[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018030198A1 - 光硬化性組成物及び半導体装置の製造方法 - Google Patents

光硬化性組成物及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2018030198A1
WO2018030198A1 PCT/JP2017/027727 JP2017027727W WO2018030198A1 WO 2018030198 A1 WO2018030198 A1 WO 2018030198A1 JP 2017027727 W JP2017027727 W JP 2017027727W WO 2018030198 A1 WO2018030198 A1 WO 2018030198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photocurable composition
compound
nitrogen
photodegradable
Prior art date
Application number
PCT/JP2017/027727
Other languages
English (en)
French (fr)
Inventor
光 徳永
貴文 遠藤
橋本 圭祐
坂本 力丸
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US16/324,483 priority Critical patent/US11681223B2/en
Priority to CN201780047436.8A priority patent/CN109563234B/zh
Priority to KR1020187035933A priority patent/KR102419523B1/ko
Priority to JP2018532945A priority patent/JP7070837B2/ja
Publication of WO2018030198A1 publication Critical patent/WO2018030198A1/ja
Priority to US18/128,503 priority patent/US12147158B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1483Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/0275Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with dithiol or polysulfide compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a photocurable composition using a photocrosslinkable compound and a method for manufacturing a semiconductor device using the composition.
  • a method of forming a planarizing film, for example, a resist underlayer film formed under a resist by photocuring is disclosed.
  • Resist underlayer film-forming composition comprising a polymer having an epoxy group or oxetane group in the side chain and a photocationic polymerization initiator, or a resist comprising a polymer having an ethylenically unsaturated bond capable of radical polymerization and a photoradical polymerization initiator
  • An underlayer film forming composition is disclosed (see Patent Document 1).
  • a resist underlayer film forming composition comprising a silicon-based compound having a reactive group capable of cationic polymerization such as an epoxy group and a vinyl group, a cationic photopolymerization initiator, and a radical photopolymerization initiator is disclosed ( Patent Document 2).
  • a semiconductor device manufacturing method using a resist underlayer film containing a polymer having a crosslinkable functional group (for example, a hydroxyl group) in a side chain, a crosslinking agent, and a photoacid generator is disclosed (see Patent Document 3).
  • a resist underlayer film having an unsaturated bond in the main chain or side chain is disclosed (see Patent Documents 4 and 5).
  • a pattern formed on a substrate for example, Since the cross-linking reaction proceeds and the viscosity rises at the time of heating to fill the hole or trench structure, the filling property to the pattern becomes a problem.
  • the present invention is a photocurable composition in which the crosslinking reaction does not proceed and the viscosity does not increase until photoirradiation is started so that a crosslinking group is generated by photolysis, and the filling property to the substrate pattern and the covering property of the substrate are stable. The purpose is to provide goods.
  • a photocurable composition comprising a compound containing at least one photodegradable nitrogen-containing structure and / or photodegradable sulfur-containing structure and a hydrocarbon structure, and a solvent
  • the compound is a photocurable composition according to the first aspect, which is a compound having one or more photodegradable nitrogen-containing structures and / or photodegradable sulfur-containing structures in the molecule
  • the compound is a compound in which a photodegradable nitrogen-containing structure and / or a photodegradable sulfur-containing structure and a hydrocarbon structure are present in the same molecule, or a molecule having a different structure.
  • the photocurable composition according to the first aspect which is a combination of compounds present
  • the hydrocarbon structure is a saturated or unsaturated group having 1 to 40 carbon atoms, and is a linear, branched or cyclic hydrocarbon group.
  • the photodegradable nitrogen-containing structure is a structure that generates a reactive nitrogen-containing functional group or a reactive carbon-containing functional group by ultraviolet irradiation, or a reactive nitrogen-containing functional group generated by ultraviolet irradiation or
  • the photodegradable nitrogen-containing structure is a photodegradable nitrogen-containing structure which may contain a sulfur atom, and the structure is an azide structure, a tetraazole structure, a triazole structure, an imidazole structure, or a pyrazole structure.
  • a photocurable composition according to the fifth aspect which is a structure containing an azole structure, a diazo structure, or a combination thereof
  • the photodegradable sulfur-containing structure is a structure that generates an organic sulfur radical or a carbon radical by ultraviolet irradiation, or a structure that includes an organic sulfur radical or a carbon radical generated by ultraviolet irradiation.
  • the photodegradable sulfur-containing structure is a photodegradable sulfur-containing structure which may contain a nitrogen atom, and the structure is a trisulfide structure, a disulfide structure, a sulfide structure, a thioketone structure, a thiophene structure,
  • the photocurable composition according to the seventh aspect which is a structure containing a thiol structure or a combination thereof,
  • the compound is produced by an addition reaction between a carboxylic acid (carboxyl group) -containing compound, a hydroxyl group-containing compound, an amine (amino group) -containing compound, or a thiol group-containing compound and an epoxy compound.
  • the photodegradable nitrogen-containing structure and / or the photodegradable sulfur-containing structure is contained in one substrate and the other substrate contains a hydrocarbon structure, or the photodegradable nitrogen-containing structure and / or light
  • the decomposable sulfur-containing structure and the hydrocarbon structure are contained in one substrate and the other substrate contains or does not contain these structures, according to any one of the first to eighth aspects.
  • a photocurable composition As a tenth aspect, in any one of the first to ninth aspects, the content ratio of the compound is 30 to 100% by mass based on the mass of the solid content obtained by removing the solvent from the photocurable composition.
  • the photocurable composition according to the description As an eleventh aspect, the photocurable composition according to any one of the first to tenth aspects, in which the photocurable composition is a photocurable resist underlayer film forming composition used in a lithography process for manufacturing a semiconductor device. Sex composition, As a twelfth aspect, the photocurable composition according to any one of the first to eleventh aspects, in which the photocurable composition is a photocurable stepped substrate coating composition used in a lithography process for manufacturing a semiconductor device.
  • a step (i) of applying the photocurable composition according to any one of the first to twelfth aspects on a substrate, and a step of exposing the applied photocurable composition (a method for producing a coated substrate comprising ii)
  • a fourteenth aspect according to the thirteenth aspect, including the step (ia) of heating the applied photocurable composition after the step (i) at a temperature of 70 to 400 ° C. for 10 seconds to 5 minutes.
  • the manufacturing method according to the thirteenth aspect or the fourteenth aspect wherein the exposure wavelength of the exposure light in the step (ii) is 150 nm to 248 nm
  • a method of manufacturing according to any one of the thirteenth aspect to the fifteenth aspect exposure amount of the exposure light is 10 mJ / cm 2 to 3000 mJ / cm 2 step (ii)
  • a step of applying the photocurable composition according to any one of the first to twelfth aspects on a semiconductor substrate and then exposing to form a lower layer film, on the lower layer film A step of forming a resist film, a step of forming a resist pattern by light and electron beam irradiation and development, a step of etching the lower layer film with the resist pattern, and a step of processing the semiconductor substrate with the patterned lower layer film
  • a method of manufacturing a semiconductor device including As an eighteenth aspect, a step of applying the photocurable composition according to the thirteenth aspect or the fourteenth aspect, wherein the exposure wavelength of the exposure
  • the present invention is a photocurable composition containing a compound containing at least one photodegradable nitrogen-containing structure and / or photodegradable sulfur-containing structure and a hydrocarbon structure.
  • the photodegradable nitrogen-containing structure generates a structure containing a reactive nitrogen-containing functional group (nitrene group) or a reactive carbon-containing functional group (carbene group) by generating nitrogen gas by light irradiation.
  • the photodegradable nitrogen-containing structure may generate a structure containing a reactive nitrogen-containing functional group (nitrene group) or a reactive carbon-containing functional group (carbene group) by generation of nitrogen gas by light irradiation.
  • the reactive nitrogen-containing functional group is also referred to as a nitrene group.
  • the reactive nitrogen-containing functional group reacts with an alkene or benzene ring to form an aziridine ring or the like, and crosslinking proceeds.
  • the nitrene group causes an insertion reaction at the C—H bond and C—C bond to form a crosslinked structure. Furthermore, formation of a crosslinked structure by formation of an azo compound between nitrene groups and formation of a radical-reactive crosslinked structure by extraction of a hydrogen atom from a hydrocarbon group by the nitrene group proceed.
  • a photocured product is generated by a concerted reaction for forming various cross-linked structures by reactive nitrogen-containing functional groups generated by light irradiation to the photodegradable nitrogen-containing structure and reactive carbon-containing functional groups.
  • the photodegradable sulfur-containing structure generates a structure containing organic sulfur radicals (thiyl radicals) or carbon radicals that are cleaved by light irradiation.
  • organic sulfur radicals thiyl radicals
  • carbon radicals that are cleaved by light irradiation.
  • formation of a radical-reactive cross-linked structure by drawing out hydrogen atoms from the hydrocarbon group proceeds.
  • formation of a crosslinked structure proceeds by coupling reaction of these radicals.
  • a photocured product is generated by a concerted reaction for forming various cross-linked structures by a structure containing an organic sulfur radical or a carbon radical generated by light irradiation of the photodegradable sulfur-containing structure.
  • the photocurable composition of the present invention can be used as a stepped substrate coating composition.
  • a stepped substrate coating composition is applied onto a substrate and optionally filled into a pattern by reflowing by heating.
  • the viscosity of the stepped substrate coating composition does not have a thermal crosslinking site or an acid catalyst.
  • the open area non-pattern area
  • this invention can provide the photocurable composition with which the filling property to the pattern of a board
  • the present invention is a photocurable composition
  • a photocurable composition comprising a compound containing at least one photodegradable nitrogen-containing structure and / or photodegradable sulfur-containing structure and a hydrocarbon structure, and a solvent.
  • the solid content of the composition is 0.1 to 70% by weight, or 0.1 to 60% by weight, or 0.2 to 30% by weight, or 0.3 to 15% by weight. Solid content is the content rate of all the components remove
  • the above compound can be contained in the solid content in a proportion of 30 to 100% by mass, or 50 to 100% by mass, or 70 to 100% by mass, or 70 to 99% by mass.
  • the compound used in the present invention has an average molecular weight of 200 to 1,000,000, or 300 to 1,000,000, or 600 to 1,000,000, or 600 to 200,000, or 1500 to 15,000.
  • the compound can be a compound having one or more, or two or more photodegradable nitrogen-containing structures and / or photodegradable sulfur-containing structures in the molecule.
  • the compound can have two or more decomposable structures in the molecule, but when the intensity of irradiation light is high, it can be photocured by having one or more decomposable structures in the molecule. can do.
  • the photodecomposable nitrogen-containing structure and / or the photodegradable sulfur-containing structure and the hydrocarbon structure are compounds existing in the same molecule, or a combination of compounds in which the structure exists in different molecules. There are cases.
  • the photodegradable nitrogen-containing structure includes a structure that generates a reactive nitrogen-containing functional group or a reactive carbon-containing functional group by ultraviolet irradiation, or a structure that includes a reactive nitrogen-containing functional group or a reactive carbon-containing functional group generated by ultraviolet irradiation. can do.
  • the photodegradable nitrogen-containing structure can be a structure containing a reactive nitrogen-containing functional group or a reactive carbon-containing functional group generated with denitrification gas by ultraviolet irradiation.
  • photodegradable nitrogen-containing structures are photodegradable nitrogen-containing structures which may contain a sulfur atom, and the structures include, for example, an azide structure, a tetraazole structure, a triazole structure, an imidazole structure, a pyrazole structure, an azole.
  • a structure including a structure, a diazo structure, or a combination thereof can be given.
  • This photodegradable nitrogen-containing structure may contain a sulfur atom in the structure or an adjacent portion, and the sulfur atom is a sulfur atom as a hetero atom or a sulfur atom contained in the photodegradable sulfur-containing structure. May be.
  • the photodegradable nitrogen-containing structure may be a structure in which a part of carbon atoms in or adjacent to the structure is replaced with a sulfur atom, and the sulfur atom is a photodegradable sulfur-containing structure. It may be a sulfur atom contained in the structure or a part adjacent to the structure as a part of the structure.
  • the photodegradable sulfur-containing structure may be a structure that generates an organic sulfur radical or a carbon radical by ultraviolet irradiation, or a structure that includes an organic sulfur radical or a carbon radical generated by ultraviolet irradiation.
  • These photodegradable sulfur-containing structures are photodegradable sulfur-containing structures which may contain nitrogen atoms, and the structures are, for example, trisulfide structures, disulfide structures, sulfide structures, thioketone structures, thiophene structures, thiols.
  • a structure including a structure or a combination thereof can be given.
  • This photodegradable sulfur-containing structure may contain a nitrogen atom in the structure or an adjacent portion, and the nitrogen atom is a nitrogen atom as a hetero atom or a nitrogen atom contained in the photodegradable nitrogen-containing structure. May be.
  • the photodegradable sulfur-containing structure may be a structure in which a part of carbon atoms in the structure or adjacent to the structure is substituted with a nitrogen atom, and the nitrogen atom is a photodegradable nitrogen-containing structure. Or a nitrogen atom contained in the structure or a part adjacent to the structure.
  • the hydrocarbon structure contained in the compound used in the present invention is a saturated or unsaturated group having 1 to 40 carbon atoms, and includes a linear, branched or cyclic hydrocarbon group. These hydrocarbon groups can be substituted or unsubstituted hydrocarbon groups, and can be introduced into the terminal, side chain, or main chain of the compound. Examples of this hydrocarbon group include chemical groups corresponding to alkyl groups, alkenyl groups, and aryl groups.
  • the alkyl group, alkenyl group, and aryl group may contain an amide group, an epoxy group, an ether group, an ester group, a hydroxyl group, an amino group, or a thiol group.
  • Examples of the alkyl group having 1 to 40 carbon atoms include an alkyl group having 1 to 10 carbon atoms, and include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, and an n-butyl group.
  • alkenyl group having 2 to 40 carbon atoms examples include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methyl-1-ethenyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • Examples of the aryl group having 6 to 40 carbon atoms include an aryl group having 6 to 40 carbon atoms, and include a phenyl group, a biphenyl group, a terphenylene group, a fluorene group, a naphthyl group, an anthryl group, a pyrene group, and a carbazole. Groups and the like.
  • the said compound may produce
  • a carboxylic acid (carboxyl group) containing compound a hydroxyl group containing compound, an amine (amino group) containing compound, or a thiol group containing compound, and an epoxy compound.
  • the photodegradable nitrogen-containing structure and / or the photodecomposable sulfur-containing structure is included in one substrate and the hydrocarbon structure is included in the other substrate, or the photodegradable structure is included. Examples include a case where a sex structure and a hydrocarbon structure are contained in one substrate and those structures are contained or not contained in the other substrate.
  • Carboxylic acid-containing compounds, hydroxyl group-containing compounds, amine-containing compounds, and thiol-containing compounds include, for example, 4-azidobenzoic acid, 4-azidophenol, 1H-tetraazole-1-acetic acid, 1H-tetraazole-1-methanol, Examples include triazole acetic acid, triazole methanol, DL-alpha-lipoic acid, xanthan hydride, 1,3,4-thiadiazole-2-thiol, trimethylthiourea and the like.
  • the epoxy compound examples include compounds such as benzene and naphthalene containing an epoxy group or a glycidyl group, and can be obtained by reaction of phenol or naphthol with epichlorohydrin.
  • An aliphatic epoxy compound can also be used.
  • the epoxy compound includes an epoxy compound represented by the following formula.
  • Formula (B-1) can be obtained from DIC Corporation under the trade name EPICLON HP-5000.
  • Formula (B-2) can be obtained from Nippon Kayaku Co., Ltd. under the trade name EPPN-501H.
  • Formula (B-3) is available from Asahi Kasei Epoxy Corporation under the trade name ECN-1229.
  • Formula (B-4) can be obtained from Nippon Kayaku Co., Ltd. under the trade name EPPN-501H.
  • Formula (B-5) can be obtained from Nippon Kayaku Co., Ltd. under the trade name NC-2000L.
  • Formula (B-6) can be obtained from Nippon Kayaku Co., Ltd. under the trade name NC-3000L.
  • Formula (B-7) can be obtained from Nippon Kayaku Co., Ltd.
  • Formula (B-8) can be obtained from Nippon Kayaku Co., Ltd. under the trade name NC-7300L.
  • Formula (B-9) can be obtained from Nippon Kayaku Co., Ltd. under the trade name NC-3500.
  • Formula (B-10) can be obtained from DIC Corporation under the trade name HP-7200L.
  • Formula (B-11) can be obtained from Daicel Corporation under the trade name EHPE-3150.
  • Formula (B-12) can be obtained from DIC Corporation under the trade name EPICLON HP-4700.
  • Formula (B-13) can be obtained from Asahi Organic Materials Co., Ltd. under the trade name TEP-G.
  • Formula (B-15) can be obtained from Nissan Chemical Industries, Ltd. under the trade name TEPIC-SS.
  • Formula (B-16) can be obtained from Nagase Chemtech Co., Ltd. under the trade name EX-411.
  • Formula (B-17) can be obtained from Nagase Chemtech Co., Ltd. under the trade name EX-521.
  • Formula (B-18) can be obtained from Nippon Steel & Sumikin Chemical Co., Ltd. under the trade name YH-434L.
  • Formula (B-19) can be obtained from Nagase Chemtech Co., Ltd. under the trade name EX-711.
  • Formula (B-20) can be obtained from DIC Corporation under the trade name YD-4032D.
  • Formula (B-21) can be obtained from DIC Corporation under the trade name HP-4770.
  • Formula (B-22) can be obtained from Nippon Steel & Sumikin Chemical Co., Ltd. under the trade name YH-434L.
  • Formula (B-23) is available as a reagent.
  • Formula (B-24) can be obtained from Nippon Kayaku Co., Ltd. under the trade name RE-810NM.
  • Formula (B-25) can be obtained from Nippon Kayaku Co., Ltd. under the trade name FAE-2500.
  • Formula (B-26) can be obtained from Nippon Kayaku Co., Ltd. under the trade name NC-6000. Also, trade name EPICLON HP-6000 (epoxy value 244 g / eq.) Manufactured by DIC Corporation can be used.
  • the addition reaction between a carboxylic acid (carboxyl group) -containing compound, a hydroxyl group-containing compound, an amine (amino group) -containing compound, or a thiol group-containing compound and an epoxy compound can be performed in a solvent in the presence of a catalyst.
  • the catalyst include amines and salts thereof, imidazoles and salts thereof, phosphines and salts thereof, urea and sulfonium salts, and examples thereof include the following.
  • Examples of amines and ammonium salts include formula (C-1) and formula (D-1): (Wherein m represents an integer of 2 to 11, n represents an integer of 2 to 3, R 21 represents an alkyl group or an aryl group, and Y ⁇ represents an anion), an amine or a quaternary ammonium salt , Formula (C-2), Formula (D-2): (Wherein R 22 , R 23 , R 24 and R 25 represent an alkyl group or an aryl group, N represents a nitrogen atom, Y ⁇ represents an anion, and R 22 , R 23 , R 24 and R 25 represent Each of which is bonded to a nitrogen atom by a CN bond), a quaternary ammonium salt, Formula (C-3), Formula (D-3): An amine having a structure (wherein R 26 and R 27 represent an alkyl group or an aryl group, and Y ⁇ represents an anion), a quaternary ammonium salt, Formula (C-4), Formula
  • Examples of the phosphine and phosphonium salt include formulas (C-7) and (D-7): (However, R 31 , R 32 , R 33 , and R 34 represent an alkyl group or an aryl group, P represents a phosphorus atom, Y ⁇ represents an anion, and R 31 , R 32 , R 33 , and R 34) Are each bonded to a phosphorus atom by a CP bond), and phosphine and quaternary phosphonium salts.
  • Examples of sulfides and sulfonium salts include formula (C-7) and formula (D-8): (However, R 35 , R 36 , and R 37 are alkyl groups or aryl groups, S is a sulfur atom, Y ⁇ is an anion, and R 35 , R 36 , and R 37 are CS bonds, respectively. Is a sulfide or a tertiary sulfonium salt which is bound to a sulfur atom.
  • the compound of the above formula (D-1) is a quaternary ammonium salt derived from an amine, m represents an integer of 2 to 11, and n represents an integer of 2 to 3.
  • R 21 of this quaternary ammonium salt represents an alkyl group or aryl group having 1 to 18 carbon atoms, preferably 2 to 10 carbon atoms, such as a linear alkyl group such as an ethyl group, a propyl group or a butyl group, a benzyl group, or the like. Cyclohexyl group, cyclohexylmethyl group, dicyclopentadienyl group and the like.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • the compound of the above formula (D-2) is a quaternary ammonium salt represented by R 22 R 23 R 24 R 25 N + Y ⁇ .
  • R 22 , R 23 , R 24 and R 25 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom by a Si—C bond.
  • Anions (Y ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ), An acid group such as alcoholate (—O ⁇ ) can be mentioned.
  • This quaternary ammonium salt can be obtained commercially, for example, tetramethylammonium acetate, tetrabutylammonium acetate, triethylbenzylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzyl chloride. Examples include ammonium and trimethylbenzylammonium chloride.
  • the compound of the above formula (D-3) is a quaternary ammonium salt derived from 1-substituted imidazole, R 26 and R 27 have 1 to 18 carbon atoms, and R 26 and R 27 carbon atoms. Is preferably 7 or more.
  • R 26 can be exemplified by methyl group, ethyl group, propyl group, phenyl group and benzyl group
  • R 27 can be exemplified by benzyl group, octyl group and octadecyl group.
  • Anions (Y ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ), An acid group such as alcoholate (—O ⁇ ) can be mentioned.
  • This compound can be obtained as a commercial product.
  • imidazole compounds such as 1-methylimidazole and 1-benzylimidazole are reacted with alkyl halides and aryl halides such as benzyl bromide and methyl bromide. Can be manufactured.
  • the compound of the above formula (D-4) is a quaternary ammonium salt derived from pyridine
  • R 28 is an alkyl or aryl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms,
  • a butyl group, an octyl group, a benzyl group, and a lauryl group can be exemplified.
  • Anions (Y ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ), An acid group such as alcoholate (—O ⁇ ) can be mentioned.
  • this compound can be obtained as a commercial product, it is produced, for example, by reacting pyridine with an alkyl halide such as lauryl chloride, benzyl chloride, benzyl bromide, methyl bromide, octyl bromide, or an aryl halide. I can do it. Examples of this compound include N-laurylpyridinium chloride and N-benzylpyridinium bromide.
  • the compound of the above formula (D-5) is a quaternary ammonium salt derived from a substituted pyridine represented by picoline and the like, and R 29 is an alkyl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms.
  • the aryl group include a methyl group, an octyl group, a lauryl group, and a benzyl group.
  • R 30 is an alkyl group having 1 to 18 carbon atoms or an aryl group. For example, in the case of quaternary ammonium derived from picoline, R 30 is a methyl group.
  • Anions (Y ⁇ ) are halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ), An acid group such as alcoholate (—O ⁇ ) can be mentioned.
  • This compound can also be obtained as a commercial product. For example, a substituted pyridine such as picoline is reacted with an alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide. Can be manufactured.
  • the compound of the above formula (D-6) is a tertiary ammonium salt derived from an amine, m represents an integer of 2 to 11, and n represents an integer of 2 to 3.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • the compound of the above formula (D-7) is a quaternary phosphonium salt having a structure of R 31 R 32 R 33 R 34 P + Y — .
  • R 31 , R 32 , R 33 , and R 34 are an alkyl group or aryl group having 1 to 18 carbon atoms, or a silane compound bonded to a silicon atom through a Si—C bond, preferably R 31 to R Among the four substituents of 34 , three are phenyl groups or substituted phenyl groups, and examples thereof include phenyl groups and tolyl groups, and the remaining one is an alkyl group having 1 to 18 carbon atoms, A silane compound bonded to a silicon atom by an aryl group or Si—C bond.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • This compound can be obtained as a commercial product, for example, a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
  • Triphenylmonoalkylphosphonium halides such as phosphonium, triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylbenzylphosphonium halide, tetraphenylphosphonium halide, tritolylmonoarylphosphonium halide, or tritolyl monohalogenate Examples thereof include alkylphosphonium (the halogen atom is a chlorine atom or a bromine atom).
  • halogens such as triphenylmonoalkylphosphonium halides such as triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylmonoarylphosphonium halides such as triphenylbenzylphosphonium halide, and halogens such as tritolylmonophenylphosphonium halide.
  • Preferred is a tolylyl monoarylphosphonium halide, or a tolyl monoalkylphosphonium halide such as a tolyl monomethylphosphonium halide (the halogen atom is a chlorine atom or a bromine atom).
  • the phosphines include methylphosphine, ethylphosphine, propylphosphine, isopropylphosphine, isobutylphosphine, phenylphosphine and other first phosphine, dimethylphosphine, diethylphosphine, diisopropylphosphine, diisoamylphosphine, diphenylphosphine and other second phosphine.
  • tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine, and dimethylphenylphosphine.
  • the compound of the above formula (D-8) is a tertiary sulfonium salt having a structure of R 35 R 36 R 37 S + Y — .
  • R 35 , R 36 , and R 37 are alkyl or aryl groups having 1 to 18 carbon atoms, or silane compounds bonded to silicon atoms through Si—C bonds, preferably 4 of R 35 to R 37 .
  • Three of the substituents are phenyl groups or substituted phenyl groups, and examples thereof include phenyl groups and tolyl groups, and the remaining one is an alkyl group having 1 to 18 carbon atoms or an aryl group. It is.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ), maleate anion, and nitrate anion. This compound is available as a commercial product.
  • halogenated tetraalkylsulfonium such as tri-n-butylsulfonium halide and tri-n-propylsulfonium halide
  • trialkylbenzyl halide such as diethylbenzylsulfonium halide.
  • Halogenated diphenylmonoalkylsulfonium such as sulfonium, halogenated diphenylmethylsulfonium, halogenated diphenylethylsulfonium, halogenated triphenylsulfonium, (halogen atom is chlorine or bromine atom), tri-n-butylsulfonium carboxylate, tri-n- Tetraalkylphosphonium carboxylates such as propylsulfonium carboxylate and trialkylbenzines such as diethylbenzylsulfonium carboxylate Sulfonium carboxylate, diphenylmethyl sulfonium carboxylate, diphenyl monoalkyl sulfonium carboxylate, triphenylsulfonium carboxylate such as diphenylethyl sulfonium carboxylate. Further, triphenylsulfonium halide and triphenylsulfonium carboxylate can
  • the catalyst used for the synthesis of the compound used in the present invention is 0.01 to 10 parts by mass, or 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the solid content of the epoxy compound. Part.
  • Examples of the solvent used in the reaction include alcohol solvents, acetate solvents, cyclohexanone, N-methylpyrrolidone, amide solvents and the like.
  • the compound used for this invention can be illustrated below, for example.
  • the photocurable composition of the present invention can contain a surfactant.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene Polyoxyethylene alkyl aryl ethers such as ethylene nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan Sorbitan fatty acid esters such as tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as rubitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxy
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co.
  • One kind selected from these surfactants may be added, or two or more kinds may be added in combination.
  • the content of the surfactant is, for example, 0.01% by mass to 5% by mass with respect to the solid content of the photocurable composition of the present invention excluding the solvent described later.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, methyl cellosolve acetate, Ethyl cellosolve acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monobutyl ether Ter, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol propyl ether acetate, di
  • a planarization film forming method using the photocurable composition of the present invention as a stepped substrate coating composition will be described.
  • a substrate eg, a transparent substrate such as a silicon / silicon dioxide coating, a glass substrate, an ITO substrate
  • a film is formed by baking (heating) and exposing. That is, a coated substrate is manufactured by a step including a step (i) of applying a stepped substrate coating composition to a substrate having a step, and a step (ii) of exposing.
  • a spinner for example, it can be applied at a rotational speed of 100 to 5000 for 10 to 180 seconds.
  • a substrate having an open area (non-pattern area) and a pattern area of DENCE (dense) and ISO (coarse) and having a pattern aspect ratio of 0.1 to 10 can be used.
  • the non-pattern area indicates a portion without a pattern (for example, a hole or a trench structure) on the substrate
  • the DENCE (dense) indicates a portion where the pattern is densely arranged on the substrate
  • the ISO (rough) indicates a pattern on the substrate.
  • interval of a pattern is wide and is dotted with a pattern is shown.
  • the pattern aspect ratio is the ratio of the pattern depth to the pattern width.
  • the pattern depth is usually several hundred nm (for example, about 100 to 300 nm), and DENCE (dense) is a place where patterns of several tens of nm (for example, 30 to 80 nm) are densely packed at intervals of about 100 nm. .
  • ISO coarse
  • ISO coarse
  • the thickness of the stepped substrate coating film (planarization film) is preferably 0.01 to 3.0 ⁇ m.
  • coating can be heated after the said process (i) as process (ia).
  • the conditions are 70 to 400 ° C., or 100 to 250 ° C. for 10 seconds to 5 minutes, or 30 seconds to 2 minutes. By this heating, the stepped substrate coating composition is reflowed to form a flat stepped substrate coating film (planarized film).
  • the exposure light in step (ii) is actinic radiation such as near ultraviolet, far ultraviolet, or extreme ultraviolet (for example, EUV, wavelength 13.5 nm), for example, 248 nm (KrF laser light), 193 nm (ArF laser light), Light having a wavelength such as 172 nm (xenon excimer light) and 157 nm (F 2 laser light) is used. Further, ultraviolet light having an exposure wavelength of 150 nm to 248 nm can be used, and a wavelength of 172 nm can be preferably used.
  • EUV extreme ultraviolet
  • EUV extreme ultraviolet
  • 248 nm KrF laser light
  • 193 nm ArF laser light
  • Light having a wavelength such as 172 nm (xenon excimer light) and 157 nm (F 2 laser light) is used.
  • ultraviolet light having an exposure wavelength of 150 nm to 248 nm can be used, and a wavelength of 172 nm can be preferably used.
  • Exposure amount of the exposure light step (ii) can be 10 mJ / cm 2 to 3000 mJ / cm 2. A photoreaction occurs at an exposure amount in this range, a cross-link is formed between the compounds, and the resulting planarized film has solvent resistance.
  • the stepped substrate coating film (planarization film) formed in this manner preferably has zero bias (application step) between the open area and the pattern area, but has a range of 1 to 50 nm or 1 to 25 nm. Can be flattened.
  • the bias of the open area and the DENCE area is about 15 to 20 nm, and the bias of the open area and the ISO area is about 1 to 10 nm.
  • the stepped substrate coating film (planarized film) obtained by the present invention is coated with a resist film, exposed and developed by lithography to form a resist pattern, and the stepped substrate cover is formed according to the resist pattern.
  • Covering film (planarizing film) and substrate processing can be performed.
  • the step substrate covering film (planarization film) is a resist underlayer film
  • the step substrate covering composition is also a resist underlayer film forming composition.
  • a good resist pattern can be obtained by applying a resist on the resist underlayer film, irradiating with light or electron beam through a predetermined mask, developing, rinsing and drying. If necessary, post-irradiation heating (PEB: Post Exposure Bake) may be performed.
  • PEB Post Exposure Bake
  • the exposure light of the photoresist is actinic radiation such as near ultraviolet, far ultraviolet, or extreme ultraviolet (for example, EUV, wavelength 13.5 nm), for example, 248 nm (KrF laser light), 193 nm (ArF laser light), 157 nm. Light having a wavelength such as (F 2 laser light) is used.
  • the light irradiation can be used without particular limitation as long as it is a method capable of generating an acid from a photoacid generator in the resist, and the exposure amount is 1 to 3000 mJ / cm 2 or 10 to 3000 mJ / cm 2. Or 10 to 1000 mJ / cm 2 .
  • the electron beam irradiation of an electron beam resist can be performed using an electron beam irradiation apparatus, for example.
  • the resist developer having a resist underlayer film formed using a resist underlayer film material (photocurable composition) for lithography in the present invention includes sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, metasilicate.
  • Inorganic alkalis such as sodium acid and ammonia water, primary amines such as ethylamine and n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanol Alcohol amines such as amines and triethanolamines, quaternary ammonium salts such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, choline, and cyclic amines such as pyrrole and piperidine, etc.
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution.
  • preferred alkalis used in the developer are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
  • an organic solvent can be used as the developer.
  • a resist underlayer film forming composition (photocurable composition) is formed on a semiconductor substrate, a resist underlayer film is formed thereon, a resist film is formed thereon, and a resist pattern is formed by light or electron beam irradiation and development.
  • a semiconductor device can be manufactured through a step of forming, a step of etching the resist underlayer film with a resist pattern, and a step of processing a semiconductor substrate with the patterned resist underlayer film.
  • the resist underlayer film for lithography which has a selection ratio of dry etching rates close to that of resist, is selected as a resist underlayer film for such processes, and a lower dry etching rate than resist.
  • the resist underlayer film forming composition (photocurable composition) of the present invention can form a resist underlayer film for such a process. Further, such a resist underlayer film can be provided with an antireflection ability, and can also have a function of a conventional antireflection film.
  • a process of making the resist pattern and the resist underlayer film narrower than the pattern width at the time of developing the resist at the time of the resist underlayer film dry etching has begun to be used.
  • a resist underlayer film having a selectivity of a dry etching rate close to that of the resist has been required as a resist underlayer film for such a process.
  • the resist underlayer film forming composition (photocurable composition) of the present invention can form a resist underlayer film for such a process.
  • such a resist underlayer film can be provided with an antireflection ability, and can also have a function of a conventional antireflection film.
  • the substrate can be processed by selecting an appropriate etching gas. That is, a step of forming the resist underlayer film on the semiconductor substrate with the resist underlayer film forming composition, and forming a hard mask by a coating material containing a silicon component or the like or a hard mask (for example, silicon nitride oxide) on the semiconductor substrate.
  • a semiconductor device can be manufactured through a step of etching the resist underlayer film with an oxygen-based gas or a hydrogen-based gas and a step of processing a semiconductor substrate with a halogen-based gas with the patterned resist underlayer film.
  • the resist underlayer film obtained from the resist underlayer film forming composition for lithography (photocurable composition) of the present invention has a light absorption site incorporated into the skeleton when considering the effect as an antireflection film. There is no diffused material in the photoresist during heating and drying, and the light absorption site has a sufficiently large light-absorbing performance, so that the effect of preventing reflected light is high.
  • the resist underlayer film obtained from the resist underlayer film forming composition (photocurable composition) for lithography according to the present invention has high thermal stability, can prevent contamination of the upper layer film by a decomposition product during firing, and is also a firing step.
  • the temperature margin can be provided with a margin.
  • the resist underlayer film obtained from the resist underlayer film material (photocurable composition) for lithography has a function of preventing reflection of light depending on process conditions, and further the interaction between the substrate and the photoresist. It can be used as a film having a function of preventing or adversely affecting the substrate used by a material used for photoresist or a substance generated during exposure to the photoresist.
  • Cation exchange resin product name: Dowex [registered trademark] 550A, Muromachi Technos Co., Ltd.
  • anion exchange resin product name: Amberlite [registered trademark] 15 JWET, Organo Co., Ltd.)
  • a solution of the compound (formula (1-1)) was obtained.
  • the weight average molecular weight Mw measured in terms of polystyrene by GPC was 3,800.
  • Cation exchange resin product name: Dowex (registered trademark) 550A, Muromachi Technos Co., Ltd.) 8.27 g, anion exchange resin (product name: Amberlite (registered trademark) 15 JWET, Organo Co., Ltd.) )) 8.27 g was added, and ion exchange treatment was performed at room temperature for 4 hours. After separation of the ion exchange resin, a solution of the compound (formula (1-2)) was obtained. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 1,400.
  • Cation exchange resin (Product name: Dowex (registered trademark) 550A, Muromachi Technos Co., Ltd.) 7.95 g, anion exchange resin (Product name: Amberlite (registered trademark) 15 JWET, Organo Co., Ltd.) )) 7.95 g was added and subjected to ion exchange treatment at room temperature for 4 hours. After separation of the ion exchange resin, a compound solution (1-4) was obtained. The weight average molecular weight Mw measured in terms of polystyrene by GPC was 3,100.
  • Cation exchange resin (Product name: Dowex (registered trademark) 550A, Muromachi Technos Co., Ltd. 8.95 g, anion exchange resin (Product name: Amberlite (registered trademark) 15 JWET, Organo Co., Ltd.) 8.95 g was added, and ion exchange treatment was performed for 4 hours at room temperature, and after separation of the ion exchange resin, a compound solution (1-5) was obtained, and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 1. , 070.
  • Cation exchange resin product name: Dowex [registered trademark] 550A, Muromachi Technos Co., Ltd. 7.80 g, anion exchange resin (product name: Amberlite [registered trademark] 15 JWET, Organo Co., Ltd.) 7.80 g was added, and ion exchange treatment was performed for 4 hours at room temperature After separation of the ion exchange resin, a compound solution (1-6) was obtained, and the weight average molecular weight Mw measured in terms of polystyrene by GPC was 1. 360.
  • Example 1 To 4.00 g of the resin solution obtained in Synthesis Example 1 (solid content: 25.60% by mass), a surfactant (manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant) 0.002 g, propylene glycol monomethyl ether acetate 0.977 g, and cyclohexanone 7.64 g were added to prepare a resist underlayer film forming composition solution.
  • a surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant
  • Example 2 To 6.00 g of the resin solution obtained in Synthesis Example 2 (solid content: 23.92% by mass), a surfactant (manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant) 0.001 g, 7.00 g of propylene glycol monomethyl ether, and 4.81 g of propylene glycol monomethyl ether acetate were added to prepare a resist underlayer film forming composition solution.
  • a surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant
  • Example 3 To 4.00 g of the resin solution obtained in Synthesis Example 3 (solid content: 23.17% by mass), a surfactant (manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant) 0.001 g, propylene glycol monomethyl ether 0.128 g, propylene glycol monotyl ether acetate 0.442 g, and cyclohexanone 6.94 g were added to prepare a resist underlayer film forming composition solution.
  • a surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant
  • Example 4 4.10 g of the resin solution obtained in Synthesis Example 4 (solid content: 23.30% by mass) was added to a surfactant (manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant). 0.002 g, propylene glycol monotyl ether acetate 0.912 g, and cyclohexanone 6.76 g were added to prepare a resist underlayer film forming composition solution.
  • a surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant.
  • Example 5 4.50 g of the resin solution obtained in Synthesis Example 5 (solid content: 21.51% by mass) (surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant) 0.002 g, 0.924 g of propylene glycol monotyl ether acetate and 6.51 g of cyclohexanone were added to prepare a resist underlayer film forming composition solution.
  • surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorosurfactant 0.002 g, 0.924 g of propylene glycol monotyl ether acetate and 6.51 g of cyclohexanone were added to prepare a resist underlayer film forming composition solution.
  • Example 6 7.00 g of the resin solution obtained in Synthesis Example 6 (solid content: 13.66% by mass) was added to a surfactant (manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant). 0.002 g, propylene glycol monotyl ether acetate 0.913 g, and cyclohexanone 3.87 g were added to prepare a resist underlayer film forming composition solution.
  • a surfactant manufactured by DIC Corporation, product name: Megafac [trade name] R-40, fluorine-based surfactant
  • the resist underlayer film forming compositions prepared in Examples 1 to 6 were each applied (spin coated) onto a silicon wafer using a spinner. The film was heated on a hot plate at 100 ° C. or 215 ° C. for 1 minute to form a film (resist underlayer film) with a film thickness of 210 to 270 nm.
  • This resist underlayer coating film was irradiated with ultraviolet rays of 500 mJ / cm 2 by an ultraviolet irradiation device using a UV irradiation unit (wavelength: 172 nm) manufactured by Tokyo Electron Co., Ltd. and irradiated with light (ultraviolet irradiation). The solvent peelability was confirmed.
  • the solvent peelability was measured by immersing a 7: 3 mixed solvent of propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate for 1 minute in the coating film after ultraviolet irradiation, baking at 100 ° C. for 1 minute after spin drying, and measuring the film thickness. .
  • the resist underlayer film forming composition solutions prepared in Examples 1 to 6 were each applied onto a silicon wafer using a spin coater. Baking was performed on a hot plate at 215 ° C. for 1 minute or 100 ° C. for 1 minute to form a resist underlayer film (film thickness 0.05 ⁇ m). These resist underlayer films were measured for refractive index (n value) and optical extinction coefficient (also referred to as k value or attenuation coefficient) at wavelengths of 193 nm and 248 nm using a spectroscopic ellipsometer. The results are shown in Table 2.
  • the dry etching rate ratio is a dry etching rate ratio of (resist underlayer film) / (KrF photoresist).
  • the resist underlayer film prepared in Examples 1 to 6 was coated on the substrate at a thickness of 150 nm, baked at 215 ° C. for 1 minute or 100 ° C. for 60 seconds, and then a UV irradiation unit (wavelength: 172 nm) manufactured by USHIO INC.
  • the ultraviolet ray irradiation apparatus used was irradiated with ultraviolet rays of 500 mJ / cm 2 . Then, the flatness is observed using a scanning electron microscope (S-4800) manufactured by Hitachi High-Technologies Corporation, and the difference in film thickness between the dense area and the open area is measured. The flatness was evaluated. Table 4 shows the measured film thickness differences.
  • It can be used as a photocurable composition for forming on a substrate a film having a flattening property capable of forming a coating film having high pattern filling properties and no thermal shrinkage.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Epoxy Resins (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】 パターンへの充填性が高く、熱収縮が発生しない塗膜形成が可能な平坦化性を有する被膜を基板上に形成するための光硬化性組成物を提供する。 【解決手段】 少なくとも1つの光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とを含む化合物、及び溶剤を含む光硬化性組成物。光分解性含窒素構造及び/又は光分解性含イオウ構造を分子内に1個以上有する化合物。光分解性含窒素構造及び/又は光分解性含イオウ構造と炭化水素構造とが同一分子内に存在する化合物か、又は異なる分子間に該構造が夫々存在する化合物の組合せ。炭化水素構造が炭素原子数1~40の飽和又は不飽和であり、直鎖、分岐又は環状の炭化水素基である。光分解性含窒素構造が、紫外線照射により生じた反応性含窒素官能基又は反応性含炭素官能基を含み、光分解性含イオウ構造が、紫外線照射により生じた有機イオウラジカル、又は炭素ラジカルを含む構造である。

Description

光硬化性組成物及び半導体装置の製造方法
 光架橋性化合物を用いた光硬化性組成物と、それら組成物を用いた半導体装置の製造方法に関する。
 近年、半導体集積回路装置は微細なデザインルールに加工されるようになってきた。光リソグラフィー技術により一層微細なレジストパターンを形成するためには、露光波長を短波長化する必要がある。
 ところが、露光波長の短波長化に伴って焦点深度が低下するために、基板上に形成された被膜の平坦化性を向上させることが必要になる。微細なデザインルールを持つ半導体装置を製造するためには、基板上の平坦化技術が重要になってきている。
 平坦化膜、例えばレジストの下に形成されるレジスト下層膜を光硬化により形成する方法が開示されている。
 側鎖にエポキシ基、オキセタン基を有するポリマーと光カチオン重合開始剤とを含むレジスト下層膜形成組成物、又はラジカル重合可能なエチレン性不飽和結合を有するポリマーと光ラジカル重合開始剤とを含むレジスト下層膜形成組成物が開示されている(特許文献1参照)。
 また、エポキシ基、ビニル基等のカチオン重合可能な反応性基を有するケイ素系化合物と、光カチオン重合開始剤と、光ラジカル重合開始剤とを含むレジスト下層膜形成組成物が開示されている(特許文献2参照)。
 また、側鎖に架橋性官能基(例えば水酸基)を有するポリマーと架橋剤と光酸発生剤とを含有するレジスト下層膜を用いる半導体装置の製造方法が開示されている(特許文献3参照)。
 また、光架橋系のレジスト下層膜ではないが、不飽和結合を主鎖又は側鎖に有するレジスト下層膜が開示されている(特許文献4、5参照)。
国際公開WO2006/115044号パンフレット 国際公開WO2007/066597号パンフレット 国際公開WO2008/047638号パンフレット 国際公開WO2009/008446号パンフレット 特表2004-533637号公報
 従来の光架橋材料、例えば水酸基等の熱架橋形成官能基を有するポリマーと架橋剤と酸触媒(酸発生剤)とを含むレジスト下層膜形成組成物では、基板上に形成されたパターン(例えば、ホールやトレンチ構造)に充填するための加熱時に架橋反応が進行し粘度上昇が生じるので、パターンへの充填性が問題になる。
 本発明は、光分解により架橋基が生成するような光照射が開始するまで架橋反応が進行せず粘度上昇がない、基板のパターンへの充填性や基板の被覆性が安定な光硬化性組成物を提供することを目的とする。
 本発明は第1観点として、少なくとも1つの光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とを含む化合物、及び溶剤を含む光硬化性組成物、
 第2観点として、上記化合物は、光分解性含窒素構造及び/又は光分解性含イオウ構造を分子内に1個以上有する化合物である第1観点に記載の光硬化性組成物、
 第3観点として、上記化合物は、光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とが同一分子内に存在する化合物であるか、又は該構造が異なる分子に夫々存在する化合物の組合せである第1観点に記載の光硬化性組成物、
 第4観点として、上記炭化水素構造が炭素原子数1~40の飽和又は不飽和基であり、直鎖、分岐又は環状の炭化水素基である第1観点乃至第3観点のいずれか一つに記載の光硬化性組成物、
 第5観点として、上記光分解性含窒素構造が、紫外線照射により反応性含窒素官能基もしくは反応性含炭素官能基を生じる構造であるか、又は紫外線照射により生じた反応性含窒素官能基もしくは反応性含炭素官能基を含む構造である第1観点乃至第4観点のいずれか一つに記載の光硬化性組成物、
 第6観点として、上記光分解性含窒素構造が、イオウ原子を含んでいても良い光分解性含窒素構造であって、該構造はアジド構造、テトラアゾール構造、トリアゾール構造、イミダゾール構造、ピラゾール構造、アゾール構造、ジアゾ構造、又はそれらの組み合わせを含む構造である第5観点に記載の光硬化性組成物、
 第7観点として、光分解性含イオウ構造が、紫外線照射により有機イオウラジカルもしくは炭素ラジカルを生じる構造であるか、又は紫外線照射により生じた有機イオウラジカルもしくは炭素ラジカルを含む構造である第1観点乃至第4観点の何れか一つに記載の光硬化性組成物、
 第8観点として、光分解性含イオウ構造が、窒素原子を含んでいても良い光分解性含イオウ構造であって、該構造はトリスルフィド構造、ジスルフィド構造、スルフィド構造、チオケトン構造、チオフェン構造、チオール構造、又はそれらの組み合わせを含む構造である第7観点に記載の光硬化性組成物、
 第9観点として、上記化合物が、カルボン酸(カルボキシル基)含有化合物、ヒドロキシル基含有化合物、アミン(アミノ基)含有化合物、又はチオール基含有化合物と、エポキシ化合物との付加反応により生成するものであって、上記光分解性含窒素構造及び/又は光分解性含イオウ構造が一方の基質に含まれ他方の基質に炭化水素構造が含まれる場合か、又は上記光分解性含窒素構造及び/又は光分解性含イオウ構造と炭化水素構造とが一方の基質に含まれ他方の基質にそれら構造が含まれるか或いは含まれていない場合である第1観点乃至第8観点のいずれか一つに記載の光硬化性組成物、
 第10観点として、上記化合物の含有割合が、上記光硬化性組成物から溶剤を除いた固形分の質量に基づいて30~100質量%である第1観点乃至第9観点のいずれか一つに記載の光硬化性組成物、
 第11観点として、上記光硬化性組成物が、半導体装置製造のリソグラフィー工程に用いられる光硬化性レジスト下層膜形成組成物である第1観点乃至第10観点のいずれか一つに記載の光硬化性組成物、
 第12観点として、上記光硬化性組成物が、半導体装置製造のリソグラフィー工程に用いられる光硬化性段差基板被覆組成物である第1観点乃至第11観点のいずれか一つに記載の光硬化性組成物、
 第13観点として、基板上に第1観点乃至第12観点のいずれか一つに記載の光硬化性組成物を塗布する工程(i)、及び該塗布した光硬化性組成物を露光する工程(ii)を含む被覆基板の製造方法、
第14観点として、工程(i)の後に、上記塗布した光硬化性組成物を70乃至400℃の温度で、10秒~5分間の加熱を行う工程(ia)を含む第13観点に記載の製造方法、
 第15観点として、工程(ii)の露光光の露光波長が150nm乃至248nmである第13観点又は第14観点に記載の製造方法、
 第16観点として、工程(ii)の露光光の露光量が10mJ/cm乃至3000mJ/cmである第13観点乃至第15観点のいずれか一つに記載の製造方法、
 第17観点として、半導体基板上に第1観点乃至第12観点のいずれか一つに記載の光硬化性組成物を塗布しその後に露光して下層膜を形成する工程、該下層膜の上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該下層膜をエッチングする工程、及びパターン化された下層膜により該半導体基板を加工する工程を含む半導体装置の製造方法、
 第18観点として、半導体基板上に第1観点乃至第12観点のいずれか一つに記載の光硬化性組成物を塗布しその後に露光して下層膜を形成する工程、該下層膜の上にハードマスクを形成する工程、更に該ハードマスクの上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該ハードマスクをエッチングする工程、該パターン化されたハードマスクにより該下層膜をエッチングする工程、及び該パターン化された下層膜により該半導体基板を加工する工程を含む半導体装置の製造方法、及び
 第19観点として、上記半導体基板がオープンエリア(非パターンエリア)と、DENCE(密)及びISO(粗)のパターンエリアを有し、パターンのアスペクト比が0.1~10である第13観点乃至第18観点のいずれか一つに記載の製造方法である。
 本発明は少なくとも1つの光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とを含む化合物を含む光硬化性組成物である。
 光分解性含窒素構造は光照射により窒素ガスの発生により反応性含窒素官能基(ニトレン基)や、反応性含炭素官能基(カルベン基)を含む構造が生成する。またこの時に光分解性含窒素構造は光照射により窒素ガスの発生により反応性含窒素官能基(ニトレン基)や、反応性含炭素官能基(カルベン基)を含む構造が生成することがある。反応性含窒素官能基はニトレン基とも呼ばれ、例えばアルケンやベンゼン環と反応しアジリジン環等を形成して架橋が進行する。またニトレン基はC-H結合、C-C結合に挿入反応を引き起こし架橋構造が形成する。更にニトレン基同士のアゾ化合物の生成による架橋構造の形成や、ニトレン基による炭化水素基からの水素原子の引き抜きによるラジカル反応的な架橋構造の形成も進行する。光分解性含窒素構造への光照射により生成した反応性含窒素官能基や、反応性含炭素官能基による様々な架橋構造の形成のための協奏反応により光硬化物が生成する。
 また、光分解性含イオウ構造は光照射により開裂的に生じた有機イオウラジカル(チイルラジカル)や、炭素ラジカルを含む構造を生成する。これらラジカルにより炭化水素基からの水素原子の引き抜きによるラジカル反応的な架橋構造の形成が進行する。またこれらラジカルのカップリング反応による架橋構造の形成が進行する。光分解性含イオウ構造への光照射により生成した有機イオウラジカル、又は炭素ラジカルを含む構造による様々な架橋構造の形成のための協奏反応により光硬化物が生成する。
 本発明の光硬化性組成物は段差基板被覆組成物として使用することができる。本発明では例えば段差基板被覆組成物は基板上に塗布され、場合により更に加熱によるリフローによりパターンに充填されるが、その際に熱架橋部位や酸触媒を持たないため段差基板被覆組成物の粘度上昇がなく、基板上のオープンエリア(非パターンエリア)や、DENCE(密)及びISO(粗)のパターンエリアを問わず、平坦な膜が形成される。これによりパターンへの充填性と、充填後の平坦化性が同時に満たされ、優れた平坦化膜を形成することが可能となった。
 これにより、本発明は基板のパターンへの充填性や基板の被覆性が安定な光硬化性組成物を提供することができる。
 本発明は少なくとも1つの光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とを含む化合物、及び溶剤を含む光硬化性組成物である。
 この組成物の固形分は0.1~70質量%、又は0.1~60質量%、又は0.2~30質量%、又は0.3~15質量%である。固形分は光硬化性組成物から溶剤を除いた全成分の含有割合である。固形分中に上記化合物を30~100質量%、または50~100質量%、または70~100質量%、または70~99質量%の割合で含有することができる。
 本発明に用いられる化合物は、平均分子量が200~1000000、又は300~1000000、又は600~1000000、又は600~200000、又は1500~15000である。
 上記化合物は、光分解性含窒素構造及び/又は光分解性含イオウ構造を分子内に1個以上、又は2個以上有する化合物とすることができる。化合物は、分子内に2個以上の上記分解性構造を有するものとすることができるが、照射光の強度が高い場合には分子内に1個以上の上記分解性構造を有することで光硬化することができる。
 上記の光分解性含窒素構造及び/又は光分解性含イオウ構造と炭化水素構造とは、同一分子内に存在する化合物である場合、又は該構造が異なる分子に夫々存在する化合物の組合せである場合が考えられる。
 光分解性含窒素構造は、紫外線照射により反応性含窒素官能基又は反応性含炭素官能基を生じる構造又は紫外線照射により生じた反応性含窒素官能基又は反応性含炭素官能基を含む構造とすることができる。また、光分解性含窒素構造は、紫外線照射により脱窒素ガスを伴い生じた反応性含窒素官能基又は反応性含炭素官能基を含む構造とすることができる。
 これらの光分解性含窒素構造は、イオウ原子を含んでいても良い光分解性含窒素構造であって、該構造は例えば、アジド構造、テトラアゾール構造、トリアゾール構造、イミダゾール構造、ピラゾール構造、アゾール構造、ジアゾ構造、又はそれらの組み合わせを含む構造を挙げることができる。この光分解性含窒素構造は該構造、又は隣接する部分にイオウ原子を含んでいても良く、該イオウ原子はヘテロ原子としてのイオウ原子や、光分解性含イオウ構造に含まれるイオウ原子であってもよい。例えば、光分解性含窒素構造は、上記構造中の又は該構造に隣接する炭素原子の一部がイオウ原子に置換された構造であってもよく、またこのイオウ原子は光分解性含イオウ構造の一部として該構造又は該構造に隣接する部分に含まれイオウ原子であってもよい。
 上記の光分解性含イオウ構造は、紫外線照射により、有機イオウラジカルもしくは炭素ラジカルを生じる構造とするか、又は紫外線照射により生じた有機イオウラジカルもしくは炭素ラジカルを含む構造とすることができる。
 これらの光分解性含イオウ構造は、窒素原子を含んでいても良い光分解性含イオウ構造であって、該構造は例えば、トリスルフィド構造、ジスルフィド構造、スルフィド構造、チオケトン構造、チオフェン構造、チオール構造、又はそれらの組み合わせを含む構造を挙げることができる。この光分解性含イオウ構造は該構造、又は隣接する部分に窒素原子を含んでいてもよく、該窒素原子はヘテロ原子としての窒素原子や、光分解性含窒素構造に含まれる窒素原子であってもよい。例えば、光分解性含イオウ構造は、上記構造中の又は上記構造に隣接する炭素原子の一部が窒素原子に置換された構造であってもよく、またこの窒素原子は光分解性含窒素構造の一部として該構造又は該構造に隣接する部分に含まれる窒素原子であってもよい。
 本発明に用いられる化合物に含まれる上記炭化水素構造は、炭素原子数1~40の飽和又は不飽和基であり、直鎖、分岐又は環状の炭化水素基を挙げることができる。これらの炭化水素基は置換、又は非置換の炭化水素基とすることができ、該化合物の末端、側鎖、又は主鎖に導入することができる。
 この炭化水素基はアルキル基、アルケニル基、及びアリール基に対応する化学基を挙げることができる。このアルキル基、アルケニル基、及びアリール基はアミド基、エポキシ基、エーテル基、エステル基、ヒドロキシル基、アミノ基、チオール基を含んでいても良い。
 炭素原子数1~40のアルキル基としては、例えば炭素原子数1乃至10のアルキル基が挙げられ、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 上記炭素原子数2~40のアルケニル基としては、例えばエテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-n-プロピル-2-プロペニル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-エチル-3-ブテニル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1,1-ジメチル-2-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-1-ブテニル基、1,2-ジメチル-2-ブテニル基、1,2-ジメチル-3-ブテニル基、1-メチル-2-エチル-2-プロペニル基、1-s-ブチルエテニル基、1,3-ジメチル-1-ブテニル基、1,3-ジメチル-2-ブテニル基、1,3-ジメチル-3-ブテニル基、1-i-ブチルエテニル基、2,2-ジメチル-3-ブテニル基、2,3-ジメチル-1-ブテニル基、2,3-ジメチル-2-ブテニル基、2,3-ジメチル-3-ブテニル基、2-i-プロピル-2-プロペニル基、3,3-ジメチル-1-ブテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、1-n-プロピル-1-プロペニル基、1-n-プロピル-2-プロペニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1,1,2-トリメチル-2-プロペニル基、1-t-ブチルエテニル基、1-メチル-1-エチル-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1-i-プロピル-1-プロペニル基、1-i-プロピル-2-プロペニル基、1-メチル-2-シクロペンテニル基、1-メチル-3-シクロペンテニル基、2-メチル-1-シクロペンテニル基、2-メチル-2-シクロペンテニル基、2-メチル-3-シクロペンテニル基、2-メチル-4-シクロペンテニル基、2-メチル-5-シクロペンテニル基、2-メチレン-シクロペンチル基、3-メチル-1-シクロペンテニル基、3-メチル-2-シクロペンテニル基、3-メチル-3-シクロペンテニル基、3-メチル-4-シクロペンテニル基、3-メチル-5-シクロペンテニル基、3-メチレン-シクロペンチル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 上記炭素原子数6~40のアリール基としては、例えば炭素原子数6~40のアリール基が挙げられ、フェニル基、ビフェニル基、ターフェニレン基、フルオレン基、ナフチル基、アントリル基、ピレン基、カルバゾール基等が挙げられる。
 上記化合物が、カルボン酸(カルボキシル基)含有化合物、ヒドロキシル基含有化合物、アミン(アミノ基)含有化合物、又はチオール基含有化合物と、エポキシ化合物との付加反応により生成するものであってもよい。この場合、光分解性含窒素構造及び/又は光分解性含イオウ構造等の上記光分解性構造が一方の基質に含まれかつ炭化水素構造が他方の基質に含まれる場合か、又は上記光分解性構造と炭化水素構造とが一方の基質に含まれかつそれらの構造が他方の基質に含まれるか或いは含まれていない場合が挙げられる。
 カルボン酸含有化合物、ヒドロキシル基含有化合物、アミン含有化合物、及びチオール含有化合物は例えば、4-アジド安息香酸、4-アジドフェノール、1H-テトラアゾール-1-酢酸、1H-テトラアゾール-1-メタノール、トリアゾール酢酸、トリアゾールメタノール、DL-アルファ-リポ酸、キサンタンヒドリド、1,3,4-チアジアゾール-2-チオール、トリメチルチオ尿素等が挙げられる。
 これらの化合物は化学式で以下の例示も含むものである。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 エポキシ化合物は例えば、エポキシ基又はグリシジル基を含有するベンゼン、ナフタレン等の化合物が挙げられ、フェノールやナフトールとエピクロルヒドリンとの反応で得ることができる。また、脂肪族エポキシ化合物も用いることができる。例えば、エポキシ化合物は、下記式で表されるエポキシ化合物を含む。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(B-1)はDIC(株)製、商品名EPICLON HP-5000として入手することができる。
 式(B-2)は日本化薬(株)製、商品名EPPN-501Hとして入手することができる。
 式(B-3)は旭化成エポキシ(株)製、商品名ECN-1229として入手することができる。
 式(B-4)は日本化薬(株)製、商品名EPPN-501Hとして入手することができる。
 式(B-5)は日本化薬(株)製、商品名NC-2000Lとして入手することができる。
 式(B-6)は日本化薬(株)製、商品名NC-3000Lとして入手することができる。
 式(B-7)は日本化薬(株)製、商品名NC-7000Lとして入手することができる。
 式(B-8)は日本化薬(株)製、商品名NC-7300Lとして入手することができる。
 式(B-9)は日本化薬(株)製、商品名NC-3500として入手することができる。
 式(B-10)はDIC(株)製、商品名HP-7200Lとして入手することができる。
 式(B-11)は(株)ダイセル製、商品名EHPE-3150として入手することができる。
 式(B-12)はDIC(株)製、商品名EPICLON HP-4700として入手することができる。
 式(B-13)は旭有機材工業(株)製、商品名TEP-Gとして入手することができる。
 式(B-14)は(株)ダイセル製、商品名エポリード GT401であり、a、b、c、dはそれぞれ0又は1であり、a+b+c+d=1である。
式(B-15)は日産化学工業(株)製、商品名TEPIC-SSとして入手することができる。
 式(B-16)はナガセケムテック(株)製、商品名EX-411として入手することができる。
 式(B-17)はナガセケムテック(株)製、商品名EX-521として入手することができる。
 式(B-18)は新日鉄住金化学(株)製、商品名YH-434Lとして入手することができる。
 式(B-19)はナガセケムテック(株)製、商品名EX-711として入手することができる。
 式(B-20)はDIC(株)製、商品名YD-4032Dとして入手することができる。
 式(B-21)はDIC(株)製、商品名HP-4770として入手することができる。
 式(B-22)は新日鉄住金化学(株)製、商品名YH-434Lとして入手することができる。
 式(B-23)は試薬として入手できる。
 式(B-24)は日本化薬(株)製、商品名RE-810NMとして入手することができる。
 式(B-25)は日本化薬(株)製、商品名FAE-2500として入手することができる。
 式(B-26)は日本化薬(株)製、商品名NC-6000として入手することができる。
 また、DIC(株)製、商品名EPICLON HP-6000(エポキシ価244g/eq.)を用いることもできる。
 カルボン酸(カルボキシル基)含有化合物、ヒドロキシル基含有化合物、アミン(アミノ基)含有化合物、又はチオール基含有化合物と、エポキシ化合物との付加反応は溶剤中、触媒の存在下で行うことができる。
 触媒としては、アミン系及びその塩、イミダゾール系及びその塩、ホスフィン系及びその塩、ウレアやスルホニウム塩が挙げられ、例えば以下に例示することができる。
 アミン、アンモニウム塩としては、式(C-1)、式(D-1):
Figure JPOXMLDOC01-appb-C000010
(但し、mは2~11、nは2~3の整数を、R21 はアルキル基又はアリール基を、Y-は陰イオンを示す。)で示される構造を有するアミン、第4級アンモニウム塩、
式(C-2)、式(D-2):
Figure JPOXMLDOC01-appb-C000011
(但し、R22、R23、R24及びR25はアルキル基又はアリール基を、Nは窒素原子を、Yは陰イオンを示し、且つR22、R23、R24、及びR25はそれぞれC-N結合により窒素原子と結合されているものである)で示される構造を有するアミン、第4級アンモニウム塩、
式(C-3)、式(D-3):
Figure JPOXMLDOC01-appb-C000012
(但し、R26及びR27はアルキル基又はアリール基を、Yは陰イオンを示す)の構造を有するアミン、第4級アンモニウム塩、
式(C-4)、式(D-4):
Figure JPOXMLDOC01-appb-C000013
(但し、R28はアルキル基又はアリール基を、Yは陰イオンを示す)の構造を有するピリジン、第4級アンモニウム塩、
式(C-5)、式(D-5):
Figure JPOXMLDOC01-appb-C000014
(但し、R29及びR30はアルキル基又はアリール基を、Yは陰イオンを示す)の構造を有する置換ピリジン、第4級アンモニウム塩、
式(C-6)、式(D-6):
Figure JPOXMLDOC01-appb-C000015
(但し、mは2~11、nは2~3の整数を、Hは水素原子を、Yは陰イオンを示す)の構造を有するアミン、第3級アンモニウム塩が上げられる。
 また、ホスフィン、ホスホニウム塩としては、式(C-7)、式(D-7):
Figure JPOXMLDOC01-appb-C000016
(但し、R31、R32、R33、及びR34はアルキル基又はアリール基を、Pはリン原子を、Yは陰イオンを示し、且つR31、R32、R33、及びR34はそれぞれC-P結合によりリン原子と結合されているものである)で示されるホスフィン、第4級ホスホニウム塩が上げられる。
 また、スルフィド、スルホニウム塩としては、式(C-7)、式(D-8):
Figure JPOXMLDOC01-appb-C000017
(但し、R35、R36、及びR37はアルキル基又はアリール基を、Sは硫黄原子を、Yは陰イオンを示し、且つR35、R36、及びR37はそれぞれC-S結合により硫黄原子と結合されているものである)で示されるスルフィド、第3級スルホニウム塩が上げられる。
 上記の式(D-1)の化合物は、アミンから誘導される第4級アンモニウム塩であり、mは2~11、nは2~3の整数を示す。この第4級アンモニウム塩のR21は炭素数1~18、好ましくは2~10のアルキル基又はアリール基を示し、例えば、エチル基、プロピル基、ブチル基等の直鎖アルキル基や、ベンジル基、シクロヘキシル基、シクロヘキシルメチル基、ジシクロペンタジエニル基等が挙げられる。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。
 上記の式(D-2)の化合物は、R22232425 で示される第4級アンモニウム塩である。この第4級アンモニウム塩のR22、R23、R24及びR25は炭素数1~18のアルキル基又はアリール基、またはSi-C結合によりケイ素原子と結合しているシラン化合物である。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この第4級アンモニウム塩は、市販品で入手する事が可能であり、例えばテトラメチルアンモニウムアセテート、テトラブチルアンモニウムアセテート、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム等が例示される。
 上記の式(D-3)の化合物は、1-置換イミダゾールから誘導される第4級アンモニウム塩であり、R26及びR27は炭素数1~18であり、R26及びR27の炭素数の総和が7以上で有ることが好ましい。例えばR26はメチル基、エチル基、プロピル基、フェニル基、ベンジル基を、R27はベンジル基、オクチル基、オクタデシル基を例示する事が出来る。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は、市販品で入手する事も出来るが、例えば1-メチルイミダゾール、1-ベンジルイミダゾール等のイミダゾール系化合物と、臭化ベンジル、臭化メチル等のハロゲン化アルキルやハロゲン化アリールを反応させて製造する事ができる。
 上記の式(D-4)の化合物は、ピリジンから誘導される第4級アンモニウム塩であり、R28は炭素数1~18、好ましくは炭素数4~18のアルキル基又はアリール基であり、例えばブチル基、オクチル基、ベンジル基、ラウリル基を例示する事が出来る。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は、市販品として入手する事も出来るが、例えばピリジンと、塩化ラウリル、塩化ベンジル、臭化ベンジル、臭化メチル、臭化オクチル等のハロゲン化アルキル、又はハロゲン化アリールを反応させて製造する事が出来る。この化合物は例えば、塩化N-ラウリルピリジニウム、臭化N-ベンジルピリジニウム等を例示する事が出来る。
 上記の式(D-5)の化合物は、ピコリン等に代表される置換ピリジンから誘導される第4級アンモニウム塩であり、R29は炭素数1~18、好ましくは4~18のアルキル基又はアリール基であり、例えばメチル基、オクチル基、ラウリル基、ベンジル基等を例示する事が出来る。R30は炭素数1~18のアルキル基又はアリール基であり、例えばピコリンから誘導される第4級アンモニウムである場合はR30はメチル基である。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は市販品として入手する事も出来るが、例えばピコリン等の置換ピリジンと、臭化メチル、臭化オクチル、塩化ラウリル、塩化ベンジル、臭化ベンジル等のハロゲン化アルキル、又はハロゲン化アリールを反応させて製造する事が出来る。この化合物は例えば、N-ベンジルピコリニウムクロライド、N-ベンジルピコリニウムブロマイド、N-ラウリルピコリニウムクロライド等を例示することが出来る。
 上記の式(D-6)の化合物は、アミンから誘導される第3級アンモニウム塩であり、mは2~11、nは2~3の整数を示す。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。アミンとカルボン酸やフェノール等の弱酸との反応によって製造する事が出来る。カルボン酸としてはギ酸や酢酸が挙げられ、ギ酸を使用した場合は、陰イオン(Y)は(HCOO)であり、酢酸を使用した場合は、陰イオン(Y)は(CHCOO)である。またフェノールを使用した場合は、陰イオン(Y)は(C)である。
 上記の式(D-7)の化合物は、R31323334 の構造を有する第4級ホスホニウム塩である。R31、R32、R33、及びR34は炭素数1~18のアルキル基又はアリール基、またはSi-C結合によりケイ素原子と結合しているシラン化合物であるが、好ましくはR31~R34の4つの置換基の内で3つがフェニル基又は置換されたフェニル基であり、例えばフェニル基やトリル基を例示する事が出来、また残りの1つは炭素数1~18のアルキル基、アリール基、又はSi-C結合によりケイ素原子と結合しているシラン化合物である。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は市販品として入手する事が可能であり、例えばハロゲン化テトラn-ブチルホスホニウム、ハロゲン化テトラn-プロピルホスホニウム等のハロゲン化テトラアルキルホスホニウム、ハロゲン化トリエチルベンジルホスホニウム等のハロゲン化トリアルキルベンジルホスホニウム、ハロゲン化トリフェニルメチルホスホニウム、ハロゲン化トリフェニルエチルホスホニウム等のハロゲン化トリフェニルモノアルキルホスホニウム、ハロゲン化トリフェニルベンジルホスホニウム、ハロゲン化テトラフェニルホスホニウム、ハロゲン化トリトリルモノアリールホスホニウム、或いはハロゲン化トリトリルモノアルキルホスホニウム(ハロゲン原子は塩素原子又は臭素原子)が挙げられる。特に、ハロゲン化トリフェニルメチルホスホニウム、ハロゲン化トリフェニルエチルホスホニウム等のハロゲン化トリフェニルモノアルキルホスホニウム、ハロゲン化トリフェニルベンジルホスホニウム等のハロゲン化トリフェニルモノアリールホスホニウム、ハロゲン化トリトリルモノフェニルホスホニウム等のハロゲン化トリトリルモノアリールホスホニウムや、ハロゲン化トリトリルモノメチルホスホニウム等のハロゲン化トリトリルモノアルキルホスホニウム(ハロゲン原子は塩素原子又は臭素原子)が好ましい。
 また、ホスフィン類としては、メチルホスフィン、エチルホスフィン、プロピルホスフィン、イソプロピルホスフィン、イソブチルホスフィン、フェニルホスフィン等の第一ホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジイソプロピルホスフィン、ジイソアミルホスフィン、ジフェニルホスフィン等の第二ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン等の第三ホスフィンが上げられる。
 上記の式(D-8)の化合物は、R353637 の構造を有する第3級スルホニウム塩である。R35、R36、及びR37は炭素数1~18のアルキル基又はアリール基、またはSi-C結合によりケイ素原子と結合しているシラン化合物であるが、好ましくはR35~R37の4つの置換基の内で3つがフェニル基又は置換されたフェニル基であり、例えばフェニル基やトリル基を例示する事が出来、また残りの1つは炭素数1~18のアルキル基、又はアリール基である。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)、マレイン酸アニオン、硝酸アニオン等の酸基を挙げることが出来る。この化合物は市販品として入手する事が可能であり、例えばハロゲン化トリn-ブチルスルホニウム、ハロゲン化トリn-プロピルスルホニウム等のハロゲン化テトラアルキルスルホニウム、ハロゲン化ジエチルベンジルスルホニウム等のハロゲン化トリアルキルベンジルスルホニウム、ハロゲン化ジフェニルメチルスルホニウム、ハロゲン化ジフェニルエチルスルホニウム等のハロゲン化ジフェニルモノアルキルスルホニウム、ハロゲン化トリフェニルスルホニウム、(ハロゲン原子は塩素原子又は臭素原子)、トリn-ブチルスルホニウムカルボキシラート、トリn-プロピルスルホニウムカルボキシラート等のテトラアルキルホスフォニウムカルボキシラート、ジエチルベンジルスルホニウムカルボキシラート等のトリアルキルベンジルスルホニウムカルボキシラート、ジフェニルメチルスルホニウムカルボキシラート、ジフェニルエチルスルホニウムカルボキシラート等のジフェニルモノアルキルスルホニウムカルボキシラート、トリフェニルスルホニウムカルボキシラート。また、ハロゲン化トリフェニルスルホニウム、トリフェニルスルホニウムカルボキシラートが好ましく用いることができる。
 本発明に用いられる化合物の合成に使用される触媒はエポキシ化合物の固形分100質量部に対して、0.01~10質量部、または0.01~5質量部、または0.01~3質量部である。
 反応に用いられる溶剤としては例えばアルコール系溶剤、アセテート系溶剤、シクロヘキサノン、N-メチルピロリドン、アミド系溶剤等が挙げられる。
 本発明に用いられる化合物は例えば以下に例示することができる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 本発明の光硬化性組成物は界面活性剤を含有することができる。前記界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(三菱マテリアル電子化成(株)製)、メガファック〔登録商標〕F171、同F173、同R30、同R-30N、同R-40LM(DIC(株)製)、フロラードFC430、同FC431(住友スリーエム(株)製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤から選択された1種類を添加してもよいし、2種以上を組合せて添加することもできる。前記界面活性剤の含有割合は、本発明の光硬化性組成物から後述する溶剤を除いた固形分に対して、例えば0.01質量%乃至5質量%である。
 本発明で化合物を溶解させる溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコ-ルモノブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トルエン、キシレン、スチレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2ーヒドロキシー2ーメチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル、3ーエトキシプロピオン酸エチル、3ーエトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチルラクトン、アセトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルノーマルブチルケトン、酢酸イソプロピルケトン、酢酸ノーマルプロピル、酢酸イソブチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、ノーマルプロパノール、2-メチル-2-ブタノール、イソブタノール、ノーマルブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、イソプロピルエーテル、1,4-ジオキサン、N,N-ジメチルパターンムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノン等を用いることができる。これらの有機溶剤は単独で、または2種以上の組合せで使用される。
 次に、本発明の光硬化性組成物を段差基板被覆組成物として用いた平坦化膜形成法について説明する。精密集積回路素子の製造に使用される基板(例えばシリコン/二酸化シリコン被覆、ガラス基板、ITO基板などの透明基板)上にスピナー、コーター等の適当な塗布方法により段差基板被覆組成物を塗布後、ベーク(加熱)して露光して被膜を作成する。即ち、段差を有する基板に段差基板被覆組成物を塗布する工程(i)、及び露光する工程(ii)を含む工程により被覆基板が製造される。
 スピナーを用いて塗布する時、例えば回転数100~5000で、10~180秒間行って塗布することができる。
 上記基板として、オープンエリア(非パターンエリア)と、DENCE(密)及びISO(粗)のパターンエリアとを有し、パターンのアスペクト比が0.1~10の基板を用いることができる。
 非パターンエリアとは基板上でパターン(例えば、ホールやトレンチ構造)のない部分を示し、DENCE(密)は基板上でパターンが密集している部分を示し、ISO(粗)は基板上でパターンとパターンの間隔が広くパターンが点在している部分を示す。パターンのアスペクト比はパターンの幅に対するパターン深さの比率である。パターン深さは通常数百nm(例えば、100~300nm程度)であり、DENCE(密)にはパターンが数十nm(例えば30~80nm)程度のパターンが100nm程度の間隔で密集した場所である。ISO(粗)はパターンが数百nm(例えば200~1000nm程度)のパターンが点在している場所である。
 ここで、段差基板被覆膜(平坦化膜)の膜厚としては0.01~3.0μmが好ましい。また上記工程(i)の後に、工程(ia)として、塗布後の組成物を加熱することができる。その条件としては70~400℃、又は100~250℃で10秒~5分間、又は30秒~2分間である。この加熱により段差基板被覆組成物がリフローして平坦な段差基板被覆膜(平坦化膜)が形成される。
 工程(ii)の露光光は、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV、波長13.5nm)等の化学線であり、例えば248nm(KrFレーザー光)、193nm(ArFレーザー光)、172nm(キセノンエキシマ光)、157nm(Fレーザー光)等の波長の光が用いられる。また、露光波長は150nm~248nmの紫外光を用いることができ、そして172nmの波長を好ましく用いることができる。
 この露光により段差基板被覆膜(平坦化膜)の架橋が行われる。工程(ii)の露光光の露光量が10mJ/cm乃至3000mJ/cmとすることができる。この範囲の露光量で光反応が生じ、化合物間に架橋が形成され、得られる平坦化膜に溶剤耐性を生じるものである。
 この様に形成された段差基板被覆膜(平坦化膜)は、オープンエリアとパターンエリアとのBias(塗布段差)はゼロであることが望ましいが、1~50nm、又は1~25nmの範囲となるように平坦化することができる。オープンエリアとDENCEエリアのBiasは15~20nm程度であり、オープンエリアとISOエリアのBiasは1~10nm程度である。
 本発明により得られた段差基板被覆膜(平坦化膜)は、その上にレジスト膜を被覆し、リソグラフィーによりレジスト膜を露光と現像してレジストパターンを形成し、そのレジストパターンに従って段差基板被覆膜(平坦化膜)及び基板加工を行うことができる。その場合、段差基板被覆膜(平坦化膜)はレジスト下層膜であり、段差基板被覆組成物はレジスト下層膜形成組成物でもある。
 レジスト下層膜上にレジストを塗布し、所定のマスクを通して光又は電子線の照射を行い、現像、リンス、乾燥することにより良好なレジストパターンを得ることができる。必要に応じて光又は電子線の照射後加熱(PEB:Post Exposure Bake)を行うこともできる。そして、レジストが前記工程により現像除去された部分のレジスト下層膜をドライエッチングにより除去し、所望のパターンを基板上に形成することができる。
 上記フォトレジストの露光光は、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV、波長13.5nm)等の化学線であり、例えば248nm(KrFレーザー光)、193nm(ArFレーザー光)、157nm(Fレーザー光)等の波長の光が用いられる。光照射には、レジスト中の光酸発生剤から酸を発生させることができる方法であれば、特に制限なく使用することができ、露光量1~3000mJ/cm、または10~3000mJ/cm、または10~1000mJ/cmによる。
 また電子線レジストの電子線照射は、例えば電子線照射装置を用い照射することができる。
 本発明でリソグラフィー用レジスト下層膜材料(光硬化性組成物)を使用して形成したレジスト下層膜を有するレジストの現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液に使用されるアルカリ類は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。
 また、現像液としては有機溶剤を用いることができる。例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、酢酸イソアミル、メトキシ酢酸エチル、エトキシ酢酸エチル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、2-メトキシブチルアセテート、3-メトキシブチルアセテート、4-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-エチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、2-エトキシブチルアセテート、4-エトキシブチルアセテート、4-プロポキシブチルアセテート、2-メトキシペンチルアセテート、3-メトキシペンチルアセテート、4-メトキシペンチルアセテート、2-メチル-3-メトキシペンチルアセテート、3-メチル-3-メトキシペンチルアセテート、3-メチル-4-メトキシペンチルアセテート、4-メチル-4-メトキシペンチルアセテート、プロピレングリコールジアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、炭酸エチル、炭酸プロピル、炭酸ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、メチル-3-メトキシプロピオネート、エチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、プロピル-3-メトキシプロピオネート等を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5~50℃、時間10~600秒から適宜選択される。
 本発明では、半導体基板にレジスト下層膜形成組成物(光硬化性組成物)によりレジスト下層膜を形成する工程、その上にレジスト膜を形成する工程、光又は電子線照射と現像によりレジストパターンを形成する工程、レジストパターンにより該レジスト下層膜をエッチングする工程、及びパターン化されたレジスト下層膜により半導体基板を加工する工程を経て半導体装置を製造することができる。
 今後、レジストパターンの微細化が進行すると、解像度の問題やレジストパターンが現像後に倒れるという問題が生じ、レジストの薄膜化が望まれてくる。そのため、基板加工に充分なレジストパターン膜厚を得ることが難しく、レジストパターンだけではなく、レジストと加工する半導体基板との間に作成されるレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。このようなプロセス用のレジスト下層膜として従来の高エッチレート性レジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜や半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜が要求されるようになってきている。これに対して、本発明のレジスト下層膜形成組成物(光硬化性組成物)は、このようなプロセス用のレジスト下層膜を形成することができる。また、このようなレジスト下層膜には反射防止能を付与することも可能であり、従来の反射防止膜の機能を併せ持つことができる。
 一方、微細なレジストパターンを得るために、レジスト下層膜ドライエッチング時にレジストパターンとレジスト下層膜をレジスト現像時のパターン幅より細くするプロセスも使用され始めている。このようなプロセス用のレジスト下層膜として従来の高エッチレート性反射防止膜とは異なり、レジストに近いドライエッチング速度の選択比を持つレジスト下層膜が要求されるようになってきている。これに対して、本発明のレジスト下層膜形成組成物(光硬化性組成物)は、このようなプロセス用のレジスト下層膜を形成することができる。また、このようなレジスト下層膜には反射防止能を付与することも可能であり、従来の反射防止膜の機能を併せ持つことができる。
 本発明では基板上に本発明のレジスト下層膜を成膜した後、レジスト下層膜上に直接、または必要に応じて1層乃至数層の塗膜材料をレジスト下層膜上に成膜した後、レジストを塗布することができる。これによりレジストのパターン幅が狭くなり、パターン倒れを防ぐ為にレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。
 即ち、半導体基板にレジスト下層膜形成組成物により該レジスト下層膜を形成する工程、その上にケイ素成分等を含有する塗膜材料によるハードマスク又は蒸着によるハードマスク(例えば、窒化酸化ケイ素)を形成する工程、更にその上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、レジストパターンによりハードマスクをハロゲン系ガスでエッチングする工程、パターン化されたハードマスクにより該レジスト下層膜を酸素系ガス又は水素系ガスでエッチングする工程、及びパターン化されたレジスト下層膜によりハロゲン系ガスで半導体基板を加工する工程を経て半導体装置を製造することができる。
 本発明のリソグラフィー用レジスト下層膜形成組成物(光硬化性組成物)から得られるレジスト下層膜は、反射防止膜としての効果を考慮した場合、光吸収部位が骨格に取りこまれているため、加熱乾燥時にフォトレジスト中への拡散物がなく、また、光吸収部位は十分に大きな吸光性能を有しているため反射光防止効果が高い。
 本発明のリソグラフィー用レジスト下層膜形成組成物(光硬化性組成物)から得られるレジスト下層膜は、熱安定性が高く、焼成時の分解物による上層膜への汚染が防げ、また、焼成工程の温度マージンに余裕を持たせることができるものである。
 さらに、本発明のリソグラフィー用レジスト下層膜材料(光硬化性組成物)から得られるレジスト下層膜は、プロセス条件によっては、光の反射を防止する機能と、更には基板とフォトレジストとの相互作用の防止或いはフォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する膜としての使用が可能である。
(合成例1)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)3.00g、DL-アルファ-リポ酸(東京化成工業株式会社製)3.82g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.17g、ヒドロキノン(東京化成工業株式会社製)0.01gにシクロヘキサノン 16.34gを加え、窒素雰囲気下、100℃で20.5時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株))7.0g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))7.0gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物(式(1-1))の溶液が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは3,800であった。
(合成例2)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)4.00g、4-アジド安息香酸(東京化成工業株式会社製)4.03g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.23g、ヒドロキノン(東京化成工業株式会社製)0.01gにプロピレングリコールモノメチルエーテル19.30gを加え、窒素雰囲気下、100℃で17.5時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株))8.27g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))8.27gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物(式(1-2))の溶液が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,400であった。
(合成例3)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)4.00g、1H-テトラアゾール-1-酢酸(東京化成工業株式会社製)3.16g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.23g、ヒドロキノン(東京化成工業株式会社製)0.01g、プロピレングリコールモノメチルエーテル17.28gを加え、窒素雰囲気下、100℃で18時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株))7.41g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))7.41gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物(式(1-3))の溶液が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,200であった。
(合成例4)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)4.00g、キサンタンヒドリド(東京化成工業株式会社製)3.71g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.23g、ヒドロキノン(東京化成工業株式会社製)0.01g、シクロヘキサノン18.56gを加え、窒素雰囲気下、80℃で11時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株))7.95g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))7.95gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物溶液(1-4)が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは3,100であった。
(合成例5)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)5.00g、1,3,4-チアジアゾール-2-チオール(東京化成工業株式会社製)3.61g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.29g、ヒドロキノン(東京化成工業株式会社製)0.02g、シクロヘキサノン20.89gを加え、窒素雰囲気下、60℃で24時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株)8.95g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))8.95gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物溶液(1-5)が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,070であった。
(合成例6)
 二口フラスコにエポキシ基含有ベンゼン縮合環式化合物(製品名:EPICLON HP-4700、エポキシ価:165g/eq.、DIC(株)製)4.5g、トリメチルチオ尿素(和光純薬工業株式会社製)3.29g、エチルトリフェニルホスホニウムブロマイド(北興化学工業株式会社製)0.29g、シクロヘキサノン18.20gを加え、窒素雰囲気下、60℃で24時間加熱撹拌した。得られた溶液に陽イオン交換樹脂(製品名:ダウエックス〔登録商標〕550A、ムロマチテクノス(株)7.80g、陰イオン交換樹脂(製品名:アンバーライト〔登録商標〕15JWET、オルガノ(株))7.80gを加えて、室温で4時間イオン交換処理した。イオン交換樹脂を分離後、化合物溶液(1-6)が得られた。GPCによりポリスチレン換算で測定される重量平均分子量Mwは1,360であった。
(実施例1)
 合成例1で得た樹脂溶液(固形分は25.60質量%)4.00gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.002g、プロピレングリコールモノメチルエーテルアセテート0.977g、シクロヘキサノン7.64gを加え、レジスト下層膜形成組成物の溶液を調製した。
(実施例2)
 合成例2で得た樹脂溶液(固形分は23.92質量%)6.00gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.001g、プロピレングリコールモノメチルエーテル7.00g、プロピレングリコールモノメチルエーテルアセテート4.81gを加え、レジスト下層膜形成組成物の溶液を調製した。
(実施例3)
 合成例3で得た樹脂溶液(固形分は23.17質量%)4.00gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.001g、プロピレングリコールモノメチルエーテル0.128g、プロピレングリコールモノチルエーテルアセテート0.442g、シクロヘキサノン6.94gを加えレジスト下層膜形成組成物の溶液を調製した。
(実施例4)
 合成例4で得た樹脂溶液(固形分は23.30質量%)4.10gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.002g、プロピレングリコールモノチルエーテルアセテート0.912g、シクロヘキサノン6.76gを加えレジスト下層膜形成組成物の溶液を調製した。
(実施例5)
 合成例5で得た樹脂溶液(固形分は21.51質量%)4.50gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.002g、プロピレングリコールモノチルエーテルアセテート0.924g、シクロヘキサノン6.51gを加えレジスト下層膜形成組成物の溶液を調製した。
(実施例6)
 合成例6で得た樹脂溶液(固形分は13.66質量%)7.00gに界面活性剤(DIC(株)製、品名:メガファック〔商品名〕R-40、フッ素系界面活性剤)0.002g、プロピレングリコールモノチルエーテルアセテート0.913g、シクロヘキサノン3.87gを加えレジスト下層膜形成組成物の溶液を調製した。
(光硬化試験)
 実施例1~6で調製されたレジスト下層膜形成組成物を、それぞれスピナーを用いてシリコンウェハー上に塗布(スピンコート)した。ホットプレート上で100℃または215℃、1分間加熱し、膜厚210~270nmの被膜(レジスト下層膜)を形成した。このレジスト下層膜被覆膜を東京エレクトロン(株)製、ACT-12搭載UV照射ユニット(波長172nm)を用いた紫外線照射装置により、500mJ/cm2の紫外線照射を行い、光照射(紫外線照射)での溶剤剥離性を確認した。溶剤剥離性は紫外線照射後の塗布膜にプロピレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテルアセテートの7対3の混合溶剤を1分間浸漬し、スピンドライ後に100℃で1分間ベークし、膜厚を測定した。
Figure JPOXMLDOC01-appb-T000024
(光学定数測定)
 実施例1~6で調製したレジスト下層膜形成組成物の溶液を、それぞれスピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で215℃1分間または100℃1分間焼成し、レジスト下層膜(膜厚0.05μm)を形成した。これらのレジスト下層膜を、分光エリプソメーターを用いて波長193nm及び248nmでの屈折率(n値)及び光学吸光係数(k値、減衰係数とも呼ぶ)を測定した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000025
(ドライエッチング速度の測定)
 ドライエッチング速度の測定に用いたエッチャー及びエッチングガスは以下のものを用いた。
RIE-10NR(サムコ製):CF
 実施例1~6で調製したレジスト下層膜形成組成物の溶液を、それぞれスピンコーターを用いてシリコンウェハー上に塗布した。ホットプレート上で215℃1分間または100℃1分間焼成してレジスト下層膜(膜厚0.20μm)を形成した。エッチングガスとしてCFガスを使用してドライエッチング速度を測定し、実施例1~6のレジスト下層膜のドライエッチング速度と、KrFフォトレジストとのドライエッチング速度の比較を行った。結果を表3に示した。ドライエッチング速度比は(レジスト下層膜)/(KrFフォトレジスト)のドライエッチング速度比である。
Figure JPOXMLDOC01-appb-T000026
(段差基板上での平坦化性試験)
 段差被覆性の評価として、200nm膜厚のSiO2基板で、トレンチ幅50nm、ピッチ100nmのデンスパターンエリア(D-1)、パターンが形成されていないオープンエリア、トレンチ幅230nm(T-1)、800nm(T-2)の大トレンチエリアでの被覆膜厚の比較を行った。実施例1~6で調製されたレジスト下層膜を上記基板上へ150nm膜厚で塗布、215℃1分間または100℃60秒ベーク後、ウシオ電機(株)製、UV照射ユニット(波長172nm)を用いた紫外線照射装置により、500mJ/cmの紫外線を照射した。その後、平坦化性を日立ハイテクノロジーズ(株)製走査型電子顕微鏡(S-4800)を用いて観察し、デンスエリア、大トレンチエリアでの膜厚とオープンエリアとの膜厚差を測定することで平坦化性を評価した。測定した膜厚差を表4に示す。
Figure JPOXMLDOC01-appb-T000027
パターンへの充填性が高く、熱収縮が発生しない塗膜形成が可能な平坦化性を有する被膜を基板上に形成するための光硬化性組成物として利用することができる。
 

Claims (19)

  1. 少なくとも1つの光分解性含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とを含む化合物、及び溶剤を含む光硬化性組成物。
  2. 上記化合物は、光分解性含窒素構造及び/又は光分解性含イオウ構造を分子内に1個以上有する化合物である請求項1に記載の光硬化性組成物。
  3. 上記化合物は、光分解性窒素含窒素構造及び/又は光分解性含イオウ構造と、炭化水素構造とが同一分子内に存在する化合物であるか、又は該構造が異なる分子に夫々存在する化合物の組合せである請求項1に記載の光硬化性組成物。
  4. 上記炭化水素構造が炭素原子数1~40の飽和又は不飽和基であり、直鎖、分岐又は環状の炭化水素基である請求項1乃至請求項3のいずれか1項に記載の光硬化性組成物。
  5. 上記光分解性含窒素構造が、紫外線照射により反応性含窒素官能基もしくは反応性炭素官能基を生じる構造であるか、又は紫外線照射により生じた反応性含窒素官能基もしくは反応性含炭素官能基を含む構造である請求項1乃至請求項4のいずれか1項に記載の光硬化性組成物。
  6. 上記光分解性含窒素構造が、イオウ原子を含んでいても良い光分解性含窒素構造であって、該構造はアジド構造、テトラアゾール構造、トリアゾール構造、イミダゾール構造、ピラゾール構造、アゾール構造、ジアゾ構造、又はそれらの組み合わせを含む構造である請求項5に記載の光硬化性組成物。
  7. 上記光分解性含イオウ構造が、紫外線照射により有機イオウラジカルもしくは炭素ラジカルを生じる構造であるか、又は紫外線照射により生じた有機イオウラジカルもしくは炭素ラジカルを含む構造である請求項1乃至請求項4の何れか1項に記載の光硬化性組成物。
  8. 上記光分解性含イオウ構造が、窒素原子を含んでいても良い光分解性含イオウ構造であって、該構造はトリスルフィド構造、ジスルフィド構造、スルフィド構造、チオケトン構造、チオフェン構造、チオール構造、又はそれらの組み合わせを含む構造である請求項7に記載の光硬化性組成物。
  9. 上記化合物が、カルボン酸(カルボキシル基)含有化合物、ヒドロキシル基含有化合物、アミン(アミノ基)含有化合物、又はチオール基含有化合物と、エポキシ化合物との付加反応により生成するものであって、上記光分解性含窒素構造及び/又は光分解性含イオウ構造が一方の基質に含まれ他方の基質に炭化水素構造が含まれる場合か、又は上記光分解性含窒素構造及び/又は光分解性含イオウ構造と炭化水素構造とが一方の基質に含まれ他方の基質にそれら構造が含まれるか或いは含まれていない場合である請求項1乃至請求項8のいずれか1項に記載の光硬化性組成物。
  10. 上記化合物の含有割合が、上記光硬化性組成物から溶剤を除いた固形分の質量に基づいて30~100質量%である請求項1乃至請求項9のいずれか1項に記載の光硬化性組成物。
  11. 上記光硬化性組成物が、半導体装置製造のリソグラフィー工程に用いられる光硬化性レジスト下層膜形成組成物である請求項1乃至請求項10のいずれか1項に記載の光硬化性組成物。
  12. 上記光硬化性組成物が、半導体装置製造のリソグラフィー工程に用いられる光硬化性段差基板被覆組成物である請求項1乃至請求項11のいずれか1項に記載の光硬化性組成物。
  13. 基板上に請求項1乃至請求項12のいずれか1項に記載の光硬化性組成物を塗布する工程(i)、及び該塗布した光硬化性組成物を露光する工程(ii)を含む被覆基板の製造方法。
  14. 工程(i)の後に、上記塗布した光硬化性組成物を70乃至400℃の温度で、10秒~5分間の加熱を行う工程(ia)を含む請求項13に記載の製造方法。
  15. 工程(ii)の露光光の露光波長が150nm乃至248nmである請求項13又は請求項14に記載の製造方法。
  16. 工程(ii)の露光光の露光量が10mJ/cm乃至3000mJ/cmである請求項13乃至請求項15のいずれか1項に記載の製造方法。
  17. 半導体基板上に請求項1乃至請求項12のいずれか1項に記載の光硬化性組成物を塗布しその後に露光して下層膜を形成する工程、該下層膜の上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該下層膜をエッチングする工程、及び該パターン化された下層膜により該半導体基板を加工する工程を含む半導体装置の製造方法。
  18. 半導体基板上に請求項1乃至請求項12のいずれか1項に記載の光硬化性組成物を塗布しその後に露光して下層膜を形成する工程、該下層膜の上にハードマスクを形成する工程、更に該ハードマスクの上にレジスト膜を形成する工程、光又は電子線の照射と現像によりレジストパターンを形成する工程、該レジストパターンにより該ハードマスクをエッチングする工程、該パターン化されたハードマスクにより該下層膜をエッチングする工程、及び該パターン化された下層膜により該半導体基板を加工する工程を含む半導体装置の製造方法。
  19. 上記半導体基板がオープンエリア(非パターンエリア)と、DENCE(密)及びISO(粗)のパターンエリアを有し、パターンのアスペクト比が0.1~10である請求項13乃至請求項18のいずれか1項に記載の製造方法。
PCT/JP2017/027727 2016-08-08 2017-07-31 光硬化性組成物及び半導体装置の製造方法 WO2018030198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/324,483 US11681223B2 (en) 2016-08-08 2017-07-31 Photocurable composition and method for producing semiconductor device
CN201780047436.8A CN109563234B (zh) 2016-08-08 2017-07-31 光固化性组合物及半导体装置的制造方法
KR1020187035933A KR102419523B1 (ko) 2016-08-08 2017-07-31 광경화성 조성물 및 반도체장치의 제조방법
JP2018532945A JP7070837B2 (ja) 2016-08-08 2017-07-31 光硬化性組成物及び半導体装置の製造方法
US18/128,503 US12147158B2 (en) 2016-08-08 2023-03-30 Photocurable composition and method for producing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016155472 2016-08-08
JP2016-155472 2016-08-08
JP2017038276 2017-03-01
JP2017-038276 2017-03-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/324,483 A-371-Of-International US11681223B2 (en) 2016-08-08 2017-07-31 Photocurable composition and method for producing semiconductor device
US18/128,503 Continuation US12147158B2 (en) 2016-08-08 2023-03-30 Photocurable composition and method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018030198A1 true WO2018030198A1 (ja) 2018-02-15

Family

ID=61163284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027727 WO2018030198A1 (ja) 2016-08-08 2017-07-31 光硬化性組成物及び半導体装置の製造方法

Country Status (6)

Country Link
US (1) US11681223B2 (ja)
JP (1) JP7070837B2 (ja)
KR (1) KR102419523B1 (ja)
CN (1) CN109563234B (ja)
TW (1) TWI801348B (ja)
WO (1) WO2018030198A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209268A1 (ja) * 2019-04-11 2020-10-15
JPWO2021025133A1 (ja) * 2019-08-06 2021-02-11

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135525A (en) * 1978-04-12 1979-10-20 Konishiroku Photo Ind Co Ltd Photosensitive material
JP2009139763A (ja) * 2007-12-07 2009-06-25 Mitsubishi Paper Mills Ltd 感光性平版印刷版
JP2010079081A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 平版印刷版の製版方法
JP2012198470A (ja) * 2011-03-23 2012-10-18 Mitsubishi Paper Mills Ltd 光重合性組成物およびこれを利用した感光性平版印刷版材料
JP2014129526A (ja) * 2012-12-28 2014-07-10 Samsung Electro-Mechanics Co Ltd 印刷回路基板用樹脂組成物、絶縁フィルム、プリプレグおよび印刷回路基板
JP2015501874A (ja) * 2011-12-15 2015-01-19 サン ケミカル コーポレイション スルフィドで伸長したエポキシ樹脂およびそのバリアコーティング用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852256A (en) * 1972-07-18 1974-12-03 Western Litho Plate & Supply Photopolymers
EP0291611B1 (fr) * 1987-05-21 1990-11-07 Usinage Montage Et Assistance Technique U.M.A.T. Imprimeuse rotative offset destinée à effectuer une impression sur une nappe défilant en continu
JP2516968B2 (ja) * 1987-04-30 1996-07-24 富士通株式会社 二層構造電子線レジスト用平坦化材料
KR101019331B1 (ko) 2001-04-17 2011-03-07 브레우어 사이언스 인코포레이션 개선된 스핀 보울 상화성을 갖는 반사 방지 코팅 조성물
CN101135850B (zh) * 2002-08-07 2011-02-16 三菱化学株式会社 具有青紫激光感光性抗蚀剂材料层的成像材料及其抗蚀剂成像法
CN101164014B (zh) * 2005-04-19 2013-06-12 日产化学工业株式会社 用于形成光交联固化的抗蚀剂下层膜的抗蚀剂下层膜形成组合物
US8048615B2 (en) * 2005-12-06 2011-11-01 Nissan Chemical Industries, Ltd. Silicon-containing resist underlayer coating forming composition for forming photo-crosslinking cured resist underlayer coating
US8227172B2 (en) * 2006-10-12 2012-07-24 Nissan Chemical Industries, Ltd. Method of producing semiconductor device using resist underlayer film by photo-crosslinking curing
WO2009008446A1 (ja) 2007-07-11 2009-01-15 Nissan Chemical Industries, Ltd. レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2010041626A1 (ja) * 2008-10-10 2010-04-15 日産化学工業株式会社 フルオレンを含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
JP2011052148A (ja) * 2009-09-03 2011-03-17 Sakai Chem Ind Co Ltd 光硬化性樹脂組成物、その製造方法及び硬化樹脂
EP2916171B1 (en) * 2014-03-03 2017-05-31 Agfa Graphics Nv A method for making a lithographic printing plate precursor
WO2015178236A1 (ja) * 2014-05-22 2015-11-26 日産化学工業株式会社 アクリルアミド構造とアクリル酸エステル構造を含むポリマーを含むリソグラフィー用レジスト下層膜形成組成物
KR102327778B1 (ko) * 2016-03-10 2021-11-17 닛산 가가쿠 가부시키가이샤 탄소원자간의 불포화결합에 의한 광가교기를 갖는 화합물을 포함하는 단차기판 피복 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135525A (en) * 1978-04-12 1979-10-20 Konishiroku Photo Ind Co Ltd Photosensitive material
JP2009139763A (ja) * 2007-12-07 2009-06-25 Mitsubishi Paper Mills Ltd 感光性平版印刷版
JP2010079081A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 平版印刷版の製版方法
JP2012198470A (ja) * 2011-03-23 2012-10-18 Mitsubishi Paper Mills Ltd 光重合性組成物およびこれを利用した感光性平版印刷版材料
JP2015501874A (ja) * 2011-12-15 2015-01-19 サン ケミカル コーポレイション スルフィドで伸長したエポキシ樹脂およびそのバリアコーティング用途
JP2014129526A (ja) * 2012-12-28 2014-07-10 Samsung Electro-Mechanics Co Ltd 印刷回路基板用樹脂組成物、絶縁フィルム、プリプレグおよび印刷回路基板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020209268A1 (ja) * 2019-04-11 2020-10-15
JP7548218B2 (ja) 2019-04-11 2024-09-10 株式会社レゾナック 光軟化性樹脂組成物、光軟化性樹脂組成物の軟化物の製造方法、硬化性樹脂組成物及びその硬化物、並びにパターン膜及びその製造方法
JPWO2021025133A1 (ja) * 2019-08-06 2021-02-11
WO2021025133A1 (ja) * 2019-08-06 2021-02-11 旭化成株式会社 感光性樹脂組成物、及び感光性エレメント
KR20210146977A (ko) * 2019-08-06 2021-12-06 아사히 가세이 가부시키가이샤 감광성 수지 조성물, 및 감광성 엘리먼트
JP7214875B2 (ja) 2019-08-06 2023-01-30 旭化成株式会社 感光性樹脂組成物、及び感光性エレメント
KR102671948B1 (ko) * 2019-08-06 2024-06-03 아사히 가세이 가부시키가이샤 감광성 수지 조성물, 및 감광성 엘리먼트

Also Published As

Publication number Publication date
US11681223B2 (en) 2023-06-20
TWI801348B (zh) 2023-05-11
US20230244141A1 (en) 2023-08-03
KR102419523B1 (ko) 2022-07-12
CN109563234A (zh) 2019-04-02
JP7070837B2 (ja) 2022-05-18
KR20190039472A (ko) 2019-04-12
TW201821465A (zh) 2018-06-16
CN109563234B (zh) 2022-08-23
JPWO2018030198A1 (ja) 2019-06-06
US20190171101A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP7197840B2 (ja) アンモニウム基を有する有機基を含むシリコン含有レジスト下層膜形成組成物
KR102367638B1 (ko) 방향족 비닐화합물이 부가된 노볼락수지를 포함하는 레지스트 하층막 형성 조성물
US11155684B2 (en) Photocrosslinkable group-containing composition for coating stepped substrate
WO2018190380A1 (ja) 炭素原子間の不飽和結合によるプラズマ硬化性化合物を含む段差基板被覆膜形成組成物
KR102455502B1 (ko) 광가교기를 갖는 폴리에테르수지를 포함하는 단차기판 피복조성물
TW201500858A (zh) 含有具有羥基之芳基磺酸鹽的光阻下層膜形成組成物
CN117460995A (zh) 含硅抗蚀剂下层膜形成用组合物
JP7208591B2 (ja) 架橋性化合物を含有する光硬化性段差基板被覆組成物
JP7070837B2 (ja) 光硬化性組成物及び半導体装置の製造方法
CN111902774A (zh) 包含硝酸和被保护了的苯酚基的含硅抗蚀剂下层膜形成用组合物
US12147158B2 (en) Photocurable composition and method for producing semiconductor device
CN116235112A (zh) 包含具有氟烷基的有机酸或其盐的抗蚀剂下层膜形成用组合物
JP2021105703A (ja) イオン液体を含むレジスト下層膜形成組成物
CN114341232B (zh) 含硅聚合物组合物的制造方法
CN118541645A (zh) 含硅抗蚀剂下层膜形成用组合物及含硅抗蚀剂下层膜
WO2020121873A1 (ja) イオン液体を含むレジスト下層膜形成組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532945

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035933

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839271

Country of ref document: EP

Kind code of ref document: A1