[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018038062A1 - 停止制御システム - Google Patents

停止制御システム Download PDF

Info

Publication number
WO2018038062A1
WO2018038062A1 PCT/JP2017/029822 JP2017029822W WO2018038062A1 WO 2018038062 A1 WO2018038062 A1 WO 2018038062A1 JP 2017029822 W JP2017029822 W JP 2017029822W WO 2018038062 A1 WO2018038062 A1 WO 2018038062A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching elements
engine
voltage side
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2017/029822
Other languages
English (en)
French (fr)
Inventor
稔 岡宮
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017146579A external-priority patent/JP6702281B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018038062A1 publication Critical patent/WO2018038062A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to a stop control system that performs control to stop an engine.
  • idling stop control in which an engine is automatically stopped when a predetermined automatic stop condition is satisfied. According to this control, it is possible to improve the fuel consumption reduction effect of the engine.
  • Patent Document 1 As a countermeasure, in Patent Document 1, when the engine is automatically stopped due to the establishment of the automatic stop condition, control is performed so that the motor included in the hybrid vehicle is in a power generation operation. A load is applied to the engine by the power generation operation of the motor, and the rotational speed of the engine can be rapidly lowered, so that the engine can be stopped quickly.
  • Patent Document 1 describes that the power generation operation of the motor is stopped when the rotational speed of the engine becomes substantially zero.
  • the motor may not be able to perform the power generation operation. In this case, the motor cannot give a braking torque to the engine and cannot stop the engine quickly. Even if the power generation operation of the motor can be carried out, it is considered that the braking torque applied to the engine by the motor is small, and there is a possibility that the time until the engine stops completely becomes long.
  • the present disclosure has been made in order to solve the above-described problem, and a main object of the present disclosure is to apply braking torque to the engine to a region where the engine rotational speed is lower during engine stop control. It is to provide a stop control system.
  • the first disclosure is charged by an engine that generates a driving force by combustion of fuel, a rotating electrical machine module having a rotating electrical machine that can generate electric power by the driving force of the engine, and electric power supplied by the rotating electrical machine module.
  • a stop control system for executing control to stop the engine, and after the combustion of the fuel by the engine is stopped, an induced current generated in the rotating electrical machine does not pass through the power source. Forms a closed closed circuit.
  • this stop control system As a countermeasure, in this stop control system, after the combustion of fuel by the engine is stopped, a closed circuit is formed in which the induced current generated in the rotating electrical machine flows without going through the power source. As a result, even if the induced electromotive voltage generated in the rotating electrical machine is lower than the voltage of the power source due to a decrease in the rotational speed of the engine, the induced electrical current generated in the rotating electrical machine flows in the formed closed circuit.
  • a braking torque can be applied to. That is, the braking torque can be applied to the engine up to a region where the rotational speed of the engine is lower, so that the engine can be stopped quickly. Further, in a system that automatically stops and restarts the engine, the engine restart timing can be advanced with the rapid engine stop. Therefore, the restartability of the engine can be improved.
  • the rotating electrical machine includes a field winding and a current adjustment unit that adjusts a magnitude of a current flowing in the field winding, and the current adjustment unit includes: During the period in which the closed circuit is formed, the magnitude of the current flowing through the field winding is adjusted so that the braking torque applied to the engine does not exceed a predetermined torque.
  • the adjustment unit adjusts the magnitude of the current flowing in the field winding so that the braking torque applied to the engine does not exceed a predetermined torque.
  • the magnitude of the braking torque applied to the engine can be adjusted to be smaller than the predetermined torque, and the occurrence of problems such as “belt squealing” can be suppressed.
  • the rotating electrical machine includes an armature winding and an induced current adjusting unit that adjusts an average current magnitude of an induced current that flows through the armature winding.
  • the induced current adjustment unit is configured to obtain an average current of the induced current that flows through the armature winding so that the braking torque applied to the engine does not become larger than a predetermined torque during the period in which the closed circuit is formed. Adjust the size.
  • the average current magnitude of the induced current flowing through the armature winding may be adjusted.
  • the magnitude of the induced current generated in the multiphase rotating electrical machine can be limited, and as a result, the braking torque applied to the engine can be suppressed from becoming larger than the predetermined torque.
  • the rotating electric machine when the rotation speed of the engine is higher than a predetermined rotation speed after the combustion of the fuel by the engine is stopped, the rotating electric machine generates power. And the closed circuit is formed when the rotational speed of the engine is lower than the predetermined rotational speed.
  • the magnitude of the braking torque applied to the engine depends on the magnitude of the induced current generated in the rotating electrical machine.
  • the rotational speed of the engine is higher than a predetermined rotational speed, it is considered that the braking torque applied to the engine is sufficiently large even if the power source is charged by the electric power supplied by the rotating electrical machine. For this reason, when the rotational speed of the engine is higher than the predetermined rotational speed, it is possible to apply a braking torque to the engine and charge the power source by causing the rotating electrical machine to generate power.
  • a fifth disclosure is applied to a vehicle having an automatic stop function for automatically stopping the engine when a predetermined automatic stop condition is satisfied in any one of the first to fourth disclosure, and the automatic stop condition is The closed circuit is formed after the fuel combustion by the engine is stopped.
  • an automatic stop function for example, an idling stop vehicle
  • automatic stop and restart frequently occur when turning an intersection or in a traffic jam Conceivable.
  • the engine can be stopped quickly in such a situation, and the engine can be restarted early. That is, it can be said that it is particularly preferable to apply the stop control system to an automatic stop vehicle.
  • the rotating electrical machine module is a multiphase rotating electrical machine, and at least some of the phases of the plurality of phases included in the multiphase rotating electrical machine are included.
  • a plurality of first switching elements that can be opened and closed so as to be short-circuited, and the first switching element is opened and closed so that at least some of the phases of the plurality of phases of the multiphase rotating electrical machine are short-circuited. By operating, the closed circuit is formed.
  • this stop control system is applied to a multi-phase rotating electrical machine.
  • a plurality of first switching elements that can be opened and closed so that at least some of the plurality of phases of the multiphase rotating electrical machine are short-circuited are provided in the multiphase rotating electrical machine.
  • the first switching element is opened and closed so that at least some of the phases of the plurality of phases of the multiphase rotating electrical machine are short-circuited. Closed circuit can be formed.
  • the duty ratio of the first switching element is adjusted so that the braking torque to be applied to the engine does not become larger than a predetermined torque during the period of forming the closed circuit. To do.
  • the duty ratio of the first switching element may be adjusted as another method for controlling the braking torque applied to the engine so as not to be larger than the predetermined torque.
  • the magnitude of the induced current generated in the multiphase rotating electrical machine can be limited, and as a result, the braking torque applied to the engine can be suppressed from becoming larger than the predetermined torque.
  • overheating of the first switching element can be suppressed by suppressing an excessively large induced current from flowing through the first switching element.
  • the plurality of first switching elements are opened and closed so that all phases of the multiphase rotating electrical machine are short-circuited.
  • the fluctuation of the braking torque applied to the engine can be reduced by opening and closing the plurality of first switching elements so that all phases of the multiphase rotating electrical machine are short-circuited.
  • a ninth disclosure is the disclosure according to any one of the first to fifth aspects, wherein the rotating electrical machine module is an alternator and includes a rectifying unit that rectifies the induced current generated by power generation, and is rectified by the rectifying unit.
  • a stop control system configured to cause the induced current to flow to the power source, and a second switching element that opens and closes between the power source and the rectifier unit, and between the second switching element and the rectifier unit.
  • the closed circuit is formed by closing the element, and the second switching element is opened when the closed circuit is formed.
  • a closed circuit in which the induced current generated in the alternator flows through the connection path without passing through the power source can be formed by closing the third switching element.
  • the current flowing from the power source also flows through the connection path.
  • the closed circuit is formed by closing the third switching element, the second switching element is opened. Thereby, the inflow of the current from the power source to the connection path can be cut off.
  • the rectifying unit, the connection path, and a field winding of the alternator are connected in parallel to the power source, and the connection path includes a resistor.
  • the rectifier, connection path, and field winding of the alternator are connected in parallel to the power supply.
  • the magnitude of the voltage applied to the field winding is the same as the magnitude of the voltage applied to the connection path.
  • a sufficient voltage cannot be applied and a sufficient current cannot be supplied to the field winding.
  • the voltage applied to the field winding can be increased, and a sufficient current can flow through the field winding. It can be made sufficiently large.
  • the rotating electrical machine module includes a three-phase armature winding and a three-phase armature winding in the first system and the second system, respectively.
  • the rotating electrical machine module includes a three-phase armature winding and six switching elements connected to the three-phase armature winding in a three-phase bridge in each of the first system and the second system.
  • a closed circuit is formed in each system. can do.
  • a braking torque can be given to an engine in each system
  • the thermal load per system thermal load concerning each switching element
  • a twelfth disclosure is the disclosure according to any one of the first to fifth aspects, wherein the rotating electric machine module includes a three-phase armature winding and six switching elements connected to the three-phase armature winding by a three-phase bridge. And when forming the closed circuit, among the six switching elements, a first state in which three switching elements on the high voltage side are closed and three switching elements on the low voltage side are opened, and the high voltage The second state in which the three switching elements on the side are opened and the three switching elements on the low voltage side are closed is alternately switched.
  • the rotating electrical machine module includes a three-phase armature winding and six switching elements connected to the three-phase armature winding by a three-phase bridge.
  • a closed circuit can be formed by closing three switching elements on the high voltage side and opening three switching elements on the low voltage side among the six switching elements.
  • a closed circuit can be formed by opening three switching elements on the high voltage side and closing three switching elements on the low voltage side among the six switching elements. Then, when forming the closed circuit, the thermal load is distributed to the three switching elements on the high voltage side and the three switching elements on the low voltage side in order to alternately switch between the first state and the second state. Can do.
  • the rotating electrical machine module includes a three-phase armature winding and a three-phase armature winding in the first system and the second system, respectively.
  • Three switching elements connected in a three-phase bridge, and when forming the closed circuit, in the first system and the second system, three switching elements on the high voltage side of the six switching elements A first state in which the three switching elements on the low voltage side are closed and the three switching elements on the high voltage side among the six switching elements are opened and the low voltage side is opened in the first system and the second system.
  • the second state in which the three switching elements are closed are alternately switched.
  • the rotating electrical machine module includes a three-phase armature winding and six switching elements connected to the three-phase armature winding in a three-phase bridge in each of the first system and the second system.
  • the first state in the first system and the second system, among the six switching elements, the high voltage side three switching elements are closed and the low voltage side three switching elements are opened.
  • Each can form a closed circuit.
  • the second state in the first system and the second system, among the six switching elements, by opening the three switching elements on the high voltage side and closing the three switching elements on the low voltage side, A closed circuit can be formed.
  • Thermal load can be distributed.
  • the rotating electrical machine module includes a three-phase armature winding and a three-phase armature winding in the first system and the second system, respectively.
  • 6 switching elements connected in a three-phase bridge and when forming the closed circuit, in the first system, the three switching elements on the high voltage side of the six switching elements are closed and the low voltage Open the three switching elements on the side and open the six switching elements in the second system; open the six switching elements in the first system; and Among the switching elements, the second switching state is alternately switched between the three switching elements on the high voltage side and the three switching elements on the low voltage side being opened.
  • the rotating electrical machine module includes a three-phase armature winding and six switching elements connected to the three-phase armature winding in a three-phase bridge in each of the first system and the second system.
  • the first state in the first system, the high voltage side of the first system is closed by closing the three switching elements on the high voltage side among the six switching elements and opening the three switching elements on the low voltage side.
  • a closed circuit can be formed.
  • the second state in the second system, by closing three switching elements on the high voltage side among the six switching elements and opening three switching elements on the low voltage side, on the high voltage side of the second system A closed circuit can be formed.
  • the heat load can be distributed.
  • the rotating electrical machine module includes a three-phase armature winding and a three-phase armature winding in the first system and the second system, respectively.
  • 6 switching elements connected in a three-phase bridge and when forming the closed circuit, in the first system, the three switching elements on the high voltage side among the six switching elements are opened and the low voltage
  • the switching state is switched alternately between the second state in which three switching elements on the high voltage side are opened and the three switching elements on the low voltage side are closed.
  • the thermal load can be distributed to the three switching elements on the low voltage side of the first system and the three switching elements on the low voltage side of the second system. .
  • the rotation speed of the engine when the rotation speed of the engine periodically becomes a maximum value and a minimum value, the rotation speed becomes the minimum value when the rotation speed becomes the minimum value. Switching between the first state and the second state.
  • the first state and the second state are switched at a time when the rotational speed of the engine becomes the minimum value, the first state and the second state are suppressed while suppressing the influence that the braking torque cannot be applied to the engine. Can be switched. Further, even when the first state and the second state are switched at a time when the engine speed becomes zero, the same effect can be obtained.
  • the rotating electrical machine module includes a three-phase armature winding and a three-phase armature winding in the first system and the second system, respectively.
  • three switching elements on the high voltage side of the first system that are energized in the first state, three switching elements on the high voltage side of the second system that are energized in the second state, and The thermal load can be distributed to the three switching elements on the low voltage side of the first system to be energized and the three switching elements on the low voltage side of the second system to be energized in the fourth state.
  • FIG. 1 is a schematic configuration diagram of a control system according to the present embodiment.
  • FIG. 2 is a schematic circuit diagram around the rotating electric machine shown in FIG.
  • FIG. 3 is a diagram showing modes in which the rotating electrical machine according to this embodiment can be implemented.
  • FIG. 4 is a diagram showing how the parameters change when the generator mode is performed by the rotating electrical machine when the engine is stopped.
  • FIG. 5 is a diagram showing how the parameters change when the electric rotating machine is caused to execute a brake mode when the engine is stopped.
  • FIG. 6 is a circuit diagram showing control in the case of forming a closed circuit that does not go through the battery in the circuit diagram shown in FIG. FIG.
  • FIG. 7 is a diagram illustrating an effect brought about by the stop control according to the present embodiment.
  • FIG. 8 is a circuit diagram showing another example of the control when forming the closed circuit shown in FIG.
  • FIG. 9 is a schematic circuit diagram around a rotating electrical machine according to another example.
  • FIG. 10 is a schematic circuit diagram around a rotating electrical machine according to another example.
  • FIG. 11 is a circuit diagram showing control when a closed circuit is formed in two systems.
  • FIG. 12 is a circuit diagram showing another example of control when a closed circuit is formed in two systems
  • FIG. 13 is a circuit diagram showing control when a closed circuit is formed in one of the two systems.
  • FIG. 14 is a circuit diagram showing another example of control when a closed circuit is formed in one of two systems.
  • FIG. 15 is a circuit diagram showing another example of control when a closed circuit is formed in one of two systems.
  • FIG. 16 is a circuit diagram showing another example of control when a closed circuit is formed in one of the two systems.
  • the stop control system according to the present embodiment is mounted on a vehicle including an engine 10 as a travel drive source.
  • an engine 10 is a multi-cylinder internal combustion engine driven by combustion of fuel such as gasoline or light oil, and includes a fuel injection valve 50, an ignition device, and the like as is well known.
  • a rotating electrical machine module 20 is connected to a rotating shaft (not shown) of the engine 10 via a power transmission unit 16 including a pulley and a belt so that power can be transmitted.
  • the rotating electrical machine module 20 is mainly driven as an electric motor when driving force is supplied to the engine 10, and is driven as a generator when converting the driving force of the engine 10 into electric power.
  • the configuration of the rotating electrical machine module 20 will be described with reference to FIG.
  • the rotating electrical machine module 20 is assumed to be an ISG (Integrated Starter Generator).
  • the rotating electrical machine module 20 includes a generator motor 21, a drive circuit 25, and a rotating electrical machine control unit 27.
  • the generator motor 21 is connected to a battery (corresponding to a power source) 30 via a drive circuit 25.
  • the generator motor 21 is a three-phase AC motor generator, and the generator motor 21 includes a stator 22 including three-phase armature windings 22a to 22c and a field winding 23a. And a rotor 23.
  • the generator motor 21 further includes an adjusting unit (corresponding to a current adjusting unit) 24, and the adjusting unit 24 applies an exciting current to be supplied to the field winding 23 a included in the rotor 23 based on a command from the rotating electrical machine control unit 27. Adjust the size.
  • the drive circuit 25 is an inverter circuit provided with a plurality of MOSFETs (corresponding to first switching elements) that are switching elements.
  • the drive circuit 25 includes MOSFETs 25a to 25f.
  • One end of a U-phase armature winding 22a of the stator 22 is connected to a connection point between the MOSFETs 25a and 25b.
  • One end of a V-phase armature winding 22b of the stator 22 is connected to a connection point of the MOSFETs 25c and 25d.
  • One end of a W-phase armature winding 22c of the stator 22 is connected to a connection point between the MOSFETs 25e and 25f.
  • the drive circuit 25 further includes a switch control unit 26, and the switch control unit 26 controls the opening / closing operations of the MOSFETs 25a to 25f based on a command from the rotating electrical machine control unit 27.
  • the rotating electrical machine control unit 27 is assumed to be a rotating electrical machine ECU, and is configured as a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine control unit 27 causes the adjusting unit 24 to adjust the excitation current flowing through the field winding 23a. Thereby, the generated voltage generated in the rotating electrical machine module 20 is adjusted. Further, the rotating electrical machine control unit 27 causes the switch control unit 26 to control the opening / closing operation of the MOSFETs 25a to 25f constituting the drive circuit 25.
  • an engine ECU 40 is provided as a main control unit that controls the entire system.
  • the engine ECU 40 is a known electronic control device that includes a microcomputer and the like.
  • the engine ECU 40 is electrically connected to a rotating electrical machine control unit 27 included in the rotating electrical machine module 20 (see FIG. 2), and plays a role of controlling the rotating electrical machine module 20 via the rotating electrical machine control unit 27.
  • the rotating electrical machine module 20 according to the present embodiment has four functions of a standby mode, a generator mode, a motor mode, and a brake mode.
  • the switch control unit 26 is controlled via the rotating electrical machine control unit 27 so that the MOSFETs 25a to 25f are all opened.
  • the DC power supplied from the battery 30 is three-phased by causing the switch control unit 26 to control the opening / closing operation of the MOSFETs 25a to 25f via the rotating electrical machine control unit 27.
  • the three-phase power is supplied to the stator 22.
  • the switch controller 26 controls the opening / closing operation of the MOSFETs 25a to 25f via the rotating electrical machine controller 27, so that the induced current generated in the stator 22 is controlled. Is supplied to the battery 30 and the battery 30 is charged. The brake mode will be described later.
  • an accelerator sensor 42 for detecting an operation amount of an accelerator pedal 41 (hereinafter referred to as an accelerator operation amount) serving as an accelerator operation member, and an operation amount of the brake pedal 43 (hereinafter referred to as a brake operation amount) are used.
  • a brake sensor 44 for detecting, a rotation speed sensor 45 for detecting the rotation speed of the rotation shaft of the engine 10, and the like are provided. Detection signals from these sensors are sequentially input to the engine ECU 40.
  • the sensor other than these sensors is also provided in this system, illustration is abbreviate
  • the engine ECU 40 performs control such as fuel injection amount control by the fuel injection valve 50 and ignition control by the ignition device based on detection results of each sensor.
  • the engine ECU 40 performs idling stop control for automatically stopping the engine 10 when a predetermined automatic stop condition is satisfied while the vehicle is traveling.
  • the fuel injection valve 50 is in a state where fuel supply to the engine 10 is stopped (hereinafter referred to as fuel cut) (automatic stop process) or the engine 10 is automatically stopped,
  • the restart condition is satisfied, the engine 10 is automatically restarted.
  • the automatic stop condition for example, the vehicle speed is equal to or lower than a predetermined value, the accelerator operation amount detected by the accelerator sensor 42 is zero (or the brake operation amount detected by the brake sensor 44 is greater than the first predetermined amount). Etc.) are included.
  • the engine restart condition includes, for example, that the accelerator operation amount detected by the accelerator sensor 42 is larger than the second predetermined amount, and that the brake operation amount detected by the brake sensor 44 is zero.
  • the fuel cut is performed and the combustion of the fuel by the engine 10 is stopped. Power generation was performed, and the braking torque of the rotating electrical machine module 20 was applied to the engine 10 (see time t1).
  • the magnitude of the braking torque of the rotating electrical machine module 20 applied to the engine 10 depends on the magnitude of the induced current flowing through the stator 22.
  • the magnitude of the induced current flowing in the stator 22 depends on the magnitude of the induced electromotive voltage generated in the stator 22, and the magnitude of the induced electromotive voltage generated in the stator 22 is the high rotational speed of the engine 10. Depends on.
  • the rotating electrical machine module 20 when the induced electromotive voltage generated in the stator 22 is smaller than the voltage of the battery 30, the induced current generated in the rotating electrical machine module 20 cannot flow to the battery 30, and the rotating electrical machine module 20 generates power. It cannot be implemented. Therefore, when the rotational speed of the engine 10 is lower than the threshold value as the rotational speed at which the induced electromotive voltage generated in the stator 22 is smaller than the voltage of the battery 30, the rotating electrical machine module 20 is made to execute the standby mode ( Time t2). Thus, after the rotational speed of the engine 10 becomes lower than the threshold value, the braking torque of the rotating electrical machine module 20 cannot be applied to the engine 10 (see time t2-t3), and the engine 10 is completely There is a possibility that the time to stop will be longer.
  • the rotating electrical machine module 20 is provided with a brake mode as a function for stopping the engine 10 more quickly. As shown in FIG. 5, this brake mode is executed when fuel cut is performed and fuel combustion by the engine 10 is stopped when a predetermined automatic stop condition is satisfied (see time t10). .
  • the MOSFETs 25a, 25c, and 25e (upper arm MOSFETs) are controlled to be closed, and the MOSFETs 25b, 25d, and 25f (lower arm MOSFETs) are controlled.
  • the open state all phases of the stator 22 are short-circuited.
  • a closed circuit in which the induced current generated in the stator 22 flows without passing through the battery 30 is formed in the drive circuit 25.
  • the magnitude of the braking torque of the rotating electrical machine module 20 applied to the engine 10 when the rotating electrical machine module 20 performs the brake mode depends on the magnitude of the induced current flowing through the stator 22 in the closed circuit. Become. Therefore, the magnitude of the braking torque applied to the engine 10 (see FIG. 5) when the rotating electrical machine module 20 performs the brake mode is the same as that of the engine 10 when the rotating electrical machine module 20 is performed in the generator mode. Is larger than the magnitude of the braking torque applied to (see FIG. 4).
  • the rotating electrical machine module 20 when the rotating electrical machine module 20 is caused to execute the brake mode in a state where the rotational speed of the engine 10 is high, the induced current flowing from the stator 22 to the closed circuit becomes excessively large, and accordingly, the rotating electrical machine applied to the engine 10 is increased. There is a possibility that the braking torque of the module 20 becomes excessively large. In this case, it is conceivable that so-called “belt squealing” occurs in which abnormal noise is generated from the belt constituting the power transmission unit 16. As a countermeasure, during the period when the closed circuit is formed, the exciting current that flows through the field winding 23a of the rotor 23 provided in the rotor 23 is adjusted so that the braking torque applied to the engine 10 does not become larger than the predetermined torque. Adjust the size. Thereby, the magnitude of the braking torque applied to the engine 10 can be adjusted to be smaller than the predetermined torque, and occurrence of problems such as “belt squealing” can be suppressed.
  • the braking torque of the rotating electrical machine module 20 can be applied to the engine 10 (see time t11-t14).
  • the braking torque of the rotating electrical machine module 20 can be applied to the engine 10 (see time t12-t13).
  • this embodiment has the following effects.
  • a closed circuit in which current flows without passing through the battery 30 is formed.
  • the rotating electrical machine module 20 can give a braking torque to the engine 10. That is, since it becomes possible to apply a braking torque to the engine 10 to a region where the rotational speed of the engine 10 is lower, the engine 10 can be stopped quickly.
  • FIG. 7 shows how the rotational speed of the engine 10 changes when the generator mode is implemented in the rotating electrical machine module 20 when the combustion of fuel by the engine 10 is stopped, and the brake mode is implemented in the rotating electrical machine module 20.
  • FIG. 4 shows how the rotational speed of the engine 10 changes when the engine 10 is operated. According to FIG. 7, the degree of decrease in the rotational speed of the engine 10 is greater when the rotating electrical machine module 20 is in the brake mode than when the rotating electrical machine module 20 is in the generator mode.
  • the braking torque applied to the engine 10 is greater when the rotating electrical machine module 20 is in the brake mode. Further, it can be seen that when the rotating electrical machine module 20 is in the brake mode, the swingback generated when the engine 10 stops can be kept small and can be accommodated earlier. This suggests that when the rotating electrical machine module 20 performs the brake mode, braking torque is applied even when the engine 10 rotates in the reverse direction. Due to the above factors, the engine 10 can be stopped earlier when the rotating electrical machine module 20 is in the brake mode than when the rotating electrical machine module 20 is in the generator mode.
  • the restart timing of the engine 10 can be advanced with the rapid stop of the engine 10. Therefore, the restartability of the engine 10 can be improved.
  • a conventional rotating electrical machine module When a conventional rotating electrical machine module applies a braking force to the engine 10, it detects the rotational angle of the rotor and energizes the appropriate phase of the stator armature winding according to the rotational angle of the rotor. There is a need to. In particular, when reverse rotation of the engine 10 is included, it is necessary to reverse the direction of applying torque at the moment of reverse rotation and complicated control is required. In this embodiment, similar effects can be obtained with simpler control. Is possible.
  • the fluctuation of the braking torque applied to the engine 10 can be reduced by opening and closing the MOSFETs 25a to 25f so that all phases of the rotating electrical machine module 20 are short-circuited.
  • the drive circuit 25 includes the MOSFETs 25a to 25f.
  • an IGBT, a power transistor, a thyristor, a triac, or the like may be used instead of the MOSFET.
  • the generator motor 21 is a three-phase AC motor generator.
  • a three-phase AC motor generator not only a three-phase AC motor generator, but also a single-phase AC motor generator or a multi-phase AC motor generator may be used.
  • the rotor 23 includes the field winding 23a.
  • the rotor 23 may include a field permanent magnet instead of the field winding 23a.
  • the generator motor 21 is an embedded magnet synchronous machine (IPMSM), a surface magnet synchronous machine (SPMSM), or the like.
  • idling stop control is performed when a predetermined automatic stop condition is satisfied while the vehicle is running, and when the combustion of fuel by the engine 10 is stopped, the rotating electrical machine module 20 is caused to execute the brake mode. It was. In this regard, it is not necessary to cause the rotating electrical machine module 20 to execute the brake mode only when the idling stop control is performed.
  • the automatic stop control other than the idling stop control is performed, the braking mode is performed on the rotating electrical machine module 20. You may let them.
  • the automatic stop control other than the idling stop control there is one that automatically stops the engine 10 when the accelerator operation amount becomes 0 regardless of the vehicle speed.
  • condition for causing the rotating electrical machine module 20 to execute the brake mode need not be limited to the execution of the automatic stop control.
  • the rotating electrical machine module 20 The brake mode may be executed.
  • the closed circuit in which the induced current generated in the stator 22 flows without passing through the battery 30 is formed in the drive circuit 25 by short-circuiting all phases of the stator 22.
  • the MOSFETs 25c and 25e are closed and the other MOSFETs 25a, 25b, 25d, and 25f are opened, so that the V phase and the W phase among the phases of the stator 22 are short-circuited.
  • a closed circuit in which the induced current generated in the stator 22 flows without passing through the battery 30 may be formed.
  • all the phases of the stator 22 are short-circuited by controlling the upper arm MOSFETs 25a, 25c, and 25e to all closed states and controlling the lower arm MOSFETs 25b, 25d, and 25f to all open states. I was letting.
  • the upper arm MOSFETs 25a, 25c, and 25e are all controlled to be opened, and the lower arm MOSFETs 25b, 25d, and 25f are all controlled to be closed. You may short-circuit all the phases which 22 has.
  • the rotating electrical machine module 20 includes armature windings 22a, 22b, and 22c (three-phase armature windings), and MOSFETs 25a to 25c connected to the armature windings 22a, 22b, and 22c in a three-phase bridge. 25f (switching element).
  • the upper arm MOSFETs 25a, 25c, and 25e three switching elements on the high voltage side
  • the lower arm MOSFETs 25b, 25d A closed circuit can be formed by opening 25f (three switching elements on the low voltage side).
  • the upper arm MOSFETs 25a, 25c, and 25e are opened, and the lower arm MOSFETs 25b, 25d, and 25f are closed, thereby forming a closed circuit. be able to. And when forming a closed circuit, you may switch a 1st state and a 2nd state alternately. Thereby, a thermal load can be distributed to the MOSFETs 25a, 25c, and 25e and the MOSFETs 25b, 25d, and 25f.
  • the rotating electrical machine module 20 includes armature windings 22a, 22b, and 22c (three) in the drive circuit 25A and the stator 22A (first system) and in the drive circuit 25B and the stator 22B (second system), respectively.
  • the upper arm MOSFETs 25a, 25c, and 25e three switching elements on the high voltage side
  • the lower arm MOSFETs 25b, 25d, and 25f low voltage
  • the same effects can be obtained when the upper arm MOSFETs 25a, 25c, and 25e among the MOSFETs 25a to 25f are opened and the lower arm MOSFETs 25b, 25d, and 25f are closed. Can do.
  • the upper arms MOSFETs 25a, 25c, and 25e (three switching elements on the high voltage side) of the MOSFETs 25a to 25f are closed as shown in FIG.
  • a closed circuit By opening the side arm MOSFETs 25b, 25d, and 25f (three switching elements on the low voltage side), a closed circuit can be formed in each system.
  • the upper arm MOSFETs 25a, 25c, and 25e are opened, and the lower arm MOSFETs 25b, 25d, and 25f are opened. By closing, a closed circuit can be formed in each system.
  • the thermal load is distributed to the MOSFETs 25a, 25c, 25e of each system and the MOSFETs 25b, 25d, 25f of each system by alternately switching between the first state and the second state. be able to.
  • the MOSFETs 25a to 25f are opened to form a closed circuit on the high voltage side of the first system.
  • the MOSFETs 25a to 25f are opened in the second system (the drive circuit 25B and the stator 22B). Further, as shown in FIG.
  • MOSFETs 25a to 25f of the upper arm among the MOSFETs 25a to 25f (three switching elements on the high voltage side) Is closed and the lower arm MOSFETs 25b, 25d, and 25f (three switching elements on the low voltage side) are closed, and a closed circuit can be formed on the low voltage side of the first system.
  • the MOSFETs 25a to 25f are opened in the second system (the drive circuit 25B and the stator 22B). Also, as shown in FIG.
  • a closed circuit can be formed on the low voltage side of the second system.
  • the MOSFETs 25a to 25f are opened in the first system.
  • the first state and the second state are alternately switched, thereby applying a thermal load to the first system MOSFETs 25b, 25d, and 25f and the second system MOSFETs 25b, 25d, and 25f. Can be dispersed.
  • the upper arm MOSFETs 25a, 25c, 25e high voltage side switching elements
  • the lower arm MOSFETs 25b, 25d, 25f low voltage
  • a dead time for preventing a short circuit with the switching device on the side is provided, a period in which a closed circuit is not formed occurs.
  • the dead time is a time for which the MOSFETs 25a and 25b are both opened so that the MOSFET 25a and the MOSFET 25b are not short-circuited, for example.
  • the braking torque cannot be applied to the engine 10.
  • the rotational speed of the engine 10 periodically becomes a maximum value and a minimum value as shown in FIGS. Then, for example, at a time when the rotational speed of the engine 10 reaches a minimum value as shown at time t11 in FIG. 5, the braking torque applied to the engine 10 by the generator motor 21 (rotating electric machine) is relatively small.
  • the influence that the braking torque cannot be applied to the engine 10 is suppressed, and the first state and the second state are suppressed. You can switch between two states. Further, when the rotational speed of the engine 10 becomes zero, the braking torque applied to the engine 10 by the generator motor 21 is the smallest. For this reason, even if it switches between a 1st state and a 2nd state at the time when the rotational speed of the engine 10 becomes 0, the same effect can be show
  • the states (first to fourth states) shown in FIGS. 13 to 16 may be switched in a predetermined order.
  • the predetermined order is arbitrary, but it is necessary to provide a dead time if the order does not include switching between the state of FIG. 13 and the state of FIG. 15 and switching between the state of FIG. 14 and the state of FIG.
  • the braking torque can be efficiently applied to the engine 10 by the generator motor 21.
  • MOSFETs 25a, 25c, 25e of the first system drive circuit 25A and stator 22A
  • MOSFETs 25a, 25c, 25e of the second system drive circuit 25B and stator 22B
  • the thermal load can be distributed to the MOSFETs 25b, 25d, and 25f and the second system MOSFETs 25b, 25d, and 25f.
  • the rotating electrical machine module 20 when the predetermined automatic stop condition is satisfied, the fuel cut is performed, and when the combustion of the fuel by the engine 10 is stopped, the rotating electrical machine module 20 is caused to execute the brake mode.
  • the predetermined automatic stop condition when the predetermined automatic stop condition is satisfied, the fuel cut is performed, and after the combustion of the fuel by the engine 10 is stopped, the rotational speed of the engine 10 is higher than the predetermined rotational speed.
  • the generator mode is implemented in the module 20 and the rotational speed of the engine 10 is lower than the predetermined rotational speed
  • the rotating electrical machine module 20 may be implemented in the brake mode.
  • the predetermined rotation speed is set to a rotation speed higher than the threshold value shown in FIGS.
  • the magnitude of the braking torque applied to the engine 10 depends on the magnitude of the induced current flowing through the stator 22.
  • the rotational speed of the engine 10 is higher than the predetermined rotational speed, it is considered that the braking torque applied to the engine 10 is sufficiently large even when the battery 30 is charged with the electric power supplied by the stator 22.
  • the rotational speed of the engine 10 is higher than the predetermined rotational speed, it is possible to apply the braking torque to the engine 10 and charge the battery 30 by causing the rotating electrical machine module 20 to execute the generator mode. It becomes.
  • the induced electromotive voltage generated in the stator 22 by power generation is also small, and a sufficient induced current cannot flow through the stator 22, and the rotating electrical machine module It is conceivable that 20 cannot apply braking torque to the engine 10. Alternatively, even if the rotating electrical machine module 20 can apply the braking torque to the engine 10, the magnitude is considered to be minute. Therefore, when the rotational speed of the engine 10 is lower than the predetermined rotational speed, the rotating electrical machine module 20 is caused to execute the brake mode. Thereby, the induced current generated in the stator 22 is not reduced, and as a result, it is possible to suppress the braking torque applied to the engine 10 by the rotating electrical machine module 20 from becoming smaller.
  • the field winding 23a provided in the rotor 23 of the adjusting unit 24 is provided so that the braking torque applied to the engine 10 does not become larger than the predetermined torque during the period in which the closed circuit is formed.
  • the magnitude of the exciting current to flow was adjusted.
  • the time of the closing operation with respect to the cycle of the opening / closing operation is determined for each of the MOSFETs 25a, 25c, and 25e so that the braking torque applied to the engine 10 does not become larger than the predetermined torque.
  • the ratio (duty ratio) is adjusted.
  • the magnitude of the induced current generated in the stator 22 can be limited, and as a result, the braking torque applied to the engine 10 can be suppressed from becoming larger than the predetermined torque.
  • overheating of the MOSFETs 25a, 25c, and 25e can be suppressed by suppressing an excessively large induced current from flowing through the MOSFETs 25a, 25c, and 25e.
  • the control for preventing the braking torque to be applied to the engine 10 from becoming larger than the predetermined torque does not need to be carried out independently in the above embodiment and another example described in [1], and is executed in combination. Also good.
  • the stator 22 includes the three-phase armature windings 22a to 22c, and the rotor 23 includes the field winding 23a.
  • the stator 22 may be configured to include a field winding
  • the rotor 23 may be configured to include a three-phase armature winding.
  • the magnitude of the induced current flowing through the three-phase armature winding provided in the rotor 23 is such that the braking torque applied to the engine 10 does not become larger than the predetermined torque. Limited.
  • description is abbreviate
  • ⁇ Control for preventing the braking torque applied to the engine 10 from becoming larger than the predetermined torque may be omitted. That is, the magnitude of the excitation current flowing through the field winding 23a and the duty ratio of the closing operation of the MOSFETs 25a, 25c, and 25e may be adjusted so that the braking torque applied to the engine 10 is maximized.
  • the rotating electrical machine module 20 is assumed to be ISG. About this, it is not necessary to restrict to ISG,
  • the alternator 60 which is a generator may be sufficient.
  • a configuration in the case of the alternator 60 is shown in FIG.
  • the rectifier circuit 61 is a three-phase full-wave rectifier including a diode.
  • a second switching element 62 such as a MOSFET that opens and closes between the battery 30 and the rectifier circuit 61 is provided.
  • a connection path 63 that bypasses the battery 30 and connects the positive electrode side and the negative electrode side of the rectifier circuit 61 is branched between the second switching element 62 and the rectifier circuit 61.
  • a third switching element 64 for opening and closing the connection path 63 is provided.
  • the switch control unit 65 performs opening / closing control of the second switching element 62 and the third switching element 64 based on a command from the engine ECU 66.
  • the closed circuit in which the induced current generated in the stator 67 provided in the rotating electrical machine 60 flows through the connection path 63 without passing through the battery 30 by closing the third switching element 64. Can be formed.
  • the current flowing from the battery 30 also flows through the connection path 63.
  • the second switching element 62 is opened. Thereby, the inflow of the current from the battery 30 to the connection path 63 can be blocked. Even with this configuration, the same operations and effects as in the above-described embodiment can be achieved.
  • the rectifier circuit 61, the connection path 63, and the rotor 68 provided in the rotating electrical machine 60 are connected in parallel to the battery 30.
  • the third switching element 64 when the third switching element 64 is closed, a closed circuit is formed and when the second switching element 62 is opened, the voltage applied to the field winding 68a of the rotor 68 is reduced.
  • the magnitude and the magnitude of the voltage applied to the connection path 63 are the same.
  • a sufficient voltage cannot be applied to the field winding 68a, and a sufficient current may not flow through the field winding 68a.
  • the rotor 68 may not be magnetized.
  • a resistor 70 is provided on the negative side of the third switching element 64 in the connection path 63.
  • the resistor 70 may be provided on the positive electrode side with respect to the third switching element 64.
  • the resistance value of the resistor 70 is large, the voltage applied to the resistor 70 increases (Ohm's law), so the voltage applied to the field winding 68a also increases, and the rotor 68 is It can be magnetized.
  • the resistance value of the resistor 70 is excessively increased, the induced current flowing from the stator 22 to the resistor 70 is decreased (Ohm's law), and the braking torque applied to the engine 10 is considered to be decreased.
  • the resistance value of the resistor 70 is adjusted so that the voltage applied to the field winding 68 a is lower than the voltage of the battery 30. As a result, it becomes possible to apply a larger braking torque to the engine 10 and to magnetize the rotor 68 than when the rotating electrical machine module 20 is in the generator mode.
  • the rotating electrical machine module 20 is assumed to be ISG.
  • the rotating electrical machine module 20 is not limited to the ISG, and may be provided between the rotating shaft of the engine 10 and the transmission, and may be directly driven by the rotating shaft or directly drive the rotating shaft.
  • the alternator 60 according to another example described in [2] may be an alternator in which the rectifier circuit 61 is configured like the drive circuit 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

燃料の燃焼により駆動力を発生するエンジン(10)と、エンジンの駆動力により発電可能な回転電機(21、69)を有する回転電機モジュール(20,60)と、回転電機モジュールにより供給される電力により充電される電源(30)とを備え、エンジンを停止させる制御を実行する停止制御システムであって、エンジンによる燃料の燃焼が停止された後に、回転電機に生じた誘導電流が電源を経由せずに流れる閉回路を形成する停止制御システム。

Description

停止制御システム 関連出願の相互参照
 本出願は、2016年8月23日に出願された日本出願番号2016-162515号と、2017年7月28日に出願された日本出願番号2017-146579号に基づくもので、ここにその記載内容を援用する。
 本開示は、エンジンを停止させる制御を行なう停止制御システムに関する。
 従来、所定の自動停止条件が成立した場合にエンジンを自動停止させる、所謂アイドリングストップ制御が知られている。この制御によれば、エンジンの燃費低減効果の向上を図ることが可能となる。
 しかしながら、所定の自動停止条件が成立したことでエンジンへの燃料供給を停止させても、エンジンは直ちに停止せず、慣性にしたがって空転した後に停止することになる。このため、エンジンへの燃料供給を停止させてからエンジンが完全に停止するまでの時間が長くなることで、吸気ポート内に残留する燃料が減少することで再始動時の初爆が遅くなり、始動性が悪化するなどの問題が生じるおそれがある。
 この対策として、特許文献1では、自動停止条件の成立によりエンジンを自動停止する際に、ハイブリッド車両が備えるモータを発電運転するよう制御する。モータの発電運転によりエンジンに負荷を与えエンジンの回転速度を急速に降下させることができるため、エンジンを迅速に停止することができる。
特許第3909641号公報
 ところで、特許文献1には、エンジンの回転速度が略零になった場合にモータの発電運転を停止する旨が記載されている。しかし、エンジンの回転速度が低下してモータの発電電圧が車両に備わる電源の電圧未満になると、モータの発電運転が実施できないおそれがある。この場合、モータはエンジンに制動トルクを与えることができず、迅速にエンジンを停止することができない。仮にモータの発電運転を実施できたとしても、モータがエンジンに与える制動トルクは小さいものであると考えられ、エンジンが完全に停止するまでの時間が長くなるおそれがある。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、エンジンの停止制御中において、エンジンの回転速度がより低い領域まで、エンジンに制動トルクを付与することが可能な停止制御システムを提供することにある。
 第1の開示は、燃料の燃焼により駆動力を発生するエンジンと、前記エンジンの前記駆動力により発電可能な回転電機を有する回転電機モジュールと、前記回転電機モジュールにより供給される電力により充電される電源とを備え、前記エンジンを停止させる制御を実行する停止制御システムであって、前記エンジンによる前記燃料の燃焼が停止された後に、前記回転電機に生じた誘導電流が前記電源を経由せずに流れる閉回路を形成する。
 エンジンの迅速な停止を実現するために、エンジンによる燃料の燃焼が停止された後、回転電機による発電を実施させ、エンジンに回転電機の制動トルクを付与させる場合がある。回転電機に生じる誘導起電圧の大きさは、エンジンの回転速度に依存している。このため、エンジンの回転速度が低下して回転電機に生じる誘導起電圧が電源の電圧よりも小さくなると、回転電機に生じた誘導電流を電源に流すことができなくなり、回転電機による発電が実施できないおそれがある。この場合、回転電機はエンジンに制動トルクを与えることができず、迅速にエンジンを停止することができない。仮に回転電機の発電を実施できたとしても、回転電機がエンジンに与える制動トルクは小さいものであると考えられ、エンジンが完全に停止するまでの時間が長くなるおそれがある。
 この対策として、本停止制御システムでは、エンジンによる燃料の燃焼が停止された後に、回転電機に生じた誘導電流が電源を経由せずに流れる閉回路が形成される。これにより、エンジンの回転速度が低下して回転電機に生じる誘導起電圧が電源の電圧よりも小さくなっても、回転電機に生じた誘導電流は形成した閉回路内で流れるため、回転電機はエンジンに制動トルクを与えることができる。つまり、エンジンの回転速度がより低い領域まで、エンジンに制動トルクを付与することが可能となるため、エンジンを迅速に停止することができる。また、エンジンの自動停止及び自動再始動を実行するシステムでは、エンジンの迅速な停止に伴い、エンジンの再始動時期を早めることができる。よって、エンジンの再始動性を良好なものとすることができる。
 第2の開示は、第1の開示において、前記回転電機は、界磁巻線と、前記界磁巻線に流れる電流の大きさを調節する電流調節部と、を備え、前記電流調節部は、前記閉回路が形成されている期間中、前記エンジンに付与する前記制動トルクが所定トルクよりも大きくならないように前記界磁巻線に流れる前記電流の大きさを調節する。
 エンジンの回転速度が高い状態で本制御を実施した場合、電源を介さずに閉回路を形成する分、閉回路を形成しない場合と比較してエンジンに付与される制動トルクの大きさはより大きいものとなる。このため、エンジンと回転電機とが例えばベルトなどで駆動連結されている構成において、エンジンの回転速度が高い状態で本制御を実施した場合、エンジンに付与される制動トルクの大きさが過剰に大きくなり、ベルトから異音が生じる所謂「ベルト鳴き」が発生することが考えられる。この対策として、閉回路が形成されている期間中、エンジンに付与する制動トルクが所定トルクよりも大きくならないように界磁巻線に流れる電流の大きさが調節部により調節される。これにより、エンジンに付与される制動トルクの大きさを所定トルクよりも小さく調節することができ、「ベルト鳴き」などの問題が発生することを抑制することができる。
 第3の開示は、第1又は2の開示において、前記回転電機は、電機子巻線と、電機子巻線に流す誘導電流の平均電流の大きさを調節する誘導電流調節部と、を備え、前記誘導電流調節部は、前記閉回路が形成されている期間中、前記エンジンに付与する前記制動トルクが所定トルクよりも大きくならないように前記電機子巻線に流す前記誘導電流の平均電流の大きさを調節する。
 エンジンに付与する制動トルクが所定トルクよりも大きくならないように制御する別の方法として、電機子巻線に流す誘導電流の平均電流の大きさが調節されてもよい。これにより、多相回転電機に生じた誘導電流の大きさを制限でき、ひいてはエンジンに付与される制動トルクが所定トルクよりも大きくなることを抑制することができる。
 第4の開示は、第1乃至3のいずれか1の開示において、前記エンジンによる前記燃料の燃焼が停止された後に、前記エンジンの回転速度が所定回転速度よりも高い場合に前記回転電機により発電を実行させ、前記エンジンの回転速度が前記所定回転速度よりも低い場合に、前記閉回路を形成する。
 閉回路を形成することなく回転電機に充電を実施させた場合、エンジンに付与される制動トルクの大きさは、回転電機に生じる誘導電流の大きさに依存する。エンジンの回転速度が所定回転速度よりも高い状況では、回転電機により供給される電力により電源を充電していても、エンジンに与える制動トルクは十分に大きいものであると考えられる。このため、エンジンの回転速度が所定回転速度よりも高い場合には回転電機に発電を実行させることで、エンジンに制動トルクを付与するとともに、電源を充電することが可能となる。
 一方で、エンジンの回転速度が所定回転速度よりも低い状況では、発電により回転電機に生じる誘導電流の大きさもまた小さく、それに伴って回転電機がエンジンに付与する制動トルクの大きさは微小なものとなると考えられる。したがって、エンジンの回転速度が所定回転速度よりも低い場合には、電源を経由しない閉回路が形成される。これにより、回転電機で生じた誘導電流が小さくなることがなく、ひいては回転電機がエンジンに付与する制動トルクがより小さくなることを抑制することができる。
 第5の開示は、第1乃至4のいずれか1の開示において、所定の自動停止条件が成立することで、前記エンジンを自動停止する自動停止機能を有する車両に適用され、前記自動停止条件が成立し、且つ、前記エンジンによる前記燃料の燃焼が停止された後に、前記閉回路を形成する。
 所定の自動停止条件が成立した場合にエンジンを自動停止させる、自動停止機能を有する車両(例えば、アイドリングストップ車両)では、交差点を曲がる際や渋滞時などで自動停止と再始動が頻発することが考えられる。本停止制御システムを搭載した自動停止車両では、このような状況においてエンジンを迅速に停止することができるとともに、エンジンを早期に再始動することができる。つまり、自動停止車両に対して本停止制御システムを適用することは特に好適であるといえる。
 第6の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、多相回転電機であり、前記多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように開閉動作することが可能な複数の第一スイッチング素子を備え、前記多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように前記第一スイッチング素子を開閉動作させることで、前記閉回路が形成される。
 多相回転電機に本停止制御システムを適用する場合を想定する。この場合、多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように開閉動作することが可能な複数の第一スイッチング素子を多相回転電機内に備えさせる。これにより、エンジンによる燃料の燃焼が停止された後に、多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように第一スイッチング素子を開閉動作させることで、電源を経由しない閉回路が形成することができる。
 第7の開示は、第6の開示において、前記閉回路を形成している期間中、前記エンジンに付与する前記制動トルクが所定トルクよりも大きくならないように前記第一スイッチング素子のデューティ比を調節する。
 エンジンに付与する制動トルクが所定トルクよりも大きくならないように制御する別の方法として、第一スイッチング素子のデューティ比が調節されてもよい。これにより、多相回転電機に生じた誘導電流の大きさを制限でき、ひいてはエンジンに付与される制動トルクが所定トルクよりも大きくなることを抑制することができる。また、第一スイッチング素子に過剰に大きい誘導電流が流れることを抑制することで、第一スイッチング素子の過熱を抑制することができる。
 第8の開示は、第6又は7の開示において、前記エンジンによる前記燃料の燃焼が停止された後、前記多相回転電機の全相が短絡するように複数の前記第一スイッチング素子を開閉動作させる。
 多相回転電機の全相が短絡するように複数の第一スイッチング素子を開閉動作させることで、エンジンに付与される制動トルクの変動を小さくすることができる。
 第9の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、オルタネータであり、発電により生じた前記誘導電流を整流する整流部を備え、前記整流部により整流された前記誘導電流が前記電源に流れるように構成された停止制御システムであって、前記電源と前記整流部との間を開閉する第二スイッチング素子と、前記第二スイッチング素子と前記整流部との間に、前記電源を迂回して前記整流部の正極側と負極側とを接続する接続経路と、を備え、前記接続経路は、前記接続経路を開閉する第三スイッチング素子を備え、前記第三スイッチング素子を閉動作させることで前記閉回路を形成し、前記閉回路を形成した際に前記第二スイッチング素子を開動作させる。
 上記構成の停止制御システムでは、第三スイッチング素子を閉動作させることで、オルタネータに生じた誘導電流が電源を経由することなく接続経路に流れる閉回路を形成することができる。ただし、この状態では、電源から流れる電流もまた接続経路に流れることになる。このため、第三スイッチング素子を閉動作させることで閉回路を形成した際には、第二スイッチング素子を開動作させる。これにより、電源から接続経路への電流の流入を遮断することができる。
 第10の開示は、第9の開示において、前記整流部と前記接続経路と前記オルタネータの界磁巻線とが、前記電源に並列に接続されており、前記接続経路は、抵抗体を備える。
 整流部と接続経路とオルタネータの界磁巻線とが、電源に並列に接続されている。この場合、界磁巻線に印加される電圧の大きさと接続経路に印加される電圧の大きさとが同じとなるため、接続経路に抵抗体が備わっていない構成の場合、界磁巻線に十分な電圧を印加できず、界磁巻線に十分な電流を流せないおそれがある。これに備え、接続経路に抵抗体を備えることで、界磁巻線に印加される電圧を大きくすることができ、界磁巻線に十分な電流を流すことができるため、エンジンの制動トルクを十分に大きくすることが可能となる。
 第11の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開く、又は、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる。
 回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備えている。この場合、第一系統及び第二系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開くことで、各系統においてそれぞれ閉回路を形成することができる。これにより、各系統においてエンジンに制動トルクを与えることができ、1系統あたりの熱負荷(各スイッチング素子にかかる熱負荷)を軽減することができる。また、第一系統及び第二系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じた場合も、同様の作用効果を奏することができる。
 第12の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開く第一状態と、前記高電圧側の3つのスイッチング素子を開き且つ前記低電圧側の3つのスイッチング素子を閉じる第二状態とを、交互に切り替える。
 回転電機モジュールは、三相電機子巻線と、三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備えている。この場合、第一状態として、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開くことで、閉回路を形成することができる。第二状態として、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じることで、閉回路を形成することができる。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えるため、高電圧側の3つのスイッチング素子と低電圧側の3つのスイッチング素子とに、熱負荷を分散させることができる。
 第13の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開く第一状態と、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる第二状態とを、交互に切り替える。
 回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備えている。この場合、第一状態として、第一系統及び第二系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開くことで、各系統においてそれぞれ閉回路を形成することができる。また、第二状態として、第一系統及び第二系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じることで、各系統においてそれぞれ閉回路を形成することができる。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えるため、各系統の高電圧側の3つのスイッチング素子と各系統の低電圧側の3つのスイッチング素子とに、熱負荷を分散させることができる。
 第14の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開き、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開く第二状態とを、交互に切り替える。
 回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備えている。この場合、第一状態として、第一系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開くことで、第一系統の高電圧側において閉回路を形成することができる。また、第二状態として、第二系統において、6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開くことで、第二系統の高電圧側において閉回路を形成することができる。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えるため、第一系統の高電圧側の3つのスイッチング素子と第二系統の高電圧側の3つのスイッチング素子とに、熱負荷を分散させることができる。
 第15の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じ、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる第二状態とを、交互に切り替える。
 第15の開示では、第14の開示に準じて、第一系統の低電圧側の3つのスイッチング素子と第二系統の低電圧側の3つのスイッチング素子とに、熱負荷を分散させることができる。
 第16の開示は、第12乃至15のいずれか1の開示において、前記エンジンの回転速度が周期的に極大値と極小値とになる際に、前記回転速度が前記極小値となる時期に前記第一状態と前記第二状態とを切り替える。
 上記第一状態と第二状態とを切り替える際に、例えば高電圧側のスイッチング素子と低電圧側のスイッチング素子との短絡を防止するためのデッドタイムを設けると、閉回路が形成されない期間が生じる。閉回路が形成されない期間は、エンジンに制動トルクを与えることができない。ところで、エンジンの回転速度は、周期的に極大値と極小値とになる。そして、エンジンの回転速度が極小値となる時期では、回転電機によりエンジンに与える制動トルクが相対的に小さくなる。この点、エンジンの回転速度が極小値となる時期に第一状態と第二状態とを切り替えるため、エンジンに制動トルクを与えることができなくなる影響を抑制しつつ、第一状態と第二状態とを切り替えることができる。また、エンジンの回転速度が0になる時期に、第一状態と第二状態とを切り替えても、同様の作用効果を奏することができる。
 第17の開示は、第1乃至5のいずれか1の開示において、前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、三相電機子巻線と、前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子と、を備え、前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開き、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を閉じ且つ低電圧側の3つのスイッチング素子を開く第二状態と、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じ、且つ前記第二系統において前記6つのスイッチング素子を開く第三状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる第四状態とを、所定の順序で切り替える。
 第17の開示では、第一状態で通電する第一系統の高電圧側の3つのスイッチング素子と、第二状態で通電する第二系統の高電圧側の3つのスイッチング素子と、第三状態で通電する第一系統の低電圧側の3つのスイッチング素子と、第四状態で通電する第二系統の低電圧側の3つのスイッチング素子とに、熱負荷を分散させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本実施形態に係る制御システムの概略構成図であり、 図2は、図1に記載の回転電機周辺の概略的な回路図であり、 図3は、本実施形態に係る回転電機が実施可能なモードを示した図であり、 図4は、エンジンを停止する際に回転電機に発電機モードを実施させた場合のパラメータの変化態様を示した図であり、 図5は、エンジンを停止する際に回転電機にブレーキモードを実施させた場合のパラメータの変化態様を示した図であり、 図6は、図2に記載の回路図においてバッテリを経由しない閉回路を形成する場合の制御を示した回路図であり、 図7は、本実施形態に係る停止制御がもたらす効果を示した図であり、 図8は、図6に記載の閉回路を形成する場合の制御の別例を示した回路図であり、 図9は、別例に係る回転電機周辺の概略的な回路図であり、 図10は、別例に係る回転電機周辺の概略的な回路図であり、 図11は、2系統において閉回路を形成する場合の制御を示した回路図であり、 図12は、2系統において閉回路を形成する場合の制御の別例を示した回路図であり、 図13は、2系統のうち1系統において閉回路を形成する場合の制御を示した回路図であり、 図14は、2系統のうち1系統において閉回路を形成する場合の制御の別例を示した回路図であり、 図15は、2系統のうち1系統において閉回路を形成する場合の制御の別例を示した回路図であり、 図16は、2系統のうち1系統において閉回路を形成する場合の制御の別例を示した回路図である。
 以下、本開示を具体化した本実施形態を図面に基づいて説明する。本実施形態に係る停止制御システムは、走行駆動源としてのエンジン10を備える車両に搭載されるものである。図1において、エンジン10は、ガソリンや軽油等の燃料の燃焼により駆動される多気筒内燃機関であり、周知のとおり燃料噴射弁50や点火装置等を備えている。
 エンジン10の回転軸(図示略)には、プーリ及びベルトを含んで構成される動力伝達部16を介して、回転電機モジュール20が動力を伝達可能に接続されている。回転電機モジュール20は、主にエンジン10へ駆動力を供給する際には電動機として駆動したり、エンジン10の駆動力を電力に変換する際には発電機として駆動したりする。
 回転電機モジュール20の構成を、図2を参照して説明する。本実施形態において、回転電機モジュール20は、ISG(Integrated Starter Generator)を想定している。回転電機モジュール20は、発電電動機21と、駆動回路25と、回転電機制御部27と、を備えている。発電電動機21は、駆動回路25を介して、バッテリ(電源に該当)30に接続されている。
 発電電動機21は三相交流の電動発電機であり、発電電動機21は、三相の電機子巻線22a~22cを含んで構成される固定子22と、界磁巻線23aを含んで構成される回転子23と、を備える構成を有している。発電電動機21には、さらに調節部(電流調節部に該当)24が備わっており、回転電機制御部27の指令に基づいて調節部24は回転子23が備える界磁巻線23aに流す励磁電流の大きさを調節する。
 駆動回路25は、スイッチング素子であるMOSFET(第一スイッチング素子に該当)を複数備えるインバータ回路である。具体的には、駆動回路25は、MOSFET25a~25fを備えている。MOSFET25a,25bの接続点には、固定子22のU相の電機子巻線22aの一端が接続されている。MOSFET25c,dの接続点には、固定子22のV相の電機子巻線22bの一端が接続されている。MOSFET25e,25fの接続点には、固定子22のW相の電機子巻線22cの一端が接続されている。電機子巻線22aの他端、電機子巻線22bの他端、及び電機子巻線22cの他端は互いに中性点で接続されている。駆動回路25には、更にスイッチ制御部26が備わっており、回転電機制御部27の指令に基づいて、スイッチ制御部26は各MOSFET25a~25fの開閉動作を制御する。
 回転電機制御部27は、回転電機ECUを想定しており、CPU、ROM、RAM、入出力インターフェース等を含むマイコンとして構成されている。回転電機制御部27は、界磁巻線23aに流す励磁電流を調節部24に調節させる。これにより、回転電機モジュール20に生じる発電電圧を調節する。また、回転電機制御部27は、駆動回路25を構成するMOSFET25a~25fの開閉動作をスイッチ制御部26に制御させる。
 図1の説明に戻る。本システムでは、システム全体を統括する主制御装置としてエンジンECU40を備えている。エンジンECU40は、マイクロコンピュータ等を備えてなる周知の電子制御装置である。
 エンジンECU40は、回転電機モジュール20が備える回転電機制御部27と電気的に接続されており(図2参照)、回転電機制御部27を介して回転電機モジュール20を制御する役割を担っている。本実施形態に係る回転電機モジュール20は、図3に記載されるように、待機モード・発電機モード・電動機モード・ブレーキモードの4つの機能を有している。回転電機モジュール20に待機モードを実施させる場合、回転電機制御部27を介してスイッチ制御部26にMOSFET25a~25fが全て開状態となるように制御させる。回転電機モジュール20に電動機モードを実施させる場合には、回転電機制御部27を介してスイッチ制御部26にMOSFET25a~25fの開閉動作を制御させることで、バッテリ30から供給される直流電力を三相の電力へと変換し、三相の電力を固定子22へと供給する。また、回転電機モジュール20に発電機モードを実施させる場合には、回転電機制御部27を介してスイッチ制御部26にMOSFET25a~25fの開閉動作を制御させることで、固定子22に生じた誘導電流をバッテリ30に流し、バッテリ30を充電する。ブレーキモードについては後述する。
 センサ類としては、アクセル操作部材としてのアクセルペダル41の踏み込み操作量(以降、アクセル操作量と呼称)を検出するアクセルセンサ42、ブレーキペダル43の踏み込み操作量(以降、ブレーキ操作量と呼称)を検出するブレーキセンサ44、エンジン10の回転軸の回転速度を検出する回転速度センサ45等が設けられている。これらのセンサからの検出信号はエンジンECU40に逐次入力される。なお、本システムにはこれらのセンサ以外のセンサも設けられているが、図示は省略している。
 エンジンECU40は、各センサの検出結果等に基づいて、燃料噴射弁50による燃料噴射量制御及び点火装置による点火制御などの制御を実施する。
 また、エンジンECU40は、車両走行中において所定の自動停止条件を満たした場合にエンジン10の自動停止を実施させるアイドリングストップ制御を実施する。そして、燃料噴射弁50によるエンジン10への燃料供給を停止(以降、燃料カットと呼称)している期間中(自動停止過程)又はエンジン10の自動停止が実施された状態であり、且つ所定の再始動条件を満たした場合に、エンジン10を自動で再始動させる。なお、自動停止条件としては、例えば車速が所定以下であること、アクセルセンサ42により検出されるアクセル操作量がゼロであること(又はブレーキセンサ44により検出されるブレーキ操作量が第一所定量よりも多いこと)等が含まれる。また、エンジン再始動条件としては、例えばアクセルセンサ42により検出されるアクセル操作量が第二所定量よりも多いこと、ブレーキセンサ44により検出されるブレーキ操作量がゼロであること等が含まれる。
 従来のアイドリングストップ制御では、図4に記載されるように、所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20による発電を実施させ、エンジン10に回転電機モジュール20の制動トルクを付与させていた(時間t1参照)。この場合、エンジン10に付与する回転電機モジュール20の制動トルクの大きさは、固定子22に流れる誘導電流の大きさに依存することになる。固定子22に流れる誘導電流の大きさは、固定子22に生じる誘導起電圧の大きさに依存しており、固定子22に生じる誘導起電圧の大きさは、エンジン10の回転速度の高さに依存している。
 このため、固定子22で生じた誘導起電圧がバッテリ30の電圧よりも小さい場合には、回転電機モジュール20に生じた誘導電流をバッテリ30に流すことができなくなり、回転電機モジュール20は発電を実施することができないことになる。したがって、固定子22で生じた誘導起電圧がバッテリ30の電圧よりも小さくなる回転速度としての閾値よりもエンジン10の回転速度が下回った場合には、回転電機モジュール20に待機モードを実施させる(時間t2参照)。これにより、エンジン10の回転速度が閾値よりも低い状態となって以降は、エンジン10に回転電機モジュール20の制動トルクを付与することができず(時間t2-t3参照)、エンジン10が完全に停止するまでの時間が長くなるおそれがある。
 この対策として、図3に記載されるように、エンジン10をより迅速に停止させるための機能として、回転電機モジュール20にブレーキモードを設けている。このブレーキモードは、図5に記載されるように、所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた際に実施される(時間t10参照)。
 回転電機モジュール20にブレーキモードを実施させる場合、図6に記載されるように、MOSFET25a,25c,25e(上側アームのMOSFET)を閉状態に制御し、MOSFET25b,25d,25f(下側アームのMOSFET)を開状態に制御することで、固定子22が有する全相を短絡させる。これにより、固定子22に生じた誘導電流がバッテリ30を経由しないで流れる閉回路が駆動回路25内に形成される。この状態で回転電機モジュール20による発電を実施させることで、発電により固定子22に生じた誘導電流は閉回路内を流れることとなる。したがって、回転電機モジュール20にブレーキモードを実施させた場合のエンジン10に付与する回転電機モジュール20の制動トルクの大きさは、閉回路において固定子22に流れる誘導電流の大きさに依存することになる。このため、回転電機モジュール20にブレーキモードを実施させた場合にエンジン10に付与される制動トルクの大きさ(図5参照)は、回転電機モジュール20を発電機モードを実施させた場合にエンジン10に付与される制動トルクの大きさ(図4参照)よりも大きくなる。
 ただし、エンジン10の回転速度が高い状態で回転電機モジュール20にブレーキモードを実施させた場合、固定子22から閉回路に流れる誘導電流が過剰に大きくなり、それに伴ってエンジン10に付与する回転電機モジュール20の制動トルクが過剰に大きくなるおそれがある。この場合、動力伝達部16を構成するベルトから異音が生じる所謂「ベルト鳴き」が発生することが考えられる。この対策として、閉回路が形成されている期間中、エンジン10に付与する制動トルクが所定トルクよりも大きくならないように、調節部24に回転子23が備える界磁巻線23aに流す励磁電流の大きさを調節させる。これにより、エンジン10に付与される制動トルクの大きさを所定トルクよりも小さく調節することができ、「ベルト鳴き」などの問題が発生することを抑制することができる。
 一方で、図5に記載されるように、エンジン10の回転速度が閾値よりも低い状態であっても、エンジン10に回転電機モジュール20の制動トルクを付与することができる(時間t11-t14参照)。このとき、エンジン10が停止する際に発生する揺り戻し時にエンジン10が逆回転した場合でも、エンジン10に回転電機モジュール20の制動トルクを付与することができる(時間t12-t13参照)。
 上記構成により、本実施形態は、以下の効果を奏する。
 ・所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20にブレーキモードを実施させることで、固定子22に生じた誘導電流がバッテリ30を経由しないで流れる閉回路が形成される。これにより、エンジン10の回転速度が低下して固定子22に生じた誘導起電圧の大きさがバッテリ30の電圧よりも小さくなっても、回転電機モジュール20に生じた誘導電流は形成した閉回路内で流れるため、回転電機モジュール20はエンジン10に制動トルクを与えることができる。つまり、エンジン10の回転速度がより低い領域まで、エンジン10に制動トルクを付与することが可能となるため、エンジン10を迅速に停止することができる。
 実際に、所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20にブレーキモードを実施させた場合の結果が図7に示されている。図7は、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20に発電機モードを実施させた場合のエンジン10の回転速度の変化態様と、回転電機モジュール20にブレーキモードを実施させた場合のエンジン10の回転速度の変化態様と、を示している。図7によれば、回転電機モジュール20に発電機モードを実施させた場合よりも、回転電機モジュール20にブレーキモードを実施させた場合の方がエンジン10の回転速度の減少度合いが大きいことから、回転電機モジュール20にブレーキモードを実施させた場合の方がエンジン10に付与される制動トルクが大きいことが分かる。また、回転電機モジュール20にブレーキモードを実施させた場合の方が、エンジン10が停止する際に発生する揺り戻しを小さく留め、且つ早期に収めることが出来ていることが分かる。このことから、回転電機モジュール20にブレーキモードを実施させた場合には、エンジン10の逆回転時にも制動トルクが付与されていることが示唆される。以上を要因とし、回転電機モジュール20にブレーキモードを実施させた場合の方が、回転電機モジュール20に発電機モードを実施させた場合よりも早期にエンジン10を停止させることができた。
 一方で、エンジン10の迅速な停止に伴い、エンジン10の再始動時期を早めることができる。よって、エンジン10の再始動性を良好なものとすることができる。
 ・従来の回転電機モジュールは、エンジン10に対して制動力を付与する場合、回転子の回転角を検出し、回転子の回転角に応じて固定子の電機子巻線の適切な相に通電する必要がある。特にエンジン10の逆回転を含む場合、逆回転した瞬間にトルクを付与する向きも反転させる必要があり複雑な制御が必要となるが、本実施形態ではより簡便な制御で類似の効果を得ることが可能である。
 ・固定子22が有する全相が短絡するようにMOSFET25a~25fを開閉動作させることで、固定子22に生じた誘導電流がバッテリ30を経由しないで流れる閉回路が形成することができる。
 ・回転電機モジュール20の全相が短絡するようにMOSFET25a~25fを開閉動作させることで、エンジン10に付与される制動トルクの変動を小さくすることができる。
 上記実施形態の記載内容に限定されず、本開示の趣旨を逸脱しない範囲内で変更して実施してもよい。例えば以下のように変更してもよい。ちなみに、以下の別例の構成を、上記実施の形態の構成に対して、個別に適用してもよく、組み合わせて適用してもよい。
 ・上記実施形態において、駆動回路25にはMOSFET25a~25fが備わっていた。このことについて、MOSFETに代わり、IGBTやパワートランジスタ、サイリスタ、トライアックなどを用いてもよい。
 ・上記実施形態において、発電電動機21は三相交流の電動発電機であった。このことについて、三相交流の電動発電機に限らず、単相交流の電動発電機であってもよいし、複相交流の電動発電機でもよい。
 ・上記実施形態において、回転子23は界磁巻線23aを含んで構成されていた。このことについて、回転子23は界磁巻線23aの代わりに界磁用の永久磁石を含んで構成されてもよい。この場合、発電電動機21は埋め込み磁石同期機(IPMSM)や表面磁石同期機(SPMSM)等となる。
 ・上記実施形態では、車両走行中において所定の自動停止条件を満たした場合にアイドリングストップ制御を実施し、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20にブレーキモードを実施させていた。このことについて、アイドリングストップ制御を実施した場合に限って回転電機モジュール20にブレーキモードを実施させる必要はなく、アイドリングストップ制御以外の自動停止制御を実施した場合に回転電機モジュール20にブレーキモードを実施させてもよい。アイドリングストップ制御以外の自動停止制御の例としては、車速に関わらずアクセル操作量が0になった場合にエンジン10を自動停止させるものなどが挙げられる。あるいは、回転電機モジュール20にブレーキモードを実施させるための条件を自動停止制御の実施に限る必要はなく、例えば、ドライバがキーオフ操作することでエンジン10に停止するよう指令した場合に回転電機モジュール20にブレーキモードを実施させてもよい。
 ・上記実施形態では、固定子22が有する全相を短絡させることで、固定子22に生じた誘導電流がバッテリ30を経由しないで流れる閉回路を駆動回路25内に形成していた。このことについて、例えば、MOSFET25c,25eを閉状態とし、それ以外のMOSFET25a,25b,25d,25fを開状態とすることで、固定子22が有する相のうちV相とW相同士を短絡させる。これにより、固定子22に生じた誘導電流がバッテリ30を経由しないで流れる閉回路を形成してもよい。
 ・上記実施形態では、上側アームのMOSFET25a,25c,25eを全て閉状態に制御し、下側アームのMOSFET25b,25d,25fを全て開状態に制御することで、固定子22が有する全相を短絡させていた。このことについて、図8に記載されるように、上側アームのMOSFET25a,25c,25eを全て開状態に制御し、下側アームのMOSFET25b,25d,25fを全て閉状態に制御することで、固定子22が有する全相を短絡させてもよい。
 ・図6,8では、回転電機モジュール20は、電機子巻線22a,22b,22c(三相電機子巻線)と、電機子巻線22a,22b,22cに三相ブリッジ接続されたMOSFET25a~25f(スイッチング素子)と、を備えている。ここで、図6に示すように、第一状態として、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25e(高電圧側の3つのスイッチング素子)を閉じ、且つ下側アームのMOSFET25b,25d,25f(低電圧側の3つのスイッチング素子)を開くことで、閉回路を形成することができる。また、図8に示すように、第二状態として、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25eを開き、且つ下側アームのMOSFET25b,25d,25fを閉じることで、閉回路を形成することができる。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えてもよい。これにより、MOSFET25a,25c,25eとMOSFET25b,25d,25fとに、熱負荷を分散させることができる。
 ・図11では、回転電機モジュール20は、駆動回路25A及び固定子22A(第一系統)並びに駆動回路25B及び固定子22B(第二系統)においてそれぞれ、電機子巻線22a,22b,22c(三相電機子巻線)と、電機子巻線22a,22b,22cに三相ブリッジ接続されたMOSFET25a~25fと、を備えている。この場合、第一系統及び第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25e(高電圧側の3つのスイッチング素子)を閉じ、且つ下側アームのMOSFET25b,25d,25f(低電圧側の3つのスイッチング素子)を開くことで、各系統においてそれぞれ閉回路を形成することができる。これにより、各系統においてエンジン10に制動トルクを与えることができ、1系統あたりの熱負荷(各MOSFET25a~25fにかかる熱負荷)を軽減することができる。また、第一系統及び第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25eを開き、且つ下側アームのMOSFET25b,25d,25fを閉じた場合も、同様の作用効果を奏することができる。
 ・図11に示すように、第一状態として、第一系統及び第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25e(高電圧側の3つのスイッチング素子)を閉じ、且つ下側アームのMOSFET25b,25d,25f(低電圧側の3つのスイッチング素子)を開くことで、各系統においてそれぞれ閉回路を形成することができる。また、図12に示すように、第二状態として、第一系統及び第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25eを開き、且つ下側アームのMOSFET25b,25d,25fを閉じることで、各系統においてそれぞれ閉回路を形成することができる。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えることにより、各系統のMOSFET25a,25c,25eと各系統のMOSFET25b,25d,25fとに、熱負荷を分散させることができる。
 ・図13に示すように、第一状態として、第一系統(駆動回路25A及び固定子22A)において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25e(高電圧側の3つのスイッチング素子)を閉じ、且つ下側アームのMOSFET25b,25d,25f(低電圧側の3つのスイッチング素子)を開くことで、第一系統の高電圧側において閉回路を形成することができる。このとき、第二系統(駆動回路25B及び固定子22B)において、MOSFET25a~25fを開く。また、図14に示すように、第二状態として、第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25eを閉じ、且つ下側アームのMOSFET25b,25d,25fを開くことで、第二系統の高電圧側において閉回路を形成することができる。このとき、第一系統において、MOSFET25a~25fを開く。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えることにより、第一系統のMOSFET25a,25c,25eと第二系統のMOSFET25a,25c,25eとに、熱負荷を分散させることができる。
 ・図15に示すように、第一状態として、第一系統(駆動回路25A及び固定子22A)において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25e(高電圧側の3つのスイッチング素子)を開き、且つ下側アームのMOSFET25b,25d,25f(低電圧側の3つのスイッチング素子)を閉じることで、第一系統の低電圧側において閉回路を形成することができる。このとき、第二系統(駆動回路25B及び固定子22B)において、MOSFET25a~25fを開く。また、図16に示すように、第二状態として、第二系統において、MOSFET25a~25fのうち上側アームのMOSFET25a,25c,25eを開き、且つ下側アームのMOSFET25b,25d,25fを閉じることで、第二系統の低電圧側において閉回路を形成することができる。このとき、第一系統において、MOSFET25a~25fを開く。そして、閉回路を形成する際に、第一状態と第二状態とを交互に切り替えることにより、第一系統のMOSFET25b,25d,25fと第二系統のMOSFET25b,25d,25fとに、熱負荷を分散させることができる。
 ・上記の各例において、第一状態と第二状態とを切り替える際に、例えば上側アームのMOSFET25a,25c,25e(高電圧側のスイッチング素子)と下側アームのMOSFET25b,25d,25f(低電圧側のスイッチング素子)との短絡を防止するためのデッドタイムを設けると、閉回路が形成されない期間が生じる。デッドタイムとは、例えばMOSFET25aとMOSFET25bとが短絡しないように、MOSFET25a,25bを共に開いた状態にする時間である。閉回路が形成されない期間は、エンジン10に制動トルクを与えることができない。
 ところで、エンジン10の回転速度は、図4,5,7に示すように、周期的に極大値と極小値とになる。そして、例えば図5の時間t11のように、エンジン10の回転速度が極小値となる時期では、発電電動機21(回転電機)によりエンジン10に与える制動トルクが相対的に小さくなる。この点、エンジン10の回転速度が極小値となる時期に第一状態と第二状態とを切り替えることにより、エンジン10に制動トルクを与えることができなくなる影響を抑制しつつ、第一状態と第二状態とを切り替えることができる。また、エンジン10の回転速度が0になる時期は、発電電動機21によりエンジン10に与える制動トルクが最も小さくなる。このため、エンジン10の回転速度が0になる時期に、第一状態と第二状態とを切り替えても、同様の作用効果を奏することができる。
 ・閉回路を形成する際に、図13~16に示す各状態(第一~第四状態)を、所定の順序で切り替えてもよい。所定の順序は、任意であるが、図13の状態と図15の状態との切り替え、及び図14の状態と図16の状態との切り替えを含まない順序であれば、デッドタイムを設ける必要がなく、発電電動機21によりエンジン10に効率的に制動トルクを与えることができる。上記制御によれば、第一系統(駆動回路25A及び固定子22A)のMOSFET25a,25c,25eと、第二系統(駆動回路25B及び固定子22B)のMOSFET25a,25c,25eと、第一系統のMOSFET25b,25d,25fと、第二系統のMOSFET25b,25d,25fとに、熱負荷を分散させることができる。
 ・上記実施形態では、所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた際に、回転電機モジュール20にブレーキモードを実施させていた。このことについて、所定の自動停止条件が成立したことで燃料カットを実施させ、エンジン10による燃料の燃焼を停止させた後、エンジン10の回転速度が所定回転速度よりも高い場合には、回転電機モジュール20に発電機モードを実施させ、エンジン10の回転速度が所定回転速度よりも低い場合には、回転電機モジュール20にブレーキモードを実施させてもよい。なお、所定回転速度は、図4,5の上記閾値よりも高い回転速度に設定される。
 閉回路を形成することなく回転電機モジュール20に充電を実施させた場合、エンジン10に付与される制動トルクの大きさは、固定子22に流れる誘導電流の大きさに依存する。エンジン10の回転速度が所定回転速度よりも高い状況では、固定子22により供給される電力によりバッテリ30を充電していても、エンジン10に与える制動トルクは十分に大きいものであると考えられる。このため、エンジン10の回転速度が所定回転速度よりも高い場合には回転電機モジュール20に発電機モードを実行させることで、エンジン10に制動トルクを付与するとともに、バッテリ30を充電することが可能となる。
 一方で、エンジン10の回転速度が所定回転速度よりも低い状況では、発電により固定子22に生じる誘導起電圧もまた小さく、固定子22に十分な誘導電流を流すことができず、回転電機モジュール20がエンジン10に制動トルクを付与することができないことが考えられる。又は、回転電機モジュール20がエンジン10に制動トルクを付与することができても、その大きさは微小なものとなると考えられる。したがって、エンジン10の回転速度が所定回転速度よりも低い場合には、回転電機モジュール20にブレーキモードを実施させる。これにより、固定子22で生じた誘導電流が小さくなることがなく、ひいては回転電機モジュール20がエンジン10に付与する制動トルクがより小さくなることを抑制することができる。
 [1]上記実施形態では、閉回路が形成されている期間中、エンジン10に付与する制動トルクが所定トルクよりも大きくならないように、調節部24に回転子23が備える界磁巻線23aに流す励磁電流の大きさを調節させていた。このことについて、閉回路が形成されている期間中、エンジン10に付与する制動トルクが所定トルクよりも大きくならないように、MOSFET25a,25c,25eのそれぞれについて、開閉動作の周期に対する閉動作の時間の比(デューティ比)が調節される。これにより、固定子22に生じた誘導電流の大きさを制限でき、ひいてはエンジン10に付与される制動トルクが所定トルクよりも大きくなることを抑制することができる。また、MOSFET25a,25c,25eに過剰に大きい誘導電流が流れることを抑制することで、MOSFET25a,25c,25eの過熱を抑制することができる。
 ・エンジン10に付与する制動トルクが所定トルクよりも大きくならないようにするための制御について、上記実施形態及び[1]に記載の別例を独立して実施する必要はなく、組み合わせて実行してもよい。
 ・上記実施形態では、固定子22は三相の電機子巻線22a~22cが含んで構成され、回転子23は界磁巻線23aが含んで構成されていた。このことについて、固定子22は界磁巻線が含んで構成され、回転子23は三相の電機子巻線が含んで構成されてもよい。この場合、閉回路が形成されている期間中、エンジン10に付与する制動トルクが所定トルクよりも大きくならないように、回転子23が備える三相の電機子巻線に流れる誘導電流の大きさが制限される。なお、その具体的な方法は、[1]に記載の方法に準じるため、説明を省略する。
 ・エンジン10に付与する制動トルクが所定トルクよりも大きくならないようにするための制御を省略してもよい。すなわち、エンジン10に付与する制動トルクが最大となるように、界磁巻線23aに流す励磁電流の大きさや、MOSFET25a,25c,25eの閉動作のューティ比を調節してもよい。
 [2]上記実施形態において、回転電機モジュール20はISGを想定していた。このことについて、ISGに限る必要はなく、発電機であるオルタネータ60であってもよい。オルタネータ60である場合の構成が図9に記載されている。本別例において、整流回路61はダイオードを備える3相全波整流器である。また、バッテリ30と整流回路61との間を開閉するMOSFETなどの第二スイッチング素子62が備わっている。また、第二スイッチング素子62と整流回路61との間には、バッテリ30を迂回して整流回路61の正極側と負極側とを接続する接続経路63が分岐しており、接続経路63には、接続経路63を開閉する第三スイッチング素子64が備わっている。本別例に係る停止制御システムでは、エンジンECU66の指令に基づいてスイッチ制御部65が第二スイッチング素子62及び第三スイッチング素子64の開閉制御を行なう。
 本別例に係る停止制御システムでは、第三スイッチング素子64を閉動作させることで、回転電機60に備わる固定子67に生じた誘導電流がバッテリ30を経由することなく接続経路63に流れる閉回路を形成することができる。ただし、この状態では、バッテリ30から流れる電流もまた接続経路63に流れることになる。これを防ぐため、第三スイッチング素子64を閉動作させることで閉回路を形成した際には、第二スイッチング素子62を開動作させる。これにより、バッテリ30から接続経路63への電流の流入を遮断することができる。かかる構成によっても、上記実施形態と同様の作用・効果が奏される。
 ・[2]に係る別例では、整流回路61と接続経路63と回転電機60に備わる回転子68とが、バッテリ30に並列接続されている。この回路において、第三スイッチング素子64を閉動作させることで閉回路を形成するとともに、第二スイッチング素子62を開動作させた場合、回転子68に備わる界磁巻線68aに印加される電圧の大きさと接続経路63に印加される電圧の大きさは同じとなる。このとき、接続経路63に第三スイッチング素子64が備わるのみであるため、界磁巻線68aに十分な電圧を印加できず、界磁巻線68aに十分な電流が流せないおそれがある。ひいては、回転子68を磁化できないおそれがある。
 この対策として、図10に記載されるように、接続経路63において、第三スイッチング素子64よりも負極側に抵抗体70を設けている。なお、接続経路63において、第三スイッチング素子64よりも正極側に抵抗体70を設けてもよい。このとき、抵抗体70の抵抗値が大きいと、抵抗体70に印加される電圧が高くなる(オームの法則)ため、界磁巻線68aに印加される電圧もまた高くなり、回転子68を磁化させることが可能となる。ただし、抵抗体70の抵抗値を大きくし過ぎると、固定子22から抵抗体70に流れる誘導電流が小さくなり(オームの法則)、エンジン10に付与される制動トルクが小さくなることが考えられる。したがって、閉回路を形成した際に、界磁巻線68aに印加される電圧の高さがバッテリ30の電圧よりも低くなるように抵抗体70の抵抗値が調整される。これにより、回転電機モジュール20に発電機モードを実施させた場合よりも大きな制動トルクをエンジン10に付与させ、且つ、回転子68を磁化させることが可能となる。
 ・上記実施形態において、回転電機モジュール20はISGを想定していた。このことについて、回転電機モジュール20は、ISGに限らず、エンジン10の回転軸と変速機との間に設けられ、回転軸によって直接駆動され又回転軸を直接駆動するものであってもよい。また、[2]に記載の別例に係るオルタネータ60について、整流回路61が駆動回路25の様に構成されたオルタネータであってもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (17)

  1.  燃料の燃焼により駆動力を発生するエンジン(10)と、前記エンジンの前記駆動力により発電可能な回転電機(21、69)を有する回転電機モジュール(20,60)と、前記回転電機モジュールにより供給される電力により充電される電源(30)とを備え、前記エンジンを停止させる制御を実行する停止制御システムであって、
     前記エンジンによる前記燃料の燃焼が停止された後に、前記回転電機に生じた誘導電流が前記電源を経由せずに流れる閉回路を形成する停止制御システム。
  2.  前記回転電機は、
     界磁巻線(23a、68a)と、
     前記界磁巻線に流れる電流の大きさを調節する電流調節部(24)と、
    を備え、
     前記電流調節部は、前記閉回路が形成されている期間中、前記エンジンに付与する制動トルクが所定トルクよりも大きくならないように前記界磁巻線に流れる前記電流の大きさを調節する請求項1に記載の停止制御システム。
  3.  前記回転電機(21)は、
     電機子巻線(22a,22b,22c)と、
     前記電機子巻線に流す誘導電流の平均電流の大きさを調節する誘導電流調節部(26)と、
    を備え、
     前記誘導電流調節部は、前記閉回路が形成されている期間中、前記エンジンに付与する制動トルクが所定トルクよりも大きくならないように前記電機子巻線に流す前記誘導電流の前記平均電流の大きさを調節する請求項1又は2に記載の停止制御システム。
  4.  前記エンジンによる前記燃料の燃焼が停止された後に、前記エンジンの回転速度が所定回転速度よりも高い場合に前記回転電機により発電を実行させ、前記エンジンの回転速度が前記所定回転速度よりも低い場合に、前記閉回路を形成する請求項1乃至3のいずれか1項に記載の停止制御システム。
  5.  所定の自動停止条件が成立することで、前記エンジンを自動停止する自動停止機能を有する車両に適用され、
     前記自動停止条件が成立し、且つ、前記エンジンによる前記燃料の燃焼が停止された後に、前記閉回路を形成する請求項1乃至4のいずれか1項に記載の停止制御システム。
  6.  前記回転電機モジュールは、多相回転電機(20)であり、
     前記多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように開閉動作することが可能な複数の第一スイッチング素子(25a~25f)を備え、
     前記多相回転電機が有する複数の相のうち少なくとも一部の相同士が短絡するように前記第一スイッチング素子を開閉動作させることで、前記閉回路が形成される請求項1乃至5のいずれか1項に記載の停止制御システム。
  7.  前記閉回路を形成している期間中、前記エンジンに付与する制動トルクが所定トルクよりも大きくならないように前記第一スイッチング素子のデューティ比を調節する請求項6に記載の停止制御システム。
  8.  前記エンジンによる前記燃料の燃焼が停止された後、前記多相回転電機の全相が短絡するように複数の前記第一スイッチング素子を開閉動作させる請求項6又は7に記載の停止制御システム。
  9.  前記回転電機モジュール(60)は、オルタネータであり、
     発電により生じた前記誘導電流を整流する整流部(61)を備え、
     前記整流部により整流された前記誘導電流が前記電源に流れるように構成された停止制御システムであって、
     前記電源と前記整流部との間を開閉する第二スイッチング素子(62)と、
     前記第二スイッチング素子と前記整流部との間に、前記電源を迂回して前記整流部の正極側と負極側とを接続する接続経路(63)と、
    を備え、
     前記接続経路は、前記接続経路を開閉する第三スイッチング素子(64)を備え、
     前記第三スイッチング素子を閉動作させることで前記閉回路を形成し、前記閉回路を形成した際に前記第二スイッチング素子を開動作させる請求項1乃至5のいずれか1項に記載の停止制御システム。
  10.  前記整流部と前記接続経路と前記オルタネータの界磁巻線とが、前記電源に並列に接続されており、
     前記接続経路は、抵抗体(70)を備える請求項9に記載の停止制御システム。
  11.  前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開く、又は、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる請求項1乃至5のいずれか1項に記載の停止制御システム。
  12.  前記回転電機モジュールは、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開く第一状態と、前記高電圧側の3つのスイッチング素子を開き且つ前記低電圧側の3つのスイッチング素子を閉じる第二状態とを、交互に切り替える請求項1乃至5のいずれか1項に記載の停止制御システム。
  13.  前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開く第一状態と、前記第一系統及び前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる第二状態とを、交互に切り替える請求項1乃至5のいずれか1項に記載の停止制御システム。
  14.  前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開き、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開く第二状態とを、交互に切り替える請求項1乃至5のいずれか1項に記載の停止制御システム。
  15.  前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を開き且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を閉じ、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を開き且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を閉じる第二状態とを、交互に切り替える請求項1乃至5のいずれか1項に記載の停止制御システム。
  16.  前記エンジンの回転速度が周期的に極大値と極小値とになる際に、前記回転速度が前記極小値となる時期に前記第一状態と前記第二状態とを切り替える請求項12乃至15のいずれか1項に記載の停止制御システム。
  17.  前記回転電機モジュールは、第一系統及び第二系統においてそれぞれ、
     三相電機子巻線(22a,22b,22c)と、
     前記三相電機子巻線に三相ブリッジ接続された6つのスイッチング素子(25a~25f)と、
    を備え、
     前記閉回路を形成する際に、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開き、且つ前記第二系統において前記6つのスイッチング素子を開く第一状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子(25a,25c,25e)を閉じ且つ低電圧側の3つのスイッチング素子(25b,25d,25f)を開く第二状態と、前記第一系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じ、且つ前記第二系統において前記6つのスイッチング素子を開く第三状態と、前記第一系統において前記6つのスイッチング素子を開き、且つ前記第二系統において、前記6つのスイッチング素子のうち高電圧側の3つのスイッチング素子を開き且つ低電圧側の3つのスイッチング素子を閉じる第四状態とを、所定の順序で切り替える請求項1乃至5のいずれか1項に記載の停止制御システム。
PCT/JP2017/029822 2016-08-23 2017-08-21 停止制御システム WO2018038062A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016162515 2016-08-23
JP2016-162515 2016-08-23
JP2017146579A JP6702281B2 (ja) 2016-08-23 2017-07-28 停止制御システム
JP2017-146579 2017-07-28

Publications (1)

Publication Number Publication Date
WO2018038062A1 true WO2018038062A1 (ja) 2018-03-01

Family

ID=61244868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029822 WO2018038062A1 (ja) 2016-08-23 2017-08-21 停止制御システム

Country Status (1)

Country Link
WO (1) WO2018038062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281906A (zh) * 2019-06-28 2019-09-27 浙江吉利控股集团有限公司 一种增程器闭环控制方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880095A (ja) * 1994-06-30 1996-03-22 Nippondenso Co Ltd 内燃機関駆動式発電システム
JP3909641B2 (ja) * 2000-04-05 2007-04-25 スズキ株式会社 ハイブリッド車両の制御装置
JP2014131396A (ja) * 2012-12-28 2014-07-10 Denso Corp 車両用制御装置
WO2014174567A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 エンジン停止制御装置およびエンジン停止制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880095A (ja) * 1994-06-30 1996-03-22 Nippondenso Co Ltd 内燃機関駆動式発電システム
JP3909641B2 (ja) * 2000-04-05 2007-04-25 スズキ株式会社 ハイブリッド車両の制御装置
JP2014131396A (ja) * 2012-12-28 2014-07-10 Denso Corp 車両用制御装置
WO2014174567A1 (ja) * 2013-04-22 2014-10-30 三菱電機株式会社 エンジン停止制御装置およびエンジン停止制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281906A (zh) * 2019-06-28 2019-09-27 浙江吉利控股集团有限公司 一种增程器闭环控制方法、装置及设备

Similar Documents

Publication Publication Date Title
CN111108681B (zh) 逆变器控制装置
JP6296169B2 (ja) インバータ制御装置及び車両用制御装置
TWI528680B (zh) Engine unit and vehicle
WO2014174567A1 (ja) エンジン停止制御装置およびエンジン停止制御方法
US8766603B2 (en) Control apparatus for inverter generator
WO2015093576A1 (ja) エンジンユニット、及び車両
JP4974988B2 (ja) 界磁巻線式同期発電電動機
US9748883B2 (en) Control device for rotating electrical machine
JP6875907B2 (ja) 発電機システム
JP2012202407A (ja) 内燃機関によって駆動される自動車用電気機器の運転方法
WO2018038062A1 (ja) 停止制御システム
JP2010110098A (ja) 回転電機装置及びその制御装置
JP6702281B2 (ja) 停止制御システム
JP6656404B2 (ja) 発電電動機の制御装置および発電電動機の制御方法
JP6677176B2 (ja) 電力変換回路の制御装置、回転電機ユニット
JP4547022B2 (ja) 界磁巻線式同期発電電動機装置
TWI660118B (zh) vehicle
JP7052542B2 (ja) エンジンの停止制御装置
JP5765108B2 (ja) 電力ライン制御装置
JPH0880095A (ja) 内燃機関駆動式発電システム
WO2018123538A1 (ja) 回転電機の回転上昇異常検出装置、回転電機ユニット
WO2022168290A1 (ja) 発電機
JP2019068575A (ja) インバータ制御装置
WO2022168289A1 (ja) 発電機
WO2018105407A1 (ja) 回転電機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843542

Country of ref document: EP

Kind code of ref document: A1