WO2018016272A1 - Fuel supply pump - Google Patents
Fuel supply pump Download PDFInfo
- Publication number
- WO2018016272A1 WO2018016272A1 PCT/JP2017/023520 JP2017023520W WO2018016272A1 WO 2018016272 A1 WO2018016272 A1 WO 2018016272A1 JP 2017023520 W JP2017023520 W JP 2017023520W WO 2018016272 A1 WO2018016272 A1 WO 2018016272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- relief valve
- supply pump
- fuel supply
- relief
- fuel
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 99
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 12
- 239000012530 fluid Substances 0.000 description 12
- 238000011144 upstream manufacturing Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 230000001174 ascending effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/34—Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/44—Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
- F02M59/46—Valves
Definitions
- the present invention relates to a fuel supply pump that supplies fuel to an internal combustion engine at a high pressure, and relates to a fuel supply pump including a relief valve mechanism.
- Patent Document 1 discloses a structure in which a fluid throttle is provided on a side surface of a relief valve to form an intermediate chamber, and a relief valve lift is increased by the pressure stored therein.
- the pressure loss generated in the fluid throttle provided on the side surface of the relief valve causes pressure accumulation in an intermediate chamber formed between the seat portion and the fluid throttle, This is configured to act on the bottom surface of the relief valve.
- the fluid force in the valve opening direction acts on the relief valve, the lift is increased, and high opening performance can be obtained.
- an object of the present invention is to provide a low-cost relief valve mechanism that can stably exhibit high fuel release characteristics and a fuel supply pump equipped with the relief valve mechanism.
- the present invention comprises a pressurizing chamber for pressurizing fuel, A relief valve mechanism for returning fuel in the discharge passage downstream of the discharge valve to the pressurizing chamber or the low-pressure passage.
- the relief valve mechanism is configured so that the relief valve is seated so that the relief flow path is seated.
- a relief valve holder that holds the relief valve, and a relief spring that urges the relief valve toward the seat portion via the relief valve holder, the relief valve holder Has a hole that reduces the flow velocity of the fuel flowing between the facing portion and the seat portion when the relief valve is opened, penetrating in the relief valve axial direction at the facing portion facing the seat portion It was done.
- a relief valve mechanism that stably exhibits a high fuel release characteristic and a fuel supply pump equipped with the relief valve mechanism can be realized with an inexpensive structure.
- the figure which shows the cross section of the relief valve 30 which concerns on Example 1 of this invention The figure which shows the whole structure of the fuel supply pump system with which the Example of this invention is applied. The flow velocity distribution in the relief valve 30 which concerns on Example 1 of this invention is shown. The pressure distribution in the relief valve 30 which concerns on Example 1 of this invention is shown. The figure which shows the cross section of the relief valve 30 which concerns on Example 1 of this invention. The figure which shows the cross section of the relief valve 30 which concerns on Example 1 of this invention. The figure which shows the cross section of the relief valve 30 which concerns on Example 2 of this invention. The figure which shows the cross section of the relief valve 30 which concerns on Example 3 of this invention.
- FIG. 2 shows the overall configuration of a fuel supply pump system to which the fuel supply pump 300 of the present invention is applied. First, the overall configuration will be described with reference to FIG. 2, and then each embodiment of the relief valve mechanism will be described.
- the fuel supply pump system in FIG. 2 is roughly divided into a fuel tank 101 on the left side in the figure, a fuel supply pump 300 in the center in the figure, a fuel injection system 200 (common rail 53, injector 54, etc.) on the right side in the figure, and an engine control unit (ECU) 40.
- the internal combustion engine 400 to which the fuel supply pump 1 and the injector 54 in the lower center of the figure are attached is configured.
- the fuel supply pump 300 incorporates a plurality of parts and mechanisms in the body 1 and is attached to the cylinder head 20 of the internal combustion engine 400.
- a suction passage 9, a pressurizing chamber 11, a discharge passage 12, and a relief passage 15 are formed in the body 1.
- An electromagnetic suction valve 5 is provided in the suction passage 9, a discharge valve 8 is provided in the discharge passage 12, and a relief valve 30 is provided in the relief passage 15.
- the pressurizing chamber 11 in the body 1 is changed in volume by the plunger 2 that moves up and down by the rotation of the cam 7 of the internal combustion engine, so that the pump operation is possible.
- the electromagnetic intake valve 5 is an adjustment valve that determines the amount of fuel to be pressurized.
- the discharge valve 8 is a check valve that restricts the direction of fuel flow.
- the relief valve 30 functions as a safety valve that opens the abnormal high-pressure fuel when the pressure in the common rail 53 becomes abnormally high or higher than the set pressure.
- the fuel from the fuel tank 101 is guided into the fuel supply pump 300 and passes through the electromagnetic suction valve 5 in the suction passage 9, the pressurizing chamber 11, and the discharge valve 8 in the discharge passage 12.
- the pressure is increased and applied to the fuel injection system 200.
- the fuel supply pump 300 is connected to the common rail 53 of the fuel injection system 200, the pressurized fuel is pumped, and the high-pressure fuel is injected from the injector 54 into the combustion chamber of the internal combustion engine.
- the pressure in the common rail 53 is measured by the pressure sensor 56, and the signal is sent to the engine control unit (ECU) 40.
- the injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel with a signal from an engine control unit (ECU) 40.
- the engine control unit (ECU) 40 controls the electromagnetic intake valve 5 in the fuel supply pump.
- the plunger 2 is inserted into a recessed hole formed in the body 1 from the side opposite to the pressurizing chamber 11 (the lower side in FIG. 2).
- the plunger 2 is slidably inserted into the cylinder 120, and a retainer 3 is attached to the lower end of the plunger 2.
- the urging force of the plunger return spring 4 acts on the retainer 3 in the direction toward the cam attached to the camshaft in FIG. 2 (downward direction in FIG. 2).
- the tappet 6 reciprocates in the vertical direction in FIG. 2 by the rotation of the cam 7 of the internal combustion engine. Since the plunger 2 is displaced following the tappet 6, this changes the volume of the pressurizing chamber 11 and enables a pressurizing operation.
- the electromagnetic suction valve 5 is held by the body 1, and an electromagnetic coil 500, a mover 503, an anchor spring 502, and a suction valve valve spring 504 are arranged.
- the description will be made on the assumption that the movable portion 503 is formed of one member.
- the movable portion 503 may be formed of two members including an anchor that forms a magnetic attraction surface and a rod that forms a sliding portion. Good.
- An electromagnetic suction valve that opens when the electromagnetic coil 500 is OFF and closes when the electromagnetic coil 500 is ON is referred to as a normally open system.
- the urging force of the anchor spring 502 acts on the relief valve 501 via the movable portion 503 in the valve opening direction, and similarly, the urging force of the suction valve spring 504 acts on the relief valve 501 in the valve closing direction.
- the suction valve 501 is in an open state when the electromagnetic coil 500 is OFF (non-energized).
- the operation is reversed, that is, similarly to the fuel supply pump of an electromagnetic intake valve called a normally closed system in which the intake valve 501 is closed when the electromagnetic coil 500 is OFF (no power supply).
- the present invention can be applied.
- the relief valve 30 is formed by a relief valve 152 and a seat member 151.
- the pressure valve return type relief valve 30 will be described.
- a method of opening the abnormal high pressure generated on the common rail 53 side to the pressurizing chamber 11 is referred to as a pressurizing chamber returning method.
- the relief valve 30 in FIG. 2 is formed in the relief passage 15, and the relief passage 15 is connected to the downstream side (fuel injection system 200 side) of the discharge valve 8 and the pressurizing chamber 11.
- a relief valve 152 is arranged in a direction to open from the downstream side to the pressurizing chamber 11 side.
- the relief valve 152 is urged to the seat member 151 by a relief spring 154, and a seat portion 150 that seals fuel is formed in the seat member 151 at a contact portion between the two.
- the behavior of the relief valve 152 is determined by the differential pressure generated before and after the relief valve 152.
- the pressure on the upstream side of the relief valve 152 (the pressure on the downstream side of the discharge valve 8) becomes larger than the pressure on the downstream side of the relief valve 152 (the pressure in the pressurizing chamber 11).
- the valve opening operation is started.
- the present invention can be similarly applied to a system using a low pressure return system in which the relief passage 15 is connected to the downstream side of the discharge valve 8 and the damper chamber 51.
- a state in which the plunger 2 is displaced downward in FIG. 2 due to rotation of the cam 7 of the internal combustion engine is referred to as an intake process, and a state in which the plunger 2 is displaced upward is referred to as an ascending process.
- the ascending process includes a return stroke and a compression stroke, which will be described later.
- the suction process the volume of the pressurizing chamber 11 increases and the fuel pressure therein decreases.
- the suction valve 501 of the electromagnetic suction valve 5 is opened and fuel is sucked into the pressurizing chamber 11.
- the electromagnetic coil 500 Since the electromagnetic coil 500 is in the OFF state in the suction process, the urging force of the anchor spring 502 is moved through the movable portion 503 in the direction to open the rod portion at the tip (right direction in FIG. 2). Yes.
- the electromagnetic coil 500 of the electromagnetic suction valve 5 is kept in an OFF state, so that the movable portion 503 and the rod portion at the distal end are in the valve open position. Retained.
- the suction valve 501 moves in the valve closing direction (left direction in FIG. 2) to close, but collides with the rod portion at the tip of the movable portion 503 in the valve opening position. Therefore, the valve cannot be closed and the valve open state is maintained.
- the pressure in the pressurizing chamber 11 maintains a low pressure state substantially equal to that of the suction passage 9, so that the discharge valve 8 cannot be opened. It passes through the electromagnetic suction valve 5 and is returned to the damper chamber 51 side. This process is called a return process. As a result, only the necessary flow rate is pressurized and discharged, and the flow rate can be controlled.
- the flow rate discharged by the pump can be controlled by adjusting the timing at which the electromagnetic coil 500 is turned on.
- FIG. 1 shows a sectional view of a relief valve mechanism 30 according to the first embodiment.
- the relief valve mechanism 30 of this embodiment includes a relief housing 155, and the relief housing 155 is press-fitted into a hole formed in the body 1 of the fuel supply pump 300.
- the relief housing 155 is configured integrally with the sheet member 151, but may be configured separately.
- the ball valve 152a of the relief valve mechanism 30 is urged by a relief spring 154 in the direction of the seat member 151 via the relief valve holder 152b, and a seat portion 150 that seals fuel is formed at the contact portion between the two. Yes.
- the behavior of the relief valve 152 is governed by the differential pressure generated before and after the relief valve 152.
- the relief valve holder 152b is urged by the relief spring 154 to urge the ball valve 152a against the seat portion 150.
- the ball valve 152a and the relief valve holder 152b together constitute a relief valve 152. Although both can be formed as one member, the processing cost can be reduced by using a commercially available material for the ball valve 152a.
- the fuel supply pump 300 of this embodiment uses the pressurizing chamber 11 for pressurizing the fuel and the fuel in the discharge passage on the downstream side of the discharge valve 8 in the pressurizing chamber 11 or the low-pressure passage (the suction passage 9, the damper chamber 51). And a relief valve mechanism 30 for returning to ().
- the relief valve mechanism 30 includes a seat portion 150 that closes the relief flow path (relief passage 15) when the relief valve 152a is seated, a relief valve holder 152b that holds the relief valve 152a, and a relief valve holder 152b. And a relief spring 154 that urges the relief valve 152a toward the seat portion 150.
- the relief valve holder 152b penetrates in the relief valve axial direction (left and right direction in FIG. 1) in the facing portion 156 (upstream side surface portion) facing the seat portion 150, and the facing portion when the relief valve 152a is opened.
- a hole 153 for reducing the flow velocity of the fuel flowing between 156 (upstream side surface portion) and the seat portion 150 was formed.
- FIG. 3 shows a flow velocity distribution diagram around the relief valve when there is no hole 153 and when there is no hole 153. It can be seen from FIG. 3 that when the relief valve 152 is opened by the hole portion 153, the flow rate of the fuel flowing between the facing portion and the seat portion 151 is reduced.
- FIG. 4 shows the pressure distribution around the relief valve when the hole 153 is not present and when it is not present. It can be seen from FIG. 4 that the fuel pressure between the facing portion 156 and the seat portion 150 is increased. Since the pressure increases, the fluid force acting in the direction in which the relief valve 152 opens increases, and the opening performance of the relief valve 152 can be improved. The inventors have confirmed by analysis that the fluid force applied to the relief valve 152 is increased by providing the hole 153.
- the hole 153 is desirably formed on the inner peripheral side with respect to the outermost peripheral portion 159 of the facing portion 156 of the relief valve holder 152b. If the hole 153 is formed on the outer peripheral side with respect to the outermost peripheral portion 159 of the opposing portion of the relief valve holder 152b, the area of the upstream pressure receiving portion of the relief valve 152 may not be ensured. On the other hand, according to the said structure, this possibility can be suppressed and the area of the upstream pressure receiving part 156 of the relief valve 152 can be ensured.
- the tangent line 157 drawn to the seat surface of the seat portion 150 is configured so as to be disengaged from the seat portion side end surface 153b of the hole portion 153, the fuel flowing from the upstream side may not easily flow into the hole portion 153.
- this possibility is suppressed and the fuel which flows in from an upstream becomes easy to flow in the hole 153.
- FIG. The number of holes is arbitrary, but the number of holes is preferably four or more from the viewpoint of maintaining balance when the relief valve is lifted. Further, it is desirable that the hole 153 is substantially parallel to the axial direction of the relief valve 152.
- the relief valve valve holder is disposed on the outermost peripheral portion 159 and the outer peripheral side of the relief valve valve holder 152b, and is opposed to the outermost peripheral portion 159. It is desirable that the gap 160 with the opposing surface of the relief housing 155 to be 0.2 mm or more.
- the outermost peripheral portion 159 is shown on the same surface as the facing portion 156, but the position of the outermost peripheral portion 159 is not limited to this.
- the facing member 156 of the relief valve holder 152b and the seat member 151 facing substantially parallel thereto. It is desirable that the gap with the opposite surface is equal to or smaller than the hole diameter of the hole 153. If the clearance is 0.2 mm or less as described above, the differential pressure between the upstream surface and the downstream surface of the relief valve increases, so that the fluid force applied to the relief valve can be increased.
- the gap between the facing portion 156 of the relief valve holder 152b and the facing surface of the seat member 151 facing substantially parallel thereto is equal to or larger than the hole diameter of the hole portion 153.
- the fluid force acting on the relief valve holder 152b may reduce the opening performance of the relief valve 30. With the above configuration, this can be suppressed and the opening performance of the relief valve can be improved.
- all the flow paths from the seat portion 150 to the downstream side of the relief valve holder 150b are configured to be 0.1 mm or more.
- FIG. 7 shows a cross-sectional view of the relief valve mechanism according to the second embodiment of the present invention.
- 1 is a pump body
- 150 is a seat portion
- 153 is a hole portion
- 154 is a relief spring
- 155 is a housing
- 151 is a seat member
- 156 is an intermediate chamber
- 156 is an opposing portion (upstream pressure receiving surface)
- 158 Represents spring support members, respectively.
- three or more holes 153 that are one place in the first embodiment are arranged.
- the flow field can be symmetric with respect to the central axis of the relief valve 152, so that the inclination of the relief valve 152 can be suppressed.
- FIG. 8 shows a sectional view of the relief valve mechanism 30 according to the third embodiment of the present invention.
- 1 is a pump body
- 150 is a seat portion
- 153 is a hole portion
- 154 is a relief spring
- 155 is a housing
- 151 is a seat member
- 156 is an intermediate chamber
- 156 is a facing portion (upstream pressure receiving surface)
- 158 Represents spring support members, respectively.
- the hole 153 is formed in communication with the recess of the relief valve holder 152b.
- the fuel easily flows into the hole 153. And it becomes difficult for a fuel to flow between the opposing part 156 and the sheet
- FIG. Since the fuel flow velocity between the facing portion 156 and the seat member 151 decreases and the pressure of the fuel between the facing portion 156 and the seat member 151 increases from Bernoulli's theorem, the flow applied in the lift direction of the relief valve 152 Increases physical strength. Therefore, the opening performance of the relief valve 152 can be enhanced. Analysis has confirmed that a higher fluid force is applied to the relief valve when the hole 153 is formed in communication with the recess of the relief holder 152b than when the hole 153 is formed away from the recess. .
- the sectional area of the hole 153 when viewed in the axial direction of the relief valve 152 is 1/300 or more than the sectional area of the relief valve holder.
- the fuel cannot pass through the hole 153, and the seat member The fuel flows between the counter portion 156 of the relief valve holder 152b and the flow velocity increases. From Bernoulli's theorem, the pressure generated between the seat member 151 and the facing portion 156 of the relief valve holder 152b is reduced, and the fluid force acting on the relief valve 152 is reduced. Therefore, the opening performance of the relief valve 152 may be reduced. With the above configuration, this can be suppressed and the opening performance of the relief valve 152 can be enhanced.
- the present invention is widely applicable not only to the fuel supply pump of an internal combustion engine but also to various high-pressure pumps.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
The objective of the present invention is to provide, by means of an inexpensive structure, a relief valve structure that exhibits a stable and high fuel release characteristic and a fuel supply pump equipped with this relief valve structure. The fuel supply pump is equipped with a pressurization chamber that pressurizes a fuel, and a relief valve mechanism that returns fuel (in a discharge passage downstream from a discharge valve) to the pressurization chamber or a low-pressure passage. The relief valve mechanism is equipped with: a valve seat that closes off a relief flow passage when the relief valve is seated; a relief valve holder that holds the relief valve; and a relief spring that biases the relief valve toward the valve seat via the relief valve holder. Hole parts are formed in the relief valve holder, and the hole parts penetrate an opposing part opposing the valve seat in the axial direction of the relief valve, and reduce the flow velocity of fuel flowing between the opposing part and the valve seat when the relief valve is open.
Description
本発明は、内燃機関に燃料を高圧で供給する燃料供給ポンプに係り、リリーフ弁機構を備えた燃料供給ポンプに関する。
The present invention relates to a fuel supply pump that supplies fuel to an internal combustion engine at a high pressure, and relates to a fuel supply pump including a relief valve mechanism.
昨今、内燃機関の小型・高効率・低排気化が精力的に進められている。これを受け、燃料供給ポンプには、内燃機関への搭載性を向上させるボディの小型化、および高効率・低排気化に対応する吐出燃料の高圧化や容積効率の向上が強く求められている。
Recently, vigorous efforts have been made to reduce the size, efficiency, and exhaust of internal combustion engines. In response to this, fuel supply pumps are strongly required to reduce the size of the body to improve mountability to internal combustion engines, and to increase the pressure of discharged fuel and the improvement of volumetric efficiency corresponding to high efficiency and low exhaust. .
これらの要求である燃料供給ポンプのさらなる高圧化に向けて、最も重要な課題の一つとなっているのが、燃料供給ポンプ内部のリリーフ弁の開発である。リリーフ弁は、燃料供給システム全体の最大許容圧力を決定するため、必要な場合に安定して開放可能なリリーフ弁が求められている。
One of the most important issues toward the further increase in pressure of the fuel supply pump, which is one of these requirements, is the development of a relief valve inside the fuel supply pump. Since the relief valve determines the maximum allowable pressure of the entire fuel supply system, there is a need for a relief valve that can be stably opened when necessary.
この点に関し、従来からリリーフ弁機構に関して各種提案がなされている。その中で、例えば特許文献1には、リリーフ弁の側面に流体絞りを設けて中間室を形成し、そこに蓄えた圧力によりリリーフ弁リフトを増大させる構造が開示されている。
In this regard, various proposals have been made regarding relief valve mechanisms. Among them, for example, Patent Document 1 discloses a structure in which a fluid throttle is provided on a side surface of a relief valve to form an intermediate chamber, and a relief valve lift is increased by the pressure stored therein.
リリーフ弁の開放特性を向上させる例として、特許文献1の例では、リリーフ弁側面に設けた流体絞りで発生する圧力損失により、シート部と流体絞りの間に形成された中間室に蓄圧し、これをリリーフ弁底面に作用させる構成としている。これにより、リリーフ弁に開弁方向の流体力が作用し、リフトが増大して高い開放性能を得ることができる。
As an example of improving the opening characteristics of the relief valve, in the example of Patent Document 1, the pressure loss generated in the fluid throttle provided on the side surface of the relief valve causes pressure accumulation in an intermediate chamber formed between the seat portion and the fluid throttle, This is configured to act on the bottom surface of the relief valve. Thereby, the fluid force in the valve opening direction acts on the relief valve, the lift is increased, and high opening performance can be obtained.
しかしながらこの構造では、リリーフ弁ホルダとリリーフ弁ボディの隙間の幅を制御する必要があるため、リリーフ弁ホルダとリリーフ弁ボディ双方に対して厳密な公差管理が必要となり、コストの増大を招く可能性がある。
However, with this structure, it is necessary to control the width of the clearance between the relief valve holder and the relief valve body, so strict tolerance management is required for both the relief valve holder and the relief valve body, which may increase costs. There is.
以上の課題を鑑みて、本発明では、安定して高い燃料開放特性を発揮可能な、低コストのリリーフ弁機構と、それを搭載した燃料供給ポンプを提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a low-cost relief valve mechanism that can stably exhibit high fuel release characteristics and a fuel supply pump equipped with the relief valve mechanism.
上記課題を解決するために本発明は、燃料を加圧する加圧室と、
吐出弁の下流側の吐出通路の燃料を前記加圧室、又は低圧通路に戻すリリーフ弁機構と、を備えた燃料供給ポンプにおいて、前記リリーフ弁機構は、リリーフ弁が着座することでリリーフ流路を閉弁するシート部と、前記リリーフ弁を保持するリリーフ弁ホルダと、前記リリーフ弁ホルダを介して前記リリーフ弁を前記シート部に向かって付勢するリリーフバネと、を備え、前記リリーフ弁ホルダには前記シート部に対向する対向部においてリリーフ弁軸方向に貫通して、前記リリーフ弁が開弁した場合に前記対向部と前記シート部との間を流れる燃料の流速を低減させる孔部が形成された。 In order to solve the above problems, the present invention comprises a pressurizing chamber for pressurizing fuel,
A relief valve mechanism for returning fuel in the discharge passage downstream of the discharge valve to the pressurizing chamber or the low-pressure passage. The relief valve mechanism is configured so that the relief valve is seated so that the relief flow path is seated. A relief valve holder that holds the relief valve, and a relief spring that urges the relief valve toward the seat portion via the relief valve holder, the relief valve holder Has a hole that reduces the flow velocity of the fuel flowing between the facing portion and the seat portion when the relief valve is opened, penetrating in the relief valve axial direction at the facing portion facing the seat portion It was done.
吐出弁の下流側の吐出通路の燃料を前記加圧室、又は低圧通路に戻すリリーフ弁機構と、を備えた燃料供給ポンプにおいて、前記リリーフ弁機構は、リリーフ弁が着座することでリリーフ流路を閉弁するシート部と、前記リリーフ弁を保持するリリーフ弁ホルダと、前記リリーフ弁ホルダを介して前記リリーフ弁を前記シート部に向かって付勢するリリーフバネと、を備え、前記リリーフ弁ホルダには前記シート部に対向する対向部においてリリーフ弁軸方向に貫通して、前記リリーフ弁が開弁した場合に前記対向部と前記シート部との間を流れる燃料の流速を低減させる孔部が形成された。 In order to solve the above problems, the present invention comprises a pressurizing chamber for pressurizing fuel,
A relief valve mechanism for returning fuel in the discharge passage downstream of the discharge valve to the pressurizing chamber or the low-pressure passage. The relief valve mechanism is configured so that the relief valve is seated so that the relief flow path is seated. A relief valve holder that holds the relief valve, and a relief spring that urges the relief valve toward the seat portion via the relief valve holder, the relief valve holder Has a hole that reduces the flow velocity of the fuel flowing between the facing portion and the seat portion when the relief valve is opened, penetrating in the relief valve axial direction at the facing portion facing the seat portion It was done.
本発明の構成によれば、安定して高い燃料開放特性を発揮するリリーフ弁機構と、それを搭載した燃料供給ポンプを、安価な構造で実現することができる。
According to the configuration of the present invention, a relief valve mechanism that stably exhibits a high fuel release characteristic and a fuel supply pump equipped with the relief valve mechanism can be realized with an inexpensive structure.
以下、図を参照して、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例について、図1~7を用いて説明する。図2は、本発明の燃料供給ポンプ300が適用される燃料供給ポンプシステムの全体構成を示している。最初に図2を用いて全体構成の説明を行い、そのあとでリリーフ弁機構の各実施例について説明することにする。
Examples will be described with reference to FIGS. FIG. 2 shows the overall configuration of a fuel supply pump system to which the fuel supply pump 300 of the present invention is applied. First, the overall configuration will be described with reference to FIG. 2, and then each embodiment of the relief valve mechanism will be described.
図2の燃料供給ポンプシステムは、大別すると図示左側の燃料タンク101、図示中央の燃料供給ポンプ300、図示右側の燃料噴射系200(コモンレール53、インジェクタ54など)、エンジンコントロールユニット(ECU)40、図示中央下側の燃料供給ポンプ1やインジェクタ54が取り付けられる内燃機関400で構成されている。
The fuel supply pump system in FIG. 2 is roughly divided into a fuel tank 101 on the left side in the figure, a fuel supply pump 300 in the center in the figure, a fuel injection system 200 (common rail 53, injector 54, etc.) on the right side in the figure, and an engine control unit (ECU) 40. The internal combustion engine 400 to which the fuel supply pump 1 and the injector 54 in the lower center of the figure are attached is configured.
燃料供給ポンプ300は、ボディ1内に複数の部品や機構を一体に組み込んでおり、内燃機関400のシリンダヘッド20に取り付けられている。ボディ1には、吸入通路9、加圧室11、吐出通路12、リリーフ通路15が形成されている。吸入通路9には電磁吸入弁5、吐出通路12には吐出弁8、リリーフ通路15にはリリーフ弁30が設けられている。またボディ1内の加圧室11は、内燃機関のカム7の回転により上下動するプランジャ2により容積が変化してポンプ動作が可能となる。
The fuel supply pump 300 incorporates a plurality of parts and mechanisms in the body 1 and is attached to the cylinder head 20 of the internal combustion engine 400. In the body 1, a suction passage 9, a pressurizing chamber 11, a discharge passage 12, and a relief passage 15 are formed. An electromagnetic suction valve 5 is provided in the suction passage 9, a discharge valve 8 is provided in the discharge passage 12, and a relief valve 30 is provided in the relief passage 15. The pressurizing chamber 11 in the body 1 is changed in volume by the plunger 2 that moves up and down by the rotation of the cam 7 of the internal combustion engine, so that the pump operation is possible.
燃料供給ポンプ300内に形成された上記の各弁の機能簡単に説明すると、電磁吸入弁5は加圧する燃料量を決定する調整弁である。吐出弁8は燃料の流通方向を制限する逆止弁である。リリーフ弁30はコモンレール53内が設定圧力以上の異常な高圧力となった際に、その異常高圧燃料を開放する安全弁の機能を果たす。
Briefly describing the function of each of the above-described valves formed in the fuel supply pump 300, the electromagnetic intake valve 5 is an adjustment valve that determines the amount of fuel to be pressurized. The discharge valve 8 is a check valve that restricts the direction of fuel flow. The relief valve 30 functions as a safety valve that opens the abnormal high-pressure fuel when the pressure in the common rail 53 becomes abnormally high or higher than the set pressure.
燃料供給ポンプシステムによれば、燃料タンク101からの燃料は燃料供給ポンプ300内に導かれ、吸入通路9の電磁吸入弁5、加圧室11、吐出通路12の吐出弁8を経由することで高圧化され、燃料噴射系200に与えられる。燃料供給ポンプ300は、燃料噴射系200のコモンレール53に接続されており、昇圧された燃料が圧送され、高圧の燃料はインジェクタ54から内燃機関の燃焼室へと噴射される。コモンレール53内の圧力は、圧力センサ56により計測され、その信号はエンジンコントロールユニット(ECU)40へ送られる。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)40の信号にて燃料を噴射する。またエンジンコントロールユニット(ECU)40は、燃料供給ポンプ内の電磁吸入弁5を制御している。
According to the fuel supply pump system, the fuel from the fuel tank 101 is guided into the fuel supply pump 300 and passes through the electromagnetic suction valve 5 in the suction passage 9, the pressurizing chamber 11, and the discharge valve 8 in the discharge passage 12. The pressure is increased and applied to the fuel injection system 200. The fuel supply pump 300 is connected to the common rail 53 of the fuel injection system 200, the pressurized fuel is pumped, and the high-pressure fuel is injected from the injector 54 into the combustion chamber of the internal combustion engine. The pressure in the common rail 53 is measured by the pressure sensor 56, and the signal is sent to the engine control unit (ECU) 40. The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel with a signal from an engine control unit (ECU) 40. The engine control unit (ECU) 40 controls the electromagnetic intake valve 5 in the fuel supply pump.
図2の燃料供給ポンプシステムは概略以上のように構成されている。最初に燃料供給ポンプの各部機能についてそれぞれさらに詳しく説明する。
2 The fuel supply pump system in FIG. 2 is configured as described above. First, each function of the fuel supply pump will be described in more detail.
まず、加圧室11によりポンプ動作を行わせるための内燃機関との接続関係について説明する。プランジャ2は加圧室11と反対側(図2の下側)からボディ1に形成された凹み穴に対して挿入される。プランジャ2はシリンダ120に摺動可能に挿入されており、プランジャ2の下端にはリテーナ3が取り付けられている。リテーナ3にはプランジャ戻しばね4の付勢力が図2のカムシャフトに取り付けられたカムへ向かう方向(図2の下方向)に作用している。タペット6は、内燃機関のカム7の回転により、図2の上下方向に往復する。プランジャ2はタペット6に追従して変位するため、これにより加圧室11の容積が変化して加圧動作が可能となる。
First, the connection relationship with the internal combustion engine for causing the pressurizing chamber 11 to perform the pump operation will be described. The plunger 2 is inserted into a recessed hole formed in the body 1 from the side opposite to the pressurizing chamber 11 (the lower side in FIG. 2). The plunger 2 is slidably inserted into the cylinder 120, and a retainer 3 is attached to the lower end of the plunger 2. The urging force of the plunger return spring 4 acts on the retainer 3 in the direction toward the cam attached to the camshaft in FIG. 2 (downward direction in FIG. 2). The tappet 6 reciprocates in the vertical direction in FIG. 2 by the rotation of the cam 7 of the internal combustion engine. Since the plunger 2 is displaced following the tappet 6, this changes the volume of the pressurizing chamber 11 and enables a pressurizing operation.
次にエンジンコントロールユニット(ECU)40の信号にて制御される燃料供給ポンプ内の電磁吸入弁5の構成について説明する。電磁吸入弁5はボディ1に保持されており、電磁コイル500、可動子503、アンカーばね502、吸入弁弁ばね504が配されている。以降では、可動部503が1部材で形成される場合を前提に説明を進めるが、可動部503は磁気吸引面を形成するアンカーと、摺動部を形成するロッドの2部材から形成してもよい。
Next, the configuration of the electromagnetic intake valve 5 in the fuel supply pump controlled by a signal from the engine control unit (ECU) 40 will be described. The electromagnetic suction valve 5 is held by the body 1, and an electromagnetic coil 500, a mover 503, an anchor spring 502, and a suction valve valve spring 504 are arranged. Hereinafter, the description will be made on the assumption that the movable portion 503 is formed of one member. However, the movable portion 503 may be formed of two members including an anchor that forms a magnetic attraction surface and a rod that forms a sliding portion. Good.
以降では、ノーマルオープン方式の電磁吸入弁を用いたシステムを前提に説明を進める。電磁コイル500がOFFの状態で開弁状態、ONの状態で閉弁状態となる電磁吸入弁をノーマルオープン方式と称する。リリーフ弁501には、アンカーばね502の付勢力が可動部503を介して開弁方向に作用し、同様に吸入弁ばね504による付勢力が閉弁方向に作用している。ここで、アンカーばね502の付勢力は吸入弁ばね504の付勢力より大きいため、電磁コイル500がOFF(無通電)時、吸入弁501は開弁状態となっている。なお、これとは動作が逆転する、すなわち電磁コイル500がOFF(無通電)時、吸入弁501が閉弁状態となるノーマルクローズ方式と称する電磁吸入弁の燃料供給ポンプに対しても、同様に本発明を適用することが可能である。
Hereafter, the explanation will proceed on the premise of a system using a normally open type electromagnetic suction valve. An electromagnetic suction valve that opens when the electromagnetic coil 500 is OFF and closes when the electromagnetic coil 500 is ON is referred to as a normally open system. The urging force of the anchor spring 502 acts on the relief valve 501 via the movable portion 503 in the valve opening direction, and similarly, the urging force of the suction valve spring 504 acts on the relief valve 501 in the valve closing direction. Here, since the urging force of the anchor spring 502 is larger than the urging force of the suction valve spring 504, the suction valve 501 is in an open state when the electromagnetic coil 500 is OFF (non-energized). The operation is reversed, that is, similarly to the fuel supply pump of an electromagnetic intake valve called a normally closed system in which the intake valve 501 is closed when the electromagnetic coil 500 is OFF (no power supply). The present invention can be applied.
リリーフ弁30はリリーフ弁152とシート部材151により形成されている。なお、以後の説明では、加圧室戻し方式のリリーフ弁30について説明する。コモンレール53側に発生した異常高圧を、加圧室11に開放する方式を加圧室戻し方式と呼ぶことにする。
The relief valve 30 is formed by a relief valve 152 and a seat member 151. In the following description, the pressure valve return type relief valve 30 will be described. A method of opening the abnormal high pressure generated on the common rail 53 side to the pressurizing chamber 11 is referred to as a pressurizing chamber returning method.
図2のリリーフ弁30はリリーフ通路15内に形成されている、リリーフ通路15は、吐出弁8の下流側(燃料噴射系200側)と加圧室11に接続されており、吐出弁8の下流側から加圧室11側に開弁する方向にリリーフ弁152が配置されている。リリーフ弁152は、リリーフばね154によりシート部材151に付勢されており、両者の接触部に燃料をシールするシート部150がシート部材151に形成されている。リリーフ弁152の挙動は、リリーフ弁152の前後に発生する差圧によって決まる。つまり、リリーフ弁152の上流側の圧力(吐出弁8の下流側圧力)がリリーフ弁152の下流側の圧力(加圧室11の圧力)より大きくなり、これらの差圧による付勢力が、リリーフばね154の付勢力に打ち勝つと、開弁動作を開始する。なお、リリーフ通路15が吐出弁8の下流側とダンパー室51に接続される低圧戻し方式を用いたシステムに対しても、同様に本発明を適用することが可能である。
The relief valve 30 in FIG. 2 is formed in the relief passage 15, and the relief passage 15 is connected to the downstream side (fuel injection system 200 side) of the discharge valve 8 and the pressurizing chamber 11. A relief valve 152 is arranged in a direction to open from the downstream side to the pressurizing chamber 11 side. The relief valve 152 is urged to the seat member 151 by a relief spring 154, and a seat portion 150 that seals fuel is formed in the seat member 151 at a contact portion between the two. The behavior of the relief valve 152 is determined by the differential pressure generated before and after the relief valve 152. That is, the pressure on the upstream side of the relief valve 152 (the pressure on the downstream side of the discharge valve 8) becomes larger than the pressure on the downstream side of the relief valve 152 (the pressure in the pressurizing chamber 11). When the urging force of the spring 154 is overcome, the valve opening operation is started. The present invention can be similarly applied to a system using a low pressure return system in which the relief passage 15 is connected to the downstream side of the discharge valve 8 and the damper chamber 51.
次に、燃料供給ポンプ300の動作および流量制御方法について説明する。内燃機関のカム7の回転により、プランジャ2が図2の下方向に変位している状態を吸入工程、上方向に変位している状態を上昇工程と称する。上昇工程は、後で説明する戻し行程と圧縮行程とから構成される。吸入工程では、加圧室11の容積は増加し、その中の燃料圧力は低下する。この吸入工程において、加圧室11内の燃料圧力が吸入通路9の燃料圧力よりも低くなると、電磁吸入弁5の吸入弁501が開弁し、燃料が加圧室11内に吸入される。
Next, the operation of the fuel supply pump 300 and the flow rate control method will be described. A state in which the plunger 2 is displaced downward in FIG. 2 due to rotation of the cam 7 of the internal combustion engine is referred to as an intake process, and a state in which the plunger 2 is displaced upward is referred to as an ascending process. The ascending process includes a return stroke and a compression stroke, which will be described later. In the suction process, the volume of the pressurizing chamber 11 increases and the fuel pressure therein decreases. In this suction process, when the fuel pressure in the pressurizing chamber 11 becomes lower than the fuel pressure in the suction passage 9, the suction valve 501 of the electromagnetic suction valve 5 is opened and fuel is sucked into the pressurizing chamber 11.
吸入工程においては電磁コイル500がOFFの状態となっているため、アンカーばね502の付勢力が可動部503を介して先端のロッド部を開弁する方向(図2の右方向)に移動させている。次にプランジャ2が吸入工程から上昇行程へと移行した場合に、電磁吸入弁5の電磁コイル500がOFFの状態のままとすることで、可動部503及び先端のロッド部は、開弁位置に保持される。この状態において、プランジャ2が上昇したことで吸入弁501は閉弁しようと閉弁方向(図2の左方向)に移動するが、開弁位置にいる可動部503の先端のロッド部と衝突して、閉弁することができず開弁状態が維持される。
Since the electromagnetic coil 500 is in the OFF state in the suction process, the urging force of the anchor spring 502 is moved through the movable portion 503 in the direction to open the rod portion at the tip (right direction in FIG. 2). Yes. Next, when the plunger 2 moves from the suction process to the ascending stroke, the electromagnetic coil 500 of the electromagnetic suction valve 5 is kept in an OFF state, so that the movable portion 503 and the rod portion at the distal end are in the valve open position. Retained. In this state, when the plunger 2 is raised, the suction valve 501 moves in the valve closing direction (left direction in FIG. 2) to close, but collides with the rod portion at the tip of the movable portion 503 in the valve opening position. Therefore, the valve cannot be closed and the valve open state is maintained.
これにより上昇工程において、加圧室11の圧力は吸入通路9とほぼ同等の低圧状態を保つため、吐出弁8を開弁することができず、加圧室11の容積減少分の燃料は、電磁吸入弁5を通り、ダンパー室51側に戻される。この工程を戻し工程と呼ぶ。これにより必要な流量のみを加圧して吐出するようになり、流量制御が可能となる。
Thus, in the ascending process, the pressure in the pressurizing chamber 11 maintains a low pressure state substantially equal to that of the suction passage 9, so that the discharge valve 8 cannot be opened. It passes through the electromagnetic suction valve 5 and is returned to the damper chamber 51 side. This process is called a return process. As a result, only the necessary flow rate is pressurized and discharged, and the flow rate can be controlled.
次に戻し工程において電磁吸入弁5の電磁コイル500へ通電すると、可動子503に磁気吸引力が作用し、アンカーばね502の付勢力に打ち勝って、電磁吸入弁5の可動部503及びロッド部が閉弁方向(図2の左方向)に移動し、閉弁位置に保持される。この状態において、あるいは、可動部503の閉弁方向への移動とともに、吸入弁ばね504の付勢力および戻り燃料の流体差圧力により、吸入弁501が閉弁する。吸入弁501が閉弁すると、この直後から加圧室11内の燃料圧力は、プランジャ2の上昇と共に上昇することで圧縮行程が形成される。これにより吐出弁8が自動的に開弁し、燃料をコモンレール53に圧送する。
Next, when the electromagnetic coil 500 of the electromagnetic intake valve 5 is energized in the return step, a magnetic attractive force acts on the mover 503 to overcome the urging force of the anchor spring 502, and the movable portion 503 and the rod portion of the electromagnetic intake valve 5 are moved. It moves in the valve closing direction (left direction in FIG. 2) and is held in the valve closing position. In this state or when the movable portion 503 moves in the valve closing direction, the suction valve 501 is closed by the biasing force of the suction valve spring 504 and the fluid differential pressure of the return fuel. When the intake valve 501 is closed, the fuel pressure in the pressurizing chamber 11 increases with the rise of the plunger 2 immediately after this, so that a compression stroke is formed. As a result, the discharge valve 8 is automatically opened, and the fuel is pumped to the common rail 53.
上記のような動作をする電磁吸入弁5を用いれば、電磁コイル500をON状態にするタイミングを調節することで、ポンプが吐出する流量を制御することができる。
If the electromagnetic suction valve 5 operating as described above is used, the flow rate discharged by the pump can be controlled by adjusting the timing at which the electromagnetic coil 500 is turned on.
図1は、本実施例1に係るリリーフ弁機構30の断面図を示す。図1に示すように本実施例のリリーフ弁機構30はリリーフハウジング155を備え、リリーフハウジング155は燃料供給ポンプ300のボディ1に形成された穴に圧入される。図1ではリリーフハウジング155はシート部材151と一体で構成されているが、別体で構成されても良い。
FIG. 1 shows a sectional view of a relief valve mechanism 30 according to the first embodiment. As shown in FIG. 1, the relief valve mechanism 30 of this embodiment includes a relief housing 155, and the relief housing 155 is press-fitted into a hole formed in the body 1 of the fuel supply pump 300. In FIG. 1, the relief housing 155 is configured integrally with the sheet member 151, but may be configured separately.
リリーフ弁機構30のボール弁152aは、リリーフばね154によりリリーフ弁ホルダ152bを介してシート部材151の方向に付勢されており、両者の接触部に、燃料をシールするシート部150が形成されている。リリーフ弁152の挙動はリリーフ弁152の前後に発生する差圧により支配されている。なお、リリーフ弁ホルダ152bはリリーフばね154に付勢されることで、ボール弁152aをシート部150に対して付勢する。ボール弁152aとリリーフ弁ホルダ152bは合わせてリリーフ弁152を構成している。両者を一部材で形成することも可能であるが、ボール弁152aを市販材とすることで加工コストを低減することができる。
The ball valve 152a of the relief valve mechanism 30 is urged by a relief spring 154 in the direction of the seat member 151 via the relief valve holder 152b, and a seat portion 150 that seals fuel is formed at the contact portion between the two. Yes. The behavior of the relief valve 152 is governed by the differential pressure generated before and after the relief valve 152. The relief valve holder 152b is urged by the relief spring 154 to urge the ball valve 152a against the seat portion 150. The ball valve 152a and the relief valve holder 152b together constitute a relief valve 152. Although both can be formed as one member, the processing cost can be reduced by using a commercially available material for the ball valve 152a.
リリーフ弁152の上流側(図1の右側)の圧力(吐出弁8の下流側圧力)と、下流側(図1の左側)の圧力(加圧室11の圧力)の圧力差により発生する付勢力が、リリーフばね154の付勢力を超過すると、リリーフ弁152は下流方向へ開弁動作を開始する。
なお、リリーフばね154はばね支持部材158の外周部で支持されており、このばね支持部材158はリリーフハウジング155に圧入により固定されている。ばね支持部材158の圧入深さを調節することで、リリーフばね154の付勢力を調節し、開弁動作が開始する差圧(設定圧力)を変化させることが可能である。 This is caused by the pressure difference between the pressure on the upstream side (right side in FIG. 1) of the relief valve 152 (downstream pressure on the discharge valve 8) and the pressure on the downstream side (left side in FIG. 1) (pressure in the pressurizing chamber 11). When the urging force exceeds the urging force of therelief spring 154, the relief valve 152 starts to open in the downstream direction.
Therelief spring 154 is supported on the outer periphery of the spring support member 158, and the spring support member 158 is fixed to the relief housing 155 by press fitting. By adjusting the press-fitting depth of the spring support member 158, it is possible to adjust the biasing force of the relief spring 154 and change the differential pressure (set pressure) at which the valve opening operation starts.
なお、リリーフばね154はばね支持部材158の外周部で支持されており、このばね支持部材158はリリーフハウジング155に圧入により固定されている。ばね支持部材158の圧入深さを調節することで、リリーフばね154の付勢力を調節し、開弁動作が開始する差圧(設定圧力)を変化させることが可能である。 This is caused by the pressure difference between the pressure on the upstream side (right side in FIG. 1) of the relief valve 152 (downstream pressure on the discharge valve 8) and the pressure on the downstream side (left side in FIG. 1) (pressure in the pressurizing chamber 11). When the urging force exceeds the urging force of the
The
以上の通り本実施例の燃料供給ポンプ300は燃料を加圧する加圧室11と、吐出弁8の下流側の吐出通路の燃料を加圧室11、又は低圧通路(吸入通路9、ダンパ室51)に戻すリリーフ弁機構30と、を備えている。そして、リリーフ弁機構30は、リリーフ弁152aが着座することでリリーフ流路(リリーフ通路15)を閉弁するシート部150と、リリーフ弁152aを保持するリリーフ弁ホルダ152bと、リリーフ弁ホルダ152bを介してリリーフ弁152aをシート部150に向かって付勢するリリーフばね154と、を備える。
As described above, the fuel supply pump 300 of this embodiment uses the pressurizing chamber 11 for pressurizing the fuel and the fuel in the discharge passage on the downstream side of the discharge valve 8 in the pressurizing chamber 11 or the low-pressure passage (the suction passage 9, the damper chamber 51). And a relief valve mechanism 30 for returning to (). The relief valve mechanism 30 includes a seat portion 150 that closes the relief flow path (relief passage 15) when the relief valve 152a is seated, a relief valve holder 152b that holds the relief valve 152a, and a relief valve holder 152b. And a relief spring 154 that urges the relief valve 152a toward the seat portion 150.
そして、リリーフ弁ホルダ152bにはシート部150に対向する対向部156(上流側面部)においてリリーフ弁軸方向(図1の左右方向)に貫通して、リリーフ弁152aが開弁した場合に対向部156(上流側面部)とシート部150との間を流れる燃料の流速を低減させる孔部153を形成した。
Then, the relief valve holder 152b penetrates in the relief valve axial direction (left and right direction in FIG. 1) in the facing portion 156 (upstream side surface portion) facing the seat portion 150, and the facing portion when the relief valve 152a is opened. A hole 153 for reducing the flow velocity of the fuel flowing between 156 (upstream side surface portion) and the seat portion 150 was formed.
図3に孔部153が無い場合と有る場合におけるリリーフ弁周囲の流速分布図を示す。
孔部153により、リリーフ弁152が開弁した場合に、対向部とシート部151との間を流れる燃料の流速を低減させることが図3から分かる。図4に孔部153が無い場合と有る場合におけるリリーフ弁周囲の圧力分布図を示す。対向部156とシート部150との間の燃料の圧力を増大させることが図4から分かる。そして、圧力が増大するため,リリーフ弁152が開弁する方向に働く流体力が増大し、リリーフ弁152の開放性能を向上させることができる。本発明者らは、この孔部153を設けることにより、リリーフ弁152に加わる流体力が増大することを解析により確認することができた。 FIG. 3 shows a flow velocity distribution diagram around the relief valve when there is nohole 153 and when there is no hole 153.
It can be seen from FIG. 3 that when therelief valve 152 is opened by the hole portion 153, the flow rate of the fuel flowing between the facing portion and the seat portion 151 is reduced. FIG. 4 shows the pressure distribution around the relief valve when the hole 153 is not present and when it is not present. It can be seen from FIG. 4 that the fuel pressure between the facing portion 156 and the seat portion 150 is increased. Since the pressure increases, the fluid force acting in the direction in which the relief valve 152 opens increases, and the opening performance of the relief valve 152 can be improved. The inventors have confirmed by analysis that the fluid force applied to the relief valve 152 is increased by providing the hole 153.
孔部153により、リリーフ弁152が開弁した場合に、対向部とシート部151との間を流れる燃料の流速を低減させることが図3から分かる。図4に孔部153が無い場合と有る場合におけるリリーフ弁周囲の圧力分布図を示す。対向部156とシート部150との間の燃料の圧力を増大させることが図4から分かる。そして、圧力が増大するため,リリーフ弁152が開弁する方向に働く流体力が増大し、リリーフ弁152の開放性能を向上させることができる。本発明者らは、この孔部153を設けることにより、リリーフ弁152に加わる流体力が増大することを解析により確認することができた。 FIG. 3 shows a flow velocity distribution diagram around the relief valve when there is no
It can be seen from FIG. 3 that when the
ここで、孔部153は、リリーフ弁ホルダ152bの対向部156の最外周部159に対して内周側に形成されることが望ましい。孔部153がリリーフ弁ホルダ152bの対向部の最外周部159に対して外周側に形成されると、リリーフ弁152の上流側受圧部の面積を確保できない虞がある。これに対して上記構成によれば、この虞を抑制し、リリーフ弁152の上流側受圧部156の面積を確保することができる。
Here, the hole 153 is desirably formed on the inner peripheral side with respect to the outermost peripheral portion 159 of the facing portion 156 of the relief valve holder 152b. If the hole 153 is formed on the outer peripheral side with respect to the outermost peripheral portion 159 of the opposing portion of the relief valve holder 152b, the area of the upstream pressure receiving portion of the relief valve 152 may not be ensured. On the other hand, according to the said structure, this possibility can be suppressed and the area of the upstream pressure receiving part 156 of the relief valve 152 can be ensured.
また、図5のリリーフ弁機構30の断面図を示すように、シート部150のシート面に引かれる接線157が孔部のシート部側端面153bと重なるように構成することが望ましい。
Further, as shown in the sectional view of the relief valve mechanism 30 in FIG. 5, it is desirable that the tangent line 157 drawn to the seat surface of the seat portion 150 is overlapped with the seat portion side end surface 153b of the hole portion.
シート部150のシート面に引かれる接線157が孔部153のシート部側端面153bから外れるように構成すると、上流側から流入する燃料が孔部153内に流れにくくなる虞がある。これに対して上記構成によれば、この虞を抑制し、上流側から流入する燃料が孔部153内に流れやすくなる。孔部の数については任意あるが、リリーフ弁がリフトした時のバランス保持の観点から、孔数は4つ以上であることが望ましい。 また、孔部153は、リリーフ弁152軸方向とほぼ並行であることが望ましい。
If the tangent line 157 drawn to the seat surface of the seat portion 150 is configured so as to be disengaged from the seat portion side end surface 153b of the hole portion 153, the fuel flowing from the upstream side may not easily flow into the hole portion 153. On the other hand, according to the said structure, this possibility is suppressed and the fuel which flows in from an upstream becomes easy to flow in the hole 153. FIG. The number of holes is arbitrary, but the number of holes is preferably four or more from the viewpoint of maintaining balance when the relief valve is lifted. Further, it is desirable that the hole 153 is substantially parallel to the axial direction of the relief valve 152.
孔部153が、リリーフ弁152軸方向と並行な向きからずれると、孔部153に燃料が流れにくくなり、対向部とシート部150との間に燃料が流れやすくなる。そして、対向部156とシート部150との間の燃料の流速が高くなり、対向部156とシート部150との間の燃料の圧力が下がる。このため、リリーフ弁152のリフト方向に加わる流体力が低くなり、リリーフ弁152の開放性能が低くなる虞がある。これに対して、上記構成により、この虞を抑制し、リリーフ弁152の開放性能を高めることができる。
When the hole 153 is displaced from the direction parallel to the axial direction of the relief valve 152, the fuel hardly flows into the hole 153, and the fuel easily flows between the facing portion and the seat portion 150. Then, the fuel flow velocity between the facing portion 156 and the seat portion 150 increases, and the fuel pressure between the facing portion 156 and the seat portion 150 decreases. For this reason, the fluid force applied in the lift direction of the relief valve 152 is lowered, and the opening performance of the relief valve 152 may be lowered. On the other hand, with this configuration, this possibility can be suppressed and the opening performance of the relief valve 152 can be enhanced.
また、図1、5のリリーフバルブ弁機構30の断面図を示すように、リリーフバルブ弁ホルダの最外周部159と、リリーフバルブ弁ホルダ152bの外周側に配置され、前記最外周部159と対向するリリーフハウジング155の対向面との隙間160が0.2mm以上となることが望ましい。なお、図4では最外周部159として、対向部156と同一面を示しているが、最外周部159の位置はこれに限るものではない。
Further, as shown in the sectional view of the relief valve valve mechanism 30 in FIGS. 1 and 5, the relief valve valve holder is disposed on the outermost peripheral portion 159 and the outer peripheral side of the relief valve valve holder 152b, and is opposed to the outermost peripheral portion 159. It is desirable that the gap 160 with the opposing surface of the relief housing 155 to be 0.2 mm or more. In FIG. 4, the outermost peripheral portion 159 is shown on the same surface as the facing portion 156, but the position of the outermost peripheral portion 159 is not limited to this.
リリーフバルブ弁ホルダ152bの最外周部159と、リリーフバルブ弁ホルダ152bの外周側に配置され、前記最外周部159と対向するリリーフハウジング155の対向面との隙間が0.2mm以下となると、公差管理が厳しくなり、燃料供給ポンプ製造時のコストが増大する。上記構成により、これを抑制し、燃料ポンプ製造時のコストを低減できる。
If the clearance between the outermost peripheral portion 159 of the relief valve valve holder 152b and the opposing surface of the relief housing 155 that is disposed on the outer peripheral side of the relief valve valve holder 152b and faces the outermost peripheral portion 159 is 0.2 mm or less, a tolerance is required. Management becomes stricter and the cost of manufacturing the fuel supply pump increases. With the above configuration, this can be suppressed and the cost for manufacturing the fuel pump can be reduced.
また、図6のリリーフ弁機構30の断面図を示すように、リリーフ弁152が最大開度で開弁した状態において、リリーフ弁ホルダ152bの対向部156とこれにほぼ並行に対向するシート部材151の対向面との隙間が孔部153の穴径以下となることが望ましい。また上記のように隙間を0.2mm以下とすると、リリーフ弁の下流側の面に対する上流側の面の差圧が増大するため、リリーフ弁に加わる流体力を増大させることができる。 リリーフ弁152が開度で開弁した状態において、リリーフ弁ホルダ152bの対向部156とこれにほぼ並行に対向するシート部材151の対向面との隙間が孔部153の穴径以上であると、リリーフ弁ホルダ152bに作用する流体力がリリーフ弁30の開放性能が低下する虞がある。上記構成により、これを抑制し、リリーフ弁の開放性能を向上出来る。本実施例においては、リリーフ弁152aが開弁した状態において、シート部150からリリーフ弁ホルダ150bの下流側までの全ての流路が0.1mm以上となるように構成される。
Further, as shown in the sectional view of the relief valve mechanism 30 in FIG. 6, in a state where the relief valve 152 is opened at the maximum opening degree, the facing member 156 of the relief valve holder 152b and the seat member 151 facing substantially parallel thereto. It is desirable that the gap with the opposite surface is equal to or smaller than the hole diameter of the hole 153. If the clearance is 0.2 mm or less as described above, the differential pressure between the upstream surface and the downstream surface of the relief valve increases, so that the fluid force applied to the relief valve can be increased. When the relief valve 152 is opened at an opening, the gap between the facing portion 156 of the relief valve holder 152b and the facing surface of the seat member 151 facing substantially parallel thereto is equal to or larger than the hole diameter of the hole portion 153. The fluid force acting on the relief valve holder 152b may reduce the opening performance of the relief valve 30. With the above configuration, this can be suppressed and the opening performance of the relief valve can be improved. In the present embodiment, in a state where the relief valve 152a is opened, all the flow paths from the seat portion 150 to the downstream side of the relief valve holder 150b are configured to be 0.1 mm or more.
図7は、本発明の実施例2に係るリリーフ弁機構の断面図を示す。図8において、1はポンプボディ、150はシート部、153は孔部、154はリリーフばね、155はハウジング、151はシート部材、156は中間室、156は対向部(上流側受圧面)、158はばね支持部材を、それぞれ表している。
FIG. 7 shows a cross-sectional view of the relief valve mechanism according to the second embodiment of the present invention. In FIG. 8, 1 is a pump body, 150 is a seat portion, 153 is a hole portion, 154 is a relief spring, 155 is a housing, 151 is a seat member, 156 is an intermediate chamber, 156 is an opposing portion (upstream pressure receiving surface), 158 Represents spring support members, respectively.
本実施例2では、実施例1で一箇所であった孔部153を三か所以上配置する。孔部が増加することにより、流れ場がリリーフ弁152の中心軸に対して対称となるようにできるため、リリーフ弁152の傾きを抑制することが可能である。
In the second embodiment, three or more holes 153 that are one place in the first embodiment are arranged. By increasing the number of holes, the flow field can be symmetric with respect to the central axis of the relief valve 152, so that the inclination of the relief valve 152 can be suppressed.
図8は、本発明の実施例3に係るリリーフ弁機構30の断面図を示す。図7において、1はポンプボディ、150はシート部、153は孔部、154はリリーフばね、155はハウジング、151はシート部材、156は中間室、156は対向部(上流側受圧面)、158はばね支持部材を、それぞれ表している。
FIG. 8 shows a sectional view of the relief valve mechanism 30 according to the third embodiment of the present invention. In FIG. 7, 1 is a pump body, 150 is a seat portion, 153 is a hole portion, 154 is a relief spring, 155 is a housing, 151 is a seat member, 156 is an intermediate chamber, 156 is a facing portion (upstream pressure receiving surface), 158 Represents spring support members, respectively.
本実施例3では孔部153を、リリーフ弁ホルダ152bの凹みと連通させて形成さする。上記構成により、孔部153に燃料が流入しやすくなる。そして、対向部156とシート部材151との間に燃料が流れにくくなる。対向部156とシート部材151との間の燃料の流速が低くなり、ベルヌーイの定理から、対向部156とシート部材151との間の燃料の圧力が上がるため、リリーフ弁152のリフト方向に加わる流体力が高くなる。よって、リリーフ弁152の開放性能を高めることができる。解析により、孔部153がリリーフホルダ152bの凹みと連通して形成した場合の方が、凹み部より離れて形成されている場合よりも、高い流体力がリリーフ弁に加わることが確認されている。
In the third embodiment, the hole 153 is formed in communication with the recess of the relief valve holder 152b. With the above configuration, the fuel easily flows into the hole 153. And it becomes difficult for a fuel to flow between the opposing part 156 and the sheet | seat member 151. FIG. Since the fuel flow velocity between the facing portion 156 and the seat member 151 decreases and the pressure of the fuel between the facing portion 156 and the seat member 151 increases from Bernoulli's theorem, the flow applied in the lift direction of the relief valve 152 Increases physical strength. Therefore, the opening performance of the relief valve 152 can be enhanced. Analysis has confirmed that a higher fluid force is applied to the relief valve when the hole 153 is formed in communication with the recess of the relief holder 152b than when the hole 153 is formed away from the recess. .
また、リリーフ弁152軸方向に見た場合の孔部153の断面積がリリーフ弁ホルダの断面積に対して、300分の1以上となるように形成されることが望ましい。
In addition, it is desirable that the sectional area of the hole 153 when viewed in the axial direction of the relief valve 152 is 1/300 or more than the sectional area of the relief valve holder.
リリーフ弁152の軸方向に見た場合の孔部153の断面積がリリーフ弁ホルダ152bの断面積に対して、300分の1未満であると、燃料が孔部153を通過できず、シート部材151とリリーフ弁ホルダ152bの対向部156の間に燃料が流れ、流速が速くなる。ベルヌーイの定理から、シート部材151とリリーフ弁ホルダ152bの対向部156の間に生じる圧力が低くなり、リリーフ弁152に働く流体力が小さくなる。よって、リリーフ弁152の開放性能が低下する虞がある。上記構成により、これを抑制し、リリーフ弁152の開放性能を高めることができる。
When the sectional area of the hole 153 when viewed in the axial direction of the relief valve 152 is less than 1/300 of the sectional area of the relief valve holder 152b, the fuel cannot pass through the hole 153, and the seat member The fuel flows between the counter portion 156 of the relief valve holder 152b and the flow velocity increases. From Bernoulli's theorem, the pressure generated between the seat member 151 and the facing portion 156 of the relief valve holder 152b is reduced, and the fluid force acting on the relief valve 152 is reduced. Therefore, the opening performance of the relief valve 152 may be reduced. With the above configuration, this can be suppressed and the opening performance of the relief valve 152 can be enhanced.
本発明は、内燃機関の燃料供給ポンプに限らず各種の高圧ポンプに広く利用可能である。
The present invention is widely applicable not only to the fuel supply pump of an internal combustion engine but also to various high-pressure pumps.
1:ボディ
2:プランジャ
3:リテーナ
4:戻しばね
5:電磁吸入弁
6:タペット
7:カム
8:吐出弁
9:吸入通路
11:加圧室
12:吐出通路
15:リリーフ通路
150:シート部
151:弁座
152:リリーフ弁
152a:ボール弁
152b:リリーフ弁ホルダ
153:孔部
154:リリーフばね
155:ハウジング
156:上流側受圧面
157:シート面に引かれる接線
158:ばね支持部材
53:コモンレール
54:インジェクタ
56:圧力センサ 1: Body 2: Plunger 3: Retainer 4: Return spring 5: Electromagnetic suction valve 6: Tappet 7: Cam 8: Discharge valve 9: Suction passage 11: Pressurizing chamber 12: Discharge passage 15: Relief passage 150: Seat portion 151 : Valve seat 152:Relief valve 152 a: Ball valve 152 b: Relief valve holder 153: Hole 154: Relief spring 155: Housing 156: Upstream pressure receiving surface 157: Tangential line 158 drawn on the seat surface: Spring support member 53: Common rail 54 : Injector 56: Pressure sensor
2:プランジャ
3:リテーナ
4:戻しばね
5:電磁吸入弁
6:タペット
7:カム
8:吐出弁
9:吸入通路
11:加圧室
12:吐出通路
15:リリーフ通路
150:シート部
151:弁座
152:リリーフ弁
152a:ボール弁
152b:リリーフ弁ホルダ
153:孔部
154:リリーフばね
155:ハウジング
156:上流側受圧面
157:シート面に引かれる接線
158:ばね支持部材
53:コモンレール
54:インジェクタ
56:圧力センサ 1: Body 2: Plunger 3: Retainer 4: Return spring 5: Electromagnetic suction valve 6: Tappet 7: Cam 8: Discharge valve 9: Suction passage 11: Pressurizing chamber 12: Discharge passage 15: Relief passage 150: Seat portion 151 : Valve seat 152:
Claims (8)
- 燃料を加圧する加圧室と、
吐出弁の下流側の吐出通路の燃料を前記加圧室、又は低圧通路に戻すリリーフ弁機構と、を備えた燃料供給ポンプにおいて、
前記リリーフ弁機構は、
リリーフ弁が着座することでリリーフ流路を閉弁するシート部と、
前記リリーフ弁を保持するリリーフ弁ホルダと、
前記リリーフ弁ホルダを介して前記リリーフ弁を前記シート部に向かって付勢するリリーフバネと、を備え、
前記リリーフ弁ホルダには前記シート部に対向する対向部においてリリーフ弁軸方向に貫通して、前記リリーフ弁が開弁した場合に前記対向部と前記シート部との間を流れる燃料の流速を低減させる孔部が形成された燃料供給ポンプ。 A pressurizing chamber for pressurizing the fuel;
In a fuel supply pump comprising a relief valve mechanism for returning fuel in a discharge passage downstream of the discharge valve to the pressurizing chamber or the low pressure passage,
The relief valve mechanism is
A seat portion that closes the relief flow path by the seating of the relief valve;
A relief valve holder for holding the relief valve;
A relief spring that urges the relief valve toward the seat portion via the relief valve holder,
The relief valve holder penetrates in the relief valve axial direction at the facing portion facing the seat portion, and reduces the flow rate of fuel flowing between the facing portion and the seat portion when the relief valve is opened. A fuel supply pump having a hole to be formed. - 請求項1に記載の燃料供給ポンプにおいて、
前記孔部は、前記リリーフ弁ホルダの前記対向部の最外周部に対して内周側に形成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
The said hole is a fuel supply pump formed in the inner peripheral side with respect to the outermost peripheral part of the said opposing part of the said relief valve holder. - 請求項1に記載の燃料供給ポンプにおいて、
前記孔部は、前記シート部のシート面に引かれる接線が前記孔部のシート部側端面と重なるように構成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
The hole portion is a fuel supply pump configured such that a tangent line drawn to a seat surface of the seat portion overlaps a seat portion side end surface of the hole portion. - 請求項1に記載の燃料供給ポンプにおいて、
前記リリーフ弁が開弁した状態において、前記シート部から前記リリーフ弁ホルダの下流側までの全ての流路が前記孔部の穴径以下となるように構成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
A fuel supply pump configured such that all the flow paths from the seat portion to the downstream side of the relief valve holder are equal to or smaller than the hole diameter of the hole portion in a state where the relief valve is opened. - 請求項1に記載の燃料供給ポンプにおいて、
前記孔部は、前記リリーフ弁軸方向とほぼ並行に形成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
The hole is a fuel supply pump formed substantially in parallel with the relief valve axial direction. - 請求項1に記載の燃料供給ポンプにおいて、
前記リリーフ弁軸方向に見た場合の前記孔部の断面積がリリーフ弁ホルダの断面積に対して、300分の1以上となるように形成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
A fuel supply pump formed so that a sectional area of the hole when viewed in the relief valve axial direction is 1/300 or more of a sectional area of the relief valve holder. - 請求項1に記載の燃料供給ポンプにおいて、
前記孔部は、前記リリーフ弁ホルダの前記対向部に少なくとも3箇所以上、形成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
The hole is a fuel supply pump formed at least at three or more locations in the facing portion of the relief valve holder. - 請求項1に記載の燃料供給ポンプにおいて、
前記リリーフ弁ホルダは前記リリーフ弁を保持する凹みが形成され、前記孔部は、前記リリーフ弁ホルダの前記凹みと連通して形成された燃料供給ポンプ。 The fuel supply pump according to claim 1, wherein
The relief valve holder is formed with a recess for holding the relief valve, and the hole is formed in communication with the recess of the relief valve holder.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143890A JP6689153B2 (en) | 2016-07-22 | 2016-07-22 | Fuel supply pump |
JP2016-143890 | 2016-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016272A1 true WO2018016272A1 (en) | 2018-01-25 |
Family
ID=60993017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023520 WO2018016272A1 (en) | 2016-07-22 | 2017-06-27 | Fuel supply pump |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6689153B2 (en) |
WO (1) | WO2018016272A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211598A (en) * | 2010-06-29 | 2012-11-01 | Denso Corp | High-pressure pump |
JP2016061196A (en) * | 2014-09-17 | 2016-04-25 | 日立オートモティブシステムズ株式会社 | High pressure fuel supply pump |
-
2016
- 2016-07-22 JP JP2016143890A patent/JP6689153B2/en active Active
-
2017
- 2017-06-27 WO PCT/JP2017/023520 patent/WO2018016272A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211598A (en) * | 2010-06-29 | 2012-11-01 | Denso Corp | High-pressure pump |
JP2016061196A (en) * | 2014-09-17 | 2016-04-25 | 日立オートモティブシステムズ株式会社 | High pressure fuel supply pump |
Also Published As
Publication number | Publication date |
---|---|
JP6689153B2 (en) | 2020-04-28 |
JP2018013100A (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5136919B2 (en) | High pressure pump | |
US7827967B2 (en) | Low noise fuel pump with variable pressure regulation | |
JP4701227B2 (en) | Plunger high pressure fuel pump | |
US20110315909A1 (en) | Constant-residual-pressure valve | |
JP6308921B2 (en) | High pressure fuel supply pump | |
JP6293994B2 (en) | High pressure fuel supply pump | |
JP5653288B2 (en) | Constant residual pressure valve | |
JP6043865B2 (en) | High pressure fuel supply pump | |
JP2013133753A (en) | Pressure regulating valve | |
JP2006207451A (en) | Fuel pump and discharge valve provided in the fuel pump | |
JP6934519B2 (en) | High pressure fuel pump | |
CN114787497B (en) | Discharge valve mechanism and high-pressure fuel supply pump provided with the discharge valve mechanism | |
JP6697552B2 (en) | High pressure fuel supply pump | |
US20130340861A1 (en) | Check valve of fuel system | |
WO2018016272A1 (en) | Fuel supply pump | |
JP2009250172A (en) | High pressure fuel pump | |
JP2001173816A (en) | Check valve and fuel injection pump using the valve | |
JP7139265B2 (en) | High-pressure fuel supply pump and relief valve mechanism | |
JP2012052464A (en) | Constant residual pressure valve | |
JP6855343B2 (en) | High pressure fuel pump | |
CN112243474B (en) | Electromagnetic valve and high-pressure fuel supply pump | |
JP7644684B2 (en) | Fuel Pump | |
JP7397729B2 (en) | Fuel pump | |
JPWO2018221158A1 (en) | High pressure fuel supply pump | |
JP2012255450A (en) | High-pressure pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830792 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830792 Country of ref document: EP Kind code of ref document: A1 |