WO2018038212A1 - Manufacturing method of image display device - Google Patents
Manufacturing method of image display device Download PDFInfo
- Publication number
- WO2018038212A1 WO2018038212A1 PCT/JP2017/030351 JP2017030351W WO2018038212A1 WO 2018038212 A1 WO2018038212 A1 WO 2018038212A1 JP 2017030351 W JP2017030351 W JP 2017030351W WO 2018038212 A1 WO2018038212 A1 WO 2018038212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curable resin
- image display
- group
- meth
- resin layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Definitions
- the present invention relates to a method for manufacturing an image display device.
- An image display device used in an information terminal such as a smart phone has an image display unit (including a liquid crystal panel, a cover glass, etc.) having an image display surface and a frame unit that supports the image display unit.
- the image display unit and the frame unit are manufactured by bonding and fixing with a pressure-sensitive adhesive tape.
- a pressure-sensitive adhesive tape a black pressure-sensitive adhesive tape having a light shielding property is generally used in order to prevent deterioration of image quality due to light leakage from between the image display portion and the frame portion (for example, patents). Reference 1).
- the present invention provides a method capable of efficiently forming a light-shielding layer having a light-shielding property that suppresses light leakage from between an image display part and a frame part even in a narrow region when manufacturing an image display device.
- the purpose is to do.
- One aspect of the present invention is a liquid crystal panel having an image display surface, an image display portion having a cover member having a light transmission portion facing the image display surface, and the image display portion provided around the image display portion.
- a method of manufacturing an image display device comprising: a frame portion that supports a frame; and a light shielding layer formed between the frame portion and the image display portion. This method includes a step of applying a curable resin composition containing a colorant to the image display member or the frame portion to form a frame-shaped curable resin layer, and the curable resin layer.
- the light shielding layer is the curable resin layer that has undergone a curing reaction.
- the light shielding layer that suppresses light leakage between the image display portion and the frame portion can be efficiently formed even in a narrow region.
- the curable resin layer when the image display portion and the frame portion are bonded to each other can have pressure-sensitive adhesiveness.
- the image display unit and the frame unit may be bonded so that an aspect ratio represented by the following formula is 0.4 or more.
- Aspect ratio B '/ A'
- a ′ represents a width at a predetermined portion of the frame-shaped curable resin layer applied to one of the image display unit and the frame unit
- B ′ represents the image display unit and the image display unit.
- variety which is in contact with the other of the said image display part and the said frame part in the said predetermined part of the said curable resin layer after the said frame part is bonded together is shown.
- the above method may further include a step of further proceeding a curing reaction of the curable resin layer after the step of bonding the image display unit and the frame unit.
- a step of further proceeding a curing reaction of the curable resin layer after the step of bonding the image display unit and the frame unit.
- the width of the light shielding layer in a direction perpendicular to the direction in which the light shielding layer extends may be 0.5 mm or less. Even in such a narrow region, according to the above method, it is possible to form the light shielding layer more efficiently than in the case where a pressure sensitive adhesive tape is used.
- the curable resin composition may further contain a photo radical polymerization initiator and a monomer component containing a monofunctional monomer having one radical polymerizable group.
- the monofunctional monomer may include a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of the monomer component by ionic reaction.
- the curable resin composition contains a compound having a reactive group that crosslinks polymer chains by ionic reaction
- curing of the curable resin layer by ionic reaction is followed by curing reaction by generation of polymer chain by photoradical polymerization.
- the reaction can easily proceed further.
- the monofunctional monomer may include a compound having a silanol group and / or an alkoxysilyl group.
- the monofunctional monomer may include a compound having a cyclic ether group.
- the curable resin composition may further contain a photoacid generator.
- the monofunctional monomer may include a compound having an isocyanate group.
- the curable resin composition may further contain a photobase generator. The photobase generator may also serve as the photoradical polymerization initiator.
- the curable resin composition may further contain a polymer.
- the curable resin layer after being irradiated with active energy rays particularly easily has pressure-sensitive adhesive properties for bonding the image display portion and the frame portion together. be able to.
- a light-shielding layer having a light-shielding property that suppresses light leakage from between an image display unit and a frame unit can be efficiently formed even in a narrow region. Can be formed.
- the image display unit can be fixed with higher adhesive force. The high adhesive force can suppress the peeling and floating of the image display unit due to the impact force due to dropping or the repulsive force of the flexible wiring board (FPC).
- (meth) acrylate means “acrylate” and “methacrylate” corresponding thereto.
- (meth) acryl means “acryl” and “methacryl” corresponding thereto, and “(meth) acryloyl” means “acryloyl” and corresponding “methacryloyl”.
- FIG. 1 is a cross-sectional view showing an embodiment of an image display device.
- the image display device 100 shown in FIG. 1 supplies light to the liquid crystal panel 41 and the image display unit 1 including the liquid crystal panel 41 having the image display surface 41S, the cover member 20, and the light-transmitting pressure-sensitive adhesive layer 42.
- the cover member 20 includes a cover glass 21 having a light transmission portion 25 facing the image display surface 41S, and a frame portion 22 provided on the peripheral portion of the main surface of the cover glass 21 on the image display surface 41S side.
- the light transmissive pressure sensitive adhesive layer 42 is bonded between the liquid crystal panel 41 and the cover member 20 while being interposed.
- the light-transmissive pressure-sensitive adhesive layer 42 is generally sometimes referred to as OCA (Optical clear adhesive).
- the backlight unit 43 includes a light source 45 and an optical sheet unit 46 for supplying light from the light source 45 to the liquid crystal panel 41.
- the frame unit 5 includes a resin frame 51 provided around the liquid crystal panel 41 and the backlight unit 43, a backlight frame 52 that houses the backlight unit 43 outside the resin frame 51, and a backlight frame 52. And a housing frame 53.
- the resin frame 51 supports the image display unit 1 by adhering to the peripheral portion of the liquid crystal panel 41 and the frame portion 22 of the cover member 20 with the light shielding layer 3 interposed therebetween.
- the backlight frame 52 supports the image display unit 1 by adhering to the frame unit 22 with the light shielding layer 3 interposed therebetween.
- the housing frame 53 supports the image display unit 1 by adhering to the frame unit 22 with the light shielding layer 3 interposed.
- the light shielding layer 3 can have such a light transmittance that light leakage from the backlight unit 43 is substantially invisible.
- the average light transmittance at 400 to 700 nm of the light shielding layer 3 may be less than 10%.
- This average light transmittance may be, for example, a value measured under the condition of irradiating light in the thickness direction of the light shielding layer 3.
- the light-shielding layer 3 may form a closed frame-like body that completely surrounds the periphery of the backlight unit 43, and surrounds a part of the periphery of the backlight unit 43 as long as light leakage can be sufficiently suppressed.
- An open frame-like body may be formed.
- the light shielding layer 3 between at least one selected from the resin frame 51, the backlight frame 52, and the housing frame 53 and the image display unit 1 is coated with a curable resin composition and active energy rays. It can be formed by a method including irradiation.
- a part of the light shielding layer of the image display device may be formed of a pressure sensitive adhesive tape.
- the width W of each light shielding layer 3 in a direction perpendicular to the direction in which the light shielding layer 3 extends may be 0.5 mm or less.
- the width W is narrow, an image display device having a narrower frame portion and excellent design can be obtained.
- the lower limit of the width W is not particularly limited, but may be about 0.2 mm.
- the members constituting the image display unit 1 and the frame unit 5 can be appropriately selected from those normally employed in the field of image display devices.
- the optical sheet unit 46 of the backlight unit 43 generally includes a lens sheet, a diffusion sheet, a light guide plate, a reflection sheet, and the like.
- the configuration of the image display device is not limited to the configuration shown in FIG.
- the frame portion 22 may not be provided, and the peripheral portion of the cover glass 21 and the frame portion 5 may be bonded with the light shielding layer 3 interposed.
- FIGS. 2 and 3 are perspective views showing an embodiment of a method for manufacturing an image display device.
- the method shown in FIGS. 2 and 3 applies a curable resin composition to a predetermined portion (periphery of the main surface on the back side) of the image display unit 1 (for example, a cover member) to form a frame-like curable property.
- the light shielding layer 3 is formed by the progress of the curing reaction in the curable resin layer 3A.
- FIGS. 4 and 5 are also perspective views showing an embodiment of a method for manufacturing an image display device.
- the frame-shaped curable resin layer 3A is formed by applying the curable resin composition to the frame portion 5.
- the other points are the same as the method of FIGS.
- a curable resin composition includes a monomer including a photo radical polymerization initiator (hereinafter also referred to as “component (A)”) and a monofunctional monomer having one radical polymerizable group.
- component (A) a photo radical polymerization initiator
- component (B) a monofunctional monomer having one radical polymerizable group.
- component (C) a colorant
- the photoradical polymerization initiator is a component that generates a free radical by irradiation with active energy rays and accelerates a curing reaction (polymerization reaction) by radical polymerization of the monomer component.
- the active energy rays can be selected from ultraviolet rays, electron rays, ⁇ rays, ⁇ rays and the like.
- photo radical polymerization initiator examples include benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy- 4,4′-dimethylaminobenzophenone, ⁇ -hydroxyisobutylphenone, 2-ethylanthraquinone, tert-butylanthraquinone, 1,4-dimethylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2- Methyl anthraquinone, 1,2-benzoanthraquinone, 2-phenylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, thioxanthone, 2-chlorothioxanthone
- a radical photopolymerization initiator may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of curability, reactivity, and surface curability, a radical photopolymerization initiator may be selected from aromatic ketone compounds, ⁇ -hydroxyalkylphenone compounds, and phenylglyoxylic acid methyl esters.
- the photo radical polymerization initiator may be a compound that generates both a free radical and a base (for example, a secondary amino group or a tertiary amino group) by irradiation with active energy rays.
- the radical photopolymerization initiator may also serve as the photobase generator.
- photo radical polymerization initiator that generates a base
- 4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (“Irgacure 369”, manufactured by BASF Japan Ltd.), 4- (methylthiobenzoyl)- 1-methyl-1-morpholinoethane (“Irgacure 907”, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl ] ⁇ -Aminoacetophenone compounds such as -1-butanone (“Irgacure 379”, manufactured by BASF Japan Ltd.); -1919 "," NCI-831 "(above, manufactured by Adeka), etc. Compounds. Among these, an ⁇ -aminoacetophenone compound may be selected.
- the content of the radical photopolymerization initiator in the curable resin composition is the total amount of the curable resin composition from the viewpoint of pressure-sensitive adhesiveness, reliability, and curability, and from the viewpoint of efficiently promoting the curing reaction.
- 2 mass% or more, 4 mass% or more, or 6 mass% or more may be sufficient, and 14 mass% or less, 12 mass% or less, or 10 mass% or less may be sufficient.
- the monomer component (B) contains one or more monofunctional monomers having one radical polymerizable group.
- the radical polymerizable group possessed by the monomer component include a (meth) acryloyl group, a vinyl group, an ethynyl group, an isopropenyl group, a vinyl ether group, and a vinyl thioether group.
- the monomer component may be a compound having a (meth) acryloyl group.
- the monofunctional monomer having a (meth) acryloyl group may be an alkyl (meth) acrylate, and the carbon number of the alkyl group in that case is 4 from the viewpoint of imparting flexibility to the curable resin composition. As described above, it may be 6 or more, or 8 or more, and may be 20 or less, 18 or less, or 16 or less.
- the alkyl group of the alkyl (meth) acrylate may have a substituent such as a hydroxyl group.
- the monofunctional monomer having a (meth) acryloyl group include n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n- Octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-hexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) Alkyl (meth) acrylates such as acrylate; 2-hydroxyethyl (meth) acrylate, 1-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate
- (Meth) acrylates such as dimethyl (meth) acrylamide, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide; hydroxyl-containing (meth) acrylamides such as hydroxyethyl (meth) acrylamide; diethylene glycol, triethylene Polyethylene glycol mono (meth) acrylate such as glycol; dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate Polypropylene glycol mono (meth) acrylates such as dibutylene glycol mono (meth) acrylate and tributylene glycol mono (meth) acrylate; morpholine group-containing (meth) acrylates such as acryloylmorpholine; Examples include cyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acryl
- monofunctional monomers are dicyclopentanyl (meth) acrylate and dicyclopentenyl (meth) acrylate. And a compound selected from isobornyl (meth) acrylate, or a compound selected from dicyclopentenyl (meth) acrylate and isobornyl (meth) acrylate.
- the content of the monofunctional monomer is curable resin from the viewpoint of obtaining a curable resin composition having an appropriate viscosity, from the viewpoint of adjusting the curing shrinkage and the elastic modulus of the cured product, and from the viewpoint of solubility of the colorant. 10 mass% or more, 15 mass% or more, or 20 mass% or more may be sufficient with respect to the total amount of a composition, and 80 mass% or less, 70 mass% or less, or 60 mass% or less may be sufficient.
- the content of the monofunctional monomer is 10% by mass or more, it is easy to obtain a curable resin composition having an appropriate viscosity that contributes to good coating properties, and the solubility of the colorant tends to be improved. is there.
- the content of the monofunctional monomer is 80% by mass or less, the curing shrinkage rate tends to be low. When the curing shrinkage rate is low, it is possible to suppress a decrease in adhesive force due to stress.
- the monomer component may contain, as a monofunctional monomer, a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of a monofunctional monomer by an ionic reaction.
- a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of a monofunctional monomer by an ionic reaction examples include a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and a compound having an isocyanate group.
- Silanol groups and alkoxysilyl groups can advance the curing reaction by ionic reaction involving water (hydrolysis reaction). This reaction can be facilitated, for example, by a base generated from a photobase generator.
- Specific examples of the compound having a silanol group and / or alkoxysilyl group that can be contained in the monofunctional monomer include 3-acryloxypropyltrimethoxysilane (trade name: KBM5103, Shin-Etsu Chemical Co., Ltd.), 3-methacrylic acid.
- Compounds having (meth) acryloyl group and trialkoxysilyl group such as loxypropyltrimethoxysilane (trade name: KBM503, Shin-Etsu Chemical Co., Ltd.), methacryloxyoctyltrimethoxysilane (trade name: KBM5803, Shin-Etsu Chemical Co., Ltd.) Is mentioned.
- the compound having a silanol group and / or an alkoxysilyl group may be a compound having a (meth) acryloyl group and a dialkoxysilyl group, such as methacryloxypropylmethyldiethoxysilane.
- a compound having a cyclic ether group can advance a curing reaction by a cationic polymerization reaction of the cyclic ether group. This reaction can be facilitated, for example, by an acid generated from a photoacid generator.
- the compound having a cyclic ether group that can be contained in the monofunctional monomer include compounds having an epoxy group and / or an oxetane group. Specific examples of these compounds include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, propylene oxide (PO) modified bisphenol A diglycidyl ether diester.
- the compound having a cyclic ether group may be allyl glycidyl ether.
- the compound having an isocyanate group can advance a curing reaction by a reaction of an isocyanate group involving moisture.
- Specific examples of the compound having an isocyanate group that can be contained in the monofunctional monomer include isocyanatomethyl (meth) acrylate and 2-isocyanatoethyl (meth) acrylate.
- the content of the compound having a reactive group is the total amount of the curable resin composition from the viewpoint of reactivity, the viewpoint of improving the adhesive force, and the stability when the curable resin composition is a solution.
- 0.1 mass% or more, 1 mass% or more, or 3 mass% or more may be sufficient, and 15 mass% or less, 10 mass% or less, or 5 mass% or less may be sufficient.
- the monomer component (B) contains a monofunctional monomer having one radical polymerizable group as a main component, but in addition to this, a polyfunctional monomer having two or more radical polymerizable groups. It may contain a mer. In that case, content of a polyfunctional monomer may be 5 mass% or less with respect to the total amount of a monomer component ((B) component).
- Colorant is a component that colors the curable resin composition and the light-shielding layer and imparts appropriate light-shielding properties to the formed light-shielding layer, and there is no particular limitation on the hue of the colorant. Although colorants with various hues can be used, the colorants typically exhibit a black color.
- the colorant can include, for example, a dye and / or a pigment. From the viewpoint of obtaining a uniform curable resin composition, a colorant that dissolves in the monomer component may be selected.
- the colorant is dissolved in the monomer component.
- the average visible light transmittance of the colorant may be 50% or less, 45% or less, or 40% or less.
- the average transmittance of visible light refers to the average transmittance of light having a wavelength of 400 to 700 nm.
- the average visible light transmittance is obtained by measuring the light transmittance of a colorant solution composed of 100 parts by mass of a solvent in which the colorant is dissolved and 0.1 part by mass of the colorant with a spectrocolorimeter (for example, manufactured by Konica Minolta, Inc.). “CM-3700A”) can be measured every 1 nm in the range of 400 to 700 nm, an average value of the obtained measurement values can be obtained, and the average transmittance can be obtained.
- the dissolution of the colorant in the solvent can be confirmed by the same method as that described above for “the colorant dissolves in the monomer component”.
- the light transmittance (hereinafter also referred to as “irradiation transmittance”) of the colorant at the peak wavelength of the light (active energy ray) irradiated to advance the curing reaction is 10% of the average visible light transmittance. As mentioned above, it may be 20% or more, 30% or more higher.
- the irradiation light transmittance may be 60% or more, 65% or more, or 70% or more.
- the irradiation light transmittance of the colorant is determined by the light (active energy ray) irradiated to advance the curing reaction of the colorant solution consisting of 100 parts by mass of the solvent in which the colorant is dissolved and 0.1 part by mass of the colorant.
- the light transmittance of the colorant at the peak wavelength of) can be determined by a method of measuring the decomposition wavelength under the condition of 1 nm.
- a visible ultraviolet spectrophotometer for example, “UV-2400PC” manufactured by Shimadzu Corporation
- the measurement range is set to 300 to 780 nm, for example.
- the colorant may include, for example, at least one selected from the group consisting of phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, aniline black, perylene black, and fluoran.
- the content of the colorant is 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more with respect to the total amount of the curable resin composition from the viewpoint of obtaining an effect of shielding visible light. It may be 10 mass% or less, 7.5 mass% or less, or 5 mass% or less.
- the curable resin composition may further contain other components as necessary in addition to the components (A), (B) and (C) described above.
- the curable resin composition contains, for example, a compound having no radical polymerizable group selected from a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and a compound having an isocyanate group. May be. These compounds can also advance the curing reaction by ionic reaction.
- Examples of the compound having a silanol group and / or alkoxysilyl group that can be included in the curable resin composition include, for example: A compound having a carboxylic anhydride group and a trimethoxysilyl group (for example, “X-12-967C” manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having an isocyanurate group and a trimethoxysilyl group (for example, “KBM9659”) , Manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having an epoxy group and a trimethoxysilyl group (for example, “KBM403”, manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having a mercapto group and a trimethoxysilyl group (for example, “ KBM803 ", manufactured by Shin-Ets
- tetraalkoxysilane or their oligomers such tetrabutoxy silane.
- a compound having a silanol group and / or an alkoxysilyl group may be used alone or in combination of two or more.
- a compound having a trialkoxysilyl group, tetraalkoxysilane, or an oligomer thereof may be selected.
- a compound having a dialkoxysilyl group may be combined.
- the compound (X) include a compound having a trialkoxysilyl group, a compound having a dialkoxysilyl group, and a partial hydrolyzate of at least one compound selected from tetraalkoxysilane and oligomers thereof (for example, A partial hydrolyzate of tetramethoxysilane oligomer, a partial hydrolyzate of tetraethoxysilane and dimethyldimethoxysilane); a compound having trialkoxysilyl group, a compound having dialkoxysilyl group, and tetraalkoxysilane and oligomer thereof A reaction product of at least one selected from tetraalkoxytitanium and / or tetraalkoxyzirconium (for example, a reaction product of tetramethoxysilane oligomer and tetrabutoxytitanium, tetraethoxysilane and tetrabutoxytitanium
- a compound having a trialkoxysilyl group, a compound having a dialkoxysilyl group, and a partial hydrolyzate of at least one compound selected from tetraalkoxysilane and oligomers thereof are selected. But you can.
- Still another example of the compound (X) includes, for example, an oligomer having a silanol group and / or an alkoxysilyl group.
- the content of the compound (X) From the viewpoint of stability, from the viewpoint of improving the adhesive strength, and from the viewpoint of stability when the curable resin composition is a solution, 0.1% by mass or more and 1% by mass with respect to the total amount of the curable resin composition It may be 3% by mass or more, 15% by mass or less, 10% by mass or less, or 5% by mass or less.
- the content of the compound (X) From the viewpoint of stability, from the viewpoint of improving the adhesive force, and from the viewpoint of stability when the curable resin composition is a solution, 1% by mass or more, 5% by mass or more with respect to the total amount of the curable resin composition, Or 10 mass% or more may be sufficient, and 70 mass% or less, 50 mass% or less, or 30 mass% or less may be sufficient.
- Examples of the compound having a cyclic ether group that can be contained in the curable resin composition include, for example, an epoxy group, and / or Or the compound which has an oxetane group is mentioned.
- glycidyl ether examples include glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, stearyl glycidyl ether, lauryl glycidyl ether, butoxy polyethylene glycol glycidyl ether, phenol polyethylene glycol glycidyl ether, phenyl glycidyl ether, p-methylphenyl Monofunctional epoxy compounds such as glycidyl ether, p-ethylphenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, p-tert-butylphenyl glycidyl ether; bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether , Hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F Polyg
- compound (Y) examples include an oligomer having a cyclic ether group.
- the content of the compound (Y) From the viewpoint of improving the force, and from the viewpoint of stability when the curable resin composition is a solution, it is 0.1% by mass or more, 1% by mass or more, and 3% by mass with respect to the total amount of the curable resin composition.
- the above may be sufficient, and 15 mass% or less, 10 mass% or less, and 5 mass% or less may be sufficient.
- the content of the compound (Y) is determined in terms of reactivity, adhesion. From the viewpoint of improving the force, and from the viewpoint of stability when the curable resin composition is a solution, it is 1% by mass or more, 5% by mass or more, or 10% by mass or more with respect to the total amount of the curable resin composition. 70 mass% or less, 50 mass% or less, or 30 mass% or less may be sufficient.
- Compounds having an isocyanate group that can be included in the curable resin composition include monofunctional isocyanates and polyfunctional isocyanates. Can be mentioned.
- the monofunctional isocyanate examples include methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, octyl isocyanate, decyl isocyanate, octadecyl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, benzyl isocyanate, p-chlorophenyl isocyanate, p-nitro.
- polyfunctional isocyanate examples include 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate (also known as 4,4′-MDI), 2 , 4-Tolylene diisocyanate (also known as 2,4-TDI), 2,6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate Aromatic polyisocyanates such as benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 ', 4 "-triphenylmethane triisocyanate; trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene dii Aliphatic acids such as cyanate (also known as HDI), pentam
- the compound (Z) include, for example, an oligomer having an isocyanate group (for example, a urethane resin having an isocyanate group at both ends).
- the content of the compound (Z) is determined in terms of reactivity and adhesive strength. From the viewpoint of improving the stability and the stability when the curable resin composition is a solution, 0.1% by mass or more, 1% by mass or more, 3% by mass or more with respect to the total amount of the curable resin composition It may be 15 mass% or less, 10 mass% or less, and 5 mass% or less.
- the content of the compound (Z) is determined in terms of reactivity, adhesive strength. 1% by mass or more, 5% by mass or more, or 10% by mass or more with respect to the total amount of the curable resin composition from the viewpoint of improving the stability and the stability when the curable resin composition is a solution. It may be 70 mass% or less, 50 mass% or less, or 30 mass% or less.
- the curable resin composition according to this embodiment may further contain a photobase generator as the component (D).
- a photobase generator refers to the generation of one or more basic substances that can function as a curing catalyst for ionic reaction by changing the molecular structure or cleaving the molecule upon irradiation with active energy rays. Means a compound.
- the photobase generator the aforementioned radical photopolymerization initiator that generates a base may be used.
- Photobase generators include Co-amine complex photobase generators; carbamate ester photobase generators; quaternary ammonium salt photobase generators; acyloxyimino groups, N-formylated aromatic amino groups, N- It can also be selected from compounds having an acylated aromatic amino group, a nitrobenzyl carbamate group, an alkoxybenzyl carbamate group, and the like.
- the photobase generator include 9-antilmethyl N, N-diethylcarbamate, (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, guanidinium 2- (3-benzoyl) Phenyl) propionate, 1- (anthraquinone-2-yl) ethyl imidazole carboxylate, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1- (anthraquinone-2-yl) -ethyl N, N-dicyclohexyl Carbamate, dicyclohexylammonium 2- (3-benzoylphenyl) propionate, cyclohexylammonium 2- (3-benzoylphenyl) propionate, 9-anthrylmethyl N, N-dicyclohexylcarbamate, 1, -Diisopropyl-3- [bis (dimethylamino)
- the content of the photobase generator in the curable resin composition is 2% by mass or more, 4% by mass or more with respect to the total amount of the curable resin composition, from the viewpoint of efficiently accelerating the curing reaction by ionic reaction. Or 6 mass% or more may be sufficient, and 14 mass% or less, 12 mass% or less, or 10 mass% or less may be sufficient.
- the photobase generator also serves as a radical photopolymerization initiator, the content thereof is regarded as a content as a radical photopolymerization initiator.
- the curable resin composition according to the present embodiment may further contain a photoacid generator as the component (E).
- the “photoacid generator” means a compound that generates one or more acidic substances that can function as a curing catalyst for ionic reaction by changing the molecular structure or cleaving the molecule upon irradiation with active energy rays. Means.
- the photoacid generator can particularly function as a curing catalyst for an ionic reaction of a compound having a cyclic ether group.
- photoacid generator examples include onium salt compounds, sulfone compounds, sulfonic acid ester compounds, sulfonimide compounds, disulfonyldiazomethane compounds, disulfonylmethane compounds, oxime sulfonate compounds, hydrazine sulfonate compounds, triazine compounds, nitrobenzyl compounds, Organic halides and disulfone can be mentioned.
- photoacid generators examples include trade names “Syracure UVI-6970”, “Syracure UVI-6974”, “Syracure UVI-6990”, “Syracure UVI-950” (above, Union Carbide, USA) "Irgacure 250”, “Irgacure 261”, “Irgacure 264”, “Irgacure 270”, “Irgacure 290” (manufactured by BASF), "CG-24-61” (Ciba Geigy), “Adekaoptomer” “SP-150”, “Adekaoptomer SP-151”, “Adekaoptomer SP-170”, “Adekaoptomer SP-171” (manufactured by ADEKA Corporation), “DAICAT II” (Daicel Corporation) ), “UVAC1590”, “UVAC1591” (above, Daicel-Cite) (CI Co., Ltd.), “CI-2064”, “CI-2539
- the curable resin composition according to this embodiment may further contain a polymer as the component (F).
- the polymer contained in the curable resin composition may be an oligomer.
- the “oligomer” means a polymer having a weight average molecular weight of 1 ⁇ 10 4 or more.
- a weight average molecular weight means the value of standard polystyrene conversion measured by gel permeation chromatography.
- the “polymer” as the component (F) includes the above-described components (A) to (C), a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and an isocyanate group. It is a component except the compound which does not have the radically polymerizable group chosen from the compound which has this.
- polymer examples include butadiene rubber, isoprene rubber, silicon rubber, styrene butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, urethane rubber, acrylic rubber, chlorosulfonated polyethylene rubber, fluorine rubber, Liquid or solid materials of various rubbers such as hydrogenated nitrile rubber and epichlorohydrin rubber; poly ⁇ -olefins such as polybutene; hydrogenated ⁇ -olefin oligomers such as hydrogenated polybutene; polyvinyl oligomers such as atactic polypropylene; biphenyl and tri Aromatic oligomers such as phenyl; Hydrogenated polyene oligomers such as hydrogenated liquid polybutadiene; Paraffinic oligomers such as paraffin oil and chlorinated paraffin oil; Cycloparaffinic oligomers such as naphthene oil; A polyester-based
- the (meth) acrylic acid polymer is a polymer containing one or more monomer units derived from a monomer having one (meth) acryloyl group.
- the (meth) acrylic acid-based polymer is a compound having two or more (meth) acryloyl groups, a polymerizable compound not having a (meth) acryloyl group (for example, acrylonitrile, As a comonomer, a compound having one polymerizable unsaturated bond such as styrene, vinyl acetate, ethylene or propylene, or a compound having two or more polymerizable unsaturated bonds such as divinylbenzene in the molecule) May be included.
- the monomer constituting the (meth) acrylic acid polymer include (meth) acrylic acid; (meth) acrylic acid amide; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) Alkyl (meth) acrylates such as acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, stearyl (meth) acrylate, etc.
- (Meth) acrylates having aromatic rings such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate; butoxyethylene glycol (meth) acrylate, butoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (Meth) acrylates having an alkoxy group such as acryl (meth) acrylate; cycloaliphatic such as cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate (Meth) acrylate having a group; (meth) acrylate having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; tetraethylene glycol monomethyl ether ( (Meth) acrylate)
- the (meth) acrylic acid polymer may be a homopolymer or copolymer containing these monomers as monomer units.
- the (meth) acrylic acid polymer is a homopolymer or copolymer containing a monofunctional monomer having one (meth) acryloyl group contained in the monomer component (B) as a monomer unit. May be.
- the (meth) acrylic acid polymer may contain a (meth) acrylate having an alkyl group as a monomer unit, or a (meth) acrylate having an alkyl group having 4 to 18 carbon atoms as a monomer unit. May be included.
- the proportion of the (meth) acrylate having an alkyl group contained as a monomer unit per molecule of the (meth) acrylic acid polymer is 5% by mass or more based on the mass of the (meth) acrylic acid polymer. 10 mass% or more may be sufficient, and 95 mass% or less and 90 mass% or less may be sufficient.
- the proportion of the alkyl group-containing (meth) acrylate is within the above range, the adhesion of the cured curable resin layer (light-shielding layer) to an adherend such as glass, plastic, polarizing plate or polycarbonate is improved. Tend.
- the (meth) acrylic acid polymer has a polar group such as a hydroxyl group, a morpholino group, an amino group, a carboxyl group, a cyano group, a carbonyl group, or a nitro group from the viewpoint of improving the pressure-sensitive adhesiveness with a base material such as plastic. It may be a copolymer containing the (meth) acrylate as a monomer unit.
- the weight average molecular weight of the (meth) acrylic acid polymer (oligomer) may be 1 ⁇ 10 4 to 1 ⁇ 10 7 .
- the weight average molecular weight is within the above range, it is particularly easy to obtain a pressure-sensitive adhesive force that does not cause peeling on a substrate or the like under a high temperature (for example, 80 ° C. or higher) and high humidity (for example, 90% or higher) environment. be able to.
- a curable resin composition having a viscosity suitable for coating and good workability.
- (Meth) acrylic acid polymer can be prepared using a known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like.
- a compound that generates a radical by heat may be used as a polymerization initiator in these polymerization methods.
- a compound that generates a radical by heat include benzoyl peroxide, tert-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethoxyethyl) peroxydicarbonate, Organic peroxides such as tert-butylperoxyneodecanoate, t-butylperoxypivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide, didodecyl peroxide 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2.2′-azobis ( 2,4
- the content of the polymer may be 1% by mass or more, 5% by mass or more, 10% by mass or more, 90% by mass or less, 80% by mass or less, 70% by mass with respect to the total amount of the curable resin composition. It may be the following.
- a curable resin composition having a viscosity suitable for coating and good workability is easily obtained.
- the pressure-sensitive adhesiveness to the adherend such as glass, plastic, polarizing plate and polycarbonate of the cured resin layer after light irradiation tends to be particularly good.
- the curable resin composition may contain a gelling agent such as 1,2-hydroxystearic acid or a thixotropic agent instead of or together with the polymer.
- a gelling agent such as 1,2-hydroxystearic acid or a thixotropic agent instead of or together with the polymer.
- the curable resin composition may further contain other additives as necessary.
- other additives include adhesion improving agents such as silane coupling agents, thermal polymerization initiators, antioxidants, chain transfer agents, stabilizers, and photosensitizers.
- the curable resin composition may not substantially contain an organic solvent from the viewpoint of moisture and heat resistance reliability and from the viewpoint of suppressing the generation of bubbles in the cured product.
- the “organic solvent” means an organic compound that does not have a radical polymerizable group, is liquid at 25 ° C., and has a boiling point of 250 ° C. or less at atmospheric pressure.
- substantially free of an organic solvent means that it does not contain an intentionally added organic solvent, and an embodiment in which a trace amount of an organic solvent is present in the curable resin composition. Do not exclude.
- the content of the organic solvent in the curable resin composition is 1.0 ⁇ 10 3 ppm or less, 5.0 ⁇ 10 2 ppm or less, or 1 with respect to the total amount of the curable resin composition. It may be 0.0 ⁇ 10 2 ppm or less.
- the curable resin composition may not contain any organic solvent.
- the viscosity of the curable resin composition at a temperature in at least a part of the range of 25 ° C. to 70 ° C. is 10 mPa ⁇ s or more, 4.0 ⁇ 10 2 mPa ⁇ s or more, 5.0 ⁇ It may be 10 2 mPa ⁇ s or more, 1.0 ⁇ 10 3 mPa ⁇ s or more, 2.0 ⁇ 10 3 mPa ⁇ s or more, or 3.0 ⁇ 10 3 mPa ⁇ s or more, 5.0 ⁇ 10 4 mPa ⁇ s or less, 2.0 ⁇ 10 4 mPa ⁇ s or less, 1.5 ⁇ 10 4 mPa ⁇ s or less, 1.25 ⁇ 10 4 mPa ⁇ s or less, or 1.0 ⁇ 10 4 mPa ⁇ s It may be the following.
- the viscosity at 25 ° C. is a value measured based on JIS Z 8803, and specifically, a value measured using a B-type viscometer (for example, BL2 manufactured by Toki Sangyo Co., Ltd.). Calibration of the B-type viscometer can be performed based on JIS Z 8809-JS14000.
- the viscosity at a temperature exceeding 25 ° C. can be measured according to the method for measuring the viscosity at 25 ° C.
- the curable resin composition can exhibit pressure-sensitive adhesiveness when irradiated with active energy rays.
- the pressure-sensitive adhesive force of the curable resin composition after irradiation with active energy rays may be 10 N / cm 2 or more, 20 N / cm 2 or more, or 40 N / cm 2 or more, and 400 N / cm. It may be 2 or less.
- the measurement of pressure-sensitive adhesive force here is performed by the following method and conditions.
- a curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 ⁇ m is applied to the curable resin layer.
- the second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange
- the test force when the first glass substrate and the second glass substrate of the measurement sample are peeled in the opposite long side directions is measured, and this test force is set to be curable.
- the value divided by the contact area between the resin layer and the second glass substrate is defined as the pressure-sensitive adhesive force.
- 101 shows a 1st glass base material
- 102 shows a 2nd glass base material
- 3A shows a curable resin layer
- D shows the direction to peel off.
- the curable resin composition preferably has a resin characteristic such that the aspect ratio after bonding of the curable resin layer to be formed is high.
- the aspect ratio after bonding of the curable resin layer may be 0.4 or more, 0.6 or more, or 0.8 or more.
- the upper limit of the aspect ratio is usually 1.0.
- the aspect ratio value is measured by the following method and conditions.
- a curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 ⁇ m is applied to the curable resin layer.
- the second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange
- B (unit: mm)
- B / 0.6 is the aspect ratio.
- 104 indicates a first glass substrate
- 106 indicates a second glass substrate
- 105 indicates a curable resin layer
- A indicates a curable resin in contact with the first glass substrate.
- the width of the layer (here 0.6 mm) is indicated.
- a curable resin composition is applied to the peripheral edge of the main surface of the image display unit 1 to form a frame-shaped curable resin layer 3A.
- a curable resin layer can be efficiently formed in a narrow region.
- the curable resin composition can be applied efficiently and with high accuracy by a method of discharging a liquid curable resin composition from the opening.
- the curable resin layer 3A contains a photobase generator or a photoacid generator, these usually generate a base or an acid by the action of active energy rays, but the ionic reaction catalyzed by the base or acid is a radical. It proceeds at a relatively slower reaction rate than the polymerization reaction. Therefore, it can be said that the curable resin layer 3A is semi-cured by radical polymerization reaction at the stage of irradiation with active energy rays.
- the storage elastic modulus at 25 ° C. of the curable resin layer at the time of bonding is 10,000 to 500,000 Pa, 30000. It may be ⁇ 250,000 Pa, or 50,000 to 200,000 Pa.
- a ′ indicates the width of a predetermined part of the frame-shaped curable resin layer 3A applied to the image display unit 1, and B ′ is after the image display unit 1 and the frame unit 5 are bonded together.
- part of 3 A of curable resin layers is shown.
- a ′ and B ′ indicate widths at the same positions as A and B shown in FIG.
- the widths of A ′ and B ′ are, for example, that the predetermined part is a direction in which the curable resin layer 3A extends from the curable resin layer 3A before and after the image display unit 1 and the frame unit 5 are bonded to each other.
- the line width where the curable resin layer 3A before bonding and the image display unit 1 are in contact is A ′
- the curable resin layer 3A after bonding and
- the line width in contact with the frame portion 5 is B ′.
- the line width where the curable resin layer 3A before bonding and the frame part 5 are in contact with each other on the cut surface is A ′, and curing after bonding.
- the line width where the conductive resin layer 3A and the image display unit 1 are in contact is B ′.
- the curing reaction of the curable resin layer 3 ⁇ / b> A may be further cured in the state of a laminated body having the image display unit 1 and the frame unit 5 and bonded together.
- the curing reaction that proceeds after the bonding may be referred to as “delayed curing”.
- the delayed curing is allowed to proceed for 12 hours or more in an environment where the temperature is 10 ° C or higher, 15 ° C or higher, or 20 ° C or higher, and the humidity is 30% or higher, 40% or higher, or 50% or higher. Can do.
- the environment for allowing delayed curing to proceed may be a temperature of 80 ° C. or lower and a humidity of 95% or lower. While the delayed curing is proceeding, other necessary steps such as a step of further processing the image display device and / or a step of inspecting the image display device may be performed.
- the delayed curing may be radical polymerization, but more typically is a curing reaction by an ionic reaction having a reaction rate slower than that of radical polymerization.
- delayed curing proceeds by an ionic reaction of the reactive group of the compound. This ionic reaction can be promoted by a base generated from the photobase generator or an acid generated from the photoacid generator.
- the curable resin layer 3A (that is, the light shielding layer 3) after delayed curing can bond the cover member and the image display unit with higher adhesive force.
- Photoradical polymerization initiator / photobase generator Photoradical polymerization initiator: ⁇ IRG-651 (manufactured by BASF Japan, IRGACURE-651,2,2-dimethoxy-1,2-diphenylethane-1-one) Photoradical polymerization initiator / photobase generator: IRG-907 (manufactured by BASF Japan, IRGACURE-907, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one) (B) Monomer component (monofunctional monomer) (B1) Monofunctional monomer silanol group having a reactive group and / or compound having an alkoxysilyl group: ⁇ KBM-5103 (Shin-Etsu Chemical Co., Ltd., KBM-5103, 3-acryloxypropyltrimethoxysilane) Compound having cyclic ether group: ⁇ 4HBAGE (Nippon Kasei Co., Ltd., 4HBAGE, 4-hydroxy
- oligomer (a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate) was synthesized by the following procedure. Charge 2-ethylhexyl acrylate (90.0 g), 2-hydroxyethyl acrylate (10.0 g), methyl ethyl ketone (30.0 g), and ethyl acetate (170.0 g) into a container and purge with nitrogen at a flow rate of 100 mL / min. While heating, from normal temperature (25 ° C.) to 65 ° C. After reaching 65 ° C., azobisisobutyronitrile (0.3 g) was added, and kept at this temperature for 8 hours.
- isostearyl acrylate (100.0 g) was added, and the solvent methyl ethyl ketone and ethyl acetate were distilled off, whereby a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate (weight average molecular weight 600,000) was obtained.
- An isostearyl acrylate solution (heating residue 50%) was obtained.
- Adhesive strength (initial, after delayed curing) 8 and 9 are schematic views showing a method for measuring the adhesive force. As shown in FIG. 8, two curable resins facing each other on the glass base 60 by applying a curable resin composition to both ends of the center of a strip-shaped glass base 60 of 25 cm ⁇ 75 cm ⁇ 0.1 cm. Layer 3A (height 0.05 mm, width 0.4 to 0.6 mm, length 30 to 40 mm) was formed.
- Irradiation to the formed curable resin layer 3A using an ultraviolet irradiation device made by Eye Graphics Co., Ltd., US5-X0401, light source used: made by Eye Graphics Co., Ltd., metal halide lamp M04-L41
- the curing reaction of the curable resin layer 3A was partially advanced by irradiating with ultraviolet rays so that the intensity was 400 mW / cm 2 and the total irradiation amount was 2000 mJ / cm 2 .
- the irradiation output was measured with an illuminance meter (“UIT-250” manufactured by USHIO INC.).
- the glass base 60 and another strip-shaped glass base 61 are connected to the glass base 60 while interposing the curable resin layer 3 ⁇ / b> A after ultraviolet irradiation.
- bonding was performed while applying a load of 5 kgf. Both end portions 61E of the glass base 61 of the obtained glass joined body were fixed in a state where the glass base 61 was horizontal with respect to the ground and the glass base 60 was positioned below the glass base 61.
- a curable resin composition (1 mL) was dropped on the surface 62S of the soda glass 62 inside the guide 65 and stretched with a glass rod to form a curable resin layer.
- Irradiation intensity with respect to the formed curable resin layer using an ultraviolet irradiation device (Igraphics Co., Ltd., US5-X0401, use light source: Eyegraphics Co., Ltd., metal halide lamp M04-L41) total dose at 400 mW / cm 2 is irradiated such that the 2000 mJ / cm 2, was allowed to proceed a curing reaction of the curable resin layer.
- the irradiation output was measured with an illuminance meter (“UIT-250” manufactured by USHIO INC.).
- the thickness of the curable resin layer after light irradiation was 150 ⁇ m.
- the light transmittance of the curable resin layer after light irradiation at a wavelength of 400 to 700 nm was measured using a visible ultraviolet spectrophotometer (“UV-2400PC” manufactured by Shimadzu Corporation). Based on the average light transmittance at 400 to 700 nm, the light shielding property was evaluated according to the following criteria. A: Average light transmittance at 400 to 700 nm is less than 10% F: Average light transmittance at 400 to 700 nm is 10% or more
- Table 1 shows the evaluation results of the adhesive strength and the light shielding property regarding each curable tree composition.
- a light shielding layer having sufficient light shielding properties can be easily formed in a narrow region by a method of applying a curable resin composition. Furthermore, the formed light shielding layer expressed high adhesive force.
- SYMBOLS 1 ... Image display part, 3 ... Light-shielding layer, 5 ... Frame part, 3A ... Curable resin layer, 20 ... Cover member, 21 ... Cover glass, 22 ... Frame part, 41 ... Liquid crystal panel, 41S ... Image display surface, 42 DESCRIPTION OF SYMBOLS ... Light-transmitting pressure sensitive adhesive layer, 43 ... Backlight part, 45 ... Light source, 46 ... Optical sheet part, 51 ... Resin frame, 52 ... Backlight frame, 53 ... Housing frame, 60, 61 ... Glass base, 61E ... Both ends of the glass base 61, 62 ... soda glass, 62S ... surface of the soda glass 62, 65 ... guide, 100 ... image display device, W ... width of the light shielding layer.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
A manufacturing method is provided of an image display device which comprises an image display unit which has a liquid crystal panel and a cover member, a frame unit which is provided around and supports the image display unit, and a light blocking layer which is formed between the frame unit and the image display unit. This method involves, in order, a step for coating the image display unit or frame unit with a curable resin composition containing a colorant to form a frame-shaped curable resin layer, a step for promoting the curing reaction of the curable resin layer by irradiating the curable resin layer with active energy rays, and a step for bonding the image display unit and the frame unit while the curable resin layer is interposed therebetween.
Description
本発明は、画像表示装置の製造方法に関する。
The present invention relates to a method for manufacturing an image display device.
スマートフォーン等の情報端末に用いられている画像表示装置は、画像表示面を有する画像表示部(液晶パネル、カバーガラス等を含む)と、これを支持するフレーム部とを有しており、従来、画像表示部とフレーム部とを感圧接着テープで接着して固定することにより製造されている。この感圧接着テープとして、画像表示部とフレーム部との間からの光漏れによる画質の低下を防止するため、一般的に遮光性を有する黒色の感圧接着テープが使用される(例えば、特許文献1)。
An image display device used in an information terminal such as a smart phone has an image display unit (including a liquid crystal panel, a cover glass, etc.) having an image display surface and a frame unit that supports the image display unit. The image display unit and the frame unit are manufactured by bonding and fixing with a pressure-sensitive adhesive tape. As this pressure-sensitive adhesive tape, a black pressure-sensitive adhesive tape having a light shielding property is generally used in order to prevent deterioration of image quality due to light leakage from between the image display portion and the frame portion (for example, patents). Reference 1).
近年、画像表示装置において、画像表示面周囲の加飾部及び遮光層の狭小化が進み、これらを支持する画像表示部のフレーム部も狭小化が進んでいる。そのため、画像表示部とフレーム部との接着面積が狭小化する傾向がある。狭小化した接着面積に対応するための感圧接着テープの微細加工、及び狭小化した接着部位への感圧接着テープの貼り合わせが困難であることから、生産性の低下が懸念される。
In recent years, in an image display device, the decoration part around the image display surface and the light shielding layer have been narrowed, and the frame part of the image display part that supports them has also been narrowed. Therefore, the adhesion area between the image display unit and the frame unit tends to be narrowed. Since it is difficult to finely process the pressure-sensitive adhesive tape to cope with the narrowed adhesive area and to bond the pressure-sensitive adhesive tape to the narrowed adhesive site, there is a concern about a decrease in productivity.
本発明は、画像表示装置を製造するにあたり、画像表示部とフレーム部の間からの光漏れを抑制する遮光性を有する遮光層を、狭小な領域であっても効率的に形成できる方法を提供することを目的とする。
The present invention provides a method capable of efficiently forming a light-shielding layer having a light-shielding property that suppresses light leakage from between an image display part and a frame part even in a narrow region when manufacturing an image display device. The purpose is to do.
本発明の一側面は、画像表示面を有する液晶パネル、及び前記画像表示面と対向する光透過部を有するカバー部材を有する画像表示部と、前記画像表示部の周囲に設けられ前記画像表示部を支持するフレーム部と、前記フレーム部と前記画像表示部との間に形成された遮光層と、を備える画像表示装置を製造する方法を提供する。この方法は、前記画像表示部材又は前記フレーム部に、着色剤を含有する硬化性樹脂組成物を塗布して、枠状の硬化性樹脂層を形成させる工程と、前記硬化性樹脂層に対して活性エネルギー線を照射することにより、前記硬化性樹脂層の硬化反応を進行させる工程と、前記硬化性樹脂層を介在させながら前記画像表示部と前記フレーム部とを貼り合わせる工程と、をこの順に備える。前記遮光層は、硬化反応が進行した前記硬化性樹脂層である。
One aspect of the present invention is a liquid crystal panel having an image display surface, an image display portion having a cover member having a light transmission portion facing the image display surface, and the image display portion provided around the image display portion. There is provided a method of manufacturing an image display device comprising: a frame portion that supports a frame; and a light shielding layer formed between the frame portion and the image display portion. This method includes a step of applying a curable resin composition containing a colorant to the image display member or the frame portion to form a frame-shaped curable resin layer, and the curable resin layer. By irradiating an active energy ray, a step of proceeding a curing reaction of the curable resin layer and a step of bonding the image display unit and the frame unit while interposing the curable resin layer in this order. Prepare. The light shielding layer is the curable resin layer that has undergone a curing reaction.
上記方法によれば、画像表示部とフレーム部の間からの光漏れを抑制する遮光層を、狭小な領域であっても効率的に形成することができる。
According to the above method, the light shielding layer that suppresses light leakage between the image display portion and the frame portion can be efficiently formed even in a narrow region.
上記方法において、上記画像表示部と上記フレーム部とを貼り合わせるときの上記硬化性樹脂層が感圧接着性を有することができる。
In the above method, the curable resin layer when the image display portion and the frame portion are bonded to each other can have pressure-sensitive adhesiveness.
上記方法において、下記式で表されるアスペクト比が0.4以上となるように、上記画像表示部と上記フレーム部とを貼り合わせてもよい。
アスペクト比=B’/A’
[式中、A’は、上記画像表示部及び上記フレーム部のうちの一方に塗布された上記枠状の硬化性樹脂層の所定の部位における幅を示し、B’は、上記画像表示部と上記フレーム部とが貼り合わされた後の上記硬化性樹脂層の上記所定の部位における上記画像表示部及び上記フレーム部のうちの他方と接触している幅を示す。] In the above method, the image display unit and the frame unit may be bonded so that an aspect ratio represented by the following formula is 0.4 or more.
Aspect ratio = B '/ A'
[In the formula, A ′ represents a width at a predetermined portion of the frame-shaped curable resin layer applied to one of the image display unit and the frame unit, and B ′ represents the image display unit and the image display unit. The width | variety which is in contact with the other of the said image display part and the said frame part in the said predetermined part of the said curable resin layer after the said frame part is bonded together is shown. ]
アスペクト比=B’/A’
[式中、A’は、上記画像表示部及び上記フレーム部のうちの一方に塗布された上記枠状の硬化性樹脂層の所定の部位における幅を示し、B’は、上記画像表示部と上記フレーム部とが貼り合わされた後の上記硬化性樹脂層の上記所定の部位における上記画像表示部及び上記フレーム部のうちの他方と接触している幅を示す。] In the above method, the image display unit and the frame unit may be bonded so that an aspect ratio represented by the following formula is 0.4 or more.
Aspect ratio = B '/ A'
[In the formula, A ′ represents a width at a predetermined portion of the frame-shaped curable resin layer applied to one of the image display unit and the frame unit, and B ′ represents the image display unit and the image display unit. The width | variety which is in contact with the other of the said image display part and the said frame part in the said predetermined part of the said curable resin layer after the said frame part is bonded together is shown. ]
上記方法は、前記画像表示部と前記フレーム部とを貼り合わせる前記工程の後、前記硬化性樹脂層の硬化反応を更に進行させる工程を更に備えていてもよい。これにより、より高い接着力で画像表示部とフレーム部とを接着することができる。
The above method may further include a step of further proceeding a curing reaction of the curable resin layer after the step of bonding the image display unit and the frame unit. Thereby, an image display part and a frame part can be pasted up by higher adhesive strength.
上記方法において、前記遮光層が延在する方向に対して垂直な方向における前記遮光層の幅は、0.5mm以下であってもよい。このような狭小な領域であっても、上記方法によれば、感圧接着テープを使用する場合等と比較してより効率的に遮光層を形成することができる。
In the above method, the width of the light shielding layer in a direction perpendicular to the direction in which the light shielding layer extends may be 0.5 mm or less. Even in such a narrow region, according to the above method, it is possible to form the light shielding layer more efficiently than in the case where a pressure sensitive adhesive tape is used.
前記硬化性樹脂組成物は、光ラジカル重合開始剤と、1個のラジカル重合性基を有する単官能単量体を含む単量体成分とを更に含有してもよい。
The curable resin composition may further contain a photo radical polymerization initiator and a monomer component containing a monofunctional monomer having one radical polymerizable group.
前記単官能単量体は、上記単量体成分のラジカル重合により生成するポリマー鎖同士をイオン反応により架橋する反応性基を有する化合物を含んでもよい。硬化性樹脂組成物がポリマー鎖同士をイオン反応により架橋する反応性基を有する化合物を含むことにより、光ラジカル重合によるポリマー鎖の生成による硬化反応に続いて、イオン反応によって硬化性樹脂層の硬化反応を容易に更に進行させることができる。同様の観点から、前記単官能単量体は、シラノール基及び/又はアルコキシシリル基を有する化合物を含んでもよい。あるいは、前記単官能単量体は、環状エーテル基を有する化合物を含んでもよい。この場合において、前記硬化性樹脂組成物は、光酸発生剤を更に含有してもよい。前記単官能単量体は、イソシアネート基を有する化合物を含んでもよい。前記硬化性樹脂組成物は、光塩基発生剤を更に含有してもよい。前記光塩基発生剤は、前記光ラジカル重合開始剤を兼ねていてもよい。
The monofunctional monomer may include a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of the monomer component by ionic reaction. When the curable resin composition contains a compound having a reactive group that crosslinks polymer chains by ionic reaction, curing of the curable resin layer by ionic reaction is followed by curing reaction by generation of polymer chain by photoradical polymerization. The reaction can easily proceed further. From the same viewpoint, the monofunctional monomer may include a compound having a silanol group and / or an alkoxysilyl group. Alternatively, the monofunctional monomer may include a compound having a cyclic ether group. In this case, the curable resin composition may further contain a photoacid generator. The monofunctional monomer may include a compound having an isocyanate group. The curable resin composition may further contain a photobase generator. The photobase generator may also serve as the photoradical polymerization initiator.
前記硬化性樹脂組成物は、ポリマーを更に含有してもよい。硬化性樹脂組成物がポリマーを含有していると、活性エネルギー線を照射された後の硬化性樹脂層が、画像表示部とフレーム部とを貼り合わせるための感圧接着性を特に容易に有することができる。
The curable resin composition may further contain a polymer. When the curable resin composition contains a polymer, the curable resin layer after being irradiated with active energy rays particularly easily has pressure-sensitive adhesive properties for bonding the image display portion and the frame portion together. be able to.
本発明の一側面によれば、画像表示装置を製造するにあたり、画像表示部とフレーム部の間からの光漏れを抑制する遮光性を有する遮光層を、狭小な領域であっても効率的に形成することができる。本発明のいくつかの側面によれば、より高い接着力で画像表示部を固定することができる。高い接着力が、落下による衝撃力又はフレキシブル配線基板(FPC)の反発力等によって画像表示部の剥離及び浮きが発生することを抑制できる。
According to an aspect of the present invention, in manufacturing an image display device, a light-shielding layer having a light-shielding property that suppresses light leakage from between an image display unit and a frame unit can be efficiently formed even in a narrow region. Can be formed. According to some aspects of the present invention, the image display unit can be fixed with higher adhesive force. The high adhesive force can suppress the peeling and floating of the image display unit due to the impact force due to dropping or the repulsive force of the flexible wiring board (FPC).
以下、場合により図面を参照しつつ本発明の実施形態について詳細に説明する。図面中、同一又は相当部分には同一符号を付し、重複する説明は省略することがある。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。図面の寸法比率は図示の比率に限られるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. The positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios.
本明細書において「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。
In this specification, “(meth) acrylate” means “acrylate” and “methacrylate” corresponding thereto. Similarly, “(meth) acryl” means “acryl” and “methacryl” corresponding thereto, and “(meth) acryloyl” means “acryloyl” and corresponding “methacryloyl”.
図1は、画像表示装置の一実施形態を示す断面図である。図1に示す画像表示装置100は、画像表示面41Sを有する液晶パネル41、カバー部材20、及び光透過性感圧接着層42から構成される画像表示部1と、液晶パネル41に光を供給するバックライト部43と、画像表示部1を支持するとともに液晶パネル41及びバックライト部43を収容するフレーム部5と、フレーム部5と画像表示部1との間に形成された遮光層3とを備える。カバー部材20は、画像表示面41Sと対向する光透過部25を有するカバーガラス21と、カバーガラス21の画像表示面41S側の主面の周縁部上に設けられた額縁部22とを有する。光透過性感圧接着層42は、液晶パネル41とカバー部材20との間に介在しながら、これらを接合している。光透過性感圧接着層42は、一般に、OCA(Optical clear adhesive)と称されることがある。バックライト部43は、光源45と、光源45の光を液晶パネル41に供給するための光学シート部46とを有する。
FIG. 1 is a cross-sectional view showing an embodiment of an image display device. The image display device 100 shown in FIG. 1 supplies light to the liquid crystal panel 41 and the image display unit 1 including the liquid crystal panel 41 having the image display surface 41S, the cover member 20, and the light-transmitting pressure-sensitive adhesive layer 42. A backlight unit 43, a frame unit 5 that supports the image display unit 1 and accommodates the liquid crystal panel 41 and the backlight unit 43, and a light shielding layer 3 formed between the frame unit 5 and the image display unit 1. Prepare. The cover member 20 includes a cover glass 21 having a light transmission portion 25 facing the image display surface 41S, and a frame portion 22 provided on the peripheral portion of the main surface of the cover glass 21 on the image display surface 41S side. The light transmissive pressure sensitive adhesive layer 42 is bonded between the liquid crystal panel 41 and the cover member 20 while being interposed. The light-transmissive pressure-sensitive adhesive layer 42 is generally sometimes referred to as OCA (Optical clear adhesive). The backlight unit 43 includes a light source 45 and an optical sheet unit 46 for supplying light from the light source 45 to the liquid crystal panel 41.
フレーム部5は、液晶パネル41及びバックライト部43の周囲に設けられた樹脂フレーム51と、樹脂フレーム51の外側でバックライト部43を収容するバックライトフレーム52と、バックライトフレーム52を収容する筐体フレーム53とを有する。樹脂フレーム51は、遮光層3を介在させながら液晶パネル41の周縁部及びカバー部材20の額縁部22と接着することにより、画像表示部1を支持している。バックライトフレーム52は、遮光層3を介在させながら額縁部22と接着することにより、画像表示部1を支持している。筐体フレーム53は、遮光層3を介在させながら額縁部22と接着することにより、画像表示部1を支持している。
The frame unit 5 includes a resin frame 51 provided around the liquid crystal panel 41 and the backlight unit 43, a backlight frame 52 that houses the backlight unit 43 outside the resin frame 51, and a backlight frame 52. And a housing frame 53. The resin frame 51 supports the image display unit 1 by adhering to the peripheral portion of the liquid crystal panel 41 and the frame portion 22 of the cover member 20 with the light shielding layer 3 interposed therebetween. The backlight frame 52 supports the image display unit 1 by adhering to the frame unit 22 with the light shielding layer 3 interposed therebetween. The housing frame 53 supports the image display unit 1 by adhering to the frame unit 22 with the light shielding layer 3 interposed.
図1の画像表示装置100は、4つの遮光層3を有しており、それらはそれぞれ液晶パネル41又はカバー部材20(額縁部22)とフレーム部5との間に設けられている。遮光層3は、バックライト部43からの光漏れが実質的に視認不能となる程度の光透過性を有することができる。具体的には、遮光層3の400~700nmでの平均光透過率が、10%未満であってもよい。この平均光透過率は、例えば、遮光層3の厚み方向に光を照射する条件で測定される値であってもよい。
1 has four light shielding layers 3, which are provided between the liquid crystal panel 41 or the cover member 20 (the frame portion 22) and the frame portion 5, respectively. The light shielding layer 3 can have such a light transmittance that light leakage from the backlight unit 43 is substantially invisible. Specifically, the average light transmittance at 400 to 700 nm of the light shielding layer 3 may be less than 10%. This average light transmittance may be, for example, a value measured under the condition of irradiating light in the thickness direction of the light shielding layer 3.
遮光層3は、バックライト部43の周囲を完全に囲む閉じた枠状体を形成していてもよいし、光漏れが十分に抑制できる範囲で、バックライト部43の周囲の一部を囲む開いた枠状体を形成していてもよい。樹脂フレーム51、バックライトフレーム52及び筐体フレーム53から選ばれる少なくとも1つと、画像表示部1との間の遮光層3を、後述するように、硬化性樹脂組成物の塗布と活性エネルギー線の照射を含む方法により形成することができる。画像表示装置が有する遮光層の一部が、感圧接着テープによって形成されていてもよい。
The light-shielding layer 3 may form a closed frame-like body that completely surrounds the periphery of the backlight unit 43, and surrounds a part of the periphery of the backlight unit 43 as long as light leakage can be sufficiently suppressed. An open frame-like body may be formed. As will be described later, the light shielding layer 3 between at least one selected from the resin frame 51, the backlight frame 52, and the housing frame 53 and the image display unit 1 is coated with a curable resin composition and active energy rays. It can be formed by a method including irradiation. A part of the light shielding layer of the image display device may be formed of a pressure sensitive adhesive tape.
それぞれの遮光層3の、遮光層3が延在する方向に対して垂直な方向における幅Wが、0.5mm以下であってもよい。幅Wが狭いと、より狭い額縁部を有し意匠性の優れた画像表示装置を得ることができる。幅Wの下限は特に制限されないが、0.2mm程度であってもよい。
The width W of each light shielding layer 3 in a direction perpendicular to the direction in which the light shielding layer 3 extends may be 0.5 mm or less. When the width W is narrow, an image display device having a narrower frame portion and excellent design can be obtained. The lower limit of the width W is not particularly limited, but may be about 0.2 mm.
画像表示部1及びフレーム部5を構成する各部材は、画像表示装置の分野において通常採用されているものから適宜選択することができる。バックライト部43の光学シート部46は、一般的に、レンズシート、拡散シート、導光板、反射シート等を含む。画像表示装置の構成は図1の構成に限られるものではなく、フレームの数及び形状、遮光層が設けられる部位などは、適宜変更することができる。例えば、額縁部22が設けられず、カバーガラス21の周縁部とフレーム部5とが遮光層3を介在させながら接着されていてもよい。
The members constituting the image display unit 1 and the frame unit 5 can be appropriately selected from those normally employed in the field of image display devices. The optical sheet unit 46 of the backlight unit 43 generally includes a lens sheet, a diffusion sheet, a light guide plate, a reflection sheet, and the like. The configuration of the image display device is not limited to the configuration shown in FIG. For example, the frame portion 22 may not be provided, and the peripheral portion of the cover glass 21 and the frame portion 5 may be bonded with the light shielding layer 3 interposed.
図2及び図3は、画像表示装置を製造する方法の一実施形態を示す斜視図である。図2及び図3に示す方法は、画像表示部1(例えばカバー部材)の所定の部分(背面側の主面の周縁部)に、硬化性樹脂組成物を塗布して、枠状の硬化性樹脂層3Aを形成させる工程(図2)と、硬化性樹脂層3Aに対して活性エネルギー線hνを照射することにより、硬化性樹脂層3Aの硬化反応を進行させる工程(図2の(b))と、硬化反応が進行した硬化性樹脂層3Aを介在させながら画像表示部1とフレーム部5とを貼り合わせる工程(図3)と、をこの順に備える。硬化性樹脂層3A中で硬化反応が進行することにより、遮光層3が形成される。
2 and 3 are perspective views showing an embodiment of a method for manufacturing an image display device. The method shown in FIGS. 2 and 3 applies a curable resin composition to a predetermined portion (periphery of the main surface on the back side) of the image display unit 1 (for example, a cover member) to form a frame-like curable property. A step of forming the resin layer 3A (FIG. 2) and a step of proceeding the curing reaction of the curable resin layer 3A by irradiating the curable resin layer 3A with the active energy ray hν (FIG. 2B) And the step of attaching the image display unit 1 and the frame unit 5 (FIG. 3) in this order while interposing the curable resin layer 3A having undergone the curing reaction. The light shielding layer 3 is formed by the progress of the curing reaction in the curable resin layer 3A.
図4及び図5も、画像表示装置を製造する方法の一実施形態を示す斜視図である。この方法の場合、硬化性樹脂組成物をフレーム部5に塗布して枠状の硬化性樹脂層3Aが形成される。その他の点は図2及び図3の方法と同様である。
4 and 5 are also perspective views showing an embodiment of a method for manufacturing an image display device. In the case of this method, the frame-shaped curable resin layer 3A is formed by applying the curable resin composition to the frame portion 5. The other points are the same as the method of FIGS.
硬化性樹脂組成物
以下、上記方法において遮光層を形成するために用いることのできる硬化性樹脂組成物のいくつかの形態について説明する。一実施形態に係る硬化性樹脂組成物は、光ラジカル重合開始剤(以下、「(A)成分」ともいう)と、1個のラジカル重合性基を有する単官能単量体を含む単量体成分(以下、「(B)成分」ともいう)と、着色剤(以下、「(C)成分」ともいう)と、を含有してもよい。 Curable Resin Composition Hereinafter, some forms of the curable resin composition that can be used for forming the light shielding layer in the above method will be described. A curable resin composition according to an embodiment includes a monomer including a photo radical polymerization initiator (hereinafter also referred to as “component (A)”) and a monofunctional monomer having one radical polymerizable group. A component (hereinafter also referred to as “component (B)”) and a colorant (hereinafter also referred to as “component (C)”) may be contained.
以下、上記方法において遮光層を形成するために用いることのできる硬化性樹脂組成物のいくつかの形態について説明する。一実施形態に係る硬化性樹脂組成物は、光ラジカル重合開始剤(以下、「(A)成分」ともいう)と、1個のラジカル重合性基を有する単官能単量体を含む単量体成分(以下、「(B)成分」ともいう)と、着色剤(以下、「(C)成分」ともいう)と、を含有してもよい。 Curable Resin Composition Hereinafter, some forms of the curable resin composition that can be used for forming the light shielding layer in the above method will be described. A curable resin composition according to an embodiment includes a monomer including a photo radical polymerization initiator (hereinafter also referred to as “component (A)”) and a monofunctional monomer having one radical polymerizable group. A component (hereinafter also referred to as “component (B)”) and a colorant (hereinafter also referred to as “component (C)”) may be contained.
(A)成分:光ラジカル重合開始剤
光ラジカル重合開始剤は、活性エネルギー線の照射により遊離ラジカルを発生させ、単量体成分のラジカル重合による硬化反応(重合反応)を促進させる成分である。ここで活性エネルギー線は、紫外線、電子線、α線、β線等から選ぶことができる。 (A) Component: Photoradical Polymerization Initiator The photoradical polymerization initiator is a component that generates a free radical by irradiation with active energy rays and accelerates a curing reaction (polymerization reaction) by radical polymerization of the monomer component. Here, the active energy rays can be selected from ultraviolet rays, electron rays, α rays, β rays and the like.
光ラジカル重合開始剤は、活性エネルギー線の照射により遊離ラジカルを発生させ、単量体成分のラジカル重合による硬化反応(重合反応)を促進させる成分である。ここで活性エネルギー線は、紫外線、電子線、α線、β線等から選ぶことができる。 (A) Component: Photoradical Polymerization Initiator The photoradical polymerization initiator is a component that generates a free radical by irradiation with active energy rays and accelerates a curing reaction (polymerization reaction) by radical polymerization of the monomer component. Here, the active energy rays can be selected from ultraviolet rays, electron rays, α rays, β rays and the like.
光ラジカル重合開始剤の具体例としては、ベンゾフェノン、N,N'-テトラメチル-4,4'-ジアミノベンゾフェノン(ミヒラーケトン)、N,N-テトラエチル-4,4'-ジアミノベンゾフェノン、4-メトキシ-4,4'-ジメチルアミノベンゾフェノン、α-ヒドロキシイソブチルフェノン、2-エチルアントラキノン、tert-ブチルアントラキノン、1,4-ジメチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロロ-2-メチルアントラキノン、1,2-ベンゾアントラキノン、2-フェニルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、チオキサントン、2-クロロチオキサントン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシアセトフェノン等の芳香族ケトン化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジル、ベンジルジメチルケタール等のベンジル化合物;β-(アクリジン-9-イル)(メタ)アクリル酸等のエステル化合物;9-フェニルアクリジン、9-ピリジルアクリジン、1,7-ジアクリジノヘプタン等のアクリジン化合物;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メチルメルカプトフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパン等のアルキルフェノン系化合物;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン}等のα-ヒドロキシアルキルフェノン系化合物;フェニルグリオキシリックアシッドメチルエステル;ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド等のフォスフィンオキサイド系化合物が挙げられる。光ラジカル重合開始剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。硬化性、反応性、及び表面硬化性の観点から、芳香族ケトン化合物、α-ヒドロキシアルキルフェノン系化合物、及びフェニルグリオキシリックアシッドメチルエステルから光ラジカル重合開始剤を選んでもよい。
Specific examples of the photo radical polymerization initiator include benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy- 4,4′-dimethylaminobenzophenone, α-hydroxyisobutylphenone, 2-ethylanthraquinone, tert-butylanthraquinone, 1,4-dimethylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2- Methyl anthraquinone, 1,2-benzoanthraquinone, 2-phenylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, thioxanthone, 2-chlorothioxanthone, 2,2-dimethoxy-1,2-diphenylethane 1-on, 2 Aromatic ketone compounds such as 2-diethoxyacetophenone; benzoin compounds such as benzoin, methylbenzoin and ethylbenzoin; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether and benzoin phenyl ether; benzyl and benzyldimethyl ketal Benzyl compounds such as β- (acridin-9-yl) (meth) acrylic acid, etc .; acridine compounds such as 9-phenylacridine, 9-pyridylacridine, 1,7-diacridinoheptane; o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4, 5-Diff Phenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di ( p-methoxyphenyl) 5-phenylimidazole dimer, 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methylmercaptophenyl) -4,5-diphenylimidazole 2,4,5-triarylimidazole dimer such as dimer; 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- ( Alkylphenone compounds such as methylthio) phenyl] -2-morpholino-1-propane; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy -2-Methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy- 1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, oligo {2-hydroxy-2-methyl-1- [4- Α-hydroxyalkylphenone compounds such as (1-methylvinyl) phenyl] propanone}; phenylglyoxylic acid methyl ester; bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6 -Dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 2,4,6-trimethylbenzoyl-di Examples thereof include phosphine oxide compounds such as phenylphosphine oxide. A radical photopolymerization initiator may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of curability, reactivity, and surface curability, a radical photopolymerization initiator may be selected from aromatic ketone compounds, α-hydroxyalkylphenone compounds, and phenylglyoxylic acid methyl esters.
光ラジカル重合開始剤が、活性エネルギー線の照射により遊離ラジカルと塩基(例えば、二級アミノ基、三級アミノ基)の両方を発生させる化合物であってもよい。言い換えると、光ラジカル重合開始剤が、光塩基発生剤を兼ねていてもよい。塩基を発生させる光ラジカル重合開始剤の具体例としては、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン(「イルガキュア369」、BASFジャパン社製)、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(「イルガキュア907」、BASFジャパン社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(「イルガキュア379」、BASFジャパン社製)等のα-アミノアセトフェノン化合物;「CGI-325」、「イルガキュアOXE01」、「イルガキュアOXE02」(以上、BASFジャパン社製)、「N-1919」、「NCI-831」(以上、アデカ社製)等のオキシムエステル化合物が挙げられる。これらの中でも、α-アミノアセトフェノン化合物を選択してもよい。
The photo radical polymerization initiator may be a compound that generates both a free radical and a base (for example, a secondary amino group or a tertiary amino group) by irradiation with active energy rays. In other words, the radical photopolymerization initiator may also serve as the photobase generator. Specific examples of the photo radical polymerization initiator that generates a base include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (“Irgacure 369”, manufactured by BASF Japan Ltd.), 4- (methylthiobenzoyl)- 1-methyl-1-morpholinoethane (“Irgacure 907”, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl ] Α-Aminoacetophenone compounds such as -1-butanone (“Irgacure 379”, manufactured by BASF Japan Ltd.); -1919 "," NCI-831 "(above, manufactured by Adeka), etc. Compounds. Among these, an α-aminoacetophenone compound may be selected.
硬化性樹脂組成物における光ラジカル重合開始剤の含有量は、感圧接着性、信頼性、及び硬化性の観点、並びに硬化反応を効率的に促進させる観点から、硬化性樹脂組成物の総量に対して、2質量%以上、4質量%以上、又は6質量%以上であってもよく、14質量%以下、12質量%以下、又は10質量%以下であってもよい。
The content of the radical photopolymerization initiator in the curable resin composition is the total amount of the curable resin composition from the viewpoint of pressure-sensitive adhesiveness, reliability, and curability, and from the viewpoint of efficiently promoting the curing reaction. On the other hand, 2 mass% or more, 4 mass% or more, or 6 mass% or more may be sufficient, and 14 mass% or less, 12 mass% or less, or 10 mass% or less may be sufficient.
(B)成分:単量体成分
(B)成分の単量体成分は、1個のラジカル重合性基を有する単官能単量体を1種以上含む。単量体成分が有するラジカル重合性基としては、(メタ)アクリロイル基、ビニル基、エチニル基、イソプロペニル基、ビニルエーテル基及びビニルチオエーテル基が挙げられる。単量体成分体は、(メタ)アクリロイル基を有する化合物であってもよい。 (B) Component: Monomer Component The monomer component (B) contains one or more monofunctional monomers having one radical polymerizable group. Examples of the radical polymerizable group possessed by the monomer component include a (meth) acryloyl group, a vinyl group, an ethynyl group, an isopropenyl group, a vinyl ether group, and a vinyl thioether group. The monomer component may be a compound having a (meth) acryloyl group.
(B)成分の単量体成分は、1個のラジカル重合性基を有する単官能単量体を1種以上含む。単量体成分が有するラジカル重合性基としては、(メタ)アクリロイル基、ビニル基、エチニル基、イソプロペニル基、ビニルエーテル基及びビニルチオエーテル基が挙げられる。単量体成分体は、(メタ)アクリロイル基を有する化合物であってもよい。 (B) Component: Monomer Component The monomer component (B) contains one or more monofunctional monomers having one radical polymerizable group. Examples of the radical polymerizable group possessed by the monomer component include a (meth) acryloyl group, a vinyl group, an ethynyl group, an isopropenyl group, a vinyl ether group, and a vinyl thioether group. The monomer component may be a compound having a (meth) acryloyl group.
(メタ)アクリロイル基を有する単官能単量体は、アルキル(メタ)アクリレートであってもよく、その場合のアルキル基の炭素数は、硬化性樹脂組成物に柔軟性を付与させる観点から、4以上、6以上、又は8以上であってもよく、20以下、18以下、又は16以下であってもよい。アルキル(メタ)アクリレートのアルキル基は水酸基等の置換基を有していてもよい。
The monofunctional monomer having a (meth) acryloyl group may be an alkyl (meth) acrylate, and the carbon number of the alkyl group in that case is 4 from the viewpoint of imparting flexibility to the curable resin composition. As described above, it may be 6 or more, or 8 or more, and may be 20 or less, 18 or less, or 16 or less. The alkyl group of the alkyl (meth) acrylate may have a substituent such as a hydroxyl group.
(メタ)アクリロイル基を有する単官能単量体の具体例としては、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート等のアルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、1-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、1-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、1-ヒドロキシブチル(メタ)アクリレート等の水酸基含有アルキル(メタ)アクリレート;ジメチル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド;ヒドロキシエチル(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド;ジエチレングリコール、トリエチレングリコール等のポリエチレングリコールモノ(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート等のポリプロピレングリコールモノ(メタ)アクリレート;ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート等のポリブチレングリコールモノ(メタ)アクリレート;アクリロイルモルホリン等のモルホリン基含有(メタ)アクリレート;ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチルメタアクリレ-ト、イソボルニル(メタ)アクリレートが挙げられる。これらの化合物は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。染料の溶解性、接着力、耐湿熱信頼性及び硬化後の感圧接着性の観点から、単官能単量体は、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-ト、及びイソボルニル(メタ)アクリレ-トから選ばれる化合物、又は、ジシクロペンテニル(メタ)アクリレ-ト、及びイソボルニル(メタ)アクリレ-トから選ばれる化合物を含んでもよい。
Specific examples of the monofunctional monomer having a (meth) acryloyl group include n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n- Octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-hexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) Alkyl (meth) acrylates such as acrylate; 2-hydroxyethyl (meth) acrylate, 1-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate Hydroxyl-containing alkyl such as 1-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1-hydroxybutyl (meth) acrylate, etc. (Meth) acrylates; (meth) acrylamides such as dimethyl (meth) acrylamide, isopropyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide; hydroxyl-containing (meth) acrylamides such as hydroxyethyl (meth) acrylamide; diethylene glycol, triethylene Polyethylene glycol mono (meth) acrylate such as glycol; dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate Polypropylene glycol mono (meth) acrylates such as dibutylene glycol mono (meth) acrylate and tributylene glycol mono (meth) acrylate; morpholine group-containing (meth) acrylates such as acryloylmorpholine; Examples include cyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyloxyethyl methacrylate, and isobornyl (meth) acrylate. These compounds may be used alone or in combination of two or more. From the viewpoints of dye solubility, adhesive strength, heat-and-moisture resistance reliability, and pressure-sensitive adhesiveness after curing, monofunctional monomers are dicyclopentanyl (meth) acrylate and dicyclopentenyl (meth) acrylate. And a compound selected from isobornyl (meth) acrylate, or a compound selected from dicyclopentenyl (meth) acrylate and isobornyl (meth) acrylate.
単官能単量体の含有量は、適度な粘度を有する硬化性樹脂組成物を得る観点、硬化収縮率及び硬化物の弾性率調整の観点、並びに着色剤の溶解性の観点から、硬化性樹脂組成物の総量に対して、10質量%以上、15質量%以上、又は20質量%以上であってもよく、80質量%以下、70質量%以下、又は60質量%以下であってもよい。単官能単量体の含有量が10質量%以上であると、良好な塗布性に寄与する適度な粘度を有する硬化性樹脂組成物が得られ易いと共に、着色剤の溶解性が向上する傾向がある。単官能単量体の含有量が80質量%以下であると、硬化収縮率が低くなる傾向がある。硬化収縮率が低いと、応力による接着力の低下を抑制することができる。
The content of the monofunctional monomer is curable resin from the viewpoint of obtaining a curable resin composition having an appropriate viscosity, from the viewpoint of adjusting the curing shrinkage and the elastic modulus of the cured product, and from the viewpoint of solubility of the colorant. 10 mass% or more, 15 mass% or more, or 20 mass% or more may be sufficient with respect to the total amount of a composition, and 80 mass% or less, 70 mass% or less, or 60 mass% or less may be sufficient. When the content of the monofunctional monomer is 10% by mass or more, it is easy to obtain a curable resin composition having an appropriate viscosity that contributes to good coating properties, and the solubility of the colorant tends to be improved. is there. When the content of the monofunctional monomer is 80% by mass or less, the curing shrinkage rate tends to be low. When the curing shrinkage rate is low, it is possible to suppress a decrease in adhesive force due to stress.
単量体成分は、単官能単量体のラジカル重合により生成するポリマー鎖同士をイオン反応により架橋する反応性基を有する化合物を単官能単量体として含んでもよい。これらの化合物としては、例えば、シラノール基及び/又はアルコキシシリル基を有する化合物、環状エーテル基を有する化合物、イソシアネート基を有する化合物が挙げられる。
The monomer component may contain, as a monofunctional monomer, a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of a monofunctional monomer by an ionic reaction. Examples of these compounds include a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and a compound having an isocyanate group.
シラノール基及びアルコキシシリル基は、水分が関与するイオン反応(加水分解反応)によって、硬化反応を進行させることができる。この反応は、例えば、光塩基発生剤から発生した塩基によって促進され得る。単官能単量体に含まれ得る、シラノール基及び/又はアルコキシシリル基を有する化合物の具体例としては、3-アクリロキシプロピルトリメトキシシラン(商品名:KBM5103、信越化学株式会社)、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学株式会社)、メタクリロキシオクチルトリメトキシシラン(商品名:KBM5803、信越化学株式会社)等の(メタ)アクリロイル基とトリアルコキシシリル基とを有する化合物が挙げられる。シラノール基及び/又はアルコキシシリル基を有する化合物は、メタクリロキシプロピルメチルジエトキシシランのような、(メタ)アクリロイル基とジアルコキシシリル基とを有する化合物であってもよい。
Silanol groups and alkoxysilyl groups can advance the curing reaction by ionic reaction involving water (hydrolysis reaction). This reaction can be facilitated, for example, by a base generated from a photobase generator. Specific examples of the compound having a silanol group and / or alkoxysilyl group that can be contained in the monofunctional monomer include 3-acryloxypropyltrimethoxysilane (trade name: KBM5103, Shin-Etsu Chemical Co., Ltd.), 3-methacrylic acid. Compounds having (meth) acryloyl group and trialkoxysilyl group such as loxypropyltrimethoxysilane (trade name: KBM503, Shin-Etsu Chemical Co., Ltd.), methacryloxyoctyltrimethoxysilane (trade name: KBM5803, Shin-Etsu Chemical Co., Ltd.) Is mentioned. The compound having a silanol group and / or an alkoxysilyl group may be a compound having a (meth) acryloyl group and a dialkoxysilyl group, such as methacryloxypropylmethyldiethoxysilane.
環状エーテル基を有する化合物は、環状エーテル基のカチオン重合反応によって、硬化反応を進行させることができる。この反応は、例えば、光酸発生剤から発生した酸によって促進され得る。単官能単量体に含まれ得る、環状エーテル基を有する化合物としては、例えば、エポキシ基、及び/又はオキセタン基を有する化合物が挙げられる。これらの化合物の具体例としては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、プロピレンオキシド(PO)変性ビスフェノールAジグリシジルエーテルジアクリレート、ノボラック部分エポキシアクリレート、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、3-オキセタニルメチル(メタ)アクリレート、3-メチル-3-オキセタニルメチル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート、3-ブチル-3-オキセタニルメチル(メタ)アクリレート、3-ヘキシル-3-オキセタニルメチル(メタ)アクリレートが挙げられる。環状エーテル基を有する化合物は、アリルグリシジルエーテルであってもよい。
A compound having a cyclic ether group can advance a curing reaction by a cationic polymerization reaction of the cyclic ether group. This reaction can be facilitated, for example, by an acid generated from a photoacid generator. Examples of the compound having a cyclic ether group that can be contained in the monofunctional monomer include compounds having an epoxy group and / or an oxetane group. Specific examples of these compounds include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, propylene oxide (PO) modified bisphenol A diglycidyl ether diester. Acrylate, novolac partial epoxy acrylate, acrylic acid adduct of bisphenol A diglycidyl ether, 3-oxetanylmethyl (meth) acrylate, 3-methyl-3-oxetanylmethyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl (meth) ) Acrylate, 3-butyl-3-oxetanylmethyl (meth) acrylate, and 3-hexyl-3-oxetanylmethyl (meth) acrylate. The compound having a cyclic ether group may be allyl glycidyl ether.
イソシアネート基を有する化合物は、水分が関与するイソシアネート基の反応によって、硬化反応を進行させることができる。単官能単量体に含まれ得る、イソシアネート基を有する化合物の具体例としては、イソシアナトメチル(メタ)アクリレート、2-イソシアナトエチル(メタ)アクリレートが挙げられる。
The compound having an isocyanate group can advance a curing reaction by a reaction of an isocyanate group involving moisture. Specific examples of the compound having an isocyanate group that can be contained in the monofunctional monomer include isocyanatomethyl (meth) acrylate and 2-isocyanatoethyl (meth) acrylate.
上記反応性基を有する化合物の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、0.1質量%以上、1質量%以上、又は3質量%以上であってもよく、15質量%以下、10質量%以下、又は5質量%以下であってもよい。
The content of the compound having a reactive group is the total amount of the curable resin composition from the viewpoint of reactivity, the viewpoint of improving the adhesive force, and the stability when the curable resin composition is a solution. On the other hand, 0.1 mass% or more, 1 mass% or more, or 3 mass% or more may be sufficient, and 15 mass% or less, 10 mass% or less, or 5 mass% or less may be sufficient.
(B)成分の単量体成分は、1個のラジカル重合性基を有する単官能単量体を主成分として含むが、これに加えて、2個以上のラジカル重合性基を有する多官能単量体を含んでいてもよい。その場合、多官能単量体の含有量は、単量体成分((B)成分)の総量に対して、5質量%以下であってもよい。
The monomer component (B) contains a monofunctional monomer having one radical polymerizable group as a main component, but in addition to this, a polyfunctional monomer having two or more radical polymerizable groups. It may contain a mer. In that case, content of a polyfunctional monomer may be 5 mass% or less with respect to the total amount of a monomer component ((B) component).
(C)成分:着色剤
着色剤は、硬化性樹脂組成物及び遮光層を着色して、形成される遮光層に適切な遮光性を付与する成分である、着色剤の色相に特に制限はなく、様々な色相を持つ着色剤を用いることができるが、着色剤は典型的には黒色を呈する。着色剤は、例えば、染料、及び/又は顔料を含むことができる。均一な硬化性樹脂組成物を得る観点から、単量体成分に溶解する着色剤を選択してもよい。 (C) Component: Colorant The colorant is a component that colors the curable resin composition and the light-shielding layer and imparts appropriate light-shielding properties to the formed light-shielding layer, and there is no particular limitation on the hue of the colorant. Although colorants with various hues can be used, the colorants typically exhibit a black color. The colorant can include, for example, a dye and / or a pigment. From the viewpoint of obtaining a uniform curable resin composition, a colorant that dissolves in the monomer component may be selected.
着色剤は、硬化性樹脂組成物及び遮光層を着色して、形成される遮光層に適切な遮光性を付与する成分である、着色剤の色相に特に制限はなく、様々な色相を持つ着色剤を用いることができるが、着色剤は典型的には黒色を呈する。着色剤は、例えば、染料、及び/又は顔料を含むことができる。均一な硬化性樹脂組成物を得る観点から、単量体成分に溶解する着色剤を選択してもよい。 (C) Component: Colorant The colorant is a component that colors the curable resin composition and the light-shielding layer and imparts appropriate light-shielding properties to the formed light-shielding layer, and there is no particular limitation on the hue of the colorant. Although colorants with various hues can be used, the colorants typically exhibit a black color. The colorant can include, for example, a dye and / or a pigment. From the viewpoint of obtaining a uniform curable resin composition, a colorant that dissolves in the monomer component may be selected.
着色剤が単量体成分に溶解することは、以下の方法により確認できる。50mLのビーカーに、単量体成分10mL(温度25℃)及び着色剤10mg(固形分質量)を加え、ガラス棒を用いて1分間撹拌する。その後、目視で着色剤の固形物が確認できない場合、当該着色剤は単量体成分に溶解すると判断する。
It can be confirmed by the following method that the colorant is dissolved in the monomer component. To a 50 mL beaker, 10 mL of monomer component (temperature 25 ° C.) and 10 mg of colorant (solid mass) are added and stirred for 1 minute using a glass rod. Thereafter, when the solid matter of the colorant cannot be visually confirmed, it is determined that the colorant is dissolved in the monomer component.
遮光性の観点から、着色剤の可視光の平均透過率が、50%以下、45%以下、又は40%以下であってもよい。ここで、可視光の平均透過率とは、波長400~700nmの光の平均透過率をいう。可視光の平均透過率は、着色剤が溶解する溶媒100質量部と、着色剤0.1質量部とからなる着色剤溶液の光透過率を、分光測色計(例えば、株式会社コニカミノルタ製「CM-3700A」)を用いて、400~700nmの範囲で1nm毎に測定し、得られた各測定値の平均値を求め、平均透過率とする方法により測定することができる。着色剤が溶媒に溶解することは、上記の「着色剤が単量体成分に溶解すること」と同じ方法によって確認できる。
From the viewpoint of light shielding properties, the average visible light transmittance of the colorant may be 50% or less, 45% or less, or 40% or less. Here, the average transmittance of visible light refers to the average transmittance of light having a wavelength of 400 to 700 nm. The average visible light transmittance is obtained by measuring the light transmittance of a colorant solution composed of 100 parts by mass of a solvent in which the colorant is dissolved and 0.1 part by mass of the colorant with a spectrocolorimeter (for example, manufactured by Konica Minolta, Inc.). “CM-3700A”) can be measured every 1 nm in the range of 400 to 700 nm, an average value of the obtained measurement values can be obtained, and the average transmittance can be obtained. The dissolution of the colorant in the solvent can be confirmed by the same method as that described above for “the colorant dissolves in the monomer component”.
硬化反応を進行させるために照射される光(活性エネルギー線)のピーク波長における着色剤の光透過率(以下、「照射透過率」ともいう。)が、可視光の平均透過率よりも10%以上、20%以上、30%以上高くてもよい。照射光透過率は、60%以上、65%以上、又は70%以上であってもよい。高い照射光透過率を有する着色剤を用いることにより、十分な遮光性を確保しながら、光ラジカル重合による硬化反応を効率的に進行させることができる。着色剤の照射光透過率は、着色剤が溶解する溶媒100質量部と、着色剤0.1質量部とからなる着色剤溶液の、硬化反応を進行させるために照射される光(活性エネルギー線)のピーク波長における着色剤の光透過率を、分解波長は1nmの条件で測定する方法により、決定することができる。測定装置としては、可視紫外分光光度計(例えば、株式会社島津製作所製「UV-2400PC」)を用いることができる。測定範囲は、例えば300~780nmに設定される。
The light transmittance (hereinafter also referred to as “irradiation transmittance”) of the colorant at the peak wavelength of the light (active energy ray) irradiated to advance the curing reaction is 10% of the average visible light transmittance. As mentioned above, it may be 20% or more, 30% or more higher. The irradiation light transmittance may be 60% or more, 65% or more, or 70% or more. By using a colorant having a high irradiation light transmittance, a curing reaction by radical photopolymerization can be efficiently advanced while ensuring a sufficient light shielding property. The irradiation light transmittance of the colorant is determined by the light (active energy ray) irradiated to advance the curing reaction of the colorant solution consisting of 100 parts by mass of the solvent in which the colorant is dissolved and 0.1 part by mass of the colorant. The light transmittance of the colorant at the peak wavelength of) can be determined by a method of measuring the decomposition wavelength under the condition of 1 nm. As the measuring apparatus, a visible ultraviolet spectrophotometer (for example, “UV-2400PC” manufactured by Shimadzu Corporation) can be used. The measurement range is set to 300 to 780 nm, for example.
着色剤は、例えば、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオディン・グリーン、ジアゾイエロー、アニリンブラック、ペリレンブラック、及びフルオランからなる群より選ばれる少なくとも1種を含んでもよい。
The colorant may include, for example, at least one selected from the group consisting of phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, aniline black, perylene black, and fluoran.
着色剤の含有量は、可視光を遮光する効果を得る観点から、硬化性樹脂組成物の総量に対して、0.1質量%以上、0.3質量%以上、又は0.5質量%以上であってもよく、10質量%以下、7.5質量%以下、又は5質量%以下であってもよい。
The content of the colorant is 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass or more with respect to the total amount of the curable resin composition from the viewpoint of obtaining an effect of shielding visible light. It may be 10 mass% or less, 7.5 mass% or less, or 5 mass% or less.
硬化性樹脂組成物は、以上説明した(A)、(B)及び(C)成分に加えて、必要により他の成分を更に含有することができる。硬化性樹脂組成物は、例えば、シラノール基及び/又はアルコキシシリル基を有する化合物、環状エーテル基を有する化合物、並びに、イソシアネート基を有する化合物から選ばれる、ラジカル重合性基を有しない化合物を含有してもよい。これらの化合物も、イオン反応によって硬化反応を進行させ得る。
The curable resin composition may further contain other components as necessary in addition to the components (A), (B) and (C) described above. The curable resin composition contains, for example, a compound having no radical polymerizable group selected from a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and a compound having an isocyanate group. May be. These compounds can also advance the curing reaction by ionic reaction.
硬化性樹脂組成物に含まれ得るシラノール基及び/又はアルコキシシリル基を有する化合物(但し、光ラジカル重合性基を有する化合物を除く;以下、「化合物(X)」ともいう)としては、例えば、カルボン酸無水物基とトリメトキシシリル基とを有する化合物(例えば、「X-12-967C」、信越化学(株)製)、イソシアヌレート基とトリメトキシシリル基を有する化合物(例えば、「KBM9659」、信越化学(株)製)、エポキシ基とトリメトキシシリル基とを有する化合物(例えば、「KBM403」、信越化学(株)製)、メルカプト基とトリメトキシシリル基とを有する化合物(例えば、「KBM803」、信越化学(株)製)等のトリアルコキシシリル基を有する化合物;ジメチルジメトキシシラン、3-グリシドキシプロピルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のジアルコキシシリル基を有する化合物;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン又はそのオリゴマーなどが挙げられる。シラノール基及び/又はアルコキシシリル基を有する化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの中でも、反応性を高める観点から、トリアルコキシシリル基を有する化合物、テトラアルコキシシラン又はそのオリゴマーを選んでもよい。硬化性樹脂組成物が溶液であるときの安定性を高める観点から、トリアルコキシシリル基を有する化合物、テトラアルコキシシラン又はそのオリゴマーと、ジアルコキシシリル基を有する化合物とを組み合わせてもよい。
Examples of the compound having a silanol group and / or alkoxysilyl group that can be included in the curable resin composition (excluding a compound having a photoradical polymerizable group; hereinafter also referred to as “compound (X)”) include, for example: A compound having a carboxylic anhydride group and a trimethoxysilyl group (for example, “X-12-967C” manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having an isocyanurate group and a trimethoxysilyl group (for example, “KBM9659”) , Manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having an epoxy group and a trimethoxysilyl group (for example, “KBM403”, manufactured by Shin-Etsu Chemical Co., Ltd.), a compound having a mercapto group and a trimethoxysilyl group (for example, “ KBM803 ", manufactured by Shin-Etsu Chemical Co., Ltd.) and other compounds having a trialkoxysilyl group; dimethyldimethoxysilane, 3-glyci Propyl dimethoxysilane, 3-compound having a dialkoxy silyl group such as mercaptopropyl methyldimethoxysilane; tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, etc. tetraalkoxysilane or their oligomers such tetrabutoxy silane. A compound having a silanol group and / or an alkoxysilyl group may be used alone or in combination of two or more. Among these, from the viewpoint of increasing reactivity, a compound having a trialkoxysilyl group, tetraalkoxysilane, or an oligomer thereof may be selected. From the viewpoint of enhancing the stability when the curable resin composition is a solution, a compound having a trialkoxysilyl group, tetraalkoxysilane or an oligomer thereof, and a compound having a dialkoxysilyl group may be combined.
化合物(X)の他の例として、トリアルコキシシリル基を有する化合物、ジアルコキシシリル基を有する化合物、並びにテトラアルコキシシラン及びそのオリゴマーから選択される少なくとも1種の化合物の部分加水分解物(例えば、テトラメトキシシランオリゴマーの部分加水分解物、テトラエトキシシランとジメチルジメトキシシランの部分加水分解物);トリアルコキシシリル基を有する化合物、ジアルコキシシリル基を有する化合物、並びにテトラアルコキシシラン及びそのオリゴマーから選択される少なくとも1種とテトラアルコキシチタン及び/又はテトラアルコキシジルコニウムとの反応物(例えば、テトラメトキシシランオリゴマーとテトラブトキシチタンとの反応物、テトラエトキシシランとテトラブトキシチタンとの反応物、テトラエトキシシランとテトラエトキシジルコニウムとの反応物)等が挙げられる。これらは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの中でも、反応性を高める観点から、トリアルコキシシリル基を有する化合物、ジアルコキシシリル基を有する化合物、並びにテトラアルコキシシラン及びそのオリゴマーから選択される少なくとも1種の化合物の部分加水分解物を選んでもよい。
Other examples of the compound (X) include a compound having a trialkoxysilyl group, a compound having a dialkoxysilyl group, and a partial hydrolyzate of at least one compound selected from tetraalkoxysilane and oligomers thereof (for example, A partial hydrolyzate of tetramethoxysilane oligomer, a partial hydrolyzate of tetraethoxysilane and dimethyldimethoxysilane); a compound having trialkoxysilyl group, a compound having dialkoxysilyl group, and tetraalkoxysilane and oligomer thereof A reaction product of at least one selected from tetraalkoxytitanium and / or tetraalkoxyzirconium (for example, a reaction product of tetramethoxysilane oligomer and tetrabutoxytitanium, tetraethoxysilane and tetrabutoxytitanium Applied Physics, reaction products of tetraethoxysilane and tetraethoxysilane zirconium), and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, from the viewpoint of increasing reactivity, a compound having a trialkoxysilyl group, a compound having a dialkoxysilyl group, and a partial hydrolyzate of at least one compound selected from tetraalkoxysilane and oligomers thereof are selected. But you can.
化合物(X)の更に他の例として、例えば、シラノール基及び/又はアルコキシシリル基を有するオリゴマーが挙げられる。
Still another example of the compound (X) includes, for example, an oligomer having a silanol group and / or an alkoxysilyl group.
硬化性樹脂組成物が(B)成分としてシラノール基及び/又はアルコキシシリル基を有する化合物を含有する場合であって、かつ化合物(X)を含有する場合、化合物(X)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、0.1質量%以上、1質量%以上、又は3質量%以上であってもよく、15質量%以下、10質量%以下、又は5質量%以下であってもよい。
When the curable resin composition contains a compound having a silanol group and / or alkoxysilyl group as the component (B) and contains the compound (X), the content of the compound (X) From the viewpoint of stability, from the viewpoint of improving the adhesive strength, and from the viewpoint of stability when the curable resin composition is a solution, 0.1% by mass or more and 1% by mass with respect to the total amount of the curable resin composition It may be 3% by mass or more, 15% by mass or less, 10% by mass or less, or 5% by mass or less.
硬化性樹脂組成物が(B)成分としてシラノール基及び/又はアルコキシシリル基を有する化合物を含有しない場合であって、かつ化合物(X)を含有する場合、化合物(X)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、1質量%以上、5質量%以上、又は10質量%以上であってもよく、70質量%以下、50質量%以下、又は30質量%以下であってもよい。
When the curable resin composition does not contain a compound having a silanol group and / or an alkoxysilyl group as the component (B) and contains the compound (X), the content of the compound (X) From the viewpoint of stability, from the viewpoint of improving the adhesive force, and from the viewpoint of stability when the curable resin composition is a solution, 1% by mass or more, 5% by mass or more with respect to the total amount of the curable resin composition, Or 10 mass% or more may be sufficient, and 70 mass% or less, 50 mass% or less, or 30 mass% or less may be sufficient.
硬化性樹脂組成物に含まれ得る環状エーテル基を有する化合物(但し、光ラジカル重合性基を有する化合物を除く;以下、「化合物(Y)」ともいう)としては、例えば、エポキシ基、及び/又はオキセタン基を有する化合物が挙げられる。これらの化合物の具体例としては、グリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ステアリルグリシジルエーテル、ラウリルグリシジルエーテル、ブトキシポリエチレングリコールグリシジルエーテル、フェノールポリエチレングリコールグリシジルエーテル、フェニルグリシジルエーテル、p-メチルフェニルグリシジルエーテル、p-エチルフェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジル等の単官能エポキシ化合物;ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールADジグリシジルエーテル等のビスフェノールのポリグリシジルエーテル;1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;エチレングリコール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールの脂肪族ポリグリシジルエーテル;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ラクトン変性3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート等の3,4-エポキシシクロヘキシル基を有する化合物等の多官能エポキシ化合物;3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコール)、2-エチルヘキシルオキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-エチル-3-(ドデシロキシメチル)オキセタン、3-エチル-3-(オクタデシロキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン等の単官能オキセタン化合物;キシリレンビスオキセタン、1-ブトキシ-2,2-ビス〔(3-エチルオキセタン-3-イル)メトキシメチル〕ブタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、1,1,1-トリス〔(3-エチルオキセタン-3-イル)メトキシメチル〕プロパン等の多官能オキセタン化合物が挙げられる。
Examples of the compound having a cyclic ether group that can be contained in the curable resin composition (however, excluding a compound having a radical photopolymerizable group; hereinafter also referred to as “compound (Y)”) include, for example, an epoxy group, and / or Or the compound which has an oxetane group is mentioned. Specific examples of these compounds include glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, stearyl glycidyl ether, lauryl glycidyl ether, butoxy polyethylene glycol glycidyl ether, phenol polyethylene glycol glycidyl ether, phenyl glycidyl ether, p-methylphenyl Monofunctional epoxy compounds such as glycidyl ether, p-ethylphenyl glycidyl ether, p-sec-butylphenyl glycidyl ether, p-tert-butylphenyl glycidyl ether; bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether , Hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F Polyglycidyl ethers of bisphenols such as glycidyl ether and hydrogenated bisphenol AD diglycidyl ether; 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, Polyglycidyl ethers of polyhydric alcohols such as polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether; by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin Aliphatic polyglycidyl ether of the resulting polyether polyol; 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxy Chlohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4 -Epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3 ', 4'-epoxy-6'-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane), dicyclo Pentadiene diepoxide, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylenebis (3,4-epoxycyclohexanecarboxylate), lactone modified 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclo Polyfunctional epoxy compounds such as compounds having a 3,4-epoxycyclohexyl group such as hexanecarboxylate; 3-ethyl-3-hydroxymethyloxetane (oxetane alcohol), 2-ethylhexyloxetane, 3-ethyl-3- (2- Ethylhexyloxymethyl) oxetane, 3-ethyl-3- (dodecyloxymethyl) oxetane, 3-ethyl-3- (octadecyloxymethyl) oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl Monofunctional oxetane compounds such as -3-hydroxymethyloxetane; xylylenebisoxetane, 1-butoxy-2,2-bis [(3-ethyloxetane-3-yl) methoxymethyl] butane, 3-ethyl-3 {[[ (3-Ethyloxetane-3-yl) methoxy] methyl} oxy Tan, 1,1,1-tris [(3-ethyloxetan-3-yl) methoxymethyl] polyfunctional oxetane compounds such as propane.
化合物(Y)の他の例として、例えば、環状エーテル基を有するオリゴマーが挙げられる。
Other examples of the compound (Y) include an oligomer having a cyclic ether group.
硬化性樹脂組成物が(B)成分として環状エーテル基を有する化合物を含有する場合であって、かつ化合物(Y)を含有する場合、化合物(Y)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、0.1質量%以上、1質量%以上、3質量%以上であってもよく、15質量%以下、10質量%以下、5質量%以下であってもよい。
In the case where the curable resin composition contains a compound having a cyclic ether group as the component (B) and contains the compound (Y), the content of the compound (Y) From the viewpoint of improving the force, and from the viewpoint of stability when the curable resin composition is a solution, it is 0.1% by mass or more, 1% by mass or more, and 3% by mass with respect to the total amount of the curable resin composition. The above may be sufficient, and 15 mass% or less, 10 mass% or less, and 5 mass% or less may be sufficient.
硬化性樹脂組成物が(B)成分として環状エーテル基を有する化合物を含有しない場合であって、かつ化合物(Y)を含有する場合、化合物(Y)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、1質量%以上、5質量%以上、又は10質量%以上であってもよく、70質量%以下、50質量%以下、又は30質量%以下であってもよい。
When the curable resin composition does not contain a compound having a cyclic ether group as the component (B) and contains the compound (Y), the content of the compound (Y) is determined in terms of reactivity, adhesion. From the viewpoint of improving the force, and from the viewpoint of stability when the curable resin composition is a solution, it is 1% by mass or more, 5% by mass or more, or 10% by mass or more with respect to the total amount of the curable resin composition. 70 mass% or less, 50 mass% or less, or 30 mass% or less may be sufficient.
硬化性樹脂組成物に含まれ得るイソシアネート基を有する化合物(但し、光ラジカル重合性基を有する化合物を除く;以下、「化合物(Z)」ともいう)としては、単官能イソシアネート、多官能イソシアネートが挙げられる。単官能イソシアネートの具体例としては、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、ブチルイソシアネート、オクチルイソシアネート、デシルイソシアネート、オクタデシルイソシアネート、ステアリルイソシアネート、シクロヘキシルイソシアネート、フェニルイソシアネート、ベンジルイソシアネート、p-クロロフェニルイソシアネート、p-ニトロフェニルイソシアネート、2-クロロエチルイソシアネート、2,4-ジクロロフェニルイソシアネート、3-クロロ-4-メチルフェニルイソシアネート、トリクロロアセチルイソシアネート、クロロスルホニルイソシアネート、(R)-(+)-α-メチルベンジルイソシアネート、(S)-(-)-α-メチルベンジルイソシアネート、(R)-(-)-1-(1-ナフチル)エチルイソシアネート、(R)-(+)-1-フェニルエチルイソシアネート、(S)-(-)-1-フェニルエチルイソシアネート、p-トルエンスルホニルイソシアネートが挙げられる。多官能イソシアネートの具体例としては、1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(別名:4,4’-MDI)、2,4-トリレンジイソシアネート(別名:2,4-TDI)、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、2,4,6-トリイソシアネートトルエン、1,3,5-トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート等の芳香族ポリイソシアネート;トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(別名:HDI)、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート;ω,ω’-ジイソシアネート-1,3-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、1,3-テトラメチルキシリレンジイソシアネート等の芳香脂肪族ポリイソシアネート;3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(別名:IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,4-ビス(イソシアネートメチル)シクロヘキサン等の脂環族ポリイソシアネートが挙げられる。これらの中でも、架橋性の観点から、多官能イソシアネートを選んでもよい。
Compounds having an isocyanate group that can be included in the curable resin composition (however, excluding compounds having a radically polymerizable group; hereinafter, also referred to as “compound (Z)”) include monofunctional isocyanates and polyfunctional isocyanates. Can be mentioned. Specific examples of the monofunctional isocyanate include methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, octyl isocyanate, decyl isocyanate, octadecyl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, benzyl isocyanate, p-chlorophenyl isocyanate, p-nitro. Phenyl isocyanate, 2-chloroethyl isocyanate, 2,4-dichlorophenyl isocyanate, 3-chloro-4-methylphenyl isocyanate, trichloroacetyl isocyanate, chlorosulfonyl isocyanate, (R)-(+)-α-methylbenzyl isocyanate, (S )-(−)-Α-methylbenzyl isocyanate, (R)-( -)-1- (1-naphthyl) ethyl isocyanate, (R)-(+)-1-phenylethyl isocyanate, (S)-(-)-1-phenylethyl isocyanate, p-toluenesulfonyl isocyanate. Specific examples of the polyfunctional isocyanate include 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate (also known as 4,4′-MDI), 2 , 4-Tolylene diisocyanate (also known as 2,4-TDI), 2,6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate Aromatic polyisocyanates such as benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 ', 4 "-triphenylmethane triisocyanate; trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene dii Aliphatic acids such as cyanate (also known as HDI), pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate Polyisocyanate; ω, ω′-diisocyanate-1,3-dimethylbenzene, ω, ω′-diisocyanate-1,4-dimethylbenzene, ω, ω′-diisocyanate-1,4-diethylbenzene, 1,4-tetramethyl Aromatic aliphatic polyisocyanates such as xylylene diisocyanate and 1,3-tetramethylxylylene diisocyanate; 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (also known as IPDI), 1, -Cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), 1, Examples thereof include alicyclic polyisocyanates such as 4-bis (isocyanatomethyl) cyclohexane, etc. Among these, polyfunctional isocyanates may be selected from the viewpoint of crosslinkability.
化合物(Z)の他の例として、例えば、イソシアネート基を有するオリゴマー(例えば、両末端にイソシアネート基を有するウレタン樹脂)が挙げられる。
Other examples of the compound (Z) include, for example, an oligomer having an isocyanate group (for example, a urethane resin having an isocyanate group at both ends).
硬化性樹脂組成物が(B)成分としてイソシアネート基を有する化合物を含有する場合であって、かつ化合物(Z)を含有する場合、化合物(Z)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、0.1質量%以上、1質量%以上、3質量%以上であってもよく、15質量%以下、10質量%以下、5質量%以下であってもよい。
In the case where the curable resin composition contains a compound having an isocyanate group as the component (B) and contains the compound (Z), the content of the compound (Z) is determined in terms of reactivity and adhesive strength. From the viewpoint of improving the stability and the stability when the curable resin composition is a solution, 0.1% by mass or more, 1% by mass or more, 3% by mass or more with respect to the total amount of the curable resin composition It may be 15 mass% or less, 10 mass% or less, and 5 mass% or less.
硬化性樹脂組成物が(B)成分としてイソシアネート基を有する化合物を含有しない場合であって、かつ化合物(Z)を含有する場合、化合物(Z)の含有量は、反応性の観点、接着力を向上させる観点、及び硬化性樹脂組成物が溶液であるときの安定性の観点から、硬化性樹脂組成物の総量に対して、1質量%以上、5質量%以上、又は10質量%以上であってもよく、70質量%以下、50質量%以下、又は30質量%以下であってもよい。
When the curable resin composition does not contain a compound having an isocyanate group as the component (B) and contains the compound (Z), the content of the compound (Z) is determined in terms of reactivity, adhesive strength. 1% by mass or more, 5% by mass or more, or 10% by mass or more with respect to the total amount of the curable resin composition from the viewpoint of improving the stability and the stability when the curable resin composition is a solution. It may be 70 mass% or less, 50 mass% or less, or 30 mass% or less.
本実施形態に係る硬化性樹脂組成物は、(D)成分として光塩基発生剤を更に含有してもよい。本明細書において「光塩基発生剤」とは、活性エネルギー線の照射により、分子構造が変化、又は分子が開裂し、イオン反応の硬化触媒として機能しうる1種以上の塩基性物質を生成する化合物を意味する。光塩基発生剤として、塩基を発生させる上述の光ラジカル重合開始剤を用いてもよい。
The curable resin composition according to this embodiment may further contain a photobase generator as the component (D). In the present specification, the term “photobase generator” refers to the generation of one or more basic substances that can function as a curing catalyst for ionic reaction by changing the molecular structure or cleaving the molecule upon irradiation with active energy rays. Means a compound. As the photobase generator, the aforementioned radical photopolymerization initiator that generates a base may be used.
光塩基発生剤は、Co-アミン錯体系光塩基発生剤;カルバミン酸エステル系光塩基発生剤;四級アンモニウム塩系光塩基発生剤;アシルオキシイミノ基、N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメート基、アルコキシベンジルカーバメート基等を有する化合物などから選ぶこともできる。光塩基発生剤の具体例としては、9-アンチルメチル N,N-ジエチルカルバメート、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン、グアニジニウム 2-(3-ベンゾイルフェニル)プロピオナート、1-(アントラキノン-2-イル)エチル イミダゾールカルボキシレート、2-ニトロフェニルメチル 4-メタクリロイルオキシピペリジン-1-カルボキシラート、1-(アントラキノン-2-イル)-エチル N,N-ジシクロヘキシルカルバマート、ジシクロヘキシルアンモニウム 2-(3-ベンゾイルフェニル)プロピオナート、シクロヘキシルアンモニウム 2-(3-ベンゾイルフェニル)プロピオナート、9-アントリルメチル N,N-ジシクロヘキシルカルバマート、1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジウム 2-(3-ベンゾイルフェニル)プロピオナート、2-ニトロベンジルシクロヘキシルカルバメート、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、{[(2,6-ジニトロベンジル)オキシ]カルボニル}シクロヘキシルアミン、ビス{[(2-ニトロベンジル)オキシ]カルボニル}ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2’-ニトロフェニル)-1,4-ジヒドロピリジン、2,6-ジメチル-3,5-ジアセチル-4-(2’,4’-ジニトロフェニル)-1,4-ジヒドロピリジンが挙げられる。光塩基発生剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Photobase generators include Co-amine complex photobase generators; carbamate ester photobase generators; quaternary ammonium salt photobase generators; acyloxyimino groups, N-formylated aromatic amino groups, N- It can also be selected from compounds having an acylated aromatic amino group, a nitrobenzyl carbamate group, an alkoxybenzyl carbamate group, and the like. Specific examples of the photobase generator include 9-antilmethyl N, N-diethylcarbamate, (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, guanidinium 2- (3-benzoyl) Phenyl) propionate, 1- (anthraquinone-2-yl) ethyl imidazole carboxylate, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1- (anthraquinone-2-yl) -ethyl N, N-dicyclohexyl Carbamate, dicyclohexylammonium 2- (3-benzoylphenyl) propionate, cyclohexylammonium 2- (3-benzoylphenyl) propionate, 9-anthrylmethyl N, N-dicyclohexylcarbamate, 1, -Diisopropyl-3- [bis (dimethylamino) methylene] guanidinium 2- (3-benzoylphenyl) propionate, 2-nitrobenzylcyclohexylcarbamate, O-carbamoylhydroxylamide, O-carbamoyloxime, {[(2,6-dinitro Benzyl) oxy] carbonyl} cyclohexylamine, bis {[(2-nitrobenzyl) oxy] carbonyl} hexane 1,6-diamine, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) ) -1-Benzyl-1-dimethylaminopropane, N- (2-nitrobenzyloxycarbonyl) pyrrolidine, hexaamminecobalt (III) tris (triphenylmethylborate), 2-benzyl-2-dimethylamino -1- (4-morpholinophenyl) -butanone, 2,6-dimethyl-3,5-diacetyl-4- (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5- And diacetyl-4- (2 ′, 4′-dinitrophenyl) -1,4-dihydropyridine. A photobase generator may be used individually by 1 type, and may be used in combination of 2 or more type.
硬化性樹脂組成物における光塩基発生剤の含有量は、イオン反応による硬化反応を効率的に促進させる観点から、硬化性樹脂組成物の総量に対して、2質量%以上、4質量%以上、又は6質量%以上であってもよく、14質量%以下、12質量%以下、又は10質量%以下であってもよい。ここで、光塩基発生剤が光ラジカル重合開始剤を兼ねる場合、その含有量は光ラジカル重合開始剤としての含有量とみなされる。
The content of the photobase generator in the curable resin composition is 2% by mass or more, 4% by mass or more with respect to the total amount of the curable resin composition, from the viewpoint of efficiently accelerating the curing reaction by ionic reaction. Or 6 mass% or more may be sufficient, and 14 mass% or less, 12 mass% or less, or 10 mass% or less may be sufficient. Here, when the photobase generator also serves as a radical photopolymerization initiator, the content thereof is regarded as a content as a radical photopolymerization initiator.
本実施形態に係る硬化性樹脂組成物は、(E)成分として光酸発生剤を更に含有してもよい。本明細書において「光酸発生剤」とは、活性エネルギー線の照射により、分子構造が変化、又は分子が開裂し、イオン反応の硬化触媒として機能しうる1種以上の酸性物質を生成する化合物を意味する。光酸発生剤は、特に、環状エーテル基を有する化合物のイオン反応の硬化触媒として機能することができる。
The curable resin composition according to the present embodiment may further contain a photoacid generator as the component (E). In this specification, the “photoacid generator” means a compound that generates one or more acidic substances that can function as a curing catalyst for ionic reaction by changing the molecular structure or cleaving the molecule upon irradiation with active energy rays. Means. The photoacid generator can particularly function as a curing catalyst for an ionic reaction of a compound having a cyclic ether group.
光酸発生剤としては、例えば、オニウム塩化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物、ジスルホニルジアゾメタン化合物、ジスルホニルメタン化合物、オキシムスルホネート化合物、ヒドラジンスルホネート化合物、トリアジン化合物、ニトロベンジル化合物、有機ハロゲン化物類、ジスルホンが挙げることができる。光酸発生剤の市販品の例としては、商品名「サイラキュアUVI-6970」、「サイラキュアUVI-6974」、「サイラキュアUVI-6990」、「サイラキュアUVI-950」(以上、米国ユニオンカーバイド社製)、「イルガキュア250」、「イルガキュア261」、「イルガキュア264」、「イルガキュア270」、「イルガキュア290」(以上、BASF社製)、「CG-24-61」(チバガイギー社製)、「アデカオプトマーSP-150」、「アデカオプトマーSP-151」、「アデカオプトマーSP-170」、「アデカオプトマーSP-171」(以上、(株)ADEKA製)、「DAICAT II」((株)ダイセル製)、「UVAC1590」、「UVAC1591」(以上、ダイセル・サイテック(株)製)、「CI-2064」、「CI-2639」、「CI-2624」、「CI-2481」、「CI-2734」、「CI-2855」、「CI-2823」、「CI-2758」、「CIT-1682」(以上、日本曹達(株)製)、「PI-2074」(ローディア社製、テトラキス(ペンタフルオロフェニル)ボレート トルイルクミルヨードニウム塩)、「FFC509」(3M社製)、「BBI-102」、「BBI-101」、「BBI-103」、「MPI-103」、「BDS-105」、「TPS-103」、「MDS-103」、「MDS-105」、「MDS-203」、「MDS-205」、「DTS-102」、「DTS-103」、「NAT-103」、「NDS-103」、「BMS-105」、「TMS-105」(以上、ミドリ化学(株)製)、「CD-1010」、「CD-1011」、「CD-1012」(以上、米国、Sartomer社製)、「CPI-100P」、「CPI-101A」、「CPI-110P」、「CPI-110A」、「CPI-210S」(以上、サンアプロ(株)製)、「UVI-6992」、「UVI-6976」(以上、ダウ・ケミカル社製)が挙げられる。
Examples of the photoacid generator include onium salt compounds, sulfone compounds, sulfonic acid ester compounds, sulfonimide compounds, disulfonyldiazomethane compounds, disulfonylmethane compounds, oxime sulfonate compounds, hydrazine sulfonate compounds, triazine compounds, nitrobenzyl compounds, Organic halides and disulfone can be mentioned. Examples of commercially available photoacid generators include trade names “Syracure UVI-6970”, “Syracure UVI-6974”, “Syracure UVI-6990”, “Syracure UVI-950” (above, Union Carbide, USA) "Irgacure 250", "Irgacure 261", "Irgacure 264", "Irgacure 270", "Irgacure 290" (manufactured by BASF), "CG-24-61" (Ciba Geigy), "Adekaoptomer" “SP-150”, “Adekaoptomer SP-151”, “Adekaoptomer SP-170”, “Adekaoptomer SP-171” (manufactured by ADEKA Corporation), “DAICAT II” (Daicel Corporation) ), "UVAC1590", "UVAC1591" (above, Daicel-Cite) (CI Co., Ltd.), “CI-2064”, “CI-2539”, “CI-2624”, “CI-2481”, “CI-2734”, “CI-2855”, “CI-2823”, “ “CI-2758”, “CIT-1682” (manufactured by Nippon Soda Co., Ltd.), “PI-2074” (manufactured by Rhodia, tetrakis (pentafluorophenyl) borate toluylcumyliodonium salt), “FFC509” (3M Manufactured by the same company), “BBI-102”, “BBI-101”, “BBI-103”, “MPI-103”, “BDS-105”, “TPS-103”, “MDS-103”, “MDS-105” ”,“ MDS-203 ”,“ MDS-205 ”,“ DTS-102 ”,“ DTS-103 ”,“ NAT-103 ”,“ NDS-103 ”,“ BMS-105 ” “TMS-105” (above, manufactured by Midori Chemical Co., Ltd.), “CD-1010”, “CD-1011”, “CD-1012” (above, manufactured by Sartomer, USA), “CPI-100P”, “ "CPI-101A", "CPI-110P", "CPI-110A", "CPI-210S" (San Apro Co., Ltd.), "UVI-6922", "UVI-6976" (above, Dow Chemical Company) Manufactured).
本実施形態に係る硬化性樹脂組成物は、(F)成分としてポリマーを更に含有してもよい。硬化性樹脂組成物に含まれるポリマーは、オリゴマーであってもよい。本明細書において「オリゴマー」とは、重量平均分子量が1×104以上であるポリマーを意味する。硬化性樹脂組成物がポリマー(特に、オリゴマー)を含有すると、光照射後の硬化性樹脂層が適度な感圧接着性を有し易い。本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィーによって測定される、標準ポリスチレン換算の値を意味する。本明細書において(F)成分としての「ポリマー」は、上述の(A)~(C)成分と、シラノール基及び/又はアルコキシシリル基を有する化合物、環状エーテル基を有する化合物、並びに、イソシアネート基を有する化合物から選ばれるラジカル重合性基を有しない化合物とを除く成分である。
The curable resin composition according to this embodiment may further contain a polymer as the component (F). The polymer contained in the curable resin composition may be an oligomer. In the present specification, the “oligomer” means a polymer having a weight average molecular weight of 1 × 10 4 or more. When the curable resin composition contains a polymer (particularly an oligomer), the curable resin layer after light irradiation tends to have appropriate pressure-sensitive adhesiveness. In this specification, a weight average molecular weight means the value of standard polystyrene conversion measured by gel permeation chromatography. In the present specification, the “polymer” as the component (F) includes the above-described components (A) to (C), a compound having a silanol group and / or an alkoxysilyl group, a compound having a cyclic ether group, and an isocyanate group. It is a component except the compound which does not have the radically polymerizable group chosen from the compound which has this.
ポリマー(オリゴマー)の具体例としては、ブタジエンゴム、イソプレンゴム、シリコンゴム、スチレンブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、アクリルゴム、クロルスルホン化ポリエチレンゴム、フッ素ゴム、水素化ニトリルゴム、エピクロルヒドリンゴム等の各種ゴムの液状物又は固形物;ポリブテン等のポリα-オレフィン;水添ポリブテン等の水添α-オレフィンオリゴマー;アタクチックポリプロピレン等のポリビニル系オリゴマー;ビフェニル、トリフェニル等の芳香族系オリゴマー;水添液状ポリブタジエン等の水添ポリエン系オリゴマー;パラフィン油、塩化パラフィン油等のパラフィン系オリゴマー;ナフテン油等のシクロパラフィン系オリゴマー;両末端に水酸基を有する化合物と両末端にエステル基若しくはカルボキシ基を有する化合物とのエステル交換、又は重縮合反応で製造することができるポリエステル系オリゴマー;両末端に水酸基を有する、ポリエーテル、ポリカーボネート、又はポリエステルとポリイソシアネートとの重合反応で製造することができるポリウレタン系オリゴマー;(メタ)アクリル酸系ポリマーが挙げられる。これらの中でも、感圧接着性の観点から、(メタ)アクリル酸系ポリマーが好ましい。
Specific examples of the polymer (oligomer) include butadiene rubber, isoprene rubber, silicon rubber, styrene butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, urethane rubber, acrylic rubber, chlorosulfonated polyethylene rubber, fluorine rubber, Liquid or solid materials of various rubbers such as hydrogenated nitrile rubber and epichlorohydrin rubber; poly α-olefins such as polybutene; hydrogenated α-olefin oligomers such as hydrogenated polybutene; polyvinyl oligomers such as atactic polypropylene; biphenyl and tri Aromatic oligomers such as phenyl; Hydrogenated polyene oligomers such as hydrogenated liquid polybutadiene; Paraffinic oligomers such as paraffin oil and chlorinated paraffin oil; Cycloparaffinic oligomers such as naphthene oil; A polyester-based oligomer that can be produced by transesterification of a compound having a hydroxyl group at a terminal and a compound having an ester group or a carboxy group at both terminals, or a polycondensation reaction; a polyether, a polycarbonate having a hydroxyl group at both terminals, or Polyurethane oligomers that can be produced by a polymerization reaction of polyester and polyisocyanate; (meth) acrylic acid polymers can be mentioned. Among these, a (meth) acrylic acid polymer is preferable from the viewpoint of pressure-sensitive adhesiveness.
(メタ)アクリル酸系ポリマーは、(メタ)アクリロイル基を1個有する単量体に由来する単量体単位を1種又は2種以上含むポリマーである。(メタ)アクリル酸系ポリマーは、本発明の効果を著しく損なわない範囲において、(メタ)アクリロイル基を2個以上有する化合物、(メタ)アクリロイル基を有していない重合性化合物(例えば、アクリロニトリル、スチレン、酢酸ビニル、エチレン、プロピレン等の重合性不飽和結合を分子内に1個有する化合物、ジビニルベンゼン等の重合性不飽和結合を分子内に2個以上有する化合物)を共重合単量体として含んでいてもよい。
The (meth) acrylic acid polymer is a polymer containing one or more monomer units derived from a monomer having one (meth) acryloyl group. The (meth) acrylic acid-based polymer is a compound having two or more (meth) acryloyl groups, a polymerizable compound not having a (meth) acryloyl group (for example, acrylonitrile, As a comonomer, a compound having one polymerizable unsaturated bond such as styrene, vinyl acetate, ethylene or propylene, or a compound having two or more polymerizable unsaturated bonds such as divinylbenzene in the molecule) May be included.
(メタ)アクリル酸系ポリマーを構成する単量体の具体例としては、(メタ)アクリル酸;(メタ)アクリル酸アミド;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート;ブトキシエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート等のアルコキシ基を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式基を有する(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールメチルエーテル(メタ)アクリレート等のポリエチレングリコールモノメチルエーテル(メタ)アクリレート;ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート等のポリプロピレングリコールモノメチルエーテル(メタ)アクリレート;テトラエチレングリコールエチルエーテル(メタ)アクリレート等のポリエチレングリコールエチルエーテル(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、(メタ)アクリロイル基を有するポリエステルオリゴマー、(メタ)アクリロイル基を有するウレタン重合体、ポリエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、(メタ)アクリロイル基を有するブタジエン重合体、(メタ)アクリロイル基を有するイソプレン重合体等が挙げられる。(メタ)アクリル酸系ポリマーは、これら単量体を単量体単位として含む単独重合体又は共重合体であってもよい。(メタ)アクリル酸系ポリマーは、(B)単量体成分に含まれる、(メタ)アクリロイル基を1個有する単官能単量体を単量体単位として含む単独重合体又は共重合体であってもよい。(メタ)アクリル酸系ポリマーは、アルキル基を有する(メタ)アクリレートを単量体単位として含んでいてもよいし、炭素数4~18のアルキル基を有する(メタ)アクリレートを単量体単位として含んでいてもよい。
Specific examples of the monomer constituting the (meth) acrylic acid polymer include (meth) acrylic acid; (meth) acrylic acid amide; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) Alkyl (meth) acrylates such as acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, n-lauryl (meth) acrylate, stearyl (meth) acrylate, etc. ; (Meth) acrylates having aromatic rings such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate; butoxyethylene glycol (meth) acrylate, butoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (Meth) acrylates having an alkoxy group such as acryl (meth) acrylate; cycloaliphatic such as cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate (Meth) acrylate having a group; (meth) acrylate having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; tetraethylene glycol monomethyl ether ( (Meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol methyl ether (meta) Polyethylene glycol monomethyl ether (meth) acrylate such as acrylate; Polypropylene glycol monomethyl ether (meth) acrylate such as heptapropylene glycol monomethyl ether (meth) acrylate; Polyethylene glycol ethyl ether (meth) such as tetraethylene glycol ethyl ether (meth) acrylate Acrylate; tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, polyester oligomer having (meth) acryloyl group, urethane polymer having (meth) acryloyl group, Polyethylene glycol mono (meth) acrylate, polyethylene glycol di (meth) acrylate Examples thereof include relate, polypropylene glycol mono (meth) acrylate, polypropylene glycol di (meth) acrylate, butadiene polymer having a (meth) acryloyl group, isoprene polymer having a (meth) acryloyl group. The (meth) acrylic acid polymer may be a homopolymer or copolymer containing these monomers as monomer units. The (meth) acrylic acid polymer is a homopolymer or copolymer containing a monofunctional monomer having one (meth) acryloyl group contained in the monomer component (B) as a monomer unit. May be. The (meth) acrylic acid polymer may contain a (meth) acrylate having an alkyl group as a monomer unit, or a (meth) acrylate having an alkyl group having 4 to 18 carbon atoms as a monomer unit. May be included.
(メタ)アクリル酸系ポリマー1分子中当たりの、単量体単位として含まれるアルキル基を有する(メタ)アクリレートの割合は、(メタ)アクリル酸系ポリマーの質量に対して、5質量%以上、10質量%以上であってもよく、95質量%以下、90質量%以下であってもよい。アルキル基を有する(メタ)アクリレートの割合が上記範囲内であると、硬化後の硬化性樹脂層(遮光層)のガラス、プラスチック、偏光板、ポリカーボネート等の被着体への密着性が向上する傾向がある。
The proportion of the (meth) acrylate having an alkyl group contained as a monomer unit per molecule of the (meth) acrylic acid polymer is 5% by mass or more based on the mass of the (meth) acrylic acid polymer. 10 mass% or more may be sufficient, and 95 mass% or less and 90 mass% or less may be sufficient. When the proportion of the alkyl group-containing (meth) acrylate is within the above range, the adhesion of the cured curable resin layer (light-shielding layer) to an adherend such as glass, plastic, polarizing plate or polycarbonate is improved. Tend.
(メタ)アクリル酸系ポリマーは、プラスチックなどの基材との感圧接着性が向上する観点から、水酸基、モルホリノ基、アミノ基、カルボキシル基、シアノ基、カルボニル基、ニトロ基等の極性基を有する(メタ)アクリレートを単量体単位として含む共重合体であってもよい。
The (meth) acrylic acid polymer has a polar group such as a hydroxyl group, a morpholino group, an amino group, a carboxyl group, a cyano group, a carbonyl group, or a nitro group from the viewpoint of improving the pressure-sensitive adhesiveness with a base material such as plastic. It may be a copolymer containing the (meth) acrylate as a monomer unit.
(メタ)アクリル酸系ポリマー(オリゴマー)の重量平均分子量は、1×104~1×107であってもよい。重量平均分子量を上記範囲内であると、高温(例えば、80℃以上)、高湿(例えば、90%以上)の環境下で、基材などに剥離の発生しない感圧接着力を特に容易に得ることができる。また、塗布に適した粘度を有し、加工性が良好な硬化性樹脂組成物が得られ易い。
The weight average molecular weight of the (meth) acrylic acid polymer (oligomer) may be 1 × 10 4 to 1 × 10 7 . When the weight average molecular weight is within the above range, it is particularly easy to obtain a pressure-sensitive adhesive force that does not cause peeling on a substrate or the like under a high temperature (for example, 80 ° C. or higher) and high humidity (for example, 90% or higher) environment. be able to. Moreover, it is easy to obtain a curable resin composition having a viscosity suitable for coating and good workability.
(メタ)アクリル酸系ポリマーは、溶液重合、乳化重合、懸濁重合、塊状重合等の既知の重合方法を用いて調製することができる。
(Meth) acrylic acid polymer can be prepared using a known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like.
これらの重合方法における重合開始剤としては、熱によりラジカルを発生する化合物を用いてもよい。その具体例としては、過酸化ベンゾイル、tert-ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、tert-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、(3,5,5-トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、ジアセチルパーオキシド、ジドデシルパーオキシド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2.2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’―アゾビス(4-シアノバレリック酸)、2,2’-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2’-アゾビス[2-(イミダゾリン-2-イル)プロパン]等のアゾ系化合物が挙げられる。
As a polymerization initiator in these polymerization methods, a compound that generates a radical by heat may be used. Specific examples thereof include benzoyl peroxide, tert-butyl perbenzoate, cumene hydroperoxide, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di (2-ethoxyethyl) peroxydicarbonate, Organic peroxides such as tert-butylperoxyneodecanoate, t-butylperoxypivalate, (3,5,5-trimethylhexanoyl) peroxide, dipropionyl peroxide, diacetyl peroxide, didodecyl peroxide 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2.2′-azobis ( 2,4-dimethylvaleronitrile), 2,2'-azobis 2,4-dimethyl-4-methoxyvaleronitrile), dimethyl 2,2'-azobis (2-methylpropionate), 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis Examples include azo compounds such as (2-hydroxymethylpropionitrile) and 2,2′-azobis [2- (imidazolin-2-yl) propane].
ポリマーの含有量は、硬化性樹脂組成物の総量に対して、1質量%以上、5質量%以上、10質量%以上であってもよく、90質量%以下、80質量%以下、70質量%以下であってもよい。ポリマーの含有量が上記範囲内であると、塗布に適した粘度を有し加工性が良好な硬化性樹脂組成物が得られ易い。また、光照射後の硬化樹脂層のガラス、プラスチック、偏光板、ポリカーボネート等の被着体への感圧接着性が特に良好となる傾向がある。
The content of the polymer may be 1% by mass or more, 5% by mass or more, 10% by mass or more, 90% by mass or less, 80% by mass or less, 70% by mass with respect to the total amount of the curable resin composition. It may be the following. When the content of the polymer is within the above range, a curable resin composition having a viscosity suitable for coating and good workability is easily obtained. Moreover, the pressure-sensitive adhesiveness to the adherend such as glass, plastic, polarizing plate and polycarbonate of the cured resin layer after light irradiation tends to be particularly good.
硬化性樹脂組成物は、ポリマーに代えて、又は、ポリマーとともに、1,2-ヒドロキシステアリン酸等のゲル化剤、チキソトロピック剤を含有してもよい。
The curable resin composition may contain a gelling agent such as 1,2-hydroxystearic acid or a thixotropic agent instead of or together with the polymer.
硬化性樹脂組成物は、必要応じて、その他の添加剤を更に含有してもよい。その他の添加剤としては、例えば、シランカップリング剤等の接着改善剤、熱重合開始剤、酸化防止剤、連鎖移動剤、安定剤、光増感剤が挙げられる。
The curable resin composition may further contain other additives as necessary. Examples of other additives include adhesion improving agents such as silane coupling agents, thermal polymerization initiators, antioxidants, chain transfer agents, stabilizers, and photosensitizers.
硬化性樹脂組成物は、耐湿熱信頼性の観点、及び硬化物中の気泡発生を抑制する観点から、実質的に有機溶媒を含有しなくてもよい。本明細書において「有機溶媒」とは、ラジカル重合性基を有さず、25℃において液状であり、かつ、大気圧における沸点が250℃以下の有機化合物を意味する。本明細書において「実質的に有機溶媒を含有しない」とは、意図的に添加された有機溶媒を含有しないという意味であり、硬化性樹脂組成物中には微量の有機溶媒が存在する態様を排除しない。具体的には、硬化性樹脂組成物中の有機溶媒の含有量が、硬化性樹脂組成物の総量に対して、1.0×103ppm以下、5.0×102ppm以下、又は1.0×102ppm以下であってもよい。硬化性樹脂組成物が有機溶媒を全く含有しなくてもよい。
The curable resin composition may not substantially contain an organic solvent from the viewpoint of moisture and heat resistance reliability and from the viewpoint of suppressing the generation of bubbles in the cured product. In the present specification, the “organic solvent” means an organic compound that does not have a radical polymerizable group, is liquid at 25 ° C., and has a boiling point of 250 ° C. or less at atmospheric pressure. In the present specification, “substantially free of an organic solvent” means that it does not contain an intentionally added organic solvent, and an embodiment in which a trace amount of an organic solvent is present in the curable resin composition. Do not exclude. Specifically, the content of the organic solvent in the curable resin composition is 1.0 × 10 3 ppm or less, 5.0 × 10 2 ppm or less, or 1 with respect to the total amount of the curable resin composition. It may be 0.0 × 10 2 ppm or less. The curable resin composition may not contain any organic solvent.
硬化性樹脂組成物の25℃~70℃のうち少なくとも一部の範囲の温度における粘度は、加工性の観点から、10mPa・s以上、4.0×102mPa・s以上、5.0×102mPa・s以上、1.0×103mPa・s以上、2.0×103mPa・s以上、又は3.0×103mPa・s以上であってもよく、5.0×104mPa・s以下、2.0×104mPa・s以下、1.5×104mPa・s以下、1.25×104mPa・s以下、又は1.0×104mPa・s以下であってもよい。25℃における粘度は、JIS Z 8803に基づいて測定した値であり、具体的には、B型粘度計(例えば、東機産業(株)製、BL2)を用いて測定した値である。B型粘度計の校正は、JIS Z 8809-JS14000に基づいて行うことができる。25℃を超える温度における粘度は、25℃における粘度の測定方法に準じて測定することができる。
From the viewpoint of workability, the viscosity of the curable resin composition at a temperature in at least a part of the range of 25 ° C. to 70 ° C. is 10 mPa · s or more, 4.0 × 10 2 mPa · s or more, 5.0 × It may be 10 2 mPa · s or more, 1.0 × 10 3 mPa · s or more, 2.0 × 10 3 mPa · s or more, or 3.0 × 10 3 mPa · s or more, 5.0 × 10 4 mPa · s or less, 2.0 × 10 4 mPa · s or less, 1.5 × 10 4 mPa · s or less, 1.25 × 10 4 mPa · s or less, or 1.0 × 10 4 mPa · s It may be the following. The viscosity at 25 ° C. is a value measured based on JIS Z 8803, and specifically, a value measured using a B-type viscometer (for example, BL2 manufactured by Toki Sangyo Co., Ltd.). Calibration of the B-type viscometer can be performed based on JIS Z 8809-JS14000. The viscosity at a temperature exceeding 25 ° C. can be measured according to the method for measuring the viscosity at 25 ° C.
硬化性樹脂組成物は、活性エネルギー線が照射されると感圧接着性を発現することができる。例えば、活性エネルギー線が照射された後の硬化性樹脂組成物の感圧性接着力が、10N/cm2以上、20N/cm2以上、又は40N/cm2以上であってもよく、400N/cm2以下であってもよい。ここでの感圧性接着力の測定は、下記の方法及び条件で行われる。
The curable resin composition can exhibit pressure-sensitive adhesiveness when irradiated with active energy rays. For example, the pressure-sensitive adhesive force of the curable resin composition after irradiation with active energy rays may be 10 N / cm 2 or more, 20 N / cm 2 or more, or 40 N / cm 2 or more, and 400 N / cm. It may be 2 or less. The measurement of pressure-sensitive adhesive force here is performed by the following method and conditions.
(感圧性接着力の測定方法)
幅25mm、長さ75mm、厚み1mmの第1のガラス基材上に硬化性樹脂組成物を塗布して、幅0.6mm、長さ25mm、膜厚50μmの硬化性樹脂層を硬化性樹脂層の長さ方向が第1のガラス基材の長辺と直交するように設け、硬化性樹脂層に、照射強度3000mW/cm2で総照射量が5000mJ/cm2になるように波長365nmの光を照射し、光照射から1分間以内の硬化性樹脂層上に幅25mm、長さ75mm、厚み1mmの第2のガラス基材を、第1のガラス基材の長辺と第2のガラス基材の長辺とが鉛直方向から見て揃うように配置し、1Nの荷重を10秒間かけて貼り合わせて測定サンプルを得る(図6)。貼り合わせから1時間以内に、測定サンプルの第1のガラス基材及び第2のガラス基材を互いに反対の長辺方向に引き剥がしたときの試験力を測定し、この試験力を、硬化性樹脂層と第2のガラス基材との接触面積で割った値を感圧性接着力とする。図6中、101は第1のガラス基材を示し、102は第2のガラス基材を示し、3Aは硬化性樹脂層を示し、Dは引き剥がす方向を示す。 (Measurement method of pressure-sensitive adhesive force)
A curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 μm is applied to the curable resin layer. length direction arranged so as to be perpendicular to the long side of the first glass substrate, the curable resin layer, irradiation intensity 3000 mW / total dose in cm 2 of wavelength 365nm to be 5000 mJ / cm 2 light The second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange | positions so that it may align with the long side of a material seeing from a perpendicular direction, and a 1N load is bonded over 10 second, and a measurement sample is obtained (FIG. 6). Within one hour after bonding, the test force when the first glass substrate and the second glass substrate of the measurement sample are peeled in the opposite long side directions is measured, and this test force is set to be curable. The value divided by the contact area between the resin layer and the second glass substrate is defined as the pressure-sensitive adhesive force. In FIG. 6, 101 shows a 1st glass base material, 102 shows a 2nd glass base material, 3A shows a curable resin layer, D shows the direction to peel off.
幅25mm、長さ75mm、厚み1mmの第1のガラス基材上に硬化性樹脂組成物を塗布して、幅0.6mm、長さ25mm、膜厚50μmの硬化性樹脂層を硬化性樹脂層の長さ方向が第1のガラス基材の長辺と直交するように設け、硬化性樹脂層に、照射強度3000mW/cm2で総照射量が5000mJ/cm2になるように波長365nmの光を照射し、光照射から1分間以内の硬化性樹脂層上に幅25mm、長さ75mm、厚み1mmの第2のガラス基材を、第1のガラス基材の長辺と第2のガラス基材の長辺とが鉛直方向から見て揃うように配置し、1Nの荷重を10秒間かけて貼り合わせて測定サンプルを得る(図6)。貼り合わせから1時間以内に、測定サンプルの第1のガラス基材及び第2のガラス基材を互いに反対の長辺方向に引き剥がしたときの試験力を測定し、この試験力を、硬化性樹脂層と第2のガラス基材との接触面積で割った値を感圧性接着力とする。図6中、101は第1のガラス基材を示し、102は第2のガラス基材を示し、3Aは硬化性樹脂層を示し、Dは引き剥がす方向を示す。 (Measurement method of pressure-sensitive adhesive force)
A curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 μm is applied to the curable resin layer. length direction arranged so as to be perpendicular to the long side of the first glass substrate, the curable resin layer, irradiation intensity 3000 mW / total dose in cm 2 of wavelength 365nm to be 5000 mJ / cm 2 light The second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange | positions so that it may align with the long side of a material seeing from a perpendicular direction, and a 1N load is bonded over 10 second, and a measurement sample is obtained (FIG. 6). Within one hour after bonding, the test force when the first glass substrate and the second glass substrate of the measurement sample are peeled in the opposite long side directions is measured, and this test force is set to be curable. The value divided by the contact area between the resin layer and the second glass substrate is defined as the pressure-sensitive adhesive force. In FIG. 6, 101 shows a 1st glass base material, 102 shows a 2nd glass base material, 3A shows a curable resin layer, D shows the direction to peel off.
硬化性樹脂層の濡れ性の観点から、硬化性樹脂組成物は、形成される硬化性樹脂層の貼合後のアスペクト比が高くなるような樹脂特性を有することが好ましい。具体的には、硬化性樹脂層の貼合後のアスペクト比は、0.4以上、0.6以上、又は0.8以上であってもよい。アスペクト比が0.4以上であると、濡れ性が確保されやすくなり、部材に対する接着性が得られやすくなる。アスペクト比の上限値は、通常1.0である。アスペクト比の値の測定は、下記の方法及び条件で行われる。
From the viewpoint of wettability of the curable resin layer, the curable resin composition preferably has a resin characteristic such that the aspect ratio after bonding of the curable resin layer to be formed is high. Specifically, the aspect ratio after bonding of the curable resin layer may be 0.4 or more, 0.6 or more, or 0.8 or more. When the aspect ratio is 0.4 or more, wettability is easily secured, and adhesion to the member is easily obtained. The upper limit of the aspect ratio is usually 1.0. The aspect ratio value is measured by the following method and conditions.
(アスペクト比の測定方法)
幅25mm、長さ75mm、厚み1mmの第1のガラス基材上に硬化性樹脂組成物を塗布して、幅0.6mm、長さ25mm、膜厚50μmの硬化性樹脂層を硬化性樹脂層の長さ方向が第1のガラス基材の長辺と直交するように設け、硬化性樹脂層に、照射強度3000mW/cm2で総照射量が5000mJ/cm2になるように波長365nmの光を照射し、光照射から1分間以内の硬化性樹脂層上に幅25mm、長さ75mm、厚み1mmの第2のガラス基材を、第1のガラス基材の長辺と第2のガラス基材の長辺とが鉛直方向から見て揃うように配置し、1Nの荷重を10秒間かけて貼り合わせて測定サンプルを得る(図7の(a)及び(b))。測定サンプルにおける第2のガラス基材と接触している硬化性樹脂層の幅をB(単位:mm)としたときに、B/0.6をアスペクト比とする。図7中、104は第1のガラス基材を示し、106は第2のガラス基材示し、105は硬化性樹脂層を示し、Aは第1のガラス基材と接触している硬化性樹脂層の幅(ここでは0.6mm)を示す。 (Aspect ratio measurement method)
A curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 μm is applied to the curable resin layer. length direction arranged so as to be perpendicular to the long side of the first glass substrate, the curable resin layer, irradiation intensity 3000 mW / total dose in cm 2 of wavelength 365nm to be 5000 mJ / cm 2 light The second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange | positions so that it may align with the long side of a material seeing from a perpendicular direction, and a 1N load is bonded together over 10 second, and a measurement sample is obtained ((a) and (b) of FIG. 7). When the width of the curable resin layer in contact with the second glass substrate in the measurement sample is B (unit: mm), B / 0.6 is the aspect ratio. In FIG. 7, 104 indicates a first glass substrate, 106 indicates a second glass substrate, 105 indicates a curable resin layer, and A indicates a curable resin in contact with the first glass substrate. The width of the layer (here 0.6 mm) is indicated.
幅25mm、長さ75mm、厚み1mmの第1のガラス基材上に硬化性樹脂組成物を塗布して、幅0.6mm、長さ25mm、膜厚50μmの硬化性樹脂層を硬化性樹脂層の長さ方向が第1のガラス基材の長辺と直交するように設け、硬化性樹脂層に、照射強度3000mW/cm2で総照射量が5000mJ/cm2になるように波長365nmの光を照射し、光照射から1分間以内の硬化性樹脂層上に幅25mm、長さ75mm、厚み1mmの第2のガラス基材を、第1のガラス基材の長辺と第2のガラス基材の長辺とが鉛直方向から見て揃うように配置し、1Nの荷重を10秒間かけて貼り合わせて測定サンプルを得る(図7の(a)及び(b))。測定サンプルにおける第2のガラス基材と接触している硬化性樹脂層の幅をB(単位:mm)としたときに、B/0.6をアスペクト比とする。図7中、104は第1のガラス基材を示し、106は第2のガラス基材示し、105は硬化性樹脂層を示し、Aは第1のガラス基材と接触している硬化性樹脂層の幅(ここでは0.6mm)を示す。 (Aspect ratio measurement method)
A curable resin composition is applied onto a first glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a curable resin layer having a width of 0.6 mm, a length of 25 mm, and a film thickness of 50 μm is applied to the curable resin layer. length direction arranged so as to be perpendicular to the long side of the first glass substrate, the curable resin layer, irradiation intensity 3000 mW / total dose in cm 2 of wavelength 365nm to be 5000 mJ / cm 2 light The second glass substrate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm on the curable resin layer within 1 minute from the light irradiation, the long side of the first glass substrate and the second glass substrate It arrange | positions so that it may align with the long side of a material seeing from a perpendicular direction, and a 1N load is bonded together over 10 second, and a measurement sample is obtained ((a) and (b) of FIG. 7). When the width of the curable resin layer in contact with the second glass substrate in the measurement sample is B (unit: mm), B / 0.6 is the aspect ratio. In FIG. 7, 104 indicates a first glass substrate, 106 indicates a second glass substrate, 105 indicates a curable resin layer, and A indicates a curable resin in contact with the first glass substrate. The width of the layer (here 0.6 mm) is indicated.
以下、図1の画像表示装置100を製造する方法の実施形態を、図2及び図3の方法を例としてより詳細に説明する。
Hereinafter, an embodiment of a method for manufacturing the image display device 100 of FIG. 1 will be described in more detail by taking the method of FIGS. 2 and 3 as an example.
工程(I)(塗工工程)
図2に示すように、画像表示部1の主面の周縁部に、硬化性樹脂組成物を塗布し、枠状の硬化性樹脂層3Aを形成する。塗布の手段を調整することにより、狭小な領域に効率的に硬化性樹脂層を形成することができる。例えば、液状の硬化性樹脂組成物を開口から吐出させる方法により、硬化性樹脂組成物を効率的且つ高い精度で塗布することができる。 Process (I) (Coating process)
As shown in FIG. 2, a curable resin composition is applied to the peripheral edge of the main surface of theimage display unit 1 to form a frame-shaped curable resin layer 3A. By adjusting the application means, a curable resin layer can be efficiently formed in a narrow region. For example, the curable resin composition can be applied efficiently and with high accuracy by a method of discharging a liquid curable resin composition from the opening.
図2に示すように、画像表示部1の主面の周縁部に、硬化性樹脂組成物を塗布し、枠状の硬化性樹脂層3Aを形成する。塗布の手段を調整することにより、狭小な領域に効率的に硬化性樹脂層を形成することができる。例えば、液状の硬化性樹脂組成物を開口から吐出させる方法により、硬化性樹脂組成物を効率的且つ高い精度で塗布することができる。 Process (I) (Coating process)
As shown in FIG. 2, a curable resin composition is applied to the peripheral edge of the main surface of the
工程(II)(活性エネルギー線照射工程)
その後、硬化性樹脂層3Aに活性エネルギー線hνを照射して、硬化性樹脂層3Aの硬化反応を進行させる。硬化性樹脂層3Aが、(A)光ラジカル重合開始剤と、(B)1個のラジカル重合性基を有する単官能単量体を含む単量体成分とを含有する場合、活性エネルギー線の照射の直後に、主としてラジカル重合反応による硬化反応が進行する。この硬化反応の進行により、硬化性樹脂層3Aに適切な感圧接着性を付与することができる。硬化性樹脂層3Aが光塩基発生剤、又は光酸発生剤を含む場合、通常、これらは活性エネルギー線の作用によって塩基又は酸を発生させるが、塩基又は酸に触媒されるイオン反応は、ラジカル重合反応よりも相対的に遅い反応速度で進行する。したがって、活性エネルギー線の照射の段階で、硬化性樹脂層3Aがラジカル重合反応によって半硬化するということもできる。 Process (II) (active energy ray irradiation process)
Thereafter, the active energy ray hν is irradiated to thecurable resin layer 3A to advance the curing reaction of the curable resin layer 3A. In the case where the curable resin layer 3A contains (A) a photo radical polymerization initiator and (B) a monomer component including a monofunctional monomer having one radical polymerizable group, Immediately after the irradiation, a curing reaction mainly proceeds by radical polymerization reaction. Due to the progress of the curing reaction, appropriate pressure-sensitive adhesiveness can be imparted to the curable resin layer 3A. When the curable resin layer 3A contains a photobase generator or a photoacid generator, these usually generate a base or an acid by the action of active energy rays, but the ionic reaction catalyzed by the base or acid is a radical. It proceeds at a relatively slower reaction rate than the polymerization reaction. Therefore, it can be said that the curable resin layer 3A is semi-cured by radical polymerization reaction at the stage of irradiation with active energy rays.
その後、硬化性樹脂層3Aに活性エネルギー線hνを照射して、硬化性樹脂層3Aの硬化反応を進行させる。硬化性樹脂層3Aが、(A)光ラジカル重合開始剤と、(B)1個のラジカル重合性基を有する単官能単量体を含む単量体成分とを含有する場合、活性エネルギー線の照射の直後に、主としてラジカル重合反応による硬化反応が進行する。この硬化反応の進行により、硬化性樹脂層3Aに適切な感圧接着性を付与することができる。硬化性樹脂層3Aが光塩基発生剤、又は光酸発生剤を含む場合、通常、これらは活性エネルギー線の作用によって塩基又は酸を発生させるが、塩基又は酸に触媒されるイオン反応は、ラジカル重合反応よりも相対的に遅い反応速度で進行する。したがって、活性エネルギー線の照射の段階で、硬化性樹脂層3Aがラジカル重合反応によって半硬化するということもできる。 Process (II) (active energy ray irradiation process)
Thereafter, the active energy ray hν is irradiated to the
工程(III)(貼合工程)
図3の(a)に示すように、活性エネルギー線が照射され、感圧接着性を有する硬化性樹脂層3Aを介在させながら、画像表示部1と、フレーム部5とを貼り合わせる。必要により、硬化性樹脂層3Aを加熱しながら画像表示部1と、フレーム部5とを貼り合わせてもよい。 Process (III) (bonding process)
As shown in FIG. 3A, theimage display unit 1 and the frame unit 5 are bonded to each other while an active energy ray is irradiated and a curable resin layer 3A having pressure-sensitive adhesiveness is interposed. If necessary, the image display unit 1 and the frame unit 5 may be bonded together while heating the curable resin layer 3A.
図3の(a)に示すように、活性エネルギー線が照射され、感圧接着性を有する硬化性樹脂層3Aを介在させながら、画像表示部1と、フレーム部5とを貼り合わせる。必要により、硬化性樹脂層3Aを加熱しながら画像表示部1と、フレーム部5とを貼り合わせてもよい。 Process (III) (bonding process)
As shown in FIG. 3A, the
段差吸収性、感圧性接着力(粘着力)、及び接着力発現のための濡れ性のバランスの観点から、貼り合わせ時における硬化性樹脂層の25℃における貯蔵弾性率が、10000~500000Pa、30000~250000Pa、又は50000~200000Paであってもよい。
From the viewpoint of balance between step absorbability, pressure-sensitive adhesive strength (adhesive strength), and wettability for developing adhesive strength, the storage elastic modulus at 25 ° C. of the curable resin layer at the time of bonding is 10,000 to 500,000 Pa, 30000. It may be ˜250,000 Pa, or 50,000 to 200,000 Pa.
貼合工程において、下記式で表されるアスペクト比が0.4以上となるように、画像表示部1とフレーム部5とを貼り合わせることが好ましい。下記アスペクト比は、0.6以上、又は0.8以上であってもよい。アスペクト比の上限値は、通常1.0である。
アスペクト比=B’/A’
式中、A’は、画像表示部1に塗布された枠状の硬化性樹脂層3Aの所定の部位における幅を示し、B’は、画像表示部1とフレーム部5とが貼り合わされた後の硬化性樹脂層3Aの所定の部位におけるフレーム部5と接触している幅を示す。ここで、A’及びB’は、図7に示したA及びBと同様の位置における幅を示す。 In the bonding process, it is preferable to bond theimage display unit 1 and the frame unit 5 so that the aspect ratio represented by the following formula is 0.4 or more. The following aspect ratio may be 0.6 or more, or 0.8 or more. The upper limit of the aspect ratio is usually 1.0.
Aspect ratio = B '/ A'
In the formula, A ′ indicates the width of a predetermined part of the frame-shapedcurable resin layer 3A applied to the image display unit 1, and B ′ is after the image display unit 1 and the frame unit 5 are bonded together. The width | variety which is contacting the flame | frame part 5 in the predetermined | prescribed site | part of 3 A of curable resin layers is shown. Here, A ′ and B ′ indicate widths at the same positions as A and B shown in FIG.
アスペクト比=B’/A’
式中、A’は、画像表示部1に塗布された枠状の硬化性樹脂層3Aの所定の部位における幅を示し、B’は、画像表示部1とフレーム部5とが貼り合わされた後の硬化性樹脂層3Aの所定の部位におけるフレーム部5と接触している幅を示す。ここで、A’及びB’は、図7に示したA及びBと同様の位置における幅を示す。 In the bonding process, it is preferable to bond the
Aspect ratio = B '/ A'
In the formula, A ′ indicates the width of a predetermined part of the frame-shaped
A’及びB’の幅は、例えば、所定の部位が、画像表示部1とフレーム部5との貼合前後の硬化性樹脂層3Aを、硬化性樹脂層3Aが延在する方向に対して垂直な同じ面で切断したときの切断面である場合、貼合前の硬化性樹脂層3Aと画像表示部1とが接している線幅がA’、貼合後の硬化性樹脂層3Aとフレーム部5とが接している線幅がB’である。フレーム部5上に硬化性樹脂層3Aを形成する場合には、上記切断面における貼合前の硬化性樹脂層3Aとフレーム部5とが接している線幅がA’、貼合後の硬化性樹脂層3Aと画像表示部1とが接している線幅がB’である。
The widths of A ′ and B ′ are, for example, that the predetermined part is a direction in which the curable resin layer 3A extends from the curable resin layer 3A before and after the image display unit 1 and the frame unit 5 are bonded to each other. When it is a cut surface when cut on the same vertical surface, the line width where the curable resin layer 3A before bonding and the image display unit 1 are in contact is A ′, the curable resin layer 3A after bonding, and The line width in contact with the frame portion 5 is B ′. When the curable resin layer 3A is formed on the frame part 5, the line width where the curable resin layer 3A before bonding and the frame part 5 are in contact with each other on the cut surface is A ′, and curing after bonding. The line width where the conductive resin layer 3A and the image display unit 1 are in contact is B ′.
アスペクト比(B’/A’)が上記範囲内であると、濡れ性が確保されやすくなり、画像表示部1又はフレーム部5に対する接着性が得られやすくなる。
When the aspect ratio (B ′ / A ′) is within the above range, wettability is easily secured, and adhesion to the image display unit 1 or the frame unit 5 is easily obtained.
工程(IV)(硬化工程)
図3の(b)に示すように、画像表示部1とフレーム部5とを有しこれらが貼り合わされた積層体の状態で、硬化性樹脂層3Aの硬化反応を更に硬化させてもよい。本明細書において、貼り合わせの後で進行する硬化反応のことを「遅延硬化」ということがある。遅延硬化は、例えば、温度が10℃以上、15℃以上、又は20℃以上の環境下、湿度が30%以上、40%以上、又は50%以上の環境下で12時間以上かけて進行させることができる。遅延硬化を進行させるための環境は、温度が80℃以下であってもよく、湿度が95%以下であってもよい。遅延硬化を進行させる間に、画像表示装置を更に加工する工程、及び/又は画像表示装置を検査する工程等の、他の必要な工程を行ってもよい。 Process (IV) (Curing process)
As shown in FIG. 3B, the curing reaction of thecurable resin layer 3 </ b> A may be further cured in the state of a laminated body having the image display unit 1 and the frame unit 5 and bonded together. In this specification, the curing reaction that proceeds after the bonding may be referred to as “delayed curing”. The delayed curing is allowed to proceed for 12 hours or more in an environment where the temperature is 10 ° C or higher, 15 ° C or higher, or 20 ° C or higher, and the humidity is 30% or higher, 40% or higher, or 50% or higher. Can do. The environment for allowing delayed curing to proceed may be a temperature of 80 ° C. or lower and a humidity of 95% or lower. While the delayed curing is proceeding, other necessary steps such as a step of further processing the image display device and / or a step of inspecting the image display device may be performed.
図3の(b)に示すように、画像表示部1とフレーム部5とを有しこれらが貼り合わされた積層体の状態で、硬化性樹脂層3Aの硬化反応を更に硬化させてもよい。本明細書において、貼り合わせの後で進行する硬化反応のことを「遅延硬化」ということがある。遅延硬化は、例えば、温度が10℃以上、15℃以上、又は20℃以上の環境下、湿度が30%以上、40%以上、又は50%以上の環境下で12時間以上かけて進行させることができる。遅延硬化を進行させるための環境は、温度が80℃以下であってもよく、湿度が95%以下であってもよい。遅延硬化を進行させる間に、画像表示装置を更に加工する工程、及び/又は画像表示装置を検査する工程等の、他の必要な工程を行ってもよい。 Process (IV) (Curing process)
As shown in FIG. 3B, the curing reaction of the
遅延硬化は、ラジカル重合であってもよいが、より典型的には、ラジカル重合よりも反応速度の遅いイオン反応による硬化反応である。硬化性樹脂層3Aが、イオン反応性を有する反応性基を有する化合物を含有する場合、係る化合物の反応性基のイオン反応によって、遅延硬化が進行する。このイオン反応を、光塩基発生剤から発生した塩基、又は光酸発生剤から発生した酸によって促進することができる。遅延硬化後の硬化性樹脂層3A(すなわち、遮光層3)は、より高い接着力でカバー部材と画像表示部とを接着することができる。
The delayed curing may be radical polymerization, but more typically is a curing reaction by an ionic reaction having a reaction rate slower than that of radical polymerization. When the curable resin layer 3A contains a compound having a reactive group having ionic reactivity, delayed curing proceeds by an ionic reaction of the reactive group of the compound. This ionic reaction can be promoted by a base generated from the photobase generator or an acid generated from the photoacid generator. The curable resin layer 3A (that is, the light shielding layer 3) after delayed curing can bond the cover member and the image display unit with higher adhesive force.
以下、実施例及び比較例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらに限られるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these.
硬化性樹脂組成物の原料
(A)光ラジカル重合開始剤/光塩基発生剤
光ラジカル重合開始剤:
・IRG-651(BASFジャパン株式会社製、IRGACURE-651、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)
光ラジカル重合開始剤/光塩基発生剤:
・IRG-907(BASFジャパン株式会社製、IRGACURE-907、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)
(B)単量体成分(単官能単量体)
(B1)反応性基を有する単官能単量体
シラノール基及び/又はアルコキシシリル基を有する化合物:
・KBM-5103(信越化学工業株式会社製、KBM-5103、3-アクリロキシプロピルトリメトキシシラン)
環状エーテル基を有する化合物:
・4HBAGE(日本化成株式会社製、4HBAGE、4-ヒドロキシブチルアクリレートグリシジルエーテル)
イソシアネート基を有する化合物:
・AOI(昭和電工株式会社製、カレンズAOI、2-イソシアナトエチルアクリレート)
(B2)その他の単官能単量体:
・NOAA(大阪有機化学工業株式会社製、NOAA、n-オクチルアクリレート)
・IBXA(共栄社化学株式会社製、ライトアクリレートIB-XA、イソボルニルアクリレート)
・HPA(大阪有機化学工業株式会社製、HPA、ヒドロキシプロピルアクリレート)
(C)着色剤
・elixa Black850(オリエント化学工業株式会社製、黒色染料)
(E)光酸発生剤
・CPI-210S(サンアプロ株式会社製、CPI-210S) Raw material for curable resin composition (A) Photoradical polymerization initiator / photobase generator Photoradical polymerization initiator:
・ IRG-651 (manufactured by BASF Japan, IRGACURE-651,2,2-dimethoxy-1,2-diphenylethane-1-one)
Photoradical polymerization initiator / photobase generator:
IRG-907 (manufactured by BASF Japan, IRGACURE-907, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one)
(B) Monomer component (monofunctional monomer)
(B1) Monofunctional monomer silanol group having a reactive group and / or compound having an alkoxysilyl group:
・ KBM-5103 (Shin-Etsu Chemical Co., Ltd., KBM-5103, 3-acryloxypropyltrimethoxysilane)
Compound having cyclic ether group:
・ 4HBAGE (Nippon Kasei Co., Ltd., 4HBAGE, 4-hydroxybutyl acrylate glycidyl ether)
Compound having an isocyanate group:
・ AOI (Showa Denko KK, Karenz AOI, 2-isocyanatoethyl acrylate)
(B2) Other monofunctional monomers:
・ NOAA (manufactured by Osaka Organic Chemical Industry Co., Ltd., NOAA, n-octyl acrylate)
・ IBXA (Kyoeisha Chemical Co., Ltd., light acrylate IB-XA, isobornyl acrylate)
・ HPA (Osaka Organic Chemical Co., Ltd., HPA, hydroxypropyl acrylate)
(C) Colorant / elexa Black850 (Orient Chemical Co., Ltd., black dye)
(E) Photoacid generator CPI-210S (manufactured by Sun Apro Co., Ltd., CPI-210S)
(A)光ラジカル重合開始剤/光塩基発生剤
光ラジカル重合開始剤:
・IRG-651(BASFジャパン株式会社製、IRGACURE-651、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)
光ラジカル重合開始剤/光塩基発生剤:
・IRG-907(BASFジャパン株式会社製、IRGACURE-907、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)
(B)単量体成分(単官能単量体)
(B1)反応性基を有する単官能単量体
シラノール基及び/又はアルコキシシリル基を有する化合物:
・KBM-5103(信越化学工業株式会社製、KBM-5103、3-アクリロキシプロピルトリメトキシシラン)
環状エーテル基を有する化合物:
・4HBAGE(日本化成株式会社製、4HBAGE、4-ヒドロキシブチルアクリレートグリシジルエーテル)
イソシアネート基を有する化合物:
・AOI(昭和電工株式会社製、カレンズAOI、2-イソシアナトエチルアクリレート)
(B2)その他の単官能単量体:
・NOAA(大阪有機化学工業株式会社製、NOAA、n-オクチルアクリレート)
・IBXA(共栄社化学株式会社製、ライトアクリレートIB-XA、イソボルニルアクリレート)
・HPA(大阪有機化学工業株式会社製、HPA、ヒドロキシプロピルアクリレート)
(C)着色剤
・elixa Black850(オリエント化学工業株式会社製、黒色染料)
(E)光酸発生剤
・CPI-210S(サンアプロ株式会社製、CPI-210S) Raw material for curable resin composition (A) Photoradical polymerization initiator / photobase generator Photoradical polymerization initiator:
・ IRG-651 (manufactured by BASF Japan, IRGACURE-651,2,2-dimethoxy-1,2-diphenylethane-1-one)
Photoradical polymerization initiator / photobase generator:
IRG-907 (manufactured by BASF Japan, IRGACURE-907, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one)
(B) Monomer component (monofunctional monomer)
(B1) Monofunctional monomer silanol group having a reactive group and / or compound having an alkoxysilyl group:
・ KBM-5103 (Shin-Etsu Chemical Co., Ltd., KBM-5103, 3-acryloxypropyltrimethoxysilane)
Compound having cyclic ether group:
・ 4HBAGE (Nippon Kasei Co., Ltd., 4HBAGE, 4-hydroxybutyl acrylate glycidyl ether)
Compound having an isocyanate group:
・ AOI (Showa Denko KK, Karenz AOI, 2-isocyanatoethyl acrylate)
(B2) Other monofunctional monomers:
・ NOAA (manufactured by Osaka Organic Chemical Industry Co., Ltd., NOAA, n-octyl acrylate)
・ IBXA (Kyoeisha Chemical Co., Ltd., light acrylate IB-XA, isobornyl acrylate)
・ HPA (Osaka Organic Chemical Co., Ltd., HPA, hydroxypropyl acrylate)
(C) Colorant / elexa Black850 (Orient Chemical Co., Ltd., black dye)
(E) Photoacid generator CPI-210S (manufactured by Sun Apro Co., Ltd., CPI-210S)
(F)オリゴマー
下記手順により、オリゴマー(2-エチルヘキシルアクリレートと2-ヒドロキシエチルアクリレートのコポリマー)を合成した。
容器に2-エチルヘキシルアクリレート(90.0g)、2-ヒドロキシエチルアクリレート(10.0g)、メチルエチルケトン(30.0g)、及び酢酸エチル(170.0g)を投入し、100mL/分の流量で窒素置換しながら、常温(25℃)から65℃まで加熱した。65℃に到達後、アゾビスイソブチロニトリル(0.3g)を添加し、この温度を保ちながら8時間保温した。
続いて、イソステアリルアクリレート(100.0g)を添加し、溶媒のメチルエチルケトン及び酢酸エチルを溜去することにより、2-エチルヘキシルアクリレートと2-ヒドロキシエチルアクリレートの共重合体(重量平均分子量600,000)のイソステアリルアクリレート溶液(加熱残分50%)を得た。 (F) Oligomer An oligomer (a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate) was synthesized by the following procedure.
Charge 2-ethylhexyl acrylate (90.0 g), 2-hydroxyethyl acrylate (10.0 g), methyl ethyl ketone (30.0 g), and ethyl acetate (170.0 g) into a container and purge with nitrogen at a flow rate of 100 mL / min. While heating, from normal temperature (25 ° C.) to 65 ° C. After reaching 65 ° C., azobisisobutyronitrile (0.3 g) was added, and kept at this temperature for 8 hours.
Subsequently, isostearyl acrylate (100.0 g) was added, and the solvent methyl ethyl ketone and ethyl acetate were distilled off, whereby a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate (weight average molecular weight 600,000) was obtained. An isostearyl acrylate solution (heating residue 50%) was obtained.
下記手順により、オリゴマー(2-エチルヘキシルアクリレートと2-ヒドロキシエチルアクリレートのコポリマー)を合成した。
容器に2-エチルヘキシルアクリレート(90.0g)、2-ヒドロキシエチルアクリレート(10.0g)、メチルエチルケトン(30.0g)、及び酢酸エチル(170.0g)を投入し、100mL/分の流量で窒素置換しながら、常温(25℃)から65℃まで加熱した。65℃に到達後、アゾビスイソブチロニトリル(0.3g)を添加し、この温度を保ちながら8時間保温した。
続いて、イソステアリルアクリレート(100.0g)を添加し、溶媒のメチルエチルケトン及び酢酸エチルを溜去することにより、2-エチルヘキシルアクリレートと2-ヒドロキシエチルアクリレートの共重合体(重量平均分子量600,000)のイソステアリルアクリレート溶液(加熱残分50%)を得た。 (F) Oligomer An oligomer (a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate) was synthesized by the following procedure.
Charge 2-ethylhexyl acrylate (90.0 g), 2-hydroxyethyl acrylate (10.0 g), methyl ethyl ketone (30.0 g), and ethyl acetate (170.0 g) into a container and purge with nitrogen at a flow rate of 100 mL / min. While heating, from normal temperature (25 ° C.) to 65 ° C. After reaching 65 ° C., azobisisobutyronitrile (0.3 g) was added, and kept at this temperature for 8 hours.
Subsequently, isostearyl acrylate (100.0 g) was added, and the solvent methyl ethyl ketone and ethyl acetate were distilled off, whereby a copolymer of 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate (weight average molecular weight 600,000) was obtained. An isostearyl acrylate solution (heating residue 50%) was obtained.
硬化性樹脂組成物の調製
各原料を表1に示す含有量で混合し、30分間加熱しながら攪拌して、硬化性樹脂組成物を調製した。表1に示される各成分の含有量は、硬化性樹脂組成物の全質量を基準とした含有量(単位:質量%)である。 Preparation of curable resin composition Each raw material was mixed with the content shown in Table 1, and stirred for 30 minutes while heating to prepare a curable resin composition. Content of each component shown by Table 1 is content (unit: mass%) on the basis of the total mass of curable resin composition.
各原料を表1に示す含有量で混合し、30分間加熱しながら攪拌して、硬化性樹脂組成物を調製した。表1に示される各成分の含有量は、硬化性樹脂組成物の全質量を基準とした含有量(単位:質量%)である。 Preparation of curable resin composition Each raw material was mixed with the content shown in Table 1, and stirred for 30 minutes while heating to prepare a curable resin composition. Content of each component shown by Table 1 is content (unit: mass%) on the basis of the total mass of curable resin composition.
評価方法
1.接着力(初期、遅延硬化後)
図8及び図9は、接着力の測定方法を示す模式図である。図8に示すように、25cm×75cm×0.1cmの短冊状のガラスベース60の中央の両端部に硬化性樹脂組成物を塗布して、ガラスベース60上で対向する2個の硬化性樹脂層3A(高さ0.05mm、幅0.4~0.6mm、長さ30mm~40mm)を形成した。形成された硬化性樹脂層3Aに対して、紫外線照射装置(アイグラフィックス(株)製、US5-X0401、使用光源:アイグラフィックス(株)製、メタルハライドランプM04-L41)を用いて、照射強度400mW/cm2で総照射量が2000mJ/cm2になるように紫外線を照射して、硬化性樹脂層3Aの硬化反応を部分的に進行させた。照射出力は照度計(ウシオ電機株式会社製「UIT-250」)にて測定した。
次いで、図9に示すように、紫外線照射後の硬化性樹脂層3Aを介在させながら、ガラスベース60と短冊状の別のガラスベース61(25cm×75cm×0.1cm)とを、ガラスベース60の短辺とガラスベース61の長辺が平行になる向きで、荷重5kgfを印加しながら貼り合わせた。
得られたガラス接合体のガラスベース61の両端部61Eを、ガラスベース61が地面に対して水平となり、ガラスベース61の下側にガラスベース60が位置する状態で固定した。その状態で、ガラスベース60に鉛直方向下向き(矢印Fの方向)に荷重を加え、ガラスベース60が剥離するまで荷重を増加させた。ガラスベース60が剥離した時点の試験力(荷重)を測定し、この試験力を、硬化性樹脂層3A(又は遮光層3)とガラスベース61との接着面積で割った値を、接着力として記録した。
この方法により、ガラス接合体を得てから2時間以内に測定される初期接着力と、ガラス接合体を25℃、50%RHの室内で48時間静置した後に測定される遅延硬化後接着力とを測定した。Evaluation method 1. Adhesive strength (initial, after delayed curing)
8 and 9 are schematic views showing a method for measuring the adhesive force. As shown in FIG. 8, two curable resins facing each other on theglass base 60 by applying a curable resin composition to both ends of the center of a strip-shaped glass base 60 of 25 cm × 75 cm × 0.1 cm. Layer 3A (height 0.05 mm, width 0.4 to 0.6 mm, length 30 to 40 mm) was formed. Irradiation to the formed curable resin layer 3A using an ultraviolet irradiation device (made by Eye Graphics Co., Ltd., US5-X0401, light source used: made by Eye Graphics Co., Ltd., metal halide lamp M04-L41) The curing reaction of the curable resin layer 3A was partially advanced by irradiating with ultraviolet rays so that the intensity was 400 mW / cm 2 and the total irradiation amount was 2000 mJ / cm 2 . The irradiation output was measured with an illuminance meter (“UIT-250” manufactured by USHIO INC.).
Next, as shown in FIG. 9, theglass base 60 and another strip-shaped glass base 61 (25 cm × 75 cm × 0.1 cm) are connected to the glass base 60 while interposing the curable resin layer 3 </ b> A after ultraviolet irradiation. In the direction in which the short side of the glass base 61 and the long side of the glass base 61 are parallel to each other, bonding was performed while applying a load of 5 kgf.
Bothend portions 61E of the glass base 61 of the obtained glass joined body were fixed in a state where the glass base 61 was horizontal with respect to the ground and the glass base 60 was positioned below the glass base 61. In that state, a load was applied vertically downward (in the direction of arrow F) to the glass base 60, and the load was increased until the glass base 60 was peeled off. The test force (load) at the time when the glass base 60 is peeled off is measured, and the value obtained by dividing the test force by the adhesion area between the curable resin layer 3A (or the light shielding layer 3) and the glass base 61 is defined as the adhesive force. Recorded.
By this method, the initial adhesive strength measured within 2 hours after obtaining the glass joined body, and the delayed post-cured adhesive strength measured after leaving the glass joined body in a room at 25 ° C. and 50% RH for 48 hours. And measured.
1.接着力(初期、遅延硬化後)
図8及び図9は、接着力の測定方法を示す模式図である。図8に示すように、25cm×75cm×0.1cmの短冊状のガラスベース60の中央の両端部に硬化性樹脂組成物を塗布して、ガラスベース60上で対向する2個の硬化性樹脂層3A(高さ0.05mm、幅0.4~0.6mm、長さ30mm~40mm)を形成した。形成された硬化性樹脂層3Aに対して、紫外線照射装置(アイグラフィックス(株)製、US5-X0401、使用光源:アイグラフィックス(株)製、メタルハライドランプM04-L41)を用いて、照射強度400mW/cm2で総照射量が2000mJ/cm2になるように紫外線を照射して、硬化性樹脂層3Aの硬化反応を部分的に進行させた。照射出力は照度計(ウシオ電機株式会社製「UIT-250」)にて測定した。
次いで、図9に示すように、紫外線照射後の硬化性樹脂層3Aを介在させながら、ガラスベース60と短冊状の別のガラスベース61(25cm×75cm×0.1cm)とを、ガラスベース60の短辺とガラスベース61の長辺が平行になる向きで、荷重5kgfを印加しながら貼り合わせた。
得られたガラス接合体のガラスベース61の両端部61Eを、ガラスベース61が地面に対して水平となり、ガラスベース61の下側にガラスベース60が位置する状態で固定した。その状態で、ガラスベース60に鉛直方向下向き(矢印Fの方向)に荷重を加え、ガラスベース60が剥離するまで荷重を増加させた。ガラスベース60が剥離した時点の試験力(荷重)を測定し、この試験力を、硬化性樹脂層3A(又は遮光層3)とガラスベース61との接着面積で割った値を、接着力として記録した。
この方法により、ガラス接合体を得てから2時間以内に測定される初期接着力と、ガラス接合体を25℃、50%RHの室内で48時間静置した後に測定される遅延硬化後接着力とを測定した。
8 and 9 are schematic views showing a method for measuring the adhesive force. As shown in FIG. 8, two curable resins facing each other on the
Next, as shown in FIG. 9, the
Both
By this method, the initial adhesive strength measured within 2 hours after obtaining the glass joined body, and the delayed post-cured adhesive strength measured after leaving the glass joined body in a room at 25 ° C. and 50% RH for 48 hours. And measured.
2.遮光性
板状のソーダガラス62(フロートガラス、松浪ガラス製「MICRO SLIDE GLASSS9213」、サイズ76×52mm、厚さ1.2~1.5mm、照射光透過率90%)を、アセトンを染み込ませた不織布(旭化成せんい株式会社製「ベンコット」)でよく拭き、これを試験用ガラス基材として用いた。図10に示すように、ソーダガラス62の一方の主面の四片に沿ってテープ(オカモト株式会社製「No.402布テープ」、幅50mm)を貼り付け、枠状のガイド65を形成した。
次いで、ガイド65の内側のソーダガラス62の表面62Sに硬化性樹脂組成物(1mL)を滴下し、ガラス棒で引き伸ばして、硬化性樹脂層を形成させた。形成された硬化性樹脂層に対して、紫外線照射装置(アイグラフィックス(株)製、US5-X0401、使用光源:アイグラフィックス(株)製、メタルハライドランプM04-L41)を用いて、照射強度400mW/cm2で総照射量が2000mJ/cm2になるように照射して、硬化性樹脂層の硬化反応を進行させた。照射出力は照度計(ウシオ電機株式会社製「UIT-250」)にて測定した。光照射後の硬化性樹脂層の厚さは150μmであった。
光照射後の硬化性樹脂層の波長400~700nmの光透過率を、可視紫外分光光度計(株式会社島津製作所製「UV-2400PC」)を用いて測定した。400~700nmでの平均光透過率に基づいて、遮光性を下記の基準で評価した。
A:400~700nmでの平均光透過率が10%未満
F:400~700nmでの平均光透過率が10%以上 2. Light shielding property Plate-like soda glass 62 (float glass, Matsunami glass “MICRO SLIDE GLASSS 9213”, size 76 × 52 mm, thickness 1.2 to 1.5 mm, irradiation light transmittance 90%) was impregnated with acetone. It was wiped well with a non-woven fabric ("Bencot" manufactured by Asahi Kasei Fibers Co., Ltd.) and used as a glass substrate for testing. As shown in FIG. 10, a tape (“No. 402 cloth tape” manufactured by Okamoto Co., Ltd., width 50 mm) was attached along four pieces of one main surface of thesoda glass 62 to form a frame-shaped guide 65. .
Next, a curable resin composition (1 mL) was dropped on thesurface 62S of the soda glass 62 inside the guide 65 and stretched with a glass rod to form a curable resin layer. Irradiation intensity with respect to the formed curable resin layer using an ultraviolet irradiation device (Igraphics Co., Ltd., US5-X0401, use light source: Eyegraphics Co., Ltd., metal halide lamp M04-L41) total dose at 400 mW / cm 2 is irradiated such that the 2000 mJ / cm 2, was allowed to proceed a curing reaction of the curable resin layer. The irradiation output was measured with an illuminance meter (“UIT-250” manufactured by USHIO INC.). The thickness of the curable resin layer after light irradiation was 150 μm.
The light transmittance of the curable resin layer after light irradiation at a wavelength of 400 to 700 nm was measured using a visible ultraviolet spectrophotometer (“UV-2400PC” manufactured by Shimadzu Corporation). Based on the average light transmittance at 400 to 700 nm, the light shielding property was evaluated according to the following criteria.
A: Average light transmittance at 400 to 700 nm is less than 10% F: Average light transmittance at 400 to 700 nm is 10% or more
板状のソーダガラス62(フロートガラス、松浪ガラス製「MICRO SLIDE GLASSS9213」、サイズ76×52mm、厚さ1.2~1.5mm、照射光透過率90%)を、アセトンを染み込ませた不織布(旭化成せんい株式会社製「ベンコット」)でよく拭き、これを試験用ガラス基材として用いた。図10に示すように、ソーダガラス62の一方の主面の四片に沿ってテープ(オカモト株式会社製「No.402布テープ」、幅50mm)を貼り付け、枠状のガイド65を形成した。
次いで、ガイド65の内側のソーダガラス62の表面62Sに硬化性樹脂組成物(1mL)を滴下し、ガラス棒で引き伸ばして、硬化性樹脂層を形成させた。形成された硬化性樹脂層に対して、紫外線照射装置(アイグラフィックス(株)製、US5-X0401、使用光源:アイグラフィックス(株)製、メタルハライドランプM04-L41)を用いて、照射強度400mW/cm2で総照射量が2000mJ/cm2になるように照射して、硬化性樹脂層の硬化反応を進行させた。照射出力は照度計(ウシオ電機株式会社製「UIT-250」)にて測定した。光照射後の硬化性樹脂層の厚さは150μmであった。
光照射後の硬化性樹脂層の波長400~700nmの光透過率を、可視紫外分光光度計(株式会社島津製作所製「UV-2400PC」)を用いて測定した。400~700nmでの平均光透過率に基づいて、遮光性を下記の基準で評価した。
A:400~700nmでの平均光透過率が10%未満
F:400~700nmでの平均光透過率が10%以上 2. Light shielding property Plate-like soda glass 62 (float glass, Matsunami glass “MICRO SLIDE GLASSS 9213”, size 76 × 52 mm, thickness 1.2 to 1.5 mm, irradiation light transmittance 90%) was impregnated with acetone. It was wiped well with a non-woven fabric ("Bencot" manufactured by Asahi Kasei Fibers Co., Ltd.) and used as a glass substrate for testing. As shown in FIG. 10, a tape (“No. 402 cloth tape” manufactured by Okamoto Co., Ltd., width 50 mm) was attached along four pieces of one main surface of the
Next, a curable resin composition (1 mL) was dropped on the
The light transmittance of the curable resin layer after light irradiation at a wavelength of 400 to 700 nm was measured using a visible ultraviolet spectrophotometer (“UV-2400PC” manufactured by Shimadzu Corporation). Based on the average light transmittance at 400 to 700 nm, the light shielding property was evaluated according to the following criteria.
A: Average light transmittance at 400 to 700 nm is less than 10% F: Average light transmittance at 400 to 700 nm is 10% or more
表1は、各硬化性樹組成物に関する接着力及び遮光性の評価結果を示す。各実施例において、硬化性樹脂組成物を塗布する方法により、十分な遮光性を有する遮光層を、狭い領域に容易に形成できることが確認された。さらに、形成された遮光層は、高い接着力を発現した。
Table 1 shows the evaluation results of the adhesive strength and the light shielding property regarding each curable tree composition. In each Example, it was confirmed that a light shielding layer having sufficient light shielding properties can be easily formed in a narrow region by a method of applying a curable resin composition. Furthermore, the formed light shielding layer expressed high adhesive force.
1…画像表示部、3…遮光層、5…フレーム部、3A…硬化性樹脂層、20…カバー部材、21…カバーガラス、22…額縁部、41…液晶パネル、41S…画像表示面、42…光透過性感圧接着層、43…バックライト部、45…光源、46…光学シート部、51…樹脂フレーム、52…バックライトフレーム、53…筐体フレーム、60,61…ガラスベース、61E…ガラスベース61の両端部、62…ソーダガラス、62S…ソーダガラス62の表面、65…ガイド、100…画像表示装置、W…遮光層の幅。
DESCRIPTION OF SYMBOLS 1 ... Image display part, 3 ... Light-shielding layer, 5 ... Frame part, 3A ... Curable resin layer, 20 ... Cover member, 21 ... Cover glass, 22 ... Frame part, 41 ... Liquid crystal panel, 41S ... Image display surface, 42 DESCRIPTION OF SYMBOLS ... Light-transmitting pressure sensitive adhesive layer, 43 ... Backlight part, 45 ... Light source, 46 ... Optical sheet part, 51 ... Resin frame, 52 ... Backlight frame, 53 ... Housing frame, 60, 61 ... Glass base, 61E ... Both ends of the glass base 61, 62 ... soda glass, 62S ... surface of the soda glass 62, 65 ... guide, 100 ... image display device, W ... width of the light shielding layer.
Claims (12)
- 画像表示面を有する液晶パネル、及び前記画像表示面と対向する光透過部を有するカバー部材を有する画像表示部と、前記画像表示部の周囲に設けられ前記画像表示部を支持するフレーム部と、前記フレーム部と前記画像表示部との間に形成された遮光層と、を備える画像表示装置を製造する方法であって、
前記画像表示部又は前記フレーム部に、着色剤を含有する硬化性樹脂組成物を塗布して、枠状の硬化性樹脂層を形成させる工程と、
前記硬化性樹脂層に対して活性エネルギー線を照射することにより、前記硬化性樹脂層の硬化反応を進行させる工程と、
前記硬化性樹脂層を介在させながら前記画像表示部と前記フレーム部とを貼り合わせる工程と、
をこの順に備え、
前記遮光層が、硬化反応が進行した前記硬化性樹脂層である、
方法。 A liquid crystal panel having an image display surface; an image display portion having a cover member having a light transmission portion facing the image display surface; a frame portion provided around the image display portion and supporting the image display portion; A method of manufacturing an image display device comprising: a light shielding layer formed between the frame portion and the image display portion,
Applying a curable resin composition containing a colorant to the image display part or the frame part to form a frame-shaped curable resin layer;
Irradiating active energy rays to the curable resin layer to advance a curing reaction of the curable resin layer; and
Bonding the image display unit and the frame unit while interposing the curable resin layer;
In this order,
The light-shielding layer is the curable resin layer that has undergone a curing reaction.
Method. - 前記画像表示部と前記フレーム部とを貼り合わせるときの前記硬化性樹脂層が感圧接着性を有する、請求項1に記載の方法。 The method according to claim 1, wherein the curable resin layer when the image display unit and the frame unit are bonded has pressure-sensitive adhesiveness.
- 下記式で表されるアスペクト比が0.4以上となるように、前記画像表示部と前記フレーム部とを貼り合わせる、請求項1又は2に記載の方法。
アスペクト比=B’/A’
[式中、A’は、前記画像表示部及び前記フレーム部のうちの一方に塗布された前記枠状の硬化性樹脂層の所定の部位における幅を示し、B’は、前記画像表示部と前記フレーム部とが貼り合わされた後の前記硬化性樹脂層の前記所定の部位における前記画像表示部及び前記フレーム部のうちの他方と接触している幅を示す。] The method according to claim 1 or 2, wherein the image display unit and the frame unit are bonded so that an aspect ratio represented by the following formula is 0.4 or more.
Aspect ratio = B '/ A'
[In the formula, A ′ represents a width at a predetermined portion of the frame-shaped curable resin layer applied to one of the image display unit and the frame unit, and B ′ represents the image display unit and The width | variety which has contacted the other of the said image display part and the said frame part in the said predetermined part of the said curable resin layer after the said frame part was bonded together is shown. ] - 前記画像表示部と前記フレーム部とを貼り合わせる前記工程の後、前記硬化性樹脂層の硬化反応を更に進行させる工程を更に備える、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, further comprising a step of further proceeding a curing reaction of the curable resin layer after the step of bonding the image display unit and the frame unit.
- 前記遮光層が延在する方向に対して垂直な方向における前記遮光層の幅が、0.5mm以下である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein a width of the light shielding layer in a direction perpendicular to a direction in which the light shielding layer extends is 0.5 mm or less.
- 前記硬化性樹脂組成物が、光ラジカル重合開始剤と、1個のラジカル重合性基を有する単官能単量体を含む単量体成分と、を更に含有する、請求項1~5のいずれか一項に記載の方法。 6. The curable resin composition according to claim 1, further comprising a photo radical polymerization initiator and a monomer component including a monofunctional monomer having one radical polymerizable group. The method according to one item.
- 前記単官能単量体が、前記単量体成分のラジカル重合により生成するポリマー鎖同士をイオン反応により架橋する反応性基を有する化合物を含む、請求項6に記載の方法。 The method according to claim 6, wherein the monofunctional monomer includes a compound having a reactive group that crosslinks polymer chains generated by radical polymerization of the monomer component by ionic reaction.
- 前記単官能単量体が、シラノール基及び/又はアルコキシシリル基を有する化合物を含む、請求項6に記載の方法。 The method according to claim 6, wherein the monofunctional monomer contains a compound having a silanol group and / or an alkoxysilyl group.
- 前記単官能単量体が、環状エーテル基を有する化合物を含み、前記硬化性樹脂組成物が、光酸発生剤を更に含有する、請求項6に記載の方法。 The method according to claim 6, wherein the monofunctional monomer contains a compound having a cyclic ether group, and the curable resin composition further contains a photoacid generator.
- 前記単官能単量体が、イソシアネート基を有する化合物を含む、請求項6に記載の方法。 The method according to claim 6, wherein the monofunctional monomer includes a compound having an isocyanate group.
- 前記硬化性樹脂組成物が、光塩基発生剤を更に含有し、前記光塩基発生剤が、前記光ラジカル重合開始剤を兼ねていてもよい、請求項7~10のいずれか一項に記載の方法。 The curable resin composition further contains a photobase generator, and the photobase generator may also serve as the photoradical polymerization initiator. Method.
- 前記硬化性樹脂組成物が、ポリマーを更に含有する、請求項5~11のいずれか一項に記載の方法。 The method according to any one of claims 5 to 11, wherein the curable resin composition further contains a polymer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2016/074712 | 2016-08-24 | ||
PCT/JP2016/074712 WO2018037514A1 (en) | 2016-08-24 | 2016-08-24 | Method for manufacturing image display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018038212A1 true WO2018038212A1 (en) | 2018-03-01 |
Family
ID=61244937
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074712 WO2018037514A1 (en) | 2016-08-24 | 2016-08-24 | Method for manufacturing image display device |
PCT/JP2017/030351 WO2018038212A1 (en) | 2016-08-24 | 2017-08-24 | Manufacturing method of image display device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/074712 WO2018037514A1 (en) | 2016-08-24 | 2016-08-24 | Method for manufacturing image display device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201815580A (en) |
WO (2) | WO2018037514A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010128155A (en) * | 2008-11-27 | 2010-06-10 | Kyoritsu Kagaku Sangyo Kk | Display module and method of manufacturing display module |
JP2013015760A (en) * | 2011-07-06 | 2013-01-24 | Shibaura Mechatronics Corp | Adhesive supply device and adhesive supply method |
US20150055316A1 (en) * | 2013-08-20 | 2015-02-26 | Samsung Display Co., Ltd. | Display device and method for fabricating the same |
US20160154271A1 (en) * | 2014-12-01 | 2016-06-02 | Lg Display Co., Ltd. | Liquid crystal display device and method for manufacturing the same |
-
2016
- 2016-08-24 WO PCT/JP2016/074712 patent/WO2018037514A1/en active Application Filing
-
2017
- 2017-08-24 WO PCT/JP2017/030351 patent/WO2018038212A1/en active Application Filing
- 2017-08-24 TW TW106128798A patent/TW201815580A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010128155A (en) * | 2008-11-27 | 2010-06-10 | Kyoritsu Kagaku Sangyo Kk | Display module and method of manufacturing display module |
JP2013015760A (en) * | 2011-07-06 | 2013-01-24 | Shibaura Mechatronics Corp | Adhesive supply device and adhesive supply method |
US20150055316A1 (en) * | 2013-08-20 | 2015-02-26 | Samsung Display Co., Ltd. | Display device and method for fabricating the same |
US20160154271A1 (en) * | 2014-12-01 | 2016-06-02 | Lg Display Co., Ltd. | Liquid crystal display device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2018037514A1 (en) | 2018-03-01 |
TW201815580A (en) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6178775B2 (en) | Optical resin composition and optical resin material using the same | |
KR101907570B1 (en) | Transparent adhesive sheet | |
JP6866956B2 (en) | Method for manufacturing photo-curable adhesive sheet laminate, photo-curable adhesive sheet laminate, and method for manufacturing image display panel laminate | |
KR20150005563A (en) | Adhesive sheet for image display device, method for manufacturing image display device, and image display device | |
JP6866880B2 (en) | Photo-curable adhesive sheet | |
KR20150067101A (en) | Hard coat film and touch panel using the same | |
JPWO2012077808A1 (en) | Adhesive sheet for image display device, image display device and adhesive resin composition | |
WO2018038221A1 (en) | Curable resin composition, image display device and manufacturing method of image display device | |
TW201726876A (en) | Photocurable resin composition and method for producing picture display device | |
WO2018038212A1 (en) | Manufacturing method of image display device | |
WO2018038217A1 (en) | Curable resin composition | |
JP2019137710A (en) | Curable resin composition, image display device and method for manufacturing image display device | |
WO2018038226A1 (en) | Curable resin composition, image display device and manufacturing method of image display device | |
JP6427955B2 (en) | Flexible transparent substrate | |
JP6427954B2 (en) | Flexible transparent substrate | |
WO2015132876A1 (en) | Adhesive sheet for image display device, and method for producing image display device and image display device using same | |
WO2019016960A1 (en) | Method for producing joined body, joined body, liquid crystal display and image display device | |
WO2019064385A1 (en) | Curable resin composition, image display device, and method for manufacturing image display device | |
JP6427956B2 (en) | Flexible transparent substrate | |
WO2018038222A1 (en) | Curable resin composition, image display device and manufacturing method of image display device | |
JP6427953B2 (en) | Flexible transparent substrate | |
KR20240097745A (en) | Active energy ray polymerizable resin composition and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843688 Country of ref document: EP Kind code of ref document: A1 |