[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018023845A1 - 一种基于胎压监测的竖向车轮冲击力实时测量方法及系统 - Google Patents

一种基于胎压监测的竖向车轮冲击力实时测量方法及系统 Download PDF

Info

Publication number
WO2018023845A1
WO2018023845A1 PCT/CN2016/096944 CN2016096944W WO2018023845A1 WO 2018023845 A1 WO2018023845 A1 WO 2018023845A1 CN 2016096944 W CN2016096944 W CN 2016096944W WO 2018023845 A1 WO2018023845 A1 WO 2018023845A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tire pressure
data
force
wheel
Prior art date
Application number
PCT/CN2016/096944
Other languages
English (en)
French (fr)
Inventor
张建
陈钊
赵文举
周立明
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/316,351 priority Critical patent/US10753827B2/en
Publication of WO2018023845A1 publication Critical patent/WO2018023845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/013Wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0479Communicating with external units being not part of the vehicle, e.g. tools for diagnostic, mobile phones, electronic keys or service stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0474Measurement control, e.g. setting measurement rate or calibrating of sensors; Further processing of measured values, e.g. filtering, compensating or slope monitoring
    • B60C23/0477Evaluating waveform of pressure readings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L17/00Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration

Definitions

  • the invention relates to the field of tire performance monitoring, in particular to a real-time measuring method and system for vertical wheel impact force based on tire pressure monitoring.
  • bridges play an important role in social and economic development.
  • China is gradually emerging from the golden period of infrastructure construction.
  • a considerable part of the more than 750,000 active bridges are facing aging problems.
  • the survey shows that the number of four or five types of dangerous bridges in China exceeds 90,000.
  • the existing active bridges need to be effectively and effectively maintained.
  • the vehicle load plays an important role in the structural performance degradation process.
  • the vehicle overweight poses a clear threat to the bridge deck pavement and the bridge structure.
  • the vehicle-bridge coupling problem has become a major research topic in the field of bridge engineering.
  • the dynamic weighing system is a mature technology for checking the overweight of vehicles in the highway network, but it can only obtain the wheel force in a narrow range and a short time, such as the time when the vehicle passes the bridgehead, and cannot obtain the wheel force of the vehicle when passing the whole bridge.
  • the wheel six-force force measurement system based on the wheel hub strain can obtain the force information of the three directions of the wheel, but in the strict sense, these six-component force is different from the actual tire and the ground for the deformation of the hub, so the technology It is bound to bring errors when applied to bridge health assessment.
  • such system construction is too complicated, providing too much information and high cost, so it has not been widely used in the field of bridge engineering.
  • the present invention provides a real-time measurement method and system for vertical wheel impact force based on tire pressure monitoring.
  • the real-time tire pressure data is collected by using integrated equipment, and the corresponding wheel force is obtained through the tire pressure derotation pretreatment and the tire pressure-wheel force system identification, and is calibrated according to the calibration calibration method.
  • Integral equipment including tire pressure derotation pretreatment, tire pressure-wheel force system identification, calibration calibration method and tire pressure-wheel force measurement.
  • the tire pressure derotation pretreatment is to eliminate the periodic interference caused by the uneven distribution of the air pressure when the tire rotates by the filtering method, so that the pre-processed tire pressure data directly reflects the influence of the vertical wheel impact force.
  • the tire pressure-wheel force system identification is based on the tire vibration characteristics to establish a relationship model between the tire pressure and the vertical wheel impact force, and the accurate tire pressure data obtained by the calibration test and the accurate wheel force data are used to identify the relationship model.
  • the specific parameters so that the corresponding wheel force is calculated in the case of only the tire pressure in the subsequent formal test.
  • the tire pressure-wheel force system identification includes two calculation methods of a gray box model and a black box model. Can be mutually corrected to optimize results.
  • the calculation method of the gray box model is as follows:
  • c is the vertical damping of the tire
  • k is the vertical stiffness of the tire
  • x is the vertical deformation of the tire under dynamic load, It is the first-order differential of time
  • F tire is the vertical wheel impact force
  • p 0 is the initial pressure of the tire
  • ⁇ p is the change of the tire pressure under the dynamic load, and the pre-rotation pretreatment proposed by the invention is required
  • It is the first-order differential of ⁇ p versus time
  • V 0 is the initial volume of the inner cavity under the static load of the tire
  • A is the contact area of the tire under static load, and the effect of tire deformation on the contact area is
  • the black box model is calculated as follows: assuming a linear convolution relationship between the tire pressure change and the vertical wheel impact force, there is a frequency domain
  • H(w) is the frequency response function
  • F tire (w) and ⁇ p(w) are the Fourier transforms of the time-history data F tire (t) and ⁇ p(t), respectively.
  • the frequency response function is identified using the accurate tire pressure data obtained from the calibration test and the accurate wheel force data. Thereby, the corresponding wheel force data can be obtained only when the tire pressure data is known.
  • the tire pressure-vertical wheel impact force measurement integrated device includes a tire air pressure sensing system, a central signal control system, and a data analysis system; the tire air pressure sensing system collects a tire cavity through a tire air pressure sensor The air pressure change data is wired or wirelessly controlled, and the local signal controller exchanges commands and data with the central signal control system; the central signal control system exchanges the collected data with the tire air pressure sensing system and the data analysis system; The analysis system uses the embedded real-time vertical wheel impact force calculation program to automatically analyze the data and output the visual evaluation results of the wheel force.
  • the calibration calibration method uses a set of test equipment and a calculation method to obtain accurate wheel force data, and performs calibration calibration on the proposed vertical wheel impact force real-time measurement system based on tire pressure monitoring.
  • the calibration and calibration test equipment integrates data acquisition, signal transmission and result analysis, including the approach bridge track, main bridge track, orbital acceleration sensing system, track bearing force sensing system, central signal control system and data analysis system; When the tire rolls on the main bridge track, the wheel force is obtained from the collected track vibration information.
  • the tire enters the main bridge track by the approach bridge track, wherein the main bridge track is only in contact with the ground through the support;
  • the track acceleration acceleration system collects the vertical acceleration of the track and uses wired or wireless mode to exchange commands and data with the central signal control system;
  • the orbital bearing force sensing system collects the bearing force of the track and exchanges commands and data with the central signal control system in a wired or wireless manner; the central signal control system not only exchanges data and commands with the two sensing systems, but also
  • the data analysis system provides data; the data analysis system utilizes an embedded algorithm program to analyze the data and output a visual assessment of the calibrated wheel force.
  • the calculation method of the force calibration is as follows. When the tire rolls on the main bridge track, the following formula is satisfied between the wheel force and the structural response of the track.
  • F tire is the vertical wheel impact force
  • G tire is the static load of the tire
  • ⁇ F bearing is the joint force of each bearing after the main bridge track is removed, that is, only affected by the wheel
  • ⁇ ma is the main bridge track unit Inertia combined force.
  • the implementation steps of the present invention are as follows: complete equipment installation and commissioning; obtain accurate tire pressure data and wheel force data through calibration test; tire pressure derotation pretreatment; system identification by gray box model or black box model Tire pressure - the relationship between the wheel forces; in the formal test, the tire pressure data was obtained from the tire pressure-wheel force measurement integrated device; the tire pressure derotation pretreatment; the wheel force was calculated from the relationship between the tire pressure and the wheel force.
  • the present invention is applicable to all scientific research and engineering activities related to wheel force in bridge engineering, road engineering and vehicle engineering, and the protected right of this patent should not be limited to the field of bridge engineering.
  • the integrated equipment for tire pressure-vertical wheel impact force measurement can realize functions such as data acquisition, signal transmission and result analysis, and complete a series of links from tire pressure collection to real-time wheel force visualization results display.
  • the tire air pressure sensing system collects the tire air pressure change data through the tire air pressure sensor, and uses a wired or wireless control method to exchange commands and transmit data with the central signal control system through the local signal controller.
  • the central signal control system communicates commands and transmits data with the tire pressure sensing system, the data analysis system.
  • the data analysis system uses the embedded real-time vertical wheel impact force calculation program to automatically analyze the data transmitted by the central signal control system and output visual assessment results.
  • the proposed calibration calibration method can obtain accurate vertical wheel impact force, and it is convenient to identify unknown parameters in the equation of relationship between tire pressure and wheel force, so that the wheel force can be calculated from the only tire pressure in subsequent formal tests.
  • the method mainly includes an integrated test equipment and a calculation method.
  • the vertical wheel impact force is obtained from the collected track vibration information.
  • the device integrates data acquisition, signal transmission and result analysis.
  • the tire enters the main bridge rail through the approach bridge rail.
  • the approach bridge track is not directly connected to the main bridge track, ensuring the independence of the main bridge track.
  • the approach bridge track mainly plays a transitional role, allowing the tire to enter the ideal working condition from a static state.
  • the orbital acceleration sensing system and the track bearing force sensing system mounted on the main bridge track record the structural response of the wheel force and provide basic data for calculating the calibration wheel force.
  • the main bridge track is in contact with the ground through the support, and a force sensor is arranged on each support.
  • the main beam track is divided into a plurality of units according to the calculation precision, and a vertical acceleration sensor is disposed on each unit.
  • the main bridge track can set different road conditions according to the working conditions.
  • the orbital acceleration sensing system is responsible for collecting the vertical acceleration data of the main bridge track and exchanging commands and data with the central signal control system in a wired or wireless manner.
  • the acceleration sensor should be placed on each unit of the main bridge rail.
  • the track bearing force sensing system is responsible for collecting the bearing force data of the main bridge track, and exchanging commands and data with the central signal control system by wire or wireless.
  • the central signal control system is responsible for exchanging commands and data with the orbital acceleration sensing system and the track bearing force sensing system, controlling the start and end of data acquisition, processing the synchronization matching problem of the data, and feeding back the collected acceleration to the data analysis system. Data and bearing force data.
  • the data analysis system uses the embedded algorithm program to process the acceleration data and the bearing force data transmitted by the central signal control system, and outputs the calculation result of the calibration wheel force in a visual form.
  • F tire is the vertical wheel impact force
  • G tire is the static load of the tire
  • ⁇ F bearing is the joint force of each bearing after the main bridge track is removed, that is, only affected by the wheel
  • ⁇ ma is the main bridge track unit Inertia combined force.
  • the present invention proposes a gray box model calculation method combining a tire vertical vibration model and real data to describe the relationship between the tire pressure and the vertical wheel impact force.
  • the calculation method is divided into the following major contents: tire vertical vibration model, gas-solid coupling condition, tire pressure-vertical wheel impact force equation and Kalman filter parameter identification.
  • a single-degree-of-freedom mass-spring-damping model as shown in Fig. 6 can be used to describe the relationship between the vertical deformation of the tire and the vertical contact force of the ground.
  • c is the vertical damping of the tire
  • k is the vertical stiffness of the tire
  • x is the vertical deformation of the tire under dynamic load, It is the first-order differential of time
  • F tire is the vertical wheel impact force.
  • V 0 (p 0 + ⁇ p) (V 0 + Ax)
  • p 0 is the initial pressure of the tire
  • ⁇ p is the change of the tire pressure under the dynamic load, and the pre-rotation pretreatment proposed by the invention is required
  • It is the first-order differential of ⁇ p versus time
  • V 0 is the initial volume of the inner cavity under the static load of the tire
  • A is the contact area of the tire under static load, and the effect of tire deformation on the contact area is
  • the corresponding vertical wheel impact force can be calculated based on the tire pressure only in subsequent formal tests.
  • H(w) is the frequency response function
  • F tire (w) and ⁇ p(w) are the Fourier transforms of the time-history data F tire (t) and ⁇ p(t), respectively.
  • the ground vertical contact force F tire (t) can be calculated from the tire pressure change ⁇ p(t) in the formal test.
  • the present invention collects tire pressure information through an integrated device, and combines the embedded tire pressure derotation pretreatment and the tire pressure-wheel force system identification algorithm to accurately measure the corresponding wheel force and perform calibration according to the calibration test.
  • the present invention can measure the vertical wheel impact force of a vehicle over a long distance.
  • the present invention can obtain the contact force between the tire and the ground instead of the hub force, and more strictly conforms to the definition of the wheel force.
  • the sensor is simple. In contrast to the fact that the wheel six-component force measurement system requires the installation of a complex strain sensor on the hub, the present invention only requires the installation of a tire pressure sensor on the nozzle.
  • the invention proposes a gray box model calculation method and a black box model calculation method for the user to select, and the two methods can mutually correct each other to obtain a more reliable result.
  • the calibration method proposed by the present invention can simulate the complicated and realistic road surface flatness, and the measured wheel force is not the axle force but the ground contact force.
  • FIG. 1 is a conceptual diagram of a vertical wheel impact force real-time measuring system based on tire pressure monitoring of the present invention
  • Figure 2 is a view showing the tire pressure-wheel force integrated device of the present invention.
  • Figure 3 is a perspective view of the wheel force calibration integrated device of the present invention.
  • Figure 4 is a diagram showing the tire pressure uneven distribution of the present invention.
  • Figure 5 is a diagram showing the periodic variation of the pressure sensor data caused by the uneven gas pressure distribution of the present invention.
  • Figure 6 is a dynamic model diagram of the relationship between the tire and the ground vertical vibration of the present invention.
  • FIG. 7 is a flow chart showing an implementation of a real-time measuring method for vertical wheel impact force based on tire pressure monitoring according to the present invention.
  • Figure 8 is a diagram showing the effect of calibration of the impact force of the vertical wheel of the present invention.
  • Figure 9 is a diagram showing the effect of the tire pressure unwinding pretreatment of the present invention.
  • FIG. 10 is a diagram showing the recognition effect of the parameter ⁇ of the Kalman estimation algorithm of the present invention.
  • Figure 11 is a diagram showing the effect of the parameter recognition of the Kalman estimation algorithm of the present invention.
  • Figure 12 is a diagram showing the effect of the amplitude response of the frequency response function of the present invention.
  • Figure 13 is a diagram showing the phase recognition effect of the frequency response function of the present invention.
  • Figure 14 is a tire pressure measurement value of the derotation pretreatment of the present invention.
  • Figure 15 is a comparison of the calculated value of the vertical wheel impact force of the gray box model with the true value
  • Figure 16 is a comparison of the calculated value of the vertical wheel impact force of the black box model with the true value.
  • the working process of the vertical wheel impact force real-time measuring system based on the tire pressure monitoring of the present embodiment is as follows:
  • Step 1 The integrated equipment installation of tire pressure-vertical wheel impact force measurement can realize functions such as data acquisition, signal transmission and result analysis, and complete a series of links from tire pressure collection to real-time wheel force visualization result display.
  • the whole set of equipment is shown in Figure 2.
  • the tire air pressure sensing system is installed on the tire, which is composed of the tire pressure sensor 1.1 and the local signal controller 1.2, and is responsible for signal acquisition and signal transmission, respectively.
  • the central signal control system 2 and the data analysis system 3 can be arranged in the vehicle, and are responsible for overall signal transmission and control, and data analysis, respectively.
  • a complete test process should include: the data analysis system 3 controls the test start; the central signal control system 2 sends a data acquisition command to the tire pressure sensing system; the tire pressure sensing system begins to collect the tire pressure data, and the acquisition is completed.
  • the data is then fed back to the central signal control system 2; the final data is summarized into the data analysis system 3, combined with the embedded real-time tire pressure-vertical wheel impact force calculation program, the collected data is automatically analyzed, and the visual evaluation results are output.
  • the tire can be filled with a low thermal conductivity gas such as nitrogen, and the gas temperature can be measured before and after the tire is used to ensure the stability of the gas temperature before and after use.
  • Step 2 Calibrate the calibration test.
  • two parallel tracks are placed at appropriate positions, consisting of the approach bridge track 4 and the main bridge track 5.
  • Two parallel tracks need to be placed to facilitate the two.
  • Car The wheel is driving on it.
  • the approach bridge rail 4 and the main bridge rail 5 cannot be in contact.
  • a suitable number of units are separated on the main bridge track 5, and a vertical acceleration sensor is installed at a center position of the lower surface of each unit to constitute an orbital acceleration sensing system 6.
  • the main bridge track 5 is fixed to the ground through the support, and a vertical bearing force sensor is mounted on each support to form a track bearing force sensing system 7.
  • a central signal control system 8 and a data analysis system 9 are installed at appropriate locations in the laboratory.
  • a complete calibration process should include: the data analysis system 9 controls the start of the test; the central signal control system 8 sends data acquisition commands to the orbital acceleration sensing system 6 and the track bearing force sensing system 7; The sensing system 6 and the track bearing force sensing system 7 simultaneously start collecting data; the tire enters the main bridge track 5 from the approach bridge track 4, and the lower bridge is taken from the approach bridge track 4; after the tire is under the bridge, the data acquisition is completed, the track acceleration sensing system 6 and the track bearing force sensing system 7 feeds the data back to the central signal control system 8; the central signal control system 8 transmits the data to the data analysis system 9, in conjunction with the embedded calculation program, and visualizes the vertical output impact calibration of the automated output calibration As a result, the effect is as shown in FIG.
  • the tire pressure data should be collected in synchronization with the collection of the vertical wheel impact force data to obtain the tire pressure information of the tire at the time of the full approach of the approach bridge track 4 and the main bridge track 5.
  • the data length and sample size collected must be sufficiently rich and accurate to meet the requirements of the tire system identification calculation.
  • the working conditions must be similar to the formal measurement of the vertical vertical wheel impact force (only the tire pressure data is collected), which is generally determined by factors such as the weight of the tire, the rotational speed, the initial inflation pressure, and the level of the road surface.
  • the tire pressure is de-rotated pre-processed so that the air pressure data directly reflects the vibration of the tire.
  • the periodic trend line can be eliminated by the filtering method to eliminate the influence of the uneven pressure distribution, and the processing effect is as shown in FIG.
  • Step 4 tire pressure-vertical wheel impact force system identification
  • the relationship between the tire pressure and the vertical wheel impact force is established by the gray box model or the black box model; the accurate tire pressure data and wheel force data obtained by calibration calibration are combined to identify the unknown parameters in the tire pressure-wheel force relationship formula. . After obtaining the complete relationship between the tire pressure and the wheel force, the corresponding wheel force data can be calculated from the tire pressure data only.
  • the vertical wheel impact force data obtained from the calibration test and the tire pressure pre-processed tire pressure data identify the unknown parameters in the tire pressure-vertical wheel impact force equation, and the effect is shown in Fig. 10 and Figure 11 shows.
  • the vertical wheel impact force data obtained from the calibration test and the tire pressure pre-processed tire pressure data are used to identify the frequency response function. The effects are shown in FIGS. 12 and 13.
  • Step 5 formally test
  • the corresponding vertical wheel impact force can be calculated according to the tire pressure data collected in the formal test.
  • the gray box model algorithm can obtain real-time wheel force data according to the tire pressure data at each moment; and the black box model algorithm can obtain the wheel force data in the corresponding time period according to the tire pressure data in a certain period of time.
  • the two methods verify each other and improve the reliability of the calculation results.
  • the two results can also be averaged to obtain an optimized ground vertical contact force. To illustrate the accuracy of the results, the results of the method of the present invention are compared to the true values of the calibration, as shown in Figures 14, 15 and 16.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种基于胎压监测的竖向车轮冲击力实时测量方法及系统,该系统主要由胎压解旋转预处理、胎压-车轮力系统识别、标定校准方法和胎压-车轮力测量的一体化设备四大模块组成。该方法通过一体化设备采集实时胎压数据,经过解旋转预处理和胎压-车轮力系统识别获得对应的竖向车轮冲击力,并可根据标定方法进行校准。本方案从理论和设备两个层次提供了一种高效、准确和适应性强的车轮力测量解决方案,满足了广大桥梁健康状况快速评估的要求,同时在道路安全诊断、汽车性能设计等领域也有巨大潜力。

Description

一种基于胎压监测的竖向车轮冲击力实时测量方法及系统 技术领域
本发明涉及轮胎性能监测领域,具体涉及一种基于胎压监测的竖向车轮冲击力实时测量方法及系统。
背景技术
桥梁作为交通基础设施的组成部分,在社会经济发展中发挥着不可忽视的作用。以美国为例,全美有现役桥梁超60万座,其平均年龄逾40年,病害桥梁约占25%。2007年,美国明尼阿波利斯I-35桥的倒塌造成了2亿美元的经济损失。目前,我国正逐渐走出基础设施建设的黄金期,超过75万座现役桥梁中有相当一部分正面临着老龄化问题,调查显示我国四、五类危桥数量超过9万座。为了保障社会经济的正常发展,广大现役桥梁亟待得到切实有效的维护管理。车辆荷载作为桥梁服役期间主要的荷载形式,在结构性能退化过程中扮演着重要角色;同时车辆超重对桥面铺装和桥梁结构的安全威胁日益明显。为了更好地对进行桥梁维护管理以及为工程设计提供有价值的参考,车桥耦合问题成为了桥梁工程领域重大的研究课题。
由于条件限制,人们一直难以测量真实的动态车辆荷载,往往只能考虑车辆的静态质量,而忽略了增益的竖向车轮冲击力,这严重影响了结构识别等对桥梁健康状态的评估;如果采用考虑路面不平度等复杂算法,则不仅需要知道准确的路面信息,还会增加计算难度。一旦能获得车辆在桥梁行驶时的准确车轮力,而不仅仅是简单的车辆静态质量,就可以在提高结果识别准确度的同时降低计算难度,显著提升对桥梁健康状态的评估效果。
目前,存在一些测量车轮力的方法与技术,但是仍存在各种各样的缺陷。动态称重系统是检查高速公路网络中车辆超重的成熟技术,但是它只能获得狭小范围和短暂时间内的车轮力,如车辆经过桥头时刻,而不能获得车辆在经过整座桥梁时的车轮力。基于轮毂应变的车轮六分力测量系统能够获得车轮三个方向的受力信息,但是严格意义上这些六分力是针对轮毂变形而言,与真实的轮胎与地面的接触力不同,因此该技术应用于桥梁健康状态评估时必将带来误差。此外,这种系统构造过于复杂、提供的信息过多且成本高昂,故在桥梁工程领域没有得到广泛应用。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于胎压监测的竖向车轮冲击力实时测量方法及系统。
技术方案:通过采用一体化设备采集实时胎压数据,经过胎压解旋转预处理和胎压-车轮力系统识别获得对应的车轮力,并根据标定校准方法进行校准。包括胎压解旋转预处理、胎压-车轮力系统识别、标定校准方法和胎压-车轮力测量的一体化设备。
具体地,所述胎压解旋转预处理,是通过滤波方法排除轮胎旋转时的气压不均匀分布所带来的周期性干扰,使预处理后的胎压数据直接反映竖向车轮冲击力影响。
具体地,所述胎压-车轮力系统识别,是根据轮胎振动特征建立胎压与竖向车轮冲击力的关系模型,通过标定试验中获得的准确胎压数据和准确车轮力数据识别关系模型中的具体参数,从而在后续正式测试中仅知胎压的情况下计算出对应的车轮力。
具体地,所述胎压-车轮力系统识别包括灰盒模型和黑盒模型两种计算方法。可相互校正,优化结果。
具体地,所述灰盒模型计算方法如下:
首先,使用单自由度质量-弹簧-阻尼模型描述轮胎竖向变形和竖向车轮冲击力之间的关系,公式为
Figure PCTCN2016096944-appb-000001
其中,c为轮胎竖向阻尼;k为轮胎的竖向刚度;x为动荷载下的轮胎竖向变形,
Figure PCTCN2016096944-appb-000002
为其对时间的一阶微分;Ftire为竖向车轮冲击力;
其次,由理想气体方程建立胎压与轮胎竖向变形之间的关系,公式为
Figure PCTCN2016096944-appb-000003
Figure PCTCN2016096944-appb-000004
其中,p0为轮胎初始压强;Δp为动荷载作用下的轮胎气压变化,且需要经过本发明提出的解旋转预处理;
Figure PCTCN2016096944-appb-000005
为Δp对时间的一阶微分;V0为轮胎静载作用下内腔初始体积;A为静载作用下的轮胎接触面积,轮胎变形对接触面积的影响表现为
Figure PCTCN2016096944-appb-000006
由此,得到胎压与竖向车轮冲击力之间的关系,公式为
Figure PCTCN2016096944-appb-000007
最后,借助标定试验获得的准确胎压数据和准确车轮力数据,由卡尔曼滤波识别胎压-竖向车轮冲击力公式中的未知参数;令待识别参数为
Figure PCTCN2016096944-appb-000008
输出为
Figure PCTCN2016096944-appb-000009
输入为u=Ftire,则状态变量为
Figure PCTCN2016096944-appb-000010
状态方程为
观测方程为
Figure PCTCN2016096944-appb-000012
由此,可以获得完整的胎压-车轮力公式,在仅知胎压数据的情况下可以获得对应的车轮力数据。
所述黑盒模型计算方法如下:假设轮胎气压变化和竖向车轮冲击力之间满足线性卷积关系,则在频域内有
Ftire(w)=Δp(w)H(w)
其中,H(w)为频响函数;Ftire(w)和Δp(w)分别是时程数据Ftire(t)和Δp(t)的傅里叶变换。
使用标定试验获得的准确胎压数据和准确车轮力数据,识别频响函数。由此,可以在仅知胎压数据的情况下可以获得对应的车轮力数据。
具体地,所述胎压-竖向车轮冲击力测量的一体化设备,包括轮胎气压传感系统、中央信号控制系统和数据分析系统;所述轮胎气压传感系统通过轮胎气压传感器采集轮胎内腔气压变化数据,采用有线或无线控制方式,通过局部信号控制器与中央信号控制系统交流指令和数据;所述中央信号控制系统与轮胎气压传感系统、数据分析系统交换采集的数据;所述数据分析系统利用内嵌的实时竖向车轮冲击力计算程序,对数据进行自动化分析,输出车轮力的可视化评估结果。
具体地,所述标定校准方法,是利用一套试验设备和一种计算方法获得准确的车轮力数据,对提出的基于胎压监测的竖向车轮冲击力实时测量系统进行标定校准。
标定校准的试验设备集数据采集、信号传输和结果分析为一体,主要包括引桥轨道,主桥轨道,轨道加速度传感系统,轨道支座力传感系统,中央信号控制系统和数据分析系统;当轮胎在主桥轨道上滚动时,由采集的轨道振动信息获得车轮力。轮胎由引桥轨道进入主桥轨道,其中主桥轨道只通过支座与地面接触;由轨道加速度传感系统采集轨道的竖向加速度并采用有线或无线方式,与中央信号控制系统交换指令和数据;由轨道支座力传感系统采集轨道的支座力并采用有线或无线方式,与中央信号控制系统交换指令和数据;中央信号控制系统除了和两个传感系统交流数据和指令外,还向数据分析系统提供数据;数据分析系统利用内嵌算法程序,对数据进行分析并输出标定车轮力的可视化评估结果。
力标定校准的计算方法如下,当轮胎在主桥轨道上滚动时,车轮力和轨道的结构响应之间满足如下公式
Ftire+Gtire=∑Fbearing+∑ma
其中,Ftire是竖向车轮冲击力;Gtire是轮胎的静态载重;∑Fbearing是排除了主桥轨道自重后的各支座合力,即仅受到车轮影响;∑ma是主桥轨道各单元惯性合力。
使用时,本发明的实施步骤如下:完成设备安装与调试;通过标定试验,获得准确的胎压数据和车轮力数据;胎压解旋转预处理;由灰盒模型或黑盒模型的系统识别获得胎压-车轮力之间的关系;在正式测试中由胎压-车轮力测量一体化设备获得胎压数据;胎压解旋转预处理;由胎压-车轮力之间的关系计算车轮力。
本发明适用于桥梁工程、道路工程和车辆工程中与车轮力有关的一切科学研究和工程活动,不应该将本专利的受保护权利限于桥梁工程领域内。
发明原理:
如图1所示,胎压-竖向车轮冲击力测量的一体化设备可以实现数据采集、信号传输和结果分析等功能,完成从轮胎气压采集到实时车轮力可视化结果显示等一系列环节。
A.轮胎气压传感系统
轮胎气压传感系统通过轮胎气压传感器采集轮胎内腔气压变化数据,采用有线或无线控制方式,通过局部信号控制器与中央信号控制系统交流指令和传输数据。
B.中央信号控制系统
中央信号控制系统能够与轮胎气压传感系统、数据分析系统交流指令和传输数据。
C.数据分析系统
数据分析系统利用内嵌的实时竖向车轮冲击力计算程序,对中央信号控制系统传输的数据进行自动化分析,输出可视化评估结果。
2.所提出的标定校准方法可以获得准确的竖向车轮冲击力,方便识别胎压和车轮力关系方程中的未知参数,从而可以在后续正式测试中由仅有的胎压计算出车轮力。该方法主要包括一套一体化试验设备和一种计算方法。
(1)一体化试验设备
当轮胎在主桥轨道上滚动时,由采集的轨道振动信息获得竖向车轮冲击力。该设备集数据采集、信号传输和结果分析为一体。
A.引桥轨道
轮胎通过引桥轨道进入主桥轨道。引桥轨道不与主桥轨道直接连接,保证主桥轨道受力的独立性。引桥轨道主要发挥过渡作用,使轮胎得以从静止状态进入理想的工况状态。
B.主桥轨道
轮胎在主桥轨道行驶时,是标定试验的关键阶段。安装在主桥轨道上的轨道加速度传感系统和轨道支座力传感系统记录车轮力作用下的结构响应,为计算标定车轮力提供基础数据。主桥轨道通过支座与地面接触,每个支座上布置了力传感器。主梁轨道按照计算精度划分为多个单元,在每个单元上布置竖向加速度传感器。主桥轨道可以按照工况需要设置不同路面情况。
C.轨道加速度传感系统
轨道加速度传感系统负责采集主桥轨道的竖向加速度数据,采用有线或无线方式与中央信号控制系统交换指令和数据。加速度传感器应布置于主桥轨道的各个单元上。
D.轨道支座力传感系统
轨道支座力传感系统负责采集主桥轨道的支座力数据,采用有线或无线方式与中央信号控制系统交换指令和数据。
E.中央信号控制系统
中央信号控制系统负责与轨道加速度传感系统和轨道支座力传感系统交换指令与数据,控制数据采集的开始与结束,处理好数据的同步性匹配问题,并向数据分析系统反馈采集的加速度数据和支座力数据。
F.数据分析系统
数据分析系统利用内嵌算法程序处理由中央信号控制系统传递来的加速度数据和支座力数据,并以可视化形式输出标定车轮力的计算结果。
(2)计算方法
当轮胎在主桥轨道上滚动时,车轮力和轨道的结构响应之间满足如下公式
Ftire+Gtire=∑Fbearing+∑ma
其中,Ftire是竖向车轮冲击力;Gtire是轮胎的静态载重;∑Fbearing是排除了主桥轨道自重后的各支座合力,即仅受到车轮影响;∑ma是主桥轨道各单元惯性合力。
3.胎压解旋转预处理
由于气压传感器相对于轮胎的位置是固定的,因此随着轮胎转动,传感器的空间位置也在不断变化,这对所采集到的轮胎气压数据带来一定干扰。轮胎处于滚动状态时,空腔内的气压会产生稳定的不均匀分布,如图4所示。而气压传感器随着位置转动会观测到这种不均匀现象并在数据中直观地表现为一种周期性趋势变化,如图5所示。这种周期性变化会使胎压数据产生漂移,干扰胎压与车轮力之间的关系。为了消除这种干扰,需要采用滤波方法消除旋转影响。
4.胎压-车轮力系统识别的灰盒模型计算方法
本发明提出一种结合了轮胎竖向振动模型和真实数据的灰盒模型计算方法来描述胎压和竖向车轮冲击力之间的关系。该计算方法分为以下几大内容:轮胎竖向振动模型、气固耦合条件、胎压-竖向车轮冲击力方程和卡尔曼滤波参数识别。
(1)轮胎竖向振动模型
当车辆在路面行驶尤其是在路面较为粗糙或轮胎冲击力较大等情况时,轮胎竖向变形和竖向车轮冲击力之间耦合强烈。因此可以使用如图6所示的单自由度质量-弹簧-阻尼模型来描述轮胎竖向变形和地面竖向接触力之间的运动关系,公式为
Figure PCTCN2016096944-appb-000013
其中,c为轮胎竖向阻尼;k为轮胎的竖向刚度;x为动荷载下的轮胎竖向变形,
Figure PCTCN2016096944-appb-000014
为其对时间的一阶微分;Ftire为竖向车轮冲击力。
(2)气固耦合条件
当轮胎与地面接触时,地面竖向接触力会引起轮胎结构变形,挤压内部气体空间, 从而引起密闭气体的压强变化。假设轮胎空腔内气体密闭恒温,则满足
p0V0=(p0+Δp)(V0+Ax)
其中,p0为轮胎初始压强;Δp为动荷载作用下的轮胎气压变化,且需要经过本发明提出的解旋转预处理;
Figure PCTCN2016096944-appb-000015
为Δp对时间的一阶微分;V0为轮胎静载作用下内腔初始体积;A为静载作用下的轮胎接触面积,轮胎变形对接触面积的影响表现为
Figure PCTCN2016096944-appb-000016
(3)胎压-竖向车轮冲击力方程
通过轮胎竖向振动模型和气固耦合条件,可以建立轮胎气压变化与竖向车轮冲击力之间的关系,公式为
Figure PCTCN2016096944-appb-000017
(4)卡尔曼参数识别
基于系统的输入数据和输出数据,卡尔曼滤波算法可以识别系统中的未知参数。利用这一特点,使用卡尔曼滤波算法识别胎压-竖向车轮冲击力方程中的未知参数。令待识别参数为
Figure PCTCN2016096944-appb-000018
输出为
Figure PCTCN2016096944-appb-000019
输入为u=Ftire,则状态变量为
Figure PCTCN2016096944-appb-000020
状态方程为
Figure PCTCN2016096944-appb-000021
观测方程为
Figure PCTCN2016096944-appb-000022
完成参数识别后,在后续正式测试中就可以仅根据胎压计算出对应的竖向车轮冲击力。
5.胎压-车轮力系统识别的黑盒模型计算方法
在路面较为粗糙或轮胎冲击力较大等情况时,地面振动会引起轮胎结构变形,挤压内部气体空间,从而引起密闭气体的压强变化,假设此时轮胎气压变化与车轮力之间存在短暂的、强烈的线性关系,并满足线性卷积公式,则在频域内有
Ftire(w)=Δp(w)H(w)
其中,H(w)为频响函数;Ftire(w)和Δp(w)分别是时程数据Ftire(t)和Δp(t)的傅里叶变换。
在标定试验中获取频响函数H(w)后,便可以在正式测试中根据轮胎气压变化Δp(t)算出地面竖向接触力Ftire(t)。
有益效果:本发明通过一体化设备采集胎压信息,结合内嵌的胎压解旋转预处理和胎压-车轮力系统识别算法,可准确测量对应的车轮力,并根据标定试验进行校准,具备以下显著的进步:
A.测量时间长。相比动态称重系统,本发明可以测量车辆在长距离内的竖向车轮冲击力。
B.测量轮胎与地面之间的接触力。相比基于轮毂应变的车轮六分力测量系统,本发明可以获得轮胎与地面之间的接触力,而不是轮毂力,更加严格符合车轮力的定义。
C.传感器简单。与车轮六分力测量系统需要在轮毂上安装复杂的应变传感器相比,本发明只需要在气嘴上安装一个胎压传感器。
D.提供了两种测量方法。本发明提出了灰盒模型计算方法和黑盒模型计算方法供用户选择,两种方法可相互校正,得出可靠度更高的结果。
E.可模拟多种路面的标定方法。与大型轮胎试验机简单的滚轴工况相比,本发明提出的标定方法能模拟复杂逼真的路面平整度,且所测量的车轮力不是车轴力而是地面接触力。
除了上面所述的本发明解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的优点外,本发明的一种基于胎压监测的竖向车轮冲击力实时测量方法及系统所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的优点,将结合附图做出进一步详细的说明。
附图说明
图1是本发明的基于胎压监测的竖向车轮冲击力实时测量系统的概念图;
图2是本发明的胎压-车轮力一体化设备图;
图3是本发明的车轮力标定一体化设备图;
图4是本发明的轮胎气压不均匀分布图;
图5是本发明的由不均匀气压分布引起的气压传感器数据周期性变化图;
图6是本发明的轮胎与地面竖向振动关系动力学模型图;
图7是本发明的一种基于胎压监测的竖向车轮冲击力实时测量方法的实施流程图;
图8是本发明的竖向车轮冲击力标定效果图;
图9是本发明的胎压解旋转预处理效果图;
图10是本发明的卡尔曼估计算法参数α识别效果图;
图11是本发明的卡尔曼估计算法参数β识别效果图;
图12是本发明的频响函数幅值识别效果图;
图13是本发明的频响函数相位识别效果图;
图14是本发明经过解旋转预处理的胎压测量值;
图15是灰盒模型的竖向车轮冲击力计算值与真实值对比图;
图16是黑盒模型的竖向车轮冲击力计算值与真实值对比图。
具体实施方式
实施例:
如图7所示,本实施例的基于胎压监测的竖向车轮冲击力实时测量系统的工作流程如下:
步骤1,胎压-竖向车轮冲击力测量的一体化设备安装,可以实现数据采集、信号传输和结果分析等功能,完成从轮胎气压采集到实时车轮力可视化结果显示等一系列环节。整套设备如图2所示。
测试前,在轮胎上安装轮胎气压传感系统,由胎压传感器1.1和局部信号控制器1.2组成,分别负责信号采集和信号传输。可以在车辆内布置中央信号控制系统2和数据分析系统3,分别负责总体信号传输和控制、数据分析工作。设备安装完毕后,一次完整的测试流程应当包括:数据分析系统3控制测试开始;中央信号控制系统2向轮胎气压传感系统发送数据采集命令;轮胎气压传感系统开始采集轮胎气压数据,采集完毕后将数据反馈到中央信号控制系统2;最后数据汇总到数据分析系统3,结合内嵌实时胎压-竖向车轮冲击力计算程序,对所采集的数据进行自动化分析,输出可视化评估结果。为了保证测量结果的准确性,可以在轮胎内部充入氮气等低热传导性气体,并在轮胎使用前后测量气体温度,确保使用前后气体温度的稳定。
步骤2,标定校准试验。
首先,需要安装调试相关的一体化试验设备,如图3所示,选择合适位置摆放两条平行的轨道,由引桥轨道4和主桥轨道5组成,需要放置两条平行的轨道以方便两个车 轮在上面行驶。引桥轨道4和主桥轨道5不能接触。在主桥轨道上5上分隔合适数量的单元,每个单元下表面的正中位置安装竖向加速度传感器,组成轨道加速度传感系统6。主桥轨道5通过支座与地面固定,每个支座上安装竖向支座力传感器,组成轨道支座力传感系统7。选择试验室的合适位置安装中央信号控制系统8和数据分析系统9。
设备安装完毕后,一次完整的标定流程应当包括:数据分析系统9控制测试开始;中央信号控制系统8向轨道加速度传感系统6和轨道支座力传感系统7发送数据采集命令;轨道加速度传感系统6和轨道支座力传感系统7同时开始采集数据;轮胎从引桥轨道4进入主桥轨道5,再由引桥轨道4下桥;轮胎下桥后,数据采集完毕,轨道加速度传感系统6和轨道支座力传感系统7将数据反馈到中央信号控制系统8;中央信号控制系统8将数据传输到数据分析系统9,结合内嵌计算程序,自动化输出标定的竖向车轮冲击力可视化结果,效果如图8所示。
胎压数据的采集应该与竖向车轮冲击力数据的采集同步,获得轮胎在引桥轨道4和主桥轨道5上全程对应时刻的胎压信息。
采集的数据长度和样本数量必须足够丰富且准确,满足轮胎系统识别计算的要求。工况条件必须与后期竖向车轮冲击力正式测量时(仅有采集胎压数据)的相似,一般由轮胎承载重量、转速、初始充气压力和路面平整程度等因素控制决定。
步骤3,胎压解旋转预处理
由于气压传感器相对于轮胎的位置是固定的,因此随着轮胎转动,传感器的空间位置也在不断变化,这对所采集到的轮胎气压数据带来一定干扰。轮胎处于滚动状态时,空腔内的气压会产生稳定的不均匀分布,如图4所示。而气压传感器随着位置转动会观测到这种不均匀现象并在数据中直观地表现为一种周期性趋势变化,如图5所示。这种周期性变化会使胎压数据产生漂移,干扰胎压与车轮力之间的关系。为了消除这种干扰,需要采用滤波方法消除旋转影响。
胎压解旋转预处理,使得气压数据直接反映轮胎的振动。可以通过滤波方法消除周期性趋势线,消除不均匀气压分布的影响,处理效果如图9所示。
步骤4,胎压-竖向车轮冲击力系统识别
通过灰盒模型或黑盒模型,建立胎压与竖向车轮冲击力之间的关系;结合标定校准获得的准确的胎压数据和车轮力数据,识别胎压-车轮力关系公式中的未知参数。在获得了胎压-车轮力的完整关系后,就可以只由胎压数据计算相应的车轮力数据。
(a)灰盒模型计算方法
利用卡尔曼滤波算法,由标定试验中获得的竖向车轮冲击力数据和经解旋转预处理后胎压数据,识别胎压-竖向车轮冲击力方程中的未知参数和,效果如图10和图11所示。
(b)黑盒模型计算方法
由标定试验中获得的竖向车轮冲击力数据和经解旋转预处理后胎压数据,识别频响函数,效果如图12和图13所示。
步骤5,正式测试
在获得了完整的胎压与竖向车轮冲击力关系后,即可根据正式测试中采集的胎压数据计算相应的竖向车轮冲击力。灰盒模型算法可以根据每时刻的胎压数据得出实时的车轮力数据;而黑盒模型算法则可以根据一定时间段内的胎压数据得出对应时段内的车轮力数据。这两种方法相互验证,提高了计算结果的可靠性;也可以将两种结果进行平均,得出优化的地面竖向接触力。为了说明结果的准确性,将本发明所提出方法的计算结果与标定真值进行对比,如图14、图15和图16所示。
以上结合附图对本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对本领域的普通技术人员而言,在本发明的原理和技术思想的范围内,对这些实施方式进行多种变化、修改、替换和变形仍落入本发明的保护范围内。

Claims (10)

  1. 一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:采用一体化设备采集实时胎压数据,经过胎压解旋转预处理和胎压-车轮力系统识别获得对应的车轮力,并根据标定校准方法进行校准。
  2. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:所述胎压解旋转预处理是通过滤波方法排除轮胎旋转时的气压不均匀分布所带来的周期性干扰,使预处理后的胎压数据直接反映竖向车轮冲击力影响。
  3. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:所述胎压-车轮力系统识别,是根据轮胎振动特征建立胎压与竖向车轮冲击力的关系模型,通过标定试验中获得的准确胎压数据和准确车轮力数据识别关系模型中的具体参数,从而在后续正式测试中仅知胎压的情况下计算出对应的车轮力。
  4. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:所述胎压-车轮力系统识别包括灰盒模型和黑盒模型两种计算方法,
    所述灰盒模型计算方法如下:
    首先,使用单自由度质量-弹簧-阻尼模型描述轮胎竖向变形和竖向车轮冲击力之间的关系,公式为
    Figure PCTCN2016096944-appb-100001
    其中,c为轮胎竖向阻尼;k为轮胎的竖向刚度;x为动荷载下的轮胎竖向变形,
    Figure PCTCN2016096944-appb-100002
    为其对时间的一阶微分;Ftire为竖向车轮冲击力;
    其次,由理想气体方程建立胎压与轮胎竖向变形之间的关系,公式为
    Figure PCTCN2016096944-appb-100003
    Figure PCTCN2016096944-appb-100004
    其中,p0为轮胎初始压强;Δp为动荷载作用下的轮胎气压变化,且需要经过本发明提出的解旋转预处理;为Δp对时间的一阶微分;V0为轮胎静载作用下内腔初始体积;A为静载作用下的轮胎接触面积,轮胎变形对接触面积的影响表现为
    Figure PCTCN2016096944-appb-100006
    由此,得到胎压与竖向车轮冲击力之间的关系,公式为
    Figure PCTCN2016096944-appb-100007
    最后,借助标定试验获得的准确胎压数据和准确车轮力数据,由卡尔曼滤波识别胎压-竖向车轮冲击力公式中的未知参数;令待识别参数为
    Figure PCTCN2016096944-appb-100008
    输出为
    Figure PCTCN2016096944-appb-100009
    输入为u=Ftire,则状态变量为
    Figure PCTCN2016096944-appb-100010
    状态方程为
    Figure PCTCN2016096944-appb-100011
    观测方程为
    Figure PCTCN2016096944-appb-100012
    所述黑盒模型计算方法如下:假设轮胎气压变化和竖向车轮冲击力之间满足线性卷积关系,则在频域内有
    Ftire(w)=Δp(w)H(w)
    其中,H(w)为频响函数;Ftire(w)和Δp(w)分别是时程数据Ftire(t)和Δp(t)的傅里叶变换;
    使用标定试验获得的准确胎压数据和准确车轮力数据,识别频响函数;
    所述灰盒模型和黑盒模型均为胎压数据与对应的车轮力的函数,用于相互校正。
  5. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:所述一体化设备包括轮胎气压传感系统、中央信号控制系统和数据分析系统;所述轮胎气压传感系统通过轮胎气压传感器采集轮胎内腔气压变化数据,采用有线或无线控制方式,通过局部信号控制器与中央信号控制系统交流指令和数据;所述中央信号控制系统向数据分析系统传输采集的数据;所述数据分析系统利用内嵌的实时竖向车轮冲击力计算程序,对数据进行自动化分析,输出车轮力的可视化评估结果。
  6. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:所述标定校准方法,是利用一套试验设备和一种计算方法获得准确的车轮力数据,对一体化设备测量效果进行标定校准。
  7. 根据权利要求6所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特 征在于:所述标定校准方法采用集数据采集、信号传输和结果分析为一体的标定校准的试验设备,主要包括引桥轨道,主桥轨道,轨道加速度传感系统,轨道支座力传感系统,中央信号控制系统和数据分析系统;当轮胎在主桥轨道上滚动时,由采集的轨道振动信息获得车轮力;轮胎由引桥轨道进入主桥轨道,其中主桥轨道只通过支座与地面接触;由轨道加速度传感系统采集轨道的竖向加速度并采用有线或无线方式,与中央信号控制系统交换指令和数据;由轨道支座力传感系统采集轨道的支座力并采用有线或无线方式,与中央信号控制系统交换指令和数据;中央信号控制系统除了和两个传感系统交流数据和指令外,还向数据分析系统提供数据;数据分析系统利用内嵌算法程序,对数据进行分析并输出标定车轮力的可视化评估结果。
  8. 根据权利要求7所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于:车轮力标定校准的计算方法如下,当轮胎在主桥轨道上滚动时,车轮力和轨道的结构响应之间满足如下公式
    Ftire+Gtire=∑Fbearing+∑ma
    其中,Ftire是竖向车轮冲击力;Gtire是轮胎的静态载重;∑Fbearing是排除了主桥轨道自重后的各支座合力,即仅受到车轮影响;∑ma是主桥轨道各单元惯性合力。
  9. 根据权利要求1所述的一种基于胎压监测的竖向车轮冲击力实时测量方法,其特征在于包括实施如下步骤:完成设备安装与调试;通过标定试验,获得准确的胎压数据和车轮力数据;胎压解旋转预处理;由灰盒模型或黑盒模型的系统识别获得胎压-车轮力之间的关系;在正式测试中由胎压-车轮力测量一体化设备获得胎压数据;胎压解旋转预处理;由胎压-车轮力之间的关系计算车轮力。
  10. 一种基于胎压监测的竖向车轮冲击力实时测量系统,其特征在于,包括胎压-竖向车轮冲击力测量的一体化设备,所述胎压-竖向车轮冲击力测量的一体化设备包括轮胎气压传感系统、中央信号控制系统和数据分析系统;
    所述轮胎气压传感系统通过轮胎气压传感器采集轮胎内腔气压变化数据,采用有线或无线控制方式,通过局部信号控制器与中央信号控制系统交流指令和传输数据;
    所述中央信号控制系统能够与轮胎气压传感系统、数据分析系统交流指令和传输数据;
    所述数据分析系统利用内嵌的实时竖向车轮冲击力计算程序,对中央信号控制系统 传输的数据进行自动化分析,输出可视化评估结果。
PCT/CN2016/096944 2016-08-03 2016-08-26 一种基于胎压监测的竖向车轮冲击力实时测量方法及系统 WO2018023845A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,351 US10753827B2 (en) 2016-08-03 2016-08-26 Method and system for measuring vertical wheel impact force in real-time based on tire pressure monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610628399.7A CN106198058B (zh) 2016-08-03 2016-08-03 一种基于胎压监测的竖向车轮冲击力实时测量方法
CN201610628399.7 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018023845A1 true WO2018023845A1 (zh) 2018-02-08

Family

ID=57497603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096944 WO2018023845A1 (zh) 2016-08-03 2016-08-26 一种基于胎压监测的竖向车轮冲击力实时测量方法及系统

Country Status (3)

Country Link
US (1) US10753827B2 (zh)
CN (1) CN106198058B (zh)
WO (1) WO2018023845A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108700A (zh) * 2021-04-28 2021-07-13 上海同禾工程科技股份有限公司 一种基于机器视觉的位移校核系统及位移校核方法
CN113624517A (zh) * 2021-08-02 2021-11-09 李俊 一种基于轨道线路设备联合gps系统的振动测试方法
CN113834744A (zh) * 2021-08-26 2021-12-24 北京交通大学 一种轨道结构的脉冲激励加载机构及其使用方法
CN116579187A (zh) * 2023-07-12 2023-08-11 岚图汽车科技有限公司 一种车辆仿真测试与实车测试的对标方法和装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144384B (zh) * 2017-05-08 2020-01-31 中国人民解放军空军工程大学 一种轮胎经过错台时产生冲击力的测试计算方法
CN107014559A (zh) * 2017-05-08 2017-08-04 中国人民解放军空军工程大学 一种汽车经过路面错台时对轮胎冲击力的测量装置
CN107315081B (zh) * 2017-06-28 2020-04-03 河海大学 路面混凝土减震效果测试方法
CN107817117B (zh) * 2017-12-01 2023-10-27 吉林大学 一种轮胎力学特性实时测量装置及其测量方法
CN109918972A (zh) * 2017-12-13 2019-06-21 北京万集科技股份有限公司 一种行车重量智能监控方法及系统
CN108458847B (zh) * 2018-01-03 2019-11-12 东南大学 一种桥梁人致冲击荷载光学测量方法及其快速测试系统
US10916074B2 (en) 2018-07-16 2021-02-09 Ford Global Technologies, Llc Vehicle wheel impact detection
CN109540013B (zh) * 2018-10-12 2020-05-05 东南大学 一种基于长标距光纤传感的智能轮胎监测方法及系统
CN109829410B (zh) * 2019-01-23 2023-11-03 东南大学 一种基于多传感器信息融合的竖向车轮力识别方法
US11676429B2 (en) 2019-09-04 2023-06-13 Ford Global Technologies, Llc Vehicle wheel impact detection and response
FR3105759B1 (fr) * 2019-12-30 2022-01-07 Michelin & Cie Procédé d’obtention de la CHARGE appliquee à un pneumatique en roulage
CN111750819B (zh) * 2020-07-06 2021-09-07 重庆大学 一种桥面粗糙度检测系统
EP3960527B1 (en) * 2020-08-26 2022-08-17 Ningbo Geely Automobile Research & Development Co. Ltd. A moving part control system and method for loosening a mechanical part
CN113392451B (zh) * 2021-06-09 2022-05-17 哈尔滨工业大学 基于车-桥梁耦合作用力修正的桥梁模型更新方法、系统、存储介质及设备
CN113722848B (zh) * 2021-08-19 2023-03-14 北京慧智神光科技有限公司 运动状态数据的确定方法、装置、电子设备及存储介质
CN116499628B (zh) * 2023-06-25 2023-08-22 深圳亿维锐创科技股份有限公司 一种路面作用力分析方法、装置、设备及存储介质
CN118294056B (zh) * 2024-04-07 2024-10-15 中国农业大学 一种销轴式轮胎测力系统及测试方法
CN118565861B (zh) * 2024-08-02 2024-10-01 山东中亚轮胎试验场有限公司 一种轮胎压力检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301544B1 (en) * 1998-10-29 2001-10-09 K.K. Holding Ag Traffic monitoring system
CN2847243Y (zh) * 2005-08-19 2006-12-13 闫辛 胎压式汽车自称重装置
CN101893472A (zh) * 2010-07-08 2010-11-24 西北工业大学 一种汽车吨位测量的方法及其装置
CN103407335A (zh) * 2013-08-15 2013-11-27 重庆同阔科技有限公司 轮胎载重测量方法、装置以及载重管理系统
CN104275994A (zh) * 2013-07-12 2015-01-14 英飞凌科技股份有限公司 通过轮胎压力感测的重量检测
CN104517441A (zh) * 2013-09-30 2015-04-15 复旦大学 基于胎压检测的渣土车载重监控系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711754A (en) * 1985-10-18 1987-12-08 Westinghouse Electric Corp. Method and apparatus for impacting a surface with a controlled impact energy
US6523391B1 (en) * 2001-06-08 2003-02-25 Variform Inc. Vertical height impact testing apparatus
US20080119978A1 (en) * 2006-11-20 2008-05-22 Hunter Engineering Company Method and Apparatus For Wheel Assembly Force Moment Arm Measurement
CN101767538A (zh) * 2010-03-02 2010-07-07 厦门大学 行驶中的机动车辆载荷测量方法
IL211077A (en) * 2011-02-06 2017-11-30 Rogozinski Joseph Bar rotatable
EP2707229B1 (en) * 2011-05-11 2021-04-21 Ree Automotive Ltd Selective wheel suspension system
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9050864B2 (en) * 2013-06-14 2015-06-09 The Goodyear Tire & Rubber Company Tire wear state estimation system and method
US9259976B2 (en) * 2013-08-12 2016-02-16 The Goodyear Tire & Rubber Company Torsional mode tire wear state estimation system and method
CN103786533B (zh) * 2014-02-28 2016-06-29 安徽农业大学 一种汽车行驶过程中轮胎载荷实时监测系统
US10377371B2 (en) * 2014-04-02 2019-08-13 ClearMotion, Inc. Active safety suspension system
CN104132722B (zh) * 2014-07-30 2017-03-29 肖峰 一种基于胎压的载重检测方法、基于胎压检测的公交车客流量计算方法及装置
CN104198144B (zh) * 2014-09-12 2015-07-08 东南大学 一种基于长标距光纤应变传感器的中小桥梁快速检测方法
JP6679824B2 (ja) * 2014-09-16 2020-04-15 横浜ゴム株式会社 衝撃試験装置および方法
CN104406757B (zh) * 2014-11-17 2016-10-05 东南大学 适用于中小桥梁快速安全诊断的一体化装置
CN105716886B (zh) * 2014-12-03 2018-01-19 中国飞行试验研究院 一种飞机起落架载荷标定方法及试验假轮结构
CN107144384B (zh) * 2017-05-08 2020-01-31 中国人民解放军空军工程大学 一种轮胎经过错台时产生冲击力的测试计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301544B1 (en) * 1998-10-29 2001-10-09 K.K. Holding Ag Traffic monitoring system
CN2847243Y (zh) * 2005-08-19 2006-12-13 闫辛 胎压式汽车自称重装置
CN101893472A (zh) * 2010-07-08 2010-11-24 西北工业大学 一种汽车吨位测量的方法及其装置
CN104275994A (zh) * 2013-07-12 2015-01-14 英飞凌科技股份有限公司 通过轮胎压力感测的重量检测
CN103407335A (zh) * 2013-08-15 2013-11-27 重庆同阔科技有限公司 轮胎载重测量方法、装置以及载重管理系统
CN104517441A (zh) * 2013-09-30 2015-04-15 复旦大学 基于胎压检测的渣土车载重监控系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108700A (zh) * 2021-04-28 2021-07-13 上海同禾工程科技股份有限公司 一种基于机器视觉的位移校核系统及位移校核方法
CN113624517A (zh) * 2021-08-02 2021-11-09 李俊 一种基于轨道线路设备联合gps系统的振动测试方法
CN113834744A (zh) * 2021-08-26 2021-12-24 北京交通大学 一种轨道结构的脉冲激励加载机构及其使用方法
CN116579187A (zh) * 2023-07-12 2023-08-11 岚图汽车科技有限公司 一种车辆仿真测试与实车测试的对标方法和装置
CN116579187B (zh) * 2023-07-12 2023-09-19 岚图汽车科技有限公司 一种车辆仿真测试与实车测试的对标方法和装置

Also Published As

Publication number Publication date
CN106198058B (zh) 2017-04-19
US10753827B2 (en) 2020-08-25
CN106198058A (zh) 2016-12-07
US20190234834A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2018023845A1 (zh) 一种基于胎压监测的竖向车轮冲击力实时测量方法及系统
CN109357822B (zh) 一种基于车桥耦合系统时变动力特征改变的桥梁快速测试与评估方法
CN110132527B (zh) 一种基于天平信号的风洞试验中模型振动监测方法
CN110308002B (zh) 一种基于地面检测的城轨列车悬挂系统故障诊断方法
CN103674578B (zh) 高速列车运行动力学性能状态的检测方法
CN203128962U (zh) 车载式轨道刚度检测装置
CN104006979A (zh) 转向架悬挂系统参数测试试验装置及测试方法
CN106461509A (zh) 轮胎的滚动阻力预测方法及轮胎的滚动阻力预测装置
CN107588915A (zh) 一种桥梁影响线识别方法及系统
CN101915650A (zh) 基于无线倾角的桥梁结构挠度测量系统与方法
CN102797202A (zh) 基于观测器的轨道横向不平顺检测方法
CN103207097B (zh) 轨道刚度动态检测方法
CN102538941B (zh) 常规天平测量风洞中悬臂支撑模型固有频率的装置及方法
CN104792937A (zh) 一种基于车载重力加速度传感器的桥头跳车检测评价方法
CN111504663B (zh) 一种基于传递函数测量轮胎纵滑松弛长度的方法
CN201731984U (zh) 基于无线倾角的桥梁结构挠度测量系统
CN104006978A (zh) 一种铁道车辆轮轨之间作用力的间接测量方法
CN103884514B (zh) 一种多功能机动车测量仪及检测方法
CN105758602A (zh) 一种桁架梁桥断面抖振力同步测量方法
CN108520227A (zh) 一种基于双传感器信息的传递熵的桥梁结构损伤定位方法
CN116296180A (zh) 基于双轴车接触响应空间位置关系的桥梁阻尼比识别方法
JP2018004469A (ja) 構造体変状検知システム、構造体変状検知方法、及びプログラム
CN109050575A (zh) 一种列车车轮在线运动中数据集成采集方法
CN115524086A (zh) 基于车桥耦合振动的统计矩曲率梁式桥损伤识别方法
CN104111157A (zh) 一种检查风洞测量设备初读数的方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911440

Country of ref document: EP

Kind code of ref document: A1