WO2018037662A1 - Robot, robot control method, and control program - Google Patents
Robot, robot control method, and control program Download PDFInfo
- Publication number
- WO2018037662A1 WO2018037662A1 PCT/JP2017/020972 JP2017020972W WO2018037662A1 WO 2018037662 A1 WO2018037662 A1 WO 2018037662A1 JP 2017020972 W JP2017020972 W JP 2017020972W WO 2018037662 A1 WO2018037662 A1 WO 2018037662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- interference
- drive
- contact
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
Definitions
- the present invention relates to a robot that performs a predetermined operation and a robot control method.
- Robots that can communicate with gestures by executing motions are known as conventional technologies.
- a desired motion cannot be executed as a result of a certain part interfering with another part of the robot.
- Patent Document 1 describes the meaning of a word indicated by each sign language action when a robot that performs a sign language action causes interference between parts in a trajectory connecting the end point position of the previous sign language action and the start position of the next sign language action.
- Means for adjusting the end point position and the start point position within a maintainable range is disclosed.
- JP 2013-97399 Japanese Published Patent Publication “JP 2013-97399” (published on May 20, 2013)
- the conventional technique as described above has a problem that it is effective only against interference between parts predicted in advance. For example, when a predetermined operation is performed as a motion due to reasons such as aging deterioration, interference may occur as a result of the part not being able to move along the originally planned route. In such a case, the prior art cannot adjust the predetermined operation so as to eliminate the interference.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
- a robot that performs a predetermined operation, and the predetermined operation includes a drive control unit that drives a part and the part that is driven by itself.
- a detection unit that detects contact with the robot; and a change unit that changes an operation amount of the predetermined operation when the contact is detected.
- a robot control method is a robot control method for performing a predetermined operation, and a drive control step of driving a part as the predetermined operation; A detection step of detecting that the driven portion has contacted the robot, and a change step of changing the amount of the predetermined motion when the contact is detected.
- FIG. 1 It is a block diagram which shows an example of the principal part structure of the robot which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows an example of operation
- (A), (b) is a schematic diagram and a table
- (A)-(c) is a table
- Embodiment 1 The robot 1 according to this embodiment will be described in detail with reference to FIGS.
- FIG. 1 is a block diagram illustrating an example of a main configuration of a robot 1 according to this embodiment.
- the robot 1 includes a storage unit 11, a sensor 12, a drive unit 13, and a control unit 14.
- the control unit 14 includes a configuration acquisition unit 21, a target setting unit 22, a drive control unit 23, an interference detection unit 24, and an offset setting unit 25.
- the storage unit 11 stores various data handled by the robot 1. For example, the storage unit 11 moves in a predetermined operation executed by the robot 1, data for performing the operation of each unit, for example, a target position that is a movement destination of a part, and a drive unit 13 that is necessary for moving to the target position. This stores data related to the driving amount. Moreover, in this embodiment, the memory
- the sensor 12 is disposed at each part of the robot 1 and detects interference between the parts that occurs when the robot 1 performs a predetermined operation.
- the sensor 12 is an impact sensor that detects an impact generated by interference (contact) between parts.
- the sensor 12 may have any configuration as long as it can detect interference between parts, a touch sensor that detects a change in capacitance due to interference, and an acceleration sensor that detects acceleration generated at the time of interference. And a pressure-sensitive sensor that detects a pressure generated at the time of interference. Moreover, what combined these sensors may be used.
- the robot 1 includes a plurality of sensors 12, and the sensors 12 are disposed at each part of the robot 1 and detect an impact. The arrangement of the sensor 12 will be described later.
- the drive unit 13 is disposed in each part of the robot 1 and realizes a predetermined operation of the robot 1 by being driven according to the control of the drive control unit 23 described later.
- the robot 1 includes a plurality of drive units 13, and the drive units 13 are arranged in each part of the robot 1.
- the driving unit 13 may be of any configuration as long as the robot 1 can realize a predetermined operation.
- the drive unit 13 may be a rotary motor that rotates a rotating shaft, or may be a linear motor that is linearly driven (directly moved) by electromagnetic induction or the like.
- the drive of the actuator is not limited to the configuration that directly realizes the predetermined operation of the robot 1, but, for example, the rotation drive is converted into the linear drive by combining a motor (rotary motor, linear motor) and a link mechanism. May be. Further, the linear drive may be converted into a rotational drive by a crank mechanism or the like.
- the control unit 14 controls each part of the robot 1 in an integrated manner.
- the control unit 14 may be configured to control each unit in accordance with a user input operation on an input operation unit (not shown).
- the configuration acquisition unit 21 acquires the current configuration information of the robot 1 such as the current position of each part of the robot 1 and the setting information of the robot 1.
- the target setting unit 22 sets a target for each part to move in order for the robot 1 to execute the determined predetermined operation.
- the target setting unit 22 sets a route along which the part moves as a predetermined operation. For example, when the robot 1 performs a motion that raises the left hand as a predetermined operation, the target setting unit 22 sets a position where the left hand that is the final position of the motion is up. In the present embodiment, if the final position is set, the driving path of the part is uniquely determined.
- the drive control unit 23 drives the drive unit 13 so that the part moves to the final position set by the target setting unit 22 as a predetermined operation.
- the drive unit 13 is a motor
- the drive control unit 23 controls the movement amount of the part of the robot 1 by controlling the rotation amount of the motor.
- the drive control unit 23 sets the offset set by the offset setting unit 25 described later as the movement amount for moving toward the final position. Apply the value to drive the site.
- the interference detection unit 24 detects that the part to be driven has come into contact with the robot. More specifically, the sensor 12 is used to operate as a detection unit that detects contact (interference between parts). Further, when the interference detection unit 24 determines that the interference between the parts has been detected, the interference detection unit 24 notifies the offset setting unit 25 described later of the detected part and the detected value. In this embodiment, the interference detection part 24 detects a contact using the sensor 12 provided in at least two places of the site
- the offset setting unit 25 sets an offset value with respect to the movement amount in order to eliminate the interference between the parts based on the detected part and the detected value notified by the interference detecting part 24, and the drive control part 23 To notify.
- the offset setting unit 25 operates as a changing unit that changes the operation amount of a predetermined operation when detecting that the part driven by the interference detection unit 24 has contacted the robot.
- the offset value is a correction value that is applied every time the motion is executed to cancel the contact of the driven part with the robot. A specific example of the offset value will be described later.
- FIG. 2 is a schematic diagram illustrating an example of the operation of the robot 1.
- the robot 1 has sensors 12 disposed at the tips and heads of both hands.
- the robot 1 executes a motion of turning the entire left arm upward from the side by rotating the left shoulder, and in this motion, other parts including the left elbow and the left wrist are not driven. .
- Example 201 shows a case where the left hand interferes with the head when the robot 1 performs a motion in which the entire left arm is directed upward.
- the robot 1 rotates the entire left arm toward the final position set by the target setting unit 22.
- the left hand interferes with the head due to reasons such as aged deterioration of the robot 1 and a continuous load due to external factors.
- the impact caused by the interference is detected by a plurality of sensors 12 arranged in each part.
- the interference detection unit 24 determines that the left hand has interfered with the head when the sensor 12 disposed at the tip and head of the left hand detects an impact exceeding a predetermined threshold.
- Example 202 shows that after Example 201, the robot 1 has resolved the interference between the parts and executed the motion.
- the offset setting unit 25 sets an offset value for eliminating the interference between parts, and applies the set offset value.
- the drive control unit 23 drives the drive unit 13.
- the robot 1 completes the execution of the motion by moving the part based on the movement amount obtained by applying the offset value to the movement amount for moving toward the final position.
- the robot 1 detects that the part driven by the interference detection unit 24 has come into contact with its own robot, the movement amount is changed so that the movable distance of the part is shortened with respect to the predetermined movement amount. To do. That is, the robot 1 sets the offset value so that the execution of the motion is completed before the left hand contacts the head.
- the position of the part when the interference detection unit 24 determines that the interference between the parts has been detected is acquired. For example, it is assumed that when the robot 1 performs a motion of rotating the left shoulder by 180 °, interference between the parts is detected when the robot 1 is rotated by 160 °.
- the offset setting unit 25 subtracts 160 ° at which interference is detected from the initial target value of 180 ° and sets a value obtained by adding a certain amount as the offset value for the rotation amount of the left shoulder.
- the robot 1 uses 155 °, which is the calculated offset value subtracted from the initial target value 180 °, as the amount of rotation of the left shoulder after the offset value is applied, thereby causing interference between parts in the motion. You can avoid it.
- the robot 1 according to the present embodiment changes the operation amount so that the rotation angle of the rotational drive becomes small when the drive of the part includes the rotational drive. Therefore, when the interference between the parts is detected when the motion is executed, the interference can be eliminated by applying the offset value, and the execution of the motion can be completed.
- FIG. 3 is a flowchart illustrating an example of a flow of processing executed by the robot 1.
- the target setting unit 22 determines the position of the target corresponding to the motion (S1).
- the target position may be determined not by determining the position itself but by determining a driving amount for moving to the position.
- the drive control unit 23 applies the offset value to the drive amount determined in step S1 (S2).
- the drive control part 23 drives the drive part 13 so that a site
- the interference detection unit 24 determines whether or not interference between parts has been detected (S4: detection step). When the interference between the parts is not detected (NO in S4), the driving is continued and the execution of the motion is completed. On the other hand, when the interference between parts is detected (YES in S4), the drive control unit 23 stops driving (S5). Next, the offset setting unit 25 determines an offset value based on the information on the part involved in the interference at the time when it is determined that the interference between the parts is detected in Step S4 (S6: change step). Then, the process ends.
- the robot 1 can drive the parts to execute the motion, and when detecting the interference between the parts, the robot 1 can execute the motion with the interference eliminated by applying the offset value. That is, when the robot 1 detects the interference between the parts including the part while driving the part, the robot 1 can apply the offset value and eliminate the interference between the parts. Therefore, there is an effect that it is possible to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
- FIG. 4 is a schematic diagram and a table showing an example of conditions for determining the position of the sensor 12 and interference between parts in the robot 1 according to the present embodiment.
- a plurality of sensors 12 are distributed in the robot 1.
- the sensors 12 are arranged at positions A to F, respectively. That is, A is the appropriate position on the back of the left hand, B is the space between the eyebrows, C is the back of the right hand, D is the center of the trunk, E is the back of the left foot, and F is the appropriate position on the back of the right foot.
- the sensor 12 may be disposed at any position, but is preferably disposed at a position that is closest when the driven parts are close to each other.
- it is preferable that only the interference at the time of motion can be determined by operating only the sensor 12 arranged at the site to be driven.
- (B) of FIG. 4 is an example of a table used for determining whether or not the interference detection unit 24 is interference between parts.
- the values of A and B in the “sensor value” column are based on values detected by the sensors 12 at positions A and B in FIG. That is, “ ⁇ ” is set when the impact value detected by the sensor 12 at the position A exceeds a predetermined threshold, and “X” is set when the value is equal to or less than the predetermined threshold.
- the predetermined threshold value may be any value, but is preferably a value that can be distinguished from, for example, the value of an impact that occurs while the robot 1 is performing a normal motion such as walking. is there.
- the robot 1 rotates the left shoulder and performs a motion of turning the entire left arm upward, and the left hand generates interference between parts with the head.
- the sensors 12 arranged at the positions A and B both detect an impact exceeding a predetermined threshold, the values of the sensors A and B are both “ ⁇ ”.
- the interference detection unit 24 refers to the table, since the value of the “contact determination” column is “contact”, it can be determined that interference between the parts has occurred.
- the value of A is “ ⁇ ” but the value of B is “x”.
- the interference detection unit 24 can determine that interference between the parts has not occurred.
- the robot 1 is provided with sensors 12 in at least two locations, ie, a portion to be driven and a position different from the portion, and the interference detection unit 24 uses at least two sensors 12 to perform contact (interference between the portions). ) Can be detected. Therefore, compared with the case where only one sensor 12 is used, when the contact is detected with high accuracy and the contact is detected, there is an effect that it is possible to provide the robot 1 that can eliminate the contact.
- the threshold value and the number of times may be set by the user, or the user may arbitrarily reset the number of times.
- the offset setting unit 25 may be configured to change the operation amount of the predetermined operation when the interference detection unit 24 detects the contact a predetermined number of times.
- a change part changes operation amount, when a detection part detects a contact predetermined times.
- the number of times of contact is less than the predetermined number of times, the amount of movement is not changed, so that it is possible to prevent the amount of movement from being changed even when accidental interference occurs between parts. There is an effect that can be.
- FIG. 5 is a table showing an example of conditions for determining interference between parts in the robot 1 according to the present embodiment.
- the robot 1 determines whether or not interference between parts has been detected by combining the table of FIG. 5A and the table of FIG. 5B.
- (A) of FIG. 5 is a table showing combinations of sensor values and the number of detections.
- a table is provided for each motion executed by the robot 1.
- the number of times the combination has been detected so far is stored in the “contact counter value” column.
- the sensors 12 arranged at the positions A and B both detected an impact exceeding a predetermined threshold, and the values of the sensors A and B were both “ ⁇ ”. Indicates that it has been detected twice so far.
- (B) of FIG. 5 is a table summarizing the number of times of detecting interference between parts for each motion.
- the “motion” column indicates the type of motion performed by the robot 1
- the “counter total” column indicates the sensors A and B in the table of FIG.
- the value of “contact counter value” when each of the values is “ ⁇ ” is shown.
- the “contact determination” column indicates a result of determining whether or not the value of the “counter total” column exceeds a predetermined threshold value. For example, it is assumed that the predetermined threshold value in the “counter total” column is “5”. At this time, in the illustrated example, the counter total of the motion “A” is “2”, and therefore the contact determination is “ ⁇ ”. On the other hand, the counter total of the motion “I” is “5”, and therefore the contact determination is “contact”. Therefore, the robot 1 applies an offset value to the motion “I” to eliminate contact (interference between parts).
- the offset setting unit 25 sets an offset value for the amount of motion in the motion in which contact is detected among the plurality of motions. Therefore, there is an effect that it is possible to prevent an offset value from being set for an operation amount in another motion in which interference between parts does not occur because interference between parts occurs due to a certain motion. .
- the number of times detected by the A sensor and the number of times detected by the B sensor are counted as the number of detections, respectively, and when both the A and B sensors are detected, the number of times of detection is counted as “2”. It was. For example, the number of detections is counted only when both the A and B sensors detect, and when only the A sensor or only the B sensor is detected, the number of detections is not counted. May be. That is, as shown in FIG. 5C, the contact counter value is set to “1” only when the values of the sensors A and B are both “ ⁇ ”, and “0” is set otherwise. Also good.
- the configuration of the robot 1 according to the present embodiment is basically the same as the configuration of the robot 1 according to the first embodiment, but some functions of the configuration acquisition unit 21 and the offset setting unit 25 are different.
- the configuration acquisition unit 21 operates as a determination unit that determines whether or not a member (attachment part 15) described later is attached.
- the offset setting unit 25 differs from the first embodiment in that the amount of operation to be changed varies depending on whether or not a member is attached.
- the robot 1 further includes an attachment part 15.
- the attachment part 15 is a member having a configuration that can be attached to each part of the robot 1.
- the attachment part 15 may be of any configuration as long as it can detect the interference when the interference between the parts including the part to which the attachment part 15 is attached occurs. For example, when the additional sensor 12 is disposed inside the attachment part 15 and the robot 1 is mounted, the robot 1 determines whether or not the interference between the parts has been detected using the sensor 12 included in the attachment part 15. May be.
- FIG. 6 is a schematic diagram illustrating an example of the operation of the robot 1.
- the robot 1 has sensors 12 disposed at the tips and heads of both hands.
- the robot 1 executes a motion that turns the entire left arm upward from the side by rotating the left shoulder, and in this motion, other parts including the left elbow and the left wrist are not driven.
- the robot 1 is assumed to include an attachment part 15 so as to cover the entire area from the left wrist.
- Example 301 shows a case where the attachment part 15 attached to the left hand interferes with the head when the robot 1 performs a motion in which the entire left arm is directed upward.
- the robot 1 rotationally drives the entire left arm toward the position set by the target setting unit 22 based on the result of the configuration acquisition unit 21 determining whether or not the attachment part 15 is present.
- the sensor 12 arrange
- the interference detection unit 24 detected an impact exceeding a predetermined threshold in the sensor 12 disposed at the tip and head of the left hand, interference between parts occurred between the left hand and the head. Is determined.
- Example 302 shows that after Example 301, the robot 1 has resolved the interference between the parts and executed the motion. If the interference detection unit 24 determines that interference between the parts has occurred in the example 301, the offset setting unit 25 sets an offset value and drives based on the set offset value in the same manner as in the example 202 of FIG. The control unit 23 drives the drive unit 13. Then, the robot 1 completes the execution of the motion by moving the part based on the movement amount after the offset value is applied.
- the robot 1 when detecting the interference between the parts when executing the motion, cancels the interference and completes the execution of the motion. be able to. Further, when the robot 1 executes the same motion again, the application of the offset value may be varied depending on the presence or absence of the attachment part 15.
- FIG. 7 is a flowchart illustrating an example of a flow of processing executed by the robot 1.
- the configuration acquisition unit 21 determines whether or not the attachment part 15 is being mounted (S11). If it is determined that the attachment part 15 is being mounted (YES in S11), the offset setting unit 25 applies the offset value for the attachment part 15 if there is an offset value set with the attachment part 15 mounted (S12). ), Go to step S3. On the other hand, if it is determined that it is not attached (NO in S11), the process proceeds directly to step S2. Then, similarly to the first embodiment, the processes of steps S4 to S6 are executed.
- the robot 1 determines the presence or absence of the attachment part 15 and executes the motion. And when the attachment part 15 is attached, the offset value for the case where it is attached is applied, and when it is not attached, the offset value for the case where it is not attached is applied. Thereby, the offset value can be appropriately applied regardless of whether the attachment part 15 is attached or not attached.
- the configuration may be such that the user can arbitrarily set whether or not the attachment part 15 is mounted. Thereby, even when it is not possible to automatically determine whether or not the attachment part 15 is mounted, an offset value corresponding to the attachment part 15 can be set.
- the offset value may be installed via a network or a medium.
- the robot 1 according to the present embodiment has the same configuration as that of the robot 1 according to the first embodiment, except that the drive unit 13 moves linearly and expands and contracts the entire region beyond the elbow.
- FIG. 8 is a schematic diagram illustrating an example of the operation of the robot 1.
- the robot 1 executes a motion of extending the entire part beyond the left elbow from a state where the left arm is directed upward.
- Example 401 shows a case where the left hand interferes with the head when the robot 1 performs a motion of extending the entire part beyond the left elbow.
- the robot 1 detects that interference between parts has occurred in the same manner as in the above embodiments.
- Example 402 shows that after Example 401, the robot 1 has resolved the interference between the parts and executed the motion.
- the interference detection unit 24 determines that the interference between the parts has occurred in the example 401
- the offset setting unit 25 sets the offset value and drives based on the set offset value in the same manner as the example 202 of FIG.
- the control unit 23 drives the drive unit 13.
- the offset value is applied to the driving amount for the linear movement of the driving unit 13, specifically, the amount for extending the entire part from the left elbow.
- the robot 1 completes the execution of the motion by driving the part with the driving amount after the offset value is applied. That is, a motion that is changed so as to extend the entire part from the left elbow to the extent that the left hand does not interfere with the head is executed.
- the robot 1 changes the amount of movement so that the movement distance of the linear drive is shortened when the drive of the part includes the linear drive. Therefore, if an inter-part interference is detected when executing a motion for a motion including expansion / contraction of the part, the interference can be eliminated and the execution of the motion can be completed.
- Example 501 shows a path when a part of the robot 1 including the two driving units 13 moves from the initial position to the target position.
- the first driving unit 13a performs rotational driving of the entire part
- the second driving unit 13b is installed in a part that receives rotational driving, and performs linear driving for a part of the part.
- the center of the rotational drive system driven by the first drive unit 13 a is the shoulder of the robot 1
- the outer periphery of the rotational drive system is the elbow of the robot 1.
- the second drive unit 13b is disposed on the elbow of the robot 1 and forms a linear drive system that linearly drives a portion beyond the elbow of the robot 1, and the end of the linear drive system indicates the tip of the hand of the robot 1.
- reference numeral 501 schematically shows a motion in which the robot 1 drives the entire arm around the shoulder while rotating the entire arm linearly. In the example shown in the drawing, the tip of the part is driven toward the opponent along a straight path.
- Example 502 schematically shows that the tip of the part of the robot 1 interferes with the opponent when the same motion as Example 501 is executed.
- the tip of the part reaches the second position from the top, it interferes with the opponent, so it cannot reach the top position.
- the robot 1 stores the states of the first drive unit 13a and the second drive unit 13b at that time.
- Example 503 schematically shows that after Example 502, the offset value is applied to the path of the part of the robot 1. That is, the offset setting unit 25 sets the drive amounts of the first drive unit 13a and the second drive unit 13b so that the execution of the motion is completed within a range in which interference does not occur on the route that is a straight line set in the example 502. Apply each offset value. Thereby, the front-end
- the robot 1 can complete the execution of the motion after applying the offset value to the driving amount of the part.
- control blocks (particularly, the interference detection unit 24 and the offset setting unit 25) of the robot 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). It may be realized by software using
- the robot 1 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or a memory.
- a device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like.
- the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
- a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
- the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
- a transmission medium such as a communication network or a broadcast wave
- the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
- a robot (1) is a robot (1) that performs a predetermined operation, and the predetermined operation includes a drive control unit (23) that drives a part, and the part that is driven by itself. It is a structure provided with the detection part (interference detection part 24) which detects having contacted the robot, and the change part (offset setting part 25) which changes the operation amount of the said predetermined
- the robot changes the amount of movement of the predetermined motion when it is detected that the portion to be driven contacts the robot while the portion is driven as the predetermined motion.
- the robot (1) according to aspect 2 of the present invention includes the sensor (12) that detects contact in at least two places of the driven part and a position different from the part in the aspect 1, and the detection unit
- the (interference detection unit 24) may be configured to detect the contact using the at least two sensors (12).
- the robot detects the contact using the sensors that detect the contact provided at at least two places, that is, the part to be driven and a position different from the part to be driven. And by providing a sensor in the part to drive and the position different from this part, it can be detected appropriately whether the parts contacted. Therefore, compared with the case where only one sensor is used, there is an effect that contact can be detected with high accuracy.
- the change unit (offset setting unit 25) is detected by the detection unit (interference detection unit 24) a predetermined number of times. In this case, the operation amount of the predetermined operation may be changed.
- the changing unit changes the operation amount when the detection unit detects contact for a predetermined number of times.
- the number of times of contact is less than the predetermined number of times, the amount of movement is not changed, so that it is possible to prevent the amount of movement from being changed even when accidental interference occurs between parts. There is an effect that can be.
- any one of the aspects 1 to 3 there are a plurality of the predetermined operations, and the changing unit (offset setting unit 25) Among them, a configuration may be adopted in which the operation amount in a predetermined operation in which contact is detected is changed.
- the operation amount is changed for each predetermined operation. Therefore, there is an effect that it is possible to prevent the amount of movement in another predetermined operation in which interference between parts does not occur from being changed due to the occurrence of interference between parts due to a certain predetermined operation. .
- the robot (1) according to the fifth aspect of the present invention can attach a detachable member (attachment part 15) to the site in any one of the first to fourth aspects.
- the member (attachment part 15) The determination part (configuration
- the said change part (offset setting part 25) is the structure which changes the operation amount to change with the presence or absence of attachment of the said member (attachment part 15). It is good.
- the robot can vary the operation amount of the predetermined operation based on whether or not a member is attached. Therefore, it is possible to prevent the movement amount of the predetermined operation from being changed when the member is not attached, even though interference between the parts occurs because the member is attached. Play.
- the change unit (offset setting unit 25) changes the movement amount so that the movable distance of the part is shortened. It is good also as composition to do.
- the robot when the robot detects that the part to be driven has come into contact with its own robot, the robot changes the operation amount so that the movable distance of the part in a predetermined operation is shortened. Therefore, there is an effect that it is possible to prevent occurrence of interference between parts when performing a predetermined operation again.
- the driving includes rotational driving
- the changing unit offset setting unit 25
- the changing unit is configured so that the rotational angle of the rotational driving becomes small. It may be configured to change the operation amount.
- the robot changes the operation amount of the predetermined operation so that the rotation angle of the rotation drive becomes small with respect to the drive of the part including the rotation drive. Therefore, there is an effect that the driving of the part including the rotational drive can be executed without interference between the parts.
- the driving includes linear driving
- the changing unit offset setting unit 25
- the operation amount may be changed.
- the robot changes the operation amount of the predetermined operation so that the movement distance of the linear drive becomes short for the drive of the part including the linear drive. Therefore, there is an effect that the driving of the part including the linear drive can be performed without interference between the parts.
- the control method of the robot (1) according to the aspect 9 of the present invention is a control method of the robot (1) that performs a predetermined operation, and as the predetermined operation, a drive control step (S2) for driving a part; A detection step (S3) for detecting that the part to be driven has come into contact with the robot is included, and a change step (S6) for changing the amount of the predetermined movement when the contact is detected.
- a drive control step S2
- S3 for detecting that the part to be driven has come into contact with the robot
- S6 for changing the amount of the predetermined movement when the contact is detected.
- the robot (1) according to each aspect of the present invention may be realized by a computer.
- the robot (1) is operated by operating the computer as each unit (software element) included in the robot (1).
- the control program for the robot (1) for realizing the above in a computer and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Provided is a very convenient robot capable of eliminating interference between parts that cannot be predicted in advance. A robot (1) for performing a specified action is provided with: a drive-controlling section (23) for driving a part for said specified action; an interference-detecting section (24) for detecting that said driven part has contacted the robot itself; and an offset-setting section (25) for modifying the magnitude of the specified action when such contact is detected.
Description
本発明は、所定の動作を行うロボットおよびロボットの制御方法に関する。
The present invention relates to a robot that performs a predetermined operation and a robot control method.
モーションを実行することによって、ジェスチャによるコミュニケーションを図ることが可能なロボットが従来技術として知られている。このようなロボットにおいて、モーションによって各部の位置が変化したときに、ある部位が該ロボットの他の部位と干渉した結果、所望するモーションを実行できない場合が考えられる。この問題を解決するために、例えば特許文献1の技術が存在する。特許文献1は、手話動作を行うロボットが、前の手話動作の終点位置と次の手話動作の始点位置とを結ぶ軌道において部位間の干渉が生じる場合は、各手話動作が示す単語の意味を維持可能な範囲で該終点位置および該始点位置を調整する手段が開示されている。
Robots that can communicate with gestures by executing motions are known as conventional technologies. In such a robot, when the position of each part changes due to motion, there may be a case where a desired motion cannot be executed as a result of a certain part interfering with another part of the robot. In order to solve this problem, for example, there is a technique disclosed in Patent Document 1. Patent Document 1 describes the meaning of a word indicated by each sign language action when a robot that performs a sign language action causes interference between parts in a trajectory connecting the end point position of the previous sign language action and the start position of the next sign language action. Means for adjusting the end point position and the start point position within a maintainable range is disclosed.
しかしながら、上述のような従来技術は、予め予測された部位間の干渉に対してのみ有効であるという問題がある。例えば、経年劣化などの理由により、モーションとして所定の動作を実行する際、部位が当初予定していた経路に沿って移動することができなかった結果、干渉が生じることが考えられる。このような場合、従来技術は該干渉を解消するように所定の動作を調整することができない。
However, the conventional technique as described above has a problem that it is effective only against interference between parts predicted in advance. For example, when a predetermined operation is performed as a motion due to reasons such as aging deterioration, interference may occur as a result of the part not being able to move along the originally planned route. In such a case, the prior art cannot adjust the predetermined operation so as to eliminate the interference.
本発明は、前記の問題点に鑑みてなされたものであり、その目的は、事前に予測できない部位間の干渉を解消できる、利便性の高いロボットを提供することにある。
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
上記の課題を解決するために、本発明の一態様に係るロボットは、所定の動作を行うロボットであって、上記所定の動作として、部位を駆動させる駆動制御部と、上記駆動する部位が自ロボットへ接触したことを検知する検知部と、上記接触を検知したとき、上記所定の動作の動作量を変更する変更部と、を備える。
In order to solve the above-described problem, a robot according to one embodiment of the present invention is a robot that performs a predetermined operation, and the predetermined operation includes a drive control unit that drives a part and the part that is driven by itself. A detection unit that detects contact with the robot; and a change unit that changes an operation amount of the predetermined operation when the contact is detected.
上記の課題を解決するために、本発明の一態様に係るロボットの制御方法は、所定の動作を行うロボットの制御方法であって、上記所定の動作として、部位を駆動させる駆動制御ステップと、上記駆動する部位が自ロボットへ接触したことを検知する検知ステップと、上記接触を検知したとき、上記所定の動作の動作量を変更する変更ステップと、を含む。
In order to solve the above problem, a robot control method according to an aspect of the present invention is a robot control method for performing a predetermined operation, and a drive control step of driving a part as the predetermined operation; A detection step of detecting that the driven portion has contacted the robot, and a change step of changing the amount of the predetermined motion when the contact is detected.
本発明の一態様によれば、事前に予測できない部位間の干渉を解消できる、利便性の高いロボットを提供することができるという効果を奏する。
According to one aspect of the present invention, it is possible to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
〔実施形態1〕
本実施形態に係るロボット1について、図1~5を用いて詳細に説明する。Embodiment 1
Therobot 1 according to this embodiment will be described in detail with reference to FIGS.
本実施形態に係るロボット1について、図1~5を用いて詳細に説明する。
The
<ロボットの構成>
本実施形態に係るロボット1の構成について、図1を用いて説明する。図1は、本実施形態に係るロボット1の要部構成の一例を示すブロック図である。図示の例において、ロボット1は、記憶部11、センサ12、駆動部13、および制御部14を備えている。そして、制御部14は、構成取得部21、目標設定部22、駆動制御部23、干渉検知部24、およびオフセット設定部25を備えている。 <Robot configuration>
The configuration of therobot 1 according to this embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating an example of a main configuration of a robot 1 according to this embodiment. In the illustrated example, the robot 1 includes a storage unit 11, a sensor 12, a drive unit 13, and a control unit 14. The control unit 14 includes a configuration acquisition unit 21, a target setting unit 22, a drive control unit 23, an interference detection unit 24, and an offset setting unit 25.
本実施形態に係るロボット1の構成について、図1を用いて説明する。図1は、本実施形態に係るロボット1の要部構成の一例を示すブロック図である。図示の例において、ロボット1は、記憶部11、センサ12、駆動部13、および制御部14を備えている。そして、制御部14は、構成取得部21、目標設定部22、駆動制御部23、干渉検知部24、およびオフセット設定部25を備えている。 <Robot configuration>
The configuration of the
記憶部11は、ロボット1にて扱われる各種データを記憶する。例えば、記憶部11はロボット1が実行する所定の動作において移動する、各部の動作を行うためのデータ、例えば、部位の移動先となる目標位置、目標位置に移動するために必要な駆動部13の駆動量等に関するデータを記憶している。また、本実施形態では、記憶部11は、部位間の干渉が発生したときの、該干渉に関与した部位の状態である当該位置における駆動部13の駆動量(例えば角度)を少なくとも記憶する。
The storage unit 11 stores various data handled by the robot 1. For example, the storage unit 11 moves in a predetermined operation executed by the robot 1, data for performing the operation of each unit, for example, a target position that is a movement destination of a part, and a drive unit 13 that is necessary for moving to the target position. This stores data related to the driving amount. Moreover, in this embodiment, the memory | storage part 11 memorize | stores the drive amount (for example, angle) of the drive part 13 in the said position which is the state of the site | part involved in this interference when the interference between site | parts generate | occur | produces.
センサ12は、ロボット1の各部位に配置され、該ロボット1が所定の動作を実行した際に生じた部位間の干渉を検出する。本実施形態において、センサ12は部位間の干渉(接触)によって発生した衝撃を検出する衝撃センサである。なお、センサ12は部位間の干渉を検出可能な構成であればどのようなものであってもよく、干渉による静電容量の変化を検出するタッチセンサ、干渉時に発生した加速度を検出する加速度センサ、および干渉時に発生した圧力を検出する感圧センサであってもよい。また、これらのセンサを組み合わせたものであってもよい。また、本実施形態において、ロボット1は複数のセンサ12を備えており、センサ12は、ロボット1の各部位に配置され、衝撃を検出する。センサ12の配置については後述する。
The sensor 12 is disposed at each part of the robot 1 and detects interference between the parts that occurs when the robot 1 performs a predetermined operation. In the present embodiment, the sensor 12 is an impact sensor that detects an impact generated by interference (contact) between parts. The sensor 12 may have any configuration as long as it can detect interference between parts, a touch sensor that detects a change in capacitance due to interference, and an acceleration sensor that detects acceleration generated at the time of interference. And a pressure-sensitive sensor that detects a pressure generated at the time of interference. Moreover, what combined these sensors may be used. In the present embodiment, the robot 1 includes a plurality of sensors 12, and the sensors 12 are disposed at each part of the robot 1 and detect an impact. The arrangement of the sensor 12 will be described later.
駆動部13は、ロボット1の各部に配置され、後述する駆動制御部23の制御にしたがって駆動することによって該ロボット1の所定の動作を実現するものである。本実施形態において、ロボット1は複数の駆動部13を備えており、駆動部13は、ロボット1に各部に分散して配置されている。なお、駆動部13は、ロボット1が所定の動作を実現することが可能な構成であればどのようなものであってもよい。例えば、駆動部13は、回転軸を回転させる回転式モーターであってもよいし、電磁誘導などによって直線駆動(直動)させるリニアモーターであってもよい。また、アクチュエーターの駆動が直接、ロボット1の所定の動作を実現する構成に限らず、例えば、モーター(回転式モーター、リニアモーター)とリンク機構とを組み合せることにより、回転駆動を直線駆動に変換してもよい。さらに、直線駆動をクランク機構等により回転駆動に変換してもよい。
The drive unit 13 is disposed in each part of the robot 1 and realizes a predetermined operation of the robot 1 by being driven according to the control of the drive control unit 23 described later. In the present embodiment, the robot 1 includes a plurality of drive units 13, and the drive units 13 are arranged in each part of the robot 1. Note that the driving unit 13 may be of any configuration as long as the robot 1 can realize a predetermined operation. For example, the drive unit 13 may be a rotary motor that rotates a rotating shaft, or may be a linear motor that is linearly driven (directly moved) by electromagnetic induction or the like. In addition, the drive of the actuator is not limited to the configuration that directly realizes the predetermined operation of the robot 1, but, for example, the rotation drive is converted into the linear drive by combining a motor (rotary motor, linear motor) and a link mechanism. May be. Further, the linear drive may be converted into a rotational drive by a crank mechanism or the like.
制御部14は、ロボット1の各部を統括して制御する。なお、制御部14は、図示しない入力操作部に対するユーザの入力操作に応じて各部を制御する構成であってもよい。
The control unit 14 controls each part of the robot 1 in an integrated manner. The control unit 14 may be configured to control each unit in accordance with a user input operation on an input operation unit (not shown).
構成取得部21は、ロボット1の各部位の現在の位置および該ロボット1の設定情報など、ロボット1の現在の構成情報を取得する。
The configuration acquisition unit 21 acquires the current configuration information of the robot 1 such as the current position of each part of the robot 1 and the setting information of the robot 1.
目標設定部22は、決定された所定の動作をロボット1が実行するために、各部位が移動する目標を設定する。換言すれば、目標設定部22は、所定の動作として、部位の移動する経路を設定する。例えば、所定の動作として、ロボット1が左手を上に挙げるモーションを実行する場合、目標設定部22は、モーションの最終位置となる左手が上となる位置を設定する。なお、本実施形態では、最終位置を設定すれば、部位の駆動経路は一意に決まる。
The target setting unit 22 sets a target for each part to move in order for the robot 1 to execute the determined predetermined operation. In other words, the target setting unit 22 sets a route along which the part moves as a predetermined operation. For example, when the robot 1 performs a motion that raises the left hand as a predetermined operation, the target setting unit 22 sets a position where the left hand that is the final position of the motion is up. In the present embodiment, if the final position is set, the driving path of the part is uniquely determined.
駆動制御部23は、所定の動作として、目標設定部22が設定した最終位置に部位が移動するように駆動部13を駆動させる。駆動制御部23は、例えば、駆動部13がモーターであるときは、該モーターの回転量を制御することによってロボット1の部位の移動量を制御する。また、本実施形態において、駆動制御部23は、ロボット1がモーションの実行中に部位間の干渉を検出した場合は、最終位置に向かうための移動量に後述するオフセット設定部25が設定したオフセット値を適用して部位を駆動させる。
The drive control unit 23 drives the drive unit 13 so that the part moves to the final position set by the target setting unit 22 as a predetermined operation. For example, when the drive unit 13 is a motor, the drive control unit 23 controls the movement amount of the part of the robot 1 by controlling the rotation amount of the motor. In the present embodiment, when the robot 1 detects the interference between the parts during the execution of the motion, the drive control unit 23 sets the offset set by the offset setting unit 25 described later as the movement amount for moving toward the final position. Apply the value to drive the site.
干渉検知部24は、駆動する部位が自ロボットへ接触したことを検知する。より詳細には、センサ12を用いて、接触(部位間の干渉)を検知する検知部として動作する。また、干渉検知部24は、部位間の干渉を検知したと判定した場合は、後述するオフセット設定部25に干渉を検知した部位と検出した値について通知する。本実施形態において、干渉検知部24は、駆動する部位と、該部位とは異なる位置との少なくとも2カ所に設けられたセンサ12を用いて、接触を検知する。
The interference detection unit 24 detects that the part to be driven has come into contact with the robot. More specifically, the sensor 12 is used to operate as a detection unit that detects contact (interference between parts). Further, when the interference detection unit 24 determines that the interference between the parts has been detected, the interference detection unit 24 notifies the offset setting unit 25 described later of the detected part and the detected value. In this embodiment, the interference detection part 24 detects a contact using the sensor 12 provided in at least two places of the site | part to drive and a position different from this site | part.
オフセット設定部25は、干渉検知部24より通知された干渉を検知した部位と検出した値に基づいて、部位間の干渉を解消するために、移動量に対するオフセット値を設定し、駆動制御部23へ通知する。換言すれば、オフセット設定部25は、干渉検知部24が駆動する部位が自ロボットへ接触したことを検知したとき、所定の動作の動作量を変更する変更部として動作する。ここで、オフセット値は、モーションの実行毎に適用される、駆動する部位による自ロボットへの接触を解消するための修正値である。オフセット値の具体例については後述する。
The offset setting unit 25 sets an offset value with respect to the movement amount in order to eliminate the interference between the parts based on the detected part and the detected value notified by the interference detecting part 24, and the drive control part 23 To notify. In other words, the offset setting unit 25 operates as a changing unit that changes the operation amount of a predetermined operation when detecting that the part driven by the interference detection unit 24 has contacted the robot. Here, the offset value is a correction value that is applied every time the motion is executed to cancel the contact of the driven part with the robot. A specific example of the offset value will be described later.
<ロボットの動作>
本実施形態に係るロボット1が実行する動作の一例について、図2を用いて説明する。図2は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は、センサ12を両手の先端および頭部にそれぞれ配置しているものとする。また、ロボット1は、左肩を回転駆動させることによって左腕全体を横から上に向けるモーションを実行するものであり、該モーションにおいて、左肘および左手首を含めた他の部位は駆動しないものとする。 <Robot motion>
An example of the operation performed by therobot 1 according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram illustrating an example of the operation of the robot 1. In the illustrated example, it is assumed that the robot 1 has sensors 12 disposed at the tips and heads of both hands. In addition, the robot 1 executes a motion of turning the entire left arm upward from the side by rotating the left shoulder, and in this motion, other parts including the left elbow and the left wrist are not driven. .
本実施形態に係るロボット1が実行する動作の一例について、図2を用いて説明する。図2は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は、センサ12を両手の先端および頭部にそれぞれ配置しているものとする。また、ロボット1は、左肩を回転駆動させることによって左腕全体を横から上に向けるモーションを実行するものであり、該モーションにおいて、左肘および左手首を含めた他の部位は駆動しないものとする。 <Robot motion>
An example of the operation performed by the
例201は、ロボット1が左腕全体を上に向けるモーションを実行した場合に、左手が頭部と干渉する場合を示す。図示の例において、ロボット1は、目標設定部22が設定した最終位置に向かって左腕全体を回転駆動させる。このとき、ロボット1が経年劣化および外部要因による継続的な負荷などの理由により、左手が頭部と干渉することが考えられる。なお、左手が頭部と干渉したとき、干渉によって生じた衝撃は、各部位に配置された複数のセンサ12によって検出される。このとき、干渉検知部24は、左手の先端および頭部に配置されたセンサ12において、所定の閾値を超える衝撃を検出すると、左手が頭部と干渉したと判定する。
Example 201 shows a case where the left hand interferes with the head when the robot 1 performs a motion in which the entire left arm is directed upward. In the illustrated example, the robot 1 rotates the entire left arm toward the final position set by the target setting unit 22. At this time, it is conceivable that the left hand interferes with the head due to reasons such as aged deterioration of the robot 1 and a continuous load due to external factors. When the left hand interferes with the head, the impact caused by the interference is detected by a plurality of sensors 12 arranged in each part. At this time, the interference detection unit 24 determines that the left hand has interfered with the head when the sensor 12 disposed at the tip and head of the left hand detects an impact exceeding a predetermined threshold.
例202は、例201の後、ロボット1が部位間の干渉を解消し、モーションを実行したことを示す。例201にて干渉検知部24が部位間の干渉が発生したと判定すると、オフセット設定部25は、部位間の干渉を解消するためのオフセット値を設定し、設定されたオフセット値を適用して駆動制御部23が駆動部13を駆動させる。そして、ロボット1は、最終位置に向かうための移動量にオフセット値が適用された移動量に基づいて部位を移動させることにより、モーションの実行を完了する。図示の例において、ロボット1は干渉検知部24が駆動する部位が自ロボットへ接触したことを検知したとき、所定の動作の動作量について、部位の可動距離が短くなるように、動作量を変更する。すなわち、ロボット1は、左手が頭部と接触する前にモーションの実行を完了するようにオフセット値を設定する。
Example 202 shows that after Example 201, the robot 1 has resolved the interference between the parts and executed the motion. In the example 201, when the interference detection unit 24 determines that interference between parts has occurred, the offset setting unit 25 sets an offset value for eliminating the interference between parts, and applies the set offset value. The drive control unit 23 drives the drive unit 13. Then, the robot 1 completes the execution of the motion by moving the part based on the movement amount obtained by applying the offset value to the movement amount for moving toward the final position. In the illustrated example, when the robot 1 detects that the part driven by the interference detection unit 24 has come into contact with its own robot, the movement amount is changed so that the movable distance of the part is shortened with respect to the predetermined movement amount. To do. That is, the robot 1 sets the offset value so that the execution of the motion is completed before the left hand contacts the head.
オフセット設定部25が設定するオフセット値の一例について、以下に説明する。
An example of the offset value set by the offset setting unit 25 will be described below.
まず、干渉検知部24が部位間の干渉を検知したと判定したときの部位の位置を取得する。例えば、ロボット1が左肩を180°回転させるモーションを実行中に、160°回転させた時点で部位間の干渉を検知したとする。
First, the position of the part when the interference detection unit 24 determines that the interference between the parts has been detected is acquired. For example, it is assumed that when the robot 1 performs a motion of rotating the left shoulder by 180 °, interference between the parts is detected when the robot 1 is rotated by 160 °.
次に、オフセット設定部25は、左肩の回転量について、当初の目標値であった180°から干渉を検知した160°を減算し、さらに一定量を加えた値をオフセット値として設定する。上記の例によれば、一定量を5°としたとき、オフセット値は180°-160°+5°=25°となる。ロボット1は、算出されたオフセット値を、当初の目標値180°から減算した155°を、オフセット値が適用された後の左肩の回転量とすることにより、当該モーションにおいて部位間の干渉が発生しないようにすることができる。
Next, the offset setting unit 25 subtracts 160 ° at which interference is detected from the initial target value of 180 ° and sets a value obtained by adding a certain amount as the offset value for the rotation amount of the left shoulder. According to the above example, when the fixed amount is 5 °, the offset value is 180 ° −160 ° + 5 ° = 25 °. The robot 1 uses 155 °, which is the calculated offset value subtracted from the initial target value 180 °, as the amount of rotation of the left shoulder after the offset value is applied, thereby causing interference between parts in the motion. You can avoid it.
また、オフセット値を一度適用しただけでは、部位間の干渉が解消されない場合が考えられる。このような場合は、一連の流れを再度実行することにより、オフセット値を再設定(変更)することが好適である。
Also, there is a possibility that interference between parts cannot be eliminated by applying the offset value once. In such a case, it is preferable to reset (change) the offset value by executing a series of flows again.
このようにして、本実施形態に係るロボット1は、部位の駆動が回転駆動を含むとき、該回転駆動の回転角度が小さくなるように、動作量を変更する。したがって、モーションを実行する際に部位間の干渉を検出すると、オフセット値を適用することによって該干渉を解消し、モーションの実行を完了させることができる。
In this way, the robot 1 according to the present embodiment changes the operation amount so that the rotation angle of the rotational drive becomes small when the drive of the part includes the rotational drive. Therefore, when the interference between the parts is detected when the motion is executed, the interference can be eliminated by applying the offset value, and the execution of the motion can be completed.
<処理の流れ>
本実施形態に係るロボット1が実行する処理の流れについて、図3を用いて説明する。図3は、ロボット1が実行する処理の流れの一例を示すフローチャートである。 <Process flow>
A flow of processing executed by therobot 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart illustrating an example of a flow of processing executed by the robot 1.
本実施形態に係るロボット1が実行する処理の流れについて、図3を用いて説明する。図3は、ロボット1が実行する処理の流れの一例を示すフローチャートである。 <Process flow>
A flow of processing executed by the
まず、決定されたモーションを実行するために、目標設定部22は、モーションに対応する目標の位置を決定する(S1)。目標の位置の決定は、位置そのものを決定するのではなく、当該位置に移動するための駆動量を決定するものであってもよい。次に、駆動制御部23は、設定されたオフセット値があれば、ステップS1で決定した駆動量にオフセット値を適用する(S2)。そして、駆動制御部23は、各部位について、目標位置に部位が移動するように駆動部13を駆動させる(S3:駆動制御ステップ)。
First, in order to execute the determined motion, the target setting unit 22 determines the position of the target corresponding to the motion (S1). The target position may be determined not by determining the position itself but by determining a driving amount for moving to the position. Next, if there is a set offset value, the drive control unit 23 applies the offset value to the drive amount determined in step S1 (S2). And the drive control part 23 drives the drive part 13 so that a site | part moves to a target position about each site | part (S3: drive control step).
駆動開始後、干渉検知部24は部位間の干渉を検知したか否かを判定する(S4:検知ステップ)。部位間の干渉を検知しない場合(S4でNO)、駆動を継続し、モーションの実行を完了する。一方、部位間の干渉を検知した場合(S4でYES)、駆動制御部23は駆動を停止する(S5)。次に、オフセット設定部25は、ステップS4で部位間の干渉を検知したと判定した時点における、該干渉に関与した部位の情報に基づいて、オフセット値を決定する(S6:変更ステップ)。そして、処理を終了する。
After the start of driving, the interference detection unit 24 determines whether or not interference between parts has been detected (S4: detection step). When the interference between the parts is not detected (NO in S4), the driving is continued and the execution of the motion is completed. On the other hand, when the interference between parts is detected (YES in S4), the drive control unit 23 stops driving (S5). Next, the offset setting unit 25 determines an offset value based on the information on the part involved in the interference at the time when it is determined that the interference between the parts is detected in Step S4 (S6: change step). Then, the process ends.
以上の処理により、ロボット1は、モーションを実行するために部位を駆動させ、該部位間の干渉を検知した場合は、オフセット値を適用し、干渉を解消したモーションを実行することができる。すなわち、ロボット1は、部位を駆動中に該部位を含む部位間の干渉を検知すると、オフセット値を適用し、部位間の干渉を解消することができる。したがって、事前に予測できない部位間の干渉を解消できる、利便性の高いロボットを提供することができるという効果を奏する。
Through the above processing, the robot 1 can drive the parts to execute the motion, and when detecting the interference between the parts, the robot 1 can execute the motion with the interference eliminated by applying the offset value. That is, when the robot 1 detects the interference between the parts including the part while driving the part, the robot 1 can apply the offset value and eliminate the interference between the parts. Therefore, there is an effect that it is possible to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
<部位間の干渉を検知したと判定するパターン>
本実施形態において、干渉検知部24がロボット1の部位間の干渉を検知したと判定する条件について、図4および5を用いて詳細に説明する。図4は、本実施形態に係るロボット1におけるセンサ12の位置および部位間の干渉を判定する条件の一例を示す模式図および表である。 <Pattern to determine that interference between parts has been detected>
In the present embodiment, conditions for determining that theinterference detection unit 24 has detected interference between parts of the robot 1 will be described in detail with reference to FIGS. FIG. 4 is a schematic diagram and a table showing an example of conditions for determining the position of the sensor 12 and interference between parts in the robot 1 according to the present embodiment.
本実施形態において、干渉検知部24がロボット1の部位間の干渉を検知したと判定する条件について、図4および5を用いて詳細に説明する。図4は、本実施形態に係るロボット1におけるセンサ12の位置および部位間の干渉を判定する条件の一例を示す模式図および表である。 <Pattern to determine that interference between parts has been detected>
In the present embodiment, conditions for determining that the
まず、図4の(a)に示すように、ロボット1に複数のセンサ12が分散して配置されていることを考える。図示の例において、センサ12は、A~Fの位置にそれぞれ配置されている。すなわち、Aは左手の甲、Bは眉間、Cは右手の甲、Dは胴体中央、Eは左足の甲、およびFは右足の甲における適当な位置である。なお、センサ12はどのような位置に配置されてもよいが、駆動する部位同士が近接したときに最も接近する位置に配置されることが好適である。また、ロボット1が特定のモーションを実行する際、駆動する部位に配置されているセンサ12のみが動作することにより、モーション時の干渉のみを判定できることが好適である。
First, as shown in FIG. 4A, it is considered that a plurality of sensors 12 are distributed in the robot 1. In the illustrated example, the sensors 12 are arranged at positions A to F, respectively. That is, A is the appropriate position on the back of the left hand, B is the space between the eyebrows, C is the back of the right hand, D is the center of the trunk, E is the back of the left foot, and F is the appropriate position on the back of the right foot. The sensor 12 may be disposed at any position, but is preferably disposed at a position that is closest when the driven parts are close to each other. In addition, when the robot 1 performs a specific motion, it is preferable that only the interference at the time of motion can be determined by operating only the sensor 12 arranged at the site to be driven.
図4の(b)は、干渉検知部24が部位間の干渉であるか否かを判定するために用いる表の一例である。図示の例において、「センサの値」列のAおよびBの値は、図4の(a)におけるAおよびBの位置にあるセンサ12がそれぞれ検出した値に基づく。すなわち、Aの位置にあるセンサ12が検出した衝撃の値が所定の閾値を超えていた場合は「○」であり、所定の閾値以下であった場合は「×」が設定されている。なお、所定の閾値はどのような値であってもよいが、例えば、ロボット1が歩行などといった通常の動作を実行中に発生する衝撃の値とは区別可能である値であることが好適である。
(B) of FIG. 4 is an example of a table used for determining whether or not the interference detection unit 24 is interference between parts. In the illustrated example, the values of A and B in the “sensor value” column are based on values detected by the sensors 12 at positions A and B in FIG. That is, “◯” is set when the impact value detected by the sensor 12 at the position A exceeds a predetermined threshold, and “X” is set when the value is equal to or less than the predetermined threshold. The predetermined threshold value may be any value, but is preferably a value that can be distinguished from, for example, the value of an impact that occurs while the robot 1 is performing a normal motion such as walking. is there.
図示の例において、ロボット1が左肩を回転駆動させ、左腕全体を上に向けるモーションを実行し、左手が頭部との間で部位間の干渉を発生させることを考える。このとき、AおよびBの位置に配置されたセンサ12がいずれも所定の閾値を超える衝撃を検出すると、AとBのセンサの値はいずれも「○」となる。干渉検知部24が表を参照すると、「接触判定」列の値が「接触」となっているため、部位間の干渉が発生したと判定することができる。一方、例えば上記のモーションを実行中に、左腕が壁などに衝突した場合、Aの値は「○」であるがBの値は「×」となる。このとき、表の上から2行目の組み合わせに該当し、対応する「接触判定」列の値は「-」である。したがって、干渉検知部24は、部位間の干渉が発生しなかったと判定することができる。
In the example shown in the figure, it is assumed that the robot 1 rotates the left shoulder and performs a motion of turning the entire left arm upward, and the left hand generates interference between parts with the head. At this time, if the sensors 12 arranged at the positions A and B both detect an impact exceeding a predetermined threshold, the values of the sensors A and B are both “◯”. When the interference detection unit 24 refers to the table, since the value of the “contact determination” column is “contact”, it can be determined that interference between the parts has occurred. On the other hand, for example, when the left arm collides with a wall or the like during the above motion, the value of A is “◯” but the value of B is “x”. At this time, it corresponds to the combination of the second row from the top of the table, and the corresponding “contact judgment” column value is “−”. Therefore, the interference detection unit 24 can determine that interference between the parts has not occurred.
よって、ロボット1は、駆動する部位と、該部位とは異なる位置との少なくとも2カ所にセンサ12を設け、干渉検知部24は、少なくとも2カ所のセンサ12を用いて、接触(部位間の干渉)を検知することができる。したがって、1つのセンサ12のみを用いる場合と比べて、高い精度で接触を検知し、接触を検知したときは、該接触を解消することができるロボット1を提供することができるという効果を奏する。
Therefore, the robot 1 is provided with sensors 12 in at least two locations, ie, a portion to be driven and a position different from the portion, and the interference detection unit 24 uses at least two sensors 12 to perform contact (interference between the portions). ) Can be detected. Therefore, compared with the case where only one sensor 12 is used, when the contact is detected with high accuracy and the contact is detected, there is an effect that it is possible to provide the robot 1 that can eliminate the contact.
また、閾値に対する大小だけでなく、閾値を超えた回数などを条件として追加してもよい。さらに、閾値および回数は、ユーザが設定してもよいし、該ユーザが回数を任意にリセットできる構成であってもよい。
Also, not only the magnitude of the threshold but also the number of times the threshold is exceeded may be added as a condition. Further, the threshold value and the number of times may be set by the user, or the user may arbitrarily reset the number of times.
また、オフセット設定部25は、干渉検知部24が、所定の回数、上記接触を検知した場合、上記所定の動作の動作量を変更する構成であってもよい。上記の構成によれば、変更部は、検知部が所定の回数、接触を検知した場合、動作量を変更する。これにより、接触の回数が所定の回数に満たない場合は、動作量の変更が行われないので、偶発的に部位間の干渉が発生したときにも動作量が変更されてしまうことを防止することができるという効果を奏する。
Further, the offset setting unit 25 may be configured to change the operation amount of the predetermined operation when the interference detection unit 24 detects the contact a predetermined number of times. According to said structure, a change part changes operation amount, when a detection part detects a contact predetermined times. As a result, when the number of times of contact is less than the predetermined number of times, the amount of movement is not changed, so that it is possible to prevent the amount of movement from being changed even when accidental interference occurs between parts. There is an effect that can be.
次に、干渉検知部24がロボット1の部位間の干渉を検知したと判定する所定の条件の別の例について、図5を用いて説明する。図5は、本実施形態に係るロボット1において部位間の干渉を判定する条件の一例を示す表である。図示の例において、ロボット1は、図5の(a)の表と、図5の(b)の表とを組み合わせることにより、部位間の干渉を検知したか否かを判定する。
Next, another example of the predetermined condition for determining that the interference detection unit 24 has detected the interference between the parts of the robot 1 will be described with reference to FIG. FIG. 5 is a table showing an example of conditions for determining interference between parts in the robot 1 according to the present embodiment. In the illustrated example, the robot 1 determines whether or not interference between parts has been detected by combining the table of FIG. 5A and the table of FIG. 5B.
図5の(a)は、センサの値の組み合わせと、検出回数との組み合わせを示す表である。なお、表は、ロボット1が実行するモーションごとに設けられる。図示の例において、センサの値の組み合わせに対して、これまでにその組み合わせを検出した回数を「接触カウンタ値」列に格納している。例えば、一番上の行は、AおよびBの位置に配置されたセンサ12がいずれも所定の閾値を超える衝撃を検出し、AとBのセンサの値がいずれも「○」であったことがこれまでに2回検出されたことを示す。
(A) of FIG. 5 is a table showing combinations of sensor values and the number of detections. A table is provided for each motion executed by the robot 1. In the illustrated example, for the combination of sensor values, the number of times the combination has been detected so far is stored in the “contact counter value” column. For example, in the top row, the sensors 12 arranged at the positions A and B both detected an impact exceeding a predetermined threshold, and the values of the sensors A and B were both “◯”. Indicates that it has been detected twice so far.
図5の(b)は、モーションごとに部位間の干渉を検知した回数をまとめた表である。図示の例において、「モーション」列はロボット1が実行するモーションの種類を示し、「カウンタ合計」列は、個々のモーションの実行中に、図5の(a)の表においてAおよびBのセンサの値がいずれも「○」であるときの「接触カウンタ値」の値を示す。そして、「接触判定」列は、「カウンタ合計」列の値が所定の閾値を超えているか否かを判定した結果を示す。例えば、「カウンタ合計」列の所定の閾値が「5」であるとする。このとき、図示の例において、モーション「ア」のカウンタ合計は「2」であり、したがって接触判定は「-」である。一方、モーション「イ」のカウンタ合計は「5」であり、したがって接触判定は「接触」である。ゆえに、ロボット1は、モーション「イ」に対してオフセット値を適用し、接触(部位間の干渉)を解消する。
(B) of FIG. 5 is a table summarizing the number of times of detecting interference between parts for each motion. In the illustrated example, the “motion” column indicates the type of motion performed by the robot 1, and the “counter total” column indicates the sensors A and B in the table of FIG. The value of “contact counter value” when each of the values is “◯” is shown. The “contact determination” column indicates a result of determining whether or not the value of the “counter total” column exceeds a predetermined threshold value. For example, it is assumed that the predetermined threshold value in the “counter total” column is “5”. At this time, in the illustrated example, the counter total of the motion “A” is “2”, and therefore the contact determination is “−”. On the other hand, the counter total of the motion “I” is “5”, and therefore the contact determination is “contact”. Therefore, the robot 1 applies an offset value to the motion “I” to eliminate contact (interference between parts).
すなわち、モーションが複数存在する場合、オフセット設定部25は、複数のモーションのうち、接触を検知したモーションにおける動作量に対するオフセット値を設定する。したがって、或るモーションにより部位間の干渉が発生したために、部位間の干渉が発生していない他のモーションにおける動作量に対しオフセット値が設定されてしまうことを防止することができるという効果を奏する。
That is, when there are a plurality of motions, the offset setting unit 25 sets an offset value for the amount of motion in the motion in which contact is detected among the plurality of motions. Therefore, there is an effect that it is possible to prevent an offset value from being set for an operation amount in another motion in which interference between parts does not occur because interference between parts occurs due to a certain motion. .
なお、上記では、Aのセンサが検出した回数、およびBのセンサが検出した回数をそれぞれ検出回数として計上し、AおよびBの両方のセンサが検出した場合は、検出回数「2」として計上していた。この構成に限られず、例えば、AおよびBの両方のセンサが検出した場合のみ検出回数として計上し、Aのセンサのみ、またはBのセンサのみが検出した場合は、検出回数として計上しない構成であってもよい。すなわち、図5の(c)に示すように、AおよびBのセンサの値が両方とも「○」の場合のみ接触カウンタ値を「1」とし、それ以外は「0」とする構成であってもよい。
In the above, the number of times detected by the A sensor and the number of times detected by the B sensor are counted as the number of detections, respectively, and when both the A and B sensors are detected, the number of times of detection is counted as “2”. It was. For example, the number of detections is counted only when both the A and B sensors detect, and when only the A sensor or only the B sensor is detected, the number of detections is not counted. May be. That is, as shown in FIG. 5C, the contact counter value is set to “1” only when the values of the sensors A and B are both “◯”, and “0” is set otherwise. Also good.
これにより、例えば、地面等との接触により、1つのセンサのみが複数回、接触を検出した場合にオフセット値を設定してしまうことを防止することができる。
Thus, for example, it is possible to prevent an offset value from being set when only one sensor detects contact several times due to contact with the ground or the like.
〔実施形態2〕
本発明の実施形態2について、図6および7を用いて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
本発明の実施形態2について、図6および7を用いて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 [Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
<ロボットの構成>
本実施形態に係るロボット1の構成は、前記実施形態1に係るロボット1の構成と基本的に同一であるが、構成取得部21およびオフセット設定部25の一部機能が異なる。本実施形態において、構成取得部21は、後述する部材(アタッチメントパーツ15)の取り付けの有無を判定する判定部として動作する。さらに、オフセット設定部25は、部材の取り付けの有無により、変更する動作量を異ならせる点が前記実施形態1と異なる。 <Robot configuration>
The configuration of therobot 1 according to the present embodiment is basically the same as the configuration of the robot 1 according to the first embodiment, but some functions of the configuration acquisition unit 21 and the offset setting unit 25 are different. In the present embodiment, the configuration acquisition unit 21 operates as a determination unit that determines whether or not a member (attachment part 15) described later is attached. Further, the offset setting unit 25 differs from the first embodiment in that the amount of operation to be changed varies depending on whether or not a member is attached.
本実施形態に係るロボット1の構成は、前記実施形態1に係るロボット1の構成と基本的に同一であるが、構成取得部21およびオフセット設定部25の一部機能が異なる。本実施形態において、構成取得部21は、後述する部材(アタッチメントパーツ15)の取り付けの有無を判定する判定部として動作する。さらに、オフセット設定部25は、部材の取り付けの有無により、変更する動作量を異ならせる点が前記実施形態1と異なる。 <Robot configuration>
The configuration of the
本実施形態において、ロボット1はアタッチメントパーツ15をさらに備える。アタッチメントパーツ15は、ロボット1の各部位に対して取り付け可能な構成を備える部材である。アタッチメントパーツ15は、該アタッチメントパーツ15を装着した部位を含む部位間の干渉が発生した際、該干渉を検知することが可能な構成であればどのようなものであってもよい。例えば、アタッチメントパーツ15の内部にさらなるセンサ12が配置され、ロボット1は、アタッチメントパーツ15を装着すると、該アタッチメントパーツ15が備えるセンサ12を用いて部位間の干渉を検知したか否かを判定してもよい。
In the present embodiment, the robot 1 further includes an attachment part 15. The attachment part 15 is a member having a configuration that can be attached to each part of the robot 1. The attachment part 15 may be of any configuration as long as it can detect the interference when the interference between the parts including the part to which the attachment part 15 is attached occurs. For example, when the additional sensor 12 is disposed inside the attachment part 15 and the robot 1 is mounted, the robot 1 determines whether or not the interference between the parts has been detected using the sensor 12 included in the attachment part 15. May be.
<ロボットの動作>
本実施形態に係るロボット1が実行する動作の一例について、図6を用いて説明する。図6は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は、センサ12を両手の先端および頭部にそれぞれ配置しているものとする。また、ロボット1は、左肩を回転駆動させることによって左腕全体を横から上に向けるモーションを実行するものであり、該モーションにおいて、左肘および左手首を含めた他の部位は駆動しないものとする。そして、ロボット1は左手首から先の全体を覆うように、アタッチメントパーツ15を備えているものとする。 <Robot motion>
An example of the operation performed by therobot 1 according to the present embodiment will be described with reference to FIG. FIG. 6 is a schematic diagram illustrating an example of the operation of the robot 1. In the illustrated example, it is assumed that the robot 1 has sensors 12 disposed at the tips and heads of both hands. In addition, the robot 1 executes a motion that turns the entire left arm upward from the side by rotating the left shoulder, and in this motion, other parts including the left elbow and the left wrist are not driven. . The robot 1 is assumed to include an attachment part 15 so as to cover the entire area from the left wrist.
本実施形態に係るロボット1が実行する動作の一例について、図6を用いて説明する。図6は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は、センサ12を両手の先端および頭部にそれぞれ配置しているものとする。また、ロボット1は、左肩を回転駆動させることによって左腕全体を横から上に向けるモーションを実行するものであり、該モーションにおいて、左肘および左手首を含めた他の部位は駆動しないものとする。そして、ロボット1は左手首から先の全体を覆うように、アタッチメントパーツ15を備えているものとする。 <Robot motion>
An example of the operation performed by the
例301は、ロボット1が左腕全体を上に向けるモーションを実行した場合に、左手に装着されたアタッチメントパーツ15が頭部と干渉する場合を示す。図示の例において、ロボット1は、構成取得部21がアタッチメントパーツ15の有無を判定した結果に基づいて目標設定部22が設定した位置に向かって左腕全体を回転駆動させる。そして、左手に装着されたアタッチメントパーツ15が頭部と干渉すると、各部に配置されたセンサ12が衝撃を検出する。このとき、干渉検知部24は、左手の先端および頭部に配置されたセンサ12において、所定の閾値を超える衝撃を検出したことから、左手と頭部との間で部位間の干渉が発生したと判定する。
Example 301 shows a case where the attachment part 15 attached to the left hand interferes with the head when the robot 1 performs a motion in which the entire left arm is directed upward. In the illustrated example, the robot 1 rotationally drives the entire left arm toward the position set by the target setting unit 22 based on the result of the configuration acquisition unit 21 determining whether or not the attachment part 15 is present. And when the attachment part 15 with which the left hand was mounted | worn interferes with a head, the sensor 12 arrange | positioned at each part detects an impact. At this time, since the interference detection unit 24 detected an impact exceeding a predetermined threshold in the sensor 12 disposed at the tip and head of the left hand, interference between parts occurred between the left hand and the head. Is determined.
例302は、例301の後、ロボット1が部位間の干渉を解消し、モーションを実行したことを示す。例301にて干渉検知部24が部位間の干渉が発生したと判定すると、図2の例202と同様にしてオフセット設定部25は、オフセット値を設定し、設定されたオフセット値に基づいて駆動制御部23が駆動部13を駆動させる。そして、ロボット1は、オフセット値が適用された後の移動量に基づき部位を移動させることにより、モーションの実行を完了する。
Example 302 shows that after Example 301, the robot 1 has resolved the interference between the parts and executed the motion. If the interference detection unit 24 determines that interference between the parts has occurred in the example 301, the offset setting unit 25 sets an offset value and drives based on the set offset value in the same manner as in the example 202 of FIG. The control unit 23 drives the drive unit 13. Then, the robot 1 completes the execution of the motion by moving the part based on the movement amount after the offset value is applied.
このようにして、本実施形態に係るロボット1は、アタッチメントパーツ15が取り付けられている場合でも、モーションを実行する際に部位間の干渉を検出すると、干渉を解消し、モーションの実行を完了させることができる。また、ロボット1は、同一のモーションを再度実行するときは、アタッチメントパーツ15の有無に応じてオフセット値の適用を異ならせてもよい。
In this manner, even when the attachment part 15 is attached, the robot 1 according to the present embodiment, when detecting the interference between the parts when executing the motion, cancels the interference and completes the execution of the motion. be able to. Further, when the robot 1 executes the same motion again, the application of the offset value may be varied depending on the presence or absence of the attachment part 15.
<処理の流れ>
本実施形態に係るロボット1が実行する処理の流れの一例について、図7を用いて説明する。図7は、ロボット1が実行する処理の流れの一例を示すフローチャートである。 <Process flow>
An example of the flow of processing executed by therobot 1 according to this embodiment will be described with reference to FIG. FIG. 7 is a flowchart illustrating an example of a flow of processing executed by the robot 1.
本実施形態に係るロボット1が実行する処理の流れの一例について、図7を用いて説明する。図7は、ロボット1が実行する処理の流れの一例を示すフローチャートである。 <Process flow>
An example of the flow of processing executed by the
まず、ステップS1の処理を実行した後、構成取得部21は、アタッチメントパーツ15を装着中であるか否かを判定する(S11)。装着中であると判定した場合(S11でYES)、オフセット設定部25は、アタッチメントパーツ15を装着した状態で設定されたオフセット値が存在すれば、アタッチメントパーツ15用のオフセット値を適用し(S12)、ステップS3へ進む。一方、装着中ではないと判定した場合(S11でNO)、処理はそのままステップS2へ進む。そして、前記実施形態1と同様に、ステップS4~ステップS6の処理を実行する。
First, after executing the processing of step S1, the configuration acquisition unit 21 determines whether or not the attachment part 15 is being mounted (S11). If it is determined that the attachment part 15 is being mounted (YES in S11), the offset setting unit 25 applies the offset value for the attachment part 15 if there is an offset value set with the attachment part 15 mounted (S12). ), Go to step S3. On the other hand, if it is determined that it is not attached (NO in S11), the process proceeds directly to step S2. Then, similarly to the first embodiment, the processes of steps S4 to S6 are executed.
以上の処理により、ロボット1は、アタッチメントパーツ15の有無を判定して、モーションを実行する。そして、アタッチメントパーツ15が取り付けられている場合は、取り付けられている場合用のオフセット値を適用し、取り付けられていない場合は取り付けられていない場合用のオフセット値を適用する。これにより、アタッチメントパーツ15が取り付けられている場合も、取り付けられていない場合も適切にオフセット値を適用することができる。
Through the above processing, the robot 1 determines the presence or absence of the attachment part 15 and executes the motion. And when the attachment part 15 is attached, the offset value for the case where it is attached is applied, and when it is not attached, the offset value for the case where it is not attached is applied. Thereby, the offset value can be appropriately applied regardless of whether the attachment part 15 is attached or not attached.
したがって、アタッチメントパーツ15が取り付けられていたために部位間の干渉が発生したにもかかわらず、アタッチメントパーツ15が取り付けられていないときに当該モーションの動作量が変更されるということを防止することができるという効果を奏する。
Accordingly, it is possible to prevent the movement amount of the motion from being changed when the attachment part 15 is not attached, even though interference between the parts occurs because the attachment part 15 is attached. There is an effect.
なお、上記では、アタッチメントパーツ15が装着されているか否か判定し、その結果に応じて処理を進める構成を記載した。これに限られず、例えば、アタッチメントパーツ15の装着の有無をユーザが任意に設定できる構成であってもよい。これにより、自動的に、アタッチメントパーツ15の装着の有無を判定することができない場合でも、アタッチメントパーツ15に対応したオフセット値を設定することができる。なお、オフセット値は、ネットワークまたはメディアを経由してインストールするものであってもよい。
In the above description, a configuration is described in which it is determined whether or not the attachment part 15 is mounted and the process proceeds according to the result. For example, the configuration may be such that the user can arbitrarily set whether or not the attachment part 15 is mounted. Thereby, even when it is not possible to automatically determine whether or not the attachment part 15 is mounted, an offset value corresponding to the attachment part 15 can be set. The offset value may be installed via a network or a medium.
<実施形態3>
本実施形態に係るロボット1について、図8を用いて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 <Embodiment 3>
Therobot 1 according to this embodiment will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
本実施形態に係るロボット1について、図8を用いて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。 <Embodiment 3>
The
<ロボット1の構成>
本実施形態に係るロボット1は、前記実施形態1に係るロボット1と同一の構成を備えているが、駆動部13は直動を行い肘から先の部位全体を伸縮させる点が異なる。 <Configuration ofrobot 1>
Therobot 1 according to the present embodiment has the same configuration as that of the robot 1 according to the first embodiment, except that the drive unit 13 moves linearly and expands and contracts the entire region beyond the elbow.
本実施形態に係るロボット1は、前記実施形態1に係るロボット1と同一の構成を備えているが、駆動部13は直動を行い肘から先の部位全体を伸縮させる点が異なる。 <Configuration of
The
<ロボット1の動作>
本実施形態に係るロボット1が実行する動作の一例について、図8を用いて説明する。図8は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は左腕を上に向けた状態から、左肘から先の部位全体を伸ばすモーションを実行する。 <Operation ofrobot 1>
An example of the operation performed by therobot 1 according to the present embodiment will be described with reference to FIG. FIG. 8 is a schematic diagram illustrating an example of the operation of the robot 1. In the illustrated example, the robot 1 executes a motion of extending the entire part beyond the left elbow from a state where the left arm is directed upward.
本実施形態に係るロボット1が実行する動作の一例について、図8を用いて説明する。図8は、ロボット1の動作の一例を示す模式図である。図示の例において、ロボット1は左腕を上に向けた状態から、左肘から先の部位全体を伸ばすモーションを実行する。 <Operation of
An example of the operation performed by the
例401は、ロボット1が左肘から先の部位全体を伸ばすモーションを実行した場合に、左手が頭部と干渉する場合を示す。ロボット1は、前記各実施形態と同様にして、部位間の干渉が発生したことを検知する。
Example 401 shows a case where the left hand interferes with the head when the robot 1 performs a motion of extending the entire part beyond the left elbow. The robot 1 detects that interference between parts has occurred in the same manner as in the above embodiments.
例402は、例401の後、ロボット1が部位間の干渉を解消し、モーションを実行したことを示す。例401にて干渉検知部24が部位間の干渉が発生したと判定すると、図2の例202と同様にしてオフセット設定部25は、オフセット値を設定し、設定されたオフセット値に基づいて駆動制御部23が駆動部13を駆動させる。図示の例において、オフセット値は駆動部13の直動に対する駆動量、具体的には左肘から先の部位全体を伸ばす量に対して適用される。そして、ロボット1は、オフセット値が適用された後の駆動量で部位を駆動させることにより、モーションの実行を完了する。すなわち、左手が頭部と干渉しない範囲で左肘から先の部位全体を伸ばすように変更されたモーションが実行される。
Example 402 shows that after Example 401, the robot 1 has resolved the interference between the parts and executed the motion. When the interference detection unit 24 determines that the interference between the parts has occurred in the example 401, the offset setting unit 25 sets the offset value and drives based on the set offset value in the same manner as the example 202 of FIG. The control unit 23 drives the drive unit 13. In the example shown in the figure, the offset value is applied to the driving amount for the linear movement of the driving unit 13, specifically, the amount for extending the entire part from the left elbow. Then, the robot 1 completes the execution of the motion by driving the part with the driving amount after the offset value is applied. That is, a motion that is changed so as to extend the entire part from the left elbow to the extent that the left hand does not interfere with the head is executed.
このようにして、本実施形態に係るロボット1は、部位の駆動が直線駆動を含むとき、直線駆動の移動距離が短くなるように、動作量を変更する。したがって、部位の伸縮を含むモーションについて、モーションを実行する際に部位間の干渉を検出すると、該干渉を解消し、モーションの実行を完了させることができる。
In this way, the robot 1 according to the present embodiment changes the amount of movement so that the movement distance of the linear drive is shortened when the drive of the part includes the linear drive. Therefore, if an inter-part interference is detected when executing a motion for a motion including expansion / contraction of the part, the interference can be eliminated and the execution of the motion can be completed.
〔変形例〕
<複数の駆動を含む部位の駆動に対するオフセット値の適用例>
ロボット1が実行するモーションにおいて、一度に駆動する駆動部13の数に制限はない。そのため、複数の駆動部13が同時に駆動するモーションを実行したときに部位間の干渉を検出した場合、複数の駆動部13に対してそれぞれオフセット値を適用する必要がある。本発明の一実施態様に係るロボット1において、複数の駆動部13に対してオフセット値を適用する例について、図9を用いて詳細に説明する。図9は、本発明の一実施態様に係るロボット1が複数の駆動部13にオフセット値を適用する一例を示す模式図である。 [Modification]
<Application example of offset value for driving a part including a plurality of driving>
In the motion executed by therobot 1, there is no limit to the number of driving units 13 that are driven at a time. Therefore, when the interference between the parts is detected when the motions that the plurality of driving units 13 drive simultaneously are performed, it is necessary to apply offset values to the plurality of driving units 13 respectively. An example in which the offset value is applied to the plurality of driving units 13 in the robot 1 according to an embodiment of the present invention will be described in detail with reference to FIG. FIG. 9 is a schematic diagram illustrating an example in which the robot 1 according to an embodiment of the present invention applies offset values to the plurality of driving units 13.
<複数の駆動を含む部位の駆動に対するオフセット値の適用例>
ロボット1が実行するモーションにおいて、一度に駆動する駆動部13の数に制限はない。そのため、複数の駆動部13が同時に駆動するモーションを実行したときに部位間の干渉を検出した場合、複数の駆動部13に対してそれぞれオフセット値を適用する必要がある。本発明の一実施態様に係るロボット1において、複数の駆動部13に対してオフセット値を適用する例について、図9を用いて詳細に説明する。図9は、本発明の一実施態様に係るロボット1が複数の駆動部13にオフセット値を適用する一例を示す模式図である。 [Modification]
<Application example of offset value for driving a part including a plurality of driving>
In the motion executed by the
例501は、2つの駆動部13を含む、ロボット1の一部の部位が初期位置から目標位置まで移動するときの経路を示す。図示の例において、第1駆動部13aは部位全体の回転駆動を行い、第2駆動部13bは回転駆動を受ける部位に設置され、一部の部位について直線駆動を行う。具体的には、第1駆動部13aが駆動させる回転駆動系の中心はロボット1の肩であり、回転駆動系の外周はロボット1の肘である。また、第2駆動部13bはロボット1の肘に配置され、ロボット1の肘から先の部位を直線駆動させる直線駆動系をなし、直線駆動系の端部は、ロボット1の手の先を示す。すなわち、501は、ロボット1が肩を軸として腕全体を回転駆動させつつ、肘から先の部位全体を直線駆動させるモーションを模式的に示している。図示の例において、部位の先端は、直線である経路に沿って、相手物へ向けて駆動する。
Example 501 shows a path when a part of the robot 1 including the two driving units 13 moves from the initial position to the target position. In the illustrated example, the first driving unit 13a performs rotational driving of the entire part, and the second driving unit 13b is installed in a part that receives rotational driving, and performs linear driving for a part of the part. Specifically, the center of the rotational drive system driven by the first drive unit 13 a is the shoulder of the robot 1, and the outer periphery of the rotational drive system is the elbow of the robot 1. The second drive unit 13b is disposed on the elbow of the robot 1 and forms a linear drive system that linearly drives a portion beyond the elbow of the robot 1, and the end of the linear drive system indicates the tip of the hand of the robot 1. . In other words, reference numeral 501 schematically shows a motion in which the robot 1 drives the entire arm around the shoulder while rotating the entire arm linearly. In the example shown in the drawing, the tip of the part is driven toward the opponent along a straight path.
例502は、例501と同一のモーションを実行した際、ロボット1の部位の先端が相手物と干渉したことを模式的に示している。図示の例において、部位の先端は、上から2番目の位置に到達すると相手物と干渉することとなるため、1番上の位置に到達することができない。ロボット1は、干渉を検知すると、その時点における第1駆動部13aおよび第2駆動部13bの状態を記憶する。
Example 502 schematically shows that the tip of the part of the robot 1 interferes with the opponent when the same motion as Example 501 is executed. In the example shown in the drawing, when the tip of the part reaches the second position from the top, it interferes with the opponent, so it cannot reach the top position. When detecting the interference, the robot 1 stores the states of the first drive unit 13a and the second drive unit 13b at that time.
例503は、例502の後、ロボット1の部位の経路に対してオフセット値を適用したことを模式的に示している。すなわち、オフセット設定部25は、例502で設定された直線である経路について、干渉が生じない範囲でモーションの実行を完了するように、第1駆動部13aおよび第2駆動部13bの駆動量にオフセット値をそれぞれ適用する。これにより、部位の先端は、相手物との干渉が発生する直前までの範囲に抑制される。
Example 503 schematically shows that after Example 502, the offset value is applied to the path of the part of the robot 1. That is, the offset setting unit 25 sets the drive amounts of the first drive unit 13a and the second drive unit 13b so that the execution of the motion is completed within a range in which interference does not occur on the route that is a straight line set in the example 502. Apply each offset value. Thereby, the front-end | tip of a site | part is suppressed to the range until just before interference with a counterpart occurs.
本発明の一態様に係るロボット1は、部位間の干渉を検知すると、部位の駆動量に対してオフセット値を適用した後、モーションの実行を完了することができる。なお、オフセット値を適用する必要がなくなった場合は、該オフセット値の適用を解消することが好適である。例えば、故障した部品の修理などにより、該修理の前に適用されたオフセット値が不要となった場合、オフセット値の適用を解消する構成であってもよい。
When the robot 1 according to an aspect of the present invention detects interference between parts, the robot 1 can complete the execution of the motion after applying the offset value to the driving amount of the part. When it is no longer necessary to apply the offset value, it is preferable to eliminate the application of the offset value. For example, when the offset value applied before the repair becomes unnecessary due to the repair of a failed part, the application of the offset value may be eliminated.
〔ソフトウェアによる実現例〕
ロボット1の制御ブロック(特に干渉検知部24およびオフセット設定部25)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control blocks (particularly, theinterference detection unit 24 and the offset setting unit 25) of the robot 1 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). It may be realized by software using
ロボット1の制御ブロック(特に干渉検知部24およびオフセット設定部25)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 [Example of software implementation]
The control blocks (particularly, the
後者の場合、ロボット1は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
In the latter case, the robot 1 includes a CPU that executes instructions of a program that is software that realizes each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or a memory. A device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
〔まとめ〕
本発明の態様1に係るロボット(1)は、所定の動作を行うロボット(1)であって、上記所定の動作として、部位を駆動させる駆動制御部(23)と、上記駆動する部位が自ロボットへ接触したことを検知する検知部(干渉検知部24)と、上記接触を検知したとき、上記所定の動作の動作量を変更する変更部(オフセット設定部25)と、を備える構成である。 [Summary]
A robot (1) according to anaspect 1 of the present invention is a robot (1) that performs a predetermined operation, and the predetermined operation includes a drive control unit (23) that drives a part, and the part that is driven by itself. It is a structure provided with the detection part (interference detection part 24) which detects having contacted the robot, and the change part (offset setting part 25) which changes the operation amount of the said predetermined | prescribed operation | movement when the said contact is detected. .
本発明の態様1に係るロボット(1)は、所定の動作を行うロボット(1)であって、上記所定の動作として、部位を駆動させる駆動制御部(23)と、上記駆動する部位が自ロボットへ接触したことを検知する検知部(干渉検知部24)と、上記接触を検知したとき、上記所定の動作の動作量を変更する変更部(オフセット設定部25)と、を備える構成である。 [Summary]
A robot (1) according to an
上記の構成によれば、ロボットは、所定の動作として部位を駆動中に、当該駆動する部位が自ロボットへ接触したことを検知したとき、該所定の動作の動作量を変更する。これにより同様の動作を行う場合に、部位間の干渉(接触)を解消することができる。したがって、事前に予測できない部位間の干渉を解消できる、利便性の高いロボットを提供することができるという効果を奏する。
According to the above configuration, the robot changes the amount of movement of the predetermined motion when it is detected that the portion to be driven contacts the robot while the portion is driven as the predetermined motion. Thereby, when performing the same operation | movement, the interference (contact) between site | parts can be eliminated. Therefore, there is an effect that it is possible to provide a highly convenient robot that can eliminate interference between parts that cannot be predicted in advance.
本発明の態様2に係るロボット(1)は、上記態様1において、上記駆動する部位と、該部位とは異なる位置との少なくとも2カ所に接触を検知するセンサ(12)を設け、上記検知部(干渉検知部24)は、上記少なくとも2カ所のセンサ(12)を用いて上記接触を検知する構成としてもよい。
The robot (1) according to aspect 2 of the present invention includes the sensor (12) that detects contact in at least two places of the driven part and a position different from the part in the aspect 1, and the detection unit The (interference detection unit 24) may be configured to detect the contact using the at least two sensors (12).
上記の構成によれば、ロボットは、駆動する部位と、該部位とは異なる位置との少なくとも2カ所に設けられた接触を検知するセンサを用いて接触を検知する。そして、駆動する部位と該部位とは異なる位置とにセンサを設けることにより、部位同士が接触したか否かを適切に検知することができる。したがって、1つのセンサのみを用いる場合と比べて、高い精度で接触を検知することができるという効果を奏する。
According to the above configuration, the robot detects the contact using the sensors that detect the contact provided at at least two places, that is, the part to be driven and a position different from the part to be driven. And by providing a sensor in the part to drive and the position different from this part, it can be detected appropriately whether the parts contacted. Therefore, compared with the case where only one sensor is used, there is an effect that contact can be detected with high accuracy.
本発明の態様3に係るロボット(1)は、上記態様1または2において、上記変更部(オフセット設定部25)は、上記検知部(干渉検知部24)が、所定の回数、上記接触を検知した場合、上記所定の動作の動作量を変更する構成としてもよい。
In the robot (1) according to the aspect 3 of the present invention, in the aspect 1 or 2, the change unit (offset setting unit 25) is detected by the detection unit (interference detection unit 24) a predetermined number of times. In this case, the operation amount of the predetermined operation may be changed.
上記の構成によれば、変更部は、検知部が所定の回数、接触を検知した場合、動作量を変更する。これにより、接触の回数が所定の回数に満たない場合は、動作量の変更が行われないので、偶発的に部位間の干渉が発生したときにも動作量が変更されてしまうことを防止することができるという効果を奏する。
According to the above configuration, the changing unit changes the operation amount when the detection unit detects contact for a predetermined number of times. As a result, when the number of times of contact is less than the predetermined number of times, the amount of movement is not changed, so that it is possible to prevent the amount of movement from being changed even when accidental interference occurs between parts. There is an effect that can be.
本発明の態様4に係るロボット(1)は、上記態様1~3の何れかにおいて、上記所定の動作は複数存在し、上記変更部(オフセット設定部25)は、上記複数の所定の動作のうち、接触を検知した所定の動作における動作量を変更する構成としてもよい。
In the robot (1) according to aspect 4 of the present invention, in any one of the aspects 1 to 3, there are a plurality of the predetermined operations, and the changing unit (offset setting unit 25) Among them, a configuration may be adopted in which the operation amount in a predetermined operation in which contact is detected is changed.
上記の構成によれば、所定の動作が複数存在する場合、所定の動作毎に、動作量の変更が行われる。よって、或る所定の動作により部位間の干渉が発生したために、部位間の干渉が発生していない他の所定の動作における動作量が変更されてしまうことを防止することができるという効果を奏する。
According to the above configuration, when there are a plurality of predetermined operations, the operation amount is changed for each predetermined operation. Therefore, there is an effect that it is possible to prevent the amount of movement in another predetermined operation in which interference between parts does not occur from being changed due to the occurrence of interference between parts due to a certain predetermined operation. .
本発明の態様5に係るロボット(1)は、上記態様1~4の何れかにおいて、上記部位には、取り外し可能な部材(アタッチメントパーツ15)を取り付け可能であり、上記部材(アタッチメントパーツ15)の取り付けの有無を判定する判定部(構成取得部21)を備え、上記変更部(オフセット設定部25)は、上記部材(アタッチメントパーツ15)の取り付けの有無により、変更する動作量を異ならせる構成としてもよい。
The robot (1) according to the fifth aspect of the present invention can attach a detachable member (attachment part 15) to the site in any one of the first to fourth aspects. The member (attachment part 15) The determination part (configuration | acquisition acquisition part 21) which determines the presence or absence of attachment of the above-mentioned, The said change part (offset setting part 25) is the structure which changes the operation amount to change with the presence or absence of attachment of the said member (attachment part 15). It is good.
上記の構成によれば、ロボットは、部材の取り付けの有無に基づいて、所定の動作の動作量を異ならせることができる。したがって、部材が取り付けられていたために部位間の干渉が発生したにもかかわらず、部材が取り付けられていないときに当該所定の動作の動作量が変更されるということを防止することができるという効果を奏する。
According to the above configuration, the robot can vary the operation amount of the predetermined operation based on whether or not a member is attached. Therefore, it is possible to prevent the movement amount of the predetermined operation from being changed when the member is not attached, even though interference between the parts occurs because the member is attached. Play.
本発明の態様6に係るロボット(1)は、上記態様1~5の何れかにおいて、上記変更部(オフセット設定部25)は、上記部位の可動距離が短くなるように、上記動作量を変更する構成としてもよい。
In the robot (1) according to aspect 6 of the present invention, in any one of the aspects 1 to 5, the change unit (offset setting unit 25) changes the movement amount so that the movable distance of the part is shortened. It is good also as composition to do.
上記の構成によれば、ロボットは、駆動する部位が自ロボットへ接触したことを検知したとき、所定の動作における部位の可動距離が短くなるように動作量を変更する。したがって、再度、所定の動作を行うときに部位間の干渉が発生してしまうことを防止することができるという効果を奏する。
According to the above configuration, when the robot detects that the part to be driven has come into contact with its own robot, the robot changes the operation amount so that the movable distance of the part in a predetermined operation is shortened. Therefore, there is an effect that it is possible to prevent occurrence of interference between parts when performing a predetermined operation again.
本発明の態様7に係るロボット(1)は、上記態様6において、上記駆動は回転駆動を含み、上記変更部(オフセット設定部25)は、上記回転駆動の回転角度が小さくなるように、上記動作量を変更する構成としてもよい。
In the robot (1) according to aspect 7 of the present invention, in the aspect 6, the driving includes rotational driving, and the changing unit (offset setting unit 25) is configured so that the rotational angle of the rotational driving becomes small. It may be configured to change the operation amount.
上記の構成によれば、ロボットは、回転駆動を含む部位の駆動について、該回転駆動の回転角度が小さくなるように所定の動作の動作量を変更する。したがって、回転駆動を含む部位の駆動を部位間の干渉なく実行することができるという効果を奏する。
According to the above configuration, the robot changes the operation amount of the predetermined operation so that the rotation angle of the rotation drive becomes small with respect to the drive of the part including the rotation drive. Therefore, there is an effect that the driving of the part including the rotational drive can be executed without interference between the parts.
本発明の態様8に係るロボット(1)は、上記態様6または7において、上記駆動は直線駆動を含み、上記変更部(オフセット設定部25)は、上記直線駆動の移動距離が短くなるように、上記動作量を変更する構成としてもよい。
In the robot (1) according to aspect 8 of the present invention, in the aspect 6 or 7, the driving includes linear driving, and the changing unit (offset setting unit 25) is configured so that the moving distance of the linear driving is shortened. The operation amount may be changed.
上記の構成によれば、ロボットは、直線駆動を含む部位の駆動について、該直線駆動の移動距離が短くなるように所定の動作の動作量を変更する。したがって、直線駆動を含む部位の駆動を部位間の干渉なく実行することができるという効果を奏する。
According to the above configuration, the robot changes the operation amount of the predetermined operation so that the movement distance of the linear drive becomes short for the drive of the part including the linear drive. Therefore, there is an effect that the driving of the part including the linear drive can be performed without interference between the parts.
本発明の態様9に係るロボット(1)の制御方法は、所定の動作を行うロボット(1)の制御方法であって、上記所定の動作として、部位を駆動させる駆動制御ステップ(S2)と、上記駆動する部位が自ロボット内へ接触したことを検知する検知ステップ(S3)と、上記接触を検知したとき、上記所定の動作の動作量を変更する変更ステップ(S6)と、を含む。上記の構成によれば、上記の態様1と同様の作用効果を奏する。
The control method of the robot (1) according to the aspect 9 of the present invention is a control method of the robot (1) that performs a predetermined operation, and as the predetermined operation, a drive control step (S2) for driving a part; A detection step (S3) for detecting that the part to be driven has come into contact with the robot is included, and a change step (S6) for changing the amount of the predetermined movement when the contact is detected. According to said structure, there exists an effect similar to said aspect 1. FIG.
本発明の各態様に係るロボット(1)は、コンピュータによって実現してもよく、この場合には、コンピュータを上記ロボット(1)が備える各部(ソフトウェア要素)として動作させることにより上記ロボット(1)をコンピュータにて実現させるロボット(1)の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
The robot (1) according to each aspect of the present invention may be realized by a computer. In this case, the robot (1) is operated by operating the computer as each unit (software element) included in the robot (1). The control program for the robot (1) for realizing the above in a computer and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
1 ロボット 11 記憶部 12 センサ 13 駆動部
14 制御部 21 構成取得部(判定部) 22 目標設定部
23 駆動制御部 24 干渉検知部(検知部)
25 オフセット設定部(変更部) DESCRIPTION OFSYMBOLS 1 Robot 11 Memory | storage part 12 Sensor 13 Drive part 14 Control part 21 Configuration acquisition part (determination part) 22 Target setting part 23 Drive control part 24 Interference detection part (detection part)
25 Offset setting section (change section)
14 制御部 21 構成取得部(判定部) 22 目標設定部
23 駆動制御部 24 干渉検知部(検知部)
25 オフセット設定部(変更部) DESCRIPTION OF
25 Offset setting section (change section)
Claims (10)
- 所定の動作を行うロボットであって、
上記所定の動作として、部位を駆動させる駆動制御部と、
上記駆動する部位が自ロボットへ接触したことを検知する検知部と、
上記接触を検知したとき、上記所定の動作の動作量を変更する変更部と、を備えたロボット。 A robot that performs a predetermined motion,
As the predetermined operation, a drive control unit that drives the site;
A detection unit for detecting that the part to be driven is in contact with the robot;
A robot comprising: a changing unit that changes an amount of the predetermined movement when the contact is detected. - 上記駆動する部位と、該部位とは異なる位置との少なくとも2カ所に接触を検知するセンサを設け、
上記検知部は、上記少なくとも2カ所のセンサを用いて上記接触を検知する
ことを特徴とする請求項1に記載のロボット。 A sensor for detecting contact is provided in at least two places, the part to be driven and a position different from the part,
The robot according to claim 1, wherein the detection unit detects the contact using the at least two sensors. - 上記変更部は、上記検知部が、所定の回数、上記接触を検知した場合、上記所定の動作の動作量を変更することを特徴とする請求項1または2に記載のロボット。 The robot according to claim 1 or 2, wherein the changing unit changes an operation amount of the predetermined operation when the detecting unit detects the contact a predetermined number of times.
- 上記所定の動作は複数存在し、
上記変更部は、上記複数の所定の動作のうち、接触を検知した所定の動作における動作量を変更する
ことを特徴とする請求項1~3のいずれか1項に記載のロボット。 There are a plurality of the predetermined operations,
The robot according to any one of claims 1 to 3, wherein the changing unit changes an operation amount in a predetermined operation in which contact is detected among the plurality of predetermined operations. - 上記部位には、取り外し可能な部材を取り付け可能であり、
上記部材の取り付けの有無を判定する判定部を備え、
上記変更部は、上記部材の取り付けの有無により、変更する動作量を異ならせる
ことを特徴とする請求項1~4のいずれか1項に記載のロボット。 A removable member can be attached to the part,
A determination unit for determining whether or not the member is attached;
The robot according to any one of claims 1 to 4, wherein the changing unit changes a movement amount to be changed depending on whether or not the member is attached. - 上記変更部は、上記部位の可動距離が短くなるように、上記動作量を変更する
ことを特徴とする請求項1~5のいずれか1項に記載のロボット。 The robot according to any one of claims 1 to 5, wherein the changing unit changes the movement amount so that a movable distance of the part is shortened. - 上記駆動は回転駆動を含み、
上記変更部は、上記回転駆動の回転角度が小さくなるように上記動作量を変更する
ことを特徴とする請求項6に記載のロボット。 The drive includes a rotational drive,
The robot according to claim 6, wherein the changing unit changes the movement amount so that a rotation angle of the rotation drive is reduced. - 上記駆動は直線駆動を含み、
上記変更部は、上記直線駆動の移動距離が短くなるように上記動作量を変更する
ことを特徴とする請求項6または7に記載のロボット。 The drive includes a linear drive,
The robot according to claim 6 or 7, wherein the changing unit changes the movement amount so that a moving distance of the linear drive is shortened. - 所定の動作を行うロボットの制御方法であって、
上記所定の動作として、部位を駆動させる駆動制御ステップと、
上記駆動する部位が自ロボットへ接触したことを検知する検知ステップと、
上記接触を検知したとき、上記所定の動作の動作量を変更する変更ステップと、を含むロボットの制御方法。 A control method for a robot that performs a predetermined operation,
As the predetermined operation, a drive control step for driving the part;
A detection step of detecting that the driven part has contacted the robot;
A change step of changing the amount of movement of the predetermined movement when the contact is detected. - 請求項1に記載のロボットとしてコンピュータを機能させるための制御プログラムであって、上記駆動制御部、および上記変更部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the robot according to claim 1, wherein the control program causes the computer to function as the drive control unit and the change unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018535466A JP6633209B2 (en) | 2016-08-26 | 2017-06-06 | Robot, robot control method, and control program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016166316 | 2016-08-26 | ||
JP2016-166316 | 2016-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037662A1 true WO2018037662A1 (en) | 2018-03-01 |
Family
ID=61245778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020972 WO2018037662A1 (en) | 2016-08-26 | 2017-06-06 | Robot, robot control method, and control program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6633209B2 (en) |
WO (1) | WO2018037662A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7479321B2 (en) | 2021-03-26 | 2024-05-08 | 日立Geニュークリア・エナジー株式会社 | Learning device, trajectory generator and manipulator system |
JP7484376B2 (en) | 2020-04-22 | 2024-05-16 | セイコーエプソン株式会社 | ROBOT SYSTEM AND ROBOT CONTROL METHOD |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001239479A (en) * | 1999-12-24 | 2001-09-04 | Sony Corp | Leg type mobile robot and exterior module for robot |
JP2004283954A (en) * | 2003-03-20 | 2004-10-14 | Sony Corp | Robot device and its operation control method |
JP2005007501A (en) * | 2003-06-17 | 2005-01-13 | Sony Corp | Robot device and its motion control method |
JP2005040913A (en) * | 2003-07-24 | 2005-02-17 | Sony Corp | Robot device and method of controlling motion thereof |
JP2015520041A (en) * | 2012-06-21 | 2015-07-16 | リシンク ロボティクス インコーポレイテッド | User interface for robot training |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191276A (en) * | 1999-10-29 | 2001-07-17 | Sony Corp | Robot system, robot device and exterior thereof |
US8396595B2 (en) * | 2007-11-01 | 2013-03-12 | Honda Motor Co., Ltd. | Real-time self collision and obstacle avoidance using weighting matrix |
JP2009113147A (en) * | 2007-11-06 | 2009-05-28 | Toyota Motor Corp | Robot and robot control method |
DE102008016604B4 (en) * | 2008-04-01 | 2014-07-17 | Kuka Laboratories Gmbh | Method and device for self-collision monitoring of a manipulator |
-
2017
- 2017-06-06 WO PCT/JP2017/020972 patent/WO2018037662A1/en active Application Filing
- 2017-06-06 JP JP2018535466A patent/JP6633209B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001239479A (en) * | 1999-12-24 | 2001-09-04 | Sony Corp | Leg type mobile robot and exterior module for robot |
JP2004283954A (en) * | 2003-03-20 | 2004-10-14 | Sony Corp | Robot device and its operation control method |
JP2005007501A (en) * | 2003-06-17 | 2005-01-13 | Sony Corp | Robot device and its motion control method |
JP2005040913A (en) * | 2003-07-24 | 2005-02-17 | Sony Corp | Robot device and method of controlling motion thereof |
JP2015520041A (en) * | 2012-06-21 | 2015-07-16 | リシンク ロボティクス インコーポレイテッド | User interface for robot training |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7484376B2 (en) | 2020-04-22 | 2024-05-16 | セイコーエプソン株式会社 | ROBOT SYSTEM AND ROBOT CONTROL METHOD |
JP7479321B2 (en) | 2021-03-26 | 2024-05-08 | 日立Geニュークリア・エナジー株式会社 | Learning device, trajectory generator and manipulator system |
Also Published As
Publication number | Publication date |
---|---|
JP6633209B2 (en) | 2020-01-22 |
JPWO2018037662A1 (en) | 2019-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9579798B2 (en) | Human collaborative robot system | |
JP6591818B2 (en) | Industrial robot system and control method thereof | |
JP6238021B2 (en) | ROBOT, ROBOT CONTROL DEVICE AND CONTROL METHOD, AND ROBOT CONTROL PROGRAM | |
JP6392825B2 (en) | Robot controller with learning control function | |
CN109968377B (en) | Robot control system and method for controlling robot | |
JP6484265B2 (en) | Robot system having learning control function and learning control method | |
US8489238B2 (en) | Robot control apparatus | |
WO2013027250A1 (en) | Robot system, robot, and robot control device | |
WO2018037662A1 (en) | Robot, robot control method, and control program | |
JP2019209407A (en) | Robot, control device, and control method of the robot | |
CN106272408A (en) | The method that the controller of robot is switched to manual guidance operational mode | |
CN110919627B (en) | Robot control method and control device | |
JP6386516B2 (en) | Robot device with learning function | |
JP6464205B2 (en) | Robot controller | |
US9120226B2 (en) | System and method for remotely positioning an end effector | |
KR102113544B1 (en) | Robot and robot operating method | |
JP6137379B2 (en) | Robot equipment | |
JP6447141B2 (en) | Robot emergency stop method, robot control device | |
JP2006341372A (en) | Method for controlling robot | |
JP3911258B2 (en) | Method of controlling drive device by control device and control device | |
JP6678034B2 (en) | Operation control system and operation control method | |
JP2019105967A5 (en) | ||
WO2016068346A1 (en) | Robot, control method for robot, and program | |
JP7160737B2 (en) | machine controller | |
WO2020250788A1 (en) | Direct teaching device and direct teaching method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018535466 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843150 Country of ref document: EP Kind code of ref document: A1 |