WO2018025618A1 - Material structure searching method and x-ray structural analysis system used in said method - Google Patents
Material structure searching method and x-ray structural analysis system used in said method Download PDFInfo
- Publication number
- WO2018025618A1 WO2018025618A1 PCT/JP2017/025716 JP2017025716W WO2018025618A1 WO 2018025618 A1 WO2018025618 A1 WO 2018025618A1 JP 2017025716 W JP2017025716 W JP 2017025716W WO 2018025618 A1 WO2018025618 A1 WO 2018025618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- information
- xrds
- analysis system
- analysis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/205—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials using diffraction cameras
Definitions
- the present invention relates to a structural analysis of a substance using X-ray diffraction for material development in a short period of time.
- the structural analysis is efficiently performed.
- the present invention relates to a method for searching a material structure centered on smart structural analysis that can be performed in an automated manner and an X-ray structural analysis system used therefor.
- Patent Document 1 a twin crystal real space unit cell, a reciprocal space basic lattice, and a reciprocal lattice point group are displayed three-dimensionally by using a single crystal X-ray structure analysis apparatus.
- a twinning analyzer characterized in that the success rate of the X-ray structural analysis of a twinned sample can be improved by making it easy to understand the three-dimensional correlation between components.
- the above-described twinning analysis apparatus is mainly intended for a crystal having a twinned structure, and more specifically, based on the obtained crystal orientation matrix, a plurality of twinning crystals.
- its reciprocal space basic lattice is obtained, and these can be rotated, enlarged / reduced, and horizontally moved, and at the same time, the reciprocal lattice point group in which X-ray diffraction occurs is determined for each twin component.
- These are displayed in a three-dimensional manner. Therefore, from the displayed image, knowledge of crystallography is still necessary to easily understand the three-dimensional interrelationship, and it has a large-scale system / complex structure / hierarchy. No mention was made of the structure, or the material mixed with different materials.
- the present invention has been achieved in view of the problems in the prior art described above, and in particular, has a large-scale system / complex structure / hierarchy even without expertise in X-ray structural analysis.
- Method of substance structure for performing “smart structure analysis” capable of evaluating the structure by X-ray for materials such as complex structures and materials mixed with different materials (multi-scale structure), and X-rays used therefor
- the object is to provide a structural analysis system.
- the measurement material to be analyzed is often a structure that can be predicted from the material that has been subjected to the structural analysis in advance.
- the actually measured X-ray diffraction / scattering pattern In particular, the researcher designed it by enabling the prediction of the structure of the target material and its X-ray diffraction / scattering simulation, for example.
- the present invention provides a method for searching for a material structure that enables efficient structural evaluation when confirming a material, and an X-ray structure analysis system used therefor.
- the present invention first, for each candidate material to be searched, (b) at least one of reflection, transmission, and scattering of the material obtained by actual measurement or simulation using an image. (B) Determined from analysis or simulation by analytical method, or database of estimated structure data of the material, and (c) Actual characteristics or properties obtained by actual measurement or simulation Data is made into a database by measurement or computer simulation, and (d) the related information that can be associated and stored including the mutual association of the data is made into a database, and using the databases from (i) to (d) above, Image (b), structure (b) close to the material to be searched Any or a combination thereof gender (c), the mutual information distance information (d), the search method of structure of materials and judging or extraction is provided.
- the correlation information extracted or extracted may be added to a database.
- data obtained by actual measurement or simulation using an image is measured using X-ray, electron beam, or other irradiation including electromagnetic waves including visible light, and is based on the (b) analysis method.
- Data obtained by actual measurement or simulation is measured by analysis including X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis, biochemical analysis, or according to the above
- physical properties Data obtained by actual measurement or simulation may be measured by physical properties including electrical, thermal, mechanical, chemical, and biochemical properties.
- the most effective set of material variables that lead to the material to be searched is calculated. May be included.
- (b) data relating to at least one of X-ray reflection, transmission, and scattering of materials obtained by actual measurement using images is input, and (b) materials obtained by simulation.
- an X-ray structural analysis system used in the above-described method for searching a material structure which includes at least an X-ray source that generates X-rays, X-ray irradiation means for irradiating a sample to be measured with X-rays from the X-ray source, X-ray detection means for measuring X-rays diffracted or scattered by the sample to be measured, and the X-ray detection means And means for generating XRDS information including the traits of the X-ray image based on the diffraction or scattered X-rays of the sample to be measured detected by the step (b), and (b) to (d) above.
- an X-ray structural analysis system characterized in that it has means accessible.
- the above X-ray structure analysis system is the X-ray structure analysis system described above, and further, whether or not the structure of the sample obtained by the X-ray diffraction / scattering measurement is expected. May be provided with a structure discriminating means having such a discriminating function, or it is estimated that the measured sample is most likely based on the XRDS information obtained by the X-ray diffraction / scattering phenomenon. You may provide the extraction means which extracts a result.
- the X-ray structure analysis system described above may further include a database unit for storing data including the traits of the XRDS information, or further, a material structure description language (MSDL) is provided.
- MSDL material structure description language
- a simulator may be provided that calculates XRDS information from the expected structure of the sample calculated by the information included.
- the simulator for calculating the XRDS information can calculate a structure other than the expected structure of the sample, and the function can be called up from outside and used.
- the extraction unit may be configured to be accessible to a database unit for storing analysis results and physical property values other than the X-rays of the sample, or machine learning or / And may be configured with artificial intelligence (AI).
- AI artificial intelligence
- X-rays for large-scale systems, complicated structures, hierarchical structures, and materials mixed with different materials (multi-scale structures) can be obtained without specialized X-ray knowledge. It is possible to provide a material structure search method and an X-ray structure analysis apparatus used therefor that are capable of structural analysis and that are excellent in practical use.
- FIG. 1 shows the overall configuration of an X-ray structure analysis apparatus according to an embodiment of the present invention.
- FIG. 1 includes an X-ray cover.
- the front structure of the whole shape of a X-ray measurement system is shown.
- FIG. 2 shows a cross-sectional structure of the X-ray apparatus according to the line II-II in FIG.
- the X-ray measurement system 1 shown here includes a base 4 that stores a cooling device 2 and an X-ray generation power supply unit 3, and an X-ray cover 6 that is placed on the base 4.
- the X-ray cover 6 has a casing 7 surrounding the X-ray apparatus 9 and a pair of doors 8 provided on the front surface of the casing 7.
- Reference numeral 10 indicates a handle used when the door 8 is opened and closed.
- the casing 7 and the door 8 are formed of, for example, an iron plate having a thickness of about 3.2 mm.
- the pair of doors 8 can be opened as shown by an arrow A in FIG. 3, and various operations can be performed on the X-ray apparatus 9 in this opened state.
- X-ray apparatus 9 X-ray apparatuses having various structures are conceivable.
- an X-ray diffractometer that uses a polycrystalline powder sample as a measurement target is shown as an example.
- X-ray diffractometers include atoms and molecules, and wide-angle X-ray scatterers and small-angle X-ray scatterers that can observe an average structure such as a crystal lattice. Furthermore, as will be described later, an X-ray microscope, an electron microscope, XRF, Raman spectroscopy, mass spectrometry, and the like may be included separately.
- the X-ray apparatus that is, the X-ray diffractometer 9 has an X-ray tube 11 and a goniometer 12 as shown in FIG.
- the X-ray tube 11 includes a filament 13, a target (also referred to as an “anti-cathode”) 14 disposed so as to face the filament 13, and a casing 15 for storing them in an airtight manner.
- the filament 13 is energized by the X-ray generation power supply unit 3 in FIG. 1 to generate heat and emit thermoelectrons.
- a high voltage is applied between the filament 13 and the target 14 by the X-ray generation power supply unit 3, and the thermoelectrons emitted from the filament 13 are accelerated by the high voltage and collide with the target 14.
- This collision area forms an X-ray focal point F, and X-rays R0 are generated from the X-ray focal point F and diverge.
- the target 14 generally generates heat at a high temperature and needs to be cooled.
- the cooling device 2 in FIG. 1 performs the cooling process. For example, a cooling liquid such as cooling water is flowed around the target 14. Cooling is performed.
- the goniometer 12 supports the sample S and rotates around a sample axis ⁇ that passes through the X-ray incident point of the sample S, and a sample disposed around the ⁇ turntable 16. And a 2 ⁇ turntable 17 that can rotate about the axis ⁇ .
- the sample S is assumed to be a polycrystalline powder sample as an example.
- a drive device (not shown) for driving the ⁇ turntable 16 and the 2 ⁇ turntable 17 is stored in the base 18 of the goniometer 12.
- the ⁇ -rotation table 16 rotates intermittently or continuously at a predetermined angular velocity, so-called ⁇ rotation.
- the 2 ⁇ rotating table 17 rotates intermittently or continuously in the same direction as the ⁇ rotation at the angular velocity twice the ⁇ rotation, that is, so-called 2 ⁇ rotation.
- the above drive device can be configured by an arbitrary structure, but can be configured by a power transmission structure including a worm and a worm wheel, for example.
- a detector arm 19 extending outward in the radial direction is provided on a part of the outer peripheral surface of the 2 ⁇ turntable 17, and a light receiving slit 21 and an X-ray detector 22 are placed on the detector arm 19.
- the X-ray detector 22 is configured by, for example, a two-dimensional pixel detector.
- a diverging ray restricting slit 23 is disposed between the X-ray tube 11 and the goniometer 12.
- the sample S rotates ⁇ around the sample axis ⁇ by the ⁇ rotation of the ⁇ turntable 16, and at the same time, the light receiving slit 21 and the X-ray detector 22. Is rotated 2 ⁇ around the sample axis ⁇ by the 2 ⁇ rotating table 19. While the sample S rotates ⁇ and the X-ray detector 22 rotates 2 ⁇ , the X-ray R0 generated from the X-ray focal point F in the X-ray tube 11 and diverging is regulated by the divergence regulating slit 23 toward the sample S. It is done. The incident angle of the X-ray incident on the sample S changes according to the ⁇ rotation of the sample S.
- a diffracted X-ray R1 is generated from the sample S.
- the diffracted X-ray R1 is focused at the light receiving slit 21, and then received by the X-ray detector 22 to measure the X-ray intensity.
- the intensity of the diffracted X-ray R1 corresponding to the angle of the X-ray detector 22 with respect to the incident X-ray R0, that is, the diffraction angle, is measured, and the crystal structure or the like related to the sample S is determined from this measurement result.
- FIG. 5A shows an example of the details of the electrical internal configuration constituting the control unit in the X-ray structure analysis apparatus.
- the present invention is not limited to the embodiments described below.
- the X-ray diffraction apparatus 100 includes the above-described internal configuration, and includes a measurement apparatus 102 that performs measurement using an appropriate substance as a sample, an input apparatus 103 that includes a keyboard, a mouse, and the like, and an image display as a display unit.
- CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- the image display device 104 is configured by an image display device such as a CRT display or a liquid crystal display, and displays an image on a screen in accordance with an image signal generated by the image control circuit 113.
- the image control circuit 113 generates an image signal based on the image data input thereto.
- Image data input to the image control circuit 113 is formed by the operation of various arithmetic means realized by a computer including the CPU 107, RAM 108, ROM 109, and hard disk 111.
- the printer 106 an ink plotter, a dot printer, an inkjet printer, an electrostatic transfer printer, or any other printing apparatus having an arbitrary structure can be used.
- the hard disk 111 can also be configured by a magneto-optical disk, a semiconductor memory, or other storage medium having an arbitrary structure.
- analysis application software 116 that controls the overall operation of the X-ray diffraction apparatus 100, measurement application software 117 that controls the operation of measurement processing using the measurement apparatus 102, and an image display device 104 are provided.
- display application software 118 Stored is display application software 118 that manages the operation of the display processing used.
- the X-ray diffractometer 100 further includes, for example, a database placed in a cloud area for storing various measurement results including measurement data obtained by the measurement apparatus 102 described above.
- a database placed in a cloud area for storing various measurement results including measurement data obtained by the measurement apparatus 102 described above.
- an XRDS information database 120 that stores the XRDS image data obtained by the measurement apparatus 102
- a microscope image database 130 that stores an actual image obtained by an electron microscope
- a measurement result obtained by analysis other than X-rays, such as XRF and Raman rays, and other analysis database 140 storing physical property information are shown. Note that these databases do not necessarily have to be mounted inside the X-ray diffraction apparatus 100, and may be connected to each other via a network 150 or the like, for example.
- a file management method for storing a plurality of measurement data in a data file a method of storing individual measurement data in an individual file is also conceivable.
- a plurality of measurement data are continuously stored in one data file.
- the storage area described as “condition” in FIG. 5B is an area for storing various information including apparatus information and measurement conditions when measurement data is obtained.
- Such measurement conditions include (1) the name of the substance to be measured, (2) the type of measuring device, (3) the measurement temperature range, (4) the measurement start time, (5) the measurement end time, and (6) the measurement angle. Range, (7) moving speed of the scanning movement system, (8) scanning conditions, (9) type of X-rays incident on the sample, (10) whether or not an attachment such as a sample high temperature apparatus was used, and other various conditions Can be considered.
- An XRDS (X-ray Diffraction and Scattering) pattern or image is an X-ray received on a plane which is a two-dimensional space of the X-ray detector 22 constituting the measuring apparatus 102, and is a planar shape constituting the detector.
- the light is received / accumulated by pixels (for example, a CCD or the like) arranged in the array and the intensity thereof is measured. For example, by detecting the intensity of X-rays received by integration for each pixel of the X-ray detector 22, a pattern or image in a two-dimensional space of r and ⁇ can be obtained.
- a multiscale structure that is an observation target of the X-ray structure analysis system of the present invention will be described with reference to FIG.
- conventional X-ray diffractometers are mainly intended for atoms, molecules, and twin crystal structures, but the multi-scale structure that is the object of observation by the present invention is not limited to them.
- it is a structure (high-order assembly structure) that has a large-scale and complicated structure and a hierarchical structure, such as a crystal lattice, a laminated lamella, and a spherulite.
- it is a substance in which the aggregate structure of molecules and atoms exists over a wide range of structural scales (from angstroms to ⁇ m).
- small aggregate structures are included in larger aggregate structures.
- a complicated structure formed by a structure in which different kinds of materials are mixed is included.
- a rubber matrix is mixed with silica particles or carbon black, a crosslinking agent or the like is added to control the physical property value or performance (for example, a tire), or hetero Electronic components that generate and emit light by carrier conduction via excitons at the interface between various organic molecular assemblies (for example, organic solar cells, organic electronics, etc .:
- the efficiency of the device depends greatly on the shape of the interface.
- it is necessary to control the structure at the nano level) and further, materials of lithium ion batteries and fuel cells that generate electricity by ionic conduction (discharge efficiency and lifetime depend greatly on the structure of the substance interface, Control of the structure at the nano level is necessary).
- a wide-angle X-ray scattering device a small-angle X-ray scattering device, or the like is generally used for such a multi-scale sample.
- the real space is a three-dimensional space such as (x, y, z), and the material structure in the real space is described as an electron density distribution ⁇ (x, y, z). .
- the inverse space is a three-dimensional space given by the Fourier transform of the electron density distribution ⁇ (x, y, z) in the real space, and given by the scattering amplitude A (Kx, Ky, Kz). Further, the observed quantity is described by the following expression as the scattering intensity I (Kx, Ky, Kz).
- the Fourier transform of the electron density distribution in the real space always has a center of symmetry (that is,
- the mapping from real space to inverse space is bijective but not bijective (not bijective).
- the inverse space appears in the process of calculation, and more specifically, the scattering intensity, which is a measurement amount in the X-ray diffraction apparatus, is surjective to real space but not injective. That is, the “uniqueness” of the measured quantity in the X-ray diffractometer to the real space information is impaired. Therefore, in the present invention, not only the X-ray analysis information but also other related information (composition, molecular structure, etc.) is interpreted to improve the “uniqueness” to the real space information. .
- the XRDS pattern or image on the observation space obtained by X-ray diffraction or scattering by the target material with respect to the irradiated X-rays reflects the information of the electron density distribution in the real space of the target material.
- the XRDS pattern is a two-dimensional space of r and ⁇ , and does not directly represent symmetry in the real space of the target material that is a three-dimensional space. Therefore, in general, it is difficult to specify the (spatial) arrangement of atoms and molecules constituting a material only with existing XRDS images, and specialized knowledge of X-ray structural analysis is required.
- the XRDS pattern has a relationship with the information of the electron density distribution in the real space, that is, as shown below, due to the symmetry of the electron density distribution in the real space of the target material.
- the XRDS pattern that appears is different.
- FIGS. 8 to 14 below show examples of real space structures of typical materials and XRDS images obtained thereby.
- ⁇ Crystal structure> In FIG. 8, as an example, a NaCl type crystal structure (FIG. 8A), a CaCl type crystal structure (FIG. 8B), and a ZnS (zincblende) type crystal structure (FIG. 8C). ), ZnS (wurtzite) type crystal structure (FIG. 8D), and NiAs type crystal structure (FIG. 8E), respectively. Note that XRDS images (patterns) obtained by these crystal structures are different from each other though not shown here.
- FIG. 9 as another example, a ReO 3 (rhenium oxide) type crystal structure which is an AO 3 type oxide (FIG. 9A), and a CaTiO 3 (perovskite) type which is an ABO 3 type oxide.
- the crystal structure (FIG. 9B) and the MgAl 2 O 4 (spinel) type crystal structure (FIG. 9C), which is an AB 2 O 4 type oxide, are shown.
- XRDS images (patterns) obtained by these crystal structures also have different patterns although not shown here.
- the target material is a collection of microcrystals and the collection of microcrystals is disordered in its real space structure, as shown in FIG. 10A, the obtained two-dimensional (2D) -XRDS data (pattern) is It becomes a ring.
- the obtained two-dimensional (2D) -XRDS data (pattern) will be flat spots on the top and bottom as shown in FIG. As the crystal size decreases, the spot expands. Furthermore, as shown in FIG. 11B, when these plate-like crystals are stacked obliquely, flat spots are inclined (so-called orientation). Note that if there are two types of stacking directions, two flat spots are superimposed, and if there are a plurality of directions, the spots are ring-shaped, which is the same as Debye ring.
- FIG. 12A shows an XRDS image obtained by using a material having a structure in which a large number of atoms and molecules are arranged between layers in a stacked structure
- FIG. 12B shows atoms arranged between layers. And XRDS image when the molecule is tilted.
- FIG. 13A shows an XRDS image of a material having a real space structure in which a large number of rod-like structures are irregularly combined
- FIG. 13B shows an XRDS image in the case of a crystal. Is shown
- FIG. 14 shows an XRDS image obtained from a material having a structure in which molecules are connected in a string or rod shape.
- the XRDS image by the crystal can be simulated as follows. As shown in FIG. 15, if the length of each unit cell is a, b, c, and the angle between each unit cell is ⁇ , ⁇ , ⁇ , each vector a, b, c is expressed as (See FIGS. 15A and 15B). Further, if the transformation matrix A is expressed by Equation 4 and the lattice position vector r is expressed by Equation 5 (see FIGS. 15C and 15D), the reciprocal lattice vector is expressed by Equation 6, and the reciprocal lattice matrix B is expressed by Equation 7. It becomes like this. The reciprocal lattice vector r * based on the orientation directions h, k, and l is expressed by Equation 8 (see FIG. 16), and the preferential alignment axes (orienting surfaces) H, K, and L are expressed by Equation 9.
- Equation 11 the orientation of the preferential orientation axis (oriented crystal plane) as shown in Equation 10 is set perpendicular to the Z axis.
- the rotation matrix E ⁇ 1 is expressed by Equation 11.
- ⁇ is the spin angle with the HKL axis as the center
- ⁇ is the tilt angle from the Z axis
- ⁇ is the angle from the X axis of the XY plane (see FIG. 17)
- the orientation state is the number of the transformation matrix E 12
- the orientation conversion matrix U by the apparatus is represented by three axes as shown in Equation 13, and these axes depend on the apparatus.
- the final position of each reciprocal lattice point (hkl) is expressed by Equation 14.
- Equation 15 coordinate transformation for moving the reciprocal lattice coordinates to the center of the Ewald sphere is performed as shown in Equation 15 (see FIG. 18).
- the vector S represents the surface of the Ewald sphere as shown in Equation 16.
- reciprocal lattice points satisfying the diffraction condition are selected as shown in Equation 17.
- (x ′′, y ′′, z ′′) is the final position of each reciprocal lattice point (hkl)
- 1 / ⁇ is the radius of the Ewald sphere
- ⁇ is the wavelength of the X-ray.
- the position of the X-ray signal is calculated as in Expression 18.
- the XRDS image obtained by the simulation described above is expected to vary depending on the scattering conditions as described below.
- the preferential orientation axes H, K, L
- both ⁇ and ⁇ are zero.
- ⁇ is also zero.
- the X-rays scattered by the crystal are located in the reciprocal lattice on the (x ′′, y ′′) plane and in contact with the Ewald sphere (two stars in the figure). X-rays directed to (shown) will be detected as spots on the detector. However, the central X-ray is not shown.
- FIG. 21 shows the state when ⁇ randomly varies in the range of ⁇ 22.5 to 22.5 degrees
- FIG. 22 shows the state when ⁇ randomly varies in the range of ⁇ 45 to 45 degrees. Respectively.
- ⁇ Liquid crystal phase> -There is no order in the molecular orientation ⁇ becomes isotropic phase (liquid phase) and circular. ⁇ Molecular orientation is aligned in one direction ⁇ Nematic phase (N phase), circular ring looks like an ellipse. ⁇ There is no order in the molecular orientation, but there is a one-dimensional periodic structure ⁇ Same as a smectic phase ( lamellar phase) acicular crystal. The molecular orientation and the direction of the one-dimensional periodic structure (layer normal) are the same ⁇ there is a liquid-like short-range order in the direction perpendicular to the smectic A phase and the layer normal.
- the molecular orientation is tilted from the layer normal of the one-dimensional periodic structure ⁇ smectic C phase, Although there is a liquid-like short-range order in the direction perpendicular to the layer normal, the molecular orientation is tilted. There is a three-dimensional order in the molecular positional relationship ⁇ crystalline phase.
- the XRDS pattern partially reflects the symmetry of the electron density distribution in the real space. Therefore, in the present invention, the relationship between the XRDS pattern in the observation space and the electron density distribution in the real space is used.
- a real space model the electron density distribution or material structure that can be a candidate, or structural features and structural findings Is possible. That is, according to this, it is possible to collate and analogize data by extracting X-ray image features, to easily specify the real space model of the target material, and to further proceed with the analysis. For the user of the engaged X-ray measuring apparatus, it is possible to easily determine whether or not a material or substance having a target structure is obtained, and the efficiency of material development can be increased.
- the characteristic image elements of the above-described XRDS image are hereinafter also referred to as “characters”.
- the types and attributes of these characters include the following as shown in FIG. 15 as an example.
- Spot / bright spot position, peak brightness, blur, etc.
- -Annulus position, peak brightness, blur, etc.
- the Milky Way position, peak brightness, blur, etc.
- These “characters” are a set of these elements according to the position of each pixel of the X-ray detector 22 composed of the above-described two-dimensional pixel detection element and the intensity of the X-ray detected there. Is expressed by several variables.
- FIG. 24 shows wide angle diffraction images (XRDS images) obtained from P (3HB) films having different stretching degrees.
- I (2 ⁇ , ⁇ ) is obtained by polar coordinate transformation.
- Structural information corresponding to the structural scale is obtained in the radial direction (2 ⁇ direction), and structural information depending on the orientation distribution of the basic structure is obtained in the azimuth angle direction ( ⁇ direction).
- structural information relating to symmetry of the fundamental period can be obtained by normalizing the radial direction with ⁇ / 2sin ⁇ . Further, the intensity distribution in the same 2 ⁇ , ⁇ 2 ⁇ I (2 ⁇ , ⁇ ), can be used as the feature amount of the orientation information. Furthermore, in the case where there is a “Tennokawa-like” structural feature that depends on both the 2 ⁇ and ⁇ parameters, a structural finding such as a so-called fiber structure is obtained, in which a strong one-dimensional periodicity is considered. By such feature extraction from the XRDS pattern, the XRDS pattern is expressed (parameterized) by the feature parameter, and subsequent pattern matching and database matching can be efficiently executed.
- FIG. 26 shows the measured XRDS pattern.
- An XRDS pattern as a reciprocal lattice distribution obtained by simulation assuming that the structural unit is randomly rotated around the c-axis is obtained as shown in FIG.
- Comparison between FIG. 26 and FIG. 27 shows that the two elements in the vertical direction of FIG. 26 cannot be reproduced by simulation. Therefore, assuming that the c-axis is inclined within a range of ⁇ 5 °, the remaining elements can be simulated as shown in FIG.
- this XRDS pattern is a structure in which the structural unit is randomly rotated around the c-axis and the c-axis is inclined within a range of ⁇ 5 °.
- the XRDS image which is a group of reciprocal lattice points of X-ray diffraction obtained by the X-ray structural analysis system
- various structural features appearing on the XRDS image as well as spots derived from the real space periodicity of the basic structure.
- the arrangement of its atoms and molecules can be further improved by using the patterns resulting from structural observations (including traits such as the above-mentioned “Milky Way” and small arc-shaped patterns). It is possible to obtain various information including the structure. Then, as described below, these information are separately analyzed for XRF, Raman spectroscopy, mass spectrometry, physical property values, etc.
- the outline of the measurement sample analysis procedure (material structure search method) in the above-described X-ray structure analysis apparatus according to the present invention (so-called operation by a task controller, which is shown in FIG. ), And a method of analyzing the structure of the polyethylene spherulite crystal shown in FIG. 31 with an X-ray diffractometer will be described as an example with reference to FIG. .
- the analysis application software 116 that constitutes a task controller previously installed in the hard disk 111 by the CPU 107, RAM 108, ROM 109, etc., for example, in the X-ray diffraction apparatus 100 shown in FIG. This is done by executing.
- the X-ray structural analysis apparatus In the X-ray structural analysis apparatus according to the present invention, various basic properties, such as elemental composition, molecular structure, etc., as well as specific attributes such as particle size, orientation, etc.
- the assumed structure information of the electron density distribution in the real space is input in the MSDL (Material Structure Description Language) material structure description language, and these are input to the XRDS simulator 210 for X-ray irradiation image (information) Calculate
- the data obtained as a result is input to the feature extraction engine 220 as the XRDS image (information) including the information related to the above-mentioned “character”, and obtained together with the measured data and simulation. It is assumed that the data is also archived (stored) in the XRDS information database 120 that stores the data.
- the XRDS simulator 210 describes the predicted / predicted spatial distribution of atoms / molecules in MSDL or the like (real space structure), and further, the known basic attributes (element composition, molecular structure, etc.) and sample-specific attributes ( Particle size, orientation, etc.) (and physical properties including electrical, thermal, mechanical, chemical, and biochemical properties), and convert real space information (3D) into observation space information (3D) . Note that the uniqueness of the information is lost. Further, for comparison / collation (230) with the XRDS information measured by the X-ray diffractometer, the inverse space 3D information is mapped to 2D or 1D, and the operation of dropping the dimension is performed. This operation further impairs the uniqueness of the information.
- various types of samples are separately analyzed other than X-ray diffraction / scattering measurements such as XRF, Raman spectroscopy, mass spectrometry, physical properties, etc.
- X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis
- the results obtained by informatics techniques (including chemical analysis) and simulations are stored (archived) in the other analysis database 140 described above, and further obtained by observation with an X-ray microscope or an electron microscope.
- the image is stored (archived) in the microscope image database 130.
- XRDS information obtained as a result of actual measurement by the X-ray structural analysis apparatus is input to the feature extraction engine 220 and stored with the XRDS information database 120 including the above-described actual measurement data and data obtained by simulation. A comparison / reference operation is performed between them, and the existing XRDS information that is most similar to the input XRDS information is selected using machine learning and artificial intelligence (AI), and obtained together with the related data.
- AI machine learning and artificial intelligence
- This feature extraction engine 220 (in FIG. 30, the feature extraction engine 220 is shown in two places for convenience, but has the same function), the uniqueness of information is impaired. From the XRDS information obtained by the XRDS simulator 210 and the XRDS information measured by the X-ray diffractometer, not only the known feature quantity due to the symmetry of the space group but also machine learning or artificial intelligence (AI) is used. To extract features and obtain feature quantities. These feature quantities are also stored in the XRDS information database 120. In the XRDS information database, the database 140 is referred to and information on physical property values and actuality is also associated.
- AI machine learning or artificial intelligence
- the XRDS image of the actual measurement result is input to the comparison / reference engine 230, where the nearest data is obtained by calculating the information distance between the data while referring to the XRDS information database 120.
- the selected and feature matching analysis results are input to the following maximum likelihood spatial information estimation engine 240.
- the XRDS information obtained by the X-ray diffractometer and the XRDS information according to the dimensionality of the XRDS information obtained by the XRDS simulator 210 are converted into information elements (bin, pixel, voxel, etc.) to obtain information distances such as matching degree (correlation coefficient, etc.) and similarity degree.
- the feature quantity obtained by the feature extraction engine 220 is referred to in the XRDS information database 120, and similar information of feature quantity is extracted by machine learning or artificial intelligence (AI), and search is performed by feature matching.
- AI artificial intelligence
- the maximum likelihood space information estimation engine 240 receives the XRDS information simulated by the XRDS simulator 210 described above together with the microscope image in the microscope image database 130, and the engine 240 uses these. Then, the simulation is performed with the parameters changed, and the result estimated to be the maximum likelihood in the real space information is extracted. At that time, not only the database 140 but also other methods including the database 130 are used to verify the validity and cross-reference with the behavior of the macro substance (for example, physical property values) It also includes a function to verify the validity by checking the sex.
- the maximum likelihood space information estimation engine 240 refers to real space information linked to the XRDS information having the most similar feature amount obtained by the comparison / reference engine 230 (estimated structure), and is near the estimated structure. After obtaining an ensemble by using a search method such as the Monte Carlo method, for example, the comparison / reference engine 230 is used to perform a feature amount matching operation. The real space structure having the highest similarity of the feature quantity obtained here is set as the maximum likelihood structure, and the result is output.
- the maximum likelihood space information estimation engine 240 can be realized by a machine learning or artificial intelligence construction tool such as TensorFlow or Chainer.
- FIG. 32 Next, structural analysis that can be performed by the X-ray structural analysis apparatus according to the present invention described in detail above will be described with reference to FIGS. 32 and 33.
- the user who is the user of the apparatus can use the MSDL material structure description language or the like via the input apparatus.
- molecular design (real space) of a new structure designed by oneself is performed.
- the user further performs computer simulation using various databases as shown in FIG. 33A based on the predicted molecular structure / aggregate structure (real space) of the new structure. (By the XRDS simulator 210 in FIG. 16). According to this, it is possible to predict the analysis result including the XRDS pattern that will be obtained by the X-ray structure analysis apparatus.
- the new structure designed by the user matches the molecular structure and aggregate structure of the actually synthesized structure. It is possible to determine whether or not there is no need for knowledge of X-ray structural analysis.
- the comparison / reference engine 230 or the maximum likelihood spatial information estimation engine 240 extracts feature information similar to features or features by machine learning or artificial intelligence (AI). By performing a search by collation, it is possible to extract and display the result (XRDS information) estimated to be the maximum likelihood.
- AI artificial intelligence
- the user has no special knowledge of the X-ray molecular structure (real space) of the new structure that he designed, even for large-scale systems, complex structures, and hierarchical multi-scale structures).
- structural analysis can be performed by X-rays.
- those that are determined to be “highly homologous” and those that are determined to be “low homology” are also stored in the database in the same manner as machine learning and artificial intelligence (AI). “Get smarter”.
- AI machine learning and artificial intelligence
- Fig. 35 shows a material search method centered on a smart structural analysis system linked with a database that correlates information on various databases in order to search for a material having the required physical properties.
- the data elements ⁇ , ⁇ , ⁇ , etc. of the physical property information database, optical / electron microscope image database, and material structure information database are correlated with each other by the interrelated information database.
- a model f ( ⁇ , ⁇ , ⁇ ,...) Is constructed by machine learning or artificial intelligence (AI).
- a set of parameters ( ⁇ , ⁇ , ⁇ ,...) for realizing the required physical property value f1 is obtained by referring to the XRDS information database 120 and optimizing the function f. Thereby, a candidate for a material having the required physical property value f1 is specified.
- the present invention can be used for data science methods such as Materials Informatics, and can be validated by providing data to the methods, and can be mutually utilized.
- the present invention is not limited to the above-described embodiments and includes various modifications.
- the above-described embodiments are described in detail for the entire system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- each of the above-described configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them, for example, with an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
- the present invention can be widely used in a material structure search method and an X-ray structure analysis system used therefor.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
[Problem] To provide a material structure searching method and an X-ray structural analysis device used in said method that make it possible to carry out X-ray structural analysis of a multiscale structure without specialized knowledge. [Solution] An X-ray structural analysis system used in a material structure searching method is at least provided with an X-ray source for emitting X-rays, an X-ray irradiation means for irradiating X-rays from the X-ray source onto a sample to be measured, an X-ray detection means for measuring X-rays that have been diffracted or scattered by the sample to be measured, and a means for generating XRDS information including X-ray image characteristics on the basis of the X-rays that have been scattered or diffracted by the sample to be measured and detected by the X-ray detection means. The X-ray structural analysis system is further provided with a means capable of accessing image, analysis method, and physical property databases and an interrelationship information database including associations between the databases.
Description
デバイスや材料の物性は、その材料の構造、特に原子や分子の配列などのミクロな構造だけではなく、それらの集合構造によって発現していると考えられる。
It is considered that the physical properties of devices and materials are manifested not only by the structure of the material, particularly by the micro structure such as the arrangement of atoms and molecules, but also by their aggregate structure.
本発明は、短期間に材料開発を行うためのX線回折を用いた物質の構造解析に関し、目的の材料の機能・物性を実現するための物質構造を効率良く探索するため、構造解析を効率的に行うことを可能とするスマート構造解析を中心とする物質構造の探索方法とそれに用いるX線構造解析システムに関する。
The present invention relates to a structural analysis of a substance using X-ray diffraction for material development in a short period of time. In order to efficiently search a substance structure for realizing the function and physical properties of a target material, the structural analysis is efficiently performed. The present invention relates to a method for searching a material structure centered on smart structural analysis that can be performed in an automated manner and an X-ray structural analysis system used therefor.
近年、新たな材料の研究開発の現場では、日常的に材料の合成、材料の評価、それに基づいた次の研究方針の決定が行なわれている。その一手法として、X線による構造解析が使われているが、しかし、当該装置で得られた結果に基づいて構造解析を行うことは、X線の専門家でなければ難しかった。そのため、X線の専門家でなくても構造解析を行うことができるX線構造解析システムが求められていた。
In recent years, in the field of research and development of new materials, synthesis of materials, evaluation of materials, and determination of the next research policy based on it are routinely performed. As one method, structural analysis using X-rays is used. However, it is difficult for an X-ray expert to perform structural analysis based on the results obtained by the apparatus. Therefore, there has been a demand for an X-ray structural analysis system that can perform structural analysis without being an X-ray specialist.
特に、先端材料の合成には高度な合成の知識が必要であり、材料研究者の専門化が急速に進んでいる。そのため、X線の専門家のような特別な知識がなくても構造情報の評価を行うことが可能であり、もって、自己の設計した物質が設計どおりの構造であるか否かを確認することが可能なX線構造解析システムの出現が強く求められていた。
Especially, the synthesis of advanced materials requires advanced knowledge of synthesis, and material researchers are rapidly specializing. Therefore, it is possible to evaluate structural information without special knowledge like an X-ray specialist, and confirm whether the material designed by the user has the structure as designed. The advent of an X-ray structural analysis system capable of satisfying the demand has been strongly demanded.
例えば、以下の特許文献1によれば、単結晶X線構造解析装置を用い、双晶の実空間単位格子、逆格子空間基本格子及び逆格子点群を立体的に表示することにより、双晶成分間の3次元的な相互関係を容易に理解できるようにして、双晶試料のX線構造解析の成功率を高めることを特徴とした双晶解析装置が既に提案されている。
For example, according to the following Patent Document 1, a twin crystal real space unit cell, a reciprocal space basic lattice, and a reciprocal lattice point group are displayed three-dimensionally by using a single crystal X-ray structure analysis apparatus. There has already been proposed a twinning analyzer characterized in that the success rate of the X-ray structural analysis of a twinned sample can be improved by making it easy to understand the three-dimensional correlation between components.
しかしながら、上述した従来技術になる双晶解析装置は、主に、双晶構造の結晶を対象としたものであり、より具体的には、得られた結晶方位行列に基づいて、複数の双晶成分の実空間単位格子と共に、その逆格子空間基本格子とを求め、これらを回転、拡大・縮小、水平移動する操作可能とすると同時に、X線回折が生じる逆格子点群を、双晶成分毎に区別して立体的に表示するものである。そのため、表示された画像からは、3次元的な相互関係を容易に理解するためには、なお結晶学の知識が必要であり、また、大規模系・複雑な構造、階層性を持つような構造、更には、異種材料が混合した材料などについては述べられていなかった。
However, the above-described twinning analysis apparatus according to the prior art is mainly intended for a crystal having a twinned structure, and more specifically, based on the obtained crystal orientation matrix, a plurality of twinning crystals. In addition to the real space unit lattice of the component, its reciprocal space basic lattice is obtained, and these can be rotated, enlarged / reduced, and horizontally moved, and at the same time, the reciprocal lattice point group in which X-ray diffraction occurs is determined for each twin component. These are displayed in a three-dimensional manner. Therefore, from the displayed image, knowledge of crystallography is still necessary to easily understand the three-dimensional interrelationship, and it has a large-scale system / complex structure / hierarchy. No mention was made of the structure, or the material mixed with different materials.
そこで、本発明は、上述した従来技術における問題点に鑑みて達成されたものであり、特に、X線構造解析の専門知識がなくても、大規模系・複雑な構造、階層性を持つような構造や異種材料が混合した材料など(マルチスケール構造)についてのX線による構造の評価を行うことが可能な「スマート構造解析」を実施するための物質構造の探索方法と、それに用いるX線構造解析システムを提供することをその目的とする。
Therefore, the present invention has been achieved in view of the problems in the prior art described above, and in particular, has a large-scale system / complex structure / hierarchy even without expertise in X-ray structural analysis. Method of substance structure for performing “smart structure analysis” capable of evaluating the structure by X-ray for materials such as complex structures and materials mixed with different materials (multi-scale structure), and X-rays used therefor The object is to provide a structural analysis system.
本発明では、材料研究において、解析の対象となる測定材料は、予め構造分析が行われた材料から予想が可能な構造であることが多く、しかしながら、実際に測定されたX線回折・散乱パターンによって確認する必要があることに着目して成されたものであり、特に、対象材料の構造の予想やそのX線回折・散乱シミュレーションを可能とすることにより、例えば、研究者が自己の設計した物質を確認する場合など、構造評価を効率的に行うことを可能とする物質構造の探索方法と、それに用いるX線構造解析システムを提供するものである。
In the present invention, in the material research, the measurement material to be analyzed is often a structure that can be predicted from the material that has been subjected to the structural analysis in advance. However, the actually measured X-ray diffraction / scattering pattern In particular, the researcher designed it by enabling the prediction of the structure of the target material and its X-ray diffraction / scattering simulation, for example. The present invention provides a method for searching for a material structure that enables efficient structural evaluation when confirming a material, and an X-ray structure analysis system used therefor.
上記の目的を達成するために、本発明によれば、まず、探索すべき材料の候補の個々について、(イ)イメージによる実測またはシミュレーションにより得られた材料の反射、透過、散乱の少なくとも1つに関するデータをデータベース化し、(ロ)分析法による実測またはシミュレーションから決定、または、推定された当該材料の構造のデータをデータベース化し、(ハ)物性による実測またはシミュレーションにより得られた特性について、実際の測定または計算機シミュレーションによりデータをデータベース化し、(ニ)上記データの相互の紐づけを含んで蓄積した関連付け可能な相互関連情報をデータベース化し、上記(イ)から(ニ)までのデータベースを用いて、前記探索すべき材料に近いイメージ(イ)、構造(ロ)、物性(ハ)の何れか又はそれらの組合せを、互いの情報距離情報(ニ)により、判定又は抽出することを特徴とする物質構造の探索方法が提供される。
In order to achieve the above object, according to the present invention, first, for each candidate material to be searched, (b) at least one of reflection, transmission, and scattering of the material obtained by actual measurement or simulation using an image. (B) Determined from analysis or simulation by analytical method, or database of estimated structure data of the material, and (c) Actual characteristics or properties obtained by actual measurement or simulation Data is made into a database by measurement or computer simulation, and (d) the related information that can be associated and stored including the mutual association of the data is made into a database, and using the databases from (i) to (d) above, Image (b), structure (b) close to the material to be searched Any or a combination thereof gender (c), the mutual information distance information (d), the search method of structure of materials and judging or extraction is provided.
なお、上記の物質構造の探索方法においては、更に、前記判定又は抽出された相互関連情報をデータベースに追加してもよい。あるいは、前記(イ)イメージによる実測またはシミュレーションにより得られたデータは、X線、電子線、その他可視光を含む電磁波を含む照射を用いて測定されたものであり、前記(ロ)分析法による実測またはシミュレーションにより得られたデータは、X線、電子線、質量分析、NMR分析、光学分析、化学分析、生化学分析を含む分析により測定されたものであり、又は、前記(ハ)物性による実測またはシミュレーションにより得られたデータは、電気的、熱的、力学的、化学的、生物化学的物性を含む物性により測定されたものであってもよい。あるいは、更に、材料を規定する原子・分子組成、結晶性、配向性、テクスチャ、混合比を含む材料変数群に対して、前記探索すべき材料に至る最も有効な材料変数の組を算出することを含んでもよい。更には、探索すべき材料の候補について、(イ)イメージによる実測により得られた材料のX線の反射、透過、散乱の少なくとも1つに関するデータを入力し、(ロ)シミュレーションにより得られた材料のX線の反射、透過、散乱の少なくとも1つに関するデータを入力し、上記(イ)と(ロ)のデータを用いて、前記探索すべき材料に近いイメージ、構造、物性の何れか又はそれらの組合せを判定又は抽出又はデータベース化してもよい。
In the above-described method for searching a material structure, the correlation information extracted or extracted may be added to a database. Alternatively, (b) data obtained by actual measurement or simulation using an image is measured using X-ray, electron beam, or other irradiation including electromagnetic waves including visible light, and is based on the (b) analysis method. Data obtained by actual measurement or simulation is measured by analysis including X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis, biochemical analysis, or according to the above (c) physical properties Data obtained by actual measurement or simulation may be measured by physical properties including electrical, thermal, mechanical, chemical, and biochemical properties. Alternatively, for the group of material variables including the atomic / molecular composition, crystallinity, orientation, texture, and mixing ratio that define the material, the most effective set of material variables that lead to the material to be searched is calculated. May be included. Furthermore, with regard to material candidates to be searched, (b) data relating to at least one of X-ray reflection, transmission, and scattering of materials obtained by actual measurement using images is input, and (b) materials obtained by simulation. Input data on at least one of X-ray reflection, transmission, and scattering, and use the data in (a) and (b) above to find an image, structure, or physical property close to the material to be searched These combinations may be determined or extracted or made into a database.
加えて、本発明によれば、やはり上記の目的を達成するため、前記に記載した物質構造の探索方法に用いるX線構造解析システムであって、少なくとも、X線を発生するX線源と、前記X線源からのX線を測定すべき試料に照射するX線照射手段と、測定すべき試料により回折又は散乱されたX線を測定するためのX線検出手段と、前記X線検出手段により検出された測定すべき試料の回折又は散乱X線に基づいてX線画像の形質を含めたXRDS情報を生成する手段とを備えており、さらに、前記(イ)から(ニ)までのデータベースに対してアクセス可能な手段を備えていることを特徴とするX線構造解析システムが提供される。
In addition, according to the present invention, in order to achieve the above object as well, an X-ray structural analysis system used in the above-described method for searching a material structure, which includes at least an X-ray source that generates X-rays, X-ray irradiation means for irradiating a sample to be measured with X-rays from the X-ray source, X-ray detection means for measuring X-rays diffracted or scattered by the sample to be measured, and the X-ray detection means And means for generating XRDS information including the traits of the X-ray image based on the diffraction or scattered X-rays of the sample to be measured detected by the step (b), and (b) to (d) above. There is provided an X-ray structural analysis system characterized in that it has means accessible.
なお、上記のX線構造解析システムにおいては、前記に記載したX線構造解析システムであって、さらに、前記X線回折・散乱測定によって得られた試料の構造が予想される構造であるか否かの判別機能を備えている構造判別手段を備えていてもよく、あるいは、さらに、前記X線回折・散乱現象によって得られたXRDS情報に基づいて、測定された試料の最尤と推測される結果を抽出する抽出手段を備えていてもよい。また、前記に記載したX線構造解析システムにおいて、更に、前記XRDS情報の形質を含めたデータを格納するためのデータベース部を備えていてもよく、あるいは、更に、材料構造記述言語(MSDL)を含む情報により計算された前記試料の予想される構造からXRDS情報を計算するシミュレータを備えていてもよい。加えて、
前記に記載したX線構造解析システムにおいて、前記XRDS情報を計算するシミュレータは、前記試料の予想される構造以外の構造も計算することが可能であり、当該機能を外部から呼び出して利用可能であってもよく、或いは、前記抽出手段は、更に、試料のX線以外の分析結果や物性値などを格納するためのデータベース部に対してアクセス可能に構成されていても、又は、機械学習又は/及び人工知能(AI)を備えて構成されていてもよい。 The above X-ray structure analysis system is the X-ray structure analysis system described above, and further, whether or not the structure of the sample obtained by the X-ray diffraction / scattering measurement is expected. May be provided with a structure discriminating means having such a discriminating function, or it is estimated that the measured sample is most likely based on the XRDS information obtained by the X-ray diffraction / scattering phenomenon. You may provide the extraction means which extracts a result. The X-ray structure analysis system described above may further include a database unit for storing data including the traits of the XRDS information, or further, a material structure description language (MSDL) is provided. A simulator may be provided that calculates XRDS information from the expected structure of the sample calculated by the information included. in addition,
In the X-ray structure analysis system described above, the simulator for calculating the XRDS information can calculate a structure other than the expected structure of the sample, and the function can be called up from outside and used. Alternatively, the extraction unit may be configured to be accessible to a database unit for storing analysis results and physical property values other than the X-rays of the sample, or machine learning or / And may be configured with artificial intelligence (AI).
前記に記載したX線構造解析システムにおいて、前記XRDS情報を計算するシミュレータは、前記試料の予想される構造以外の構造も計算することが可能であり、当該機能を外部から呼び出して利用可能であってもよく、或いは、前記抽出手段は、更に、試料のX線以外の分析結果や物性値などを格納するためのデータベース部に対してアクセス可能に構成されていても、又は、機械学習又は/及び人工知能(AI)を備えて構成されていてもよい。 The above X-ray structure analysis system is the X-ray structure analysis system described above, and further, whether or not the structure of the sample obtained by the X-ray diffraction / scattering measurement is expected. May be provided with a structure discriminating means having such a discriminating function, or it is estimated that the measured sample is most likely based on the XRDS information obtained by the X-ray diffraction / scattering phenomenon. You may provide the extraction means which extracts a result. The X-ray structure analysis system described above may further include a database unit for storing data including the traits of the XRDS information, or further, a material structure description language (MSDL) is provided. A simulator may be provided that calculates XRDS information from the expected structure of the sample calculated by the information included. in addition,
In the X-ray structure analysis system described above, the simulator for calculating the XRDS information can calculate a structure other than the expected structure of the sample, and the function can be called up from outside and used. Alternatively, the extraction unit may be configured to be accessible to a database unit for storing analysis results and physical property values other than the X-rays of the sample, or machine learning or / And may be configured with artificial intelligence (AI).
上述した本発明によれば、X線の専門知識がなくても、大規模系・複雑な構造、階層性を持つような構造や異種材料が混合した材料など(マルチスケール構造)についてのX線構造解析を行うことが可能となる、実用的にも優れた、物質構造の探索方法と、それに用いるX線構造解析装置を提供することが可能となる。
According to the present invention described above, X-rays for large-scale systems, complicated structures, hierarchical structures, and materials mixed with different materials (multi-scale structures) can be obtained without specialized X-ray knowledge. It is possible to provide a material structure search method and an X-ray structure analysis apparatus used therefor that are capable of structural analysis and that are excellent in practical use.
以下、本発明の実施の形態になる物質構造の探索方法に用いるX線構造解析装置について、添付の図面を参照しながら、詳細に説明する。
Hereinafter, an X-ray structure analysis apparatus used for a material structure search method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
まず、添付の図1には、本発明の一実施の形態になるX線構造解析装置の全体構成が示されており、図にも明らかなように、図1は、防X線カバーを含むX線測定システムの全体形状の正面構造を示している。また、図2は、図1におけるII-II線に従ってX線装置の断面構造を示している。ここに示すX線測定システム1は、冷却装置2及びX線発生電源部3を格納した基台4と、その基台4の上に載置された防X線カバー6とを有する。
First, the attached FIG. 1 shows the overall configuration of an X-ray structure analysis apparatus according to an embodiment of the present invention. As is apparent from the figure, FIG. 1 includes an X-ray cover. The front structure of the whole shape of a X-ray measurement system is shown. FIG. 2 shows a cross-sectional structure of the X-ray apparatus according to the line II-II in FIG. The X-ray measurement system 1 shown here includes a base 4 that stores a cooling device 2 and an X-ray generation power supply unit 3, and an X-ray cover 6 that is placed on the base 4.
防X線カバー6は、X線装置9を包囲するケーシング7及びそのケーシング7の前面に設けられた一対の扉8を有する。符号10は、扉8の開け閉めの際に用いられる取っ手を示している。ケーシング7及び扉8は、例えば、厚さ3.2mm程度の鉄板によって形成される。一対の扉8は、図3に矢印Aで示すように開くことができ、この開いた状態でX線装置9に対して種々の操作を行うことができる。X線装置9としては種々の構造のX線装置が考えられるが、本実施形態では、その一例として、多結晶の粉末試料を測定対象とするX線回折装置を示す。なお、その他のX線回折装置としては、原子や分子、更には、結晶格子などの平均構造が観察可能な広角X線散乱装置、小角X線散乱装置等が挙げられる。更には、後にも述べるが、別途、X線顕微鏡や電子顕微鏡、XRFやラマン分光、質量分析等を含んでもよい。
The X-ray cover 6 has a casing 7 surrounding the X-ray apparatus 9 and a pair of doors 8 provided on the front surface of the casing 7. Reference numeral 10 indicates a handle used when the door 8 is opened and closed. The casing 7 and the door 8 are formed of, for example, an iron plate having a thickness of about 3.2 mm. The pair of doors 8 can be opened as shown by an arrow A in FIG. 3, and various operations can be performed on the X-ray apparatus 9 in this opened state. As the X-ray apparatus 9, X-ray apparatuses having various structures are conceivable. In the present embodiment, an X-ray diffractometer that uses a polycrystalline powder sample as a measurement target is shown as an example. Other X-ray diffractometers include atoms and molecules, and wide-angle X-ray scatterers and small-angle X-ray scatterers that can observe an average structure such as a crystal lattice. Furthermore, as will be described later, an X-ray microscope, an electron microscope, XRF, Raman spectroscopy, mass spectrometry, and the like may be included separately.
このX線装置、すなわちX線回折装置9は、図4に示すように、X線管11及びゴニオメータ12を有する。X線管11は、フィラメント13と、そのフィラメント13に対向して配置されたターゲット(「対陰極」とも言う)14と、それらを気密に格納するケーシング15とを有する。フィラメント13は、図1のX線発生電源部3によって通電されて発熱して熱電子を放出する。また、フィラメント13とターゲット14との間にはX線発生電源部3によって高電圧が印加され、フィラメント13から放出された熱電子がこの高電圧によって加速されてターゲット14に衝突する。この衝突領域がX線焦点Fを形成し、このX線焦点FからX線R0が発生して発散する。
The X-ray apparatus, that is, the X-ray diffractometer 9 has an X-ray tube 11 and a goniometer 12 as shown in FIG. The X-ray tube 11 includes a filament 13, a target (also referred to as an “anti-cathode”) 14 disposed so as to face the filament 13, and a casing 15 for storing them in an airtight manner. The filament 13 is energized by the X-ray generation power supply unit 3 in FIG. 1 to generate heat and emit thermoelectrons. A high voltage is applied between the filament 13 and the target 14 by the X-ray generation power supply unit 3, and the thermoelectrons emitted from the filament 13 are accelerated by the high voltage and collide with the target 14. This collision area forms an X-ray focal point F, and X-rays R0 are generated from the X-ray focal point F and diverge.
ターゲット14は、一般的に、高温に発熱するので冷却する必要があり、図1の冷却装置2はその冷却処理を行うものであり、例えば、冷却水等といった冷却液をターゲット14のまわりに流すことによって冷却が行われる。
The target 14 generally generates heat at a high temperature and needs to be cooled. The cooling device 2 in FIG. 1 performs the cooling process. For example, a cooling liquid such as cooling water is flowed around the target 14. Cooling is performed.
また、図4において、ゴニオメータ12は、試料Sを支持すると共に試料SのX線入射点を通る試料軸線ωを中心として回転可能なθ回転台16と、θ回転台16のまわりに配置され試料軸線ωを中心として回転可能な2θ回転台17とを有する。試料Sは、本実施形態の場合、一例として、多結晶の粉末試料であるとする。ゴニオメータ12の基台18の内部にはθ回転台16及び2θ回転台17を駆動するための駆動装置(図示せず)が格納されている。
In FIG. 4, the goniometer 12 supports the sample S and rotates around a sample axis ω that passes through the X-ray incident point of the sample S, and a sample disposed around the θ turntable 16. And a 2θ turntable 17 that can rotate about the axis ω. In the present embodiment, the sample S is assumed to be a polycrystalline powder sample as an example. A drive device (not shown) for driving the θ turntable 16 and the 2θ turntable 17 is stored in the base 18 of the goniometer 12.
これらの駆動装置によって駆動されてθ回転台16は所定の角速度で間欠的又は連続的に回転、いわゆるθ回転する。また、これらの駆動装置によって駆動されて2θ回転台17は上記θ回転の2倍の角速度でθ回転と同じ方向へ間欠的又は連続的に回転、いわゆる2θ回転する。上記の駆動装置は任意の構造によって構成できるが、例えば、ウォームとウォームホイールとを含んで構成される動力伝達構造によって構成できる。
Driven by these driving devices, the θ-rotation table 16 rotates intermittently or continuously at a predetermined angular velocity, so-called θ rotation. Driven by these driving devices, the 2θ rotating table 17 rotates intermittently or continuously in the same direction as the θ rotation at the angular velocity twice the θ rotation, that is, so-called 2θ rotation. The above drive device can be configured by an arbitrary structure, but can be configured by a power transmission structure including a worm and a worm wheel, for example.
2θ回転台17の外周面の一部には半径方向の外側へ延びる検出器アーム19が設けられ、その検出器アーム19の上に受光スリット21及びX線検出器22が載置される。X線検出器22は、例えば、2次元ピクセル検出器によって構成される。なお、X線管11とゴニオメータ12との間には発散線規制スリット23が配置される。
A detector arm 19 extending outward in the radial direction is provided on a part of the outer peripheral surface of the 2θ turntable 17, and a light receiving slit 21 and an X-ray detector 22 are placed on the detector arm 19. The X-ray detector 22 is configured by, for example, a two-dimensional pixel detector. A diverging ray restricting slit 23 is disposed between the X-ray tube 11 and the goniometer 12.
このX線回折装置9は、以上のように構成されているので、試料Sはθ回転台16のθ回転によって試料軸線ωを中心としてθ回転し、同時に、受光スリット21及びX線検出器22は2θ回転台19によって試料軸線ωを中心として2θ回転する。試料Sがθ回転し、X線検出器22が2θ回転する間、X線管11内のX線焦点Fから発生して発散するX線R0は発散規制スリット23によって規制されて試料Sへ向けられる。試料Sへ入射するX線の入射角度は試料Sのθ回転に応じて変化する。
Since the X-ray diffractometer 9 is configured as described above, the sample S rotates θ around the sample axis ω by the θ rotation of the θ turntable 16, and at the same time, the light receiving slit 21 and the X-ray detector 22. Is rotated 2θ around the sample axis ω by the 2θ rotating table 19. While the sample S rotates θ and the X-ray detector 22 rotates 2θ, the X-ray R0 generated from the X-ray focal point F in the X-ray tube 11 and diverging is regulated by the divergence regulating slit 23 toward the sample S. It is done. The incident angle of the X-ray incident on the sample S changes according to the θ rotation of the sample S.
試料Sに入射するX線の入射角度と結晶格子面との間でブラッグの回折条件が満足されると、その試料Sから回折X線R1が発生する。この回折X線R1は受光スリット21の所で集束した後、X線検出器22に受け取られてX線強度が測定される。以上により、入射X線R0に対するX線検出器22の角度、すなわち回折角度、に対応する回折X線R1の強度が測定され、この測定結果から試料Sに関する結晶構造等が判定される。
When the Bragg diffraction condition is satisfied between the incident angle of the X-rays incident on the sample S and the crystal lattice plane, a diffracted X-ray R1 is generated from the sample S. The diffracted X-ray R1 is focused at the light receiving slit 21, and then received by the X-ray detector 22 to measure the X-ray intensity. As described above, the intensity of the diffracted X-ray R1 corresponding to the angle of the X-ray detector 22 with respect to the incident X-ray R0, that is, the diffraction angle, is measured, and the crystal structure or the like related to the sample S is determined from this measurement result.
続いて、図5(A)は、上記X線構造解析装置における制御部を構成する電気的な内部構成の詳細の一例を示す。なお、本発明が以下に述べる実施形態に限定されるものでないことは、もちろんである。
Subsequently, FIG. 5A shows an example of the details of the electrical internal configuration constituting the control unit in the X-ray structure analysis apparatus. Of course, the present invention is not limited to the embodiments described below.
このX線回折装置100は、上述した内部構成を含んでおり、適宜の物質を試料として測定を行う測定装置102と、キーボード、マウス等によって構成される入力装置103と、表示手段としての画像表示装置104と、解析結果を印刷して出力するための手段としてのプリンタ106と、CPU(Central Processing Unit)107と、RAM(Random Access Memory)108と、ROM(Read Only Memory)109と、外部記憶媒体としてのハードディスク111とを有する。これらの要素はバス112によって相互につながれている。
The X-ray diffraction apparatus 100 includes the above-described internal configuration, and includes a measurement apparatus 102 that performs measurement using an appropriate substance as a sample, an input apparatus 103 that includes a keyboard, a mouse, and the like, and an image display as a display unit. Device 104, printer 106 as means for printing and outputting the analysis result, CPU (Central Processing Unit) 107, RAM (Random Access Memory) 108, ROM (Read Only Memory) 109, external storage And a hard disk 111 as a medium. These elements are connected to each other by a bus 112.
画像表示装置104は、CRTディスプレイ、液晶ディスプレイ等といった画像表示機器によって構成されており、画像制御回路113によって生成される画像信号に従って画面上に画像を表示する。画像制御回路113はこれに入力される画像データに基づいて画像信号を生成する。画像制御回路113に入力される画像データは、CPU107、RAM108、ROM109及びハードディスク111を含んで構成されるコンピュータによって実現される各種の演算手段の働きによって形成される。プリンタ106は、インクプロッタ、ドットプリンタ、インクジェットプリンタ、静電転写プリンタ、その他任意の構造の印刷用機器を用いることができる。なお、ハードディスク111は、光磁気ディスク、半導体メモリ、その他、任意の構造の記憶媒体によって構成することもできる。
The image display device 104 is configured by an image display device such as a CRT display or a liquid crystal display, and displays an image on a screen in accordance with an image signal generated by the image control circuit 113. The image control circuit 113 generates an image signal based on the image data input thereto. Image data input to the image control circuit 113 is formed by the operation of various arithmetic means realized by a computer including the CPU 107, RAM 108, ROM 109, and hard disk 111. As the printer 106, an ink plotter, a dot printer, an inkjet printer, an electrostatic transfer printer, or any other printing apparatus having an arbitrary structure can be used. The hard disk 111 can also be configured by a magneto-optical disk, a semiconductor memory, or other storage medium having an arbitrary structure.
ハードディスク111の内部には、X線回折装置100の全般的な動作を司る分析用アプリケーションソフト116と、測定装置102を用いた測定処理の動作を司る測定用アプリケーションソフト117と、画像表示装置104を用いた表示処理の動作を司る表示用アプリケーションソフト118とが格納されている。これらのアプリケーションソフトは、必要に応じてハードディスク111から読み出されてRAM108へ転送された後に所定の機能を実現する。
Inside the hard disk 111, analysis application software 116 that controls the overall operation of the X-ray diffraction apparatus 100, measurement application software 117 that controls the operation of measurement processing using the measurement apparatus 102, and an image display device 104 are provided. Stored is display application software 118 that manages the operation of the display processing used. These application software implement predetermined functions after being read from the hard disk 111 and transferred to the RAM 108 as necessary.
このX線回折装置100は、更に、上記の測定装置102によって得られた測定データを含めた各種の測定結果を記憶するための、例えば、クラウド領域に置かれたデータベースも含んでいる。図の例では、後にも説明するが、上記の測定装置102によって得られたXRDSイメージデータを格納するXRDS情報データベース120、電子顕微鏡により得られた実測イメージを格納する顕微鏡イメージデータベース130、更には、例えば、XRFやラマン光線等、X線以外の分析により得られた測定結果や、物性情報を格納するその他分析データベース140が示されている。なお、これらのデータベースは、必ずしも、X線回折装置100の内部に搭載される必要はなく、例えば、ネットワーク150等を介して相互に通信可能に接続されてもよい。
The X-ray diffractometer 100 further includes, for example, a database placed in a cloud area for storing various measurement results including measurement data obtained by the measurement apparatus 102 described above. In the example of the figure, as will be described later, an XRDS information database 120 that stores the XRDS image data obtained by the measurement apparatus 102, a microscope image database 130 that stores an actual image obtained by an electron microscope, For example, a measurement result obtained by analysis other than X-rays, such as XRF and Raman rays, and other analysis database 140 storing physical property information are shown. Note that these databases do not necessarily have to be mounted inside the X-ray diffraction apparatus 100, and may be connected to each other via a network 150 or the like, for example.
データファイル内に複数の測定データを記憶するためのファイル管理方法としては、個々の測定データを個別のファイル内に格納する方法も考えられるが、本実施形態では、図5(B)に示すように、複数の測定データを1つのデータファイル内に連続して格納することにしている。なお、図5(B)において「条件」と記載された記憶領域は、測定データが得られたときの装置情報および測定条件を含む各種の情報を記憶するための領域である。
As a file management method for storing a plurality of measurement data in a data file, a method of storing individual measurement data in an individual file is also conceivable. In the present embodiment, as shown in FIG. In addition, a plurality of measurement data are continuously stored in one data file. Note that the storage area described as “condition” in FIG. 5B is an area for storing various information including apparatus information and measurement conditions when measurement data is obtained.
このような測定条件としては、(1)測定対象物質名、(2)測定装置の種類、(3)測定温度範囲、(4)測定開始時刻、(5)測定終了時刻、(6)測定角度範囲、(7)走査移動系の移動速度、(8)走査条件、(9)試料に入射するX線の種類、(10)試料高温装置等といったアタッチメントを使ったか否か、その他の各種の条件が考えられる。
Such measurement conditions include (1) the name of the substance to be measured, (2) the type of measuring device, (3) the measurement temperature range, (4) the measurement start time, (5) the measurement end time, and (6) the measurement angle. Range, (7) moving speed of the scanning movement system, (8) scanning conditions, (9) type of X-rays incident on the sample, (10) whether or not an attachment such as a sample high temperature apparatus was used, and other various conditions Can be considered.
XRDS(X-ray Diffraction and Scattering)パターン又はイメージは、上記測定装置102を構成するX線検出器22の2次元空間である平面上で受け取られたX線を、当該検出器を構成する平面状に配列された画素(例えば、CCD等)で受光/蓄積して、その強度を測定することにより得られるものである。例えば、X線検出器22の各画素毎に、積分によって受光したX線の強度を検出することによれば、rとθの2次元空間上のパターン又はイメージが得られる。
An XRDS (X-ray Diffraction and Scattering) pattern or image is an X-ray received on a plane which is a two-dimensional space of the X-ray detector 22 constituting the measuring apparatus 102, and is a planar shape constituting the detector. The light is received / accumulated by pixels (for example, a CCD or the like) arranged in the array and the intensity thereof is measured. For example, by detecting the intensity of X-rays received by integration for each pixel of the X-ray detector 22, a pattern or image in a two-dimensional space of r and θ can be obtained.
続いて、本発明のX線構造解析システムが観察対象とするマルチスケール構造について、図6を参照しながら、説明する。上述したように、従来のX線回折装置が対象としていたのは、主に、原子や分子やそれらの双晶構造の結晶であるが、本発明が観察対象とするマルチスケール構造は、それらに加えて、更に、結晶格子や積層ラメラや球晶などの、結晶を大規模で複雑な構造にし、階層性を持つような構造(高次集合構造)である。即ち、分子・原子の集合構造が幅広い構造スケール(Å(オングストローム)~μm)にわったって存在する物質であり、例えば、小さな集合構造(結晶構造など)が、より大きな集合構造の中に包含されており、構造に階層性を有するような物質や材料が有する構造を言う。更には、異種材料が混合した構造がおりなす複雑な構造をも含む。
Subsequently, a multiscale structure that is an observation target of the X-ray structure analysis system of the present invention will be described with reference to FIG. As described above, conventional X-ray diffractometers are mainly intended for atoms, molecules, and twin crystal structures, but the multi-scale structure that is the object of observation by the present invention is not limited to them. In addition, it is a structure (high-order assembly structure) that has a large-scale and complicated structure and a hierarchical structure, such as a crystal lattice, a laminated lamella, and a spherulite. In other words, it is a substance in which the aggregate structure of molecules and atoms exists over a wide range of structural scales (from angstroms to μm). For example, small aggregate structures (crystal structures, etc.) are included in larger aggregate structures. This refers to the structure of substances and materials that have a hierarchical structure. Furthermore, a complicated structure formed by a structure in which different kinds of materials are mixed is included.
なお、かかるマルチスケール構造の一例としては、例えば、ゴムのマトリックスにシリカ粒子やカーボンブラックを混合し、架橋剤などを加え、その物性値や性能を制御するもの(例えば、タイヤ)、又は、ヘテロな有機分子集合体の間の界面において励起子を介したキャリア伝導により発電や発光が行われる電子部品(例えば、有機太陽電池や、有機エレクトロニクス等:デバイスとしての効率はその界面形状に大きく依存しており、ナノレベルでの構造の制御が必要)、更には、イオン伝導が起こることにより電気を起こすリチウムイオン電池や燃料電池の材料(放電効率や寿命は、物質界面の構造に大きく依存し、ナノレベルでの構造の制御が必要)等が挙げられる。
As an example of such a multi-scale structure, for example, a rubber matrix is mixed with silica particles or carbon black, a crosslinking agent or the like is added to control the physical property value or performance (for example, a tire), or hetero Electronic components that generate and emit light by carrier conduction via excitons at the interface between various organic molecular assemblies (for example, organic solar cells, organic electronics, etc .: The efficiency of the device depends greatly on the shape of the interface. In addition, it is necessary to control the structure at the nano level), and further, materials of lithium ion batteries and fuel cells that generate electricity by ionic conduction (discharge efficiency and lifetime depend greatly on the structure of the substance interface, Control of the structure at the nano level is necessary).
従来、かかるマルチスケール構造の試料については、一般的に、広角X線散乱装置や小角X線散乱装置等が利用されている。
Conventionally, a wide-angle X-ray scattering device, a small-angle X-ray scattering device, or the like is generally used for such a multi-scale sample.
<<実空間と逆空間、観測空間の関係>>
ここで、図7を参照しながら、実空間は(x,y,z)などの3次元空間であり、実空間における物質構造は、電子密度分布ρ(x,y,z)として記述される。 << Relationship between real space, inverse space, and observation space >>
Here, referring to FIG. 7, the real space is a three-dimensional space such as (x, y, z), and the material structure in the real space is described as an electron density distribution ρ (x, y, z). .
ここで、図7を参照しながら、実空間は(x,y,z)などの3次元空間であり、実空間における物質構造は、電子密度分布ρ(x,y,z)として記述される。 << Relationship between real space, inverse space, and observation space >>
Here, referring to FIG. 7, the real space is a three-dimensional space such as (x, y, z), and the material structure in the real space is described as an electron density distribution ρ (x, y, z). .
一方、逆空間は、実空間における電子密度分布ρ(x,y,z)のフーリエ変換で与えられる3次元空間であり、散乱振幅A(Kx,Ky,Kz)で与えられる。また、その観測量は散乱強度I(Kx,Ky,Kz)として以下のような式で記述される。
On the other hand, the inverse space is a three-dimensional space given by the Fourier transform of the electron density distribution ρ (x, y, z) in the real space, and given by the scattering amplitude A (Kx, Ky, Kz). Further, the observed quantity is described by the following expression as the scattering intensity I (Kx, Ky, Kz).
また、フーリエ変換の性質から、逆空間において、実空間の電子密度分布のフーリエ変換には必ず対称中心がある(即ち、|A(Kx,Ky,Kz)|=|A(-Kx,-Ky,-Kz)|が成立している)。これは、実空間から逆空間への写像は全射ではあるが単射ではないことを意味する(全単射ではない)。しかし、逆空間は計算の過程で現れるものであり、より具体的には、X線回折装置での測定量である散乱強度は、実空間へは全射であるが単射ではない。即ち、X線回折装置での測定量の実空間情報への「一意性」が損なわれている。そこで、本発明では、X線解析情報だけではなく、他の関連情報(組成や分子構造など)をも併せて解釈することにより、実空間情報への「一意性」を高める工夫を行っている。
Also, due to the nature of the Fourier transform, in the inverse space, the Fourier transform of the electron density distribution in the real space always has a center of symmetry (that is, | A (Kx, Ky, Kz) | = | A (-Kx, -Ky , -Kz) | This means that the mapping from real space to inverse space is bijective but not bijective (not bijective). However, the inverse space appears in the process of calculation, and more specifically, the scattering intensity, which is a measurement amount in the X-ray diffraction apparatus, is surjective to real space but not injective. That is, the “uniqueness” of the measured quantity in the X-ray diffractometer to the real space information is impaired. Therefore, in the present invention, not only the X-ray analysis information but also other related information (composition, molecular structure, etc.) is interpreted to improve the “uniqueness” to the real space information. .
<<XRDSパターンと空間対称性>>
照射されるX線に対する対象材料によるX線の回折や散乱によって得られる観測空間上のXRDSパターン又はイメージは、対象材料の実空間における電子密度分布の情報を反映している。しかしながら、XRDSパターンは、rとθの2次元空間であり、3次元空間である対象材料の実空間における対称性を直接的に表現するものではない。そのため、一般的に、現存のXRDSイメージだけでは、材料を構成する原子や分子の(空間)配列を特定することは困難であり、X線構造解析の専門知識を必要とする。 << XRDS pattern and spatial symmetry >>
The XRDS pattern or image on the observation space obtained by X-ray diffraction or scattering by the target material with respect to the irradiated X-rays reflects the information of the electron density distribution in the real space of the target material. However, the XRDS pattern is a two-dimensional space of r and θ, and does not directly represent symmetry in the real space of the target material that is a three-dimensional space. Therefore, in general, it is difficult to specify the (spatial) arrangement of atoms and molecules constituting a material only with existing XRDS images, and specialized knowledge of X-ray structural analysis is required.
照射されるX線に対する対象材料によるX線の回折や散乱によって得られる観測空間上のXRDSパターン又はイメージは、対象材料の実空間における電子密度分布の情報を反映している。しかしながら、XRDSパターンは、rとθの2次元空間であり、3次元空間である対象材料の実空間における対称性を直接的に表現するものではない。そのため、一般的に、現存のXRDSイメージだけでは、材料を構成する原子や分子の(空間)配列を特定することは困難であり、X線構造解析の専門知識を必要とする。 << XRDS pattern and spatial symmetry >>
The XRDS pattern or image on the observation space obtained by X-ray diffraction or scattering by the target material with respect to the irradiated X-rays reflects the information of the electron density distribution in the real space of the target material. However, the XRDS pattern is a two-dimensional space of r and θ, and does not directly represent symmetry in the real space of the target material that is a three-dimensional space. Therefore, in general, it is difficult to specify the (spatial) arrangement of atoms and molecules constituting a material only with existing XRDS images, and specialized knowledge of X-ray structural analysis is required.
しかしながら、XRDSパターンは、実空間における電子密度分布の情報との間に関係性を有しており、即ち、以下にも示すように、対象となる材料の実空間における電子密度分布の対称性によって、現れるXRDSパターンが異なる。
However, the XRDS pattern has a relationship with the information of the electron density distribution in the real space, that is, as shown below, due to the symmetry of the electron density distribution in the real space of the target material. The XRDS pattern that appears is different.
例えば、以下の図8~図14には、典型的な材料の実空間構造とそれにより得られるXRDSイメージの例が示されている。
For example, FIGS. 8 to 14 below show examples of real space structures of typical materials and XRDS images obtained thereby.
<結晶構造>
図8には、一例として、NaCl型の結晶構造(図8(A))、CaCl型の結晶構造(図8(B))、ZnS(閃亜鉛鉱)型の結晶構造(図8(C))、ZnS(ウルツ鉱)型の結晶構造(図8(D))、NiAs型の結晶構造(図8(E))がそれぞれ示されておいる。なお、これらの結晶構造により得られるXRDSイメージ(パターン)は、ここでは図示しないが、それぞれ異なったパターンとなる。 <Crystal structure>
In FIG. 8, as an example, a NaCl type crystal structure (FIG. 8A), a CaCl type crystal structure (FIG. 8B), and a ZnS (zincblende) type crystal structure (FIG. 8C). ), ZnS (wurtzite) type crystal structure (FIG. 8D), and NiAs type crystal structure (FIG. 8E), respectively. Note that XRDS images (patterns) obtained by these crystal structures are different from each other though not shown here.
図8には、一例として、NaCl型の結晶構造(図8(A))、CaCl型の結晶構造(図8(B))、ZnS(閃亜鉛鉱)型の結晶構造(図8(C))、ZnS(ウルツ鉱)型の結晶構造(図8(D))、NiAs型の結晶構造(図8(E))がそれぞれ示されておいる。なお、これらの結晶構造により得られるXRDSイメージ(パターン)は、ここでは図示しないが、それぞれ異なったパターンとなる。 <Crystal structure>
In FIG. 8, as an example, a NaCl type crystal structure (FIG. 8A), a CaCl type crystal structure (FIG. 8B), and a ZnS (zincblende) type crystal structure (FIG. 8C). ), ZnS (wurtzite) type crystal structure (FIG. 8D), and NiAs type crystal structure (FIG. 8E), respectively. Note that XRDS images (patterns) obtained by these crystal structures are different from each other though not shown here.
更に、図9には、他の例として、AO3型酸化物であるReO3(酸化レニウム)型の結晶構造(図9(A))、ABO3型酸化物であるCaTiO3(ペロブスカイト)型の結晶構造(図9(B))、AB2O4型酸化物であるMgAl2O4(スピネル)型の結晶構造(図9(C))がそれぞれ示されている。これらの結晶構造により得られるXRDSイメージ(パターン)も、ここでは図示しないが、それぞれ異なったパターンとなる。
Further, in FIG. 9, as another example, a ReO 3 (rhenium oxide) type crystal structure which is an AO 3 type oxide (FIG. 9A), and a CaTiO 3 (perovskite) type which is an ABO 3 type oxide. The crystal structure (FIG. 9B) and the MgAl 2 O 4 (spinel) type crystal structure (FIG. 9C), which is an AB 2 O 4 type oxide, are shown. XRDS images (patterns) obtained by these crystal structures also have different patterns although not shown here.
<微小結晶の集まり>
対象材料が微小結晶の集まりであり、微小結晶の集まりがその実空間構造において無秩序であれば、図10(A)にも示すように、得られる2次元(2D)-XRDSデータ(パターン)は、円環となる。 <A collection of microcrystals>
If the target material is a collection of microcrystals and the collection of microcrystals is disordered in its real space structure, as shown in FIG. 10A, the obtained two-dimensional (2D) -XRDS data (pattern) is It becomes a ring.
対象材料が微小結晶の集まりであり、微小結晶の集まりがその実空間構造において無秩序であれば、図10(A)にも示すように、得られる2次元(2D)-XRDSデータ(パターン)は、円環となる。 <A collection of microcrystals>
If the target material is a collection of microcrystals and the collection of microcrystals is disordered in its real space structure, as shown in FIG. 10A, the obtained two-dimensional (2D) -XRDS data (pattern) is It becomes a ring.
一方、これらの微小結晶が、実空間構造において秩序ができてくると、図10(B)にも示すように、得られる2次元(2D)-XRDSデータ(パターン)は、円環に分布(配向:本例では、縦方向と横方向)ができる。更には、ここでは図示しないが、秩序があれば、スポット状(=3次元的な対象を持つ単結晶と同じ)となる。
On the other hand, when these microcrystals are ordered in the real space structure, as shown in FIG. 10B, the obtained two-dimensional (2D) -XRDS data (pattern) is distributed in a ring ( Orientation: In this example, the vertical direction and the horizontal direction are possible. Further, although not shown here, if there is order, it becomes a spot shape (= same as a single crystal having a three-dimensional object).
<板状の結晶>
対象材料の結晶が秩序良く積み重なっていれば、得られる2次元(2D)-XRDSデータ(パターン)は、図11(A)にも示すように、上下の平たいスポットになり、また、板状の結晶の大きさが小さくなるとスポットは広がる。更に、図11(B)にも示すように、これら板状の結晶が斜めに積み重なると、平たいスポットが傾く(所謂、配向する)。なお、積み重ね方向が2種類あると2つの平たいスポットの重ね合わせとなり、更に、複数の方向を持つと、スポットがリング状になり、デバイリングと同じようになる。 <Plate-like crystals>
If the crystals of the target material are stacked in an orderly manner, the obtained two-dimensional (2D) -XRDS data (pattern) will be flat spots on the top and bottom as shown in FIG. As the crystal size decreases, the spot expands. Furthermore, as shown in FIG. 11B, when these plate-like crystals are stacked obliquely, flat spots are inclined (so-called orientation). Note that if there are two types of stacking directions, two flat spots are superimposed, and if there are a plurality of directions, the spots are ring-shaped, which is the same as Debye ring.
対象材料の結晶が秩序良く積み重なっていれば、得られる2次元(2D)-XRDSデータ(パターン)は、図11(A)にも示すように、上下の平たいスポットになり、また、板状の結晶の大きさが小さくなるとスポットは広がる。更に、図11(B)にも示すように、これら板状の結晶が斜めに積み重なると、平たいスポットが傾く(所謂、配向する)。なお、積み重ね方向が2種類あると2つの平たいスポットの重ね合わせとなり、更に、複数の方向を持つと、スポットがリング状になり、デバイリングと同じようになる。 <Plate-like crystals>
If the crystals of the target material are stacked in an orderly manner, the obtained two-dimensional (2D) -XRDS data (pattern) will be flat spots on the top and bottom as shown in FIG. As the crystal size decreases, the spot expands. Furthermore, as shown in FIG. 11B, when these plate-like crystals are stacked obliquely, flat spots are inclined (so-called orientation). Note that if there are two types of stacking directions, two flat spots are superimposed, and if there are a plurality of directions, the spots are ring-shaped, which is the same as Debye ring.
また、図12(A)は、積層構造の層の間に原子や分子が多数配列された構造の材料により得られるXRDSイメージを示し、図12(B)は、層の間に配列された原子や分子が傾斜している場合のXRDSイメージを示す。
FIG. 12A shows an XRDS image obtained by using a material having a structure in which a large number of atoms and molecules are arranged between layers in a stacked structure, and FIG. 12B shows atoms arranged between layers. And XRDS image when the molecule is tilted.
更に、図13(A)は、棒状の構造体が多数、不規則に、組み合わさった実空間構造を有する材料のXRDSイメージを、そして、図13(B)は、結晶体の場合のXRDSイメージを示している。また、図14は、分子が紐又は棒状に連結した構造を有する材料により得られるXRDSイメージを示す。
Further, FIG. 13A shows an XRDS image of a material having a real space structure in which a large number of rod-like structures are irregularly combined, and FIG. 13B shows an XRDS image in the case of a crystal. Is shown. FIG. 14 shows an XRDS image obtained from a material having a structure in which molecules are connected in a string or rod shape.
なお、ここで、結晶体の違いによる現れるXRDSイメージについて、以下に述べる。
Here, the XRDS image that appears due to the difference in crystal bodies is described below.
<XRDSイメージのシミュレーション>
結晶体によるXRDSイメージは、以下のようにシミュレーションすることが出来る。図15に示すように、各単位格子の長さをa、b、cとし、各単位格子間の角度をα、β、γとすれば、各ベクトルa、b、cは、数3のように表される(図15(A)及び(B)参照)。また、変換行列Aを数4、格子位置ベクトルrを数5とすれば(図15(C)及び(D)参照)、逆格子ベクトルは数6で表され、逆格子行列Bは数7のようになる。配向方位h、k、lによる逆格子ベクトルr*は数8となり(図16参照)、優先配向軸(配向する面)H、K、Lは数9となる。
<Simulation of XRDS image>
The XRDS image by the crystal can be simulated as follows. As shown in FIG. 15, if the length of each unit cell is a, b, c, and the angle between each unit cell is α, β, γ, each vector a, b, c is expressed as (See FIGS. 15A and 15B). Further, if the transformation matrix A is expressed byEquation 4 and the lattice position vector r is expressed by Equation 5 (see FIGS. 15C and 15D), the reciprocal lattice vector is expressed by Equation 6, and the reciprocal lattice matrix B is expressed by Equation 7. It becomes like this. The reciprocal lattice vector r * based on the orientation directions h, k, and l is expressed by Equation 8 (see FIG. 16), and the preferential alignment axes (orienting surfaces) H, K, and L are expressed by Equation 9.
結晶体によるXRDSイメージは、以下のようにシミュレーションすることが出来る。図15に示すように、各単位格子の長さをa、b、cとし、各単位格子間の角度をα、β、γとすれば、各ベクトルa、b、cは、数3のように表される(図15(A)及び(B)参照)。また、変換行列Aを数4、格子位置ベクトルrを数5とすれば(図15(C)及び(D)参照)、逆格子ベクトルは数6で表され、逆格子行列Bは数7のようになる。配向方位h、k、lによる逆格子ベクトルr*は数8となり(図16参照)、優先配向軸(配向する面)H、K、Lは数9となる。
The XRDS image by the crystal can be simulated as follows. As shown in FIG. 15, if the length of each unit cell is a, b, c, and the angle between each unit cell is α, β, γ, each vector a, b, c is expressed as (See FIGS. 15A and 15B). Further, if the transformation matrix A is expressed by
次に、数10に示すような優先配向軸(配向結晶面)の方位をZ軸に垂直に設定する。この場合の回転行列E-1は数11となる。次に、ζをHKL軸を中心とするスピン角、τはZ軸からの傾斜角、δはX-Y面のX軸からの角度とし(図17参照)、配向状態は変換行列Eは数12となる。さらに、装置による方位の変換行列Uは数13のように3つの軸で表され、それらの軸は装置に依存する。各逆格子点(hkl)の最終位置は数14となる。
Next, the orientation of the preferential orientation axis (oriented crystal plane) as shown in Equation 10 is set perpendicular to the Z axis. In this case, the rotation matrix E −1 is expressed by Equation 11. Next, ζ is the spin angle with the HKL axis as the center, τ is the tilt angle from the Z axis, δ is the angle from the X axis of the XY plane (see FIG. 17), and the orientation state is the number of the transformation matrix E 12 Further, the orientation conversion matrix U by the apparatus is represented by three axes as shown in Equation 13, and these axes depend on the apparatus. The final position of each reciprocal lattice point (hkl) is expressed by Equation 14.
続いて、数15のように、逆格子座標をエバルト球の中心に移動する座標変換を行う(図18参照)。なお、ベクトルSは、数16のように、エバルト球の表面を表す。次に、数17のように回折条件を満たす逆格子点を選択する。ここで、(x",y",z")は、各逆格子点(hkl)の最終位置、1/λはエバルト球の半径、λはX線の波長である。更に、検出器上のX線信号の位置を数18のように計算する。ここでは、検出器の表面はy-z面上のx=Lに設定され、検出位置は(px,py)である。
Subsequently, coordinate transformation for moving the reciprocal lattice coordinates to the center of the Ewald sphere is performed as shown in Equation 15 (see FIG. 18). The vector S represents the surface of the Ewald sphere as shown in Equation 16. Next, reciprocal lattice points satisfying the diffraction condition are selected as shown in Equation 17. Here, (x ″, y ″, z ″) is the final position of each reciprocal lattice point (hkl), 1 / λ is the radius of the Ewald sphere, and λ is the wavelength of the X-ray. The position of the X-ray signal is calculated as in Expression 18. Here, the detector surface is set to x = L on the yz plane, and the detection position is (p x , p y ).
上述したシミュレーションにより得られるXRDSイメージは、以下に述べるように、散乱条件により異なることが予想される。
The XRDS image obtained by the simulation described above is expected to vary depending on the scattering conditions as described below.
例えば、x-y面が検出器(2次元検出器)上にあり、z軸がこの面に垂直であれば、優先配向軸(H、K、L)はz軸にある。この時、τとδは共に0である。そして、ζもまた0である。この場合、図19に示すように、結晶体で散乱されるX線は、(x",y")面上の逆格子のうち、エバルト球と接する位置(図には2個の星印で示す)に向かうX線が検出器上にスポットとして検出されることとなる。但し、中心のX線は示さない。
For example, if the xy plane is on the detector (two-dimensional detector) and the z-axis is perpendicular to this plane, the preferential orientation axes (H, K, L) are on the z-axis. At this time, both τ and δ are zero. Ζ is also zero. In this case, as shown in FIG. 19, the X-rays scattered by the crystal are located in the reciprocal lattice on the (x ″, y ″) plane and in contact with the Ewald sphere (two stars in the figure). X-rays directed to (shown) will be detected as spots on the detector. However, the central X-ray is not shown.
また、上記と同様の状態において、ζがランダムに-2.5~2.5度の範囲で変動した場合には、図20に示すように、エバルト球と接する位置(図には星印で示す)が増加し(4個の星印)、その結果、検出器上には4個のスポットが検出されることとなる。
Further, in the same state as described above, when ζ randomly varies in the range of −2.5 to 2.5 degrees, as shown in FIG. 20, the position in contact with the Ewald sphere (indicated by an asterisk in the figure). (Shown) increases (4 stars), so that 4 spots are detected on the detector.
更に、ζがランダムに-22.5~22.5度の範囲で変動した場合の状態を図21に、そして、ζがランダムに-45~45度の範囲で変動した場合の状態を図22に、それぞれ示す。
Further, FIG. 21 shows the state when ζ randomly varies in the range of −22.5 to 22.5 degrees, and FIG. 22 shows the state when ζ randomly varies in the range of −45 to 45 degrees. Respectively.
即ち、上述したシミュレーションによれば、結晶体の基本構造によって現れるXRDSイメージだけではなく、更に、基本構造の集合状態の違い(即ち、構造特徴)によって現れるXRDSイメージについても予測することが可能となる。そこで、本発明では、検出器(2次元検出器)上において実際に検出されたXRDSイメージだけではなく、上述したシミュレーションにより得られる予測されるXRDSイメージについてもこれを利用することによれば、設計した物質の評価をより迅速に行うことが可能となる。
That is, according to the above-described simulation, it is possible to predict not only the XRDS image that appears due to the basic structure of the crystal body, but also the XRDS image that appears due to a difference in the aggregate state of the basic structure (ie, structural features). . Therefore, according to the present invention, not only the XRDS image actually detected on the detector (two-dimensional detector) but also the predicted XRDS image obtained by the above-described simulation is used for designing. It becomes possible to perform evaluation of the obtained substances more quickly.
なお、以下には、発明者らが既に知見している基本構造の集合状態の違い(物性や構造的特徴)によって現れるXRDSイメージについて簡単に述べる。
<針状結晶>
・上下にまっすぐであれば、スポット(輝点:図23を参照)は左右に現れる。
・傾いているとスポットの位置も傾く。
・複数の方向を持っていると、スポットも複数となる。
・針状の結晶間が無秩序に並んでいると、横方向の線(天の川:図23を参照)となる。
・針状の結晶間に秩序ができはじめると、横方向の線(天の川)に強度分布ができる。
・針状の結晶間に秩序ができはじめると、横方向の線(天の川)がスポットになる。 In the following, an XRDS image that appears due to a difference in the aggregate state (physical properties and structural characteristics) of the basic structure already known by the inventors will be briefly described.
<Needle crystals>
If it is straight up and down, spots (bright spots: see FIG. 23) appear on the left and right.
・ Spot position tilts when tilted.
・ If you have multiple directions, there will be multiple spots.
When the needle-like crystals are arranged randomly, a horizontal line (the Milky Way: see FIG. 23) is obtained.
・ When an order begins to form between needle-shaped crystals, intensity distribution is formed on the horizontal line (the Milky Way).
・ When order begins to form between needle-like crystals, the horizontal line (the Milky Way) becomes a spot.
<針状結晶>
・上下にまっすぐであれば、スポット(輝点:図23を参照)は左右に現れる。
・傾いているとスポットの位置も傾く。
・複数の方向を持っていると、スポットも複数となる。
・針状の結晶間が無秩序に並んでいると、横方向の線(天の川:図23を参照)となる。
・針状の結晶間に秩序ができはじめると、横方向の線(天の川)に強度分布ができる。
・針状の結晶間に秩序ができはじめると、横方向の線(天の川)がスポットになる。 In the following, an XRDS image that appears due to a difference in the aggregate state (physical properties and structural characteristics) of the basic structure already known by the inventors will be briefly described.
<Needle crystals>
If it is straight up and down, spots (bright spots: see FIG. 23) appear on the left and right.
・ Spot position tilts when tilted.
・ If you have multiple directions, there will be multiple spots.
When the needle-like crystals are arranged randomly, a horizontal line (the Milky Way: see FIG. 23) is obtained.
・ When an order begins to form between needle-shaped crystals, intensity distribution is formed on the horizontal line (the Milky Way).
・ When order begins to form between needle-like crystals, the horizontal line (the Milky Way) becomes a spot.
<液晶相>
・分子配向に秩序がない→等方相(液体相)、円環状になる。
・分子配向が1方向に揃っている→ネマチック相(N相)、円環が楕円のようになる。
・分子配向に秩序がないが一次元的な周期構造がある→スメクチック相(=ラメラ相)針状結晶と同じ。
・分子配向と一次元的な周期構造の方向(層法線)が同じ→スメクチックA相、層法線と直交する方向に液体様の短距離秩序がある。
・分子配向が一次元的な周期構造の層法線から傾いている→スメクチックC相、
層法線と直交する方向に液体様の短距離秩序があるが、分子配向は傾いている。
分子の位置関係に3次元的な秩序がある→結晶相。 <Liquid crystal phase>
-There is no order in the molecular orientation → becomes isotropic phase (liquid phase) and circular.
・ Molecular orientation is aligned in one direction → Nematic phase (N phase), circular ring looks like an ellipse.
・ There is no order in the molecular orientation, but there is a one-dimensional periodic structure → Same as a smectic phase (= lamellar phase) acicular crystal.
The molecular orientation and the direction of the one-dimensional periodic structure (layer normal) are the same → there is a liquid-like short-range order in the direction perpendicular to the smectic A phase and the layer normal.
The molecular orientation is tilted from the layer normal of the one-dimensional periodic structure → smectic C phase,
Although there is a liquid-like short-range order in the direction perpendicular to the layer normal, the molecular orientation is tilted.
There is a three-dimensional order in the molecular positional relationship → crystalline phase.
・分子配向に秩序がない→等方相(液体相)、円環状になる。
・分子配向が1方向に揃っている→ネマチック相(N相)、円環が楕円のようになる。
・分子配向に秩序がないが一次元的な周期構造がある→スメクチック相(=ラメラ相)針状結晶と同じ。
・分子配向と一次元的な周期構造の方向(層法線)が同じ→スメクチックA相、層法線と直交する方向に液体様の短距離秩序がある。
・分子配向が一次元的な周期構造の層法線から傾いている→スメクチックC相、
層法線と直交する方向に液体様の短距離秩序があるが、分子配向は傾いている。
分子の位置関係に3次元的な秩序がある→結晶相。 <Liquid crystal phase>
-There is no order in the molecular orientation → becomes isotropic phase (liquid phase) and circular.
・ Molecular orientation is aligned in one direction → Nematic phase (N phase), circular ring looks like an ellipse.
・ There is no order in the molecular orientation, but there is a one-dimensional periodic structure → Same as a smectic phase (= lamellar phase) acicular crystal.
The molecular orientation and the direction of the one-dimensional periodic structure (layer normal) are the same → there is a liquid-like short-range order in the direction perpendicular to the smectic A phase and the layer normal.
The molecular orientation is tilted from the layer normal of the one-dimensional periodic structure → smectic C phase,
Although there is a liquid-like short-range order in the direction perpendicular to the layer normal, the molecular orientation is tilted.
There is a three-dimensional order in the molecular positional relationship → crystalline phase.
このように、XRDSパターンは、実空間における電子密度分布の対称性を一部反映しており、そこで、本発明では、この観測空間上のXRDSパターンと実空間における電子密度分布の関係性を利用することによって、対象材料のXRDSパターンから、その解釈の「一意性」を高め、その候補となり得る電子密度分布あるいは物質構造(実空間モデルと呼ぶ)、または、構造特徴や構造所見を提示することが可能とする。即ち、このことによれば、X線画像特徴抽出により、データ照合、類推を可能にし、対象材料の実空間モデルを大まかに特定し、解析をさらに進めることが容易になり、特に、材料開発に従事するX線測定機器の使用者にとっては、目的の構造を持った材料や物質が得られているかどうかを容易に判定することが可能となり、材料開発の効率を上げることができる。
As described above, the XRDS pattern partially reflects the symmetry of the electron density distribution in the real space. Therefore, in the present invention, the relationship between the XRDS pattern in the observation space and the electron density distribution in the real space is used. To increase the “uniqueness” of the interpretation from the XRDS pattern of the target material, and present the electron density distribution or material structure (referred to as a real space model) that can be a candidate, or structural features and structural findings Is possible. That is, according to this, it is possible to collate and analogize data by extracting X-ray image features, to easily specify the real space model of the target material, and to further proceed with the analysis. For the user of the engaged X-ray measuring apparatus, it is possible to easily determine whether or not a material or substance having a target structure is obtained, and the efficiency of material development can be increased.
本発明では、上述したXRDS画像(イメージ)の特徴画要素を、以下、「形質」とも呼ぶ。これら形質の種類と属性は、図15に一例として示すように、以下のものを含んでいる。
・スポット/輝点(位置、ピーク輝度、ぼけ、等々)
・円環(位置、ピーク輝度、ぼけ、等々)
・天の川(位置、ピーク輝度、ぼけ、等々)
なお、これらの「形質」は、上述した2次元ピクセル検出素子からなるX線検出器22の各画素の位置、および、そこにおいて検出されたX線の強度により、それら要素の集合とし、その属性をいくつかの変数で表現する。 In the present invention, the characteristic image elements of the above-described XRDS image (image) are hereinafter also referred to as “characters”. The types and attributes of these characters include the following as shown in FIG. 15 as an example.
Spot / bright spot (position, peak brightness, blur, etc.)
-Annulus (position, peak brightness, blur, etc.)
・ The Milky Way (position, peak brightness, blur, etc.)
These “characters” are a set of these elements according to the position of each pixel of theX-ray detector 22 composed of the above-described two-dimensional pixel detection element and the intensity of the X-ray detected there. Is expressed by several variables.
・スポット/輝点(位置、ピーク輝度、ぼけ、等々)
・円環(位置、ピーク輝度、ぼけ、等々)
・天の川(位置、ピーク輝度、ぼけ、等々)
なお、これらの「形質」は、上述した2次元ピクセル検出素子からなるX線検出器22の各画素の位置、および、そこにおいて検出されたX線の強度により、それら要素の集合とし、その属性をいくつかの変数で表現する。 In the present invention, the characteristic image elements of the above-described XRDS image (image) are hereinafter also referred to as “characters”. The types and attributes of these characters include the following as shown in FIG. 15 as an example.
Spot / bright spot (position, peak brightness, blur, etc.)
-Annulus (position, peak brightness, blur, etc.)
・ The Milky Way (position, peak brightness, blur, etc.)
These “characters” are a set of these elements according to the position of each pixel of the
<その他の関連情報>
上記の説明では、X線解析情報に加え、実空間との対称性に起因するXRDSパターンである「形質」を含む情報を利用することにより、情報の「一意性」を高めているが、これらに加えて、更に、以下の情報についても利用することが可能である。
・XRF、Raman分光、質量分析など、X線以外の分析情報
・顕微鏡観察(イメージ)情報
・構造と既知の物性情報やマテリアルズ・インフォマティックス的手法から得られた情報(物性値など) <Other related information>
In the above description, in addition to X-ray analysis information, information including “character” that is an XRDS pattern resulting from symmetry with real space is used to enhance the “uniqueness” of information. In addition, the following information can also be used.
-Analytical information other than X-rays, such as XRF, Raman spectroscopy, mass spectrometry, etc.-Microscopic observation (image) information-Structure and known physical property information and information obtained from material informatics methods (physical property values, etc.)
上記の説明では、X線解析情報に加え、実空間との対称性に起因するXRDSパターンである「形質」を含む情報を利用することにより、情報の「一意性」を高めているが、これらに加えて、更に、以下の情報についても利用することが可能である。
・XRF、Raman分光、質量分析など、X線以外の分析情報
・顕微鏡観察(イメージ)情報
・構造と既知の物性情報やマテリアルズ・インフォマティックス的手法から得られた情報(物性値など) <Other related information>
In the above description, in addition to X-ray analysis information, information including “character” that is an XRDS pattern resulting from symmetry with real space is used to enhance the “uniqueness” of information. In addition, the following information can also be used.
-Analytical information other than X-rays, such as XRF, Raman spectroscopy, mass spectrometry, etc.-Microscopic observation (image) information-Structure and known physical property information and information obtained from material informatics methods (physical property values, etc.)
なお、より具体的な一例として、例えば、Biomacromolecules Vol. 6, No.3, 2005, 6, 1803-1809によれば、Poly[(R)-3-hydroxybutyrate](P(3HB))延伸フィルムにおいて、異なる延伸方法により、基本構造が変化し、その構造の変化に伴って、得られるXRDSイメージも変化することが報告されている。図24には、異なる延伸度のP(3HB)フィルムから得られた広角回折像(XRDSイメージ)を示す。
As a more specific example, for example, according to BiomacromoleculescroVol. 6, No.3, 2005, 6, 1803-1809, in Poly [(R) -3-hydroxybutyrate] (P (3HB)) stretched film It has been reported that the basic structure is changed by different stretching methods, and the obtained XRDS image is also changed with the change of the structure. FIG. 24 shows wide angle diffraction images (XRDS images) obtained from P (3HB) films having different stretching degrees.
XRDSパターンからの構造情報の特徴抽出のためには、実測されたXRDSパターンI(x, y)を動径と方位角成分に分解する、所謂、極座標変換を行うことも有効である。この場合、図25にも示すように、極座標変換によりI(2θ,β)、が得られる。動径方向(2θ方向)には構造スケールに対応した構造情報が得られ、方位角方向(β方向)には基本構造の配向分布に依存した構造情報が得られる。
In order to extract features of structural information from the XRDS pattern, it is also effective to perform so-called polar coordinate conversion that decomposes the actually measured XRDS pattern I (x, y) into radial and azimuth components. In this case, as shown in FIG. 25, I (2θ, β) is obtained by polar coordinate transformation. Structural information corresponding to the structural scale is obtained in the radial direction (2θ direction), and structural information depending on the orientation distribution of the basic structure is obtained in the azimuth angle direction (β direction).
なお、動径方向をλ/2sinθで規格化することで、基本周期の対称性に関する構造情報が得られる。また、同一2θ中の強度分布、Σ2θI(2θ, β)、を配向情報の特徴量として利用することが可能である。さらに、2θとβ双方のパラメーターに依存するような「天の川様」の構造特徴がある場合には強く一次元周期性が考えられる、いわゆる繊維構造のような構造所見が得られる。このようなXRDSパターンからの特徴抽出により、XRDSパターンが特徴パラメーターによって表現(パラメーター化)され、後段のパターン・マッチングやデータベース照合を効率良く実行することが可能になる。
Note that structural information relating to symmetry of the fundamental period can be obtained by normalizing the radial direction with λ / 2sinθ. Further, the intensity distribution in the same 2θ, Σ 2θ I (2θ, β), can be used as the feature amount of the orientation information. Furthermore, in the case where there is a “Tennokawa-like” structural feature that depends on both the 2θ and β parameters, a structural finding such as a so-called fiber structure is obtained, in which a strong one-dimensional periodicity is considered. By such feature extraction from the XRDS pattern, the XRDS pattern is expressed (parameterized) by the feature parameter, and subsequent pattern matching and database matching can be efficiently executed.
<実測XRDSイメージとシミュレーションRDSイメージ>
実際に検出されたXRDSイメージとシミュレーションにより得られる予測されるXRDSイメージによる構造の推定について以下に述べる。 <Measured XRDS image and simulation RDS image>
The structure estimation based on the actually detected XRDS image and the predicted XRDS image obtained by simulation will be described below.
実際に検出されたXRDSイメージとシミュレーションにより得られる予測されるXRDSイメージによる構造の推定について以下に述べる。 <Measured XRDS image and simulation RDS image>
The structure estimation based on the actually detected XRDS image and the predicted XRDS image obtained by simulation will be described below.
例えば、実際にXRDSパターンを測定し、その構造を推定する問題、いわゆる逆問題を解くことを考える。このとき、図26は測定されたXRDSパターンを示す。構造単位をc軸周りにランダムに回転していると仮定したシミュレーションによる逆格子分布としてのXRDSパターンが図27のように得られる。図26と図27との比較により、図26の垂直方向の2要素がシミュレーションにより再現できていないことがわかる。そこで、さらに、c軸を±5°の範囲で傾いていると仮定すると、図28のように、残りの要素をシミュレーションすることができる。
Consider, for example, solving a problem of actually measuring an XRDS pattern and estimating its structure, a so-called inverse problem. At this time, FIG. 26 shows the measured XRDS pattern. An XRDS pattern as a reciprocal lattice distribution obtained by simulation assuming that the structural unit is randomly rotated around the c-axis is obtained as shown in FIG. Comparison between FIG. 26 and FIG. 27 shows that the two elements in the vertical direction of FIG. 26 cannot be reproduced by simulation. Therefore, assuming that the c-axis is inclined within a range of ± 5 °, the remaining elements can be simulated as shown in FIG.
即ち、図29にも示しように、異なるシミュレーションを合わせることで実測XRDSイメージを再現することができる。言い換えれば、このXRDSパターンは、構造単位がc軸周りにランダムに回転し、さらにc軸が±5°の範囲で傾いている構造であることがわかる。
That is, as shown in FIG. 29, the measured XRDS image can be reproduced by combining different simulations. In other words, it can be seen that this XRDS pattern is a structure in which the structural unit is randomly rotated around the c-axis and the c-axis is inclined within a range of ± 5 °.
また、逆に、シミュレーションを駆使して、様々な構造所見に対応する構造要素の組合せをデータベース化し、実際のXRDSパターンと一致するようなものを探索することによって、逆問題を順問題として解くことが可能にもなる。また、シミュレーションにより、格子定数または構造単位を推定することも可能であることは当然であろう。
Inversely, by using simulation, a combination of structural elements corresponding to various structural findings is made into a database, and the inverse problem is solved as a forward problem by searching for a match with the actual XRDS pattern. Is also possible. Of course, it is also possible to estimate the lattice constant or the structural unit by simulation.
このように、X線構造解析システムにより得られるX線回折の逆格子点群であるXRDSイメージについて、基本構造の実空間周期性に由来するスポットだけではなく、XRDSイメージ上に現れる各種の構造特徴や構造所見に起因するパターン(上述した「天の川」状や小さな円弧状のパターン等の形質を含む)を利用することによれば、物質の基本構造に加えて、更に、その原子や分子の配列構造をも含む種々の情報を得ることが可能となる。そして、これらの情報を、以下にも述べるように、別途、XRFやラマン分光、質量分析、物性値等の分析(X線、電子線、質量分析、NMR分析、光学分析、化学分析、生化学分析を含む)の結果と共に、機械学習や人工知能(AI)を利用することにより、構造情報と物性値を関連付ける。これらの情報は、上述したその他分析データベース140内に格納(アーカイブ)され、更には、X線顕微鏡や電子顕微鏡による観察で得られた実空間イメージとの特徴量の類似情報の抽出や特徴照合による検索を行うことにより、最尤と推測される結果(XRDS情報)を抽出して表示することも可能である。これにより、ユーザは、大規模系・複雑な構造、階層性を持つマルチスケール構造)についても、自己が設計した新たな構造物の分子構造(実空間)を、X線構造解析の専門知識がなくても、X線により構造解析を行うことが可能となる。
As described above, regarding the XRDS image which is a group of reciprocal lattice points of X-ray diffraction obtained by the X-ray structural analysis system, various structural features appearing on the XRDS image as well as spots derived from the real space periodicity of the basic structure. In addition to the basic structure of a substance, the arrangement of its atoms and molecules can be further improved by using the patterns resulting from structural observations (including traits such as the above-mentioned “Milky Way” and small arc-shaped patterns). It is possible to obtain various information including the structure. Then, as described below, these information are separately analyzed for XRF, Raman spectroscopy, mass spectrometry, physical property values, etc. (X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis, biochemistry, etc. In addition to the results of analysis (including analysis), structural information and physical property values are associated by using machine learning and artificial intelligence (AI). These pieces of information are stored (archived) in the other analysis database 140 described above, and further, extraction of feature information similar to real space images obtained by observation with an X-ray microscope or an electron microscope and feature matching are performed. By performing the search, it is possible to extract and display the result (XRDS information) estimated to be the maximum likelihood. As a result, users can acquire the molecular structure (real space) of new structures designed by themselves, even for large-scale systems, complex structures, and hierarchical multiscale structures). Even without this, structural analysis can be performed by X-rays.
続いて、上述した本発明になるX線構造解析装置における測定試料の解析手順(物質構造の探索方法)の概略について(所謂、タスクコントローラによる動作であり、当該コントローラはソフトウェアとして上記図5(A)に示すハードディスク111の内部に含まれてもよい)、図30を参照しながら、一例として、図31に示したポリエチレン球晶の結晶をX線回折装置によりその構造を分析する方法について説明する。なお、以下の手順は、上記図5にも示したX線回折装置100内において、例えば、CPU107、RAM108、ROM109等によりハードディスク111内に予め搭載されたタスクコントローラを構成する分析用アプリケーションソフト116を実行することにより行われる。
Subsequently, the outline of the measurement sample analysis procedure (material structure search method) in the above-described X-ray structure analysis apparatus according to the present invention (so-called operation by a task controller, which is shown in FIG. ), And a method of analyzing the structure of the polyethylene spherulite crystal shown in FIG. 31 with an X-ray diffractometer will be described as an example with reference to FIG. . In the following procedure, the analysis application software 116 that constitutes a task controller previously installed in the hard disk 111 by the CPU 107, RAM 108, ROM 109, etc., for example, in the X-ray diffraction apparatus 100 shown in FIG. This is done by executing.
なお、本発明になるX線構造解析装置においては、各種の試料について、既知の基本属性である、例えば、その元素組成、分子構造等と共に、試料固有の属性、例えば、粒度、配向等(物理的幾何学的分散など)、実空間における電子密度分布の想定構造情報をMSDL(Material Structure Description Language)材料構造記述言語により入力しておき、これらをXRDSシミュレータ210において、X線照射イメージ(情報)を計算する。そして、その結果として得られたデータは、XRDSイメージ(情報)として、上述した「形質」に関わる情報をも含めて、特徴抽出エンジン220へ入力され、それと共に、実測したデータやシミュレーションにより得られたデータを含めて格納するXRDS情報データベース120にもアーカイブ(格納)されるものとする。
In the X-ray structural analysis apparatus according to the present invention, various basic properties, such as elemental composition, molecular structure, etc., as well as specific attributes such as particle size, orientation, etc. The assumed structure information of the electron density distribution in the real space is input in the MSDL (Material Structure Description Language) material structure description language, and these are input to the XRDS simulator 210 for X-ray irradiation image (information) Calculate The data obtained as a result is input to the feature extraction engine 220 as the XRDS image (information) including the information related to the above-mentioned “character”, and obtained together with the measured data and simulation. It is assumed that the data is also archived (stored) in the XRDS information database 120 that stores the data.
即ち、XRDSシミュレータ210は、予想・予測される原子・分子の空間分布をMSDLなどで記述(実空間構造)し、さらに、既知の基本属性(元素組成、分子構造など)と試料固有の属性(粒度や配向度など)を加えて(更には、電気的、熱的、機械的、化学的、生物化学的物性を含む物性)、実空間情報(3D)を観測空間情報(3D)に変換する。この際に情報の一意性が損なわれることに注意する必要がある。さらに、X線回折装置で測定されたXRDS情報との比較・照合(230)のために、逆空間の3D情報を2Dもしくは1Dに写像し、次元を落とす操作が行われる。この操作により、情報の一意性はさらに損なわれる。
In other words, the XRDS simulator 210 describes the predicted / predicted spatial distribution of atoms / molecules in MSDL or the like (real space structure), and further, the known basic attributes (element composition, molecular structure, etc.) and sample-specific attributes ( Particle size, orientation, etc.) (and physical properties including electrical, thermal, mechanical, chemical, and biochemical properties), and convert real space information (3D) into observation space information (3D) . Note that the uniqueness of the information is lost. Further, for comparison / collation (230) with the XRDS information measured by the X-ray diffractometer, the inverse space 3D information is mapped to 2D or 1D, and the operation of dropping the dimension is performed. This operation further impairs the uniqueness of the information.
また、各種試料については、別途、XRFやラマン分光、質量分析、物性値等のX線回折・散乱測定以外の分析(X線、電子線、質量分析、NMR分析、光学分析、化学分析、生化学分析を含む)やシミュレーションなどのインフォマティックス的手法により得られた結果は、上述したその他分析データベース140内に格納(アーカイブ)され、更には、X線顕微鏡や電子顕微鏡による観察で得られたイメージは、顕微鏡イメージデータベース130内に格納(アーカイブ)される。
In addition, various types of samples are separately analyzed other than X-ray diffraction / scattering measurements such as XRF, Raman spectroscopy, mass spectrometry, physical properties, etc. (X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis, The results obtained by informatics techniques (including chemical analysis) and simulations are stored (archived) in the other analysis database 140 described above, and further obtained by observation with an X-ray microscope or an electron microscope. The image is stored (archived) in the microscope image database 130.
一方、X線構造解析装置による実測の結果として得られたXRDS情報は、特徴抽出エンジン220に入力され、上述した実測したデータやシミュレーションにより得られたデータを含めて格納したXRDS情報データベース120との間で比較・参照操作を行い、入力されXRDS情報に最も類似の既存のXRDS情報を機械学習や人工知能(AI)も利用して選択し、その関連データと共に入手する。
On the other hand, XRDS information obtained as a result of actual measurement by the X-ray structural analysis apparatus is input to the feature extraction engine 220 and stored with the XRDS information database 120 including the above-described actual measurement data and data obtained by simulation. A comparison / reference operation is performed between them, and the existing XRDS information that is most similar to the input XRDS information is selected using machine learning and artificial intelligence (AI), and obtained together with the related data.
この特徴抽出エンジン220(図30において、特徴抽出エンジン220は、便宜のため、2箇所に示されているが、同一の機能を持ったものである)は、情報の一意性が損なわれている上記XRDSシミュレータ210によるXRDS情報やX線回折装置で測定されたXRDS情報の各々から、空間群の対称性による既知の特徴量だけではなく、更には、機械学習や人工知能(AI)を利用して特徴抽出を行い、特徴量を得る。なお、これらの特徴量も、XRDS情報データベース120に格納される。XRDS情報データベース内では、データベース140を参照し、物性値や実在性についての情報も合わせて関連付けられる。
This feature extraction engine 220 (in FIG. 30, the feature extraction engine 220 is shown in two places for convenience, but has the same function), the uniqueness of information is impaired. From the XRDS information obtained by the XRDS simulator 210 and the XRDS information measured by the X-ray diffractometer, not only the known feature quantity due to the symmetry of the space group but also machine learning or artificial intelligence (AI) is used. To extract features and obtain feature quantities. These feature quantities are also stored in the XRDS information database 120. In the XRDS information database, the database 140 is referred to and information on physical property values and actuality is also associated.
また、実測結果のXRDSイメージは、比較/参照エンジン230へ入力され、そこでは、上記XRDS情報データベース120との間で参照を行いながら、データ間の情報距離を計算することにより、最も近いデータを選出し、特徴照合解析結果を、以下の最尤空間情報推測エンジン240へ入力する。
The XRDS image of the actual measurement result is input to the comparison / reference engine 230, where the nearest data is obtained by calculating the information distance between the data while referring to the XRDS information database 120. The selected and feature matching analysis results are input to the following maximum likelihood spatial information estimation engine 240.
より詳細には、比較/参照エンジン230では、X線回折装置で得られたXRDS情報と、XRDSシミュレータ210により得られたXRDS情報の次元性に合わせたXRDS情報を、情報要素(bin、pixel、voxelなど)毎に比較し、一致度(相関係数など)や類似度などの情報距離を得る。また、特徴抽出エンジン220で得られた特徴量を、XRDS情報データベース120で参照し、機械学習や人工知能(AI)による特徴量の類似情報の抽出や特徴照合による検索を行う。
More specifically, in the comparison / reference engine 230, the XRDS information obtained by the X-ray diffractometer and the XRDS information according to the dimensionality of the XRDS information obtained by the XRDS simulator 210 are converted into information elements (bin, pixel, voxel, etc.) to obtain information distances such as matching degree (correlation coefficient, etc.) and similarity degree. Also, the feature quantity obtained by the feature extraction engine 220 is referred to in the XRDS information database 120, and similar information of feature quantity is extracted by machine learning or artificial intelligence (AI), and search is performed by feature matching.
なお、この最尤空間情報推測エンジン240には、上記顕微鏡イメージデータベース130の顕微鏡イメージと共に、上述したXRDSシミュレータ210においてシミュレートされたXRDS情報が入力されており、当該エンジン240は、これらを利用してパラメーターを変えてシミュレーションを行って、実空間情報において最尤と推測される結果を抽出する。なお、その際には、データベース140だけではなく、データベース130も含めた他の手法を用いて妥当性の検証を行い、マクロな物質の振る舞い(例えば、物性値)との相互参照を行い、実在性についてチェックすることにより妥当性を検証する機能をも含む。
The maximum likelihood space information estimation engine 240 receives the XRDS information simulated by the XRDS simulator 210 described above together with the microscope image in the microscope image database 130, and the engine 240 uses these. Then, the simulation is performed with the parameters changed, and the result estimated to be the maximum likelihood in the real space information is extracted. At that time, not only the database 140 but also other methods including the database 130 are used to verify the validity and cross-reference with the behavior of the macro substance (for example, physical property values) It also includes a function to verify the validity by checking the sex.
また、この最尤空間情報推測エンジン240では、上記比較/参照エンジン230で得られた最も特徴量が類似したXRDS情報にリンクされた実空間情報を参照し(推定構造)、その推定構造の近傍の構造を、例えば、モンテカルロ法などの検索手法を用いて、アンサンブルを得た後、比較/参照エンジン230を利用して特徴量の照合作業を行う。ここで得られた最も特徴量の類似度の高い実空間構造を最尤構造として、結果が出力される。なお、この最尤空間情報推測エンジン240は、例えばTensorFlowやChainerなどの機械学習や人工知能の構築ツールにより実現できる。
The maximum likelihood space information estimation engine 240 refers to real space information linked to the XRDS information having the most similar feature amount obtained by the comparison / reference engine 230 (estimated structure), and is near the estimated structure. After obtaining an ensemble by using a search method such as the Monte Carlo method, for example, the comparison / reference engine 230 is used to perform a feature amount matching operation. The real space structure having the highest similarity of the feature quantity obtained here is set as the maximum likelihood structure, and the result is output. The maximum likelihood space information estimation engine 240 can be realized by a machine learning or artificial intelligence construction tool such as TensorFlow or Chainer.
続いて、上記に詳述した本発明になるX線構造解析装置によって行うことが可能となる構造解析について、図32及び図33を参照しながら説明する。
Next, structural analysis that can be performed by the X-ray structural analysis apparatus according to the present invention described in detail above will be described with reference to FIGS. 32 and 33. FIG.
上述した図32(A)にも示すように、装置の利用者であるユーザは、本発明になるX線構造解析装置によれば、その入力装置等を介して、MSDL材料構造記述言語等を利用することにより、自己が設計した新たな構造物の分子設計(実空間)を行う。このことにより、上記のXRDSシミュレータ210を利用して、予め、設計した新たな構造物の分子構造・集合構造(実空間)を予測することが可能となる。即ち、予め、自己が設計した新たな構造物の適否を簡単に判定することが可能となる。
As shown in FIG. 32A described above, the user who is the user of the apparatus, according to the X-ray structural analysis apparatus of the present invention, can use the MSDL material structure description language or the like via the input apparatus. By using it, molecular design (real space) of a new structure designed by oneself is performed. This makes it possible to predict the molecular structure / aggregate structure (real space) of a new structure designed in advance using the XRDS simulator 210 described above. That is, it is possible to easily determine whether or not a new structure designed by the user in advance is appropriate.
その後、ユーザは、更に、上記の予測された新たな構造物の分子構造・集合構造(実空間)に基づいて、図33(A)にも示すように、各種のデータベースを活用して計算機シミュレーション(上記図16のXRDSシミュレータ210による)を行う。このことによれば、X線構造解析装置により得られるであろうXRDSパターンを含む分析結果を予想することが出来る。
After that, the user further performs computer simulation using various databases as shown in FIG. 33A based on the predicted molecular structure / aggregate structure (real space) of the new structure. (By the XRDS simulator 210 in FIG. 16). According to this, it is possible to predict the analysis result including the XRDS pattern that will be obtained by the X-ray structure analysis apparatus.
更に、ユーザは、上記新たな構造物を、本発明になるX線構造解析装置によって実際に行うことによれば、図33(B)にも示すように、例えば、X線構造解析装置によって実際に得られたXRDSパターンをシミュレーションにより得られたXRDSパターン(図の右側)と比較することにより、自己が設計した新たな構造物が実際に合成された構造物の分子構造・集合構造と一致するか否かの判定を、特にX線構造解析の知識を必要とせずに可能となる。また、その際、実際に得られたXRDSパターンに基づいて、上記比較/参照エンジン230や最尤空間情報推測エンジン240において、機械学習や人工知能(AI)によって特徴量の類似情報の抽出や特徴照合による検索を行うことにより、最尤と推測される結果(XRDS情報)を抽出して表示することも可能である。これにより、ユーザは、大規模系・複雑な構造、階層性を持つマルチスケール構造)についても、自己が設計した新たな構造物の分子構造(実空間)を、X線の専門知識がなくても、X線により構造解析を行うことが可能となる。
Furthermore, when the user actually performs the new structure with the X-ray structure analysis apparatus according to the present invention, as shown in FIG. By comparing the XRDS pattern obtained in the above with the XRDS pattern obtained by simulation (right side of the figure), the new structure designed by the user matches the molecular structure and aggregate structure of the actually synthesized structure. It is possible to determine whether or not there is no need for knowledge of X-ray structural analysis. At that time, based on the XRDS pattern actually obtained, the comparison / reference engine 230 or the maximum likelihood spatial information estimation engine 240 extracts feature information similar to features or features by machine learning or artificial intelligence (AI). By performing a search by collation, it is possible to extract and display the result (XRDS information) estimated to be the maximum likelihood. As a result, the user has no special knowledge of the X-ray molecular structure (real space) of the new structure that he designed, even for large-scale systems, complex structures, and hierarchical multi-scale structures). In addition, structural analysis can be performed by X-rays.
従来の材料開発フローは、図34(A)に示すような期待する実装特性や物性を設定し、それまでの経験や知識、直感から有望な材料組成や構造を予測し、材料合成を行ったものに対してX線回折・散乱測定により構造を決定し、狙い通りの構造を持つものに対して物性測定を行い、最終的に実装評価を経て開発の成否を判定するものであった。しかし、これまでに述べたように、XRDSデータから実空間構造を推定するのは容易ではなく、それだけで1つの学問領域を形成するような専門性が必要であり、材料開発のボトルネックともなる可能性のあるものであった。
In the conventional material development flow, the expected mounting characteristics and physical properties as shown in FIG. 34 (A) were set, promising material compositions and structures were predicted from previous experience, knowledge, and intuition, and materials were synthesized. The structure was determined by X-ray diffraction / scattering measurement for the object, the physical property measurement was performed for the object having the intended structure, and the success or failure of the development was finally determined through mounting evaluation. However, as described above, it is not easy to estimate the real space structure from XRDS data, and it is necessary to have expertise to form a single academic area, and it becomes a bottleneck for material development. It was possible.
本発明では、図34(B)に示すように、経験や直感だけではなく、マテリアルズ・インフォマティクスなどのデータ科学的手法を駆使した物性・構造予測に基づいて材料組成の検討を行い、材料合成を行う。そのX線回折・散乱測定とデータベースとの連携により、目標とする構造を持つかどうかを迅速判定することで材料の設計・開発の期間を大幅に短縮する。
In the present invention, as shown in FIG. 34 (B), not only experience and intuition but also material composition is examined based on physical properties / structure prediction using data science techniques such as materials informatics, and material synthesis is performed. I do. By linking the X-ray diffraction / scattering measurement and the database, the material design / development period can be greatly shortened by quickly determining whether or not the target structure is possessed.
なお、その際、上述した分子設計や予測された分子構造・集合構造(実空間)と共に、更には、一致する場合、一致しない場合の両方を含めた判定の結果を含めて、各種の情報について上述したXRDS情報として記憶しておくことが好ましい。「肯定的な情報」と「否定的な情報」は一対であり、どちらも情報量としては同一であり、新しい知識・情報を得て、持っている情報量が増えることであり、このことにより、機械学習や人工知能(AI)が「賢くなる」ためには必要な情報であることによる。また、比較・参照の結果、「相同性が高い」と判定されたもの、「相同性が低い」と判定されたものも、同様に、データベースに蓄積することによって機械学習や人工知能(AI)が「賢くなる」。また、単純に「相同性が低い」という結果を返すのではなく、他方で、「相同性が高い」構造モデルも存在すること知らせることができることとなる。このように、既知の知識・情報を逐次更新することによって、それまでの持っている情報量に加えて情報量が増えることなり、より賢い機械学習や人工知能(AI)が実現される。
At that time, various information including the above-mentioned molecular design and the predicted molecular structure / aggregate structure (real space), and also the result of determination including both cases of coincidence and non-coincidence It is preferable to store it as the XRDS information described above. “Positive information” and “Negative information” are a pair, both of which have the same amount of information, which is to acquire new knowledge and information and increase the amount of information possessed. This is because it is necessary information for machine learning and artificial intelligence (AI) to become “smart”. In addition, as a result of comparison / reference, those that are determined to be “highly homologous” and those that are determined to be “low homology” are also stored in the database in the same manner as machine learning and artificial intelligence (AI). “Get smarter”. In addition, instead of simply returning a result of “low homology”, it is possible to inform that there is also a structural model of “high homology”. In this way, by sequentially updating known knowledge and information, the information amount increases in addition to the information amount possessed so far, and smarter machine learning and artificial intelligence (AI) are realized.
また、要求する物性を持った材料の探索のため、さまざまなデータベース上にある情報を相互に関連付けるデータベースとの連携を持つスマート構造解析システムを中核とした材料探索方法を図35に示す。要求する物性値f1を持つ材料を探索するため、物性情報データベース、光学・電子顕微鏡イメージデータベース、材料構造情報データベースの各データ要素α、β、γなどは相互関連情報データベースにより相互に関連付けられており、さらに、機械学習や人工知能(AI)によりモデルf(α、β、γ、…)が構築される。要求する物性値f1を実現するパラメーターの組(α、β、γ、…)は、XRDS情報データベース120を参照し、関数fを最適化することにより得られる。これにより、要求する物性値f1を持った材料の候補が特定される。
In addition, Fig. 35 shows a material search method centered on a smart structural analysis system linked with a database that correlates information on various databases in order to search for a material having the required physical properties. In order to search for a material having the required physical property value f1, the data elements α, β, γ, etc. of the physical property information database, optical / electron microscope image database, and material structure information database are correlated with each other by the interrelated information database. Further, a model f (α, β, γ,...) Is constructed by machine learning or artificial intelligence (AI). A set of parameters (α, β, γ,...) For realizing the required physical property value f1 is obtained by referring to the XRDS information database 120 and optimizing the function f. Thereby, a candidate for a material having the required physical property value f1 is specified.
さらに、本発明は、マテリアルズ・インフォマティックスなどのデータ科学的手法の活用、および当該手法へのデータ供与による妥当性検証も可能であり、相互活用されるものである。
Furthermore, the present invention can be used for data science methods such as Materials Informatics, and can be validated by providing data to the methods, and can be mutually utilized.
なお、以上には本発明の種々の実施例を説明したが、本発明は上記した実施例に限定されるものではなく様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、またある実施例の構成に他の実施例の構成を加えることも可能であり、また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能であろう。
Although various embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and includes various modifications. For example, the above-described embodiments are described in detail for the entire system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, it is possible to replace a part of the configuration of a certain embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of a certain embodiment. It will be possible to add, delete, and replace other configurations for some of the example configurations.
さらに、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことも可能であろう。
Furthermore, each of the above-described configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them, for example, with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD. I will.
本発明は、物質構造の探索方法とそれに用いるX線構造解析システムにおいて広く利用可能である。
The present invention can be widely used in a material structure search method and an X-ray structure analysis system used therefor.
1…X線測定システム、9、100…X線回折装置、102…測定装置、103…入力装置、104…画像表示装置、107…CPU、108…RAM、109…ROM、111…ハードディスク、116…分析用アプリケーションソフト、117…測定用アプリケーションソフト、120…XRDS情報データベース、130…顕微鏡イメージデータベース、140…その他分析データベース、210…XRDSシミュレータ、220…特徴抽出エンジン、230…比較/参照エンジン、240…最尤空間情報推測エンジン
DESCRIPTION OF SYMBOLS 1 ... X-ray measurement system, 9, 100 ... X-ray diffraction apparatus, 102 ... Measurement apparatus, 103 ... Input device, 104 ... Image display apparatus, 107 ... CPU, 108 ... RAM, 109 ... ROM, 111 ... Hard disk, 116 ... Application software for analysis, 117 ... Application software for measurement, 120 ... XRDS information database, 130 ... Microscope image database, 140 ... Other analysis database, 210 ... XRDS simulator, 220 ... Feature extraction engine, 230 ... Comparison / reference engine, 240 ... Maximum likelihood spatial information estimation engine
Claims (16)
- 探索すべき材料の候補について、
(イ) イメージによる実測またはシミュレーションにより得られた材料の反射、透過、散乱の少なくとも1つに関するデータをデータベース化し、
(ロ) 分析法による実測またはシミュレーションから決定、または、推定された当該材料の構造のデータをデータベース化し、
(ハ) 物性による実測またはシミュレーションにより得られた特性について、実際の測定または計算機シミュレーションによりデータをデータベース化し、
(ニ) 上記データの相互の紐づけを含んで蓄積した関連付け可能な相互関連情報をデータベース化し、
上記(イ)から(ニ)までのデータベースを用いて、前記探索すべき材料に近いイメージ(イ)、構造(ロ)、物性(ハ)の何れか又はそれらの組合せを、互いの情報距離情報(ニ)により、判定又は抽出することを特徴とする物質構造の探索方法。 For candidate materials to explore,
(A) Data on at least one of reflection, transmission, and scattering of materials obtained by actual measurement or simulation using images is made into a database,
(B) Make a database of the data of the structure of the material determined or estimated from the actual measurement or simulation by the analytical method,
(C) Regarding the characteristics obtained by actual measurement or simulation based on physical properties, data is made into a database by actual measurement or computer simulation,
(D) Creating a database of correlating information that can be associated with each other, including the association of the above data,
Using the databases (a) to (d) above, either information (b), structure (b), physical property (c) or a combination thereof close to the material to be searched, and information distance information on each other (D) A method for searching for a substance structure, characterized in that determination or extraction is performed. - 前記請求項1に記載した物質構造の探索方法において、前記判定又は抽出された相互関連情報をデータベースに追加することを特徴とする物質構造の探索方法。 2. The method for searching a substance structure according to claim 1, wherein the correlation information extracted or extracted is added to a database.
- 前記請求項1に記載した物質構造の探索方法において、前記(イ)イメージによる実測またはシミュレーションにより得られたデータは、X線、電子線、その他可視光を含む電磁波を含む照射を用いて測定されたものであることを特徴とする物質構造の探索方法。 In the method for searching for a material structure according to claim 1, the data obtained by the actual measurement or simulation using the image (b) is measured using X-rays, electron beams, or other irradiation including electromagnetic waves including visible light. A method for searching a material structure, characterized by
- 前記請求項1に記載した物質構造の探索方法において、前記(ロ)分析法による実測またはシミュレーションにより得られたデータは、X線、電子線、質量分析、NMR分析、光学分析、化学分析、生化学分析を含む分析により測定されたものであることを特徴とする物質構造の探索方法。 In the substance structure search method according to claim 1, data obtained by actual measurement or simulation by the (b) analysis method is X-ray, electron beam, mass analysis, NMR analysis, optical analysis, chemical analysis, raw analysis. A method for searching a substance structure, characterized by being measured by analysis including chemical analysis.
- 前記請求項1に記載した物質構造の探索方法において、前記(ハ)物性による実測またはシミュレーションにより得られたデータは、電気的、熱的、機械的、化学的、生物化学的物性を含む物性により測定されたものであることを特徴とする物質構造の探索方法。 In the method for searching for a material structure according to claim 1, the data obtained by the actual measurement or simulation based on the physical properties is based on physical properties including electrical, thermal, mechanical, chemical, and biochemical properties. A method for searching a material structure, characterized by being measured.
- 前記請求項1~5の1項に記載した物質構造の探索方法において、更に、材料を規定する原子・分子組成、結晶性、配向性、テクスチャ、混合比を含む材料変数群に対して、前記探索すべき材料に至る最も有効な材料変数の組を算出することを含むことを特徴とする物質構造の探索方法。 The method for searching a substance structure according to one of claims 1 to 5, further comprising: a material variable group including an atomic / molecular composition, crystallinity, orientation, texture, and mixture ratio that defines the material; A method for searching a substance structure, comprising calculating a most effective set of material variables leading to a material to be searched.
- 前記請求項1~6の1項に記載した物質構造の探索方法に用いるX線構造解析システムであって、少なくとも、
X線を発生するX線源と、
前記X線源からのX線を測定すべき試料に照射するX線照射手段と、
測定すべき試料により回折又は散乱されたX線を測定するためのX線検出手段と、
前記X線検出手段により検出された測定すべき試料の回折又は散乱X線に基づいてX線画像の形質を含めたXRDS情報を生成する手段とを備えており、さらに、
前記(イ)から(ニ)までのデータベースに対してアクセス可能な手段を備えていることを特徴とするX線構造解析システム。 An X-ray structure analysis system used in the method for searching a material structure according to one of claims 1 to 6, comprising:
An X-ray source generating X-rays;
X-ray irradiation means for irradiating a sample to be measured with X-rays from the X-ray source;
X-ray detection means for measuring X-rays diffracted or scattered by the sample to be measured;
Means for generating XRDS information including traits of an X-ray image based on diffraction or scattered X-rays of the sample to be measured detected by the X-ray detection means, and
An X-ray structure analysis system comprising means capable of accessing the databases (a) to (d). - 前記請求項7に記載したX線構造解析システムであって、さらに、
前記X線回折・散乱測定によって得られた試料の構造が予想される構造であるか否かの判別機能を備えている構造判別手段を備えていることを特徴とするX線構造解析システム。 The X-ray structural analysis system according to claim 7, further comprising:
An X-ray structure analysis system comprising: a structure determining unit having a function of determining whether or not a sample structure obtained by the X-ray diffraction / scattering measurement is an expected structure. - 前記請求項7に記載したX線構造解析システムであって、さらに、
前記X線回折・散乱現象によって得られたXRDS情報に基づいて、測定された試料の最尤と推測される結果を抽出する抽出手段を備えていることを特徴とするX線構造解析システム。 The X-ray structural analysis system according to claim 7, further comprising:
An X-ray structure analysis system comprising an extraction means for extracting a result estimated to be the maximum likelihood of a measured sample based on XRDS information obtained by the X-ray diffraction / scattering phenomenon. - 前記請求項7に記載したX線構造解析システムにおいて、更に、前記XRDS情報の形質を含めたデータを格納するためのデータベース部を備えていることを特徴とするX線構造解析システム。 8. The X-ray structure analysis system according to claim 7, further comprising a database unit for storing data including traits of the XRDS information.
- 前記請求項7に記載したX線構造解析システムにおいて、更に、材料構造記述言語(MSDL)を含む情報により計算された前記試料の予想される構造からXRDS情報を計算するシミュレータを備えていることを特徴とするX線構造解析システム。 The X-ray structure analysis system according to claim 7, further comprising a simulator for calculating XRDS information from an expected structure of the sample calculated by information including a material structure description language (MSDL). Characteristic X-ray structural analysis system.
- 前記請求項11に記載したX線構造解析システムにおいて、前記XRDS情報を計算するシミュレータは、前記試料の予想される構造以外の構造も計算することが可能であり、当該機能を外部から呼び出して利用可能であることを特徴とするX線構造解析システム。 12. The X-ray structure analysis system according to claim 11, wherein the simulator for calculating the XRDS information can also calculate a structure other than an expected structure of the sample, and uses the function by calling from the outside. An X-ray structural analysis system characterized by being capable.
- 前記請求項9に記載したX線構造解析システムにおいて、前記抽出手段は、更に、試料のX線以外の分析結果や物性値などを格納するためのデータベース部に対してアクセス可能に構成されていることを特徴とするX線構造解析システム。 10. The X-ray structure analysis system according to claim 9, wherein the extraction unit is further configured to be accessible to a database unit for storing analysis results other than the X-rays of the sample and physical property values. X-ray structure analysis system characterized by this.
- 前記請求項9に記載したX線構造解析システムにおいて、前記抽出手段は、機械学習又は/及び人工知能(AI)を備えて構成されていることを特徴とするX線構造解析システム。 10. The X-ray structure analysis system according to claim 9, wherein the extraction means includes machine learning and / or artificial intelligence (AI).
- 探索すべき材料の候補について、
(イ) イメージによる実測により得られた材料のX線の反射、透過、散乱の少なくとも1つに関するデータを入力し、
(ロ) シミュレーションにより得られた材料のX線の反射、透過、散乱の少なくとも1つに関するデータを入力し、
上記(イ)と(ロ)のデータを用いて、前記探索すべき材料に近いイメージ、構造、物性の何れか又はそれらの組合せを判定又は抽出又はデータベース化することを特徴とする物質構造の探索方法。 For candidate materials to explore,
(B) Input data on at least one of X-ray reflection, transmission and scattering of materials obtained by actual measurement using images,
(B) Input data on at least one of X-ray reflection, transmission and scattering of materials obtained by simulation,
Using the data of (a) and (b) above, search for a substance structure characterized by determining, extracting, or creating a database of any image, structure, or physical property close to the material to be searched, or a combination thereof. Method. - 前記請求項15に記載した物質構造の探索方法において、前記物性は、物質の基本構造に加え、その原子や分子の配列構造をも含む情報であることを特徴とする物質構造の探索方法。 16. The method for searching a substance structure according to claim 15, wherein the physical property is information including not only a basic structure of the substance but also an arrangement structure of atoms and molecules.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018531813A JPWO2018025618A1 (en) | 2016-07-30 | 2017-07-14 | Material structure search method and X-ray structure analysis system used therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-150882 | 2016-07-30 | ||
JP2016150882 | 2016-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018025618A1 true WO2018025618A1 (en) | 2018-02-08 |
Family
ID=61072766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025716 WO2018025618A1 (en) | 2016-07-30 | 2017-07-14 | Material structure searching method and x-ray structural analysis system used in said method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018025618A1 (en) |
WO (1) | WO2018025618A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020091872A (en) * | 2018-12-06 | 2020-06-11 | インダストリー アカデミー コーオペレーション ファウンデーション オブ セジョン ユニバーシティー | Method for discriminating and analyzing substance |
CN112129792A (en) * | 2019-06-05 | 2020-12-25 | 株式会社岛津制作所 | Sample analysis system, sample analysis device, and sample analysis method |
EP3835766A1 (en) * | 2019-12-11 | 2021-06-16 | Toyota Jidosha Kabushiki Kaisha | Data analysis system and data analysis method |
WO2021199298A1 (en) * | 2020-03-31 | 2021-10-07 | 日本電信電話株式会社 | Crystal growth condition analysis method, crystal growth condition analysis system, crystal growth condition analysis program, and data structure for crystal growth data |
CN113889201A (en) * | 2021-09-15 | 2022-01-04 | 成都材智科技有限公司 | Nuclear power structural material calculation data integration system and method |
JP2022136536A (en) * | 2021-03-08 | 2022-09-21 | 株式会社豊田中央研究所 | Device and method for searching for crystal structures |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0997278A (en) * | 1995-09-29 | 1997-04-08 | Shimadzu Corp | Crystal model preparation display device |
JPH1048157A (en) * | 1996-08-08 | 1998-02-20 | Toray Ind Inc | Apparatus for measuring and analyzing with simulation of molecule and method for analyzing chemical structure of substance |
JP2000507700A (en) * | 1996-04-01 | 2000-06-20 | ウェスチングハウス・エレクトリック・コーポレイション | Apparatus and method for detecting subsurface crystal structure using x-ray diffraction |
US20050074089A1 (en) * | 2003-10-07 | 2005-04-07 | Bruker Axs Gmbh | Analytical method for determination of crystallographic phases of a sample |
JP2010256261A (en) * | 2009-04-28 | 2010-11-11 | Hitachi High-Technologies Corp | Crystal orientation identification system and transmission electron microscope |
-
2017
- 2017-07-14 WO PCT/JP2017/025716 patent/WO2018025618A1/en active Application Filing
- 2017-07-14 JP JP2018531813A patent/JPWO2018025618A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0997278A (en) * | 1995-09-29 | 1997-04-08 | Shimadzu Corp | Crystal model preparation display device |
JP2000507700A (en) * | 1996-04-01 | 2000-06-20 | ウェスチングハウス・エレクトリック・コーポレイション | Apparatus and method for detecting subsurface crystal structure using x-ray diffraction |
JPH1048157A (en) * | 1996-08-08 | 1998-02-20 | Toray Ind Inc | Apparatus for measuring and analyzing with simulation of molecule and method for analyzing chemical structure of substance |
US20050074089A1 (en) * | 2003-10-07 | 2005-04-07 | Bruker Axs Gmbh | Analytical method for determination of crystallographic phases of a sample |
JP2010256261A (en) * | 2009-04-28 | 2010-11-11 | Hitachi High-Technologies Corp | Crystal orientation identification system and transmission electron microscope |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020091872A (en) * | 2018-12-06 | 2020-06-11 | インダストリー アカデミー コーオペレーション ファウンデーション オブ セジョン ユニバーシティー | Method for discriminating and analyzing substance |
CN112129792A (en) * | 2019-06-05 | 2020-12-25 | 株式会社岛津制作所 | Sample analysis system, sample analysis device, and sample analysis method |
EP3835766A1 (en) * | 2019-12-11 | 2021-06-16 | Toyota Jidosha Kabushiki Kaisha | Data analysis system and data analysis method |
JP2021092467A (en) * | 2019-12-11 | 2021-06-17 | トヨタ自動車株式会社 | Data analysis system and data analysis method |
JP7188373B2 (en) | 2019-12-11 | 2022-12-13 | トヨタ自動車株式会社 | Data analysis system and data analysis method |
WO2021199298A1 (en) * | 2020-03-31 | 2021-10-07 | 日本電信電話株式会社 | Crystal growth condition analysis method, crystal growth condition analysis system, crystal growth condition analysis program, and data structure for crystal growth data |
JPWO2021199298A1 (en) * | 2020-03-31 | 2021-10-07 | ||
JP7472969B2 (en) | 2020-03-31 | 2024-04-23 | 日本電信電話株式会社 | Crystal growth condition analysis method, crystal growth condition analysis system, crystal growth condition analysis program, and data structure of crystal growth data |
JP2022136536A (en) * | 2021-03-08 | 2022-09-21 | 株式会社豊田中央研究所 | Device and method for searching for crystal structures |
JP7314963B2 (en) | 2021-03-08 | 2023-07-26 | 株式会社豊田中央研究所 | CRYSTAL STRUCTURE SEARCHING DEVICE AND CRYSTAL STRUCTURE SEARCHING METHOD |
CN113889201A (en) * | 2021-09-15 | 2022-01-04 | 成都材智科技有限公司 | Nuclear power structural material calculation data integration system and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018025618A1 (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018025618A1 (en) | Material structure searching method and x-ray structural analysis system used in said method | |
Oviedo et al. | Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks | |
Bernier et al. | High-energy X-ray diffraction microscopy in materials science | |
Nelson et al. | The IllustrisTNG simulations: public data release | |
Ziletti et al. | Insightful classification of crystal structures using deep learning | |
Wiegelmann et al. | Coronal magnetic field models | |
Springel et al. | The large-scale structure of the Universe | |
Hennawi et al. | Characterizing the cluster lens population | |
Cairney et al. | Mining information from atom probe data | |
Zhang et al. | Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect | |
Ata et al. | Predicted future fate of COSMOS galaxy protoclusters over 11 Gyr with constrained simulations | |
Pokharel | Overview of high-energy x-ray diffraction microscopy (HEDM) for mesoscale material characterization in three-dimensions | |
Kühbach et al. | On strong-scaling and open-source tools for analyzing atom probe tomography data | |
Li et al. | Accurate stochastic reconstruction of heterogeneous microstructures by limited x‐ray tomographic projections | |
Xia et al. | Intergalactic filaments spin | |
Wei et al. | 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods | |
Shamir | New evidence and analysis of cosmological-scale asymmetry in galaxy spin directions | |
Oei et al. | Filamentary baryons and where to find them-A forecast of synchrotron radiation from merger and accretion shocks in the local Cosmic Web | |
Kim et al. | Fast acquisition protocol for X-ray scattering tensor tomography | |
Ziatdinov et al. | Semi-supervised learning of images with strong rotational disorder: assembling nanoparticle libraries | |
Dijkman et al. | Learning Neural Free-Energy Functionals with Pair-Correlation Matching | |
Waibel et al. | A comparison of building energy optimization problems and mathematical test functions using static fitness landscape analysis | |
Sarupria et al. | Machine learning for molecular simulations of crystal nucleation and growth | |
Chen et al. | Chemical short-range order in complex concentrated alloys | |
Packwood | Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018531813 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836724 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17836724 Country of ref document: EP Kind code of ref document: A1 |