for manufacturing the solar cell module.
 現在、太陽電池モジュールの保証期間が25年程度に長期化している。太陽電池モジュールには、信頼性と高い光電変換効率とが要求されている。太陽電池モジュールの劣化において最も多いものは、太陽電池セル同士の接続部の断線である。断線故障の主な原因は、接続部の不良およびタブ線切れ不具合であることが知られている。タブ線切れ不具合は、タブ線の疲労によるものであり、特に隣り合う太陽電池セルのうち一方の太陽電池セルの表面から他方の太陽電池セルの裏面に回り込んで配設される、曲率の大きい部分で発生しやすい。 Currently, the warranty period for solar cell modules has been extended to about 25 years. The solar cell module is required to have high reliability and high photoelectric conversion efficiency. The most common deterioration in solar cell modules is disconnection of the connection between solar cells. It is known that the main cause of the disconnection failure is a defect in the connection portion and a disconnection failure in the tab line. Tab wire breakage is due to fatigue of the tab wire, and in particular, a large curvature that is disposed from the surface of one solar cell to the back surface of the other solar cell among adjacent solar cells. It is easy to occur in part.
 これに対して、極性の異なる太陽電池セルを交互に配置して、すなわちp型太陽電池セルとn型太陽電池セルとを交互に配列して、一方の太陽電池セルの表面から他方の太陽電池セルの裏面へのタブ線の回り込みを無くすことが可能であることが知られている。特許文献1には、n型シリコン基板が用いられて受光面が正極とされ裏面が負極とされたn型太陽電池セルと、p型シリコン基板が用いられて受光面が負極とされ裏面が正極とされたp型太陽電池セルと、が交互に配置された太陽電池モジュールが開示されている。特許文献1に記載の太陽電池モジュールでは、隣り合う太陽電池セルの受光面側のバスバー電極部同士が、金属製ワイヤーからなる表面側接続タブで接続されている。また、隣り合う太陽電池セルの裏面側のバスバー電極部同士が、ストライプ状の金属箔からなる裏面側接続タブで接続されている。 On the other hand, solar cells with different polarities are alternately arranged, that is, p-type solar cells and n-type solar cells are alternately arranged, and the surface of one solar cell to the other solar cell. It is known that it is possible to eliminate the wrapping of the tab line to the back surface of the cell. In Patent Document 1, an n-type solar cell in which an n-type silicon substrate is used and a light-receiving surface is a positive electrode and a back surface is negative, and a p-type silicon substrate is used and a light-receiving surface is a negative electrode and a back surface is a positive electrode. A solar cell module in which the p-type solar cells are arranged alternately is disclosed. In the solar cell module described in Patent Literature 1, the bus bar electrode portions on the light receiving surface side of adjacent solar cells are connected to each other by a surface-side connection tab made of a metal wire. Moreover, the bus-bar electrode parts of the back surface side of an adjacent photovoltaic cell are connected by the back surface side connection tab which consists of striped metal foil.
 しかしながら、特許文献1に記載の太陽電池モジュールでは、隣り合う太陽電池セルの受光面側のバスバー電極部同士が金属製リボンからなる表面側接続タブで接続され、隣り合う太陽電池セルの裏面側のバスバー電極部同士がストライプ状の金属箔からなる裏面側接続タブで接続されている。すなわち、隣り合う太陽電池セル同士がバス電極および接続タブを介して接続されるため、光電変換効率の大きな向上は見込めない。また、表面側接続タブの本数が裏面側接続タブの本数よりも少ないため、表面側においては表面側接続タブの本数が少ないことにより、電流源から表面側接続タブまでの実効的な電流の移動距離が長くなるので、電気抵抗が多くなり、光電変換効率の大きな向上は見込めない。 However, in the solar cell module described in Patent Document 1, the bus bar electrode portions on the light receiving surface side of the adjacent solar cells are connected to each other by the front surface side connection tab made of a metal ribbon, and the back surface side of the adjacent solar cell is The bus bar electrode portions are connected to each other by a back surface side connection tab made of a striped metal foil. That is, since adjacent photovoltaic cells are connected via the bus electrode and the connection tab, significant improvement in photoelectric conversion efficiency cannot be expected. In addition, since the number of front side connection tabs is smaller than the number of back side connection tabs, effective current transfer from the current source to the front side connection tabs is possible due to the small number of front side connection tabs on the front side. Since the distance becomes longer, the electrical resistance increases and a significant improvement in photoelectric conversion efficiency cannot be expected.
 一方、太陽電池モジュールの高光電変換効率化を図る方法として、太陽電池セル上のグリッド電極に、バスバー電極を介さずに直接多数の金属ワイヤー線を接合するマルチワイヤー方式が注目されている。マルチワイヤー方式では、金属線ワイヤー線の金属線の本数が増えることによって、電流源から金属ワイヤー線までの実効的な電流の移動距離が短くなるので、電気抵抗が少なくなり、太陽電池モジュールの高光電変換効率化を図ることが可能となる。 On the other hand, as a method for achieving high photoelectric conversion efficiency of the solar cell module, a multi-wire method in which a large number of metal wire wires are directly joined to the grid electrode on the solar cell without using the bus bar electrode has attracted attention. In the multi-wire method, since the effective distance of current movement from the current source to the metal wire wire is shortened by increasing the number of metal wires of the metal wire, the electric resistance is reduced and the solar cell module is It becomes possible to increase the photoelectric conversion efficiency.
 マルチワイヤー方式を用いた技術として、特許文献2には、表面に透明導電膜を備える太陽電池セルと、透明導電膜に接して設けられ集電電極となるフィンガー電極と、前記フィンガー電極に直交して配置されインターコネクターとなる複数本の金属線とを有し、フィンガー電極が破線状に形成された太陽電池モジュールが開示されている。 As a technique using a multi-wire system, Patent Document 2 discloses a photovoltaic cell having a transparent conductive film on the surface, a finger electrode provided in contact with the transparent conductive film and serving as a collecting electrode, and orthogonal to the finger electrode. A solar cell module having a plurality of metal wires arranged as interconnectors and having finger electrodes formed in a broken line shape is disclosed.
特開2007-103536号公報JP 2007-103536 A 特開2014-146697号公報JP 2014-146697 A
 しかしながら、発明者等が特許文献2に記載の太陽電池モジュールを作製して評価したところ、ヒートサイクル試験において光電変換効率の低下が認められた。そして、ヒートサイクル試験で光電変換効率の低下する原因は、隣り合う太陽電池セルの受光面の電極と裏面の電極とを接続する金属線の本数の増加に起因した太陽電池セルの割れであることが判明した。すなわち、多数の金属線が、隣り合う太陽電池セルの間で曲げられて太陽電池セルに実装されるため、太陽電池セルにかかる負担が大きくなり太陽電池セルが割れることにより、光電変換効率が低下する。このことから、特許文献2に記載のマルチワイヤー方式を採用した太陽電池モジュールのように、多数の金属線を用いて隣り合う太陽電池セルの受光面の電極と裏面の電極とを接続すると、太陽電池セルに大きな応力が掛かり、太陽電池セルの割れを起こし易く、信頼性が低くなることが判明した。 However, when the inventors made and evaluated the solar cell module described in Patent Document 2, a decrease in photoelectric conversion efficiency was observed in the heat cycle test. The cause of the decrease in photoelectric conversion efficiency in the heat cycle test is a crack in the solar battery cell due to an increase in the number of metal wires connecting the electrode on the light receiving surface and the electrode on the back surface of the adjacent solar battery cell. There was found. That is, since a large number of metal wires are bent between adjacent solar cells and mounted on the solar cells, the burden on the solar cells is increased and the solar cells are cracked, resulting in a decrease in photoelectric conversion efficiency. To do. From this, like the solar cell module adopting the multi-wire system described in Patent Document 2, when the electrodes on the light receiving surface and the back electrode of adjacent solar cells are connected using a large number of metal wires, It has been found that a large stress is applied to the battery cell, the solar cell is easily cracked, and the reliability is lowered.
 本発明は、上記に鑑みてなされたものであって、光電変換効率と信頼性とを向上可能な太陽電池モジュールを得ることを目的とする。 This invention is made | formed in view of the above, Comprising: It aims at obtaining the solar cell module which can improve a photoelectric conversion efficiency and reliability.
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池モジュールは、受光面側が正極となるn型の第1結晶系太陽電池セルと、第1結晶系太陽電池セルと交互に並設されて受光面側が負極となるp型の第2結晶系太陽電池セルと、を備える。また、太陽電池モジュールは、隣り合う第1結晶系太陽電池セルと第2結晶系太陽電池セルとの受光面側の電極同士を接続し、直径が0.2mmから1.0mmの範囲である円形の断面を有する6本以上の金属製の金属ワイヤー線からなる複数の受光面側接続配線と、隣り合う第1結晶系太陽電池セルと第2結晶系太陽電池セルとの受光面側と対向する裏面側の電極同士を接続する金属フィルムからなる裏面側接続配線と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a solar cell module according to the present invention includes an n-type first crystalline solar cell having a light-receiving surface as a positive electrode, and alternating first crystalline solar cells. And a p-type second crystalline solar cell in which the light receiving surface side is the negative electrode. In addition, the solar cell module connects the electrodes on the light receiving surface side of the adjacent first crystal solar cell and second crystal solar cell, and has a circular shape with a diameter in the range of 0.2 mm to 1.0 mm. A plurality of light-receiving surface side connection wirings made of six or more metal metal wire wires having a cross-section, and the light-receiving surface sides of the adjacent first crystal solar cells and second crystal solar cells. And a back-side connection wiring made of a metal film for connecting the back-side electrodes to each other.
 本発明にかかる太陽電池モジュールは、光電変換効率と信頼性とを向上可能である、という効果を奏する。 The solar cell module according to the present invention has an effect that the photoelectric conversion efficiency and the reliability can be improved.
本発明の実施の形態1にかかる太陽電池モジュールの太陽電池アレイのアレイ配線を受光面側から見た模式上面図The schematic top view which looked at the array wiring of the solar cell array of the solar cell module concerning Embodiment 1 of this invention from the light-receiving surface side 本発明の実施の形態1にかかる太陽電池モジュールの太陽電池アレイのアレイ配線を受光面側と対向する裏面側から見た模式下面図The schematic bottom view which looked at the array wiring of the solar cell array of the solar cell module concerning Embodiment 1 of this invention from the back surface side facing a light-receiving surface side 本発明の実施の形態1にかかる太陽電池モジュールを示す模式断面図Schematic sectional view showing the solar cell module according to the first embodiment of the present invention. 本発明の実施の形態1にかかるn型太陽電池セルを受光面側から見た模式上面図The schematic top view which looked at the n-type photovoltaic cell concerning Embodiment 1 of this invention from the light-receiving surface side 本発明の実施の形態1にかかるn型太陽電池セルを受光面側と対向する裏面側から見た模式下面図The schematic bottom view which looked at the n-type photovoltaic cell concerning Embodiment 1 of this invention from the back surface side facing a light-receiving surface side 本発明の実施の形態1にかかるn型太陽電池セルを示す模式断面図Schematic sectional view showing an n-type solar cell according to the first embodiment of the present invention. 本発明の実施の形態1にかかるp型太陽電池セルを受光面側から見た模式上面図The schematic top view which looked at the p-type photovoltaic cell concerning Embodiment 1 of this invention from the light-receiving surface side 本発明の実施の形態1にかかるp型太陽電池セルを裏面側から見た模式下面図The schematic bottom view which looked at the p-type photovoltaic cell concerning Embodiment 1 of this invention from the back surface side 本発明の実施の形態1にかかるp型太陽電池セルを示す模式断面図Schematic sectional view showing a p-type solar cell according to the first embodiment of the present invention. 本発明の実施の形態1にかかるp型太陽電池セルの他の構成例を示す模式断面図Schematic sectional view showing another configuration example of the p-type solar cell according to the first embodiment of the present invention. 本発明の実施の形態1にかかる金属フィルムとバックシートとが一体化された電極一体型バックシートの一例を示す模式下面図Schematic bottom view showing an example of an electrode-integrated back sheet in which the metal film and the back sheet according to the first embodiment of the present invention are integrated. 本発明の実施の形態1にかかる金属フィルムとバックシートとが一体化された電極一体型バックシートの一例を示す模式断面図Schematic sectional view showing an example of an electrode-integrated backsheet in which the metal film and the backsheet according to the first embodiment of the present invention are integrated. 本発明の実施の形態1にかかるn型太陽電池セルとp型太陽電池セルとが金属ワイヤー線により接続された状態を示す模式上面図The schematic top view which shows the state by which the n-type photovoltaic cell concerning Embodiment 1 of this invention and the p-type photovoltaic cell were connected by the metal wire wire. 本発明の実施の形態1にかかるn型太陽電池セルとp型太陽電池セルとが金属ワイヤー線により接続された状態を示す模式断面図The schematic cross section which shows the state by which the n-type photovoltaic cell concerning Embodiment 1 of this invention and the p-type photovoltaic cell were connected by the metal wire wire. 本発明の実施の形態1にかかるラミネート前の積層体を示す模式上面図The schematic top view which shows the laminated body before the lamination concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるラミネート前の積層体を示す模式断面図Schematic sectional view showing the laminate before lamination according to the first embodiment of the present invention. 実施例3においてn型太陽電池セルとp型太陽電池セルとの裏面上にリボン状の金属フィルムを配置して作製された太陽電池アレイを裏面側から見た模式下面図The schematic bottom view which looked at the solar cell array produced by arrange | positioning the ribbon-shaped metal film on the back surface of an n-type photovoltaic cell and a p-type photovoltaic cell in Example 3 from the back surface side. 実施例3においてn型太陽電池セルとp型太陽電池セルとの裏面上にリボン状の金属フィルムを配置して作製された太陽電池アレイの模式断面図Schematic cross-sectional view of a solar cell array produced by arranging a ribbon-like metal film on the back surfaces of an n-type solar cell and a p-type solar cell in Example 3 実施例3におけるラミネート前の積層体を示す模式上面図Schematic top view showing the laminate before lamination in Example 3 実施例3におけるラミネート前の積層体を示す模式断面図Schematic sectional view showing the laminate before lamination in Example 3 実施例3の太陽電池モジュールの太陽電池アレイのアレイ配線を裏面側から見た模式下面図The schematic bottom view which looked at the array wiring of the solar cell array of the solar cell module of Example 3 from the back surface side 実施例3の太陽電池モジュールを示す模式断面図Schematic sectional view showing the solar cell module of Example 3 実施例4におけるラミネート前の積層体を示す模式上面図Schematic top view showing the laminate before lamination in Example 4 実施例4におけるラミネート前の積層体を示す模式断面図Schematic cross-sectional view showing the laminate before lamination in Example 4 実施例4の太陽電池モジュールの太陽電池アレイのアレイ配線を裏面側から見た模式下面図The schematic bottom view which looked at the array wiring of the solar cell array of the solar cell module of Example 4 from the back surface side 実施例4の太陽電池モジュールを示す模式断面図Schematic sectional view showing the solar cell module of Example 4 実施例1から実施例4および比較例1から比較例5の太陽電池モジュールの評価試験の結果を示す図The figure which shows the result of the evaluation test of the solar cell module of Example 1 to Example 4 and Comparative Example 1 to Comparative Example 5.
 以下に、本発明の実施の形態にかかる太陽電池モジュールおよび太陽電池モジュールの製造方法を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Hereinafter, a solar cell module and a method for manufacturing the solar cell module according to an embodiment of the present invention will be described in detail based on the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池モジュール1の太陽電池アレイのアレイ配線を受光面側から見た模式上面図である。図2は、本発明の実施の形態1にかかる太陽電池モジュール1の太陽電池アレイのアレイ配線を受光面側と対向する裏面側から見た模式下面図である。図3は、本発明の実施の形態1にかかる太陽電池モジュール1を示す模式断面図であり、図1におけるIII-III線における断面図である。図1において矢印Xおよび矢印Yで示される直交する2方向を、それぞれ列方向および行方向と呼ぶ。なお、受光面側から見た図を上面図、反対の意裏側から見た図を下面図とする。
Embodiment 1 FIG.
FIG. 1 is a schematic top view of an array wiring of a solar cell array of a solar cell module 1 according to a first embodiment of the present invention as viewed from the light receiving surface side. FIG. 2 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module 1 according to the first embodiment of the present invention as viewed from the back surface side facing the light receiving surface side. FIG. 3 is a schematic cross-sectional view showing the solar cell module 1 according to the first embodiment of the present invention, which is a cross-sectional view taken along the line III-III in FIG. In FIG. 1, two orthogonal directions indicated by arrows X and Y are referred to as a column direction and a row direction, respectively. In addition, the figure seen from the light-receiving surface side is a top view, and the figure seen from the opposite side is a bottom view.
 本実施の形態1にかかる太陽電池モジュール1は、列方向および行方向にマトリクス状に配列された2種類の太陽電池セル10である、n型太陽電池セル10nおよびp型太陽電池セル10pにより構成される太陽電池アレイを備える。n型太陽電池セル10nは、n型結晶シリコン基板が用いられて、受光面が正極とされ、受光面と対向する裏面が負極とされた第1結晶系太陽電池セルである。p型太陽電池セル10pは、p型結晶シリコン基板が用いられて受光面が負極とされ裏面が正極とされた第2結晶系太陽電池セルである。なお、以下では、n型太陽電池セル10nとp型太陽電池セル10pとを区別しない場合には、単に太陽電池セル10と呼ぶ場合がある。 The solar cell module 1 according to the first embodiment is configured by n-type solar cells 10n and p-type solar cells 10p, which are two types of solar cells 10 arranged in a matrix in the column direction and the row direction. A solar cell array. The n-type solar cell 10n is a first crystalline solar cell in which an n-type crystalline silicon substrate is used, a light receiving surface is a positive electrode, and a back surface opposite to the light receiving surface is a negative electrode. The p-type solar cell 10p is a second crystalline solar cell in which a p-type crystalline silicon substrate is used, the light receiving surface is a negative electrode, and the back surface is a positive electrode. Hereinafter, when the n-type solar battery cell 10n and the p-type solar battery cell 10p are not distinguished, they may be simply referred to as the solar battery cell 10.
 太陽電池モジュール1の太陽電池アレイにおける各行には、n型太陽電池セル10nとp型太陽電池セル10pとが交互に配置されている。各行に並ぶ複数のn型太陽電池セル10nおよびp型太陽電池セル10pは、受光面側接続配線である複数本の金属ワイヤー線11および裏面側接続配線である金属フィルム12により、隣接する太陽電池セル10同士が電気的に直列接続されている。 In each row of the solar cell array of the solar cell module 1, n-type solar cells 10n and p-type solar cells 10p are alternately arranged. A plurality of n-type solar cells 10n and p-type solar cells 10p arranged in each row are adjacent to each other by a plurality of metal wire lines 11 that are light-receiving surface side connection wires and a metal film 12 that is a back surface side connection wire. The cells 10 are electrically connected in series.
 また、図1において、各行の端部の太陽電池セル10は、隣り合う行の端部の太陽電池セル10と横タブ線13により互いに電気的に直列接続されている。これにより、太陽電池モジュール1における全ての太陽電池セル10が電気的に直列接続されている。また、直列接続の両端に位置する太陽電池セル10の金属フィルム12には、端子ボックスに接続する図示しないケーブルが接続される。 Further, in FIG. 1, the solar cells 10 at the end of each row are electrically connected in series with the solar cells 10 at the end of adjacent rows and the horizontal tab wires 13. Thereby, all the photovoltaic cells 10 in the solar cell module 1 are electrically connected in series. Moreover, the cable which is not shown in figure which connects to a terminal box is connected to the metal film 12 of the photovoltaic cell 10 located in the both ends of series connection.
 図1および図3に示すように、各行において隣接するn型太陽電池セル10nとp型太陽電池セル10pとの受光面側には、n型太陽電池セル10nの受光面側の正極の電極とp型太陽電池セル10pの受光面側の負極の電極とを電気的に直列接続する複数本の金属ワイヤー線11が設けられている。なお図1から図3においては、太陽電池セル10の電極は省略している。太陽電池セル10の電極の詳細については後述する。金属ワイヤー線11は、列方向に沿って互いに平行に延びている。金属ワイヤー線11により互いに接続された隣り合うn型太陽電池セル10nとp型太陽電池セル10pとにより太陽電池セル10の組が構成されている。すなわち、金属ワイヤー線11は、同じ組における、n型太陽電池セル10nの受光面に設けられた正極の電極とp型太陽電池セル10pの受光面側の負極の電極とに接合されている。これにより、各行内の複数のn型太陽電池セル10nおよびp型太陽電池セル10pが、複数の金属ワイヤー線11によるマルチワイヤー方式により電気的に直列接続されている。 As shown in FIG. 1 and FIG. 3, the positive electrode on the light-receiving surface side of the n-type solar cell 10n is disposed on the light-receiving surface side of the n-type solar cell 10n and the p-type solar cell 10p adjacent in each row. A plurality of metal wire wires 11 are provided to electrically connect the negative electrode on the light receiving surface side of the p-type solar battery cell 10p in series. In FIGS. 1 to 3, the electrodes of the solar battery cell 10 are omitted. The detail of the electrode of the photovoltaic cell 10 is mentioned later. The metal wire lines 11 extend parallel to each other along the column direction. A set of solar battery cells 10 is configured by adjacent n-type solar battery cells 10n and p-type solar battery cells 10p connected to each other by metal wire wires 11. That is, the metal wire 11 is joined to the positive electrode provided on the light receiving surface of the n-type solar cell 10n and the negative electrode on the light receiving surface side of the p-type solar cell 10p in the same set. Thus, the plurality of n-type solar cells 10n and the p-type solar cells 10p in each row are electrically connected in series by a multi-wire method using the plurality of metal wire wires 11.
 また、図1および図3に示すように、各行において隣接するn型太陽電池セル10nとp型太陽電池セル10pとの裏面側には、n型太陽電池セル10nの裏面側の負極の電極とp型太陽電池セル10pの裏面側の正極の電極とを電気的に直列接続する金属フィルム12が設けられている。金属フィルム12は、列方向に沿って互いに平行に延びている。金属フィルム12は、異なる組間で隣り合う太陽電池セル10の組における、一方の太陽電池セル10の裏面側の電極と、他方の太陽電池セル10の裏面側の電極と、を電気的に直列接続する。すなわち、金属ワイヤー線11は、同じ組における、n型太陽電池セル10nの受光面に設けられた正極の電極とp型太陽電池セル10pの受光面側の負極の電極とに接合されている。 Moreover, as shown in FIG. 1 and FIG. 3, on the back side of the n-type solar cell 10n and the p-type solar cell 10p adjacent in each row, the negative electrode on the back side of the n-type solar cell 10n A metal film 12 that electrically connects the positive electrode on the back surface side of the p-type solar battery cell 10p in series is provided. The metal films 12 extend in parallel to each other along the row direction. The metal film 12 electrically connects the electrode on the back surface side of one solar cell 10 and the electrode on the back surface side of the other solar cell 10 in a set of solar cells 10 adjacent to each other in different sets. Connecting. That is, the metal wire 11 is joined to the positive electrode provided on the light receiving surface of the n-type solar cell 10n and the negative electrode on the light receiving surface side of the p-type solar cell 10p in the same set.
 複数の太陽電池セル10は、透光性樹脂からなる封止材22により封止され、封止材22の受光面側に透光性の受光面側保護部材であるガラス基板21が設けられ、封止材22の裏面側に裏面側保護部材であるバックシート23が設けられている。封止材22には、エチレン酢酸ビニル共重合体(Ethylene-Vinyl Acetate:EVA)等の透光性を有する熱硬化性の樹脂を用いることができる。受光面側保護部材には、透明ガラス、透明フィルム等の透光性材料を用いることができる。 The plurality of solar cells 10 are sealed with a sealing material 22 made of a light-transmitting resin, and a glass substrate 21 that is a light-transmitting light-receiving surface side protection member is provided on the light-receiving surface side of the sealing material 22. A back sheet 23, which is a back surface side protection member, is provided on the back surface side of the sealing material 22. As the sealing material 22, a thermosetting resin having translucency such as an ethylene vinyl acetate copolymer (Ethylene-Vinyl Acetate: EVA) can be used. A light-transmitting material such as transparent glass or transparent film can be used for the light-receiving surface side protection member.
 バックシート23には、単層の樹脂シートまたは樹脂シートが複数積層された積層樹脂シートを用いることができる。本実施の形態1では、ポリエチレンテレフタレート(Poly Ethylene Terephthalate:PET)製のバックシートを用いる。 As the back sheet 23, a single layer resin sheet or a laminated resin sheet in which a plurality of resin sheets are laminated can be used. In the first embodiment, a back sheet made of polyethylene terephthalate (PET) is used.
 図4は、本発明の実施の形態1にかかるn型太陽電池セル10nを受光面側から見た模式上面図である。図5は、本発明の実施の形態1にかかるn型太陽電池セル10nを受光面側と対向する裏面側から見た模式下面図である。図6は、本発明の実施の形態1にかかるn型太陽電池セル10nを示す模式断面図であり、図4におけるVI-VI線における断面図である。n型太陽電池セル10nは、n型太陽電池セルとして量産化されている一般的な太陽電池セルの構造を有し、光電変換効率が最大20%程度のものである。 FIG. 4 is a schematic top view of the n-type solar battery cell 10n according to the first embodiment of the present invention as viewed from the light-receiving surface side. FIG. 5 is a schematic bottom view of the n-type solar cell 10n according to the first embodiment of the present invention as viewed from the back surface side facing the light receiving surface side. FIG. 6 is a schematic cross-sectional view showing the n-type solar cell 10n according to the first embodiment of the present invention, and is a cross-sectional view taken along the line VI-VI in FIG. The n-type solar battery cell 10n has a structure of a general solar battery cell that is mass-produced as an n-type solar battery cell, and has a maximum photoelectric conversion efficiency of about 20%.
 n型太陽電池セル10nは、結晶系半導体基板を用いた結晶系太陽電池セルである。n型太陽電池セル10nにおいては、n型の半導体基板であるn型シリコン基板からなるn型シリコン層31の受光面側に、ボロン拡散によって不純物拡散層であるp型不純物拡散層32が形成されている。n型シリコン基板は、単結晶シリコン基板でもよく、多結晶シリコン基板でもよい。 The n-type solar battery cell 10n is a crystalline solar battery cell using a crystalline semiconductor substrate. In n-type solar cell 10n, p-type impurity diffusion layer 32, which is an impurity diffusion layer, is formed by boron diffusion on the light-receiving surface side of n-type silicon layer 31 made of an n-type silicon substrate, which is an n-type semiconductor substrate. ing. The n-type silicon substrate may be a single crystal silicon substrate or a polycrystalline silicon substrate.
 そして、n型シリコン層31とp型不純物拡散層32との接合面付近に空乏層33が構成されている。また、n型シリコン層31の受光面側の表面には、テクスチャー構造として図示しない微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。また、n型シリコン層31の受光面側の表面には、反射防止膜が設けられてもよい。 A depletion layer 33 is formed in the vicinity of the junction surface between the n-type silicon layer 31 and the p-type impurity diffusion layer 32. In addition, on the surface of the n-type silicon layer 31 on the light receiving surface side, minute unevenness (not shown) is formed as a texture structure. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light. Further, an antireflection film may be provided on the surface of the n-type silicon layer 31 on the light receiving surface side.
 また、n型太陽電池セル10nの受光面側、すなわちp型不純物拡散層32上の受光面側には、銀およびガラスを含む電極材料により構成されて細長形状を有する複数の受光面電極であるグリッド電極34が、底面においてp型不純物拡散層32に電気的に接続して設けられている。すなわち、複数のグリッド電極34が、正極電極として働く受光面電極を構成する。 Further, on the light-receiving surface side of the n-type solar cell 10n, that is, on the light-receiving surface side on the p-type impurity diffusion layer 32, there are a plurality of light-receiving surface electrodes made of an electrode material containing silver and glass and having an elongated shape. A grid electrode 34 is provided in electrical connection with the p-type impurity diffusion layer 32 on the bottom surface. That is, the plurality of grid electrodes 34 constitute a light receiving surface electrode that functions as a positive electrode.
 一方、n型太陽電池セル10nの裏面側、すなわちn型シリコン層31の裏面側には、アルミニウムおよびガラスを含む電極材料からなる裏面アルミニウム電極35が裏面の全面を覆って設けられている。すなわち、裏面アルミニウム電極35が、負極電極として働く裏面電極を構成する。 On the other hand, a back surface aluminum electrode 35 made of an electrode material containing aluminum and glass is provided on the back surface side of the n-type solar cell 10n, that is, the back surface side of the n-type silicon layer 31, covering the entire back surface. That is, the back surface aluminum electrode 35 constitutes a back surface electrode that functions as a negative electrode.
 複数本の金属ワイヤー線11は、金属ワイヤー線11の長手方向と、n型太陽電池セル10nのグリッド電極34の長手方向と、が直交した状態でグリッド電極34上に配置されている。図4においては、n型太陽電池セル10nの受光面側における金属ワイヤー線11の配置位置を点線で示している。また、金属フィルム12は、金属フィルム12の長手方向と、n型太陽電池セル10nのグリッド電極34の長手方向と、が直交した状態で裏面アルミニウム電極35上に配置されている。図5においては、n型太陽電池セル10nの裏面側における金属フィルム12の配置位置を点線で示している。 The plurality of metal wire lines 11 are arranged on the grid electrode 34 in a state where the longitudinal direction of the metal wire line 11 and the longitudinal direction of the grid electrode 34 of the n-type solar battery cell 10n are orthogonal to each other. In FIG. 4, the arrangement position of the metal wire 11 on the light receiving surface side of the n-type solar cell 10n is indicated by a dotted line. Moreover, the metal film 12 is arrange | positioned on the back surface aluminum electrode 35 in the state to which the longitudinal direction of the metal film 12 and the longitudinal direction of the grid electrode 34 of 10 n of n-type photovoltaic cells orthogonally crossed. In FIG. 5, the arrangement position of the metal film 12 on the back surface side of the n-type solar battery cell 10n is indicated by a dotted line.
 図7は、本発明の実施の形態1にかかるp型太陽電池セル10pを受光面側から見た模式上面図である。図8は、本発明の実施の形態1にかかるp型太陽電池セル10pを裏面側から見た模式下面図である。図9は、本発明の実施の形態1にかかるp型太陽電池セル10pを示す模式断面図であり、図7におけるIX-IX線における断面図である。 FIG. 7 is a schematic top view of the p-type solar battery cell 10p according to the first embodiment of the present invention as viewed from the light-receiving surface side. FIG. 8 is a schematic bottom view of the p-type solar battery cell 10p according to the first embodiment of the present invention viewed from the back side. FIG. 9 is a schematic cross-sectional view showing the p-type solar cell 10p according to the first embodiment of the present invention, and is a cross-sectional view taken along the line IX-IX in FIG.
 p型太陽電池セル10pは、結晶系半導体基板を用いた結晶系太陽電池セルである。p型太陽電池セル10pにおいては、p型の半導体基板であるp型シリコン基板からなるp型シリコン層41の受光面側に、リン拡散によって不純物拡散層であるn型不純物拡散層42が形成されている。そして、p型シリコン層41とn型不純物拡散層42との接合面付近に空乏層43が構成されている。また、p型シリコン層41の受光面側の表面には、テクスチャー構造として図示しない微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。また、p型シリコン層41の受光面側の表面には、反射防止膜が設けられてもよい。 The p-type solar battery cell 10p is a crystalline solar battery cell using a crystalline semiconductor substrate. In p-type solar cell 10p, n-type impurity diffusion layer 42, which is an impurity diffusion layer, is formed by phosphorous diffusion on the light-receiving surface side of p-type silicon layer 41 made of a p-type silicon substrate that is a p-type semiconductor substrate. ing. A depletion layer 43 is formed near the junction surface between the p-type silicon layer 41 and the n-type impurity diffusion layer 42. Further, on the surface of the p-type silicon layer 41 on the light-receiving surface side, fine unevenness (not shown) is formed as a texture structure. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light. An antireflection film may be provided on the light receiving surface side of the p-type silicon layer 41.
 また、p型太陽電池セル10pの受光面側、すなわちn型不純物拡散層42の受光面側には、銀およびガラスを含む電極材料により構成されて細長形状を有する複数のグリッド電極44が、底面においてn型不純物拡散層42に電気的に接続して設けられている。すなわち、複数のグリッド電極44が、負極電極として働く受光面電極を構成する。 In addition, on the light receiving surface side of the p-type solar cell 10p, that is, the light receiving surface side of the n-type impurity diffusion layer 42, a plurality of grid electrodes 44 made of an electrode material containing silver and glass and having an elongated shape are provided on the bottom surface. Are electrically connected to the n-type impurity diffusion layer 42. That is, the plurality of grid electrodes 44 constitute a light receiving surface electrode that functions as a negative electrode.
 一方、p型シリコン層41の裏面には、シリコン窒化膜からなる裏面パッシベーション膜46が全体にわたって設けられている。なお、裏面パッシベーション膜46には、シリコン酸化膜を用いてもよい。裏面パッシベーション膜46には、p型シリコン層41の裏面に達するドット状のコンタクトホール46aが設けられている。そして、裏面パッシベーション膜46上には、コンタクトホール46aを埋めるとともに裏面パッシベーション膜46の全面を覆って、アルミニウムおよびガラスを含む電極材料からなる裏面アルミニウム電極45が設けられている。すなわち、裏面アルミニウム電極45が、正極として働く裏面電極を構成する。 On the other hand, a back surface passivation film 46 made of a silicon nitride film is provided on the entire back surface of the p-type silicon layer 41. Note that a silicon oxide film may be used for the back surface passivation film 46. The back surface passivation film 46 is provided with a dot-like contact hole 46 a that reaches the back surface of the p-type silicon layer 41. On the back surface passivation film 46, a back surface aluminum electrode 45 made of an electrode material containing aluminum and glass is provided to fill the contact hole 46a and cover the entire surface of the back surface passivation film 46. That is, the back surface aluminum electrode 45 constitutes a back surface electrode that works as a positive electrode.
 複数本の金属ワイヤー線11は、金属ワイヤー線11の長手方向と、p型太陽電池セル10pのグリッド電極44の長手方向と、が直交した状態でグリッド電極44上に配置されている。図7においては、p型太陽電池セル10pの受光面側における金属ワイヤー線11の配置位置を点線で示している。また、金属フィルム12は、金属フィルム12の長手方向と、p型太陽電池セル10pのグリッド電極44の長手方向と、が直交した状態で裏面アルミニウム電極45上に配置されている。図8においては、p型太陽電池セル10pの裏面側における金属フィルム12の配置位置を点線で示している。 The plurality of metal wire lines 11 are arranged on the grid electrode 44 in a state where the longitudinal direction of the metal wire line 11 and the longitudinal direction of the grid electrode 44 of the p-type solar battery cell 10p are orthogonal to each other. In FIG. 7, the arrangement | positioning position of the metal wire wire 11 in the light-receiving surface side of the p-type photovoltaic cell 10p is shown with the dotted line. Moreover, the metal film 12 is arrange | positioned on the back surface aluminum electrode 45 in the state in which the longitudinal direction of the metal film 12 and the longitudinal direction of the grid electrode 44 of the p-type photovoltaic cell 10p were orthogonally crossed. In FIG. 8, the arrangement | positioning position of the metal film 12 in the back surface side of the p-type photovoltaic cell 10p is shown with the dotted line.
 また、コンタクトホール46a内においては、p型シリコン層41と裏面アルミニウム電極45の間に、アルミニウムとシリコンの合金層47が形成されている。また、p型シリコン層41の裏面側における合金層47に隣接する領域には、裏面アルミニウム電極45からアルミニウムがp型シリコン層41の裏面側に拡散されてp型シリコン層41よりもp型不純物濃度が高いp+領域である裏面電界(Back Surface Field:BSF)層48が形成されている。裏面アルミニウム電極45は、合金層47およびBSF層48を介してp型シリコン層41に電気的に接続している。 In the contact hole 46a, an alloy layer 47 of aluminum and silicon is formed between the p-type silicon layer 41 and the back surface aluminum electrode 45. Further, in a region adjacent to the alloy layer 47 on the back surface side of the p-type silicon layer 41, aluminum is diffused from the back surface aluminum electrode 45 to the back surface side of the p-type silicon layer 41, so that the p-type impurity is higher than the p-type silicon layer 41. A back surface field (BSF) layer 48 that is a p + region having a high concentration is formed. The back surface aluminum electrode 45 is electrically connected to the p-type silicon layer 41 through the alloy layer 47 and the BSF layer 48.
 図7から図9に示すp型太陽電池セル10pは、n型太陽電池セル10nと同じサイズで形成された、裏面不動態型セル(Passivated Emitter and Rear Cell:PERC)である。PERCセルは、太陽電池セルの裏面のp型シリコン層とアルミニウム電極との界面で起こる再結合を、太陽電池セルの裏面に設けたパッシベーション膜を用いて低減して、光電変換効率の向上を図ることが可能な太陽電池セルである。裏面にパッシベーション膜を備えない一般的なp型単結晶太陽電池セルの光電変換効率は、16%程度である。これに対して、PERCセルを用いると20%程度まで光電変換効率を向上させることが可能である。 The p-type solar cell 10p shown in FIGS. 7 to 9 is a back-passive type cell (Passivated Emitter and Rear Cell: PERC) formed in the same size as the n-type solar cell 10n. In the PERC cell, the recombination occurring at the interface between the p-type silicon layer on the back surface of the solar cell and the aluminum electrode is reduced by using a passivation film provided on the back surface of the solar cell, thereby improving the photoelectric conversion efficiency. It is a solar cell that can be used. The photoelectric conversion efficiency of a general p-type single crystal solar cell that does not have a passivation film on the back surface is about 16%. On the other hand, when the PERC cell is used, it is possible to improve the photoelectric conversion efficiency up to about 20%.
 一般的には、p型太陽電池セルに比べてn型太陽電池セルの方が発電される電流が大きい。このため、n型太陽電池セル10nとp型太陽電池セル10pとが交互に直列接続された場合には、n型太陽電池セル10nが発電する電流量とp型太陽電池セル10pが発電する電流量とにおいて、電流量の差が生じる。そして、この電流量の差、すなわち出力差に起因して太陽電池モジュールの光電変換効率にロスが発生する。また、n型太陽電池セル10nが発電する電流量とp型太陽電池セル10pが発電する電流量とに差がある場合には、たとえバイパスダイオードを備えた場合でも、発電する電流量の少ないp型太陽電池セルはホットスポットになり易い。そして、バックシートの熱による変色の発生、またははんだ不良によりダイオード常時通電が生じ、その後ダイオード不良、はんだ不良部の更なる発熱、という状態の発生もあり得る。 Generally, the n-type solar cell generates a larger current than the p-type solar cell. For this reason, when n-type solar cells 10n and p-type solar cells 10p are alternately connected in series, the amount of current generated by n-type solar cells 10n and the current generated by p-type solar cells 10p The amount of current is different from the amount. A loss occurs in the photoelectric conversion efficiency of the solar cell module due to the difference in current amount, that is, the output difference. Further, when there is a difference between the amount of current generated by the n-type solar cell 10n and the amount of current generated by the p-type solar cell 10p, even if a bypass diode is provided, the amount of current generated is small. Type solar cells tend to be hot spots. Then, the occurrence of discoloration due to the heat of the backsheet or the constant current conduction of the diode due to defective soldering, and then the occurrence of a state in which the defective diode and further heat generation of the defective soldering part may occur.
 このため、本実施の形態1では、高光電変換効率を実現可能なタイプのp型太陽電池セルをp型太陽電池セル10pに用いることにより、p型太陽電池セル10pの発電特性をn型太陽電池セル10nの発電特性に近づけている。具体的には、p型太陽電池セル10pに上述したPERCセルを用いることにより、p型太陽電池セル10pの発電特性をn型太陽電池セルの発電特性に近づけている。 For this reason, in this Embodiment 1, the p-type photovoltaic cell 10p uses the p-type photovoltaic cell of the type which can implement | achieve high photoelectric conversion efficiency, and the power generation characteristic of the p-type photovoltaic cell 10p is n-type solar. It is close to the power generation characteristics of the battery cell 10n. Specifically, by using the above-described PERC cell for the p-type solar cell 10p, the power generation characteristic of the p-type solar cell 10p is brought close to the power generation characteristic of the n-type solar cell.
 すなわち、本実施の形態1にかかるn型太陽電池セル10nは、光電変換効率が最大20%程度のn型太陽電池セルである。一方、PERCセルであるp型太陽電池セル10pも、20%程度の光電変換効率を有する。そして、本実施の形態1では、n型太陽電池セル10nとp型太陽電池セル10pとの発電時の電流量の差が±5%以内とされている。これにより、本実施の形態1では、極性の異なるn型太陽電池セル10nとp型太陽電池セル10pとを交互に直列接続しながら、n型太陽電池セル10nとp型太陽電池セル10pとにおける発電電流量のバランスを取ることができ、ホットスポットの発生および出力差に起因した光電変換効率のロスの発生を防止することができる。 That is, the n-type solar cell 10n according to the first embodiment is an n-type solar cell having a maximum photoelectric conversion efficiency of about 20%. On the other hand, the p-type solar battery cell 10p which is a PERC cell also has a photoelectric conversion efficiency of about 20%. In the first embodiment, the difference in the amount of current during power generation between the n-type solar cell 10n and the p-type solar cell 10p is within ± 5%. Thereby, in this Embodiment 1, in n-type photovoltaic cell 10n and p-type photovoltaic cell 10p, connecting n-type photovoltaic cell 10n and p-type photovoltaic cell 10p with which polarity differs alternately in series. The amount of generated current can be balanced, and the occurrence of a loss of photoelectric conversion efficiency due to the occurrence of hot spots and output differences can be prevented.
 図10は、本発明の実施の形態1にかかるp型太陽電池セル10pの他の構成例を示す模式断面図である。p型太陽電池セル10pの発電特性を、n型太陽電池セル10nの発電特性に近づけるために高光電変換効率を実現可能なタイプのp型太陽電池セルとしては、上述したPERCセルの他に、図10に示すQセル社製のQ.ANTUMセル(登録商標)のように、シリコン基板を通り抜ける光を反射させて発電に再利用する太陽電池セルを用いることができる。 FIG. 10 is a schematic cross-sectional view showing another configuration example of the p-type solar battery cell 10p according to the first embodiment of the present invention. As a p-type solar cell of a type capable of realizing high photoelectric conversion efficiency in order to bring the power generation characteristic of the p-type solar battery cell 10p close to the power generation characteristic of the n-type solar battery cell 10n, in addition to the above-described PERC cell, Q. manufactured by Q Cell Corporation shown in FIG. As in the ANTUM cell (registered trademark), a solar battery cell that reflects light passing through the silicon substrate and reuses it for power generation can be used.
 図10に示す太陽電池セルでは、p型の半導体基板であるp型シリコン基板からなるp型シリコン層51の受光面側に、n型不純物拡散層52と空乏層53と受光面電極としての複数のグリッド電極54とが設けられている。また、p型シリコン層51の裏面側においては、p型シリコン層51と裏面アルミニウム電極55との間に反射コーティング層56として金属層が設けられている。この太陽電池セルでは、p型シリコン層51を裏面側に通り抜ける光を反射コーティング層56で反射させて発電に再利用することにより、光電変換効率を向上させることができる。特に、この技術は、光を透過しやすい薄い太陽電池セルに適用すると効果が大きい。たとえば、厚みが150μm以下の太陽電池セルに適用すると、光電変換効率の向上効果が大きい。反射コーティング層56は、たとえばp型シリコン層51の裏面側に金属膜を成膜することにより形成できる。 In the solar cell shown in FIG. 10, a plurality of n-type impurity diffusion layers 52, depletion layers 53, and light-receiving surface electrodes are provided on the light-receiving surface side of a p-type silicon layer 51 made of a p-type silicon substrate which is a p-type semiconductor substrate. Grid electrode 54 is provided. On the back side of the p-type silicon layer 51, a metal layer is provided as a reflective coating layer 56 between the p-type silicon layer 51 and the back surface aluminum electrode 55. In this solar cell, the photoelectric conversion efficiency can be improved by reflecting the light passing through the p-type silicon layer 51 to the back side by the reflective coating layer 56 and reusing it for power generation. In particular, this technique has a great effect when applied to a thin solar cell that easily transmits light. For example, when applied to solar cells having a thickness of 150 μm or less, the effect of improving photoelectric conversion efficiency is great. The reflective coating layer 56 can be formed, for example, by forming a metal film on the back side of the p-type silicon layer 51.
 また、電気的に直列に接続されるp型太陽電池セル10pとn型太陽電池セル10nとの発電特性を近づけるために、p型太陽電池セルとn型太陽電池セルとに同じ構造の太陽電池セル用いて、p型太陽電池セルのセルサイズをn型太陽電池セルのセルサイズよりも大きくしてもよい。すなわち、発電特性が同じp型太陽電池セルとn型太陽電池セルとのセルサイズの違いにより、それぞれの太陽電池セルの電流値を制御して、p型太陽電池セルの発電特性をn型太陽電池セルの発電特性に近づけることも可能である。 Moreover, in order to make the power generation characteristics of the p-type solar cell 10p and the n-type solar cell 10n electrically connected in series close to each other, the solar cell having the same structure as the p-type solar cell and the n-type solar cell. Using the cell, the cell size of the p-type solar cell may be larger than the cell size of the n-type solar cell. That is, the current value of each solar cell is controlled by the difference in cell size between the p-type solar cell and the n-type solar cell having the same power generation characteristic, and the power generation characteristic of the p-type solar cell is changed to the n-type solar cell. It is also possible to approximate the power generation characteristics of the battery cell.
 金属ワイヤー線11は、金属製のワイヤー線からなる金属配線である。金属ワイヤー線11の断面形状は、円形が好ましい。金属ワイヤー線11の断面形状が円形であることにより、金属ワイヤー線11に当たった太陽光は、様々な方向に反射する反射光となり、反射光が太陽電池セル10に入射して光電変換効率の向上に寄与する。 The metal wire 11 is a metal wiring made of a metal wire. The cross-sectional shape of the metal wire 11 is preferably circular. Since the cross-sectional shape of the metal wire line 11 is circular, sunlight hitting the metal wire line 11 becomes reflected light that is reflected in various directions, and the reflected light is incident on the solar battery cell 10 and has a photoelectric conversion efficiency. Contributes to improvement.
 金属ワイヤー線11の断面形状が楕円形である場合には、複数本の金属ワイヤー線11の配列方向が楕円の長軸方向に沿うように複数本の金属ワイヤー線11を並べると、太陽電池セル10の受光面における金属ワイヤー線11により日陰になる領域が多くなる。これにより、太陽電池セル10に入射する太陽光が少なくなり、太陽電池セル10の光電変換効率が低下する。また、複数本の金属ワイヤー線11の配列方向が楕円の短軸向に沿うように複数本の金属ワイヤー線11を並べると、金属ワイヤー線11とグリッド電極との接触面積が少なくなる。これにより、金属ワイヤー線11とグリッド電極34,44との接合面積が少なくなり、金属ワイヤー線11がグリッド電極34,44から外れやすくなるため、金属ワイヤー線11とグリッド電極34,44との接続信頼性に劣る。 When the cross-sectional shape of the metal wire line 11 is an ellipse, when the plurality of metal wire lines 11 are arranged so that the arrangement direction of the plurality of metal wire lines 11 is along the long axis direction of the ellipse, The area shaded by the metal wire 11 on the light receiving surface 10 increases. Thereby, the sunlight which injects into the photovoltaic cell 10 decreases, and the photoelectric conversion efficiency of the photovoltaic cell 10 falls. Further, when the plurality of metal wire wires 11 are arranged so that the arrangement direction of the plurality of metal wire wires 11 is along the minor axis direction of the ellipse, the contact area between the metal wire wire 11 and the grid electrode is reduced. Thereby, since the joining area of the metal wire wire 11 and the grid electrodes 34 and 44 is reduced and the metal wire wire 11 is easily detached from the grid electrodes 34 and 44, the connection between the metal wire wire 11 and the grid electrodes 34 and 44 is achieved. Inferior in reliability.
 これに対して、金属ワイヤー線11の断面形状が円形である場合には、太陽電池セル10の光電変換効率と、金属ワイヤー線11とグリッド電極との接続信頼性と、のバランスが適切に保持され、さらにグリッド電極への接続時に断面の周方向の位置合わせが不要である。 On the other hand, when the cross-sectional shape of the metal wire wire 11 is circular, the balance between the photoelectric conversion efficiency of the solar battery cell 10 and the connection reliability between the metal wire wire 11 and the grid electrode is appropriately maintained. Furthermore, it is not necessary to align the cross section in the circumferential direction when connecting to the grid electrode.
 金属ワイヤー線11の直径は、0.2mmから1.0mmの範囲が好ましい。すなわち、マルチワイヤー方式において用いる金属ワイヤー線11の直径には、適切な範囲がある。金属ワイヤー線11の直径が0.2mmより細い場合には、グリッド電極34,44との接触面積が小さくなる。これにより、金属ワイヤー線11とグリッド電極34,44との接合面積が小さくなるため、金属ワイヤー線11がグリッド電極34,44から外れやすくなるため、金属ワイヤー線11とグリッド電極34,44との接続信頼性に劣る。また、金属ワイヤー線11の直径が1.0mmより太い場合には、太陽電池セル10の受光面における金属ワイヤー線11により日陰になる領域が多くなる。これにより、太陽電池セル10に入射する太陽光が少なくなり、太陽電池セル10の光電変換効率が低下する。 The diameter of the metal wire 11 is preferably in the range of 0.2 mm to 1.0 mm. That is, the diameter of the metal wire 11 used in the multi-wire system has an appropriate range. When the diameter of the metal wire 11 is thinner than 0.2 mm, the contact area with the grid electrodes 34 and 44 is reduced. Thereby, since the joining area of the metal wire line 11 and the grid electrodes 34 and 44 is reduced, the metal wire line 11 is easily detached from the grid electrodes 34 and 44. Connection reliability is poor. Moreover, when the diameter of the metal wire line 11 is thicker than 1.0 mm, the area | region which becomes shade with the metal wire line 11 in the light-receiving surface of the photovoltaic cell 10 increases. Thereby, the sunlight which injects into the photovoltaic cell 10 decreases, and the photoelectric conversion efficiency of the photovoltaic cell 10 falls.
 金属ワイヤー線11の本数は、例えば四つ角に丸い面取り形状を有する156mm角の太陽電池セル10の場合は、6本から16本の範囲が好ましい。本実施の形態1では、金属ワイヤー線11の本数を7本としている。金属ワイヤー線11の本数が6本より少ない場合には、グリッド電極34,44の抵抗成分の影響を受けやすく、光電変換効率が低下する。金属ワイヤー線11の本数が17本より多い場合には、グリッド電極34,44の抵抗成分は減少するが、太陽電池セル10の受光面における金属ワイヤー線11により日陰になる領域が多くなる。これにより、太陽電池セル10に入射する太陽光が少なくなり、太陽電池セル10の光電変換効率が低下する。 The number of metal wire wires 11 is preferably in the range of 6 to 16 in the case of a 156 mm square solar battery cell 10 having, for example, round chamfered shapes at four corners. In the first embodiment, the number of metal wire wires 11 is seven. When the number of the metal wire lines 11 is less than 6, it is easily influenced by the resistance component of the grid electrodes 34 and 44, and the photoelectric conversion efficiency is lowered. When the number of the metal wire lines 11 is greater than 17, the resistance components of the grid electrodes 34 and 44 decrease, but the area shaded by the metal wire lines 11 on the light receiving surface of the solar battery cell 10 increases. Thereby, the sunlight which injects into the photovoltaic cell 10 decreases, and the photoelectric conversion efficiency of the photovoltaic cell 10 falls.
 このような金属ワイヤー線11として、例えば導電率の高い銅製ワイヤーが用いられる。金属ワイヤー線11とグリッド電極34,44との接続方法には、金属ワイヤー線11とグリッド電極34,44との間に接合物を介在させて接合する接合方法を用いることができる。金属ワイヤー線11とグリッド電極34,44との間に入れる接合物としては、金属ワイヤー線11とグリッド電極34,44との間に、はんだ、導電性接着剤、金属ペースト、異方性導電フィルム(Anisotropic Conductive Film:ACF)または導電性両面テープを用いることができる。はんだ、導電性接着剤、金属ペースト、ACFまたは導電性両面テープを用いることにより、金属ワイヤー線11とグリッド電極34,44との接続を強固にすることができる。 As such a metal wire 11, for example, a copper wire having high conductivity is used. As a connection method between the metal wire line 11 and the grid electrodes 34 and 44, a bonding method in which a bonding object is interposed between the metal wire line 11 and the grid electrodes 34 and 44 can be used. As a joint to be inserted between the metal wire wire 11 and the grid electrodes 34, 44, a solder, a conductive adhesive, a metal paste, an anisotropic conductive film is provided between the metal wire wire 11 and the grid electrodes 34, 44. (Anisotropic Conductive Film: ACF) or conductive double-sided tape can be used. By using solder, conductive adhesive, metal paste, ACF or conductive double-sided tape, the connection between the metal wire 11 and the grid electrodes 34 and 44 can be strengthened.
 また、金属ワイヤー線11とグリッド電極34,44との接続方法には、金属ワイヤー線11をグリッド電極34,44に接触させた状態で、金属ワイヤー線11とグリッド電極34,44との上からテープ、シートまたはゲルなどで押さえ付ける方法を用いることができる。金属ワイヤー線11とグリッド電極34,44との上からテープ、シートまたはゲルなどで押さえ付ける場合には、テープ、シートまたはゲルは光透過性に優れた透明のものが用いられる。その他にも、封止材を利用した圧接を用いることができる。 In addition, as a method of connecting the metal wire line 11 and the grid electrodes 34 and 44, the metal wire line 11 is brought into contact with the grid electrodes 34 and 44 from above the metal wire line 11 and the grid electrodes 34 and 44. A method of pressing with a tape, a sheet, or a gel can be used. When the metal wire wire 11 and the grid electrodes 34 and 44 are pressed from above the tape, a sheet, or a gel, the tape, the sheet, or the gel is transparent and excellent in light transmittance. In addition, pressure welding using a sealing material can be used.
 本実施の形態1では、予めはんだがコーティングされた金属ワイヤー線11を用いて、金属ワイヤー線11をグリッド電極34,44に押さえつけながら加熱することで、はんだが溶融し、金属ワイヤー線11がグリッド電極34,44に接合する。 In the first embodiment, the metal wire wire 11 that has been pre-coated with solder is heated while pressing the metal wire wire 11 against the grid electrodes 34 and 44, so that the solder is melted and the metal wire wire 11 is grid-off. Bonded to the electrodes 34 and 44.
 金属フィルム12は、箔、フィルムまたは膜からなり、金属ワイヤー線11よりも幅広の金属配線である。本実施の形態では、金属箔、金属フィルムまたは金属膜を総称して、金属フィルムと呼ぶ。金属フィルム12は、平坦なフィルム形状を有し、太陽電池セル10の裏面の裏面アルミニウム電極35,45とを面接続するため、裏面アルミニウム電極35,45との接続抵抗を低抵抗化することができ、また、太陽電池セル10に掛かる応力を低減することができる。 The metal film 12 is made of a foil, a film, or a film, and is a metal wiring that is wider than the metal wire line 11. In the present embodiment, the metal foil, the metal film, or the metal film is collectively referred to as a metal film. Since the metal film 12 has a flat film shape and makes a surface connection with the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10, the connection resistance with the back surface aluminum electrodes 35 and 45 can be reduced. In addition, the stress applied to the solar battery cell 10 can be reduced.
 金属フィルム12の材料には、たとえば導電率の高い銅が用いられる。本実施の形態1では、金属フィルム12として金属箔である銅箔を用いている。太陽電池セル10同士を接続する金属フィルム12の数量は、特に限定されず、1枚以上でもよく、2枚以上でもよい。複数枚のリボン状の金属フィルム12を用いてもよい。本実施の形態1では、金属フィルム12として1枚の銅箔を用いている。 For example, copper having high conductivity is used as the material of the metal film 12. In the first embodiment, a copper foil that is a metal foil is used as the metal film 12. The quantity of the metal film 12 which connects the photovoltaic cells 10 is not specifically limited, One or more sheets may be sufficient and two or more sheets may be sufficient. A plurality of ribbon-shaped metal films 12 may be used. In the first embodiment, a single copper foil is used as the metal film 12.
 太陽電池セル10の裏面は光を当てる必要が無いため、金属フィルム12は、低電気抵抗の接合が維持され、且つ太陽電池セル10に応力を与えない形状が好ましい。すなわち、不透明なバックシートを用いた太陽電池モジュール構造の場合には、太陽電池セル10の裏面は太陽光を透過させる必要がないので、隣り合う太陽電池セル10同士の接続は、マルチワイヤ方式を用いる必要はない。そして、箔状、フィルム状または膜状の接続配線を用いることにより、太陽電池セル10に掛かる応力を低減でき、セル割れによる不具合を低減できる。 Since the back surface of the solar battery cell 10 does not need to be exposed to light, the metal film 12 preferably has a shape that maintains low electrical resistance bonding and does not apply stress to the solar battery cell 10. That is, in the case of a solar battery module structure using an opaque back sheet, the back surface of the solar battery cell 10 does not need to transmit sunlight, so that the connection between adjacent solar battery cells 10 is a multi-wire system. There is no need to use it. And the stress concerning the photovoltaic cell 10 can be reduced by using foil-shaped, film-shaped, or film-shaped connection wiring, and the malfunction by a cell crack can be reduced.
 金属フィルム12の厚さは、0.02mm以上、0.3mm以下が好ましい。金属フィルム12の厚さが0.02mm未満の場合は、金属フィルム12の電気抵抗が大きくなり、さらに金属フィルム12のハンドリングが難しくなる。また、金属フィルム12の厚さが0.3mmよりも厚い場合には、太陽電池セル10の裏面の裏面アルミニウム電極35,45の表面と金属フィルム12とにより形成される段差に起因してラミネート時に太陽電池セル10に応力が掛かり、太陽電池セル10にセル割れが発生ししやすくなる。また、金属フィルム12の導電性を考慮すれば、金属フィルム12の厚みは0.3mm以下で十分である。 The thickness of the metal film 12 is preferably 0.02 mm or more and 0.3 mm or less. When the thickness of the metal film 12 is less than 0.02 mm, the electric resistance of the metal film 12 is increased, and the handling of the metal film 12 becomes difficult. Moreover, when the thickness of the metal film 12 is thicker than 0.3 mm, it is caused by a step formed by the surface of the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10 and the metal film 12 at the time of lamination. Stress is applied to the solar cells 10, and cell cracks are likely to occur in the solar cells 10. Further, considering the conductivity of the metal film 12, a thickness of the metal film 12 of 0.3 mm or less is sufficient.
 金属フィルム12を用いて太陽電池セル10同士を接続する方法としては、バックシートとは別個に設けた単体の金属フィルム12としての金属箔または金属リボンを太陽電池セル10の裏面の裏面アルミニウム電極35,45の表面に接合する方法がある。金属フィルム12と裏面アルミニウム電極35,45との接続方法には、金属フィルム12と裏面アルミニウム電極35,45との間に接合物を介在させて接合する接合方法を用いることができる。金属フィルム12と太陽電池セル10の裏面の裏面アルミニウム電極35,45との間に入れる接合物としては、はんだ、導電性接着剤、金属ペースト、ACFまたは導電性両面テープを用いることができる。はんだ、導電性接着剤、金属ペースト、ACFまたは導電性両面テープを用いることにより、金属フィルム12と裏面アルミニウム電極35,45との接続を強固にすることができる。 As a method of connecting the solar cells 10 using the metal film 12, a metal foil or a metal ribbon as a single metal film 12 provided separately from the back sheet is used as the back surface aluminum electrode 35 on the back surface of the solar cell 10. , 45 can be bonded to the surface. As a method for connecting the metal film 12 and the back surface aluminum electrodes 35 and 45, a bonding method in which a bonding material is interposed between the metal film 12 and the back surface aluminum electrodes 35 and 45 can be used. As a joint to be inserted between the metal film 12 and the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10, solder, conductive adhesive, metal paste, ACF or conductive double-sided tape can be used. By using solder, conductive adhesive, metal paste, ACF or conductive double-sided tape, the connection between the metal film 12 and the back surface aluminum electrodes 35 and 45 can be strengthened.
 また、他の方法として、金属フィルム12とバックシートとが一体化された電極一体型バックシートを裏面アルミニウム電極35,45の表面に載置し、太陽電池モジュールをラミネート形成することにより、金属フィルム12を用いて太陽電池セル10同士を接続する方法がある。 As another method, an electrode-integrated back sheet in which the metal film 12 and the back sheet are integrated is placed on the surfaces of the back surface aluminum electrodes 35 and 45, and a solar cell module is laminated to form a metal film. 12 is a method of connecting the solar cells 10 to each other.
 金属フィルム12とバックシートとを一体化する方法としては、バックシートの片面に対して金属メッキを施す方法、バックシートに金属箔を熱圧着する方法、接着剤を用いて金属フィルム12をバックシートに貼り付ける方法などが適用可能である。いずれの方法の場合も、バックシートに金属箔を一体化させた後に、エッチングによる金属箔のパターニングが必要である。 As a method of integrating the metal film 12 and the back sheet, a method of performing metal plating on one side of the back sheet, a method of thermocompression bonding a metal foil to the back sheet, and a back sheet of the metal film 12 using an adhesive It is possible to apply a method such as pasting to. In any method, after the metal foil is integrated with the back sheet, the metal foil must be patterned by etching.
 図11は、本発明の実施の形態1にかかる金属フィルム12とバックシート23とが一体化された電極一体型バックシートの一例を示す模式下面図である。図12は、本発明の実施の形態1にかかる金属フィルム12とバックシート23とが一体化された電極一体型バックシートの一例を示す模式断面図であり、図11におけるIIX-IIX線における断面図である。バックシート23に金属フィルム12を一体化させることで、バックシート23に裏面配線機能を付与することが可能である。 FIG. 11 is a schematic bottom view showing an example of an electrode-integrated back sheet in which the metal film 12 and the back sheet 23 according to the first embodiment of the present invention are integrated. 12 is a schematic cross-sectional view showing an example of an electrode-integrated back sheet in which the metal film 12 and the back sheet 23 according to the first embodiment of the present invention are integrated, and is a cross-sectional view taken along the line IIX-IIX in FIG. FIG. By integrating the metal film 12 with the back sheet 23, it is possible to impart a back surface wiring function to the back sheet 23.
 図11および図12示す電極一体型バックシート24は、予め形成したバックシート23の一面側に粘着層61を形成し、粘着層61を介して金属フィルム12をバックシート23の一面に固定することにより形成されている。予めバックシート23に金属フィルム12を固定することにより、金属フィルム12と裏面アルミニウム電極45との接合を容易にすることが可能である。この場合、粘着層61の厚みは、15μm以上、50μm以下が好ましい。粘着層61の厚みが15μm未満の場合には、粘着層61を構成する材料のハンドリングが困難となる。粘着層61の厚みが50μmより厚い場合には、粘着層61が金属フィルム12に沿って変形することが困難になる、熱膨張による変位が大きくなる、太陽電池モジュールの裏面が柔らかくなり外力によりセル割れが発生しやすくなる、等の問題が生じる。 The electrode-integrated back sheet 24 shown in FIG. 11 and FIG. 12 has an adhesive layer 61 formed on one side of a pre-formed back sheet 23, and the metal film 12 is fixed to one side of the back sheet 23 via the adhesive layer 61. It is formed by. By fixing the metal film 12 to the back sheet 23 in advance, the metal film 12 and the back surface aluminum electrode 45 can be easily joined. In this case, the thickness of the adhesive layer 61 is preferably 15 μm or more and 50 μm or less. When the thickness of the adhesive layer 61 is less than 15 μm, it is difficult to handle the material constituting the adhesive layer 61. When the thickness of the adhesive layer 61 is greater than 50 μm, it becomes difficult for the adhesive layer 61 to be deformed along the metal film 12, the displacement due to thermal expansion becomes large, the back surface of the solar cell module becomes soft, and the cell due to external force Problems such as easy cracking occur.
 また、太陽電池セル10の裏面における金属フィルム12と裏面アルミニウム電極35,45とを接続するその他の方法には、金属ワイヤー線11とグリッド電極34,44との接合と同様の方法を用いることができる。 Further, as another method for connecting the metal film 12 and the back surface aluminum electrodes 35 and 45 on the back surface of the solar battery cell 10, a method similar to the joining of the metal wire wire 11 and the grid electrodes 34 and 44 may be used. it can.
 単体の金属フィルム12を用いる方法、または金属フィルム12とバックシート23とを一体化した電極一体型バックシート24を用いる方法のいずれの方法でも、裏面アルミニウム電極35,45と金属フィルム12との平面同士を接続するため、すなわち裏面アルミニウム電極35,45の表面と金属フィルム12の表面とを接続する。この場合には、一般的なタブ線接続、すなわち裏面アルミニウム電極35,45をバス電極を介してタブ線に接続する場合と比較して、太陽電池セル10に掛かる応力が広く分散され、太陽電池セル10のセル割れが発生し難い、という効果が得られる。 In either method using a single metal film 12 or a method using an electrode-integrated back sheet 24 in which the metal film 12 and the back sheet 23 are integrated, the plane between the back surface aluminum electrodes 35 and 45 and the metal film 12 is used. In order to connect each other, that is, the surface of the back surface aluminum electrodes 35 and 45 and the surface of the metal film 12 are connected. In this case, compared with a general tab line connection, that is, the case where the back surface aluminum electrodes 35 and 45 are connected to the tab line via the bus electrodes, the stress applied to the solar cell 10 is widely dispersed, and the solar cell The effect that the cell crack of the cell 10 hardly occurs is obtained.
 なお、金属フィルム12と裏面アルミニウム電極35,45との接合面積が大きい場合には、金属フィルム12と裏面アルミニウム電極35,45との熱膨張差に起因して太陽電池セル10にセル割れが発生する可能性が考えられる。したがって、金属フィルム12と裏面アルミニウム電極35,45との接合面積が大きい場合には、金属フィルム12と裏面アルミニウム電極35,45との接合は、多数の点接続であることが好ましい。多数の点接続の一例としては、例えば10mm間隔で格子点状に半田ペーストを裏面アルミニウム電極35,45に印刷し、半田ペーストを介して金属フィルム12を裏面アルミニウム電極35,45に接続する。 In addition, when the joining area of the metal film 12 and the back surface aluminum electrodes 35 and 45 is large, the cell crack generate | occur | produces in the photovoltaic cell 10 resulting from the thermal expansion difference of the metal film 12 and the back surface aluminum electrodes 35 and 45. There is a possibility of doing. Accordingly, when the bonding area between the metal film 12 and the back surface aluminum electrodes 35 and 45 is large, the bonding between the metal film 12 and the back surface aluminum electrodes 35 and 45 is preferably a number of point connections. As an example of a large number of point connections, for example, solder paste is printed on the back surface aluminum electrodes 35 and 45 in a grid pattern at intervals of 10 mm, and the metal film 12 is connected to the back surface aluminum electrodes 35 and 45 through the solder paste.
 ACFまたは導電性接着剤を用いる場合、金属フィルム12の全面にACFまたは導電性接着剤を塗布するとコストが掛かるうえ、金属フィルム12と裏面アルミニウム電極35,45との熱膨張差に起因して太陽電池セル10にセル割れが発生する可能性がある。このため、ACFまたは導電性接着剤を用いる場合も、金属フィルム12の全面にACFまたは導電性接着剤を配置せずに、金属フィルム12の面内において隙間をあけてACFまたは導電性接着剤を部分的に配置して、金属フィルム12と裏面アルミニウム電極35,45とを接合することが好ましい。 In the case of using ACF or conductive adhesive, it is costly to apply ACF or conductive adhesive to the entire surface of the metal film 12, and the solar film is caused by the difference in thermal expansion between the metal film 12 and the back surface aluminum electrodes 35 and 45. Cell cracks may occur in the battery cell 10. For this reason, even when ACF or conductive adhesive is used, the ACF or conductive adhesive is not disposed on the entire surface of the metal film 12, and the ACF or conductive adhesive is applied with a gap in the plane of the metal film 12. It is preferable that the metal film 12 and the back surface aluminum electrodes 35 and 45 are joined partially.
 また、封止材を利用した圧接を用いる場合は、熱膨張差に起因して金属フィルム12と裏面アルミニウム電極35,45とにかかる応力は小さいが、金属フィルム12の表面の劣化に起因した接触不良が懸念される。このため、金属フィルム12は、ニッケル(Ni)メッキ銅箔、錫(Sn)メッキ銅箔、銀(Ag)メッキ銅箔などの、酸化による導電不良を起こさない材料を選択する必要がある。 Moreover, when using the pressure welding using a sealing material, although the stress concerning the metal film 12 and the back surface aluminum electrodes 35 and 45 resulting from a thermal expansion difference is small, the contact resulting from deterioration of the surface of the metal film 12 There is concern about defects. For this reason, the metal film 12 needs to select the material which does not cause the conductive defect by oxidation, such as nickel (Ni) plating copper foil, tin (Sn) plating copper foil, and silver (Ag) plating copper foil.
 上記のように金属ワイヤー線11の断面形状が円形である場合でも、隣り合う太陽電池セルのうち一方の太陽電池セルの表面から他方の太陽電池セルの裏面に回り込ませて多数の金属ワイヤーを配設すると、曲率の大きい部分で太陽電池セルに大きな応力が掛かり、太陽電池セルのセル割れが発生しやすくなることが、発明者等の検討により明らかとなった。そして、マルチワイヤー方式を採用することにより、配線本数が増えることにより、太陽電池セルのセル割れがより発生しやすくなることが明らかとなった。 Even when the cross-sectional shape of the metal wire wire 11 is circular as described above, a large number of metal wires are arranged by wrapping from the surface of one of the adjacent solar cells to the back surface of the other solar cell. As a result, the inventors have clarified that a large stress is applied to the solar cell at a portion having a large curvature, and the cell is likely to be cracked. And it became clear that the cell crack of a photovoltaic cell becomes easy to generate | occur | produce by employ | adopting a multi wire system and increasing the number of wiring.
 そこで、本実施の形態1にかかる太陽電池モジュール1では、同じ行に配置される太陽電池セル10として、n型太陽電池セル10nとp型太陽電池セル10pとを交互に配置している。これにより、隣り合うn型太陽電池セル10nとp型太陽電池セル10pとの間で、受光面側から裏面側に金属ワイヤ一線11を渡す必要が無くなり、金属ワイヤ一線11は、屈曲することなく直線状態でn型太陽電池セル10nのグリッド電極34とp型太陽電池セル10pのグリッド電極44とを接続する。 Therefore, in the solar cell module 1 according to the first embodiment, n-type solar cells 10n and p-type solar cells 10p are alternately arranged as the solar cells 10 arranged in the same row. This eliminates the need to pass the metal wire line 11 from the light receiving surface side to the back surface side between the adjacent n-type solar cell 10n and the p-type solar cell 10p, and the metal wire line 11 is not bent. The grid electrode 34 of the n-type solar cell 10n and the grid electrode 44 of the p-type solar cell 10p are connected in a straight line state.
 したがって、金属ワイヤ一線11の屈曲に起因して太陽電池セル10への応力が掛かることが無く、金属ワイヤ一線11から掛かる応力に起因した太陽電池セル10のセル割れを防止することができる。また、n型太陽電池セル10nとp型太陽電池セル10pとを交互に配置することにより、金属ワイヤ一線11を曲げる必要が無く、バス電極を用いないためバス線へ金属ワイヤ一線11の位置合わせも不要であり、金属ワイヤ一線11の接続工程が簡素化される。さらに、バス電極を用いないため、バス電極に起因した接続不良も発生しない。 Therefore, no stress is applied to the solar battery cell 10 due to the bending of the metal wire line 11, and cell cracking of the solar battery cell 10 due to the stress applied from the metal wire line 11 can be prevented. Further, by alternately arranging the n-type solar cells 10n and the p-type solar cells 10p, there is no need to bend the metal wire line 11 and no bus electrode is used, so that the metal wire line 11 is aligned with the bus line. Is also unnecessary, and the connecting process of the metal wire line 11 is simplified. Further, since no bus electrode is used, connection failure due to the bus electrode does not occur.
 つぎに、本実施の形態1にかかる太陽電池モジュール1の製造方法について説明する。ここでは、金属フィルム12とバックシート23とを一体化した電極一体型バックシート24を用いる場合について説明する。まず、公知の方法により、n型太陽電池セル10nとPERCセルであるp型太陽電池セル10pとが形成される。 Next, a method for manufacturing the solar cell module 1 according to the first embodiment will be described. Here, a case where an electrode-integrated back sheet 24 in which the metal film 12 and the back sheet 23 are integrated will be described. First, n-type solar cells 10n and p-type solar cells 10p, which are PERC cells, are formed by a known method.
 図13は、本発明の実施の形態1にかかるn型太陽電池セル10nとp型太陽電池セル10pとが金属ワイヤー線11により接続された状態を示す模式上面図である。図14は、本発明の実施の形態1にかかるn型太陽電池セル10nとp型太陽電池セル10pとが金属ワイヤー線11により接続された状態を示す模式断面図であり、図13におけるXIV-XIV線における断面図である。n型太陽電池セル10nとp型太陽電池セル10pとが、図13および図14に示すように受光面側を上側にして隣り合わせて配置される。ここで、n型太陽電池セル10nとp型太陽電池セル10pとは、n型太陽電池セル10nのグリッド電極34の長手方向と、p型太陽電池セル10pのグリッド電極44の長手方向とが、同一方向であり且つn型太陽電池セル10nとp型太陽電池セル10pとの配列方向と直交する状態で配置される。これにより、太陽電池セル10の組が形成される。同様にして、25組の太陽電池セル10の組が形成される。 FIG. 13 is a schematic top view showing a state in which the n-type solar battery cell 10n and the p-type solar battery cell 10p according to the first embodiment of the present invention are connected by the metal wire wire 11. FIG. 14 is a schematic cross-sectional view showing a state where the n-type solar battery cell 10n and the p-type solar battery cell 10p according to the first embodiment of the present invention are connected by the metal wire wire 11, and is shown in FIG. It is sectional drawing in a XIV line. The n-type solar battery cell 10n and the p-type solar battery cell 10p are arranged adjacent to each other with the light-receiving surface side facing upward as shown in FIGS. Here, the n-type solar battery cell 10n and the p-type solar battery cell 10p have a longitudinal direction of the grid electrode 34 of the n-type solar battery cell 10n and a longitudinal direction of the grid electrode 44 of the p-type solar battery cell 10p. They are arranged in the same direction and orthogonal to the arrangement direction of the n-type solar cells 10n and the p-type solar cells 10p. Thereby, the group of the photovoltaic cell 10 is formed. Similarly, 25 sets of solar battery cells 10 are formed.
 つぎに、直径0.2mmの銅線の表面にはんだがメッキされたはんだメッキ銅線である金属ワイヤー線11が、n型太陽電池セル10nのグリッド電極34およびp型太陽電池セル10pのグリッド電極44と直交した状態で、グリッド電極34上およびグリッド電極44上に配置される。そして、金属ワイヤー線11が位置ずれを起こさないように、金属ワイヤー線11を上から押さえつけながら金属ワイヤー線11の表面のはんだを熱溶融することにより、金属ワイヤー線11がグリッド電極34およびグリッド電極44に接着され、図13および図14に示すようにn型太陽電池セル10nとp型太陽電池セル10pとが金属ワイヤー線11により接続される。 Next, the metal wire wire 11 which is the solder plating copper wire by which the surface of the copper wire with a diameter of 0.2 mm is plated is the grid electrode 34 of the n-type solar cell 10n and the grid electrode of the p-type solar cell 10p. It is arranged on the grid electrode 34 and on the grid electrode 44 in a state orthogonal to 44. And the metal wire line 11 is made into the grid electrode 34 and a grid electrode by heat-melting the solder of the surface of the metal wire line 11 pressing down the metal wire line 11 from the top so that a position shift of the metal wire line 11 may not be caused. The n-type solar cell 10n and the p-type solar cell 10p are connected by the metal wire 11 as shown in FIGS.
 つぎに、PETからなる太陽電池用のバックシートにおける封止材22側となる面に、溶剤で溶かした粘着剤が塗布され、溶剤を乾燥させることで厚さ約35μmの粘着層61が形成される。そして、粘着層61上にニッケル(Ni)メッキ圧延銅箔からなる金属フィルム12を配置して、粘着層61により金属フィルム12をバックシート23に接着する。これにより、図11および図12に示すように、金属フィルム12とバックシート23とが一体化された電極一体型バックシート24が形成される。 Next, a pressure-sensitive adhesive dissolved in a solvent is applied to the surface on the side of the sealing material 22 in the back sheet for a solar cell made of PET, and the pressure-sensitive adhesive layer 61 having a thickness of about 35 μm is formed by drying the solvent. The Then, the metal film 12 made of nickel (Ni) plated rolled copper foil is disposed on the adhesive layer 61, and the metal film 12 is bonded to the back sheet 23 by the adhesive layer 61. As a result, as shown in FIGS. 11 and 12, an electrode-integrated back sheet 24 in which the metal film 12 and the back sheet 23 are integrated is formed.
 図15は、本発明の実施の形態1にかかるラミネート前の積層体25を示す模式上面図である。図16は、本発明の実施の形態1にかかるラミネート前の積層体25を示す模式断面図であり、図15におけるXVI-XVI線における断面図である。なお、図15においては、電極一体型バックシート24のうち、バックシート23と粘着層61とを透過して見た状態を示している。受光面側保護部材である白板ガラスからなるガラス基板21の上に、EVAシートからなる太陽電池用の封止材シート22aが載置される。つぎに、25組の太陽電池セル10の組が、金属ワイヤー線11側をガラス基板21側にしてアレイ状に封止材22のシート上に配置される。また、端子ボックスに結線するための横タブ線13および端子ボックスケーブルが封止材22のシート上に配置される。 FIG. 15 is a schematic top view showing the laminate 25 before lamination according to the first embodiment of the present invention. 16 is a schematic cross-sectional view showing the laminate 25 before lamination according to the first embodiment of the present invention, and is a cross-sectional view taken along the line XVI-XVI in FIG. FIG. 15 shows a state in which the back sheet 23 and the adhesive layer 61 are seen through the electrode integrated back sheet 24. A solar cell sealing material sheet 22a made of an EVA sheet is placed on a glass substrate 21 made of white glass, which is a light-receiving surface side protection member. Next, 25 sets of solar battery cells 10 are arranged on the sheet of the sealing material 22 in an array with the metal wire 11 side facing the glass substrate 21 side. Further, the horizontal tab wire 13 and the terminal box cable for connecting to the terminal box are arranged on the sheet of the sealing material 22.
 その上に金属フィルム12をn型太陽電池セル10nの裏面アルミニウム電極35およびp型太陽電池セル10pの裏面アルミニウム電極45に合わせて電極一体型バックシート24を載せ、図15および図16に示すラミネート前の積層体25を形成する。その後、ラミネート前の積層体25を真空熱ラミネータでたとえば150℃で30分間、加圧および加熱することにより熱圧着して、図1から図3に示す構造の太陽電池モジュール1が得られる。その後、電極一体型バックシート24上に端子ボックスケーブルに接続する図示しない端子ボックスが電極一体型バックシート24上に配置される。 An electrode-integrated back sheet 24 is placed on the metal film 12 in accordance with the back surface aluminum electrode 35 of the n-type solar cell 10n and the back surface aluminum electrode 45 of the p-type solar cell 10p, and the laminate shown in FIGS. The previous laminate 25 is formed. Then, the laminated body 25 before lamination is thermocompression-bonded by pressurizing and heating, for example, at 150 ° C. for 30 minutes with a vacuum thermal laminator, so that the solar cell module 1 having the structure shown in FIGS. 1 to 3 is obtained. Thereafter, a terminal box (not shown) connected to the terminal box cable is disposed on the electrode-integrated back sheet 24.
 上述したように、本実施の形態1にかかる太陽電池モジュール1においては、n型太陽電池セル10nとp型太陽電池セル10pとを交互に並べることにより、n型太陽電池セル10nとp型太陽電池セル10pとを電気的に直列接続する配線である金属ワイヤー線11と金属フィルム12を全て曲がりのないストレートの状態で使用可能とした。これにより、隣り合う太陽電池セル10を接続する配線の曲がりに起因して太陽電池セル10にかかる応力を低減することができ、太陽電池セル10のセル割れを防止することができる。 As described above, in the solar cell module 1 according to the first embodiment, the n-type solar cell 10n and the p-type solar cell are arranged by alternately arranging the n-type solar cell 10n and the p-type solar cell 10p. The metal wire line 11 and the metal film 12, which are wirings for electrically connecting the battery cells 10p in series, can all be used in a straight state without bending. Thereby, the stress concerning the photovoltaic cell 10 resulting from the bending of the wiring which connects the adjacent photovoltaic cell 10 can be reduced, and the cell crack of the photovoltaic cell 10 can be prevented.
 また、本実施の形態1にかかる太陽電池モジュール1においては、受光面側におけるn型太陽電池セル10nとp型太陽電池セル10pとの接続にマルチワイヤー方式を用いることにより、太陽電池セル10において発電位置から金属ワイヤー線11までの実効的な電流の移動距離が短くなるので、電気抵抗が少なくなり、太陽電池モジュール1の光電変換効率を向上させることができる。 Moreover, in the solar cell module 1 concerning this Embodiment 1, in the photovoltaic cell 10, by using a multi-wire system for the connection of the n-type photovoltaic cell 10n and the p-type photovoltaic cell 10p in the light-receiving surface side. Since the effective current travel distance from the power generation position to the metal wire 11 is shortened, the electrical resistance is reduced and the photoelectric conversion efficiency of the solar cell module 1 can be improved.
 また、本実施の形態1にかかる太陽電池モジュール1においては、受光面側におけるn型太陽電池セル10nとp型太陽電池セル10pとの接続に、平坦なフィルム形状を有する金属フィルム12による面接続を用いるため、金属フィルム12と裏面アルミニウム電極35,45との接続抵抗を低抵抗化することができ、また、太陽電池セル10に掛かる応力を低減することができる。 Moreover, in the solar cell module 1 concerning this Embodiment 1, the surface connection by the metal film 12 which has a flat film shape for the connection of the n-type solar cell 10n and the p-type solar cell 10p in the light-receiving surface side. Therefore, the connection resistance between the metal film 12 and the back surface aluminum electrodes 35 and 45 can be lowered, and the stress applied to the solar battery cell 10 can be reduced.
 また、本実施の形態1にかかる太陽電池モジュール1によれば、隣り合う太陽電池セル10同士の接続に起因した太陽電池セル10のセル割れを防止するとともに、太陽電池セル10の光電変換効率を向上させることができ、光電変換効率と信頼性とを向上可能な太陽電池モジュールが得られる。 Moreover, according to the solar cell module 1 concerning this Embodiment 1, while preventing the cell crack of the photovoltaic cell 10 resulting from the connection of adjacent photovoltaic cells 10, the photoelectric conversion efficiency of the photovoltaic cell 10 is improved. A solar cell module that can be improved and can improve photoelectric conversion efficiency and reliability can be obtained.
 つぎに、具体的な実施例に基づいて説明する。 Next, description will be made based on specific examples.
実施例1.
 上述した実施の形態1にかかる太陽電池モジュールの製造方法に従って太陽電池モジュールを作製し、実施例1の太陽電池モジュールとした。n型太陽電池セル10nおよびp型太陽電池セル10pには、156mm角、厚さ175μmのサイズの太陽電池セルを用いた。n型太陽電池セル10nとp型太陽電池セル10pとの発電時の電流量の差が±5%以内とされている。金属ワイヤー線11としては、直径0.2mmの7本のはんだメッキ銅線を使用した。
Example 1.
A solar cell module was produced according to the method for manufacturing a solar cell module according to the first embodiment described above, and the solar cell module of Example 1 was obtained. As the n-type solar cell 10n and the p-type solar cell 10p, solar cells having a size of 156 mm square and a thickness of 175 μm were used. The difference in the amount of current during power generation between the n-type solar cell 10n and the p-type solar cell 10p is set to be within ± 5%. As the metal wire 11, seven solder plated copper wires having a diameter of 0.2 mm were used.
 また、外径が1700mm×900mm、厚みが0.2mmのPETからなるバックシートにおける金属フィルム12側に配置される側の面には、溶剤で溶かした粘着剤を塗布し、溶剤を乾燥させることで厚さ約50μmの粘着層61を形成した。そして、粘着層61上に厚さ0.06mmのNiメッキ圧延銅箔を載せることで電極一体型バックシート24を形成した。ガラス基板には、外径が1600mm×800mm、厚さが3.2mmの白板ガラスを用いた。封止材シート22aには、厚さが0.6mmのEVAからなる太陽電池用の封止材シートを用いた。 Moreover, the adhesive which melt | dissolved with the solvent is apply | coated to the surface at the side arrange | positioned at the metal film 12 side in the back sheet which consists of PET with an outer diameter of 1700 mm x 900 mm and thickness 0.2mm, and the solvent is dried. Thus, an adhesive layer 61 having a thickness of about 50 μm was formed. Then, the electrode-integrated back sheet 24 was formed by placing a Ni-plated rolled copper foil having a thickness of 0.06 mm on the adhesive layer 61. As the glass substrate, white plate glass having an outer diameter of 1600 mm × 800 mm and a thickness of 3.2 mm was used. As the sealing material sheet 22a, a sealing material sheet for solar cells made of EVA having a thickness of 0.6 mm was used.
実施例2.
 金属ワイヤー線11として「直径0.2mmの7本のはんだメッキ銅線」の代わりに、「直径1.0mmの6本のはんだメッキ銅線」を使用したこと以外は、実施例1と同様にして太陽電池モジュールを作製し、実施例2の太陽電池モジュールとした。
Example 2
Except for using “six solder-plated copper wires having a diameter of 1.0 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wires 11, the same as in Example 1. Thus, a solar cell module was produced and used as the solar cell module of Example 2.
実施例3.
 実施例3では、以下の工程以外は、実施例1と同様にして太陽電池モジュールを作製し、実施例3の太陽電池モジュールとした。図17は、実施例3においてn型太陽電池セル10nとp型太陽電池セル10pとの裏面上にリボン状の金属フィルム12を配置して作製された太陽電池アレイ62を裏面側から見た模式下面図ある。図18は、実施例3においてn型太陽電池セル10nとp型太陽電池セル10pとの裏面上にリボン状の金属フィルム12を配置して作製された太陽電池アレイ62の模式断面図であり、図17におけるXVIII-XVIII線における断面図である。
Example 3
In Example 3, a solar cell module was produced in the same manner as in Example 1 except for the following steps, and a solar cell module of Example 3 was obtained. FIG. 17 is a schematic view of a solar cell array 62 produced by disposing the ribbon-like metal film 12 on the back surfaces of the n-type solar cell 10n and the p-type solar cell 10p in Example 3 as viewed from the back surface side. There is a bottom view. FIG. 18 is a schematic cross-sectional view of a solar cell array 62 produced by disposing the ribbon-like metal film 12 on the back surfaces of the n-type solar cell 10n and the p-type solar cell 10p in Example 3. FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
 実施例3では、図13および図14に示すように接続した25組の太陽電池セル10の組を裏面を上向きにして10列×5行に並べ、横タブ線13および端子ボックスケーブルを配置した。そして、図17および図18に示すように、金属フィルム12として幅が10mm、厚さが50μmの錫(Sn)メッキ銅箔を、n型太陽電池セル10nの裏面アルミニウム電極35上およびp型太陽電池セル10pの裏面アルミニウム電極45上に合わせて2列に載せた。錫(Sn)メッキ銅箔の太陽電池セル10側の一面には、ACF63が配置されている。そして、はんだが溶融しない温度で熱ロールによりACFを各錫(Sn)メッキ銅箔に熱圧着することで、図17および図18に示すように10列×5行の太陽電池アレイ62を作製した。 In Example 3, a set of 25 solar cells 10 connected as shown in FIG. 13 and FIG. 14 was arranged in 10 columns × 5 rows with the back side facing upward, and the horizontal tab wires 13 and terminal box cables were arranged. . As shown in FIGS. 17 and 18, a tin (Sn) plated copper foil having a width of 10 mm and a thickness of 50 μm is used as the metal film 12 on the back surface aluminum electrode 35 of the n-type solar cell 10 n and the p-type solar cell. The battery cells 10p were placed in two rows on the back surface aluminum electrode 45. An ACF 63 is disposed on one surface of the tin (Sn) plated copper foil on the solar battery cell 10 side. Then, ACF was thermocompression bonded to each tin (Sn) plated copper foil by a hot roll at a temperature at which the solder did not melt, thereby producing a solar cell array 62 of 10 columns × 5 rows as shown in FIGS. .
 図19は、実施例3におけるラミネート前の積層体64を示す模式上面図である。図20は、実施例3におけるラミネート前の積層体64を示す模式断面図であり、図19におけるXX-XX線における断面図である。図21は、実施例3の太陽電池モジュールの太陽電池アレイのアレイ配線を裏面側から見た模式下面図である。図22は、実施例3の太陽電池モジュールを示す模式断面図であり、図21におけるXXII-XXII線における断面図である。 FIG. 19 is a schematic top view showing the laminate 64 before lamination in Example 3. 20 is a schematic cross-sectional view showing the laminate 64 before lamination in Example 3, and is a cross-sectional view taken along the line XX-XX in FIG. FIG. 21 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module of Example 3 as viewed from the back surface side. 22 is a schematic cross-sectional view showing the solar cell module of Example 3, and is a cross-sectional view taken along line XXII-XXII in FIG.
 ガラス基板21の上に、封止材シート22a、太陽電池アレイ62、封止材シート22a、バックシート23をこの順で積層して、図19および図20に示すラミネート前の積層体64を形成した。その後、ラミネート前の積層体64を真空熱ラミネータで加圧および加熱することにより熱圧着して、図21および図22に示す構造の実施例3の太陽電池モジュールを得た。 On the glass substrate 21, the encapsulant sheet 22a, the solar cell array 62, the encapsulant sheet 22a, and the back sheet 23 are laminated in this order to form a laminate 64 before lamination shown in FIGS. did. Then, the laminated body 64 before lamination was thermocompression-bonded by pressurizing and heating with a vacuum thermal laminator to obtain a solar cell module of Example 3 having the structure shown in FIGS. 21 and 22.
実施例4.
 図23は、実施例4におけるラミネート前の積層体66を示す模式上面図である。図24は、実施例4におけるラミネート前の積層体66を示す模式断面図であり、図23におけるXXIV-XXIV線における断面図である。図25は、実施例4の太陽電池モジュールの太陽電池アレイのアレイ配線を裏面側から見た模式下面図である。図26は、実施例4の太陽電池モジュールを示す模式断面図であり、図25におけるXXVI-XXVI線における断面図である。
Example 4
FIG. 23 is a schematic top view showing the laminate 66 before lamination in the fourth embodiment. 24 is a schematic cross-sectional view showing the laminated body 66 before lamination in Example 4, and is a cross-sectional view taken along line XXIV-XXIV in FIG. FIG. 25 is a schematic bottom view of the array wiring of the solar cell array of the solar cell module of Example 4 as viewed from the back side. 26 is a schematic cross-sectional view showing the solar cell module of Example 4, and is a cross-sectional view taken along line XXVI-XXVI in FIG.
 実施例4では、まず、実施例1と同様にしてn型太陽電池セル10nとp型太陽電池セル10pとを金属ワイヤー線11により接続して25組の太陽電池セル10の組を形成した。 In Example 4, first, in the same manner as in Example 1, n-type solar cells 10n and p-type solar cells 10p were connected by metal wire 11 to form 25 sets of solar cells 10.
 つぎに、白板ガラスからなるガラス基板21の上に、厚さが0.8mmであり熱軟化温度が約60℃の熱架橋性ポリオレフィンからなる太陽電池用の封止材シート22aとを配置した。つぎに、25組の太陽電池セル10の組を、金属ワイヤー線11側をガラス基板21側にしてアレイ状に封止材22のシート上に配置した。また、端子ボックスに結線するための横タブ線13および端子ボックスケーブルを封止材22のシート上に配置した。 Next, a solar cell sealing material sheet 22a made of a thermally crosslinkable polyolefin having a thickness of 0.8 mm and a heat softening temperature of about 60 ° C. was placed on a glass substrate 21 made of white plate glass. Next, 25 sets of solar battery cells 10 were arranged on the sheet of the sealing material 22 in an array with the metal wire 11 side facing the glass substrate 21 side. Further, the horizontal tab wire 13 and the terminal box cable for connecting to the terminal box were arranged on the sheet of the sealing material 22.
 その上に厚さが70μmでありニッケル(Ni)メッキを施した電解銅箔からなる金属フィルム12をn型太陽電池セル10nの裏面アルミニウム電極35およびp型太陽電池セル10pの裏面アルミニウム電極45に合わせて載せ、横タブ線13とはんだで接合した。その上に、2層構成の積層バックシート65を載せ、図23および図24に示すラミネート前の積層体66を形成した。積層バックシート65には、熱可塑型ポリオレフィンからなり太陽電池モジュール1の内部側に配置される内側バックシート層65aと、ポリエチレンテレフタレートからなり太陽電池モジュール1の外面側に配置される外側バックシート層65bと、が積層された積層バックシート65を用いた。 A metal film 12 made of electrolytic copper foil having a thickness of 70 μm and plated with nickel (Ni) is applied to the back surface aluminum electrode 35 of the n-type solar cell 10n and the back surface aluminum electrode 45 of the p-type solar cell 10p. It put together and joined with the horizontal tab wire | line 13 and the solder. On top of that, a laminated backsheet 65 having a two-layer structure was placed to form a laminate 66 before lamination as shown in FIGS. The laminated backsheet 65 includes an inner backsheet layer 65a made of thermoplastic polyolefin and disposed on the inner side of the solar cell module 1, and an outer backsheet layer made of polyethylene terephthalate and disposed on the outer surface side of the solar cell module 1. A laminated back sheet 65 laminated with 65b was used.
 その後、ラミネート前の積層体66を真空熱ラミネータでたとえば150℃で30分間、加圧および加熱することにより熱圧着して、図25および図26に示す構造の太陽電池モジュールが得られる。その後、端子ボックスケーブルに接続する図示しない端子ボックスを積層バックシート65上に配置した。 Thereafter, the laminated body 66 before lamination is subjected to thermocompression bonding by pressurizing and heating, for example, at 150 ° C. for 30 minutes with a vacuum thermal laminator, whereby the solar cell module having the structure shown in FIGS. 25 and 26 is obtained. Thereafter, a terminal box (not shown) connected to the terminal box cable was disposed on the laminated back sheet 65.
 積層バックシート65の内側バックシート層65aのポリオレフィンが軟化する150℃でラミネートを行うことにより、熱軟化温度が約60℃の熱架橋性ポリオレフィンからなる太陽電池用の封止材シート22aは、溶融して太陽電池セル10を覆う。一方、内側バックシート層65aのポリオレフィンは、軟化して接着性を示すものの、溶融流動しない。このため、内側バックシート層65aのポリオレフィンは、n型太陽電池セル10nの裏面アルミニウム電極35およびp型太陽電池セル10pの裏面アルミニウム電極45と、金属フィルム12と、の間に入っていかない。これにより、金属フィルム12は、裏面アルミニウム電極35および裏面アルミニウム電極45に確実に押しつけられるため、裏面アルミニウム電極35および裏面アルミニウム電極45と、金属フィルム12と、の良好な電気的接合を実現できる。 By performing lamination at 150 ° C. where the polyolefin of the inner back sheet layer 65a of the laminated back sheet 65 is softened, the sealing material sheet 22a for a solar cell made of thermally crosslinkable polyolefin having a thermal softening temperature of about 60 ° C. is melted. Then, the solar battery cell 10 is covered. On the other hand, the polyolefin of the inner backsheet layer 65a softens and exhibits adhesiveness but does not melt and flow. For this reason, the polyolefin of the inner backsheet layer 65 a does not enter between the back surface aluminum electrode 35 of the n-type solar cell 10 n and the back surface aluminum electrode 45 of the p-type solar cell 10 p and the metal film 12. Thereby, since the metal film 12 is reliably pressed against the back surface aluminum electrode 35 and the back surface aluminum electrode 45, good electrical bonding between the back surface aluminum electrode 35 and the back surface aluminum electrode 45 and the metal film 12 can be realized.
比較例1.
 比較例1では、上記のn型太陽電池セル10nにおける構成部のn型とp型とが逆とされたp型太陽電池セルを10列×5行に並べて、一般的に用いられている太陽電池モジュールを作製した。p型太陽電池セルは、外径が156mm角、厚さが175μmであり、p型シリコン基板の受光面に設けられたn型不純物拡散層が負極とされ、p型シリコン基板の裏面が正極とされている。p型太陽電池セルの受光面側には、銀ペーストを印刷焼成により形成した複数のグリッド電極およびグリッド電極に直交する方向に延びる4本のバス電極が設けられている。p型太陽電池セルの裏面側は、上記のn型太陽電池セル10nと同様に裏面アルミニウム電極が全面に形成され、その上に4本のバス電極が形成されている。
Comparative Example 1
In the comparative example 1, the p-type solar cells in which the n-type and p-type components of the above-described n-type solar cell 10n are reversed are arranged in 10 columns × 5 rows and are generally used. A battery module was produced. The p-type solar cell has an outer diameter of 156 mm square and a thickness of 175 μm, the n-type impurity diffusion layer provided on the light-receiving surface of the p-type silicon substrate is the negative electrode, and the back surface of the p-type silicon substrate is the positive electrode Has been. On the light-receiving surface side of the p-type solar cell, a plurality of grid electrodes formed by printing and baking silver paste and four bus electrodes extending in a direction perpendicular to the grid electrodes are provided. On the back surface side of the p-type solar cell, a back surface aluminum electrode is formed on the entire surface in the same manner as the n-type solar cell 10n, and four bus electrodes are formed thereon.
 同じ行において隣り合うp型太陽電池セル同士は、一方のp型太陽電池セルの受光面側のバス電極と他方のp型太陽電池セルの裏面側のバス電極とに4本のタブ線をはんだ付けすることで電気的に直列に相互接続されている。タブ線は、はんだコートされた銅線であり、はんだを溶融することでバス電極に接合されている。タブ線は、隣り合うp型太陽電池セル間で、受光面側から裏面側に渡すために大きく曲げられて配置されている。また、隣り合う列の端部のp型太陽電池セル同士は、はんだコートされた銅線である横タブにより電気的に直列に相互接続されている。これにより、すべてのp型太陽電池セルが電気的に直列接続されている。 Adjacent p-type solar cells in the same row are soldered with four tab wires to the light receiving surface side bus electrode of one p-type solar cell and the back surface side bus electrode of the other p-type solar cell. So that they are electrically connected in series. The tab wire is a copper wire coated with solder, and is joined to the bus electrode by melting the solder. The tab line is arranged to be largely bent so as to pass from the light receiving surface side to the back surface side between adjacent p-type solar cells. In addition, the p-type solar cells at the ends of adjacent rows are electrically connected in series by horizontal tabs that are solder-coated copper wires. Thereby, all the p-type solar cells are electrically connected in series.
比較例2.
 比較例1と同じp型太陽電池セルのみを10列×5行に並べたことと、p型太陽電池セルの上に厚さ0.4mmのEVA封止材を載せ、さらに厚さ0.2mmのPETバックシートを載せて真空熱ラミネータで加圧および加熱することにより熱圧着したこと以外は、実施例1と同様にして、マルチワイヤー方式により太陽電池モジュールを作製した。
Comparative Example 2
Only the same p-type solar cells as in Comparative Example 1 were arranged in 10 columns × 5 rows, and an EVA sealing material having a thickness of 0.4 mm was placed on the p-type solar cells, and the thickness was further 0.2 mm. A solar cell module was produced by the multi-wire method in the same manner as in Example 1 except that the PET back sheet was placed and thermocompression bonded by pressurizing and heating with a vacuum thermal laminator.
比較例3.
 金属ワイヤー線11として「直径0.2mmの7本のはんだメッキ銅線」の代わりに、「直径1.0mmの6本のはんだメッキ銅線」を使用したこと以外は、比較例1と同様にして太陽電池モジュールを作製し、比較例3の太陽電池モジュールとした。
Comparative Example 3
Similar to Comparative Example 1, except that “six solder plated copper wires with a diameter of 1.0 mm” were used as the metal wire wires 11 instead of “seven solder plated copper wires with a diameter of 0.2 mm”. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 3.
比較例4.
 金属ワイヤー線11として「直径0.2mmの7本のはんだメッキ銅線」の代わりに、「直径0.15mmの7本のはんだメッキ銅線」を使用したこと以外は、実施例1と同様にして太陽電池モジュールを作製し、比較例4の太陽電池モジュールとした。
Comparative Example 4
Except for using “seven solder-plated copper wires having a diameter of 0.15 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wires 11, the same manner as in Example 1 was used. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 4.
比較例5.
 金属ワイヤー線11として「直径0.2mmの7本のはんだメッキ銅線」の代わりに、「直径1.5mmの6本のはんだメッキ銅線」を使用したこと以外は、実施例1と同様にして太陽電池モジュールを作製し、比較例5の太陽電池モジュールとした。
Comparative Example 5
Except for using “six solder-plated copper wires having a diameter of 1.5 mm” instead of “seven solder-plated copper wires having a diameter of 0.2 mm” as the metal wire wire 11, the same manner as in Example 1 was used. Thus, a solar cell module was produced and used as a solar cell module of Comparative Example 5.
(評価試験)
 上記のようにして作製した実施例1から実施例4および比較例1から比較例5の太陽電池モジュールについて、ソーラシュミレータを用いて初期最大出力を測定した。さらに、-40℃と105℃との2つの温度におけるヒートサイクル試験を1000サイクル実施し、ヒートサイクル試験後における各太陽電池モジュールのヒートサイクル後最大出力を測定した。実施例1から実施例4および比較例1から比較例5の太陽電池モジュールの測定結果を図27に示す。図27は、実施例1から実施例4および比較例1から比較例5の太陽電池モジュールの評価試験の結果を示す図である。
(Evaluation test)
For the solar cell modules of Examples 1 to 4 and Comparative Examples 1 to 5 manufactured as described above, the initial maximum output was measured using a solar simulator. Furthermore, 1000 cycles of heat cycle tests at two temperatures of −40 ° C. and 105 ° C. were performed, and the maximum output after heat cycle of each solar cell module after the heat cycle test was measured. The measurement results of the solar cell modules of Examples 1 to 4 and Comparative Examples 1 to 5 are shown in FIG. FIG. 27 is a diagram showing the results of evaluation tests of the solar cell modules of Examples 1 to 4 and Comparative Examples 1 to 5.
 実施例1の太陽電池モジュールは、隣り合うn型太陽電池セル10nとp型太陽電池セル10pとの間で、受光面側から裏面側に金属ワイヤ一線11を渡す必要が無く、バス電極を使用しないためバス電極への位置合わせも不要である。このため、実施例1の太陽電池モジュールは、金属ワイヤー線11の接続不良、すなわち金属ワイヤ一線11が外れることがなくなっている。また、実施例1の太陽電池モジュールは、マルチワイヤー方式を採用することにより、比較例1の太陽電池モジュールの初期最大出力の1.125倍となり、光電変換効率が12.5%向上した。 The solar cell module of Example 1 does not need to pass the metal wire line 11 from the light receiving surface side to the back surface side between adjacent n-type solar cells 10n and p-type solar cells 10p, and uses bus electrodes. Therefore, alignment to the bus electrode is also unnecessary. For this reason, in the solar cell module of Example 1, the connection failure of the metal wire 11, that is, the metal wire 11 is not disconnected. Moreover, the solar cell module of Example 1 was 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, and the photoelectric conversion efficiency was improved by 12.5%.
 実施例2の太陽電池モジュールは、金属ワイヤー線11の直径および本数が異なること以外は実施例1の太陽電池モジュールと同様の構成を有する。このため、実施例2の太陽電池モジュールは、金属ワイヤー線11の接続不良がなくなっている。また、実施例2の太陽電池モジュールは、実施例1の太陽電池モジュールと同様に、マルチワイヤー方式を採用することにより比較例1の太陽電池モジュールの初期最大出力の1.1倍となり、光電変換効率が10.0%向上した。 The solar cell module of Example 2 has the same configuration as that of the solar cell module of Example 1 except that the diameter and number of the metal wire wires 11 are different. For this reason, in the solar cell module of Example 2, the connection failure of the metal wire 11 is eliminated. Moreover, the solar cell module of Example 2 becomes 1.1 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 10.0%.
 実施例3の太陽電池モジュールは、実施例1の太陽電池モジュールと同様のマルチワイヤー方式を採用している。このため、実施例3の太陽電池モジュールは、金属ワイヤー線11の接続不良がなくなっている。また、実施例3の太陽電池モジュールは、実施例1の太陽電池モジュールと同様に、マルチワイヤー方式を採用することにより比較例1の太陽電池モジュールの初期最大出力の1.125倍となり、光電変換効率が12.5%向上した。 The solar cell module of Example 3 employs the same multi-wire method as the solar cell module of Example 1. For this reason, in the solar cell module of Example 3, the connection failure of the metal wire 11 is eliminated. Moreover, the solar cell module of Example 3 becomes 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 12.5%.
 実施例4の太陽電池モジュールは、実施例1の太陽電池モジュールと同様のマルチワイヤー方式を採用している。このため、実施例4の太陽電池モジュールは、金属ワイヤー線11の接続不良がなくなっている。また、実施例4の太陽電池モジュールは、実施例1の太陽電池モジュールと同様に、マルチワイヤー方式を採用することにより比較例1の太陽電池モジュールの初期最大出力の1.125倍となり、光電変換効率が12.5%向上した。 The solar cell module of Example 4 employs the same multi-wire method as the solar cell module of Example 1. For this reason, the solar cell module of Example 4 has lost the connection defect of the metal wire wire 11. FIG. Moreover, the solar cell module of Example 4 becomes 1.125 times the initial maximum output of the solar cell module of Comparative Example 1 by adopting the multi-wire method, similarly to the solar cell module of Example 1, and photoelectric conversion Efficiency increased by 12.5%.
 上記のように、実施例1,2,3,4の太陽電池モジュールは、初期最大出力も高く、ヒートサイクル後における最大出力の低下も認められない。一方、比較例1,2,3,4,5の太陽電池モジュールではヒートサイクル後に大幅な最大出力の低下が認められた。 As described above, the solar cell modules of Examples 1, 2, 3, and 4 have a high initial maximum output, and a decrease in the maximum output after the heat cycle is not recognized. On the other hand, in the solar cell modules of Comparative Examples 1, 2, 3, 4, and 5, a significant decrease in the maximum output was observed after the heat cycle.
 比較例1の太陽電池モジュールは、マルチワイヤー方式を採用した実施例と比較して、初期最大出力が低かった。この結果よりマルチワイヤー方式が発電効率の向上に有効であることがわかる。解析の結果、比較例1の太陽電池モジュールは、ヒートサイクル後のセル割れが見られなかったことから信頼性は良好であると考えられる。 The solar cell module of Comparative Example 1 had a lower initial maximum output than that of the Example adopting the multi-wire method. From this result, it can be seen that the multi-wire method is effective in improving the power generation efficiency. As a result of the analysis, the solar cell module of Comparative Example 1 is considered to have good reliability because cell cracks after the heat cycle were not observed.
 また、解析の結果、比較例2および比較例3の太陽電池モジュールでは、ヒートサイクル後に太陽電池モジュールのセル割れが200カ所以上に発生しており、初期最大出力が低いことの主要因であると考えられる。 Moreover, as a result of the analysis, in the solar cell modules of Comparative Example 2 and Comparative Example 3, cell cracks of the solar cell module occurred at 200 or more locations after the heat cycle, which is the main factor that the initial maximum output is low. Conceivable.
 比較例4の太陽電池モジュールでは、太陽電池モジュールのセル割れは認められなかった。これは、金属ワイヤー線11の直径が細すぎるために、金属ワイヤー線11の接続不良が発生しているため、すなわち金属ワイヤー線11がグリッド電極から外れているために、金属ワイヤー線11に起因したセル割れが発生していないと考えられる。 In the solar cell module of Comparative Example 4, no cell cracking of the solar cell module was observed. This is because the metal wire wire 11 is too thin and a connection failure of the metal wire wire 11 occurs, that is, the metal wire wire 11 is disconnected from the grid electrode. It is thought that the cracked cell was not generated.
 また、比較例4の太陽電池モジュールは、ヒートサイクル後の最大出力の解析結果から、金属ワイヤー線11とグリッド電極との接続不良により、すなわち金属ワイヤー線11がグリッド電極から外れていることにより、出力が低下していることがわかった。比較例4の太陽電池モジュールのセル割れが認められなかった理由は、接続不良に伴う応力緩和によると考えられる。 Moreover, the solar cell module of the comparative example 4 is based on the analysis result of the maximum output after the heat cycle, due to poor connection between the metal wire wire 11 and the grid electrode, that is, the metal wire wire 11 is disconnected from the grid electrode. It turned out that the output has fallen. The reason why the cell crack of the solar cell module of Comparative Example 4 was not recognized is considered to be due to stress relaxation accompanying connection failure.
 比較例5の太陽電池モジュールは、太陽電池モジュールのセル割れは50ヶ所に留まっていたが、初期最大出力が低かった。解析の結果、比較例5の太陽電池モジュールは、実施例1の太陽電池モジュール同様にマルチワイヤー方式を採用しているが、金属ワイヤー線が太すぎるために、太陽電池セルに入射する太陽光が少なくなり、太陽電池セルの光電変換効率が低下したことが初期最大出力が低いことの主要因であると考えられる。 In the solar cell module of Comparative Example 5, the cell crack of the solar cell module remained at 50 locations, but the initial maximum output was low. As a result of the analysis, the solar cell module of Comparative Example 5 adopts the multi-wire method similarly to the solar cell module of Example 1, but because the metal wire is too thick, the sunlight incident on the solar cell is not enough. The decrease in the photoelectric conversion efficiency of the solar cells is considered to be the main factor for the low initial maximum output.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 太陽電池モジュール、10 太陽電池セル、10n n型太陽電池セル、10p p型太陽電池セル、11 金属ワイヤー線、12 金属フィルム、13 横タブ線、21 ガラス基板、22 封止材、22a 封止材シート、23 バックシート、24 電極一体型バックシート、25,64,66 積層体、31 n型シリコン層、32 p型不純物拡散層、33,43,53 空乏層、34,44,54 グリッド電極、35,45,55 裏面アルミニウム電極、41 p型シリコン層、42 n型不純物拡散層、46 裏面パッシベーション膜、46a コンタクトホール、47 合金層、48 裏面電界層、51 p型シリコン層、52 n型不純物拡散層、56 反射コーティング層、61 粘着層、62 太陽電池アレイ、65 積層バックシート、65a 内側バックシート層、65b 外側バックシート層。 1 solar cell module, 10 solar cell, 10n n-type solar cell, 10p p-type solar cell, 11 metal wire wire, 12 metal film, 13 horizontal tab wire, 21 glass substrate, 22 sealing material, 22a sealing Material sheet, 23 back sheet, 24 electrode integrated back sheet, 25, 64, 66 laminate, 31 n-type silicon layer, 32 p-type impurity diffusion layer, 33, 43, 53 depletion layer, 34, 44, 54 grid electrode , 35, 45, 55 Back surface aluminum electrode, 41 p-type silicon layer, 42 n-type impurity diffusion layer, 46 back surface passivation film, 46a contact hole, 47 alloy layer, 48 back surface electric field layer, 51 p-type silicon layer, 52 n-type Impurity diffusion layer, 56 reflective coating layer, 61 adhesive layer, 62 solar cell array Lee, 65 laminated backsheet, 65a inner backsheet layer, 65b outer backsheet layer.

Claims (10)

  1.  受光面側が正極となるn型の第1結晶系太陽電池セルと、
     前記第1結晶系太陽電池セルと交互に並設されて受光面側が負極となるp型の第2結晶系太陽電池セルと、
     隣り合う前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの受光面側の電極同士を接続し、直径が0.2mmから1.0mmの範囲である円形の断面を有する6本以上の金属製の金属ワイヤー線からなる複数の受光面側接続配線と、
     隣り合う前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの受光面側と対向する裏面側の電極同士を接続する金属フィルムからなる裏面側接続配線と、
     を備えることを特徴とする太陽電池モジュール。
    An n-type first crystalline solar cell in which the light-receiving surface side is a positive electrode;
    P-type second crystalline solar cells that are alternately arranged in parallel with the first crystalline solar cells and the light receiving surface side is a negative electrode;
    The electrodes on the light receiving surface side of the adjacent first crystal solar cells and the second crystal solar cells adjacent to each other are connected to each other and have a circular cross section whose diameter is in the range of 0.2 mm to 1.0 mm. A plurality of light-receiving surface side connection wirings made of metal wire wires made of metal or more,
    A back side connection wiring made of a metal film that connects the electrodes on the back side facing the light receiving surface side of the adjacent first crystal solar cell and the second crystal solar cell;
    A solar cell module comprising:
  2.  前記裏面側接続配線の厚さが0.3mm以下であること、
     を特徴とする請求項1に記載の太陽電池モジュール。
    The thickness of the back side connection wiring is 0.3 mm or less,
    The solar cell module according to claim 1.
  3.  前記裏面側接続配線の裏面側にバックシートを備え、
     前記裏面側接続配線が、厚さが50μm以下の粘着層を介して前記バックシートに固定されていること、
     を特徴とする請求項2に記載の太陽電池モジュール。
    A back sheet is provided on the back side of the back side connection wiring,
    The back surface side connection wiring is fixed to the back sheet via an adhesive layer having a thickness of 50 μm or less,
    The solar cell module according to claim 2.
  4.  前記受光面側接続配線の受光面側に受光面側保護部材を備え、
     前記裏面側接続配線の裏面側にバックシートを備え、
     前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面側の電極と、前記裏面側接続配線との接合面を除いて、前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルと前記受光面側接続配線と前記裏面側接続配線とが、前記受光面側保護部材と前記バックシートとの間において封止材により封止されており、
     前記バックシートにおける前記裏面側接続配線側が、前記封止材より融点が高い熱可塑性樹脂からなり、
     前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面側の電極と、前記裏面側接続配線とが直接接触していること、
     を特徴とする請求項1から3のいずれか1つに記載の太陽電池モジュール。
    A light receiving surface side protection member is provided on the light receiving surface side of the light receiving surface side connection wiring,
    A back sheet is provided on the back side of the back side connection wiring,
    The first crystalline solar cell and the second, except for the electrodes on the back side of the first crystalline solar cell and the second crystalline solar cell and the junction surface of the back side connection wiring. Crystalline solar cells, the light receiving surface side connection wiring and the back surface side connection wiring are sealed with a sealing material between the light receiving surface side protection member and the back sheet,
    The back side connection wiring side in the back sheet is made of a thermoplastic resin having a higher melting point than the sealing material,
    The back surface side electrodes of the first crystal solar cell and the second crystal solar cell are in direct contact with the back surface connection wiring,
    The solar cell module according to any one of claims 1 to 3, wherein:
  5.  前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面側の電極と、前記裏面側接続配線とが、はんだ、導電性接着剤、金属ペースト、異方性導電フィルムまたは導電性両面テープにより接合されていること、
     を特徴とする請求項1に記載の太陽電池モジュール。
    The electrode on the back side of the first crystal solar cell and the second crystal solar cell and the back side connection wiring are solder, conductive adhesive, metal paste, anisotropic conductive film or conductive Bonded with adhesive double-sided tape,
    The solar cell module according to claim 1.
  6.  受光面側が正極となるn型の第1結晶系太陽電池セルと、受光面側が負極となるp型の第2結晶系太陽電池セルと、を交互に配置する配置工程と、
     隣り合う前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの受光面側の電極同士を、直径が0.2mmから1.0mmの範囲である円形の断面を有する6本以上の金属製の金属ワイヤー線からなる複数の受光面側接続配線により接続する受光面側接続工程と、
     隣り合う前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの受光面側と対向する裏面側の電極同士を金属フィルムからなる裏面側接続配線により接続する裏面側接続工程と、
     を含むことを特徴とする太陽電池モジュールの製造方法。
    An arrangement step of alternately arranging n-type first crystalline solar cells whose light-receiving surface side is a positive electrode and p-type second crystalline solar cells whose light-receiving surface side is a negative electrode;
    Six or more electrodes on the light-receiving surface side of the adjacent first crystal solar cells and the second crystal solar cells adjacent to each other have a circular cross section with a diameter ranging from 0.2 mm to 1.0 mm. A light-receiving surface side connection step of connecting by a plurality of light-receiving surface side connection wirings made of metal metal wires,
    A back side connection step of connecting the electrodes on the back side facing the light receiving surface side of the adjacent first crystal solar cell and the second crystal solar cell by a back side connection wiring made of a metal film;
    The manufacturing method of the solar cell module characterized by including.
  7.  前記裏面側接続配線の厚さが0.3mm以下であること、
     を特徴とする請求項6に記載の太陽電池モジュールの製造方法。
    The thickness of the back side connection wiring is 0.3 mm or less,
    The method for manufacturing a solar cell module according to claim 6.
  8.  前記裏面側接続工程の前に、厚さが50μm以下の粘着層を介して前記裏面側接続配線をバックシートの一面に固定して電極一体型バックシートを形成する工程を有し、
     前記裏面側接続配線を前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面の電極に接触させて配置して、前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面の電極同士を前記裏面側接続配線により接続すること、
     を特徴とする請求項7に記載の太陽電池モジュールの製造方法。
    Before the back side connection step, the step of fixing the back side connection wiring to one surface of the back sheet through an adhesive layer having a thickness of 50 μm or less to form an electrode integrated back sheet,
    The back surface side connection wiring is disposed in contact with electrodes on the back surface of the first crystal solar cell and the second crystal solar cell, and the first crystal solar cell and the second crystal system are arranged. Connecting the electrodes on the back side with the solar battery cell by the back side connection wiring,
    The method for manufacturing a solar cell module according to claim 7.
  9.  前記裏面側接続工程の後に、
     受光面側保護部材上に、封止材のシートと、前記裏面側接続配線および前記受光面側接続配線により接続された前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルと、前記電極一体型バックシートとをこの順で積層し、加圧および加熱することにより、前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面側の電極と、前記裏面側接続配線とを直接接触させること、
     を特徴とする請求項6から8のいずれか1つに記載の太陽電池モジュールの製造方法。
    After the back side connection step,
    On the light receiving surface side protection member, the sheet of sealing material, the first crystal solar cell and the second crystal solar cell connected by the back surface side connection wiring and the light receiving surface side connection wiring, By laminating the electrode-integrated backsheet in this order, pressurizing and heating, electrodes on the back side of the first crystalline solar cell and the second crystalline solar cell, and the back side Direct contact with the connection wiring,
    The method for manufacturing a solar cell module according to claim 6, wherein:
  10.  前記裏面側接続工程では、前記第1結晶系太陽電池セルと前記第2結晶系太陽電池セルとの裏面側の電極と、前記裏面側接続配線とを、はんだ、導電性接着剤、金属ペースト、異方性導電フィルムまたは導電性両面テープにより接合すること、
     を特徴とする請求項6に記載の太陽電池モジュールの製造方法。
    In the back surface side connection step, the electrodes on the back surface side of the first crystal solar cell and the second crystal solar cell, and the back surface connection wiring, solder, conductive adhesive, metal paste, Bonding with an anisotropic conductive film or conductive double-sided tape,
    The method for manufacturing a solar cell module according to claim 6.
PCT/JP2017/003818 2017-02-02 2017-02-02 Solar cell module and method for manufacturing solar cell module WO2018142544A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003818 WO2018142544A1 (en) 2017-02-02 2017-02-02 Solar cell module and method for manufacturing solar cell module
JP2018565170A JPWO2018142544A1 (en) 2017-02-02 2017-02-02 Solar cell module and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003818 WO2018142544A1 (en) 2017-02-02 2017-02-02 Solar cell module and method for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
WO2018142544A1 true WO2018142544A1 (en) 2018-08-09

Family

ID=63039511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003818 WO2018142544A1 (en) 2017-02-02 2017-02-02 Solar cell module and method for manufacturing solar cell module

Country Status (2)

Country Link
JP (1) JPWO2018142544A1 (en)
WO (1) WO2018142544A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218026A1 (en) * 2019-04-23 2020-10-29 株式会社カネカ Crystal silicon solar battery and crystal silicon solar battery assembly cell
JP6941252B1 (en) * 2021-03-05 2021-09-29 ジョジアン ジンコ ソーラー カンパニー リミテッド Cell string structure and photovoltaic modules and their manufacturing methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026361A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Double-sided light receiving solar cell module
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
WO2009041212A1 (en) * 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar battery module, and solar battery module
JP2015019049A (en) * 2013-06-14 2015-01-29 三菱電機株式会社 Photodetector module and manufacturing method thereof
JP2016146373A (en) * 2015-02-06 2016-08-12 長州産業株式会社 Solar cell module and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278279A (en) * 1987-03-16 1988-11-15 Mitsubishi Electric Corp Solar battery module
JP4660561B2 (en) * 2007-03-19 2011-03-30 三洋電機株式会社 Photovoltaic device
JP2011091131A (en) * 2009-10-21 2011-05-06 Kaneka Corp Method of manufacturing crystal silicon based solar cell
JP2012079838A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Solar cell module and method for manufacturing the same
CN104701415A (en) * 2015-02-13 2015-06-10 晶澳(扬州)太阳能科技有限公司 Manufacture method for solar cell module via solar cells different in structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026361A (en) * 2000-07-07 2002-01-25 Hitachi Ltd Double-sided light receiving solar cell module
JP2007103536A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Solar battery module
WO2009041212A1 (en) * 2007-09-28 2009-04-02 Sharp Kabushiki Kaisha Solar battery, method for manufacturing solar battery, method for manufacturing solar battery module, and solar battery module
JP2015019049A (en) * 2013-06-14 2015-01-29 三菱電機株式会社 Photodetector module and manufacturing method thereof
JP2016146373A (en) * 2015-02-06 2016-08-12 長州産業株式会社 Solar cell module and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218026A1 (en) * 2019-04-23 2020-10-29 株式会社カネカ Crystal silicon solar battery and crystal silicon solar battery assembly cell
JP7520821B2 (en) 2019-04-23 2024-07-23 株式会社カネカ Crystalline silicon solar cells and assembled cells of crystalline silicon solar cells
JP6941252B1 (en) * 2021-03-05 2021-09-29 ジョジアン ジンコ ソーラー カンパニー リミテッド Cell string structure and photovoltaic modules and their manufacturing methods
US11362226B1 (en) 2021-03-05 2022-06-14 Zhejiang Jinko Solar Co., Ltd. Solar cell string, photovoltaic module and manufacturing methods therefor
JP2022135851A (en) * 2021-03-05 2022-09-15 ジョジアン ジンコ ソーラー カンパニー リミテッド Cell string structure, photovoltaic module and manufacturing methods therefor

Also Published As

Publication number Publication date
JPWO2018142544A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2016045227A1 (en) Main-gate-free and high-efficiency back contact solar cell module, assembly and preparation process
JP6046658B2 (en) Solar cell
JP2019004155A (en) High efficiency configuration for solar cell string
WO2010116973A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
JP4958187B2 (en) Solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
US20120006483A1 (en) Methods for Interconnecting Solar Cells
JP2014007384A (en) Solar cell module and ribbon assembly applied to the same
JP2014183289A (en) Solar cell module, and manufacturing method of crystal-based solar cell module
JPWO2017064818A1 (en) SOLAR CELL MODULE, SOLAR CELL MODULE MANUFACTURING METHOD, AND LEAD
JP5036157B2 (en) Solar cell module
WO2018142544A1 (en) Solar cell module and method for manufacturing solar cell module
JP2007281530A (en) Solar battery module
KR102374145B1 (en) Solar cell panel
JP4781074B2 (en) Solar cell module
CN110313074A (en) Solar cell module
JP2024037993A (en) Method for manufacturing solar cell panel
KR102219793B1 (en) Solar cell and solar cell module
CN103597609A (en) Solar cell module and method for manufacturing same
JP4738147B2 (en) Solar cell module and manufacturing method thereof
JP6877897B2 (en) Solar cell module
KR101890288B1 (en) Solar cell and solar cell panel including the same
JP2011054660A (en) Solar-cell string and solar-cell module using the same
KR102162718B1 (en) Solar cell module
WO2015072241A1 (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
WO2020031574A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894780

Country of ref document: EP

Kind code of ref document: A1