WO2018029886A1 - 透明導電層付き基板、液晶パネル及び透明導電層付き基板の製造方法 - Google Patents
透明導電層付き基板、液晶パネル及び透明導電層付き基板の製造方法 Download PDFInfo
- Publication number
- WO2018029886A1 WO2018029886A1 PCT/JP2017/011203 JP2017011203W WO2018029886A1 WO 2018029886 A1 WO2018029886 A1 WO 2018029886A1 JP 2017011203 W JP2017011203 W JP 2017011203W WO 2018029886 A1 WO2018029886 A1 WO 2018029886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive layer
- transparent conductive
- substrate
- liquid crystal
- oxide
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a substrate with a transparent conductive layer, a liquid crystal panel, and a method for producing a substrate with a transparent conductive layer.
- In-cell type liquid crystal using a so-called lateral electric field drive method (IPS (In-Plane Switching) method or FFS (Fringe Field Switching) method) that generates a horizontal electric field on the liquid crystal panel substrate to drive the liquid crystal.
- IPS In-Plane Switching
- FFS Frringe Field Switching
- the panel has the following structure.
- this structure includes a color filter substrate, a counter substrate having a liquid crystal driving electronic circuit that drives liquid crystal, and a sensing sensor electrode that senses a finger touch, and a liquid crystal provided therebetween.
- indium tin oxide is exposed on the surface of the transparent conductive layer containing indium tin oxide as a main component and containing silicon. For this reason, this transparent conductive layer is inferior in weather resistance or chemical resistance, and its resistance is likely to change with time.
- an object of the present invention is to provide a substrate with a transparent conductive layer, a liquid crystal panel, and a method for producing a substrate with a transparent conductive layer with little change in resistance over time.
- a substrate with a transparent conductive layer includes a substrate and a transparent conductive layer.
- the transparent conductive layer is provided on the substrate and includes tin oxide and at least one of niobium oxide, tantalum oxide, and antimony oxide.
- the content of at least one of the niobium oxide, the tantalum oxide, and the antimony oxide may be 5 wt% or more and 15% wt or less in the transparent conductive layer.
- the sheet resistance of the transparent conductive layer may be 1 ⁇ 10 7 ( ⁇ / sq.) Or more and 1 ⁇ 10 10 ( ⁇ / sq.) Or less.
- the transmittance of the transparent conductive layer may be 98.5% or more at a wavelength of 550 nm.
- the transparent conductive layer may have a thickness of 5 nm to 15 nm.
- the transparent conductive layer may contain nitrogen.
- resistance of a transparent conductive layer is adjusted with the addition amount of nitrogen.
- the substrate may include a transparent substrate and a color filter.
- the transparent substrate may be provided between the transparent conductive layer and the color filter. Thereby, charging to the color filter is suppressed by the transparent conductive layer.
- a liquid crystal panel includes a substrate with a transparent conductive layer, a counter substrate, and liquid crystal.
- the substrate with a transparent conductive layer includes a first transparent substrate having a first surface and a second surface, a transparent conductive layer, and a color filter.
- the transparent conductive layer is provided on the first surface and includes tin oxide and at least one of niobium oxide, tantalum oxide, and antimony oxide.
- the color filter is provided on the second surface.
- the counter substrate includes a second transparent substrate, a sensing sensor electrode and a liquid crystal driving electronic circuit provided on the second transparent substrate.
- the liquid crystal is provided between the substrate with a transparent conductive layer and the counter substrate, and is driven and controlled by the electronic circuit for driving the liquid crystal.
- the content of at least one of the niobium oxide, the tantalum oxide, and the antimony oxide may be 5 wt% or more and 15% wt or less in the transparent conductive layer.
- the sheet resistance of the transparent conductive layer may be 1 ⁇ 10 7 ( ⁇ / sq.) Or more and 1 ⁇ 10 10 ( ⁇ / sq.) Or less.
- the transmittance of the transparent conductive layer may be 98.5% or more at a wavelength of 550 nm.
- the transparent conductive layer may have a thickness of 5 nm to 15 nm. Thereby, in this liquid crystal panel, a transparent conductive layer having appropriate resistance and transmittance is provided on the transparent substrate.
- the transparent conductive layer may contain nitrogen. Thereby, in this liquid crystal panel, the resistance of the transparent conductive layer is adjusted by the amount of nitrogen added.
- the target material includes tin oxide and at least one of niobium oxide, tantalum oxide, and antimony oxide, and the oxidation in the target material is performed.
- the target material in which the content of at least one of niobium, the tantalum oxide, and the antimony oxide is 5 wt% or more and 15% wt or less is used.
- a transparent conductive layer containing tin oxide and at least one of niobium oxide, tantalum oxide, and antimony oxide is formed on the substrate in a mixed gas atmosphere of argon and oxygen having an oxygen partial pressure of 0.005 Pa to 0.05 Pa. Be filmed.
- a transparent conductive layer By forming a transparent conductive layer in such a mixed gas atmosphere, a desired high-resistance transparent conductive layer can be obtained. Furthermore, reduction of the oxide in the transparent conductive layer is suppressed, and a transparent conductive layer with little change in resistance with time can be obtained.
- the mixed gas may contain nitrogen, and the transparent conductive layer may be formed at a partial pressure of nitrogen of 0.025 Pa or more and 0.1 Pa or less.
- a substrate with a transparent conductive layer As described above, according to the present invention, there are provided a substrate with a transparent conductive layer, a liquid crystal panel, and a method for producing a substrate with a transparent conductive layer with little change in resistance over time.
- an in-cell type liquid crystal panel with a touch panel function that employs the FFS method is exemplified, but the present invention is not limited to this.
- the liquid crystal panel according to the present embodiment can be applied to an IPS liquid crystal panel, and one of the pair of substrates constituting the liquid crystal panel is provided with a liquid crystal driving electronic circuit and a sensor electrode.
- the present invention can also be applied to a configuration in which a color filter is formed without forming electrodes on the other substrate.
- FIG. 1 is a schematic cross-sectional view showing a liquid crystal panel according to this embodiment.
- the liquid crystal panel 1 shown in FIG. 1 has both a function for displaying an image and a touch panel function.
- the liquid crystal panel 1 includes a substrate 10 with a transparent conductive layer, a counter substrate 20, a liquid crystal 40, a polarizing plate 50, a cover glass 60, and a polarizing plate 51.
- the polarizing plate 51, the counter substrate 20, the liquid crystal 40, the substrate 10 with a transparent conductive layer, the polarizing plate 50, and the cover glass 60 are laminated in this order in the Z-axis direction.
- a spacer 41 is provided in the liquid crystal 40.
- the backlight is incident on the polarizing plate 51.
- an image is visually recognized through the cover glass 60.
- a touch operation can be performed by touching the cover glass 60 with a finger 70 or the like.
- the substrate 10 with a transparent conductive layer has a transparent conductive layer 12 and a color filter substrate 14.
- the color filter substrate 14 includes a transparent substrate 11 (first transparent substrate) and a color filter 15.
- the transparent substrate 11 is provided between the transparent conductive layer 12 and the color filter 15.
- the transparent substrate 11 is, for example, a glass substrate.
- the transparent conductive layer 12 functions as, for example, an antistatic layer in the liquid crystal panel 1.
- the transparent conductive layer 12 is provided on the surface 11 a (first surface) of the transparent substrate 11.
- the transparent conductive layer 12 includes tin oxide (SnO 2 ), niobium oxide (Nb 2 O 3 or Nb 2 O 5 ), tantalum oxide (Ta 2 O 3 or Ta 2 O 5 ), and antimony oxide (Sb 2 O). 3 or Sb 2 O 5 ).
- the transparent conductive layer 12 is composed of tin oxide as a main component and at least one of niobium oxide, tantalum oxide, and antimony oxide as subcomponents.
- the transparent conductive layer 12 may contain a trace amount of elements such as aluminum (Al) and zirconium (Zr) introduced in the process of manufacturing the target material. Even if trace elements (Al, Zr, etc.) are contained or not contained in the transparent conductive layer 12, substantially the same effect is obtained in this embodiment.
- the subcomponent may be any oxide of a Group 3 element.
- the content of at least one of niobium oxide, tantalum oxide, and antimony oxide is 5 wt% or more and 15% wt or less. If the content of at least one of niobium oxide, tantalum oxide, and antimony oxide is less than 5 wt%, for example, the resistance of the transparent conductive layer 12 is undesirably low. On the other hand, if the content of at least one of niobium oxide, tantalum oxide, and antimony oxide is greater than 15 wt%, for example, the target material used during film formation tends to break, which is not preferable.
- the sheet resistance of the transparent conductive layer 12 composed of such an oxide is, for example, 1 ⁇ 10 7 ( ⁇ / sq.) Or more and 1 ⁇ 10 10 ( ⁇ / sq.) Or less. If the sheet resistance of the transparent conductive layer 12 is less than 1 ⁇ 10 7 ( ⁇ / sq.), For example, a touch signal during a touch operation is blocked by the transparent conductive layer 12, which is not preferable. On the other hand, when the sheet resistance of the transparent conductive layer 12 is larger than 1 ⁇ 10 10 ( ⁇ / sq.), For example, the charge removal function of the transparent conductive layer 12 is lowered, which is not preferable.
- the sheet resistance of the transparent conductive layer 12 can be adjusted by changing the content of at least one of niobium oxide, tantalum oxide, and antimony oxide contained in the transparent conductive layer 12. Alternatively, this sheet resistance can be adjusted, for example, by changing the amount of oxygen introduced into the transparent conductive layer 12 during film formation. Further, the transmittance of the transparent conductive layer 12 having such a sheet resistance is 98.5% or more at a wavelength of 550 nm.
- the transparent conductive layer 12 is excellent in weather resistance or chemical resistance, and the oxide contained in the transparent conductive layer 12 is not easily reduced. Thereby, the resistance of the transparent conductive layer 12 is maintained for a long time in a high resistance state (1 ⁇ 10 7 ( ⁇ / sq.) Or more and 1 ⁇ 10 10 ( ⁇ / sq.) Or less). As a result, in the liquid crystal panel 1, the touch sensing during the touch operation is stabilized, and charging of the color filter 15 is suppressed. Furthermore, in the liquid crystal panel 1, the light transmittance in the transparent conductive layer 12 is increased, the light transmittance in the liquid crystal panel is not significantly reduced, and the image in the liquid crystal panel 1 can be visually recognized more clearly. That is, the operation reliability of the liquid crystal panel 1 is further improved.
- the thickness of the transparent conductive layer 12 is 5 nm or more and 15 nm or less. If the thickness of the transparent conductive layer 12 is less than 5 nm, for example, the sheet resistance of the transparent conductive layer 12 becomes higher than the above range, and the charge removal function of the transparent conductive layer 12 is reduced, which is not preferable. If the thickness of the transparent conductive layer 12 is greater than 15 nm, for example, the transmittance of the transparent conductive layer 12 decreases, which is not preferable.
- the transparent conductive layer 12 may contain nitrogen (N). Nitrogen is contained in the transparent conductive layer 12 as an impurity element, for example.
- the sheet resistance of the transparent conductive layer 12 can be adjusted, for example, by changing the amount of nitrogen added. For example, when the transparent conductive layer 12 is formed, the ratio of oxygen introduced at the time of film formation is adjusted so that the transparent conductive layer 12 does not reduce, and the sheet resistance of the transparent conductive layer 12 is adjusted to the ratio of nitrogen introduced at the time of film formation. It can adjust by controlling independently of the ratio of.
- the transparent conductive layer is composed of a single ITO (IndiumxTin Oxide) layer
- the sheet resistance of the ITO layer decreases with the passage of time due to the low weather resistance or chemical resistance of the ITO layer.
- the touch sensing function deteriorates with time. This is presumably because oxygen contained in the ITO layer is desorbed with time (so-called oxygen desorption), and its sheet resistance decreases with time.
- oxygen desorption oxygen contained in the ITO layer is desorbed with time (so-called oxygen desorption), and its sheet resistance decreases with time.
- the annealing process cannot be performed sufficiently, and an ITO layer with high crystallinity cannot be formed.
- the same phenomenon can occur because ITO is exposed on the surface of the single layer.
- the laminated body in which the cap layer is provided on the ITO layer has an increased number of layers as compared with the single-layer body, and the light transmittance of the laminated body itself is lowered.
- a method of increasing the light transmittance of the laminate there is a method of causing the cap layer to function as an antireflection layer.
- the transparent conductive layer 12 in the liquid crystal panel.
- the color filter 15 is formed on the surface 11b (second surface) of the transparent substrate 11.
- the color filter 15 includes, for example, a black matrix formed in a lattice shape with a black resin or the like, and, for example, a red colored layer, a green colored layer, and a blue colored layer formed in a stripe shape so as to fill the openings of the black matrix. Become.
- An alignment film (not shown) is formed on the color filter 15.
- An opening formed by a grid-like black matrix corresponds to a sub-pixel, and one pixel is composed of three sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
- the counter substrate 20 has a transparent substrate 21 (second transparent substrate), and a functional layer 22 including a sensor electrode and a liquid crystal driving electronic circuit.
- the transparent substrate 21 is, for example, a glass substrate.
- the transparent substrate 21 has a surface 21a and a surface 21b.
- the functional layer 22 is provided on the surface 21 b of the transparent substrate 21.
- An alignment film (not shown) is formed on the functional layer 22.
- the liquid crystal driving electronic circuit drives the liquid crystal 40.
- the sensing sensor electrode constitutes a part of the sensing sensor, and senses a touch operation on the surface of the cover glass 60.
- the functional layer 22 includes a pixel electrode, a TFT (Thin Film Transistor), a gate line, a signal line, a common electrode, a common electrode driving line, a sensing sensor driving line, and a sensing sensor detection line.
- a TFT Thin Film Transistor
- the liquid crystal driving electronic circuit includes a pixel electrode, a TFT, a gate line, a signal line, a common electrode, and a common electrode driving line. These liquid crystal drive electronic circuits are driven and controlled by a drive control circuit provided on a drive circuit board (not shown) that is electrically connected to the liquid crystal panel.
- the sensing sensor electrode includes a sensing sensor drive line, a sensing sensor detection line, and a common electrode.
- the sensing sensor includes these sensing sensor electrodes and a touch position detection control circuit, and the touch position detection control circuit is provided on a drive circuit board (not shown) that is electrically connected to the liquid crystal panel.
- the liquid crystal panel has a touch panel function.
- the common electrode used for driving the liquid crystal also functions as a sensor electrode.
- the counter substrate 20 includes a liquid crystal driving electronic circuit that generates an image to be displayed on the display screen of the liquid crystal panel 1, and a detection sensor that detects a touch by an instrument such as a finger 70 or a touch pen on the surface of the liquid crystal panel 1. A part of is provided.
- the gate line and the signal line are provided in the X-axis direction and the Y-axis direction, respectively, via an interlayer insulating film, and a TFT and a comb-like pixel electrode are provided at each intersection.
- the gate electrode constituting the TFT is electrically connected to the gate line, and the source and drain constituting the TFT are electrically connected to the signal line and the pixel electrode, respectively.
- a plurality of common electrodes are formed in an island shape corresponding to each pixel.
- the TFT, the common electrode, and the pixel electrode have a structure in which the TFT, the interlayer insulating film, the common electrode, the interlayer insulating film, and the pixel electrode are sequentially stacked from the transparent substrate 21 side.
- the common drive line is electrically connected to the common electrode and is formed in the same layer as the signal line, source and drain.
- a plurality of sensing sensor drive lines are formed in the X-axis direction in the same layer as the gate electrode and the gate line.
- the sense sensor drive line is electrically connected to a part of the common electrode, and the common electrode connected to the sense sensor drive electrode functions as a drive electrode of the sense sensor.
- the sense sensor drive electrode is connected to a touch position detection control circuit (not shown), and the touch position detection control circuit outputs a drive signal for touch position detection.
- a plurality of detection lines for the sensor are formed in the Y-axis direction on the same layer as the source and signal lines.
- the detection line for the sensor is electrically connected to another common electrode that is not electrically connected to the drive line for the sensor, and the common electrode connected to the detection line for the sensor is used as a detection electrode of the sensor.
- the sensor sensor drive line is connected to a touch position detection control circuit (not shown), and the touch position detection control circuit receives a detection signal sent from the sensor sensor detection line. Then, the coordinates of the touch position are calculated by analyzing the received detection signal.
- the liquid crystal panel 1 at the display stage, a horizontal electric field is formed by the liquid crystal driving electronic circuit, and the liquid crystal 40 is driven to display an image on the liquid crystal panel 1.
- the capacitance between the drive electrode and the detection electrode of the sensing sensor decreases as the finger approaches the display surface. Therefore, the touch position of the finger is specified by detecting the change in the capacitance with the sensing sensor. .
- the liquid crystal 40 is provided between the color filter 15 of the substrate 10 with a transparent conductive layer and the counter substrate 20. A gap between the color filter 15 and the counter substrate 20 is held by a spacer 41. The surface 11b of the transparent substrate 11 on which the color filter 15 is formed is opposed to the surface 21b of the transparent substrate 21 on which the functional layer 22 of the counter substrate 20 is provided.
- the driving of the liquid crystal 40 is controlled by a liquid crystal driving electronic circuit.
- the cover glass 60 is fixed to the polarizing plate 50 by an adhesive layer (not shown).
- a color filter substrate 14 in which a color filter 15 composed of a black matrix, a red colored layer, a green colored layer, and a blue colored layer is formed on the surface 11b of the transparent substrate 11 is prepared.
- the transparent conductive layer 12 is formed on the surface 11a of the transparent substrate 11 on which the color filter 15 is not formed.
- the transparent conductive layer 12 is formed by, for example, a DC sputtering method.
- a DC sputtering method a magnetron DC sputtering method may be employed.
- the transparent conductive layer 12 may be formed by, for example, an AC sputtering method.
- the AC sputtering method a magnetron AC sputtering method may be employed. According to the AC sputtering method, when a conductive target material is used, when forming the transparent conductive layer 12 in a high resistance state (reactive sputtering), an anode can be secured and the productivity is excellent.
- a target material containing tin oxide and at least one of niobium oxide, tantalum oxide, and antimony oxide is used.
- the target material includes tin oxide as a main component and at least one of niobium oxide, tantalum oxide, and antimony oxide as subcomponents.
- a trace element such as aluminum (Al) or zirconium (Zr) may be introduced into the target material in the process of manufacturing the target material. Even if a trace element (Al, Zr, etc.) is contained or not contained in the target material, substantially the same effect can be obtained in this embodiment.
- the content of at least one of niobium oxide, tantalum oxide, and antimony oxide in the target material is 5 wt% or more and 15% wt or less.
- a target material containing niobium oxide among niobium oxide, tantalum oxide, and antimony oxide will be exemplified.
- the content rate of niobium oxide in the target material is, for example, 10 wt%.
- the transparent conductive layer 12 is formed on the surface 11a of the transparent substrate 11 in a DC sputtering apparatus.
- the thickness of the transparent conductive layer 12 is, for example, 10 nm.
- the film forming conditions are as follows.
- Target material Tin oxide / Niobium oxide (10wt%)
- Discharge gas Argon (Ar) / Oxygen (O 2 )
- Total gas pressure 0.1 Pa to 1.0 Pa
- Argon partial pressure 0.2 Pa
- Oxygen partial pressure 0.005 Pa (flow rate 1.0 sccm) or more and 0.05 Pa (10 sccm) or less, preferably 0.005 Pa (flow rate 1.0 sccm) or more and 0.013 Pa (flow rate 2.5 sccm) or less
- Substrate temperature 25 ° C. Setting
- FIG. 2 is a schematic graph showing the relationship between the oxygen flow rate and the sheet resistance of the transparent conductive layer when a target material containing tin oxide and niobium oxide is used.
- the horizontal axis in FIG. 2 is the oxygen flow rate (sccm) during film formation, and the vertical axis is the sheet resistance ( ⁇ / sq.) Of the transparent conductive layer 12.
- FIG. 2 shows results when the transparent conductive layer 12 is left in the atmosphere at room temperature and when it is left in the atmosphere at 120 ° C. for 60 minutes.
- the arrow A means a range of a desired high resistance state (1 ⁇ 10 7 ( ⁇ / sq.) To 1 ⁇ 10 10 ( ⁇ / sq.)). This range is an example, and the high resistance state is not limited to the range indicated by the arrow A.
- the transparent conductive layer 12 when the transparent conductive layer 12 is left in the atmosphere at room temperature ( ⁇ ), it is transparent when the oxygen flow rate is in the range of 1.0 sccm to 2.5 sccm and the flow rate is 1.5 sccm.
- the sheet resistance of the conductive layer 12 is minimized.
- the minimum value (1 ⁇ 10 8 ( ⁇ / sq.)) Is within the range of the desired high resistance state.
- the transparent conductive layer 12 when the transparent conductive layer 12 is left in the atmosphere at 120 ° C. for 60 minutes ( ⁇ ), the transparent conductive layer 12 is in a range of 1.0 sccm to 2.5 sccm, and the transparent conductive layer 12 has a flow rate of 2.5 sccm.
- the sheet resistance of layer 12 is minimized. This local minimum value (1 ⁇ 10 7 ( ⁇ / sq.)) Is within the range of the desired high resistance state.
- the relationship between the oxygen flow rate when using a target material made of ITO and the sheet resistance of the ITO layer will be described below.
- FIG. 3 is a schematic graph showing the relationship between the oxygen flow rate and the sheet resistance of the ITO layer when a target material made of ITO as a comparative example is used.
- oxygen flow rate oxygen partial pressure
- oxygen oxygen of 4.5 sccm or more is introduced into the ITO layer.
- oxygen may desorb over time.
- a transparent conductive layer 12 in a desired high resistance state can be obtained without increasing the flow rate (oxygen partial pressure) in the mixed gas. . That is, if a target material containing tin oxide and niobium oxide is used, the transparent conductive layer 12 in a desired high resistance state can be formed without introducing oxygen excessively into the transparent conductive layer 12. In other words, if a target material containing tin oxide and niobium oxide is used, the transparent conductive layer 12 in a high resistance state can be obtained by introducing a smaller amount of oxygen into the transparent conductive layer 12 than when forming the ITO layer. Is obtained.
- the liquid crystal panel 1 is a liquid crystal panel having no deterioration in touch sensitivity, few malfunctions due to charging, and high operational reliability.
- the flow rate of oxygen is smaller than 1 sccm (partial pressure 0.005 Pa), for example, the light transmittance of the transparent conductive layer 12 is not preferable.
- the mixed gas (Ar / O 2 ) may further contain nitrogen (N 2 ) to form the transparent conductive layer 12.
- nitrogen (N) is introduced into the transparent conductive layer 12 as an impurity element.
- Target material Tin oxide / Niobium oxide (10wt%)
- Discharge gas argon (Ar) / oxygen (O 2 ) / nitrogen (N 2 )
- Total gas pressure 0.1 Pa to 1.0 Pa
- Argon partial pressure 0.2 Pa
- Oxygen partial pressure 0.005 Pa (flow rate 1.0 sccm) or more and 0.05 Pa (10 sccm) or less, preferably 0.005 Pa (flow rate 1.0 sccm) or more and 0.013 Pa (flow rate 2.5 sccm) or less
- Nitrogen partial pressure 0 0.025 Pa (flow rate 5.0 sccm) or more and 0.1 Pa (flow rate 20 sccm) or less
- Substrate temperature 25 ° C. setting
- FIG. 4 is a schematic graph showing the relationship between the nitrogen flow rate when nitrogen is added to a mixed gas of argon and oxygen and the sheet resistance of the transparent conductive layer.
- FIG. 4 shows the result when the transparent conductive layer 12 is left in the atmosphere at 120 ° C. for 60 minutes.
- the sheet resistance of the transparent conductive layer 12 changes within a desired high resistance state range. For example, when the flow rate of nitrogen is increased in the range of 5 sccm to 20 sccm, the sheet resistance of the transparent conductive layer 12 increases as the nitrogen flow rate increases. That is, the sheet resistance of the transparent conductive layer 12 can be controlled by adjusting the flow rate of nitrogen.
- the ratio of oxygen in the mixed gas (Ar / O 2 ) is adjusted to such an extent that the transparent conductive layer 12 is not easily reduced. It is formed.
- the oxygen flow rate is adjusted to 2.5 sccm.
- the sheet resistance of the transparent conductive layer 12 can be controlled to a predetermined resistance by adjusting the nitrogen ratio independently of the oxygen ratio.
- the reduction of the oxide is reliably suppressed for a long time, and further, the transparent conductive layer 12 adjusted to a desired sheet resistance by the addition amount of nitrogen is obtained.
- the transparent conductive layer 12 is formed on the color filter substrate 14.
- the color filter substrate 14 and the counter substrate 20 are made to face each other in advance, and after the liquid crystal 40 is injected between the color filter substrate 14 and the counter substrate 20, the transparent conductive layer 12 is formed on the color filter substrate 14. It may be formed. Even in this case, the film forming conditions of the transparent conductive layer 12 are the same.
- FIG. 5 is a schematic graph showing the light transmittance of the transparent conductive layer.
- the horizontal axis in FIG. 5 is the wavelength (nm), and the vertical axis is the light transmittance (%).
- FIG. 5 shows the results when the transparent conductive layer 12 is left in the atmosphere at 120 ° C. for 60 minutes.
- the film forming conditions in FIG. 5 are as follows.
- Target material Tin oxide / Niobium oxide (10wt%)
- Discharge gas argon (Ar) / oxygen (O 2 ) / nitrogen (N 2 ) Total gas pressure: 0.1 Pa to 1.0 Pa
- Argon partial pressure 0.2 Pa
- Oxygen partial pressure 0.013 Pa
- Nitrogen partial pressure 0 Pa (flow rate 0 sccm) or more and 0.1 Pa (flow rate 20 sccm) or less
- Substrate temperature 25 ° C. setting
- the light of the transparent conductive layer 12 is obtained under any film formation condition.
- the transmittance spectrum is on substantially the same line.
- the transmittance of the transparent conductive layer 12 is 94.0% or more at a wavelength of 400 nm under the film forming conditions in which the nitrogen partial pressure is changed in the range of 0 Pa (flow rate 0 sccm) to 0.1 Pa (flow rate 20 sccm). It is 98.5% or more at a wavelength of 550 nm, and is 99.4% or more at a wavelength of 700 nm.
- the transparent conductive layer 12 having a high light transmittance is obtained.
- FIGS. 6 and 7 are schematic graphs showing the change with time of the sheet resistance of the transparent conductive layer. 6 and 7, the horizontal axis represents time (h), and the vertical axis represents sheet resistance ( ⁇ / sq.).
- FIG. 6 shows the result when the transparent conductive layer 12 is left in the atmosphere at room temperature.
- FIG. 7 shows the results when the transparent conductive layer 12 is left at 60 ° C. under 90 RH water vapor.
- the film forming conditions in FIGS. 6 and 7 are as follows.
- Target material Tin oxide / Niobium oxide (10wt%)
- Discharge gas argon (Ar) / oxygen (O 2 ) / nitrogen (N 2 ) Total gas pressure: 0.1 Pa to 1.0 Pa
- Argon partial pressure 0.2 Pa
- Oxygen partial pressure 0.013 Pa
- Nitrogen partial pressure 0 Pa (flow rate 0 sccm) or more and 0.05 Pa (flow rate 10 sccm) or less
- Substrate temperature 25 ° C. setting
- the transparent conductive layer 12 As shown in FIGS. 6 and 7, even if the transparent conductive layer 12 is left in the atmosphere or under constant temperature and humidity conditions, the sheet resistance of the transparent conductive layer 12 is maintained in a desired high resistance state for 200 hours or more. Yes. Thus, according to this embodiment, the transparent conductive layer 12 with little deterioration with time can be obtained as the antistatic layer.
- FIG. 8 is a schematic graph showing the corrosion resistance of the transparent conductive layer.
- the horizontal axis represents the time (min) during which the transparent conductive layer 12 and the ITO layer were immersed in phosphorous nitric acid, and the vertical axis represents the sheet resistance ( ⁇ / sq.).
- the film forming conditions are as follows. The oxygen partial pressure at the time of film formation is adjusted so that the sheet resistance of the transparent conductive layer 12 and the ITO layer is 1 ⁇ 10 8 ( ⁇ / sq.) Or more and 1 ⁇ 10 10 ( ⁇ / sq.) Or less. Yes.
- Film forming conditions for transparent conductive layer 12 Target material: Tin oxide / Niobium oxide (10wt%) Discharge gas: Argon (Ar) / Oxygen (O 2 ) Total gas pressure: 0.21 Pa Argon partial pressure: 0.2 Pa (flow rate 40 sccm) Film thickness: 10nm Substrate temperature: 25 ° C setting
- ITO layer deposition conditions Target material: Indium oxide / tin oxide (10wt%) Discharge gas: Argon (Ar) / Oxygen (O 2 ) Total gas pressure: 0.23Pa Argon partial pressure: 0.2 Pa (flow rate 40 sccm) Film thickness: 10nm Substrate temperature: 25 ° C setting
- the sheet resistance immediately after film formation was 2.1 ⁇ 10 9 ( ⁇ / sq.). Thereafter, when the ITO layer was immersed in phosphonitrate for 10 minutes, the thickness of the ITO layer decreased and the sheet resistance increased to 2.5 ⁇ 10 14 ( ⁇ / sq.).
- the sheet resistance immediately after film formation was 2.0 ⁇ 10 8 ( ⁇ / sq.).
- the transparent conductive layer 12 was immersed in phosphorous nitric acid, but the film thickness reduction was suppressed as compared with the ITO layer.
- the sheet resistance after the transparent conductive layer 12 is immersed in phosphorous nitrate for 5 minutes is 2.8 ⁇ 10 8 ( ⁇ / sq.)
- the sheet resistance after being immersed for 10 minutes is 3.1. ⁇ 10 8 ( ⁇ / sq.)
- the sheet resistance after being immersed for 20 minutes was 2.3 ⁇ 10 8 ( ⁇ / sq.).
- the sheet resistance did not increase as much as that of the ITO layer even when immersed in phosphorous nitrate. That is, the corrosion resistance of the transparent conductive layer 12 to the acid is higher than the corrosion resistance of the ITO layer to the acid.
- the transparent conductive layer 12 and the ITO layer are generally amorphous layers.
- the high-temperature annealing treatment improves the crystallinity and increases the corrosion resistance.
- the liquid crystal panel is thinned by a slimming process, and when heated, the liquid crystal panel breaks due to air expansion in the liquid crystal. Therefore, an ITO layer with good crystallinity cannot be provided on the liquid crystal panel.
- the transparent conductive layer 12 can be formed on the color filter substrate 14 at room temperature. And even if the transparent conductive layer 12 is amorphous, its corrosion resistance is high, so that a highly reliable liquid crystal panel is realized. Further, in the liquid crystal panel 1, the high temperature annealing process for the transparent conductive layer 12 becomes unnecessary, and the manufacturing process is further simplified.
- Table 1 shows a comparison of the hardness of the transparent conductive layer.
- annealing conditions are 240 ° C. and 40 minutes in an air atmosphere.
- HM Martens hardness.
- HIT nanoindentation hardness.
- HV Vickers hardness.
- the film thickness is 1000 nm.
- the Martens hardness, nanoindentation hardness, and Vickers hardness of the transparent conductive layer 12 are higher than those of the ITO layer. Thereby, the durability of the liquid crystal panel 1 including the transparent conductive layer 12 is further improved.
- the scratch resistance is excellent as compared with the case where the ITO layer is used.
- examples of transparent conductive materials include zinc oxide and titanium oxide.
- the resistance of the zinc oxide layer to phosphonitrate is inferior to that of the transparent conductive layer 12.
- the refractive index of the titanium oxide layer is higher than that of the transparent conductive layer 12, and light reflection is more likely to occur at the interface between the titanium oxide layer and the layer in contact with the titanium oxide layer.
- the substrate 10 with a transparent conductive layer and the liquid crystal panel 1 that have stable operation characteristics over a long period of time.
- the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be added.
- SYMBOLS 1 Liquid crystal panel 10 ... Substrate with a transparent conductive layer 11 ... Transparent substrate 11a, 11b ... Surface 12 ... Transparent conductive layer 14 ... Color filter substrate 15 ... Color filter 20 ... Opposite substrate 21 ... Transparent substrate 21a, 21b ... Surface 22 ... Function Layer 40 ... Liquid crystal 41 ... Spacer 50, 51 ... Polarizing plate 60 ... Cover glass 70 ... Finger
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Liquid Crystal (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
前記透明導電層は、前記基板上に設けられ、酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかと、を含む。
これにより、この透明導電層付き基板においては、抵抗の経時変化が少なくなる。
これにより、この透明導電層付き基板においては、酸化物が還元されにくく、透明導電層の高抵抗状態が維持される。
前記透明導電層の透過率は、波長550nmにおいて98.5%以上であってもよい。
このような高い光透過率の透明導電層付き基板をインセル型の液晶パネルに用いることにより、カラーフィルタの帯電が抑制され、さらに液晶パネルにおける光透過率が著しく減少しないことになる。
これにより、この透明導電層付き基板においては、適切な抵抗及び透過率を有する透明導電層が基板上に設けられる。
これにより、この透明導電層付き基板においては、透明導電層の抵抗が窒素の添加量により調整される。
前記透明基板は、前記透明導電層と前記カラーフィルタとの間に設けられてもよい。
これにより、カラーフィルタへの帯電が透明導電層によって抑制される。
前記透明導電層付き基板は、第1の面と第2の面とを有する第1の透明基板と、透明導電層と、カラーフィルタとを有する。透明導電層は、前記第1の面上に設けられ、酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかとを含む。カラーフィルタは、前記第2の面上に設けられる。
前記対向基板は、第2の透明基板と、前記第2の透明基板上に設けられた感知センサ用電極及び液晶駆動用電子回路とを有する。
前記液晶は、前記透明導電層付き基板と前記対向基板との間に設けられ、前記液晶駆動用電子回路によって駆動制御される。
これにより、この液晶パネルにおいては、透明導電層によってカラーフィルタの帯電が防止される。さらに、この透明導電層において、抵抗の経時変化が少ない。その結果、液晶パネルにおいてタッチ感知機能の経時変化が少なく、信頼性がさらに高くなる。
これにより、液晶パネルの透明導電層付き基板においては、酸化物が還元されにくく、透明導電層の高抵抗状態が維持される。
前記透明導電層の透過率は、波長550nmにおいて98.5%以上であってもよい。
このような高い光透過率の透明導電層付き基板をインセル型の液晶パネルに用いることにより、カラーフィルタの帯電が抑制され、さらに液晶パネルにおける光透過率が著しく減少しないことになる。
これにより、この液晶パネルにおいては、適切な抵抗及び透過率を有する透明導電層が透明基板上に設けられる。
これにより、この液晶パネルにおいては、透明導電層の抵抗が窒素の添加量により調整される。
このような混合ガス雰囲気下で透明導電層を成膜することにより、所望の高抵抗の透明導電層が得られる。さらに、透明導電層における酸化物の還元が抑制され、抵抗の経時変化の少ない透明導電層が得られる。
これにより、この透明導電層付き基板においては、透明導電層の抵抗が窒素の添加量により調整される。
図1は、本実施形態に係る液晶パネルを示す概略的断面図である。
図1に示す液晶パネル1は、画像を表示する機能と、タッチパネル機能とを兼ね備える。液晶パネル1は、透明導電層付き基板10と、対向基板20と、液晶40と、偏光板50と、カバーガラス60と、偏光板51とを具備する。図1の例では、Z軸方向において、偏光板51、対向基板20、液晶40、透明導電層付き基板10、偏光板50及びカバーガラス60がこの順に積層されている。液晶40内には、スペーサ41が設けられている。
液晶パネル1の構成要素である透明導電層付き基板10の製造方法について図1を参照しながら説明する。
放電ガス:アルゴン(Ar)/酸素(O2)
ガス全圧:0.1Pa以上1.0Pa以下
アルゴン分圧:0.2Pa(流量40sccm)
酸素分圧:0.005Pa(流量1.0sccm)以上0.05Pa(10sccm)以下、好ましくは、0.005Pa(流量1.0sccm)以上0.013Pa(流量2.5sccm)以下
基板温度:25℃設定
放電ガス:アルゴン(Ar)/酸素(O2)/窒素(N2)
ガス全圧:0.1Pa以上1.0Pa以下
アルゴン分圧:0.2Pa(流量40sccm)
酸素分圧:0.005Pa(流量1.0sccm)以上0.05Pa(10sccm)以下、好ましくは、0.005Pa(流量1.0sccm)以上0.013Pa(流量2.5sccm)以下
窒素分圧:0.025Pa(流量5.0sccm)以上0.1Pa(流量20sccm)以下
基板温度:25℃設定
図5は、透明導電層の光透過率を示す概略的グラフ図である。
図5の横軸は、波長(nm)であり、縦軸は、光透過率(%)である。
放電ガス:アルゴン(Ar)/酸素(O2)/窒素(N2)
ガス全圧:0.1Pa以上1.0Pa以下
アルゴン分圧:0.2Pa(流量40sccm)
酸素分圧:0.013Pa(流量2.5sccm)
窒素分圧:0Pa(流量0sccm)以上0.1Pa(流量20sccm)以下
基板温度:25℃設定
図6、7の横軸は、時間(h)であり、縦軸は、シート抵抗(Ω/sq.)である。
図6には、透明導電層12を室温で、大気中に放置した場合の結果が示されている。
図7には、透明導電層12を60℃、水蒸気90RH%下で放置した場合の結果が示されている。図6、7における成膜条件は、以下の通りである。
放電ガス:アルゴン(Ar)/酸素(O2)/窒素(N2)
ガス全圧:0.1Pa以上1.0Pa以下
アルゴン分圧:0.2Pa(流量40sccm)
酸素分圧:0.013Pa(流量2.5sccm)
窒素分圧:0Pa(流量0sccm)以上0.05Pa(流量10sccm)以下
基板温度:25℃設定
図8において、横軸は、透明導電層12及びITO層をリン硝酢酸に浸漬させた時間(min)であり、縦軸は、シート抵抗(Ω/sq.)である。
成膜条件は、以下の通りである。成膜時の酸素分圧については、透明導電層12及びITO層のシート抵抗が1×108(Ω/sq.)以上1×1010(Ω/sq.)以下に収まるように調整されている。
ターゲット材:酸化スズ/酸化ニオブ(10wt%)
放電ガス:アルゴン(Ar)/酸素(O2)
ガス全圧:0.21Pa
アルゴン分圧:0.2Pa(流量40sccm)
膜厚:10nm
基板温度:25℃設定
ターゲット材:酸化インジウム/酸化スズ(10wt%)
放電ガス:アルゴン(Ar)/酸素(O2)
ガス全圧:0.23Pa
アルゴン分圧:0.2Pa(流量40sccm)
膜厚:10nm
基板温度:25℃設定
10…透明導電層付き基板
11…透明基板
11a、11b…表面
12…透明導電層
14…カラーフィルタ基板
15…カラーフィルタ
20…対向基板
21…透明基板
21a、21b…表面
22…機能層
40…液晶
41…スペーサ
50、51…偏光板
60…カバーガラス
70…指
Claims (13)
- 基板と、
前記基板上に設けられ、酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかとを含む透明導電層と
を具備する透明導電層付き基板。 - 請求項1に記載の透明導電層付き基板であって、
前記酸化ニオブ、前記酸化タンタル及び前記酸化アンチモンの少なくともいずれかの含有率は、前記透明導電層において5wt%以上15%wt以下である
透明導電層付き基板。 - 請求項1または2に記載の透明導電層付き基板であって、
前記透明導電層のシート抵抗は、1×107(Ω/sq.)以上1×1010(Ω/sq.)以下であり、
前記透明導電層の透過率は、波長550nmにおいて98.5%以上である
透明導電層付き基板。 - 請求項1~3のいずれか1つに記載の透明導電層付き基板であって、
前記透明導電層の厚さは、5nm以上15nm以下である
透明導電層付き基板。 - 請求項1~4のいずれか1つに記載の透明導電層付き基板であって、
前記透明導電層は、窒素を含有する
透明導電層付き基板。 - 請求項1~5のいずれか1つに記載の透明導電層付き基板であって、
前記基板は、透明基板と、カラーフィルタとを有し、
前記透明基板は、前記透明導電層と前記カラーフィルタとの間に設けられている
透明導電層付き基板。 - 第1の面と第2の面とを有する第1の透明基板と、前記第1の面上に設けられ、酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかとを含む透明導電層と、前記第2の面上に設けられたカラーフィルタとを有する透明導電層付き基板と、
第2の透明基板と、前記第2の透明基板上に設けられた感知センサ用電極及び液晶駆動用電子回路とを有する対向基板と、
前記透明導電層付き基板と前記対向基板との間に設けられ、前記液晶駆動用電子回路によって駆動制御される液晶と
を具備する液晶パネル。 - 請求項7に記載の液晶パネルであって、
前記酸化ニオブ、前記酸化タンタル及び前記酸化アンチモンの少なくともいずれかの含有率は、前記透明導電層において5wt%以上15%wt以下である
液晶パネル。 - 請求項7または8に記載の液晶パネルであって、
前記透明導電層のシート抵抗は、1×107(Ω/sq.)以上1×1010(Ω/sq.)以下であり、
前記透明導電層の透過率は、波長550nmにおいて98.5%以上である
液晶パネル。 - 請求項7~9のいずれか1つに記載の液晶パネルであって、
前記透明導電層の厚さは、5nm以上15nm以下である
液晶パネル。 - 請求項7~10のいずれか1つに記載の液晶パネルであって、
前記透明導電層は、窒素を含有する
液晶パネル。 - 酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかと、を含むターゲット材であって、前記ターゲット材における前記酸化ニオブ、前記酸化タンタル及び前記酸化アンチモンの少なくともいずれかの含有率が5wt%以上15%wt以下である前記ターゲット材を用い、酸素分圧が0.005Pa以上0.05Pa以下のアルゴンと酸素の混合ガス雰囲気下で、基板上に、酸化スズと、酸化ニオブ、酸化タンタル及び酸化アンチモンの少なくともいずれかとを含む透明導電層を成膜する
透明導電層付き基板の製造方法。 - 請求項12に記載の透明導電層付き基板の製造方法であって、
前記混合ガスに窒素を含有させ、前記窒素の分圧が0.025Pa以上0.1Pa以下で前記透明導電層を成膜する
透明導電層付き基板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187005543A KR102042081B1 (ko) | 2016-08-10 | 2017-03-21 | 투명 도전층이 구비된 기판, 액정 패널 및 투명 도전층이 구비된 기판의 제조 방법 |
JP2018511285A JP6507311B2 (ja) | 2016-08-10 | 2017-03-21 | 透明導電層付き基板及び液晶パネル |
CN201780002944.4A CN108028094B (zh) | 2016-08-10 | 2017-03-21 | 带透明导电层的基板和液晶面板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016157467 | 2016-08-10 | ||
JP2016-157467 | 2016-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018029886A1 true WO2018029886A1 (ja) | 2018-02-15 |
Family
ID=61161952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011203 WO2018029886A1 (ja) | 2016-08-10 | 2017-03-21 | 透明導電層付き基板、液晶パネル及び透明導電層付き基板の製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6507311B2 (ja) |
KR (1) | KR102042081B1 (ja) |
CN (1) | CN108028094B (ja) |
TW (1) | TWI690999B (ja) |
WO (1) | WO2018029886A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12086356B2 (en) | 2022-01-20 | 2024-09-10 | Sharp Display Technology Corporation | Display device with touch panel and touch panel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110322800A (zh) * | 2018-03-28 | 2019-10-11 | 惠州市宝明精工有限公司 | 一种带抗静电膜的液晶面板及抗静电膜的制备方法 |
TWI673546B (zh) * | 2018-06-01 | 2019-10-01 | 薩摩亞商山力科技有限公司 | 微開關電子書寫板 |
US11181790B2 (en) | 2019-11-11 | 2021-11-23 | Lg Display Co., Ltd. | Liquid crystal display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322413A (ja) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法 |
JP2000281431A (ja) * | 1999-03-30 | 2000-10-10 | Mitsui Mining & Smelting Co Ltd | SnO2系焼結体、薄膜形成用材料および導電膜 |
JP2002073280A (ja) * | 2000-08-30 | 2002-03-12 | Nippon Sheet Glass Co Ltd | 透明タッチパネル用基板及び透明タッチパネル |
JP2003151360A (ja) * | 2001-11-16 | 2003-05-23 | Bridgestone Corp | 透明導電性フィルムおよびタッチパネル |
JP2008192604A (ja) * | 2007-01-12 | 2008-08-21 | Sumitomo Chemical Co Ltd | 透明導電膜用材料 |
JP2013142194A (ja) * | 2012-01-12 | 2013-07-22 | Geomatec Co Ltd | 透明導電膜,透明導電膜付き基板,ips液晶セル,静電容量型タッチパネル及び透明導電膜付き基板の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855948A (ja) | 1981-09-29 | 1983-04-02 | Ricoh Co Ltd | コロナ放電用電源装置 |
CN1301510C (zh) * | 2001-10-05 | 2007-02-21 | 普利司通股份有限公司 | 透明导电性薄膜、其制造方法以及触摸面板 |
TWI533064B (zh) * | 2014-07-09 | 2016-05-11 | 群創光電股份有限公司 | 顯示面板 |
-
2017
- 2017-03-21 WO PCT/JP2017/011203 patent/WO2018029886A1/ja active Application Filing
- 2017-03-21 KR KR1020187005543A patent/KR102042081B1/ko active IP Right Grant
- 2017-03-21 JP JP2018511285A patent/JP6507311B2/ja active Active
- 2017-03-21 CN CN201780002944.4A patent/CN108028094B/zh active Active
- 2017-03-31 TW TW106111123A patent/TWI690999B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322413A (ja) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | 光透過膜、高抵抗透明導電膜、光透過膜形成用スパッタリングタ―ゲット及び高抵抗透明導電膜の製造方法 |
JP2000281431A (ja) * | 1999-03-30 | 2000-10-10 | Mitsui Mining & Smelting Co Ltd | SnO2系焼結体、薄膜形成用材料および導電膜 |
JP2002073280A (ja) * | 2000-08-30 | 2002-03-12 | Nippon Sheet Glass Co Ltd | 透明タッチパネル用基板及び透明タッチパネル |
JP2003151360A (ja) * | 2001-11-16 | 2003-05-23 | Bridgestone Corp | 透明導電性フィルムおよびタッチパネル |
JP2008192604A (ja) * | 2007-01-12 | 2008-08-21 | Sumitomo Chemical Co Ltd | 透明導電膜用材料 |
JP2013142194A (ja) * | 2012-01-12 | 2013-07-22 | Geomatec Co Ltd | 透明導電膜,透明導電膜付き基板,ips液晶セル,静電容量型タッチパネル及び透明導電膜付き基板の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12086356B2 (en) | 2022-01-20 | 2024-09-10 | Sharp Display Technology Corporation | Display device with touch panel and touch panel |
Also Published As
Publication number | Publication date |
---|---|
TWI690999B (zh) | 2020-04-11 |
KR102042081B1 (ko) | 2019-11-07 |
JP6507311B2 (ja) | 2019-04-24 |
JPWO2018029886A1 (ja) | 2018-08-16 |
CN108028094A (zh) | 2018-05-11 |
TW201806031A (zh) | 2018-02-16 |
KR20180036738A (ko) | 2018-04-09 |
CN108028094B (zh) | 2020-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3980475B2 (ja) | タッチパネル装置及びその製造方法 | |
JP5197418B2 (ja) | 反射防止膜及びその製造方法、並びに表示装置 | |
US9971210B2 (en) | Liquid crystal display device | |
JP5375536B2 (ja) | 静電容量式タッチパネルとその製造方法及び該タッチパネルを備えた液晶表示装置 | |
GB2557403B (en) | In-cell touch liquid crystal display device and method of manufacturing the same | |
TWI638301B (zh) | 內嵌式觸控液晶顯示裝置及其製造方法 | |
US9182844B2 (en) | Touch panel, display device provided with touch panel, and method for manufacturing touch panel | |
WO2018029886A1 (ja) | 透明導電層付き基板、液晶パネル及び透明導電層付き基板の製造方法 | |
US11926558B2 (en) | Conductive structure, manufacturing method therefor, and electrode comprising conductive structure | |
KR20150045365A (ko) | 표시 장치 및 전자 기기 | |
US20130076996A1 (en) | Integrated touch panel with display device and method of manufacturing the same | |
JP2017054926A (ja) | 配線基板、半導体装置、および液晶表示装置 | |
CN105579939A (zh) | 用于输入装置的电极及其制造方法 | |
JP6779672B2 (ja) | 透明導電膜付き基板、液晶パネル及び透明導電膜付き基板の製造方法 | |
JP2020204050A (ja) | 透明導電膜の製造方法、透明導電膜、及びスパッタリングターゲット | |
TW202119104A (zh) | 液晶顯示裝置及一種製造液晶顯示裝置的方法 | |
KR102726987B1 (ko) | 액정표시장치 | |
JP2006169040A (ja) | Ito付きガラス基板およびその製造方法 | |
JP2013175240A (ja) | 静電容量式タッチパネル及び該タッチパネルを備えた液晶表示装置 | |
KR102038847B1 (ko) | 터치패널을 구비한 박형의 액정표시장치 제조방법 | |
WO2013015133A1 (ja) | 液晶ディスプレイ用基板、液晶ディスプレイ用基板の製造方法、及び、液晶ディスプレイ | |
KR20170080230A (ko) | 표시장치 및 그 제조방법 | |
JP2016031748A (ja) | 電極およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187005543 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018511285 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17838962 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17838962 Country of ref document: EP Kind code of ref document: A1 |