[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018023696A1 - 一种胎儿心电分离方法及装置 - Google Patents

一种胎儿心电分离方法及装置 Download PDF

Info

Publication number
WO2018023696A1
WO2018023696A1 PCT/CN2016/093524 CN2016093524W WO2018023696A1 WO 2018023696 A1 WO2018023696 A1 WO 2018023696A1 CN 2016093524 W CN2016093524 W CN 2016093524W WO 2018023696 A1 WO2018023696 A1 WO 2018023696A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecg
signal
abdominal wall
electrocardiographic
fetal
Prior art date
Application number
PCT/CN2016/093524
Other languages
English (en)
French (fr)
Inventor
张南南
张金勇
王磊
李晖
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2016/093524 priority Critical patent/WO2018023696A1/zh
Publication of WO2018023696A1 publication Critical patent/WO2018023696A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the invention relates to the field of biomedical engineering technology, in particular to a method and a device for separating fetal ECG, in particular to a method and a device for separating fetal ECG based on two-level template correction.
  • Fetal electrocardiogram is one of the most important objective indicators of intrauterine physiological activity. By analyzing fetal ECG signals, it can diagnose fetal intrauterine hypoxia, intrauterine distress and congenital heart disease. Effectively reduce the morbidity and mortality of various types of diseases in newborns. Therefore, the clinical application of the perinatal monitor will be one of the powerful measures to ensure the safety of the fetus at all stages of the perinatal period and to ensure the eugenics of the fetus.
  • the fetus is surrounded by several layers of different conductivity in the mother's abdomen, such as the placenta, amniotic fluid, maternal uterus and the subcutaneous tissue of the mother's abdomen.
  • amniotic fluid has the highest electrical conductivity
  • fetal fat has the lowest electrical conductivity.
  • the skin and subcutaneous fat of pregnant women also have weak electrical conductivity, but the electrical conductivity is about ten times smaller than that of muscle tissue.
  • the fetal ECG signal is extracted from the maternal abdominal wall mixed signal to realize the monitoring of perinatal fetal life information. Is currently a widely studied and concerned issue.
  • Matched filtering mainly uses statistical characteristics such as autocorrelation and cross-correlation of signals, but the situation to be faced in the actual environment is much more complicated than the assumption, and the fetal ECG signal obtained by matched filtering is used. Not very ideal.
  • ICA Independent Component Analysis
  • Wavelet threshold denoising fetal ECG signal extraction method filtering Using wavelet transform combined with prior signal knowledge can obtain a good fetal ECG signal, but the extraction process is susceptible to amplitude and fetal ECG signal-like interference. It often leads to the occurrence of R wave miss detection and misdetection in the fetal ECG signal. It will cause errors when calculating the fetal heart rate, which is not conducive to clinical diagnosis.
  • Neural network method This method can detect the QRS complex of ECG signals according to the prediction error of the neural network.
  • the PT segment signal is flat and can be predicted better.
  • the QRS complex the difference between adjacent points is large, and the prediction error will be generated.
  • the QRS complex is predicted, and the artificial neural network is predicted.
  • the training sample is required to have a certain representativeness, which is difficult to realize in the actual abdominal wall ECG signal denoising application.
  • the adaptive filtering method includes training the adaptive filtering to eliminate the mother electrocardiogram using one or several reference channels.
  • the existing adaptive filtering method removes the parent ECG component and requires a parent ECG reference channel that is morphologically similar to the submerged FECG signal, but the existing adaptive cancellation method requires an additional reference signal, that is, in addition to the abdominal wall electrode An additional maternal chest lead electrode is also required, and an adaptive method is used to eliminate the maternal component associated with the chest lead and the abdominal wall lead, which means that the maternal abdominal wall ECG signal and the maternal chest lead ECG signal need to be correlated, Only the better pair can be eliminated, and the conduction path of the maternal ECG signal is very complicated.
  • the maternal ECG signal in the abdominal wall is poorly correlated with the maternal ECG signal in the chest lead. Therefore, using the existing adaptive filtering algorithm to cancel the extraction of fetal ECG signals will have a large number of maternal ECG leakage, which will cause great interference to the correct identification of fetal ECG components. Moreover, the existing adaptive filtering cancellation cannot achieve single-lead fetal ECG signal extraction.
  • the invention provides a method and a device for separating fetal electrocardiogram, which are used to solve the problem that the existing fetal electrocardiographic separation algorithm is complicated in calculation and cannot realize single lead.
  • an embodiment of the present invention provides a fetal electrocardiographic separation method, including:
  • the signal segments are linearly averaged to generate an average template; according to the parent QRS complex in the average template and the current ECG Corresponding to the correlation of the parent QRS complex, correcting the dynamic amplitude of the parent QRS complex in the average template, generating a maternal abdominal wall ECG estimation signal; according to the maternal abdominal wall ECG estimation signal, from the parent
  • the fetal ECG signal QRS was isolated from the abdominal wall ECG signal.
  • an embodiment of the present invention further provides a fetal electrocardiographic separation device, comprising: a segment intercepting module, configured to intercept a specific length by using a position of an R wave peak in a received abdominal wall ECG signal as a central positioning point; The ECG signal segment; the average template generation module is configured to linearly average the ECG signal segment corresponding to the current ECG cycle and the M-1 consecutive ECG signal segments to generate an average template; the wave group correction module uses And performing dynamic amplitude correction on the parent QRS complex in the average template according to the correlation between the parent QRS complex and the parent QRS complex corresponding to the current electrocardiogram in the average template to generate a maternal abdominal wall An electrical estimation signal; a separation module, configured to separate a fetal ECG signal QRS from the maternal abdominal wall ECG signal according to the maternal abdominal wall ECG estimation signal.
  • the fetal electrocardiographic separation method and device proposed by the invention implements two-level template correction, and performs the parent QRS complex correction on the mother abdominal wall ECG signal after the first stage estimation, and the corrected mother abdominal wall signal estimation amount, and the abdominal wall is mixed.
  • the signal and the estimated reference signal are matched and canceled. Therefore, the implementation of the present invention only needs one way of the abdominal wall electrocardiographic signal, so that the single-lead fetal ECG signal separation can be completed; and the fetal separation algorithm of the present invention is simple and intuitive in design. It is easy to find the cause and add correction modules for abnormal clinical data.
  • FIG. 1 is a schematic structural diagram of a system for a fetal electrocardiographic separation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an estimation mechanism of an abdominal wall mother electrocardiogram based on a two-level template correction according to an embodiment of the present invention
  • FIG. 3 is a flowchart of processing of a fetal electrocardiogram separation method according to an embodiment of the present invention
  • FIG. 4 is a schematic block diagram of a first-stage abdominal wall mother electrocardiac estimation mechanism according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an ECG estimation mechanism of a second-stage abdominal wall mother body according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a fetal electrocardiographic separation device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a group correction module 103 of the embodiment shown in FIG. 6;
  • FIG. 8 is a waveform diagram of a 5-channel mother abdominal wall mixed ECG signal used in a specific embodiment of the present invention.
  • Figure 9 is an analysis of experimental results of a specific embodiment of the present invention.
  • embodiments of the present invention can be implemented as a system, apparatus, device, method, or computer program product. Accordingly, the present disclosure may be embodied in the form of full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • the invention aims at estimating the mixed ECG signal extracted from the abdominal wall of the mother, using the averaging method to estimate the abdominal wall ECG signal, and the disadvantage that the parent QRS group leakage will have a great influence on correctly identifying the fetal ECG component.
  • the invention performs the correction of the maternal QRS complex on the estimated abdominal wall ECG signal, generates a corrected estimate of the maternal abdominal wall signal, and matches the abdominal wall mixed signal with the maternal abdominal wall signal estimate to cancel the fetal ECG signal. .
  • the present invention realizes that only one mother abdominal wall ECG signal is needed, so that single-lead fetal ECG signal separation can be achieved.
  • FIG. 1 is a schematic structural diagram of a system of a fetal electrocardiographic separation method according to an embodiment of the present invention.
  • y(n) represents the acquired abdominal wall ECG signal
  • f(n) is the fetal ECG signal in the abdominal wall signal
  • x(n) is the maternal ECG signal in the abdominal wall signal.
  • This is the separated fetal ECG signal.
  • the core of the invention is how to calculate the abdominal wall ECG estimation signal to achieve effective rejection of the maternal component.
  • a two-stage template correction method is adopted. As shown in FIG. 2, the abdominal wall electrocardiographic signal passes through the first-level template to generate a first-level estimation of the abdominal wall mother electrocardiographic signal, but in the abdominal wall fetal electrocardiogram separation, Since the peak value of the parent R wave is more than ten times the peak value of the fetal ECG, the QRS complex estimation is inaccurate, which will cause a large amount of maternal QRS component leakage. The leakage component has a great influence on accurately identifying the fetal ECG beat position. This problem, the present invention A second-level template module is also designed to correct the QRS complex in the first-level maternal ECG estimation signal to achieve effective cancellation of the maternal ECG component.
  • FIG. 3 is a flowchart of processing of a fetal electrocardiographic separation method according to an embodiment of the present invention. As shown in Figure 3, it includes:
  • Step S101 taking the R wave peak position in the received abdominal wall ECG signal as a central positioning point, and intercepting a specific length of the ECG signal segment;
  • Step S102 performing linear averaging on the ECG signal segment corresponding to the current ECG cycle and the preceding M-1 consecutive ECG signal segments to generate an average template
  • Step S103 performing dynamic amplitude correction on the parent QRS complex in the average template according to the correlation between the parent QRS complex in the average template and the parent QRS complex corresponding to the current ECG cycle, to generate a matrix.
  • Step S104 separating a fetal ECG signal from the maternal abdominal wall ECG signal according to the maternal abdominal wall ECG estimation signal.
  • Steps S101 and S102 correspond to the processing of the first level template, and generate a first level estimation of the abdominal wall ECG signal.
  • the first sentence of the abdominal wall mother electrocardiogram estimation mechanism according to the embodiment of the present invention is used. schematic diagram.
  • step S101 of the embodiment of the present invention the position of the R wave peak in the abdominal wall ECG signal is first taken as a central positioning point, and the ECG signal of a specific length is intercepted.
  • step S101 intercepting a segment of the ECG signal of a specific length, where N is the length of the segment that is intercepted, and For the distance between the peaks of R waves, the range of ⁇ is (1.1, 1.4).
  • the selection of the length N of the intercepted segment is crucial.
  • the range of ⁇ (1.1, 1.4) is to ensure that the start and end points of the segment interception fall on the TP segment of the ECG signal.
  • the signal in this segment is gentle and the segment overlap will be It is averaged to avoid large amplitude drop of the signal at the average template connection.
  • five ECG signal segments are segmented according to a particular segment length.
  • step S102 of the embodiment of the present invention the ECG signal segment corresponding to the current ECG cycle and the preceding M-1 consecutive ECG signal segments are linearly averaged to generate an average template.
  • the five-pointed star corresponds to the current electrocardiographic cycle, and the four electrocardiographic signal segments in front of it are combined with the five-pointed star.
  • the periodic ECG signal segments are linearly averaged.
  • step S102 the specifically implemented method includes:
  • y 1 (t) represents the average template generated
  • Representing the maternal electrocardiographic component in the average template Represents the fetal ECG component in the average template.
  • the fetal ECG and the maternal ECG are derived from two independent sources, that is, the fetal QRS complex is distributed at different locations within the maternal ECG cycle.
  • the fetal ECG component in the average template can be expressed as:
  • the maternal ECG amplitude is generally more than ten times the fetal ECG amplitude, namely:
  • y 1 (t) is an average estimate of the first level of the abdominal wall ECG signal, and the estimated signal contains little fetal electrocardiographic signals, as in part (d) of the embodiment shown in FIG.
  • step S103 corresponds to the processing of the second level template, and is used to perform dynamic amplitude correction on the parent QRS complex in the average template to generate a final maternal abdominal wall ECG estimation signal.
  • the parent QRS complex component can be effectively suppressed can play a decisive role in correctly identifying the fetal ECG component in the separation result.
  • the maternal ECG waveform in the average template is an equal weighted and linear average of the earlier ECG waveform and the latest waveform, and the estimated maternal ECG fragment is not dynamic. Because the invention The second template dynamically corrects the parent QRS complex in the average segment based on the correlation between the latest parent QRS complex and the parent QRS complex in the average segment.
  • y 3 [y 3 (1), y 3 (2), .. , y 3 (P)], where P is the length of the parent QRS complex segment;
  • the QRS complex corresponding to the current ECG cycle is used to perform dynamic amplitude correction on the parent QRS complex in the average template.
  • the expression is as follows:
  • a maternal abdominal wall ECG estimation signal corrected by the second level template is generated, as shown in part (d) of Fig. 5. Since the QRS complex correction signal of the maternal abdominal wall ECG generated by the first-level template is corrected, the estimation is more accurate, and the maternal ECG component can be effectively eliminated, and the fetal ECG separation effect is better.
  • step S104 the maternal electrocardiographic component in the maternal abdominal wall electrocardiographic signal is cancelled according to the maternal abdominal wall electrocardiographic estimation signal to obtain the fetal electrocardiographic component.
  • modules described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a schematic structural view of a fetal electrocardiographic separation device according to an embodiment of the present invention. As shown in Figure 6, it includes:
  • the segment intercepting module 101 is configured to intercept a specific length of the ECG signal segment by using the R wave peak position in the received abdominal wall ECG signal as a central positioning point, and the average template generating module 102 is configured to correspond to the current ECG cycle.
  • the ECG signal segment and the preceding M-1 consecutive ECG signal segments are linearly averaged to generate an average template;
  • the group correction module 103 is configured to: according to the parent QRS complex in the average template and the current ECG Correlation of the parent QRS complex corresponding to the period, dynamic amplitude correction of the parent QRS complex in the average template to generate a maternal abdominal wall ECG estimation signal; and separation module 104 for estimating the maternal abdominal wall ECG a signal that separates the fetal ECG signal from the maternal abdominal wall ECG signal.
  • the segment intercepting module 101 takes the R wave peak position in the received abdominal wall ECG signal as a central positioning point, and intercepts a specific length of the ECG signal segment, and specifically includes:
  • the specific length of the ECG signal segment is N, and The range of ⁇ is (1.1, 1.4).
  • the average template generating module 102 linearly averages the ECG signal segment corresponding to the current ECG cycle and the M-1 consecutive ECG signal segments to generate an average template, specifically including :
  • y 1 (t) represents the average template generated
  • Representing the maternal electrocardiographic component in the average template Represents the fetal ECG component in the average template.
  • the group correction module 103 compares the correlation between the parent QRS group in the average template and the parent QRS group corresponding to the current ECG cycle.
  • the parent QRS complex is subjected to dynamic amplitude correction to generate a maternal abdominal wall ECG estimation signal, as shown in Figure 7, which specifically includes:
  • a correlation coefficient calculation unit 1031 configured to calculate a correlation between the QRS complex segment corresponding to the current ECG cycle and a QRS complex segment in the average template, to generate a correlation coefficient
  • the dynamic correction unit 1032 is configured to perform dynamic amplitude correction on the parent QRS group in the average template by using the QRS complex corresponding to the current ECG cycle according to the correlation coefficient to generate a maternal abdominal wall ECG estimation signal. .
  • the separation module 104 cancels the maternal electrocardiographic component in the maternal abdominal wall electrocardiographic signal according to the maternal abdominal wall electrocardiographic estimation signal to obtain the fetal electrocardiographic component.
  • FIG. 8 a waveform diagram of a mixed 5-channel maternal abdominal wall ECG signal used in this embodiment is shown.
  • the data length of each signal is 2500 sample points, and the sampling rate is 250 Hz.
  • the first road abdominal wall signal is the one signal with the largest telecommunication noise ratio of the fetal heart, that is, the signal of this road is the best, and the fourth and fifth abdominal wall ECG signals can not recognize the fetal heart with the naked eye.
  • the position of the electric R peak which is not used by the algorithm of the present invention, is not considered by the algorithm of the present invention.
  • the second path signal is selected as the algorithm verification data, and the experimental result analysis is shown in FIG.
  • the fetal QRS complex is far from the parent QRS complex:
  • the fetal QRS complex is far from the parent QRS complex, as indicated by a in Figure 9. As can be seen from Figure 9, the fetal QRS component is extracted and the left and right parent QRS components are suppressed.
  • the positional relationship between the fetal QRS complex and the parent QRS complex is the most common positional relationship in the abdominal wall ECG and the most easily extracted positional relationship.
  • the fetal QRS complex is adjacent to the parent QRS complex:
  • the fetal QRS complex is adjacent to the parent QRS complex, as indicated by the mark b in Fig. 9. It can be seen from Fig. 9 that the fetal QRS component is extracted in this case, and the adjacent QRS component is suppressed. Fetal ECG The identification of QRS complexes has an impact.
  • the positional relationship between the fetal QRS complex and the parent QRS complex is a small number of positional relationships in the abdominal wall ECG, and it is also difficult to extract the positional relationship.
  • the fetal QRS complex is completely coincident with the parent QRS complex, as indicated by the reference c in Fig. 9. As can be seen from Fig. 9, the fetal QRS component is extracted in this case, and the coincident parent QRS component is suppressed.
  • the positional relationship between the fetal QRS complex and the parent QRS complex is a small number of positional relationships in the abdominal wall ECG and the most difficult to extract positional relationship.
  • the fetal QRS complex is separated from the parent QRS complex, the fetal QRS complex by the parent QRS complex, the fetal QRS complex, and the parent QRS complex by the two-stage template-based fetal electrocardiographic separation method of the present invention. Completely coincident with three situations, all have very good extraction results.
  • the fetal electrocardiographic separation method and device proposed by the invention implements two-level template correction, and performs the parent QRS complex correction on the mother abdominal wall ECG signal after the first stage estimation, and the corrected mother abdominal wall signal estimation amount, and the abdominal wall is mixed.
  • the signal and the estimated reference signal are matched and canceled. Therefore, the implementation of the present invention only needs one way of the abdominal wall electrocardiographic signal, so that the single-lead fetal ECG signal separation can be completed; and the fetal separation algorithm of the present invention is simple and intuitive in design. It is easy to find the cause and add correction modules for abnormal clinical data.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed, the program causes a computer to execute the fetal electrocardiographic separation method according to the embodiment of the present invention.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the fetal electrocardiographic separation method according to the embodiment of the present invention.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种胎儿心电分离方法及装置。胎儿心电分离方法包括:以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段(S101);对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板(S102);根据平均模板中的母体QRS波群与当前心电周期对应的母体QRS波群的相关性,对平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号(S103);根据母体腹壁心电估计信号,对消掉母体腹壁心电信号中的母体心电分量,以获得胎儿心电分量(S104)。胎儿心电分离方法及装置可以实行两级模板修正,算法简单,且只需要一路母体腹壁心电信号,故可以完成单导联胎儿心电信号分离。

Description

一种胎儿心电分离方法及装置 技术领域
本发明涉及生物医学工程技术领域,尤其涉及一种胎儿心电分离方法及装置,具体的讲是一种基于两级模板修正的胎儿心电分离方法及装置。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
胎儿心电信号(Fetal electrocardiogram,FECG)是胎儿宫内生理活动最主要的客观指标之一,通过分析胎儿心电信号,能够早期诊断胎儿宫内缺氧、宫内窘迫以及先天性心脏病等,有效地降低新生儿各类疾病的发病率和死亡率。因此,围产期监护仪的临床应用将是保证围产期各个阶段的胎儿安全,保障胎儿优生的有力措施之一。
在围产期,胎儿在母体腹部由几个不同的电导率的包裹层包围,如胎盘、羊水、母体子宫和母体腹部皮下组织等,其中羊水的导电能力最高,而胎脂的导电能力最低,此外孕妇的皮肤和皮下脂肪也有微弱的导电性,但是导电能力比肌肉组织约小十倍。在采集胎儿心电时,由于胎儿心电信号需要经过上述导电层,本来就很微弱的胎儿心电信号更容易受外界的干扰。这些不同的组织,形成了所谓的“人体容积导体”,这个容积导体不是一个稳定的导体,其导电性和几何形状随着整个妊娠期不断改变。因此,这将导致母体腹部心电混合信号具有如下特点:1)信噪比低,胎儿心电分量太弱,仅为10~50uV左右,而母亲心电信号则可达750uV,两者可差十倍以上。肌电噪声与其它干扰也很强,信号完全淹没于噪声之中。2)时域中胎儿QRS波与母体QRS波有10~30%的重叠。3)频域中胎儿频谱与母体的频谱大部分重叠。4)信号随机性很强,是非平稳过程,特别是由于胎儿的自由移动造成胎儿心电传输通道的时变性。
母体腹部心电混合信号的上述特点,为获得高精度的胎儿心电信号制造了比较大的障碍,因此从母体腹壁混合信号中提取出胎儿心电信号,以实现围产期胎儿生命信息的监护,是目前广泛研究和关注的问题。
目前,从母体腹壁混合信号中提取出胎儿心电信号的方法主要有以下几种:
1)匹配滤波:匹配滤波主要利用的是信号的自相关和互相关等统计特性,但是在实际环境中所要面临的情况远比假设情况要复杂的多,采用匹配滤波获得的胎儿心电信号 不是很理想。
2)独立成分分析法(ICA):此方法需要多路腹壁信号,无法实现单导联胎儿心电信号的提取。
3)小波阈值去噪的胎儿心电信号提取方法滤波:利用小波变换结合先验信号知识能够获得效果不错的胎儿心电信号,但是提取过程中容易受到幅度和胎儿心电信号类似信号的干扰,往往导致胎儿心电信号中R波漏检和误检等情况产生,在计算胎儿心率时会引起误差,不利于于临床诊断。
4)神经网络法:此方法可以根据神经网络的预测误差检测心电信号的QRS复合波。PT段信号平缓,可以被较好的预测,而对于QRS复合波,相邻点差异较大,会产生预测误差,利用这个预测误差训练网络,对QRS复合波进行预测,预测时的人工神经网络具有多层结构,利用神经网络学习训练过程需要花费较长时间,而且要求训练样本具有一定的代表性,这在实际腹壁心电信号降噪应用中很难实现。
5)自适应滤波法:自适应滤波方法包括使用一个或几个参考通道训练自适应滤波消除母体心电图。现有的自适应滤波方法去除母体ECG成分,需要形态上类似于被淹没FECG信号的母体ECG参考通道,但是现有的自适应对消方法要求额外提供参考信号,也就是说,除了腹壁电极外,还需要配备额外的母体胸导连电极,自适应方法对消掉胸导联和腹壁导联中相关的母体分量,这意味着母体腹壁心电信号和母体胸导联心电信号需要相关,才能够被较好的对消掉,并且,母体心电信号的传导路径非常复杂,某些情况下,腹壁中的母体心电信号和胸导联中的母体心电信号相关性差。因此,利用现有的自适应滤波算法对消提取胎儿心电信号会有大量的母体心电泄露,对正确识别胎儿心电分量造成了很大干扰。并且,现有的自适应滤波对消无法实现单导联的胎儿心电信号提取。
发明内容
本发明提出一种胎儿心电分离方法及装置,用以解决现有的胎儿心电分离算法计算复杂且无法实现单导联的问题。
为了达到上述目的,本发明实施例提供一种胎儿心电分离方法,包括:
以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;根据所述平均模板中的母体QRS波群与所述当前心电周 期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群行动态幅值修正,生成母体腹壁心电估计信号;根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号QRS。
为了达到上述目的,本发明实施例还提供一种胎儿心电分离装置,包括:片段截取模块,用于以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;平均模板生成模块,用于对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;波群修正模块,用于根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号;分离模块,用于根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号QRS。
本发明提出的胎儿心电分离方法及装置,实行两级模板修正,对第一级估计后的母体腹壁心电信号进行了母体QRS波群修正,修正后的母体腹壁信号估计量,将腹壁混合信号和估计的参考信号进行匹配对消,因此本发明的实现只需要一路母体腹壁心电信号,故可以完成单导联胎儿心电信号分离;并且,本发明的胎儿分离算法设计思路简单直观,针对于异常的临床数据,易于查找原因和添加修正模块。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例的胎儿心电分离方法的系统结构示意图;
图2为本发明实施例的基于两级模板修正的腹壁母体心电估计机制示意图;
图3为本发明实施例的胎儿心电分离方法的处理流程图;
图4为本发明实施例的第一级腹壁母体心电估计机制的示意框图;
图5为本发明实施例的第二级腹壁母体心电估计机制示意图;
图6为本发明实施例的胎儿心电分离装置的结构示意图;
图7为图6所示实施例的波群修正模块103的结构示意图;
图8为本发明的具体实施例采用的5路母体腹壁混合心电信号的波形图;
图9为本发明的具体实施例的实验结果分析图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本领域技术技术人员知道,本发明的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
下面参考本发明的若干代表性实施方式,详细阐释本发明的原理和精神。
本发明针对从母体腹壁提取出的混合心电信号,利用平均法对腹壁母体心电信号进行估计,并且针对于母体QRS波群泄露会对正确识别胎儿心电分量造成很大影响的缺点,本发明对估计后的母体腹壁心电信号进行了母体QRS波群修正,生成修正后的母体腹壁信号估计量,将腹壁混合信号和母体腹壁信号估计量进行匹配对消,从而分离出胎儿心电信号。并且,本发明实现只需要一路母体腹壁心电信号,因此可以实现单导联胎儿心电信号分离。
图1为本发明实施例的胎儿心电分离方法的系统结构示意图。如图1所示,y(n)表示采集到的母体腹壁心电信号,f(n)为腹壁信号中的胎儿心电信号,x(n)为腹壁信号中的母体心电信号,
Figure PCTCN2016093524-appb-000001
为估计出的腹壁母体心电信号,
Figure PCTCN2016093524-appb-000002
即为分离出的胎儿心电信号。
本发明的核心是如何计算出腹壁母体心电估计信号,以实现母体分量的有效对消。在本发明中,采用两级模板修正的方法,如图2所示,腹壁心电信号经过第一级模板,生成腹壁母体心电信号的第一级估计,但是在腹壁胎儿心电分离中,由于母体R波波峰值是胎儿心电峰值的十几倍,QRS波群估计不准确,会造成大量的母体QRS分量泄露,泄露的分量对准确识别胎儿心电节拍位置造成很大的影响,针对于此问题,本发明 中还设计了第二级模板模块,用于修正第一级母体心电估计信号中的QRS波群,以实现母体心电分量的有效对消。
图3为本发明实施例的胎儿心电分离方法的处理流程图。如图3所示,包括:
步骤S101,以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;
步骤S102,对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;
步骤S103,根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号;
步骤S104,根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号。
其中,步骤S101和S102对应于第一级模板的处理,生成腹壁母体心电信号的第一级估计,具体实施时,参看图4,为本发明实施例的第一句腹壁母体心电估计机制示意图。
在本发明实施例的步骤S101中,首先要以腹壁心电信号中R波波峰位置为中心定位点,截取特定长度的心电信号。
其中,确定母体腹壁心电信号中的R波波峰位置的方法为:对接收到的母体腹壁心电信号进行差分运算,以获取腹壁心电信号的斜率曲线,对斜率曲线做绝对滑动积分运算,记录每秒钟内的最大值,对前8秒内的最大值做平均,则R波判定阈值=系数比值*前8秒内的最大值平均,对差分值大于R波判定阈值的段,进行R波波峰位置最大值查找,以确定最终的R波波峰位置点。
并且,在步骤S101中,截取特定长度的心电信号片段,N为截取的片段的长度,且
Figure PCTCN2016093524-appb-000003
Figure PCTCN2016093524-appb-000004
为R波波峰间距离,γ的取值范围为(1.1,1.4)。截取片段的长度N的选择至关重要,γ的取值范围(1.1,1.4)是为了保证片段截取的起止点都落在心电信号的TP段,此段内信号平缓,并且片段重合部分将会被平均,避免了平均模板连接处信号较大的幅值落差。参看图4的(b)部分,在该实施例中,根据特定的片段长度分割了5个心电信号片段。
在本发明实施例的步骤S102中,对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板。参看图4的(c)部分,在该实施例中,五角星对应的为当前心电周期,取其前面的4个心电信号片段与五角星对应的心电 周期的心电信号片段进行线性平均。
在步骤S102中,具体实现的方法包括:
将所述当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段的R波波峰位置对齐,进行线性平均,生成平均模板:
Figure PCTCN2016093524-appb-000005
其中,y1(t)表示生成的平均模板,
Figure PCTCN2016093524-appb-000006
表示所述平均模板中的母体心电分量,
Figure PCTCN2016093524-appb-000007
表示所述平均模板中的胎儿心电分量。
由于分割片段的中心点是母体R波波峰,胎儿心电和母体心电来自于两个独立的信号源,即胎儿QRS波群分布在母体心电周期内的不同位置。
因此,平均模板中的胎儿心电分量可表示为:
Figure PCTCN2016093524-appb-000008
由于母体心电幅值一般是胎儿心电幅值的十几倍,即:
Figure PCTCN2016093524-appb-000009
因此:
Figure PCTCN2016093524-appb-000010
也就是说,y1(t)是对腹壁母体心电信号的第一级的平均估计,估计出的信号中几乎不含有胎儿心电信号,如图4所示实施例的(d)部分。
在本发明实施例中,步骤S103对应于第二级模板的处理,用以对所述平均模板中的母体QRS波群进行动态幅值修正,生成最终的母体腹壁心电估计信号。
在本发明实施例中,能否有效的抑制掉母体QRS波群分量,对正确识别分离结果中的胎儿心电分量起着决定性作用。平均模板中的母体心电波形,是对较早的心电波形和最新波形的等权累加和线性平均,估计出的母体心电片段不具有动态性。因为,本发明 的第二模板根据最新母体QRS波群和平均片段中母体QRS波群的相关性,对平均片段中的母体QRS波群进行动态修正。
具体实施时,参看图5,方法如下:
首先,计算所述当前心电周期对应的QRS波群片段与所述平均模板中的QRS波群片段的相关性,生成相关系数,具体步骤为:
(1)参看图5的(b)部分,通过母体心电R波检测提取当前心电周期中的母体QRS波群片段:y3=[y3(1),y3(2),...,y3(P)],其中P为母体QRS波群片段的长度;
(2)提取出平均模板中母体QRS波群片段:y2=[y2(1),y2(2),...,y2(P)];
(3)计算当前心电周期中的母体QRS波群片段与平均模板中母体QRS波群片段的相关系数r23
Figure PCTCN2016093524-appb-000011
其次,参看图5的(c)部分,根据所述相关系数,用所述当前心电周期对应的QRS波群片段对所述平均模板中的母体QRS波群进行动态幅值修正,所采用的表达式如下:
Figure PCTCN2016093524-appb-000012
最后,生成经过第二级模板修正的母体腹壁心电估计信号,如图5的(d)部分所示。由于对第一级模板生成的母体腹壁心电估计信号进行了QRS波群修正,因此估计的更精确,可以有效对消掉母体心电分量,具有较好的胎儿心电分离效果。
在步骤S104中,根据所述母体腹壁心电估计信号,对消掉所述母体腹壁心电信号中的母体心电分量,以获得所述胎儿心电分量。
应当注意,尽管在附图中以特定顺序描述了本发明方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
在介绍了本发明示例性实施方式的方法之后,接下来,参考图6对本发明示例性实施方式的胎儿心电分离装置进行介绍。该装置的实施可以参见上述方法的实施,重复之 处不再赘述。以下所使用的术语“模块”和“单元”,可以是实现预定功能的软件和/或硬件。尽管以下实施例所描述的模块较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6为本发明实施例的胎儿心电分离装置的结构示意图。如图6所示,包括:
片段截取模块101,用于以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;平均模板生成模块102,用于对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;波群修正模块103,用于根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号;分离模块104,用于根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号。
进一步地,在本发明实施例中,所述片段截取模块101以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段,具体包括:
所述心电信号片段的特定长度为N,且
Figure PCTCN2016093524-appb-000013
其中γ的取值范围(1.1,1.4)。
进一步地,在本发明实施例中,所述平均模板生成模块102对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板,具体包括:
将所述当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段的R波波峰位置对齐,进行线性平均,生成平均模板:
Figure PCTCN2016093524-appb-000014
其中,y1(t)表示生成的平均模板,
Figure PCTCN2016093524-appb-000015
表示所述平均模板中的母体心电分量,
Figure PCTCN2016093524-appb-000016
表示所述平均模板中的胎儿心电分量。
进一步地,在本发明实施例中,所述波群修正模块103根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号,如图7所示,具体包括:
相关系数计算单元1031,用于计算所述当前心电周期对应的QRS波群片段与所述平均模板中的QRS波群片段的相关性,生成相关系数;
动态修正单元1032,用于根据所述相关系数,用所述当前心电周期对应的QRS波群片段对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号。
进一步地,在本发明实施例中,所述分离模块104根据所述母体腹壁心电估计信号,对消掉所述母体腹壁心电信号中的母体心电分量,以获得所述胎儿心电分量。
此外,尽管在上文详细描述中提及了胎儿心电分离装置的若干单元,但是这种划分仅仅并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。同样,上文描述的一个单元的特征和功能也可以进一步划分为由多个单元来具体化。
以下通过一个具体实施例来说明采用本发明的基于两级模板的胎儿心电分离方法实现胎儿心电信号分离的效果。
参看图8所示,为该具体实施例采用的5路母体腹壁混合心电信号的波形图。如图8所示,每路信号的数据长度为2500个样本点,采样率250Hz。由图8可知,第1路腹壁信号为胎母心电信噪比最大的一路信号,即此路信号效果最好,第4路和第5路腹壁心电信号用肉眼已经无法识别出胎儿心电R波峰位置,此两路信号提取效果已不能为本发明的算法所用,故不在本发明的算法的考虑范围之内。
本实施例选择第2路信号作为算法验证数据,其实验结果分析参看图9。
1、胎儿QRS波群远离母体QRS波群:
胎儿QRS波群远离母体QRS波群,如图9中标注a,由图9可知,这种情况下的胎儿QRS波分量被提取出,左右的母体QRS波分量被抑制掉。此种胎儿QRS波群和母体QRS波群的位置关系,是腹壁心电中最普遍的位置关系,也是最容易提取出的位置关系。
2、胎儿QRS波群紧邻母体QRS波群:
胎儿QRS波群紧邻母体QRS波群,如图9中标注b所示,由图9可知,这种情况下的胎儿QRS波分量被提取出,紧邻的母体QRS波分量被抑制掉,并未对胎儿心电 QRS波群的识别造成影响。此种胎儿QRS波群和母体QRS波群的位置关系,是腹壁心电中少数比例存在的位置关系,也是较难提取出的位置关系。
3、胎儿QRS波群和母体QRS波群完全重合:
胎儿QRS波群完全和母体QRS波群重合,如图9中标注c所示,由图9可知,这种情况下的胎儿QRS波分量被提取出,重合的母体QRS波分量被抑制掉。此种胎儿QRS波群和母体QRS波群的位置关系,是腹壁心电中少数比例存在的位置关系,也是最难提取出的位置关系。
由以上结果分析可知,通过本发明的基于两级模板的胎儿心电分离方法,胎儿QRS波群远离母体QRS波群、胎儿QRS波群紧邻母体QRS波群、胎儿QRS波群和母体QRS波群完全重合三种情况,均有非常理想的提取效果。
本发明提出的胎儿心电分离方法及装置,实行两级模板修正,对第一级估计后的母体腹壁心电信号进行了母体QRS波群修正,修正后的母体腹壁信号估计量,将腹壁混合信号和估计的参考信号进行匹配对消,因此本发明的实现只需要一路母体腹壁心电信号,故可以完成单导联胎儿心电信号分离;并且,本发明的胎儿分离算法设计思路简单直观,针对于异常的临床数据,易于查找原因和添加修正模块。
本发明实施例还提供一种计算机可读程序,其中当执行所述程序时,所述程序使得计算机执行本发明实施例所述的胎儿心电分离方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机执行本发明实施例所述的胎儿心电分离方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一 流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种胎儿心电分离方法,其特征在于,包括:
    以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;
    对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;
    根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群行动态幅值修正,生成母体腹壁心电估计信号;
    根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号。
  2. 根据权利要求1所述的胎儿心电分离方法,其特征在于,以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段,包括:
    所述心电信号片段的特定长度为N,且
    Figure PCTCN2016093524-appb-100001
    其中γ的取值范围(1.1,1.4)。
  3. 根据权利要求1所述的胎儿心电分离方法,其特征在于,对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板,包括:
    将所述当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段的R波波峰位置对齐,进行线性平均,生成平均模板:
    Figure PCTCN2016093524-appb-100002
    其中,y1(t)表示生成的平均模板,
    Figure PCTCN2016093524-appb-100003
    表示所述平均模板中的母体心电分量,
    Figure PCTCN2016093524-appb-100004
    表示所述平均模板中的胎儿心电分量。
  4. 根据权利要求3所述的胎儿心电分离方法,其特征在于,根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号,包括:
    计算所述当前心电周期对应的QRS波群片段与所述平均模板中的QRS波群片段的相关性,生成相关系数;
    根据所述相关系数,用所述当前心电周期对应的QRS波群片段对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号。
  5. 根据权利要求1所述的胎儿心电分离方法,其特征在于,根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号,包括:
    根据所述母体腹壁心电估计信号,对消掉所述母体腹壁心电信号中的母体心电分量,以获得所述胎儿心电分量。
  6. 一种胎儿心电分离装置,其特征在于,包括:
    片段截取模块,用于以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段;
    平均模板生成模块,用于对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板;
    波群修正模块,用于根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号;
    分离模块,用于根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号。
  7. 根据权利要求6所述的胎儿心电分离装置,其特征在于,所述片段截取模块以接收到的母体腹壁心电信号中的R波波峰位置为中心定位点,截取特定长度的心电信号片段,具体包括:
    所述心电信号片段的特定长度为N,且
    Figure PCTCN2016093524-appb-100005
    其中γ的取值范围(1.1,1.4)。
  8. 根据权利要求6所述的胎儿心电分离装置,其特征在于,所述平均模板生成模块对当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段进行线性平均,生成平均模板,具体包括:
    将所述当前心电周期对应的心电信号片段以及前面M-1个连续的心电信号片段的R波波峰位置对齐,进行线性平均,生成平均模板:
    Figure PCTCN2016093524-appb-100006
    其中,y1(t)表示生成的平均模板,
    Figure PCTCN2016093524-appb-100007
    表示所述平均模板中的母体心电分量,
    Figure PCTCN2016093524-appb-100008
    表示所述平均模板中的胎儿心电分量。
  9. 根据权利要求8所述的胎儿心电分离装置,其特征在于,所述波群修正模块根据所述平均模板中的母体QRS波群与所述当前心电周期对应的母体QRS波群的相关性,对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号,具体包括:
    相关系数计算单元,用于计算所述当前心电周期对应的QRS波群片段与所述平均模板中的QRS波群片段的相关性,生成相关系数;
    动态修正单元,用于根据所述相关系数,用所述当前心电周期对应的QRS波群片段对所述平均模板中的母体QRS波群进行动态幅值修正,生成母体腹壁心电估计信号。
  10. 根据权利要求6所述的胎儿心电分离装置,其特征在于,所述分离模块根据所述母体腹壁心电估计信号,从所述母体腹壁心电信号中分离出胎儿心电信号,包括:
    根据所述母体腹壁心电估计信号,对消掉所述母体腹壁心电信号中的母体心电分量,以获得所述胎儿心电分量。
PCT/CN2016/093524 2016-08-05 2016-08-05 一种胎儿心电分离方法及装置 WO2018023696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093524 WO2018023696A1 (zh) 2016-08-05 2016-08-05 一种胎儿心电分离方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093524 WO2018023696A1 (zh) 2016-08-05 2016-08-05 一种胎儿心电分离方法及装置

Publications (1)

Publication Number Publication Date
WO2018023696A1 true WO2018023696A1 (zh) 2018-02-08

Family

ID=61073119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093524 WO2018023696A1 (zh) 2016-08-05 2016-08-05 一种胎儿心电分离方法及装置

Country Status (1)

Country Link
WO (1) WO2018023696A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113191249A (zh) * 2021-04-28 2021-07-30 深圳邦健生物医疗设备股份有限公司 心电信号的模板匹配方法、装置、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2016894A1 (en) * 2007-07-20 2009-01-21 Stichting Voor De Technische Wetenschappen ECG signal processing
US20100191118A1 (en) * 2009-01-29 2010-07-29 The General Electric Company System and Method for Measuring the Instantaneous Period of a Quasi-Periodic Signal
CN103908248A (zh) * 2013-01-08 2014-07-09 日本光电工业株式会社 生物信号平均处理装置
CN104887220A (zh) * 2015-06-18 2015-09-09 山东大学 一种由腹壁心电信号提取胎儿心电信号的方法及系统
CN105411577A (zh) * 2015-12-30 2016-03-23 深圳先进技术研究院 胎儿心电信号分离方法及系统
CN105640545A (zh) * 2015-12-31 2016-06-08 深圳先进技术研究院 一种胎儿心电信号提取方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2016894A1 (en) * 2007-07-20 2009-01-21 Stichting Voor De Technische Wetenschappen ECG signal processing
US20100191118A1 (en) * 2009-01-29 2010-07-29 The General Electric Company System and Method for Measuring the Instantaneous Period of a Quasi-Periodic Signal
CN103908248A (zh) * 2013-01-08 2014-07-09 日本光电工业株式会社 生物信号平均处理装置
CN104887220A (zh) * 2015-06-18 2015-09-09 山东大学 一种由腹壁心电信号提取胎儿心电信号的方法及系统
CN105411577A (zh) * 2015-12-30 2016-03-23 深圳先进技术研究院 胎儿心电信号分离方法及系统
CN105640545A (zh) * 2015-12-31 2016-06-08 深圳先进技术研究院 一种胎儿心电信号提取方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, LIGAO ET AL.: "the left-hand column, line 1 to page 255, the left-hand column, line 16, and figure 1", THE DEVELOPMENT OF FETAL ECG MONITOR USING MATCH FILTERING, CHINESE JOURNAL OF MEDICAL INSTRUMENTATION, vol. 13, no. 5, 30 September 1989 (1989-09-30), pages 254 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113191249A (zh) * 2021-04-28 2021-07-30 深圳邦健生物医疗设备股份有限公司 心电信号的模板匹配方法、装置、设备和介质

Similar Documents

Publication Publication Date Title
Zhang et al. Heart sound classification based on scaled spectrogram and partial least squares regression
Andreotti et al. Robust fetal ECG extraction and detection from abdominal leads
US9198634B2 (en) Medical decision support system
Karvounis et al. An automated methodology for fetal heart rate extraction from the abdominal electrocardiogram
WO2018023697A1 (zh) 一种胎儿心电分离方法及装置
Jezewski et al. Is abdominal fetal electrocardiography an alternative to doppler ultrasound for FHR variability evaluation?
Liu et al. A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings
He et al. Automatic detection of QRS complexes using dual channels based on U-Net and bidirectional long short-term memory
CN103549950A (zh) 移动心电监测差分阈值检测改进算法
CN112826513B (zh) 一种基于深度学习和特异性矫正在fecg上胎儿心率检测系统
CN107622259B (zh) 一种t波检测方法、心电数据分析方法及装置
Sedighian et al. Pediatric heart sound segmentation using Hidden Markov Model
CN103961089A (zh) 基于分段直线拟合的窦性心率震荡趋势检测方法
Chen et al. Algorithm for heart rate extraction in a novel wearable acoustic sensor
Abel et al. A comprehensive survey on signal processing and machine learning techniques for non-invasive fetal ECG extraction
John et al. Extraction of foetal ECG from abdominal ECG by nonlinear transformation and estimations
Shukla et al. An efficient heart sound segmentation approach using kurtosis and zero frequency filter features
CN101919704A (zh) 一种心音信号定位、分段方法
CN111528821A (zh) 一种脉搏波中重搏波特征点识别方法
Bruun et al. Automatic atrial fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability
Yu et al. Accurate wavelet thresholding method for ECG signals
JP6647831B2 (ja) 信号処理装置、撮像装置及び信号処理方法
Karvounis et al. Detection of fetal heart rate through 3-D phase space analysis from multivariate abdominal recordings
WO2018023698A1 (zh) 一种胎儿心电分离方法及装置
Dessì et al. Identification of fetal QRS complexes in low density non-invasive biopotential recordings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.06.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16911291

Country of ref document: EP

Kind code of ref document: A1