[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018021228A1 - Electrical connection component - Google Patents

Electrical connection component Download PDF

Info

Publication number
WO2018021228A1
WO2018021228A1 PCT/JP2017/026649 JP2017026649W WO2018021228A1 WO 2018021228 A1 WO2018021228 A1 WO 2018021228A1 JP 2017026649 W JP2017026649 W JP 2017026649W WO 2018021228 A1 WO2018021228 A1 WO 2018021228A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
contact
electrical connection
connection component
plating
Prior art date
Application number
PCT/JP2017/026649
Other languages
French (fr)
Japanese (ja)
Inventor
勝信 山田
正治 石川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016147442A external-priority patent/JP2018018668A/en
Priority claimed from JP2016147443A external-priority patent/JP2018018669A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018021228A1 publication Critical patent/WO2018021228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/04Co-operating contacts of different material

Definitions

  • the present invention relates to an electrical connection component. More specifically, the present invention relates to electrical connection parts such as relay and switch contact parts and connector terminal parts.
  • an electrical connection component having a plating layer containing a carbon nanomaterial has been proposed.
  • a plating layer 220 is provided on the surface of the base material 210 and the carbon nanomaterial 230 is held on the plating layer 220 as shown in FIG.
  • the carbon nanomaterial 230 is a carbon nanotube or carbon black, and is exposed on the surface of the plating layer 220. Therefore, the carbon nanomaterial 230 is more likely to come into contact with other members than the plating layer 220, and the contact reliability of the electrical contact component 200 is improved.
  • JP, 2013-011016 A In electrical contact component 200, it joins to conductors, such as a circuit pattern, by soldering etc., but if carbon nanomaterial 230 is exposed on the surface of plating layer 220 of the joined portion, it will be plated. There has been a problem that the solder wettability on the surface of the layer 220 is lowered and it becomes difficult to obtain sufficient bonding strength.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an electrical connection component that improves contact reliability and provides sufficient bonding strength.
  • the electrical connection component is With the base material, A contact portion disposed in a first region on the surface of the base material and electrically connected by contact with another electrical circuit or another electrical contact component; An electrical connection component that is disposed in a second region on the surface of the base material different from the first region, and includes a joint portion that is connected to an external conductive member by joining, Each of the contact portion and the joint portion includes a first plating layer formed on the surface of the base material, and a carbon nanomaterial that is held by the first plating layer and protrudes from the surface of the first plating layer.
  • the bonding portion includes a second plating layer formed on a surface of the first plating layer in the bonding portion and covering the carbon nanomaterial protruding from the surface of the first plating layer in the bonding portion. To do.
  • the carbon nanomaterial protrudes on the surface of the first plating layer provided in the contact portion, the carbon nanomaterial is covered with the second plating layer in the joint portion without impairing the contact reliability of the contact portion. Thereby, the fall of the adhesiveness of the junction part by a carbon nanomaterial is suppressed, and sufficient joining strength is obtained.
  • FIG. 1A is a schematic cross-sectional view showing a joint portion of an electrical connection component according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing a contact portion of an electrical connection component according to an embodiment of the present invention.
  • FIG. 2 is a schematic front view showing terminal parts of the connector.
  • FIG. 3 is a schematic sectional view showing a movable contact part and a fixed contact part of the switch.
  • FIG. 4 is a schematic cross-sectional view showing a movable contact part and a fixed contact part of the relay described above.
  • FIG. 5 is a graph showing a temperature profile in a contact reliability test.
  • 6 is a graph showing a change in contact load and a change in electrical resistance value in the contact reliability test of Example 1.
  • FIG. 1A is a schematic cross-sectional view showing a joint portion of an electrical connection component according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view showing a contact portion of
  • FIG. 7A is a surface scanning electron micrograph of the contact portion of Example 1.
  • FIG. 7B is a surface scanning electron micrograph of the joint of Example 1.
  • FIG. 7C is a surface scanning electron micrograph of the contact portion and the joint portion of the comparative example.
  • FIG. 8 is a graph showing the corrosion resistance evaluation of Examples 3 to 5 and Comparative Examples 2 to 6.
  • FIG. 9A is a graph showing the results of measurement test 1 of the contact resistance value in the contact reliability test.
  • FIG. 9B is a graph showing the results of measurement test 2 of the contact resistance value in the contact reliability test.
  • FIG. 9C is a graph showing the results of measurement test 3 of the contact resistance value in the contact reliability test.
  • FIG. 9D is a graph showing the results of a contact resistance value measurement test 4 in the contact reliability test.
  • FIG. 10 is a graph showing a change in contact load and a change in electrical resistance value in the contact reliability test of samples (1) to (5).
  • FIG. 11 is a schematic cross-sectional
  • the electrical connection component of this embodiment has a contact portion that is electrically connected by contact and a joint portion that is connected by joining.
  • Examples of such electrical connection parts include relay and switch contact parts and connector terminal parts.
  • Examples of contact parts include fixed contact parts and movable contact parts.
  • Examples of the terminal component include those applied to various connectors such as a plug, a jack, a receptacle, a socket, and a pin header.
  • the contact part of the electrical connection component is the part that contacts other members.
  • the “other member” means a member other than the electrical connection component, and means another electrical circuit or another electrical contact component.
  • the electrical connection component is a fixed contact component
  • the movable contact component paired therewith is another member. That is, in the fixed contact part and the movable contact part, a part where they are in contact with each other is formed as a contact portion.
  • the electrical connection component is a terminal component of a connector
  • the terminal component provided in another connector is another member. That is, in the terminal component of the connector, a portion where the terminal components provided in each of the plurality of mechanically connected connectors contact each other is formed as a contact portion.
  • the electrical connection component and the other member are electrically connected.
  • the joint part of the electrical connection part is a part that is mechanically connected to another member by joining.
  • the “other member” means a member other than the electrical connection component and an external conductive member.
  • Examples of joining include soldering, wire bonding (WB), welding, and caulking.
  • the electrical connection parts are a fixed contact part and a movable contact part, a fixed spring and a movable spring to which these are attached are other members. That is, in the fixed contact component and the movable contact component, a portion that contacts and is joined to another member is formed as a joint.
  • the electrical connection component is a terminal component of a connector
  • the circuit pattern of the printed wiring board on which the connector is mounted is another member. That is, in the terminal component of the connector, a portion that is mechanically connected to another member by soldering or the like is formed as a joint portion.
  • the electrical connection component and the other member are electrically and mechanically connected.
  • the contact portion and the joint portion are both formed on the surface of the base material, but the contact portion is disposed in a first region on the surface of the base material, and the joint portion is different from the first region. Is disposed in the second region on the surface.
  • FIG. 1A shows a schematic diagram of a joint 500 of the electrical connection component 10.
  • the bonding portion 500 is formed including the base material 101, the first plating layer 102, the second plating layer 501, and the carbon nanomaterial 104.
  • the base material 101 is a base of the electrical connection component 10 and is formed into a desired shape according to the purpose of use.
  • the base material 101 is formed of a known metal material used for the electrical connection component 10 such as copper or a copper alloy. Copper alloys include Cu-Ti, Cu-Ti-Fe, Cu-Be, Cu-Sn-P, Cu-Zn, Cu-Ni-Zn, Cu-Ni-Si, Cu-Fe-P. Based alloys.
  • the base material 101 may have a base layer such as a Ni plating film for improving adhesion to the first plating layer 102 on the surface thereof.
  • the first plating layer 102 is a plating film adhering to the surface of the base material 101.
  • the first plating layer 102 is formed of a crystalline or amorphous (amorphous) metal plating film.
  • the material and thickness of the first plating layer 102 may be determined in consideration of the adhesion to the base material 101 and the retainability, hardness, corrosion resistance, etc. of the carbon nanomaterial 104.
  • the material of the first plating layer 102 is preferably formed of Ni or a Ni—P alloy.
  • the film thickness of the first plating layer 102 is preferably 5 ⁇ m or less. When the film thickness is thicker than 5 ⁇ m, the spring property of the first plating layer 102 is likely to be lost, and cracks due to stress may easily occur.
  • the lower limit of the film thickness of the first plating layer 102 is preferably set to 0.1 ⁇ m in order to ensure the retainability of the carbon nanomaterial 104. Further, considering the improvement of the corrosion resistance of the contact part 100, the thickness of the first plating layer 102 is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the second plating layer 501 is a plating film adhering to the surface of the first plating layer 102.
  • the second plating layer 501 includes a coating plating layer 502 formed on the surface of the first plating layer 102 and a protective plating layer 103 formed on the surface of the coating plating layer 502.
  • the coating plating layer 502 is plating that covers the carbon nanomaterial 104 protruding from the surface of the first plating layer 102. That is, the carbon nanomaterial 104 protruding from the surface of the first plating layer 102 in the bonding portion 500 is covered with the coating plating layer 502 and is not exposed on the surface of the coating plating layer 502. Thereby, a decrease in the wettability of the solder of the joint portion 500 by the carbon nanomaterial 104 is suppressed.
  • the coating plating layer 502 is formed of Ni or a Ni—P alloy in the same manner as the first plating layer 102 in consideration of adhesion to the first plating layer 102, solder wettability, adhesion to the protective plating layer 103, and the like. It is preferable that The thickness of the coating plating layer 502 may be thicker than the protruding length of the carbon nanomaterial 104 from the first plating layer 102, and is preferably 0.01 ⁇ m or more and 1.5 ⁇ m or less, for example, 0.03 ⁇ m or more and 1. More preferably, it is 2 ⁇ m or less.
  • the protective plating layer 103 is plating for suppressing corrosion of the first plating layer 102 and the coating plating layer 502 caused by the potential difference between the first plating layer 102 and the coating plating layer 502 and the carbon nanomaterial 104.
  • corrosion was likely to occur in the plating layer 220 in a severe corrosion resistance test such as a sulfurous acid gas test. This is crevice corrosion in which the plating layer 220 and the carbon nanomaterial 230 form a local battery.
  • the protective plating layer 103 in this embodiment suppresses the occurrence of crevice corrosion.
  • the protective plating layer 103 preferably contains a noble metal element rather than the metal elements contained in the first plating layer 102 and the coating plating layer 502.
  • the protective plating layer 103 has a smaller potential difference with respect to the carbon nanomaterial 104 than the first plating layer 102 and the coating plating layer 502, and the protective plating layer 103 is smaller than the first plating layer 102 and the coating plating layer 502. Corrosion is less likely to occur.
  • the first plating layer 102 and the coating plating layer 502 are coated with the protective plating layer 103 that is unlikely to cause corrosion, and oxygen, moisture, and other corrosive components are present on the first plating layer 102 and the coating plating layer 502. It becomes difficult to act, and corrosion of the 1st plating layer 102 and covering plating layer 502 is controlled.
  • the protective plating layer 103 is made of Cu, Sn, Au, Ag, Pd, Rh, Ru. It can be formed by plating made of one or more metal elements selected from the group.
  • the protective plating layer 103 is made of Cu, Sn, Au, Ag, Pd, Rh, Ru. It can be formed of an alloy plating layer containing one or more selected metal elements.
  • the alloy plating examples include Ni—Cu plating, Ni—Sn plating, Ni—Au plating, Ni—Ag plating, Ni—Pd plating, Ni—Ph plating, and Ni—Ru plating.
  • the first plating layer 102 and the coating plating layer 502 are formed by Ni plating or Ni—P alloy plating.
  • the protective plating layer 103 can be formed by Ni—W plating, Ni—B plating, Ni—Fe plating, or the like.
  • the protective plating layer 103 since the protective plating layer 103 only needs to protect the first plating layer 102 and the coating plating layer 502 from corrosion, for example, the protective plating layer 103 can be formed by Zn plating. In this case, the corrosion of the first plating layer 102 and the coating plating layer 502 is suppressed by the protective plating layer 103 by the sacrificial anticorrosive action of Zn plating. Further, the protective plating layer 103 preferably contains a metal element that forms an intermetallic compound with the coating plating layer 502, and it is also preferable that the solder plating property is excellent.
  • the thickness of the protective plating layer 103 is preferably 0.01 ⁇ m or more and 1.5 ⁇ m or less, and more preferably 0.05 or more and 1.0 ⁇ m or less. If the thickness of the protective plating layer 103 is within this range, corrosion of the first plating layer 102 and the coating plating layer 502 is easily suppressed by the protective plating layer 103.
  • the concentration of metal elements other than Ni is preferably 6% by mass or more and 12% by mass or less, and more preferably 8% by mass or more and 10% by mass or less. If it is this range, Ni plating layer will not be too hard, it will become difficult to generate
  • the protective plating layer 103 is provided as necessary. That is, when high corrosion resistance is required for the electrical connection component 10, it is preferable to provide the protective plating layer 103, but when high corrosion resistance is not required, the protective plating layer 103 may not be particularly provided.
  • the thickness of the second plating layer 501 is the sum of the thickness of the coating plating layer 502 and the thickness of the protective plating layer 103, and is preferably 0.03 ⁇ m or more and 2.0 ⁇ m or less. It becomes easy to cover the carbon nanomaterial 104 protruding on the surface.
  • the thickness of the second plating layer 501 is more preferably 0.05 ⁇ m or more and 1.8 ⁇ m or less.
  • the carbon nanomaterial 104 is a nano-order size carbon material, such as carbon nanotube (CNT), carbon black (CB), fullerene, graphene, and the like.
  • the carbon nanomaterial 104 is preferably chemically stable and excellent in electrical conductivity, slidability, and mechanical strength.
  • the CNT preferably has a diameter of 100 nm to 200 nm and a length of 10 ⁇ m to 20 ⁇ m. More preferably, the CNT has a diameter of 120 nm to 180 nm and a length of 12 ⁇ m to 18 ⁇ m.
  • CNT includes single-walled CNTs in which a graphite sheet is wound in a cylindrical shape and multilayered CNTs in which a graphite sheet is wound in two or more layers.
  • CB is in the form of particles, and the particle diameter is preferably several nm or more and 100 nm or less as measured by a laser diffraction method or the like. Further, CB is a variety having excellent electrical conductivity, and it is preferable that each particle is present in the state of an aggregate having a size of micron order in a cluster shape. CB is preferable in terms of cost reduction because it is superior to CNT in mass productivity and can be obtained relatively inexpensively.
  • FIG. 1A shows a case where the carbon nanomaterial 104 is CNT in the joint 500. One end of this CNT is embedded and fixed in the first plating layer 102. In this way, the CNTs are held on the first plating layer 102. The CNT protrudes from the surface of the first plating layer 102 but is buried in the coating plating layer 502.
  • the carbon nanomaterial 104 is formed as a composite plating with the first plating layer 102.
  • the amount of the carbon nanomaterial 104 used is preferably 0.02% by mass or more and 2.0% by mass or less, based on the total amount of the carbon nanomaterial 104 and the first plating layer 102, and 0.05% by mass. From the above, it is more preferably 1.8% by mass or less.
  • the use amount of the carbon nanomaterial 104 is in the above range, the contact reliability of the contact portion 100 described later by the carbon nanomaterial 104 can be sufficiently improved, and the dispersibility of the carbon nanomaterial 104 in the plating solution can be obtained. In addition, sufficient adhesion of the first plating layer 102 to the base material 101 is easily secured.
  • FIG. 1B shows a schematic view of the contact portion 100 of the electrical connection component 10.
  • the contact part 100 includes the same base material 101, the first plating layer 102, the protective plating layer 103, and the carbon nanomaterial 104 as the joint part 500.
  • the coating portion 502 is not formed on the contact portion 100, and the carbon nanomaterial 104 is exposed on the surface.
  • the base material 101 and the first plating layer 102 are formed in the same manner as in the case of the joint part 500.
  • a protective plating layer 103 is formed on the surface of the first plating layer 102.
  • the protective plating layer 103 does not completely cover the carbon nanomaterial 104 protruding from the surface of the first plating layer 102. That is, the protective plating layer 103 covers only the base of the carbon nanomaterial 104 (the vicinity of the surface of the first plating layer 102). Therefore, in the contact part 100, the carbon nanomaterial 104 penetrates the protective plating layer 103, and the tip of the carbon nanomaterial 104 protrudes from the surface of the protective plating layer 103.
  • the protective plating layer 103 is plating for suppressing corrosion of the first plating layer 102 caused by the potential difference between the first plating layer 102 and the carbon nanomaterial 104.
  • the protruding length of CNT from the surface of the protective plating layer 103 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the protective plating layer 103 is provided as necessary in the contact portion 100 as in the case of the joint portion 500. That is, when high corrosion resistance is required for the electrical connection component 10, it is preferable to provide the protective plating layer 103, but when high corrosion resistance is not required, the protective plating layer 103 may not be particularly provided.
  • a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102 is first formed on the entire base material 101.
  • This composite plating layer is formed on the surface of the base material 101 by electrodeposition (electrolytic plating).
  • a plating solution containing a metal element such as Ni and P and the carbon nanomaterial 104 is attached to the surface of the base material 101 and energized, whereby the first plating layer 102 holding the carbon nanomaterial 104 is deposited. Formed.
  • the carbon nanomaterial 104 is mainly intended to improve the contact property with the other members of the contact portion 100, it can be considered to be provided only in the portion where the contact portion 100 of the base material 101 is formed.
  • a partial plating method such as a partial immersion method, a spot plating method, a sparger plating method, a mask plating method, or a resist plating method is used to partially form a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102.
  • such composite plating has strict plating conditions, and partial plating by the above method is very complicated.
  • a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102 is formed on the entire base material 101 serving as the base of the electrical connection component 10. Since it is not necessary to form partly on the base material 101, complexity is reduced, and the productivity of the electrical connection component 10 is improved.
  • a coating plating layer 502 is formed on the surface of the first plating layer 102 at a portion where the joint portion 500 is formed.
  • the coating plating layer 502 is formed by the partial plating method exemplified above.
  • the coating plating layer 502 can be formed by electrodeposition. That is, a plating solution containing a metal element such as Ni is attached to the surface of the first plating layer 102 and energized, whereby the coating plating layer 502 is deposited and formed.
  • the coating plating layer 502 is a plating that does not contain a carbon nanomaterial, and is not a composite plating like the first plating layer 102. Therefore, the plating conditions are not stricter than the composite plating and do not become complicated.
  • a protective plating layer 103 is formed as necessary.
  • the protective plating layer 103 may be provided on both the contact part 100 and the joint part 500, may not be provided on both, or may be provided on only one side. Further, the protective plating layer 103 may be provided in a part other than the contact part 100 and the joint part 500.
  • the protective plating layer 103 is formed on the surface of the first plating layer 102 in the portion that becomes the contact portion 100.
  • the protective plating layer 103 is formed on the surface of the coating plating layer 502 at the portion that becomes the joint portion 500.
  • FIG. 2 shows the terminal components 20a and 20b. These terminal components 20a and 20b are respectively incorporated in connection components (for example, a header and a socket) that form a connector pair.
  • the terminal parts 20a and 20b contact the contact part 21a of one terminal part 20a and the contact part 21b of the other terminal part 20b by connecting the connection parts, whereby the terminal part 20a and the terminal part 20b are brought into contact with each other. Electrically connected.
  • the joint portion 22a of the terminal component 20a and the joint portion 22b of the terminal component 20b are respectively joined to a conductor of a circuit pattern such as a printed wiring board or a conductor of wiring by solder or the like.
  • One or both of the terminal components 20a and 20b can be formed as the electrical connection component 10 of the present embodiment. That is, one or both of the contact portions 21a and 21b can have the structure shown in FIG. 1B, and one and both of the joint portions 22a and 22b can have the structure shown in FIG. 1A.
  • FIG. 3 shows a schematic diagram of the switch 30.
  • the switch 30 is provided with a push button 35 protruding from the upper surface of the case 31.
  • the push button 35 is formed so as to be freely pressed by a lever 33.
  • a spring 34 is provided below the push button 35 in the case 31.
  • a movable contact part 30 a is provided so as to protrude from both the upper and lower surfaces of the spring 34.
  • fixed contact parts 30b are provided above and below the movable contact parts 30a.
  • the fixed contact parts 30b and 30c are joined to the contact bases 36b and 36c, respectively.
  • the push button 35 is pressed and the spring 34 operates, so that the movable contact part 30a comes into contact with the upper fixed contact part 30c and is separated from the lower fixed contact part 30b.
  • the movable contact part 30a is separated from the upper fixed contact part 30c and is in contact with the lower fixed contact part 30b. Then, the movable contact part 30a and the fixed contact part 30b come into contact with each other to make electrical connection.
  • one or both of the movable contact part 30a and the fixed contact part 30b can be formed as the electrical connection part 10 of the present embodiment. That is, one or both of a contact portion (a portion that contacts the fixed contact components 30b and 30c) 31a of the movable contact component 30a and a contact portion (a portion that contacts the movable contact component 30a) 31b and 31c of the fixed contact components 30b and 30c. Can be formed with the structure shown in FIG. 1B. In addition, one or both of the joint part (part joined to the spring 34) 32a of the movable contact part 30a and the joint part (part joined to the contact points 36b and 36c) 32b and 32c of the fixed contact part 30b and 30c are shown in FIG. Can be formed.
  • caulking is mainly used, but it may be joined by welding or soldering.
  • the fixed contact parts 30b and 30c and the contact bases 36b and 36c are mainly joined by welding or soldering.
  • FIG. 4 shows a schematic diagram of the relay 40.
  • the relay 40 includes an electromagnet block 44 and a contact block 45 in a space surrounded by the body 42 and the case 43.
  • the electromagnet block 44 includes a coil wire 46, a coil bobbin 47, an iron core 48, an armature 49, and a yoke 50.
  • a coil terminal 51 electrically connected to the coil wire 46 projects from the bottom surface of the body 42.
  • the contact block 45 includes a movable spring 52, a movable contact part 40a, a fixed spring 53, and a fixed contact part 40b.
  • a contact terminal 54 electrically connected to the movable contact part 40 a and the fixed contact part 40 b protrudes from the bottom surface of the body 42.
  • the armature 49 and the movable spring 52 are connected by a card 55.
  • the armature 49 is operated by energization / non-energization of the coil wire 46, whereby the movable spring 52 is operated and the movable contact part 40 a is in contact with the fixed contact part 40 b, and the movable contact The part 40a is formed so as to be switched between a state where it is separated from the fixed contact part 40b. Then, the movable contact part 40a and the fixed contact part 40b come into contact with each other to make electrical connection.
  • one or both of the movable contact part 40a and the fixed contact part 40b can be formed as the electrical connection part 10 of the present embodiment. That is, one or both of a contact portion (a portion that contacts the fixed contact component 40b) 41a of the movable contact component 40a and a contact portion (a portion that contacts the movable contact component 40a) 41b of the fixed contact component 40b are shown in FIG. 1B. Can be formed. In addition, one or both of a joint portion (a portion that joins the movable spring 52) 42a of the movable contact component 40a and a joint portion (a portion that joins the fixed spring 53) 42b of the fixed contact component 40b has the structure shown in FIG. 1A. Can be formed. In joining the movable contact part 40a to the movable spring 52 and joining the fixed contact part 40b to the fixed spring 53, caulking is mainly used, but welding or soldering may be used.
  • the electrical connection component 10 of the present embodiment includes a contact portion 100 that is electrically connected by contact, and the contact portion 100 includes the carbon nanomaterial 104. Therefore, even when the contact pressure is low, the electrical connection component 10 includes carbon.
  • the nanomaterial 104 can ensure electrical contact without impairing contact with other members, and can easily ensure contact reliability in a low contact pressure region.
  • the electrical connection component 10 of the present embodiment has a contact between the contact part 100 and the other member. Adhesion and wear can be reduced, and the sticking resistance of the electrical connection component 10 is easily improved. Therefore, it is preferable to use the electrical connection component 10 as described above as a contact component such as a switch or a relay having a large number of opening / closing operations, because the sticking phenomenon hardly occurs and the life can be easily extended.
  • the electrical connection component 10 of the present embodiment includes a joint portion 500 that performs mechanical connection by joining, and the joint portion 500 covers the second carbon nanomaterial 104 that protrudes from the surface of the first plating layer 102. Since the plating layer 501 is provided, the exposure of the carbon nanomaterial 104 on the surface of the joint portion 500 can be reduced, and the adhesion between the surface of the joint portion 500 and another member is increased to increase the joint strength. be able to.
  • the electrical connection component 10 of this embodiment is a protective plating for suppressing corrosion caused by a potential difference between the first plating layer 102 and the carbon nanomaterial 104 on the surface of the first plating layer 102 holding the carbon nanomaterial 104.
  • a layer 103 is provided. Therefore, the electrical connection component 10 of the present embodiment can suppress the corrosion of the first plating layer 102 and can improve the corrosion resistance.
  • Example 1 As the base material, a Cu alloy such as phosphor bronze or titanium copper formed into a shape that is applied to a copper plate or a contact part of a connector was used.
  • a Cu alloy such as phosphor bronze or titanium copper formed into a shape that is applied to a copper plate or a contact part of a connector was used.
  • a composite plating layer including the carbon nanomaterial and the first plating layer was formed on the entire base material.
  • a Ni—P alloy plating solution containing CNT was used as the carbon nanomaterial.
  • CNT VGCF made by Showa Denko Co., Ltd. was used. This CNT is a multilayer CNT. Further, the diameter (outer diameter) of the CNTs was in the range of 100 to 200 nm and the length was in the range of 10 to 20 ⁇ m.
  • the mixing amount of CNT was set to 2 g / dm 3 .
  • a Ni—P alloy plating solution containing CNT was used as a plating bath, and the plating temperature was 50 ⁇ 10 ° C. and the current density was 1 to 15 A / dm 2 . Then, a CNT-containing Ni—P alloy plating layer in which the thickness of the first plating layer as the Ni—P alloy plating layer was 1.5 ⁇ m and the CNT content was 1.0 mass% was formed.
  • a coating plating layer was formed on the surface of the first plating layer at a portion to be a joint.
  • the coated plating layer covered the CNT protruding on the surface of the first plating layer so as not to be exposed to the outside.
  • a protective plating layer was formed in the part to be the contact part and the part to be the joint part.
  • a protective plating layer was formed on the surface of the first plating layer at the portion to be the contact portion.
  • a protective plating layer was formed on the surface of the coating plating layer at a portion to be a joint.
  • the protective plating layer was formed by Sn plating. In this case, “PF-095S” manufactured by Ishihara Pharmaceutical Co., Ltd. was used as the plating solution, and Sn plating was formed under the conditions of a bath temperature of 35 ° C. and a current density of 3 ASD. The thickness of the protective plating layer was 0.3 ⁇ m.
  • CNT protrudes on the surface of the protective plating layer, but in the bonding portion, CNT does not protrude on the surface of the second plating layer composed of the coating plating layer and the protection plating layer.
  • Example 2 An electrical connection component was formed in the same manner as in Example 1 except that a protective plating layer having a thickness of 0.3 ⁇ m was formed by Au—Co alloy plating instead of Sn plating.
  • a protective plating layer having a thickness of 0.3 ⁇ m was formed by Au—Co alloy plating instead of Sn plating.
  • Au—Co alloy plating was formed under conditions of a bath temperature of 50 ° C. and a current density of 5 A / dm 2 .
  • Example 1 The same operation as in Example 1 was performed except that the second plating layer (the coating plating layer and the protective plating layer) was not formed. In this case, CNT protrudes on the surface of the first plating layer at the portion to be the joint.
  • each example has a smaller contact resistance value than Comparative Example 1, and has high contact reliability in a low contact pressure region.
  • solder paste M705-221BM5-32-11.2K manufactured by Senju Metal Industry Co., Ltd. was used.
  • the mounting conditions were reflow using the temperature profile of FIG. 5 in the atmosphere.
  • each example and comparative example were evaluated by 5 pieces (sample Nos. 1 to 5).
  • each example has a higher bonding strength than Comparative Example 1, and each example has a sufficient bonding strength (standard 2N or higher).
  • FIG. 7A shows a surface scanning electron micrograph of the contact portion 100 of Example 1.
  • FIG. 7B shows a surface scanning electron micrograph of the joint portion 500 of Example 1
  • FIG. 7C shows the joint portion 500 (contact portion 100) of Comparative Example 1.
  • the CNT carbon nanomaterial 104
  • Example 3 Next, in the same manner as in Example 1, a coating plating layer was formed on the surface of the first plating layer in a portion to be a joint portion.
  • a protective plating layer was formed in the part to be the contact part and the part to be the joint part.
  • a protective plating layer was formed on the surface of the first plating layer at the portion to be the contact portion.
  • a protective plating layer was formed on the surface of the coating plating layer at a portion to be a joint.
  • the protective plating layer was formed by Sn plating. In this case, “PF-095S” manufactured by Ishihara Pharmaceutical Co., Ltd. was used as the plating solution, and Sn plating was formed under the conditions of a bath temperature of 35 ° C. and a current density of 3 ASD.
  • the thickness of the protective plating layer was 0.1 ⁇ m.
  • Example 4 The same procedure as in Example 3 was performed except that a CB-containing Ni—P alloy plating layer was formed using CB instead of CNT as the carbon nanomaterial.
  • CB Vulcan XC-72 manufactured by Cabot was used. This CB has a diameter (particle diameter) in the range of 20 to 40 nm.
  • Example 5 Example 1 was performed except that Ni plating was formed instead of Ni—P alloy plating as the first plating layer.
  • the composition of the Ni plating solution was Ni sulfate (1 mol / dm 3 ), Ni chloride (0.2 mol / dm 3 ), and boric acid (0.5 mol / dm 3 ).
  • the mixing amount of CNT was set to 2 g / dm 3 .
  • Ni plating solution containing CNT was used as a plating bath, and the plating temperature was 50 ° C. and the current density was 5 A / dm 2 .
  • Example 2 The same procedure as in Example 4 was performed except that the coating plating layer and the protective plating layer were not formed.
  • Example 3 The same base material as in Example 3 was used. A Ni plating layer (containing no carbon nanomaterial) was formed on a portion that would be a contact portion of the base material.
  • the formation conditions of the Ni plating layer were such that the composition of the Ni plating solution was 400 g / dm 3 nickel sulfamate, 40 g / dm 3 boric acid, and 5 g / dm 3 nickel chloride.
  • the plating conditions were a bath temperature of 50 ° C. and a current density of 5 A / dm 2 .
  • the thickness of the Ni plating layer was 1.5 ⁇ m.
  • Comparative Example 4 Comparative Example 3 was performed except that the thickness of the Au—Co alloy plating layer was set to 0.06 ⁇ m.
  • Comparative Example 5 In Comparative Example 3, the Au—Co alloy plating layer was subjected to sealing treatment (dipped in a water-soluble sealing treatment solution and then dried at 80 ° C.).
  • Comparative Example 6 Comparative Example 4, the Au—Co alloy plating layer was sealed. The conditions for the sealing treatment were the same as in Comparative Example 5.
  • each example is noble because the corrosion potential and the corrosion current are lower than each comparative example, and corrosion is suppressed.
  • Terminal parts used for a connector “P5KS” manufactured by Panasonic Corporation were formed.
  • This connector includes a header and a socket, and the header and the socket each have 40 terminal parts.
  • the following (1) to (5) and current products were prepared as connector samples.
  • Sample (1) is a composite plating layer (Ni-P-CB composite plating layer, the thickness of the first plating layer) of CB, which is a carbon nanomaterial, and a first plating layer made of a Ni—P alloy at the contact part of the terminal component. 1.5 ⁇ m, P concentration in the plating film is 10 wt%), and the surface of the first plating layer has a Sn plating layer (thickness: 0.1 ⁇ m) as a protective plating layer.
  • Sample (2) is formed in the same manner as sample (1) except that the P concentration in the plating film is 5 wt%.
  • Sample (3) is formed in the same manner as sample (1) except that the protective plating layer is Sn—Ni alloy plating.
  • Sample (4) is formed in the same manner as sample (1) except that the carbon nanomaterial is CNT.
  • Sample (5) is formed in the same manner as sample (2) except that the carbon nanomaterial is CNT.
  • the contact part of the terminal component does not have a carbon nanomaterial
  • the Ni plating layer as the first plating layer has a thickness of 1.5 ⁇ m
  • the protective plating layer has a thickness of 0 by Au—Co alloy plating. . After forming at 2 ⁇ m, it is sealed.
  • Contact resistance measurement test 1 The contact resistance value after performing heat treatment three times in the atmosphere at a temperature of 260 ° C. assuming an atmospheric pressure reflow soldering process was measured.
  • Contact resistance measurement test 2 The contact resistance value was measured after leaving in a sulfurous acid gas having a concentration of 10 ⁇ 3 ppm at a temperature of 40 ⁇ 2 ° C. and a humidity of 90 ⁇ 3% RH for 48 hours.
  • results of measurement tests 1 to 4 are shown in FIGS. 9A to 9D. As is apparent from this result, it can be said that samples (1) to (5) have a contact resistance value comparable to or lower than that of the current product and have high contact reliability in a low contact pressure region.
  • samples (1) to (5) the change in electrical resistance value due to the change in contact load was measured.
  • the results are shown in FIG.
  • samples (1) to (5) which are the electrical connection parts of this embodiment, show stable contact resistance values even with a contact load of 0.1N.
  • the electrical connection component (10) of this embodiment has the following characteristics.
  • the electrical connection component (10) is disposed in the first region on the surface of the base material (101) and the base material (101), and is electrically connected to another electrical circuit or another electrical contact component.
  • Each of the contact portion (100) and the joint portion (500) is held by the first plating layer (102) formed on the surface of the base material (101) and the first plating layer (102), and the first plating layer.
  • Carbon nanomaterial (104) protruding from the surface of (102).
  • a second plating layer (501) is provided.
  • the contact portion (100) has the carbon nanomaterial (104)
  • the carbon nanomaterial (104) is in contact with other members even at a low contact pressure.
  • the junction part (500) has the 2nd plating layer (501) which covers the carbon nanomaterial (104) which protrudes from the surface of the 1st plating layer (102), in the surface of a junction part (500)
  • the exposure of the carbon nanomaterial (104) can be reduced, and the bonding strength can be increased by improving the adhesion between the surface of the bonding portion (500) and another member.
  • the first plating layer (102) preferably contains Ni or a Ni—P alloy, and the second plating layer (501) preferably contains at least one of Sn or Au. .
  • the first plating layer (102) contains Ni, appearance change such as discoloration due to oxidation can be reduced, and the second plating layer (501) Since it contains Sn or Au, corrosion resistance can be improved.
  • the thickness of the second plating layer (501) is preferably 0.03 ⁇ m or more and 2.0 ⁇ m or less.
  • Such an electrical connection component (10) can sufficiently suppress the exposure of the carbon nanomaterial (104) by the second plating layer (501).
  • the contact portion (100) does not include the second plating layer (501).
  • the carbon nanomaterial (104) on the surface of the contact portion (100) is not covered with the second plating layer (501), and a decrease in contact reliability is suppressed.
  • the contact portion (100) has a protective plating layer (103) for suppressing corrosion caused by a potential difference between the first plating layer (102) and the carbon nanomaterial (104). Is preferred.
  • Such an electrical connection component (10) has high corrosion resistance because corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104) is suppressed by the protective plating layer (103).
  • the protective plating layer (103) preferably contains a metal element nobler than the metal element contained in the first plating layer (102).
  • Such an electrical connection component (10) provides a protective plating layer (103) that is highly effective in suppressing corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104), and is more corrosion resistant. Get higher.
  • the first plating layer (102) is formed of Ni or a Ni—P alloy. It is preferable that the protective plating layer (103) contains at least one selected from the group of Sn, Cu, Ag, Au, Pd, Rh, and Ru as a metal element nobler than Ni.
  • Such an electrical connection component (10) is composed of Sn, Cu in which corrosion caused by a potential difference between Ni contained in the first plating layer (102) and the carbon nanomaterial (104) is contained in the protective plating layer (103). , Ag, Au, Pd, Rh, Ru are suppressed by at least one, and corrosion resistance is high.
  • the protective plating layer (103) preferably has a thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • Such an electrical connection component (10) provides a protective plating layer (103) that is highly effective in suppressing corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104), and is more corrosion resistant. Get higher.

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

In order to provide an electrical connection component for which contact reliability is improved and a sufficient bonding strength can be achieved, this electrical connection component (10) is provided with: a base material (101); a contact part (100) that is disposed in a first region on the outer surface of the base material (101) and is electrically connected, by contact, to another electrical circuit or another electrical contact component; and a bonding part (500) that is disposed in a second region which is different from the first region on the outer surface of the base material (101), and is connected, by bonding, to an external conductive member. The contact part (100) and the bonding part (500) are each provided with: a first plating layer (102) formed on the outer surface of the base material (101); and carbon nanomaterials (104) that are held in the first plating layer (102) and protrude from the outer surface of the first plating layer (102). The bonding part (500) is provided with a second plating layer (501) that is formed on the outer surface of the first plating layer (102) of the bonding part (500) and that covers the carbon nanomaterials (104) that protrude from the outer surface of the first plating layer (102) of the bonding part (500).

Description

電気接続部品Electrical connection parts
 本発明は、電気接続部品に関する。詳しくは、本発明は、リレー及びスイッチの接点部品並びにコネクタの端子部品などの電気接続部品に関する。 The present invention relates to an electrical connection component. More specifically, the present invention relates to electrical connection parts such as relay and switch contact parts and connector terminal parts.
 従来、接触信頼性を向上させることを目的として、カーボンナノ材料を含有するめっき層を備えた電気接続部品が提案されている。例えば、特許文献1に記載の電気接点部品200では、図11のように、母材210の表面にめっき層220が設けられ、めっき層220にカーボンナノ材料230が保持されている。カーボンナノ材料230はカーボンナノチューブ又はカーボンブラックなどであって、めっき層220の表面に露出して設けられている。従って、カーボンナノ材料230はめっき層220よりも他の部材に接触しやすくなり、電気接点部品200の接触信頼性が向上している。 Conventionally, for the purpose of improving contact reliability, an electrical connection component having a plating layer containing a carbon nanomaterial has been proposed. For example, in the electrical contact component 200 described in Patent Document 1, a plating layer 220 is provided on the surface of the base material 210 and the carbon nanomaterial 230 is held on the plating layer 220 as shown in FIG. The carbon nanomaterial 230 is a carbon nanotube or carbon black, and is exposed on the surface of the plating layer 220. Therefore, the carbon nanomaterial 230 is more likely to come into contact with other members than the plating layer 220, and the contact reliability of the electrical contact component 200 is improved.
特開2013-011016号公報 電気接点部品200では、はんだ付けなどにより回路パターンなどの導体に接合されるが、その接合部分のめっき層220の表面にカーボンナノ材料230が露出していると、めっき層220の表面のはんだの濡れ性が低下して十分な接合強度が得にくくなるという問題があった。JP, 2013-011016, A In electrical contact component 200, it joins to conductors, such as a circuit pattern, by soldering etc., but if carbon nanomaterial 230 is exposed on the surface of plating layer 220 of the joined portion, it will be plated. There has been a problem that the solder wettability on the surface of the layer 220 is lowered and it becomes difficult to obtain sufficient bonding strength.
 本発明は上記の点に鑑みてなされたものであり、接触信頼性が向上し、十分な接合強度が得られる電気接続部品を提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide an electrical connection component that improves contact reliability and provides sufficient bonding strength.
 本発明の一態様に係る電気接続部品は、
 母材と、
 前記母材の表面上における第1の領域に配置され、他の電気回路又は他の電気接点部品と接触により電気的に接続される接触部と、
 前記第1の領域とは異なる前記母材の表面上における第2の領域に配置され、外部の導電部材と接合により接続される接合部とを備える
電気接続部品であって、
 前記接触部及び前記接合部の各々が、前記母材の表面に形成される第1めっき層と、前記第1めっき層に保持されて前記第1めっき層の表面から突出するカーボンナノ材料とを備え、
 前記接合部が、前記接合部における前記第1めっき層の表面に形成され、前記接合部における前記第1めっき層の表面から突出する前記カーボンナノ材料を覆う第2めっき層を備える
ことを特徴とする。
The electrical connection component according to one aspect of the present invention is
With the base material,
A contact portion disposed in a first region on the surface of the base material and electrically connected by contact with another electrical circuit or another electrical contact component;
An electrical connection component that is disposed in a second region on the surface of the base material different from the first region, and includes a joint portion that is connected to an external conductive member by joining,
Each of the contact portion and the joint portion includes a first plating layer formed on the surface of the base material, and a carbon nanomaterial that is held by the first plating layer and protrudes from the surface of the first plating layer. Prepared,
The bonding portion includes a second plating layer formed on a surface of the first plating layer in the bonding portion and covering the carbon nanomaterial protruding from the surface of the first plating layer in the bonding portion. To do.
 本発明は、接触部に設けた第1めっき層の表面にカーボンナノ材料が突出しているため、接触部の接触信頼性を損ねることなく、接合部においては第2めっき層でカーボンナノ材料を覆うことで、カーボンナノ材料による接合部の密着性の低下が抑制され、十分な接合強度が得られる。 In the present invention, since the carbon nanomaterial protrudes on the surface of the first plating layer provided in the contact portion, the carbon nanomaterial is covered with the second plating layer in the joint portion without impairing the contact reliability of the contact portion. Thereby, the fall of the adhesiveness of the junction part by a carbon nanomaterial is suppressed, and sufficient joining strength is obtained.
図1Aは、本発明に係る一実施の形態の電気接続部品の接合部を示す概略の断面図である。図1Bは、本発明に係る一実施の形態の電気接続部品の接触部を示す概略の断面図である。FIG. 1A is a schematic cross-sectional view showing a joint portion of an electrical connection component according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view showing a contact portion of an electrical connection component according to an embodiment of the present invention. 図2は、同上のコネクタの端子部品を示す概略の正面図である。FIG. 2 is a schematic front view showing terminal parts of the connector. 図3は、同上のスイッチの可動接点部品と固定接点部品を示す概略の断面図である。FIG. 3 is a schematic sectional view showing a movable contact part and a fixed contact part of the switch. 図4は、同上のリレーの可動接点部品と固定接点部品を示す概略の断面図である。FIG. 4 is a schematic cross-sectional view showing a movable contact part and a fixed contact part of the relay described above. 図5は、接触信頼性の試験における温度プロファイルを示すグラフである。FIG. 5 is a graph showing a temperature profile in a contact reliability test. 図6は、実施例1の接触信頼性試験における接触荷重の変化と電気抵抗値の変化とを示すグラフである。6 is a graph showing a change in contact load and a change in electrical resistance value in the contact reliability test of Example 1. FIG. 図7Aは実施例1の接触部の表面走査型電子顕微鏡写真である。図7Bは実施例1の接合部の表面走査型電子顕微鏡写真である。図7Cは比較例の接触部及び接合部の表面走査型電子顕微鏡写真である。7A is a surface scanning electron micrograph of the contact portion of Example 1. FIG. FIG. 7B is a surface scanning electron micrograph of the joint of Example 1. FIG. 7C is a surface scanning electron micrograph of the contact portion and the joint portion of the comparative example. 図8は、実施例3~5及び比較例2~6の耐食性の評価を示すグラフである。FIG. 8 is a graph showing the corrosion resistance evaluation of Examples 3 to 5 and Comparative Examples 2 to 6. 図9Aは、接触信頼性試験における接触抵抗値の測定試験1の結果を示すグラフである。図9Bは、接触信頼性試験における接触抵抗値の測定試験2の結果を示すグラフである。図9Cは、接触信頼性試験における接触抵抗値の測定試験3の結果を示すグラフである。図9Dは、接触信頼性試験における接触抵抗値の測定試験4の結果を示すグラフである。FIG. 9A is a graph showing the results of measurement test 1 of the contact resistance value in the contact reliability test. FIG. 9B is a graph showing the results of measurement test 2 of the contact resistance value in the contact reliability test. FIG. 9C is a graph showing the results of measurement test 3 of the contact resistance value in the contact reliability test. FIG. 9D is a graph showing the results of a contact resistance value measurement test 4 in the contact reliability test. 図10は、サンプル(1)~(5)の接触信頼性試験における接触荷重の変化と電気抵抗値の変化とを示すグラフである。FIG. 10 is a graph showing a change in contact load and a change in electrical resistance value in the contact reliability test of samples (1) to (5). 図11は、従来の電気接続部品の接触部を示す概略の断面図である。FIG. 11 is a schematic cross-sectional view showing a contact portion of a conventional electrical connection component.
 以下、本発明を実施するための形態を説明する。 Hereinafter, modes for carrying out the present invention will be described.
 (電気接続部品の概要)
 本実施形態の電気接続部品は、接触により電気的に接続される接触部と、接合により接続される接合部とを有している。このような電気接続部品としては、リレー及びスイッチの接点部品並びにコネクタの端子部品などが例示される。接点部品としては固定接点部品と可動接点部品などが例示される。端子部品としてはプラグ、ジャック、レセプタクル、ソケット、ピンヘッダーなどの各種のコネクタに適用されるものが例示される。
(Outline of electrical connection parts)
The electrical connection component of this embodiment has a contact portion that is electrically connected by contact and a joint portion that is connected by joining. Examples of such electrical connection parts include relay and switch contact parts and connector terminal parts. Examples of contact parts include fixed contact parts and movable contact parts. Examples of the terminal component include those applied to various connectors such as a plug, a jack, a receptacle, a socket, and a pin header.
 電気接続部品の接触部は他の部材に接触する部分である。ここで、「他の部材」とは、当該電気接続部品以外の部材であって、他の電気回路又は他の電気接点部品のことを意味する。例えば、電気接続部品が固定接点部品である場合、これと対になっている可動接点部品が他の部材となる。すなわち、固定接点部品及び可動接点部品では、これらが互いに接触しあう部分が接触部として形成される。また電気接続部品がコネクタの端子部品である場合、別のコネクタに設けた端子部品が他の部材となる。すなわち、コネクタの端子部品では、機械的に接続される複数のコネクタのそれぞれに設けた端子部品が互いに接触しあう部分が接触部として形成される。接触部が他の部材と接触することにより、電気接続部品と他の部材とが電気的に接続される。 ¡The contact part of the electrical connection component is the part that contacts other members. Here, the “other member” means a member other than the electrical connection component, and means another electrical circuit or another electrical contact component. For example, when the electrical connection component is a fixed contact component, the movable contact component paired therewith is another member. That is, in the fixed contact part and the movable contact part, a part where they are in contact with each other is formed as a contact portion. When the electrical connection component is a terminal component of a connector, the terminal component provided in another connector is another member. That is, in the terminal component of the connector, a portion where the terminal components provided in each of the plurality of mechanically connected connectors contact each other is formed as a contact portion. When the contact portion comes into contact with another member, the electrical connection component and the other member are electrically connected.
 電気接続部品の接合部は他の部材に接合により機械的に接続する部分である。ここで、「他の部材」とは、当該電気接続部品以外の部材であって、外部の導電部材のことを意味する。また、接合とは、はんだ付け、ワイヤーボンディング(WB)、溶接、カシメなどが例示される。例えば、電気接続部品が固定接点部品及び可動接点部品である場合、これらを取り付ける固定バネ及び可動バネなどが他の部材となる。すなわち、固定接点部品及び可動接点部品では、他部材に接触して結合される部分が接合部として形成される。また電気接続部品がコネクタの端子部品である場合、コネクタを実装するプリント配線板の回路パターンなどが他の部材となる。すなわち、コネクタの端子部品では、はんだ付け等により他部材に機械的に接続される部分が接合部として形成される。接合部が他の部材と接合することにより、電気接続部品と他の部材とが電気的及び機械的に接続される。 The joint part of the electrical connection part is a part that is mechanically connected to another member by joining. Here, the “other member” means a member other than the electrical connection component and an external conductive member. Examples of joining include soldering, wire bonding (WB), welding, and caulking. For example, when the electrical connection parts are a fixed contact part and a movable contact part, a fixed spring and a movable spring to which these are attached are other members. That is, in the fixed contact component and the movable contact component, a portion that contacts and is joined to another member is formed as a joint. When the electrical connection component is a terminal component of a connector, the circuit pattern of the printed wiring board on which the connector is mounted is another member. That is, in the terminal component of the connector, a portion that is mechanically connected to another member by soldering or the like is formed as a joint portion. When the joining portion is joined to another member, the electrical connection component and the other member are electrically and mechanically connected.
 接触部と接合部はいずれも母材の表面上に形成されているが、接触部は母材の表面上における第1の領域に配置され、接合部は第1の領域とは異なる前記母材の表面上における第2の領域に配置されている。 The contact portion and the joint portion are both formed on the surface of the base material, but the contact portion is disposed in a first region on the surface of the base material, and the joint portion is different from the first region. Is disposed in the second region on the surface.
 (接合部の説明)
 図1Aは電気接続部品10の接合部500の概略図を示している。接合部500は母材101と第1めっき層102と第2めっき層501とカーボンナノ材料104とを備えて形成されている。
(Description of joint)
FIG. 1A shows a schematic diagram of a joint 500 of the electrical connection component 10. The bonding portion 500 is formed including the base material 101, the first plating layer 102, the second plating layer 501, and the carbon nanomaterial 104.
 母材101は電気接続部品10の基体であって、使用目的に応じて所望の形状に成形されている。母材101は銅又は銅合金などの電気接続部品10に使われる公知の金属材料で形成されている。銅合金としては、Cu-Ti、Cu-Ti-Fe、Cu-Be、Cu-Sn-P系、Cu-Zn系、Cu-Ni-Zn系、Cu-Ni-Si系、Cu-Fe-P系合金などが挙げられる。なお、母材101はその表面に、第1めっき層102との密着性を高めるためのNiめっき膜などの下地層を有していても良い。 The base material 101 is a base of the electrical connection component 10 and is formed into a desired shape according to the purpose of use. The base material 101 is formed of a known metal material used for the electrical connection component 10 such as copper or a copper alloy. Copper alloys include Cu-Ti, Cu-Ti-Fe, Cu-Be, Cu-Sn-P, Cu-Zn, Cu-Ni-Zn, Cu-Ni-Si, Cu-Fe-P. Based alloys. Note that the base material 101 may have a base layer such as a Ni plating film for improving adhesion to the first plating layer 102 on the surface thereof.
 第1めっき層102は母材101の表面に付着しているめっき膜である。第1めっき層102は、結晶質又は非晶質(アモルファス)の金属めっき膜で形成されている。第1めっき層102は母材101への付着性及びカーボンナノ材料104の保持性、硬度、耐食性等を考慮して、その材質及び厚みなどを決定すればよい。第1めっき層102の材質はNi又はNi-P合金で形成されていることが好ましい。第1めっき層102の膜厚は、5μm以下であることが好ましい。5μmより厚い膜厚では、第1めっき層102のばね性が失われやすく、応力によるクラックが発生しやすくなる場合がある。第1めっき層102の膜厚の下限は、カーボンナノ材料104の保持性等を確保するために、0.1μmとすることが好ましい。さらに接触部100の耐食性の向上を考慮すると、第1めっき層102の膜厚は0.5μm以上が好ましく、1μm以上がさらに好ましい。 The first plating layer 102 is a plating film adhering to the surface of the base material 101. The first plating layer 102 is formed of a crystalline or amorphous (amorphous) metal plating film. The material and thickness of the first plating layer 102 may be determined in consideration of the adhesion to the base material 101 and the retainability, hardness, corrosion resistance, etc. of the carbon nanomaterial 104. The material of the first plating layer 102 is preferably formed of Ni or a Ni—P alloy. The film thickness of the first plating layer 102 is preferably 5 μm or less. When the film thickness is thicker than 5 μm, the spring property of the first plating layer 102 is likely to be lost, and cracks due to stress may easily occur. The lower limit of the film thickness of the first plating layer 102 is preferably set to 0.1 μm in order to ensure the retainability of the carbon nanomaterial 104. Further, considering the improvement of the corrosion resistance of the contact part 100, the thickness of the first plating layer 102 is preferably 0.5 μm or more, and more preferably 1 μm or more.
 第2めっき層501は第1めっき層102の表面に付着しているめっき膜である。第2めっき層501は、第1めっき層102の表面に形成された被覆めっき層502と、被覆めっき層502の表面に形成された保護めっき層103とを備えている。 The second plating layer 501 is a plating film adhering to the surface of the first plating layer 102. The second plating layer 501 includes a coating plating layer 502 formed on the surface of the first plating layer 102 and a protective plating layer 103 formed on the surface of the coating plating layer 502.
 被覆めっき層502は第1めっき層102の表面に突出するカーボンナノ材料104を覆うめっきである。すなわち、接合部500において、第1めっき層102の表面に突出するカーボンナノ材料104は、被覆めっき層502で覆われて被覆めっき層502の表面に露出していない。これにより、カーボンナノ材料104による接合部500のはんだの濡れ性の低下が抑制される。 The coating plating layer 502 is plating that covers the carbon nanomaterial 104 protruding from the surface of the first plating layer 102. That is, the carbon nanomaterial 104 protruding from the surface of the first plating layer 102 in the bonding portion 500 is covered with the coating plating layer 502 and is not exposed on the surface of the coating plating layer 502. Thereby, a decrease in the wettability of the solder of the joint portion 500 by the carbon nanomaterial 104 is suppressed.
 被覆めっき層502は第1めっき層102との密着性、はんだ濡れ性、保護めっき層103との密着性などを考慮して、第1めっき層102と同様に、Ni又はNi-P合金で形成されていることが好ましい。被覆めっき層502の厚みは第1めっき層102からのカーボンナノ材料104の突出長さよりも厚ければよく、例えば、0.01μm以上1.5μm以下であることが好ましく、0.03μm以上1.2μm以下であることがより好ましい。 The coating plating layer 502 is formed of Ni or a Ni—P alloy in the same manner as the first plating layer 102 in consideration of adhesion to the first plating layer 102, solder wettability, adhesion to the protective plating layer 103, and the like. It is preferable that The thickness of the coating plating layer 502 may be thicker than the protruding length of the carbon nanomaterial 104 from the first plating layer 102, and is preferably 0.01 μm or more and 1.5 μm or less, for example, 0.03 μm or more and 1. More preferably, it is 2 μm or less.
 保護めっき層103は第1めっき層102及び被覆めっき層502とカーボンナノ材料104との電位差により生じる第1めっき層102及び被覆めっき層502の腐食を抑制するためのめっきである。図11に示す従来例では、亜硫酸ガス試験などの過酷な耐食性試験において、めっき層220に腐食が生じやすかった。これは、めっき層220とカーボンナノ材料230とが局部電池となる隙間腐食である。すなわち、カーボンナノ材料230にめっき層220が被っている部分(界面部分)に、めっき層220の凹凸変化等により隙間が生じた場合に、該隙間にめっき層220とカーボンナノ材料230との電位差による局部電池が作用し、隙間腐食が生じる。本実施形態における保護めっき層103はこの隙間腐食の発生を抑制するものである。 The protective plating layer 103 is plating for suppressing corrosion of the first plating layer 102 and the coating plating layer 502 caused by the potential difference between the first plating layer 102 and the coating plating layer 502 and the carbon nanomaterial 104. In the conventional example shown in FIG. 11, corrosion was likely to occur in the plating layer 220 in a severe corrosion resistance test such as a sulfurous acid gas test. This is crevice corrosion in which the plating layer 220 and the carbon nanomaterial 230 form a local battery. That is, when a gap is generated in the portion (interface portion) covered with the plating layer 220 by the carbon nanomaterial 230 due to unevenness of the plating layer 220 or the like, the potential difference between the plating layer 220 and the carbon nanomaterial 230 is generated in the gap. Due to the local battery, crevice corrosion occurs. The protective plating layer 103 in this embodiment suppresses the occurrence of crevice corrosion.
 保護めっき層103は、第1めっき層102及び被覆めっき層502に含有される金属元素よりも貴な金属元素を含有しているのが好ましい。この場合、保護めっき層103は、第1めっき層102及び被覆めっき層502に比べて、カーボンナノ材料104に対する電位差が小さくなり、保護めっき層103は第1めっき層102及び被覆めっき層502よりも腐食が生じにくくなる。この結果、第1めっき層102及び被覆めっき層502が腐食の生じにくい保護めっき層103で被覆されることになり、第1めっき層102及び被覆めっき層502に酸素、水分、その他の腐食成分が作用しにくくなって、第1めっき層102及び被覆めっき層502の腐食が抑制される。 The protective plating layer 103 preferably contains a noble metal element rather than the metal elements contained in the first plating layer 102 and the coating plating layer 502. In this case, the protective plating layer 103 has a smaller potential difference with respect to the carbon nanomaterial 104 than the first plating layer 102 and the coating plating layer 502, and the protective plating layer 103 is smaller than the first plating layer 102 and the coating plating layer 502. Corrosion is less likely to occur. As a result, the first plating layer 102 and the coating plating layer 502 are coated with the protective plating layer 103 that is unlikely to cause corrosion, and oxygen, moisture, and other corrosive components are present on the first plating layer 102 and the coating plating layer 502. It becomes difficult to act, and corrosion of the 1st plating layer 102 and covering plating layer 502 is controlled.
 具体的には、第1めっき層102及び被覆めっき層502がNiめっき又はNi-P合金めっきで形成されている場合、保護めっき層103は、Cu、Sn、Au、Ag、Pd、Rh、Ruの群から選ばれる1種又は複数種の金属元素からなるめっきで形成可能である。また、第1めっき層102及び被覆めっき層502がNiめっき又はNi-P合金めっきで形成されている場合、保護めっき層103は、Cu、Sn、Au、Ag、Pd、Rh、Ruの群から選ばれる1種又は複数種の金属元素を含む合金めっき層で形成可能である。この合金めっきとしては、例えば、Ni-Cuめっき、Ni-Snめっき、Ni-Auめっき、Ni-Agめっき、Ni-Pdめっき、Ni-Phめっき、Ni-Ruめっきなどが挙げられる。また保護めっき層103は、第1めっき層102及び被覆めっき層502よりも耐食性が高ければ良いため、例えば、第1めっき層102及び被覆めっき層502がNiめっき又はNi-P合金めっきで形成されている場合、保護めっき層103は、Ni-Wめっき、Ni-Bめっき、Ni-Feめっきなどで形成可能である。さらに保護めっき層103は、第1めっき層102及び被覆めっき層502を腐食から保護すれば良いため、例えば、保護めっき層103は、Znめっきで形成可能である。この場合、Znめっきの犠牲防食作用により保護めっき層103で第1めっき層102及び被覆めっき層502の腐食が抑制される。また、保護めっき層103は、被覆めっき層502と金属間化合物を形成する金属元素を含むことが好ましく、はんだ濡れ性に優れることも好ましい。 Specifically, when the first plating layer 102 and the coating plating layer 502 are formed by Ni plating or Ni—P alloy plating, the protective plating layer 103 is made of Cu, Sn, Au, Ag, Pd, Rh, Ru. It can be formed by plating made of one or more metal elements selected from the group. In addition, when the first plating layer 102 and the coating plating layer 502 are formed by Ni plating or Ni—P alloy plating, the protective plating layer 103 is made of Cu, Sn, Au, Ag, Pd, Rh, Ru. It can be formed of an alloy plating layer containing one or more selected metal elements. Examples of the alloy plating include Ni—Cu plating, Ni—Sn plating, Ni—Au plating, Ni—Ag plating, Ni—Pd plating, Ni—Ph plating, and Ni—Ru plating. Further, since the protective plating layer 103 only needs to have higher corrosion resistance than the first plating layer 102 and the coating plating layer 502, for example, the first plating layer 102 and the coating plating layer 502 are formed by Ni plating or Ni—P alloy plating. In this case, the protective plating layer 103 can be formed by Ni—W plating, Ni—B plating, Ni—Fe plating, or the like. Further, since the protective plating layer 103 only needs to protect the first plating layer 102 and the coating plating layer 502 from corrosion, for example, the protective plating layer 103 can be formed by Zn plating. In this case, the corrosion of the first plating layer 102 and the coating plating layer 502 is suppressed by the protective plating layer 103 by the sacrificial anticorrosive action of Zn plating. Further, the protective plating layer 103 preferably contains a metal element that forms an intermetallic compound with the coating plating layer 502, and it is also preferable that the solder plating property is excellent.
 保護めっき層103の厚みは0.01μm以上1.5μm以下であることが好ましく、0.05以上1.0μm以下がより好ましい。保護めっき層103の厚みがこの範囲であれば、第1めっき層102及び被覆めっき層502の腐食が保護めっき層103で抑制されやすくなる。また上記のNi合金めっきは、Ni以外の金属元素の濃度が6質量%以上12質量%以下であることが好ましく、8質量%以上10質量%以下であることがより好ましい。この範囲であれば、Niめっき層が硬すぎることがなく、割れなどが発生しにくくなり、また、耐食性が確保されやすくなる。 The thickness of the protective plating layer 103 is preferably 0.01 μm or more and 1.5 μm or less, and more preferably 0.05 or more and 1.0 μm or less. If the thickness of the protective plating layer 103 is within this range, corrosion of the first plating layer 102 and the coating plating layer 502 is easily suppressed by the protective plating layer 103. In the Ni alloy plating, the concentration of metal elements other than Ni is preferably 6% by mass or more and 12% by mass or less, and more preferably 8% by mass or more and 10% by mass or less. If it is this range, Ni plating layer will not be too hard, it will become difficult to generate | occur | produce a crack etc., and it will become easy to ensure corrosion resistance.
 保護めっき層103は必要に応じて設けられる。すなわち、電気接続部品10に高い耐食性が求められる場合は保護めっき層103を設けることが好ましいが、高い耐食性が求めらない場合は保護めっき層103を特に設けなくても良い。 The protective plating layer 103 is provided as necessary. That is, when high corrosion resistance is required for the electrical connection component 10, it is preferable to provide the protective plating layer 103, but when high corrosion resistance is not required, the protective plating layer 103 may not be particularly provided.
 第2めっき層501の厚みは、被覆めっき層502の厚みと保護めっき層103の厚みの合計であって、0.03μm以上2.0μm以下であることが好ましく、これにより、第1めっき層102の表面に突出するカーボンナノ材料104を覆いやすくなる。第2めっき層501の厚みは、0.05μm以上1.8μm以下であることがより好ましい。 The thickness of the second plating layer 501 is the sum of the thickness of the coating plating layer 502 and the thickness of the protective plating layer 103, and is preferably 0.03 μm or more and 2.0 μm or less. It becomes easy to cover the carbon nanomaterial 104 protruding on the surface. The thickness of the second plating layer 501 is more preferably 0.05 μm or more and 1.8 μm or less.
 カーボンナノ材料104は、ナノオーダーサイズの炭素材料であって、例えば、カーボンナノチューブ(CNT)、カーボンブラック(CB)、フラーレン、グラフェンなどである。カーボンナノ材料104は、化学的に安定かつ電気伝導性、摺動性、機械的強度に優れるものが好ましい。CNTは、直径が100nm以上200nm以下、長さ10μm以上20μm以下であることが好ましい。より好ましくは、CNTは、直径が120nm以上180nm以下、長さ12μm以上18μm以下であることが好ましい。また、CNTは、グラファイトのシートが1層に筒状に巻かれた単層CNTとグラファイトのシートが2層以上の多層に巻かれた多層CNTが存在するが、多層CNTは単層CNTよりも量産性に優れ、比較的安価に入手できるため、コストを抑えることができる点で好ましい。CBは粒子状であって、その粒子径はレーザー回折法等による測定で数nm以上100nm以下であることが好ましい。また、CBは電気伝導性に優れた品種であり、その各粒子がクラスター状になったミクロンオーダーの大きさの集合体の状態で存在していることが好ましい。CBはCNTよりも量産性に優れ、比較的安価に入手できるため、コストを抑えることができる点で好ましい。 The carbon nanomaterial 104 is a nano-order size carbon material, such as carbon nanotube (CNT), carbon black (CB), fullerene, graphene, and the like. The carbon nanomaterial 104 is preferably chemically stable and excellent in electrical conductivity, slidability, and mechanical strength. The CNT preferably has a diameter of 100 nm to 200 nm and a length of 10 μm to 20 μm. More preferably, the CNT has a diameter of 120 nm to 180 nm and a length of 12 μm to 18 μm. In addition, CNT includes single-walled CNTs in which a graphite sheet is wound in a cylindrical shape and multilayered CNTs in which a graphite sheet is wound in two or more layers. Since it is excellent in mass productivity and can be obtained relatively inexpensively, it is preferable in that the cost can be suppressed. CB is in the form of particles, and the particle diameter is preferably several nm or more and 100 nm or less as measured by a laser diffraction method or the like. Further, CB is a variety having excellent electrical conductivity, and it is preferable that each particle is present in the state of an aggregate having a size of micron order in a cluster shape. CB is preferable in terms of cost reduction because it is superior to CNT in mass productivity and can be obtained relatively inexpensively.
 図1Aは、接合部500において、カーボンナノ材料104がCNTの場合について示している。このCNTはその一端が第1めっき層102に埋め込まれて固着されている。このようにしてCNTは第1めっき層102に保持されている。CNTは第1めっき層102の表面から突出しているが、被覆めっき層502内に埋まっている。 FIG. 1A shows a case where the carbon nanomaterial 104 is CNT in the joint 500. One end of this CNT is embedded and fixed in the first plating layer 102. In this way, the CNTs are held on the first plating layer 102. The CNT protrudes from the surface of the first plating layer 102 but is buried in the coating plating layer 502.
 カーボンナノ材料104は第1めっき層102との複合めっきとして形成される。カーボンナノ材料104の使用量は、カーボンナノ材料104と第1めっき層102との合計量に対して、0.02質量%以上2.0質量%以下であることが好ましく、0.05質量%以上から1.8質量%以下がより好ましい。カーボンナノ材料104の使用量が上記の範囲であると、カーボンナノ材料104による後述の接触部100の接触信頼性の向上が充分に得られ、また、カーボンナノ材料104のめっき液への分散性及び第1めっき層102の母材101への密着性が十分に確保されやすくなる。 The carbon nanomaterial 104 is formed as a composite plating with the first plating layer 102. The amount of the carbon nanomaterial 104 used is preferably 0.02% by mass or more and 2.0% by mass or less, based on the total amount of the carbon nanomaterial 104 and the first plating layer 102, and 0.05% by mass. From the above, it is more preferably 1.8% by mass or less. When the use amount of the carbon nanomaterial 104 is in the above range, the contact reliability of the contact portion 100 described later by the carbon nanomaterial 104 can be sufficiently improved, and the dispersibility of the carbon nanomaterial 104 in the plating solution can be obtained. In addition, sufficient adhesion of the first plating layer 102 to the base material 101 is easily secured.
 (接触部の説明)
 図1Bは電気接続部品10の接触部100の概略図を示している。接触部100は接合部500と同様の母材101と第1めっき層102と保護めっき層103とカーボンナノ材料104とを備えて形成されている。すなわち、接触部100は被覆めっき層502が形成されておらず、カーボンナノ材料104が表面に露出している。
(Description of contact part)
FIG. 1B shows a schematic view of the contact portion 100 of the electrical connection component 10. The contact part 100 includes the same base material 101, the first plating layer 102, the protective plating layer 103, and the carbon nanomaterial 104 as the joint part 500. In other words, the coating portion 502 is not formed on the contact portion 100, and the carbon nanomaterial 104 is exposed on the surface.
 接触部100において、母材101と第1めっき層102は接合部500の場合と同様に形成されている。また接触部100では第1めっき層102の表面に保護めっき層103が形成されている。この場合、保護めっき層103は第1めっき層102の表面から突出するカーボンナノ材料104を完全に覆うことはない。すなわち、保護めっき層103はカーボンナノ材料104の根元(第1めっき層102の表面の近傍部分)のみを覆っている。従って、接触部100においては、カーボンナノ材料104は保護めっき層103を貫通し、カーボンナノ材料104の先端は保護めっき層103の表面から突出している。保護めっき層103は上記と同様に、第1めっき層102とカーボンナノ材料104との電位差により生じる第1めっき層102の腐食を抑制するためのめっきである。接触部100において、CNTの保護めっき層103の表面からの突出長さは0.1μm~10μmであることが好ましい。 In the contact part 100, the base material 101 and the first plating layer 102 are formed in the same manner as in the case of the joint part 500. In the contact portion 100, a protective plating layer 103 is formed on the surface of the first plating layer 102. In this case, the protective plating layer 103 does not completely cover the carbon nanomaterial 104 protruding from the surface of the first plating layer 102. That is, the protective plating layer 103 covers only the base of the carbon nanomaterial 104 (the vicinity of the surface of the first plating layer 102). Therefore, in the contact part 100, the carbon nanomaterial 104 penetrates the protective plating layer 103, and the tip of the carbon nanomaterial 104 protrudes from the surface of the protective plating layer 103. Similarly to the above, the protective plating layer 103 is plating for suppressing corrosion of the first plating layer 102 caused by the potential difference between the first plating layer 102 and the carbon nanomaterial 104. In the contact part 100, the protruding length of CNT from the surface of the protective plating layer 103 is preferably 0.1 μm to 10 μm.
 なお、接合部500の場合と同様に、接触部100においても、保護めっき層103は必要に応じて設けられる。すなわち、電気接続部品10に高い耐食性が求められる場合は保護めっき層103を設けることが好ましいが、高い耐食性が求めらない場合は保護めっき層103を特に設けなくても良い。 Note that the protective plating layer 103 is provided as necessary in the contact portion 100 as in the case of the joint portion 500. That is, when high corrosion resistance is required for the electrical connection component 10, it is preferable to provide the protective plating layer 103, but when high corrosion resistance is not required, the protective plating layer 103 may not be particularly provided.
 (めっき工程)
 上記のような接触部100及び接合部500を形成するにあたっては、まず母材101の全体にカーボンナノ材料104と第1めっき層102とからなる複合めっき層が形成される。この複合めっき層は電着(電解めっき)により母材101の表面に形成される。この場合、Ni及びPなどの金属元素とカーボンナノ材料104とを含むめっき液を母材101の表面に付着させ、通電することによって、カーボンナノ材料104を保持する第1めっき層102が析出して形成される。
(Plating process)
In forming the contact part 100 and the joint part 500 as described above, a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102 is first formed on the entire base material 101. This composite plating layer is formed on the surface of the base material 101 by electrodeposition (electrolytic plating). In this case, a plating solution containing a metal element such as Ni and P and the carbon nanomaterial 104 is attached to the surface of the base material 101 and energized, whereby the first plating layer 102 holding the carbon nanomaterial 104 is deposited. Formed.
 ここで、カーボンナノ材料104は、接触部100の他部材との接触性の向上が主目的であるため、母材101の接触部100が形成される部分のみに設けることが考えられる。この場合、部分浸漬法、スポットめっき法、スパージャーによるめっき法、マスクめっき法、レジストめっき法などの部分めっき法により、カーボンナノ材料104と第1めっき層102とからなる複合めっき層を部分的に形成することになるが、このような複合めっきはめっき条件が厳密であって、上記のような方法で部分めっきすることは非常に煩雑であった。特に、母材101が非常に小さく、多数個の母材101が一連につながったフープ材に上記の複合めっきを部分的に施すことが難しかった。そこで、本実施形態では、電気接続部品10の基体となる母材101の全体にカーボンナノ材料104と第1めっき層102とからなる複合めっき層を形成するものであり、これにより、複合めっきを母材101に部分的に形成する必要がなくなって、煩雑さが軽減されるものであり、電気接続部品10の生産性が向上する。 Here, since the carbon nanomaterial 104 is mainly intended to improve the contact property with the other members of the contact portion 100, it can be considered to be provided only in the portion where the contact portion 100 of the base material 101 is formed. In this case, a partial plating method such as a partial immersion method, a spot plating method, a sparger plating method, a mask plating method, or a resist plating method is used to partially form a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102. However, such composite plating has strict plating conditions, and partial plating by the above method is very complicated. In particular, it is difficult to partially apply the composite plating to a hoop material in which the base material 101 is very small and a large number of base materials 101 are connected in series. Therefore, in the present embodiment, a composite plating layer composed of the carbon nanomaterial 104 and the first plating layer 102 is formed on the entire base material 101 serving as the base of the electrical connection component 10. Since it is not necessary to form partly on the base material 101, complexity is reduced, and the productivity of the electrical connection component 10 is improved.
 次に、接合部500が形成される部分において、第1めっき層102の表面に被覆めっき層502が形成される。被覆めっき層502は上記に例示した部分めっき法で形成される。例えば、被覆めっき層502は電着により形成することができる。すなわち、Niなどの金属元素を含むめっき液を第1めっき層102の表面に付着させ、通電することにより、被覆めっき層502が析出して形成される。被覆めっき層502は、カーボンナノ材料を含まないめっきであり、第1めっき層102のような複合めっきでないため、めっき条件が複合めっきよりも厳密でなく、煩雑になることはない。 Next, a coating plating layer 502 is formed on the surface of the first plating layer 102 at a portion where the joint portion 500 is formed. The coating plating layer 502 is formed by the partial plating method exemplified above. For example, the coating plating layer 502 can be formed by electrodeposition. That is, a plating solution containing a metal element such as Ni is attached to the surface of the first plating layer 102 and energized, whereby the coating plating layer 502 is deposited and formed. The coating plating layer 502 is a plating that does not contain a carbon nanomaterial, and is not a composite plating like the first plating layer 102. Therefore, the plating conditions are not stricter than the composite plating and do not become complicated.
 次に、保護めっき層103が必要に応じて形成される。保護めっき層103は、接触部100と接合部500の両方に設けても良いし、両方に設けてなくても良いし、片方にのみ設けるようにしてもよい。また保護めっき層103は接触部100と接合部500以外の部分に設けてもよい。接触部100となる部分においては、保護めっき層103は第1めっき層102の表面に形成される。接合部500となる部分においては、保護めっき層103は被覆めっき層502の表面に形成される。 Next, a protective plating layer 103 is formed as necessary. The protective plating layer 103 may be provided on both the contact part 100 and the joint part 500, may not be provided on both, or may be provided on only one side. Further, the protective plating layer 103 may be provided in a part other than the contact part 100 and the joint part 500. The protective plating layer 103 is formed on the surface of the first plating layer 102 in the portion that becomes the contact portion 100. The protective plating layer 103 is formed on the surface of the coating plating layer 502 at the portion that becomes the joint portion 500.
 (電気接続部品の使用例)
 図2は端子部品20a、20bを示す。これらの端子部品20a、20bは、コネクタの対となる接続部品(例えば、ヘッダとソケットなど)にそれぞれ組み込まれる。端子部品20a、20bは、接続部品の接続により、一方の端子部品20aの接触部21aと、他方の端子部品20bの接触部21bとが接触し、これにより、端子部品20aと端子部品20bとが電気的に接続される。また端子部品20aの接合部22a及び端子部品20bの接合部22bは、プリント配線板等の回路パターンの導体又は配線の導体などにそれぞれはんだなどにより接合される。そして、端子部品20a、20bの一方又は両方が本実施形態の電気接続部品10として形成することが可能である。すなわち、接触部21a、21bの一方又は両方が図1Bに示す構造を有し、接合部22a、22bの一方及び両方が図1Aに示す構造を有して形成することができる。
(Use example of electrical connection parts)
FIG. 2 shows the terminal components 20a and 20b. These terminal components 20a and 20b are respectively incorporated in connection components (for example, a header and a socket) that form a connector pair. The terminal parts 20a and 20b contact the contact part 21a of one terminal part 20a and the contact part 21b of the other terminal part 20b by connecting the connection parts, whereby the terminal part 20a and the terminal part 20b are brought into contact with each other. Electrically connected. Further, the joint portion 22a of the terminal component 20a and the joint portion 22b of the terminal component 20b are respectively joined to a conductor of a circuit pattern such as a printed wiring board or a conductor of wiring by solder or the like. One or both of the terminal components 20a and 20b can be formed as the electrical connection component 10 of the present embodiment. That is, one or both of the contact portions 21a and 21b can have the structure shown in FIG. 1B, and one and both of the joint portions 22a and 22b can have the structure shown in FIG. 1A.
 図3はスイッチ30の概略図を示す。このスイッチ30はケース31の上面に押釦35が突出して設けられている。押釦35はレバー33で押圧自在に形成されている。ケース31内において押釦35の下にはバネ34が設けられている。バネ34の先端には可動接点部品30aがバネ34の上下両面に突出して設けられている。またケース31内において、可動接点部品30aの上方及び下方には固定接点部品30bが設けられている。各固定接点部品30b、30cはそれぞれ接点台36b、36cに接合されている。このスイッチ30は、レバー33が操作されることで押釦35が押圧され、バネ34が動作することにより、可動接点部品30aが上方の固定接点部品30cと接触し、下方の固定接点部品30bと離間する状態と、可動接点部品30aが上方の固定接点部品30cと離間し、下方の固定接点部品30bと接触する状態する状態との間で切り替わるように形成されている。そして、可動接点部品30aと固定接点部品30bとが接触することにより電気的な接続が行われる。 FIG. 3 shows a schematic diagram of the switch 30. The switch 30 is provided with a push button 35 protruding from the upper surface of the case 31. The push button 35 is formed so as to be freely pressed by a lever 33. A spring 34 is provided below the push button 35 in the case 31. At the tip of the spring 34, a movable contact part 30 a is provided so as to protrude from both the upper and lower surfaces of the spring 34. In the case 31, fixed contact parts 30b are provided above and below the movable contact parts 30a. The fixed contact parts 30b and 30c are joined to the contact bases 36b and 36c, respectively. In the switch 30, when the lever 33 is operated, the push button 35 is pressed and the spring 34 operates, so that the movable contact part 30a comes into contact with the upper fixed contact part 30c and is separated from the lower fixed contact part 30b. The movable contact part 30a is separated from the upper fixed contact part 30c and is in contact with the lower fixed contact part 30b. Then, the movable contact part 30a and the fixed contact part 30b come into contact with each other to make electrical connection.
 スイッチ30は、可動接点部品30aと固定接点部品30bの一方又は両方が本実施形態の電気接続部品10として形成することが可能である。すなわち、可動接点部品30aの接触部(固定接点部品30b、30cと接触する部分)31aと、固定接点部品30b、30cの接触部(可動接点部品30aと接触する部分)31b、31cの一方又は両方が図1Bに示す構造を有して形成することができる。また、可動接点部品30aの接合部(バネ34と接合する部分)32aと、固定接点部品30b、30cの接合部(接点台36b、36cと接合する部分)32b、32cの一方又は両方が図1Aに示す構造を有して形成することができる。なお、可動接点部品30aをバネ34に接合するにあたっては、カシメが主に用いられるが、溶接又ははんだで接合してもよい。固定接点部品30b、30cと接点台36b、36cは、主に、溶接又ははんだで接合される。 In the switch 30, one or both of the movable contact part 30a and the fixed contact part 30b can be formed as the electrical connection part 10 of the present embodiment. That is, one or both of a contact portion (a portion that contacts the fixed contact components 30b and 30c) 31a of the movable contact component 30a and a contact portion (a portion that contacts the movable contact component 30a) 31b and 31c of the fixed contact components 30b and 30c. Can be formed with the structure shown in FIG. 1B. In addition, one or both of the joint part (part joined to the spring 34) 32a of the movable contact part 30a and the joint part (part joined to the contact points 36b and 36c) 32b and 32c of the fixed contact part 30b and 30c are shown in FIG. Can be formed. In joining the movable contact part 30a to the spring 34, caulking is mainly used, but it may be joined by welding or soldering. The fixed contact parts 30b and 30c and the contact bases 36b and 36c are mainly joined by welding or soldering.
 図4はリレー40の概略図を示す。このリレー40はボディ42とケース43とで囲まれる空間に電磁石ブロック44と接点ブロック45とを備えている。電磁石ブロック44はコイル線46、コイルボビン47、鉄心48、接極子49、継鉄50とを備えている。コイル線46に電気的に接続されるコイル端子51はボディ42に底面から突出している。接点ブロック45は、可動バネ52、可動接点部品40a、固定バネ53、固定接点部品40bを備えている。可動接点部品40aと固定接点部品40bとに電気的に接続される接点端子54はボディ42に底面から突出している。接極子49と可動バネ52とはカード55で接続されている。このリレー40は、コイル線46への通電・不通電により接極子49が動作し、これにより、可動バネ52が動作して、可動接点部品40aが固定接点部品40bと接触する状態と、可動接点部品40aが固定接点部品40bと離間する状態との間で切り替わるように形成されている。そして、可動接点部品40aと固定接点部品40bとが接触することにより電気的な接続が行われる。 FIG. 4 shows a schematic diagram of the relay 40. The relay 40 includes an electromagnet block 44 and a contact block 45 in a space surrounded by the body 42 and the case 43. The electromagnet block 44 includes a coil wire 46, a coil bobbin 47, an iron core 48, an armature 49, and a yoke 50. A coil terminal 51 electrically connected to the coil wire 46 projects from the bottom surface of the body 42. The contact block 45 includes a movable spring 52, a movable contact part 40a, a fixed spring 53, and a fixed contact part 40b. A contact terminal 54 electrically connected to the movable contact part 40 a and the fixed contact part 40 b protrudes from the bottom surface of the body 42. The armature 49 and the movable spring 52 are connected by a card 55. In this relay 40, the armature 49 is operated by energization / non-energization of the coil wire 46, whereby the movable spring 52 is operated and the movable contact part 40 a is in contact with the fixed contact part 40 b, and the movable contact The part 40a is formed so as to be switched between a state where it is separated from the fixed contact part 40b. Then, the movable contact part 40a and the fixed contact part 40b come into contact with each other to make electrical connection.
 リレー40は、可動接点部品40aと固定接点部品40bの一方又は両方が本実施形態の電気接続部品10として形成することが可能である。すなわち、可動接点部品40aの接触部(固定接点部品40bと接触する部分)41aと、固定接点部品40bの接触部(可動接点部品40aと接触する部分)41bの一方又は両方が図1Bに示す構造を有して形成することができる。また、可動接点部品40aの接合部(可動バネ52と接合する部分)42aと、固定接点部品40bの接合部(固定バネ53と接合する部分)42bの一方又は両方が図1Aに示す構造を有して形成することができる。なお、可動接点部品40aを可動バネ52に接合したり、固定接点部品40bを固定バネ53に接合したりするにあたっては、カシメが主に用いられるが、溶接又ははんだで接合してもよい。 In the relay 40, one or both of the movable contact part 40a and the fixed contact part 40b can be formed as the electrical connection part 10 of the present embodiment. That is, one or both of a contact portion (a portion that contacts the fixed contact component 40b) 41a of the movable contact component 40a and a contact portion (a portion that contacts the movable contact component 40a) 41b of the fixed contact component 40b are shown in FIG. 1B. Can be formed. In addition, one or both of a joint portion (a portion that joins the movable spring 52) 42a of the movable contact component 40a and a joint portion (a portion that joins the fixed spring 53) 42b of the fixed contact component 40b has the structure shown in FIG. 1A. Can be formed. In joining the movable contact part 40a to the movable spring 52 and joining the fixed contact part 40b to the fixed spring 53, caulking is mainly used, but welding or soldering may be used.
 (本実施形態の効果)
 本実施形態の電気接続部品10は、接触することにより電気的な接続を行う接触部100を備え、この接触部100がカーボンナノ材料104を有しているので、低接触圧力であってもカーボンナノ材料104で他の部材との接触を損なうこと無く確保して電気的な接続を行うことができ、低接圧領域での接触信頼性を確保しやすくなる。
(Effect of this embodiment)
The electrical connection component 10 of the present embodiment includes a contact portion 100 that is electrically connected by contact, and the contact portion 100 includes the carbon nanomaterial 104. Therefore, even when the contact pressure is low, the electrical connection component 10 includes carbon. The nanomaterial 104 can ensure electrical contact without impairing contact with other members, and can easily ensure contact reliability in a low contact pressure region.
 また、本実施形態の電気接続部品10は、接触部100の表面と、接触部100と接触する他の部材との間にカーボンナノ材料104が介在するため、接触部100と他の部材との凝着・磨耗を少なくすることができ、電気接続部品10の耐スティッキング性が向上しやすくなる。従って、上記のような電気接続部品10を開閉回数の多いスイッチ又はリレー等の接点部品として用いると、スティッキング現象が起こりにくく、また、容易に長寿命化を図ることができて好ましい。 Moreover, since the carbon nanomaterial 104 is interposed between the surface of the contact part 100 and the other member that contacts the contact part 100, the electrical connection component 10 of the present embodiment has a contact between the contact part 100 and the other member. Adhesion and wear can be reduced, and the sticking resistance of the electrical connection component 10 is easily improved. Therefore, it is preferable to use the electrical connection component 10 as described above as a contact component such as a switch or a relay having a large number of opening / closing operations, because the sticking phenomenon hardly occurs and the life can be easily extended.
 また、本実施形態の電気接続部品10は、接合により機械的な接続を行う接合部500を備え、この接合部500が、第1めっき層102の表面に突出するカーボンナノ材料104を覆う第2めっき層501を有しているので、接合部500の表面におけるカーボンナノ材料104の露出を低減することができ、接合部500の表面と他の部材との密着性を高めて接合強度を高くすることができる。 In addition, the electrical connection component 10 of the present embodiment includes a joint portion 500 that performs mechanical connection by joining, and the joint portion 500 covers the second carbon nanomaterial 104 that protrudes from the surface of the first plating layer 102. Since the plating layer 501 is provided, the exposure of the carbon nanomaterial 104 on the surface of the joint portion 500 can be reduced, and the adhesion between the surface of the joint portion 500 and another member is increased to increase the joint strength. be able to.
 さらに本実施形態の電気接続部品10は、カーボンナノ材料104を保持する第1めっき層102の表面に、第1めっき層102とカーボンナノ材料104との電位差により生じる腐食を抑制するための保護めっき層103を設けている。従って、本実施形態の電気接続部品10は、第1めっき層102の腐食を抑制することができ、耐食性を高くすることができる。 Furthermore, the electrical connection component 10 of this embodiment is a protective plating for suppressing corrosion caused by a potential difference between the first plating layer 102 and the carbon nanomaterial 104 on the surface of the first plating layer 102 holding the carbon nanomaterial 104. A layer 103 is provided. Therefore, the electrical connection component 10 of the present embodiment can suppress the corrosion of the first plating layer 102 and can improve the corrosion resistance.
 以下、本発明を実施例によって具体的に説明する。
(実施例1)
 母材としては、材質が銅板またはコネクタの接点部品に適用される形状に成形されたリン青銅またはチタン銅などのCu合金を用いた。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
As the base material, a Cu alloy such as phosphor bronze or titanium copper formed into a shape that is applied to a copper plate or a contact part of a connector was used.
 母材の全体にカーボンナノ材料と第1めっき層とを備えた複合めっき層を形成した。ここで、カーボンナノ材料としてCNTを含有するNi-P合金めっき液を用いた。CNTとしては、昭和電工(株)製のVGCFを用いた。このCNTは多層CNTである。また、CNTの直径(外径)が100~200nmで、長さが10~20μmの範囲であった。Ni-P合金めっき液の組成は、硫酸Ni(1mol/dm)、塩化Ni(0.2mol/dm)、ホウ酸(0.5mol/dm)、クエン酸(0.5mol/dm)、ホスホン酸(1.0mol/dm)、分散剤である分子量5000のポリカルボン酸(2×10-4mol/dm)であった。CNTを含有するNi-P合金めっき液はCNTの混合量を2g/dmとした。また、CNTを含有するNi-P合金めっき液をめっき浴とし、浴温50±10℃、電流密度1~15A/dmのめっき条件とした。そして、Ni-P合金めっき層である第1めっき層の厚みが1.5μm、CNTの含有量が1.0質量%のCNT含有Ni-P合金めっき層を形成した。 A composite plating layer including the carbon nanomaterial and the first plating layer was formed on the entire base material. Here, a Ni—P alloy plating solution containing CNT was used as the carbon nanomaterial. As CNT, VGCF made by Showa Denko Co., Ltd. was used. This CNT is a multilayer CNT. Further, the diameter (outer diameter) of the CNTs was in the range of 100 to 200 nm and the length was in the range of 10 to 20 μm. The composition of the Ni-P alloy plating solution, sulfuric acid Ni (1mol / dm 3), chloride Ni (0.2mol / dm 3), boric acid (0.5mol / dm 3), citric acid (0.5 mol / dm 3 ), Phosphonic acid (1.0 mol / dm 3 ), and a polycarboxylic acid having a molecular weight of 5000 (2 × 10 −4 mol / dm 3 ) as a dispersant. In the Ni—P alloy plating solution containing CNT, the mixing amount of CNT was set to 2 g / dm 3 . Further, a Ni—P alloy plating solution containing CNT was used as a plating bath, and the plating temperature was 50 ± 10 ° C. and the current density was 1 to 15 A / dm 2 . Then, a CNT-containing Ni—P alloy plating layer in which the thickness of the first plating layer as the Ni—P alloy plating layer was 1.5 μm and the CNT content was 1.0 mass% was formed.
 次に、接合部となる部分において、第1めっき層の表面に被覆めっき層を形成した。この被覆めっき層により第1めっき層の表面に突出したCNTが外部に露出しないように覆われた。被覆めっき層は厚み1.5μmのNiめっき膜であって、めっき条件はスルファミン酸Ni(450g/l)、塩化Ni(3g/l)、ホウ酸(30g/l)、添加剤(適量)、ピット防止剤(適量)、pH=3.0~4.5、浴温40~50℃で電解めっきを1分間行った。 Next, a coating plating layer was formed on the surface of the first plating layer at a portion to be a joint. The coated plating layer covered the CNT protruding on the surface of the first plating layer so as not to be exposed to the outside. The coating plating layer is a Ni plating film having a thickness of 1.5 μm, and the plating conditions are Ni sulfamic acid (450 g / l), Ni chloride (3 g / l), boric acid (30 g / l), additive (appropriate amount), Electroplating was performed for 1 minute at a pit inhibitor (appropriate amount), pH = 3.0 to 4.5, and a bath temperature of 40 to 50 ° C.
 次に、接触部となる部分及び接合部となる部分において、保護めっき層を形成した。接触部となる部分では第1めっき層の表面に保護めっき層を形成した。接合部となる部分では被覆めっき層の表面に保護めっき層を形成した。保護めっき層はSnめっきで形成した。この場合、めっき液としては石原薬品株式会社製の「PF-095S」を使用し、浴温35℃、電流密度3ASDの条件でSnめっきを形成した。保護めっき層の厚みは0.3μmとした。 Next, a protective plating layer was formed in the part to be the contact part and the part to be the joint part. A protective plating layer was formed on the surface of the first plating layer at the portion to be the contact portion. A protective plating layer was formed on the surface of the coating plating layer at a portion to be a joint. The protective plating layer was formed by Sn plating. In this case, “PF-095S” manufactured by Ishihara Pharmaceutical Co., Ltd. was used as the plating solution, and Sn plating was formed under the conditions of a bath temperature of 35 ° C. and a current density of 3 ASD. The thickness of the protective plating layer was 0.3 μm.
 このようにして電気接続部品を形成した。接触部においては、保護めっき層の表面にCNTが突出しているが、接合部においては、被覆めっき層と保護めっき層からなる第2めっき層の表面にCNTが突出していない。 In this way, electrical connection parts were formed. In the contact portion, CNT protrudes on the surface of the protective plating layer, but in the bonding portion, CNT does not protrude on the surface of the second plating layer composed of the coating plating layer and the protection plating layer.
 (実施例2)
 Snめっきの代わりに、Au-Co合金めっきにより厚み0.3μmの保護めっき層を形成した以外は、実施例1と同様にして電気接続部品を形成した。この場合、めっき液としては日本高純度化学社製の「オーロブライト BAR7」を使用し、浴温50℃、電流密度5A/dmの条件でAu-Co合金めっきを形成した。
(Example 2)
An electrical connection component was formed in the same manner as in Example 1 except that a protective plating layer having a thickness of 0.3 μm was formed by Au—Co alloy plating instead of Sn plating. In this case, “Aurobright BAR7” manufactured by Japan High Purity Chemical Co., Ltd. was used as the plating solution, and Au—Co alloy plating was formed under conditions of a bath temperature of 50 ° C. and a current density of 5 A / dm 2 .
 (比較例1)
 第2めっき層(被覆めっき層及び保護めっき層)を形成しなかった以外は実施例1と同様にした。この場合、接合部となる部分では、第1めっき層の表面にCNTが突出している。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the second plating layer (the coating plating layer and the protective plating layer) was not formed. In this case, CNT protrudes on the surface of the first plating layer at the portion to be the joint.
 (接触信頼性の評価)
 上記の各実施例及び比較例1について、電気接続部品の接触部における亜硫酸ガス試験後の接触抵抗値の測定を行った。亜硫酸ガス試験は、各実施例及び比較例1を温度40±2℃、湿度90±3%RH、亜硫酸ガス濃度10±3ppmの条件下に48時間放置して行った。
(Evaluation of contact reliability)
About each said Example and the comparative example 1, the contact resistance value after the sulfurous acid gas test in the contact part of an electrical-connection component was measured. The sulfurous acid gas test was performed by leaving each Example and Comparative Example 1 for 48 hours under conditions of a temperature of 40 ± 2 ° C., a humidity of 90 ± 3% RH, and a sulfurous acid gas concentration of 10 ± 3 ppm.
 接触抵抗値の測定には(株)山崎精機研究所が作製した電気接点シミュレータ(型式CRS-113-AU型)を用いた。交流4端子法による測定のため、測定値にはリード線、コネクタ部などの固有抵抗は含まれず、接触荷重を変化させた時の接触抵抗値を計測することができる。電動ステージにより、一定荷重で接触位置を走査でき、スイッチ及びリレー接点におけるワイピングを想定した測定も可能である。尚、接触力0.2Nで接触抵抗値の測定を行った。また各実施例及び比較例1はそれぞれ5個(サンプルNo.1~5)ずつ評価を行った。結果を表1に示す。 For the measurement of the contact resistance value, an electrical contact simulator (model CRS-113-AU type) manufactured by Yamazaki Seiki Laboratory Co., Ltd. was used. Since the measurement is based on the AC four-terminal method, the measured values do not include specific resistances such as lead wires and connector parts, and the contact resistance value when the contact load is changed can be measured. The contact position can be scanned with a constant load by the electric stage, and measurement assuming wiping at the switch and relay contact is also possible. The contact resistance value was measured at a contact force of 0.2N. Each Example and Comparative Example 1 were evaluated by 5 pieces (Sample Nos. 1 to 5). The results are shown in Table 1.
 この結果から明らかなように、各実施例は比較例1よりも接触抵抗値が小さく、低接触圧力領域での接触信頼性が高いと言える。 As is clear from this result, it can be said that each example has a smaller contact resistance value than Comparative Example 1, and has high contact reliability in a low contact pressure region.
 また実施例1の5個について、接触荷重の変化による電気抵抗値の変化を測定した。結果を図6に示す。図6から明らかなように、本実施形態の電気接続部品では、接触荷重0.1Nでも安定した接触抵抗値を示す。 Also, the change in electrical resistance value due to the change in contact load was measured for five of Example 1. The results are shown in FIG. As is clear from FIG. 6, the electrical connection component of this embodiment shows a stable contact resistance value even with a contact load of 0.1N.
 (接合性の評価)
 各実施例及び比較例1について、はんだ実装後の挿抜試験を行った。すなわち、各実施例及び比較例1について、電気接続部品の接合部をプリント配線板の導体回路パターンにはんだ接合し、この後、挿抜試験機にてプリント配線板の表面に対して垂直方向に引き抜くように電気接続部品に荷重を付与した。引き抜き速度は2mm/minとした。そして、電気接続部品が導体回路パターンから外れた時の力(ピール強度)を測定した。結果を表2に示す。尚、導体回路パターンへの電気接続部品の接合部のはんだ接合は、以下のようにして行った。厚み0.12mmのマスクスクリーンを用いて、接合部の表面に鉛フリーはんだペーストをΦ4.5mmの円の形状になるように塗布した。はんだペーストは千住金属工業(株)製のM705-221BM5-32-11.2Kを使用した。実装条件は大気下で図5の温度プロファイルを用いたリフローとした。また各実施例及び比較例はそれぞれ5個(サンプルNo.1~5)ずつ評価を行った。
(Evaluation of bondability)
About each Example and Comparative Example 1, the insertion / extraction test after solder mounting was done. That is, for each of the examples and comparative example 1, the joint portion of the electrical connection component is soldered to the conductor circuit pattern of the printed wiring board, and then is pulled out in a direction perpendicular to the surface of the printed wiring board with an insertion / extraction tester. Thus, a load was applied to the electrical connection component. The drawing speed was 2 mm / min. And the force (peel strength) when the electrical connection component deviated from the conductor circuit pattern was measured. The results are shown in Table 2. In addition, the solder joint of the junction part of the electrical connection component to the conductor circuit pattern was performed as follows. Using a mask screen having a thickness of 0.12 mm, a lead-free solder paste was applied to the surface of the joint so as to form a circle of Φ4.5 mm. As the solder paste, M705-221BM5-32-11.2K manufactured by Senju Metal Industry Co., Ltd. was used. The mounting conditions were reflow using the temperature profile of FIG. 5 in the atmosphere. In addition, each example and comparative example were evaluated by 5 pieces (sample Nos. 1 to 5).
 この結果から、各実施例は比較例1よりも接合強度が大きくなり、各実施例は十分な接合強度(規格2N以上)を有している。 From this result, each example has a higher bonding strength than Comparative Example 1, and each example has a sufficient bonding strength (standard 2N or higher).
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 図7Aには実施例1の接触部100の表面走査型電子顕微鏡写真が示されている。同様に、図7Bには実施例1の接合部500、図7Cには比較例1の接合部500(接触部100)の表面走査型電子顕微鏡写真が示されている。接触部100の表面では実施例1及び比較例1のいずれであってもCNT(カーボンナノ材料104)が露出しているが、実施例1の接合部500の表面にはCNTは見られない。 FIG. 7A shows a surface scanning electron micrograph of the contact portion 100 of Example 1. Similarly, FIG. 7B shows a surface scanning electron micrograph of the joint portion 500 of Example 1, and FIG. 7C shows the joint portion 500 (contact portion 100) of Comparative Example 1. Although the CNT (carbon nanomaterial 104) is exposed on the surface of the contact portion 100 in both Example 1 and Comparative Example 1, no CNT is seen on the surface of the bonding portion 500 of Example 1.
 (実施例3)
 次に、実施例1と同様にして、接合部となる部分において、第1めっき層の表面に被覆めっき層を形成した。
(Example 3)
Next, in the same manner as in Example 1, a coating plating layer was formed on the surface of the first plating layer in a portion to be a joint portion.
 次に、接触部となる部分及び接合部となる部分において、保護めっき層を形成した。接触部となる部分では第1めっき層の表面に保護めっき層を形成した。接合部となる部分では被覆めっき層の表面に保護めっき層を形成した。保護めっき層はSnめっきで形成した。この場合、めっき液としては石原薬品株式会社製の「PF-095S」を使用し、浴温35℃、電流密度3ASDの条件でSnめっきを形成した。保護めっき層の厚みは0.1μmとした。 Next, a protective plating layer was formed in the part to be the contact part and the part to be the joint part. A protective plating layer was formed on the surface of the first plating layer at the portion to be the contact portion. A protective plating layer was formed on the surface of the coating plating layer at a portion to be a joint. The protective plating layer was formed by Sn plating. In this case, “PF-095S” manufactured by Ishihara Pharmaceutical Co., Ltd. was used as the plating solution, and Sn plating was formed under the conditions of a bath temperature of 35 ° C. and a current density of 3 ASD. The thickness of the protective plating layer was 0.1 μm.
 このようにして電気接続部品(平板)を形成した。接触部においては、保護めっき層の表面にCNTが突出しているが、接合部においては、被覆めっき層と保護めっき層からなる第2めっき層の表面にCNTが突出していない。 In this way, an electrical connection component (flat plate) was formed. In the contact portion, CNT protrudes on the surface of the protective plating layer, but in the bonding portion, CNT does not protrude on the surface of the second plating layer composed of the coating plating layer and the protection plating layer.
 (実施例4)
 カーボンナノ材料として、CNTの代わりにCBを用いてCB含有Ni-P合金めっき層を形成した以外は実施例3と同様にした。CBとしては、Cabot社製のバルカンXC-72を用いた。このCBは直径(粒子径)が20~40nmの範囲である。
(Example 4)
The same procedure as in Example 3 was performed except that a CB-containing Ni—P alloy plating layer was formed using CB instead of CNT as the carbon nanomaterial. As CB, Vulcan XC-72 manufactured by Cabot was used. This CB has a diameter (particle diameter) in the range of 20 to 40 nm.
 (実施例5)
 第1めっき層としてNi-P合金めっきの代わりに、Niめっきを形成した以外は実施例3と同様にした。Niめっき液の組成は、硫酸Ni(1mol/dm)、塩化Ni(0.2mol/dm)、ホウ酸(0.5mol/dm)であった。CNTを含有するNiめっき液はCNTの混合量を2g/dmとした。また、CNTを含有するNiめっき液をめっき浴とし、浴温50℃、電流密度5A/dmのめっき条件とした。
(Example 5)
Example 1 was performed except that Ni plating was formed instead of Ni—P alloy plating as the first plating layer. The composition of the Ni plating solution was Ni sulfate (1 mol / dm 3 ), Ni chloride (0.2 mol / dm 3 ), and boric acid (0.5 mol / dm 3 ). In the Ni plating solution containing CNT, the mixing amount of CNT was set to 2 g / dm 3 . Moreover, Ni plating solution containing CNT was used as a plating bath, and the plating temperature was 50 ° C. and the current density was 5 A / dm 2 .
 (比較例2)
 被覆めっき層及び保護めっき層を形成しなかった以外は実施例4と同様にした。
(Comparative Example 2)
The same procedure as in Example 4 was performed except that the coating plating layer and the protective plating layer were not formed.
 (比較例3)
 母材としては実施例3と同様のものを用いた。母材の接触部となる部分にNiめっき層(カーボンナノ材料を含有していない)を形成した。Niめっき層の形成条件は、Niめっき液の組成が、スルファミン酸ニッケル400g/dm、ホウ酸40g/dm、塩化ニッケル5g/dmであった。また、浴温50℃、電流密度5A/dmのめっき条件とした。Niめっき層の厚みは1.5μmとした。
(Comparative Example 3)
The same base material as in Example 3 was used. A Ni plating layer (containing no carbon nanomaterial) was formed on a portion that would be a contact portion of the base material. The formation conditions of the Ni plating layer were such that the composition of the Ni plating solution was 400 g / dm 3 nickel sulfamate, 40 g / dm 3 boric acid, and 5 g / dm 3 nickel chloride. The plating conditions were a bath temperature of 50 ° C. and a current density of 5 A / dm 2 . The thickness of the Ni plating layer was 1.5 μm.
 このようにして平板(電気接続部品)を形成した。 In this way, a flat plate (electrical connection part) was formed.
 (比較例4)
 Au-Co合金めっき層の厚みを0.06μmとした以外は比較例3と同様にした。
(Comparative Example 4)
Comparative Example 3 was performed except that the thickness of the Au—Co alloy plating layer was set to 0.06 μm.
 (比較例5)
 比較例3において、Au-Co合金めっき層に封孔処理(水溶性封孔処理液に浸漬後、80℃で乾燥)を施した。
(Comparative Example 5)
In Comparative Example 3, the Au—Co alloy plating layer was subjected to sealing treatment (dipped in a water-soluble sealing treatment solution and then dried at 80 ° C.).
 (比較例6)
 比較例4において、Au-Co合金めっき層に封孔処理を施した。封孔処理の条件は比較例5と同様にした。
(Comparative Example 6)
In Comparative Example 4, the Au—Co alloy plating layer was sealed. The conditions for the sealing treatment were the same as in Comparative Example 5.
 (耐食性の評価)
 上記実施例3~5及び比較例2~6について、耐食性の評価を行った。すなわち、各実施例及び各比較例の平板(電気接続部品)を濃度80ppmの硫酸水溶液に浸漬した後、温度260℃で5分間放置した。この後、電気化学測定を行ってターフェルプロットを作製した。電気化学測定は、北斗電工株式会社の「HZ-7000」を使用し、参照電極をAg/Ag-Cl、対極にPtを用い、腐食電流・電位を測定した。結果を図8に示す。
(Evaluation of corrosion resistance)
The corrosion resistance of the above Examples 3 to 5 and Comparative Examples 2 to 6 was evaluated. That is, the flat plate (electrical connection part) of each example and each comparative example was immersed in a sulfuric acid aqueous solution having a concentration of 80 ppm, and then allowed to stand at a temperature of 260 ° C. for 5 minutes. Thereafter, electrochemical measurement was performed to prepare a Tafel plot. For electrochemical measurement, “HZ-7000” manufactured by Hokuto Denko Co., Ltd. was used, Ag / Ag—Cl as the reference electrode and Pt as the counter electrode, and the corrosion current / potential was measured. The results are shown in FIG.
 図8から明らかなように、各実施例は各比較例よりも腐食電位及び腐食電流が低くなって貴であり、腐食が抑制されていることが判る。 As is apparent from FIG. 8, it can be seen that each example is noble because the corrosion potential and the corrosion current are lower than each comparative example, and corrosion is suppressed.
 (接触信頼性試験)
 パナソニック株式会社製のコネクタ「P5KS」に使用される端子部品を形成した。このコネクタはヘッダとソケットからなり、ヘッダとソケットはそれぞれ40個の端子部品を有している。コネクタのサンプルとして以下の(1)~(5)及び現状品を準備した。
(Contact reliability test)
Terminal parts used for a connector “P5KS” manufactured by Panasonic Corporation were formed. This connector includes a header and a socket, and the header and the socket each have 40 terminal parts. The following (1) to (5) and current products were prepared as connector samples.
 サンプル(1)は、端子部品の接触部がカーボンナノ材料であるCBとNi-P合金からなる第1めっき層との複合めっき層(Ni-P-CB複合めっき層、第1めっき層の厚み1.5μm、めっき皮膜中のP濃度10wt%)を有し、第1めっき層の表面に保護めっき層としてSnめっき層(厚み0.1μm)を有しているものである。 Sample (1) is a composite plating layer (Ni-P-CB composite plating layer, the thickness of the first plating layer) of CB, which is a carbon nanomaterial, and a first plating layer made of a Ni—P alloy at the contact part of the terminal component. 1.5 μm, P concentration in the plating film is 10 wt%), and the surface of the first plating layer has a Sn plating layer (thickness: 0.1 μm) as a protective plating layer.
 サンプル(2)は、めっき皮膜中のP濃度5wt%である以外はサンプル(1)と同様に形成されている。 Sample (2) is formed in the same manner as sample (1) except that the P concentration in the plating film is 5 wt%.
 サンプル(3)は、保護めっき層がSn-Ni合金めっきである以外はサンプル(1)と同様に形成されている。 Sample (3) is formed in the same manner as sample (1) except that the protective plating layer is Sn—Ni alloy plating.
 サンプル(4)は、カーボンナノ材料がCNTである以外はサンプル(1)と同様に形成されている。 Sample (4) is formed in the same manner as sample (1) except that the carbon nanomaterial is CNT.
 サンプル(5)は、カーボンナノ材料がCNTである以外はサンプル(2)と同様に形成されている。 Sample (5) is formed in the same manner as sample (2) except that the carbon nanomaterial is CNT.
 現状品は、端子部品の接触部がカーボンナノ材料を有しておらず、第1めっき層であるNiめっき層を厚み1.5μmで有し、保護めっき層をAu-Co合金めっきで厚み0.2μmで形成した後、封孔処理したものである。 In the current product, the contact part of the terminal component does not have a carbon nanomaterial, the Ni plating layer as the first plating layer has a thickness of 1.5 μm, and the protective plating layer has a thickness of 0 by Au—Co alloy plating. . After forming at 2 μm, it is sealed.
 このようなコネクタ(サンプル(1)~(5)及び現状品)を用いて、以下の接触抵抗値の測定試験1~4を行った。各測定試験は3個のコネクタを用いて行った。 Using such connectors (samples (1) to (5) and current products), the following contact resistance value measurement tests 1 to 4 were performed. Each measurement test was performed using three connectors.
 (接触抵抗値の測定試験1)
 大気圧リフロー半田付け工程を想定した温度260℃の大気中で3回熱処理を行った後の接触抵抗値を測定した。
(Contact resistance measurement test 1)
The contact resistance value after performing heat treatment three times in the atmosphere at a temperature of 260 ° C. assuming an atmospheric pressure reflow soldering process was measured.
 (接触抵抗値の測定試験2)
 濃度10±3ppmの亜硫酸ガス中で温度40±2℃、湿度90±3%RHの条件で48時間放置した後の接触抵抗値を測定した。
(Contact resistance measurement test 2)
The contact resistance value was measured after leaving in a sulfurous acid gas having a concentration of 10 ± 3 ppm at a temperature of 40 ± 2 ° C. and a humidity of 90 ± 3% RH for 48 hours.
 (接触抵抗値の測定試験3)
 ヘッドとソケットとを50回挿抜した後の接触抵抗値を測定した。
(Measurement test 3 of contact resistance value)
The contact resistance value after inserting and removing the head and socket 50 times was measured.
 (接触抵抗値の測定試験4)
 耐湿サイクル12回行った後の接触抵抗値を測定した。
(Contact resistance measurement test 4)
The contact resistance value after 12 moisture resistance cycles was measured.
 測定試験1~4の結果を図9A~図9Dに示す。この結果から明らかなように、サンプル(1)~(5)は現状品と同程度あるいはそれ以下の接触抵抗値を有し、低接触圧力領域での接触信頼性が高いと言える。 Results of measurement tests 1 to 4 are shown in FIGS. 9A to 9D. As is apparent from this result, it can be said that samples (1) to (5) have a contact resistance value comparable to or lower than that of the current product and have high contact reliability in a low contact pressure region.
 またサンプル(1)~(5)について、接触荷重の変化による電気抵抗値の変化を測定した。結果を図10に示す。図10から明らかなように、本実施形態の電気接続部品であるサンプル(1)~(5)は、接触荷重0.1Nでも安定した接触抵抗値を示す。 In addition, with respect to samples (1) to (5), the change in electrical resistance value due to the change in contact load was measured. The results are shown in FIG. As is apparent from FIG. 10, samples (1) to (5), which are the electrical connection parts of this embodiment, show stable contact resistance values even with a contact load of 0.1N.
 (本実施形態の特徴)
 本実施形態の電気接続部品(10)は、以下の特徴を有する。
(Features of this embodiment)
The electrical connection component (10) of this embodiment has the following characteristics.
 すなわち、電気接続部品(10)は、母材(101)と、母材(101)の表面上における第1の領域に配置され、他の電気回路又は他の電気接点部品と接触により電気的に接続される接触部(100)と、第1の領域とは異なる母材(101)の表面上における第2の領域に配置され、外部の導電部材と接合により接続される接合部(500)とを備える。接触部(100)及び接合部(500)の各々が、母材(101)の表面に形成される第1めっき層(102)と、第1めっき層(102)に保持されて第1めっき層(102)の表面から突出するカーボンナノ材料(104)とを備える。接合部(500)が、接合部(500)における第1めっき層(102)の表面に形成され、接合部(500)における第1めっき層(102)の表面から突出するカーボンナノ材料(104)を覆う第2めっき層(501)を備える。 That is, the electrical connection component (10) is disposed in the first region on the surface of the base material (101) and the base material (101), and is electrically connected to another electrical circuit or another electrical contact component. A contact portion (100) to be connected, and a joint portion (500) disposed in a second region on the surface of the base material (101) different from the first region and connected to an external conductive member by joining Is provided. Each of the contact portion (100) and the joint portion (500) is held by the first plating layer (102) formed on the surface of the base material (101) and the first plating layer (102), and the first plating layer. Carbon nanomaterial (104) protruding from the surface of (102). A carbon nanomaterial (104) in which a joint (500) is formed on the surface of the first plating layer (102) in the joint (500) and protrudes from the surface of the first plating layer (102) in the joint (500). A second plating layer (501) is provided.
 このような電気接続部品(10)は、接触部(100)がカーボンナノ材料(104)を有しているので、低接触圧力であってもカーボンナノ材料(104)で他の部材との接触を損なうこと無く確保して電気的な接続を行うことができ、低接圧領域での接触信頼性を確保しやすくなる。また接合部(500)が、第1めっき層(102)の表面から突出するカーボンナノ材料(104)を覆う第2めっき層(501)を有しているので、接合部(500)の表面におけるカーボンナノ材料(104)の露出を低減することができ、接合部(500)の表面と他の部材との密着性を高めて接合強度を高くすることができる。 In such an electrical connection component (10), since the contact portion (100) has the carbon nanomaterial (104), the carbon nanomaterial (104) is in contact with other members even at a low contact pressure. Thus, it is possible to ensure electrical contact without impairing contact resistance, and it is easy to ensure contact reliability in a low contact pressure region. Moreover, since the junction part (500) has the 2nd plating layer (501) which covers the carbon nanomaterial (104) which protrudes from the surface of the 1st plating layer (102), in the surface of a junction part (500) The exposure of the carbon nanomaterial (104) can be reduced, and the bonding strength can be increased by improving the adhesion between the surface of the bonding portion (500) and another member.
 上記電気接続部品(10)は、第1めっき層(102)がNi又はNi-P合金を含有し、第2めっき層(501)がSn又はAuの少なくとも1つを含有していることが好ましい。 In the electrical connection component (10), the first plating layer (102) preferably contains Ni or a Ni—P alloy, and the second plating layer (501) preferably contains at least one of Sn or Au. .
 このような電気接続部品(10)は、第1めっき層(102)がNiを含有しているため、酸化による変色などの外観変化を小さくすることができ、また第2めっき層(501)がSn又はAuを含有しているため、耐腐食性を向上させることができる。 In such an electrical connection component (10), since the first plating layer (102) contains Ni, appearance change such as discoloration due to oxidation can be reduced, and the second plating layer (501) Since it contains Sn or Au, corrosion resistance can be improved.
 上記電気接続部品(10)は、第2めっき層(501)の厚みが0.03μm以上2.0μm以下であることが好ましい。 In the electrical connection component (10), the thickness of the second plating layer (501) is preferably 0.03 μm or more and 2.0 μm or less.
 このような電気接続部品(10)は、第2めっき層(501)でカーボンナノ材料(104)の露出を十分に抑制することができる。 Such an electrical connection component (10) can sufficiently suppress the exposure of the carbon nanomaterial (104) by the second plating layer (501).
 上記電気接続部品(10)は、接触部(100)が、第2めっき層(501)を備えていないことが好ましい。 In the electrical connection component (10), it is preferable that the contact portion (100) does not include the second plating layer (501).
 このような電気接続部品(10)は、接触部(100)の表面のカーボンナノ材料(104)が第2めっき層(501)で覆われなくなって、接触信頼性の低下が抑制される。 In such an electrical connection component (10), the carbon nanomaterial (104) on the surface of the contact portion (100) is not covered with the second plating layer (501), and a decrease in contact reliability is suppressed.
 上記電気接続部品(10)は、接触部(100)が、第1めっき層(102)とカーボンナノ材料(104)との電位差により生じる腐食を抑制するための保護めっき層(103)を有することが好ましい。 In the electrical connection component (10), the contact portion (100) has a protective plating layer (103) for suppressing corrosion caused by a potential difference between the first plating layer (102) and the carbon nanomaterial (104). Is preferred.
 このような電気接続部品(10)は、第1めっき層(102)とカーボンナノ材料(104)との電位差により生じる腐食が保護めっき層(103)で抑制され、耐食性が高い。 Such an electrical connection component (10) has high corrosion resistance because corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104) is suppressed by the protective plating layer (103).
 上記電気接続部品(10)は、保護めっき層(103)が、第1めっき層(102)に含有される金属元素よりも貴な金属元素を含有していることが好ましい。 In the electrical connection component (10), the protective plating layer (103) preferably contains a metal element nobler than the metal element contained in the first plating layer (102).
 このような電気接続部品(10)は、第1めっき層(102)とカーボンナノ材料(104)との電位差により生じる腐食を抑制する効果の高い保護めっき層(103)が得られ、耐食性がより高くなる。 Such an electrical connection component (10) provides a protective plating layer (103) that is highly effective in suppressing corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104), and is more corrosion resistant. Get higher.
 上記電気接続部品(10)は、第1めっき層(102)がNi又はNi-P合金で形成される。保護めっき層(103)がNiよりも貴な金属元素としてSn、Cu、Ag、Au、Pd、Rh、Ruの群から選ばれる少なくとも1つを含有していることが好ましい。 In the electrical connection component (10), the first plating layer (102) is formed of Ni or a Ni—P alloy. It is preferable that the protective plating layer (103) contains at least one selected from the group of Sn, Cu, Ag, Au, Pd, Rh, and Ru as a metal element nobler than Ni.
 このような電気接続部品(10)は、第1めっき層(102)に含有されるNiとカーボンナノ材料(104)との電位差により生じる腐食が保護めっき層(103)に含有されるSn、Cu、Ag、Au、Pd、Rh、Ruの群から選ばれる少なくとも1つで抑制され、耐食性が高い。 Such an electrical connection component (10) is composed of Sn, Cu in which corrosion caused by a potential difference between Ni contained in the first plating layer (102) and the carbon nanomaterial (104) is contained in the protective plating layer (103). , Ag, Au, Pd, Rh, Ru are suppressed by at least one, and corrosion resistance is high.
 上記電気接続部品(10)は、保護めっき層(103)の厚みが0.1μm以上1.0μm以下であることが好ましい。 In the electrical connection component (10), the protective plating layer (103) preferably has a thickness of 0.1 μm or more and 1.0 μm or less.
 このような電気接続部品(10)は、第1めっき層(102)とカーボンナノ材料(104)との電位差により生じる腐食を抑制する効果の高い保護めっき層(103)が得られ、耐食性がより高くなる。 Such an electrical connection component (10) provides a protective plating layer (103) that is highly effective in suppressing corrosion caused by the potential difference between the first plating layer (102) and the carbon nanomaterial (104), and is more corrosion resistant. Get higher.
 10 電気接続部品
 100、21a、21b、31a、31b、31c、41a、41b 接触部
 101 母材
 102 第1めっき層
 103 保護めっき層
 104 カーボンナノ材料
 500、22a、22b、32a、32b、32c、42a、42b 接合部
 501 第2めっき層
 
10 Electrical connection parts 100, 21a, 21b, 31a, 31b, 31c, 41a, 41b Contact part 101 Base material 102 First plating layer 103 Protective plating layer 104 Carbon nanomaterial 500, 22a, 22b, 32a, 32b, 32c, 42a , 42b Joint 501 Second plating layer

Claims (8)

  1.  母材と、
     前記母材の表面上における第1の領域に配置され、他の電気回路又は他の電気接点部品と接触により電気的に接続される接触部と、
     前記第1の領域とは異なる前記母材の表面上における第2の領域に配置され、外部の導電部材と接合により接続される接合部とを備える
    電気接続部品であって、
     前記接触部及び前記接合部の各々が、前記母材の表面に形成される第1めっき層と、前記第1めっき層に保持されて前記第1めっき層の表面から突出するカーボンナノ材料とを備え、
     前記接合部が、前記接合部における前記第1めっき層の表面に形成され、前記接合部における前記第1めっき層の表面から突出する前記カーボンナノ材料を覆う第2めっき層を備える
    電気接続部品。
    With the base material,
    A contact portion disposed in a first region on the surface of the base material and electrically connected by contact with another electrical circuit or another electrical contact component;
    An electrical connection component that is disposed in a second region on the surface of the base material different from the first region, and includes a joint portion that is connected to an external conductive member by joining,
    Each of the contact portion and the joint portion includes a first plating layer formed on the surface of the base material, and a carbon nanomaterial that is held by the first plating layer and protrudes from the surface of the first plating layer. Prepared,
    An electrical connection component comprising: a second plating layer formed on a surface of the first plating layer in the bonding portion and covering the carbon nanomaterial protruding from the surface of the first plating layer in the bonding portion.
  2.  前記第1めっき層がNi又はNi-P合金を含有し、
     前記第2めっき層がSn又はAuの少なくとも1つを含有している
    請求項1に記載の電気接続部品。
    The first plating layer contains Ni or a Ni-P alloy;
    The electrical connection component according to claim 1, wherein the second plating layer contains at least one of Sn or Au.
  3.  前記第2めっき層の厚みが0.03μm以上2.0μm以下である
    請求項1又は2に記載の電気接続部品。
    The electrical connection component according to claim 1, wherein a thickness of the second plating layer is 0.03 μm or more and 2.0 μm or less.
  4.  前記接触部が、前記第2めっき層を備えていない
    請求項1乃至3のいずれか一項に記載の電気接続部品。
    The electrical connection component according to claim 1, wherein the contact portion does not include the second plating layer.
  5.  前記接触部が、前記接触部における前記第1めっき層と前記カーボンナノ材料との電位差により生じる腐食を抑制するための保護めっき層を有する
    請求項1乃至4のいずれか一項に記載の電気接続部品。
    The electrical connection according to any one of claims 1 to 4, wherein the contact portion includes a protective plating layer for suppressing corrosion caused by a potential difference between the first plating layer and the carbon nanomaterial in the contact portion. parts.
  6. 前記保護めっき層が、前記接触部における前記第1めっき層に含有される金属元素よりも貴な金属元素を含有している
    請求項5に記載の電気接続部品。
    The electrical connection component according to claim 5, wherein the protective plating layer contains a metal element nobler than the metal element contained in the first plating layer in the contact portion.
  7. 前記接触部における前記第1めっき層がNi又はNi-P合金を含有し、
    前記保護めっき層がNiよりも貴な金属元素としてSn、Cu、Ag、Au、Pd、Rh、Ruの群から選ばれる少なくとも1つを含有している
    請求項5又は6に記載の電気接続部品。
    The first plating layer in the contact portion contains Ni or a Ni-P alloy;
    The electrical connection component according to claim 5 or 6, wherein the protective plating layer contains at least one selected from the group consisting of Sn, Cu, Ag, Au, Pd, Rh, and Ru as a metal element nobler than Ni. .
  8. 前記保護めっき層の厚みが0.1μm以上1.0μm以下である
    請求項5乃至7のいずれか一項に記載の電気接続部品。
     
    The electrical connection component according to claim 5, wherein a thickness of the protective plating layer is 0.1 μm or more and 1.0 μm or less.
PCT/JP2017/026649 2016-07-27 2017-07-24 Electrical connection component WO2018021228A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016147442A JP2018018668A (en) 2016-07-27 2016-07-27 Electrical connection component
JP2016-147443 2016-07-27
JP2016-147442 2016-07-27
JP2016147443A JP2018018669A (en) 2016-07-27 2016-07-27 Electrical connection component

Publications (1)

Publication Number Publication Date
WO2018021228A1 true WO2018021228A1 (en) 2018-02-01

Family

ID=61016580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026649 WO2018021228A1 (en) 2016-07-27 2017-07-24 Electrical connection component

Country Status (2)

Country Link
TW (1) TW201822228A (en)
WO (1) WO2018021228A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179021A (en) * 2002-11-28 2004-06-24 Shinano Kenshi Co Ltd Electrical contact member
JP2013011016A (en) * 2011-06-03 2013-01-17 Panasonic Corp Electric contact component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179021A (en) * 2002-11-28 2004-06-24 Shinano Kenshi Co Ltd Electrical contact member
JP2013011016A (en) * 2011-06-03 2013-01-17 Panasonic Corp Electric contact component

Also Published As

Publication number Publication date
TW201822228A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
TWI525923B (en) Electrical contact component
TWI489002B (en) Surface treatment plating material and manufacturing method thereof, and electronic parts
EP2518117A1 (en) Electrical conductors having organic compound coatings
JP2009282003A (en) Contact member
WO2018124114A1 (en) Surface treatment material and article fabricated using same
US9954297B2 (en) Terminal fitting and connector
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP5939345B1 (en) Terminal fittings and connectors
JP2012049107A (en) Electrical contact component
JP5261278B2 (en) Connectors and metal materials for connectors
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP4260826B2 (en) Connector parts
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
WO2018021228A1 (en) Electrical connection component
JP2012007228A (en) Electronic part
JP2018018669A (en) Electrical connection component
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP6733491B2 (en) Connection terminal and method of manufacturing connection terminal
JP2015045045A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2018018668A (en) Electrical connection component
JP2015042771A (en) Metal material for electronic component, connector terminal using the same, connector, and electronic component
JP5851231B2 (en) parts
JP4704132B2 (en) Composite plating material and method for producing the same
WO2023276324A1 (en) Composite material, composite material production method, terminal, and terminal production method
JP2015042772A (en) Metal material for electronic component, connector terminal using the same, connector, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834234

Country of ref document: EP

Kind code of ref document: A1