[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018011993A1 - Simulation method and simulation device - Google Patents

Simulation method and simulation device Download PDF

Info

Publication number
WO2018011993A1
WO2018011993A1 PCT/JP2016/071079 JP2016071079W WO2018011993A1 WO 2018011993 A1 WO2018011993 A1 WO 2018011993A1 JP 2016071079 W JP2016071079 W JP 2016071079W WO 2018011993 A1 WO2018011993 A1 WO 2018011993A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
time
simulation
current
Prior art date
Application number
PCT/JP2016/071079
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 松本
前田 謙一
近藤 隆文
孟光 大沼
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/071079 priority Critical patent/WO2018011993A1/en
Priority to JP2017068134A priority patent/JP6988132B2/en
Publication of WO2018011993A1 publication Critical patent/WO2018011993A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a simulation method and a simulation apparatus.
  • Patent Document 1 describes a battery model identification method.
  • the current waveform input to the battery is measured using a current sensor
  • the voltage waveform of the battery terminal voltage is measured using a voltage sensor.
  • a system identification calculating part performs system identification of a battery model based on these current waveforms and voltage waveforms.
  • ⁇ HEV Hybrid Electric ⁇ ⁇ ⁇ Vehicle
  • An object of the present invention is to provide a simulation method and a simulation apparatus that can accurately estimate the characteristics of an electricity storage device when it has deteriorated without using an actually deteriorated electricity storage device.
  • a simulation method is a method of performing a simulation using an equivalent circuit model of an electricity storage device, and includes a step of calculating a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model,
  • the equivalent circuit model includes a plurality of characteristic parameters, and at least one characteristic parameter includes a time function indicating the influence of deterioration of the storage device, and the time function is a time integration of a numerical value indicating the operating state of the storage device. And a coefficient representing the deterioration rate multiplied by the time integration.
  • the simulation device is a device that performs a simulation using an equivalent circuit model of a power storage device, and calculates a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model.
  • the equivalent circuit model includes a plurality of characteristic parameters, at least one characteristic parameter includes a time function representing an influence of deterioration of the power storage device, and the time function represents an operation state of the power storage device.
  • At least one characteristic parameter includes a time function representing the influence of deterioration of the electricity storage device.
  • a time function representing the influence of deterioration of the electricity storage device.
  • this electrical storage device is a lead acid battery, for example.
  • the numerical value indicating the operating state of the power storage device may be the current. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration (energization deterioration) based on the total amount of current flowing through the power storage device during the usage period.
  • the term may further include depth of discharge (DOD) multiplied by time integration. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of the deterioration based on the DOD of the power storage device during the usage period.
  • DOD depth of discharge
  • the numerical value representing the operation state of the power storage device may be one or both of a charging rate (State Of Charge; SOC) during dark current discharge and a SOC during rest. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration during dark current discharge or rest during the use period.
  • a charging rate SOC
  • SOC State Of Charge
  • the coefficient may change according to the temperature of the electricity storage device.
  • the simulation method and the simulation apparatus of the present invention it is possible to accurately estimate the characteristics of the electricity storage device when it is deteriorated without using the actually deteriorated electricity storage device.
  • FIG. 1 is a diagram illustrating a schematic configuration of an apparatus that performs a fuel consumption simulation.
  • FIG. 2 is a diagram illustrating an example of an equivalent circuit model.
  • FIG. 3 is a diagram illustrating a schematic configuration of a simulation apparatus according to an embodiment.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the simulation apparatus of FIG.
  • FIG. 5 is a diagram illustrating terminal voltage calculation processing executed by the simulation apparatus.
  • FIG. 6A to FIG. 6C are graphs conceptually showing examples of the waveform of the current flowing through the power storage device.
  • FIG. 7 is a graph showing changes in DC resistance when the current waveforms of FIGS. 6 (a) to 6 (c) are input using a lithium ion battery as an example.
  • FIG. 8 is a graph plotting calculated values of the time integral of the energization deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c).
  • FIG. 9 is a graph plotting calculated values of the time integration of the self-heating deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c).
  • FIG. 10 is a graph plotting calculated values of the time integration of the pause degradation term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c).
  • FIG. 11A to FIG. 11C are graphs conceptually showing the state of curve fitting.
  • FIG. 12 is a chart showing numerical examples of coefficients of each characteristic parameter.
  • FIG. 13 compares the maximum value of the fuel consumption error between the case where the characteristic parameter of the embodiment is used for the equivalent circuit model of the power storage device and the case where the characteristic parameter not considering the influence of deterioration is used in the vehicle fuel consumption simulation. It is a graph which shows the result.
  • FIG. 14 is a diagram illustrating a current waveform used for identification of each characteristic parameter.
  • FIG. 15 is a graph illustrating an example of a fuel consumption simulation result according to an embodiment.
  • the current flowing through the power storage device refers to both the charging current input to the power storage device and the discharge current output from the power storage device.
  • the sign of the current is positive, it represents charging.
  • the sign is negative, it represents discharge.
  • the simulation method and simulation apparatus are used, for example, in a fuel consumption simulation of a vehicle equipped with an electricity storage device.
  • This power storage device is, for example, a main power storage device mounted on a vehicle adopting the ⁇ HEV method, or a sub power storage device provided separately from the main power storage device.
  • the power storage device is a sub power storage device, the power storage device is used to cover the current consumption of a 12V auxiliary device mounted on the vehicle.
  • FIG. 1 is a diagram illustrating a schematic configuration of an apparatus that performs a fuel consumption simulation.
  • the fuel consumption simulation device 90 includes an input unit 91, a control unit 92, and an output unit 93 as functional blocks.
  • the input unit 91 inputs data necessary for fuel consumption simulation.
  • An example of input data is a running pattern of a vehicle.
  • parameters that determine characteristics of various devices such as an engine mounted on the vehicle, types of charge / discharge control methods for the power storage device, configuration of the power storage device, power consumption of auxiliary devices mounted on the vehicle, and vehicle Data such as the weight of the can be entered.
  • the control unit 92 performs a fuel consumption simulation using the data input by the input unit 91.
  • the specific method of a fuel consumption simulation is not specifically limited, For example, it performs in the following procedures.
  • the control unit 92 determines, for example, the power required for the vehicle to travel for each section from the traveling pattern input by the input unit 91 (hereinafter simply referred to as “required power”) and the consumption current of the auxiliary machine. Is calculated.
  • the sections include a stop section, an acceleration section, a constant speed traveling section, and a deceleration section.
  • the required power is relatively large in the acceleration section and relatively small in the constant speed traveling section.
  • the required power may be 0 in the stop section and the deceleration section.
  • the current consumption of the auxiliary machine varies depending on the type of the auxiliary machine. For example, the consumption current of an auxiliary machine that is continuously used, such as an audio device, is almost constant regardless of the section. On the other hand, the current consumption of auxiliary equipment that is temporarily used, such as an engine ignition device, increases only during use.
  • the control unit 92 calculates the engine output for each section.
  • the engine output is, for example, 0 when the engine is stopped in a stop section, and a predetermined output in other sections.
  • the output exceeding the required power is converted into electric power by the alternator and supplied from the alternator toward the auxiliary device and the power storage device.
  • the power supplied from the alternator exceeds the power consumption of the auxiliary machine, a current flows from the alternator to the power storage device, and the power storage device is charged.
  • the power supplied from the alternator falls below the power consumption of the auxiliary machine, a current flows from the power storage device to the auxiliary machine, and the power storage device is discharged.
  • the terminal voltage of the electricity storage device depends on the SOC of the electricity storage device, the magnitude of the charge / discharge current, and the like.
  • the terminal voltage of the electricity storage device is estimated using, for example, an equivalent circuit model for calculating the terminal voltage of the electricity storage device. Details of terminal voltage estimation will be described later. From the charge / discharge current of the power storage device and the terminal voltage of the power storage device, the control unit 92 also calculates charge / discharge power of the power storage device for each section.
  • the control unit 92 calculates an integrated value of the engine output and the charge / discharge power of the power storage device in all sections.
  • the integrated value of the engine output in all sections indicates the amount of energy that the engine will consume when the vehicle travels in the travel pattern input by the input unit 91.
  • the integrated value of the charge / discharge power of the power storage device in all sections indicates the amount of energy that will increase or decrease in the power storage device when the vehicle travels in the travel pattern input by the input unit 91.
  • the total energy amount of the energy amount that the engine will consume and the energy amount that will decrease in the power storage device is the energy amount required for traveling of the vehicle of the traveling pattern input by the input unit 91. Since the travel distance of the vehicle is also known from the travel pattern, the control unit 92 calculates a travelable distance per predetermined energy amount as fuel consumption based on the travel distance and the energy amount required for the travel distance.
  • the output unit 93 outputs the fuel consumption calculated by the control unit 92. Thereby, the result of the fuel consumption simulation based on the running pattern inputted by the input unit 91 is obtained.
  • the terminal voltage of the electricity storage device is estimated in the fuel consumption simulation. Since the accuracy of the fuel consumption simulation is improved by improving the estimation accuracy of the terminal voltage of the electricity storage device, for example, the simulation apparatus (an electricity storage device simulator) according to the embodiment is used for the purpose of improving the accuracy of calculation of the fuel consumption. Also good.
  • the power storage device is not limited to a lead storage battery, and may be another power storage device or a composite power storage device in which a plurality of power storage devices are combined.
  • the simulation apparatus estimates the terminal voltage of the power storage device using the power storage device model for calculating the terminal voltage of the power storage device.
  • an equivalent circuit model of an electricity storage device is used as the electricity storage device model.
  • the equivalent circuit model 40 includes a circuit 10, a circuit 20, and a constant voltage source 30 that are connected in series between nodes N 1 and N 2 having opposite polarities.
  • the node N 1 and the node N 2 are portions that are electrically connected to an external element of the power storage device, and provide a voltage generated in the equivalent circuit model 40.
  • the voltage generated in the equivalent circuit model 40 is the terminal voltage V (t) of the electricity storage device.
  • Node N 1 is an anode, providing a current flowing in the electricity storage device I (t).
  • (t) etc. may be attached
  • the circuit 10 is a DC resistance unit that simulates the DC impedance (DC resistance component) of the power storage device.
  • the circuit 10 includes a resistor 11.
  • the resistor 11 simulates a linear DC resistance component of the electricity storage device. Examples of the linear DC resistance component include electrode resistance.
  • the resistance value of the resistor 11 is a constant.
  • the impedance of the circuit 10 is determined by the resistance value of the resistor 11 of the circuit 10. If the impedance of the circuit 10 is determined, when the current I (t) flows in the equivalent circuit model 40, the current I (t) also flows in the circuit 10, so that the current I (t) and the impedance of the circuit 10 From this, the voltage generated in the circuit 10 can be calculated.
  • a voltage generated in the circuit 10 is referred to as a DC resistance voltage Vdc (t).
  • the circuit 20 is a polarization model unit that simulates the polarization impedance component of the electricity storage device.
  • the circuit 20 includes a resistor and a capacitor (RC parallel circuit) connected in parallel.
  • a resistor 21 and a capacitor 22 (first RC parallel circuit) connected in parallel and a resistor 23 and a capacitor 24 (second RC parallel circuit) connected in parallel are connected in series. Yes.
  • the resistance value of the resistor 21 and the capacitance value of the capacitor 22 constituting the first RC parallel circuit are constants.
  • the resistor 21 simulates the first polarization resistance component of the electricity storage device
  • the capacitor 22 simulates the first polarization capacitance component of the electricity storage device.
  • the resistance value of the resistor 23 and the capacitance value of the capacitor 24 constituting the second RC parallel circuit are constants.
  • the resistor 23 simulates the second polarization resistance component of the electricity storage device
  • the capacitor 24 simulates the second polarization capacitance component of the electricity storage device.
  • the circuit 20 includes first and second RC parallel circuits, but the circuit 20 includes at least a first RC parallel circuit (resistor 21 and capacitor 22). It only has to be.
  • the circuit 20 may include three or more RC parallel circuits.
  • the impedance of the circuit 20 is determined by the resistance value of each resistor of the circuit 20 and the capacitance value of each capacitor. If the impedance of the circuit 20 is determined, when the current I (t) flows in the equivalent circuit model 40, the current I (t) also flows in the circuit 20, so that the current I (t) and the impedance of the circuit 20 From this, the voltage generated in the circuit 20 can be calculated.
  • a voltage generated in the circuit 20 is referred to as a polarization voltage Vpol (t).
  • the polarization voltage Vpol is a total voltage of the voltage generated in the resistor 21 and the capacitor 22 and the voltage generated in the resistor 23 and the capacitor 24.
  • a voltage generated in the resistor 21 and the capacitor 22 is referred to as a first polarization voltage Vp1 (t) and illustrated.
  • a voltage generated in the resistor 23 and the capacitor 24 is referred to as a second polarization voltage Vp2 (t) and illustrated. That is, in the circuit 20, the following relational expression (1) is established.
  • the time constant of the first RC parallel circuit composed of the resistor 21 and the capacitor 22 is a time constant ⁇ 1
  • the time constant ⁇ 1 is obtained by multiplying the resistance value of the resistor 21 and the capacitance value of the capacitor 22. It is determined as a value.
  • the time constant ⁇ 1 is reflected in the time change of the first polarization voltage Vp1 (t) generated in the resistor 21 and the capacitor 22. For example, the time change of the first polarization voltage Vp1 (t) becomes slower as the time constant ⁇ 1 is larger.
  • the time constant of the second RC parallel circuit composed of the resistor 23 and the capacitor 24 is a time constant ⁇ 2
  • the time constant ⁇ 2 is obtained by multiplying the resistance value of the resistor 23 and the capacitance value of the capacitor 24. It is determined as a value.
  • the time constant ⁇ 2 is reflected in the time change of the second polarization voltage Vp2 (t) generated in the resistor 23 and the capacitor 24.
  • the time constants ⁇ 1 and ⁇ 2 may be set to different values. Since the circuit 20 includes RC parallel circuits having a plurality of different time constants, the time change of the voltage of the polarization voltage Vpol (t) can be expressed more accurately.
  • Each time constant may be set such that time constant ⁇ 1 ⁇ time constant ⁇ 2, for example.
  • the constant voltage source 30 has a constant direct current (DC) voltage.
  • the voltage of the constant voltage source 30 is an open circuit voltage (OCV: Open Circuit Voltage) of the electricity storage device.
  • OCV Open Circuit Voltage
  • the impedance of the constant voltage source 30 is zero.
  • the open circuit voltage of the electricity storage device is referred to as open circuit voltage Vocv (t).
  • the open circuit voltage Vocv (t) is obtained from the SOC of the power storage device, for example. In that case, the open circuit voltage Vocv (t) is a function with the SOC as an argument.
  • the temperature of the electricity storage device may be included in the argument.
  • the simulation apparatus uses the above-described equivalent circuit model 40 of the electricity storage device to estimate the terminal voltage V (t) of the electricity storage device.
  • FIG. 3 is a diagram illustrating a schematic configuration of a simulation apparatus according to an embodiment.
  • the simulation apparatus 1 includes an input unit 2, an SOC calculation unit 3, a parameter setting unit 4, a DC resistance calculation unit 5, a polarization calculation unit 6, an OCV calculation unit 7, and a terminal voltage calculation unit as functional blocks. 8 and so on.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of the simulation apparatus 1 of FIG.
  • the simulation apparatus 1 physically includes one or more CPUs (Central Processing Units) 101, a RAM (Random Access Memory) 102 as a main storage device, and a ROM (Read Only Memory). 103, a communication module 104 that is a data transmission / reception device, an auxiliary storage device 105 such as a hard disk and a flash memory, an input device 106 that accepts user input such as a keyboard, and an output device 107 such as a display. It is configured.
  • CPUs Central Processing Units
  • RAM Random Access Memory
  • ROM Read Only Memory
  • 103 a communication module 104 that is a data transmission / reception device
  • an auxiliary storage device 105 such as a hard disk and a flash memory
  • an input device 106 that accepts user input such as a keyboard
  • an output device 107 such as a display. It is configured.
  • the fuel consumption simulation apparatus 90 is a main storage device such as the CPU 101, the RAM 102 and the ROM 103, the communication module 104, the auxiliary storage device 105, the input device 106, and the output device. 107 may be configured as a normal computer system.
  • the input unit 2 is a part for inputting a specified value (bat_demand) to the power storage device.
  • the specified value includes, for example, the magnitude of charge / discharge current and the magnitude of charge / discharge power required for the power storage device in the fuel consumption calculation by the fuel consumption simulation apparatus 90 described above.
  • the input unit 2 outputs the input specified value to the DC resistance calculation unit 5.
  • the SOC calculation unit 3 is a part that calculates the SOC of the power storage device.
  • the SOC (t) of the power storage device is calculated from the initial SOC (0) of the power storage device and the subsequent charge / discharge electricity amount of the power storage device.
  • the initial SOC (0) value of the electricity storage device is not particularly limited, and may be set as appropriate.
  • the amount of charge / discharge electricity of the electricity storage device is obtained by integrating the charge / discharge current of the electricity storage device by the charge / discharge time.
  • the SOC (t) of the power storage device is obtained based on the charge / discharge electricity amount of the power storage device and the full charge capacity of the power storage device at time t.
  • the SOC calculation unit 3 calculates SOC (t) by the following equation (3), for example.
  • the SOC calculation unit 3 outputs the calculated SOC (t) to the parameter setting unit 4, the polarization calculation unit 6, and the OCV calculation unit 7, respectively.
  • the parameter setting unit 4 is a part for setting various characteristic parameter values necessary for estimating the terminal voltage of the power storage device.
  • the characteristic parameters include, for example, the resistance value (DC resistance) of the resistor 11, the resistance value of the resistor 21 (first polarization resistance), the time constant ⁇ 1 (first polarization time constant), and the resistance value of the resistor 23 ( Second polarization resistance) and time constant ⁇ 2 (second polarization time constant).
  • the value of each characteristic parameter may be changed according to the SOC of the power storage device.
  • the parameter setting unit 4 sets the value of each parameter by referring to, for example, a lookup table that describes the value of each parameter.
  • a lookup table is provided for each parameter.
  • the lookup table is a table in which, for example, the SOC is associated with the value of each parameter.
  • the parameter setting unit 4 acquires the value of each parameter associated with the SOC (t) received from the SOC calculation unit 3 by referring to each lookup table, and uses the acquired value for each parameter.
  • Each lookup table may be prepared for each temperature of the power storage device. In that case, the value of each parameter is set in consideration of the temperature of the power storage device. The value of each parameter may be determined in advance.
  • the parameter setting unit 4 outputs the set parameter values to the DC resistance calculation unit 5 and the polarization calculation unit 6.
  • the DC resistance calculation unit 5 is a part that calculates the DC resistance voltage Vdc (t) generated in the circuit 10 in the equivalent circuit model 40.
  • the direct current resistance calculation unit 5 is also a part that calculates the current I (t) flowing through the equivalent circuit model 40 from the specified value (bat_demand) input by the input unit 2.
  • the polarization calculator 6 is a part that calculates a polarization voltage Vpol (t) generated in the circuit 20 in the equivalent circuit model 40.
  • the OCV calculation unit 7 is a part that calculates the open circuit voltage Vocv (t) of the power storage device. As described above, the open circuit voltage Vocv (t) is obtained from the SOC of the power storage device.
  • a table in which each SOC value is associated with the open circuit voltage Vocv is prepared in advance.
  • the OCV calculation unit 7 calculates the open circuit voltage Vocv (t) from the SOC (t) received from the SOC calculation unit 3 by referring to the table.
  • the above-described table may be prepared for each temperature. In that case, the open-circuit voltage Vocv (t) is calculated in consideration of the temperature of the power storage device.
  • the terminal voltage calculation part 8 is a part which calculates the terminal voltage V (t) of an electrical storage device. As described above, the DC resistance voltage Vdc (t) calculated by the DC resistance calculator 5, the polarization voltage Vpol (t) calculated by the polarization calculator 6, and the open circuit voltage calculated by the OCV calculator 7. Vocv (t) is sent to the terminal voltage calculator 8. The terminal voltage calculation unit 8 calculates the terminal voltage V (t) based on the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t).
  • the terminal voltage calculator 8 adds the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t) as shown in the above equation (2), The total voltage is calculated as the terminal voltage V (t).
  • the terminal voltage calculation unit 8 outputs the calculated terminal voltage V (t) to the outside of the simulation apparatus 1 and the DC resistance calculation unit 5.
  • FIG. 5 is a flowchart illustrating an example of calculation processing of the terminal voltage V (t) executed by the simulation apparatus 1.
  • the process of the flowchart shown in FIG. 5 is executed, for example, when estimating the terminal voltage of the electricity storage device at a certain time t in the fuel consumption calculation of the fuel consumption simulation device 90.
  • the input unit 2 inputs a specified value (bat_demand) (step S01).
  • the input unit 2 receives a specified value from an external device of the simulation apparatus 1 and inputs the specified value.
  • the input unit 2 outputs the input designated value to the DC resistance calculation unit 5.
  • the SOC calculation unit 3 calculates the SOC of the power storage device (step S02).
  • the SOC calculation unit 3 calculates SOC (t) using, for example, the above-described equation (3).
  • the SOC calculation unit 3 outputs the calculated SOC (t) to the parameter setting unit 4, the polarization calculation unit 6, and the OCV calculation unit 7.
  • the parameter setting unit 4 sets each characteristic parameter of the equivalent circuit model 40 (step S03).
  • the characteristic parameters set in step S03 are, for example, the resistance value of the resistor 11, the resistance value of the resistor 21, the time constant ⁇ 1, the resistance value of the resistor 23, and the time constant ⁇ 2.
  • the parameter setting unit 4 acquires, for example, the value of each parameter associated with the SOC (t) received from the SOC calculation unit 3 by referring to a lookup table that describes the value of each characteristic parameter. Set the value to the value of each parameter. Then, the parameter setting unit 4 outputs the set parameters to the DC resistance calculation unit 5 and the polarization calculation unit 6.
  • the DC resistance calculation unit 5 calculates the current I (t) and the DC resistance voltage Vdc (t) using the resistance value of the resistor 11 provided from the parameter setting unit 4 (step S04).
  • the charge / discharge mode is a constant current discharge mode (a mode in which a constant current flows regardless of the terminal voltage V (t))
  • the DC resistance calculation unit 5 is included in the specified value input by the input unit 2
  • the designated current is set to the current I (t).
  • the DC resistance calculation unit 5 calculates the DC resistance voltage Vdc (t) based on the current I (t).
  • the charge / discharge mode is a constant voltage charge mode (a mode in which the power storage device is charged with a constant output voltage of a voltage source (eg, an alternator) for charging the power storage device).
  • a voltage source eg, an alternator
  • the DC resistance voltage Vdc (t) is calculated.
  • a current I (t) flowing through the equivalent circuit model 40 is calculated.
  • the polarization calculator 6 calculates the polarization voltage Vpol (t) (step S05). Specifically, the polarization calculation unit 6 uses the resistance value of the resistor 21, the time constant ⁇ 1, the resistance value of the resistor 23, and the time constant ⁇ 2 provided from the parameter setting unit 4 to use the first polarization voltage Vp 1. (T) and the second polarization voltage Vp2 (t) are calculated. Then, the polarization calculator 6 calculates the total value of the first polarization voltage Vp1 (t) and the second polarization voltage Vp2 (t) as the polarization voltage Vpol (t).
  • the OCV calculation unit 7 calculates the open circuit voltage Vocv (t) (step S06). For example, the OCV calculation unit 7 calculates the open-circuit voltage Vocv (t) from the SOC (t) received from the SOC calculation unit 3 by referring to a table in which each SOC value is associated with the open-circuit voltage Vocv value. To do. Then, the OCV calculation unit 7 outputs the calculated open circuit voltage Vocv (t) to the terminal voltage calculation unit 8.
  • the terminal voltage calculation unit 8 calculates the terminal voltage V (t) (step S07). Specifically, the terminal voltage calculation unit 8 includes a DC resistance voltage Vdc (t) calculated by the DC resistance calculation unit 5, a polarization voltage Vpol (t) calculated by the polarization calculation unit 6, and an OCV calculation unit 7. Based on the calculated open circuit voltage Vocv (t), the terminal voltage V (t) is calculated. More specifically, the terminal voltage calculator 8 adds the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t) as shown in the above equation (2), The total voltage is calculated as the terminal voltage V (t). Then, the terminal voltage calculation unit 8 outputs the calculated terminal voltage V (t) to the outside of the simulation apparatus 1 and the DC resistance calculation unit 5. As described above, the calculation process of the terminal voltage V (t) at time t is completed.
  • step S05 and the process of step S06 may be performed in parallel, and the order of implementation may be reversed.
  • the equivalent circuit model 40 includes, for example, the resistance value (DC resistance) of the resistor 11, the resistance value of the resistor 21 (first polarization resistance), the time constant ⁇ 1 (first polarization time constant), and resistance. It has a plurality of characteristic parameters such as a resistance value (second polarization resistance) of the capacitor 23 and a time constant ⁇ 2 (second polarization time constant). Normally, these characteristic parameters are calculated without taking into account deterioration due to the use of the electricity storage device. In that case, there is a problem that the input / output characteristics of the electricity storage device when it deteriorates cannot be estimated with high accuracy.
  • At least one characteristic parameter among the plurality of characteristic parameters is set as in the following formula (4). That is, an arbitrary characteristic parameter A is As a model.
  • the first term A 0 on the right side is an initial value of the characteristic parameter corresponding to when the power storage device is not used, and the second term A 1 on the right side is a change in the characteristic parameter after the power storage device has been used for a certain period of time.
  • This change is a time function representing the influence of the deterioration of the electricity storage device, and by inputting an appropriate time within the use period, a corresponding deteriorated characteristic parameter can be obtained after the use time has elapsed. This time is, for example, several hundred hours to thousands of hours.
  • the characteristic parameter A after an arbitrary period of time is obtained by calculation only by identifying the initial characteristic parameter A 0 using an unused power storage device. be able to.
  • the second term A 1 described above may be different depending on the type of the electric storage device.
  • the second term A 1 is defined as, for example, the following formula (5).
  • the coefficients a 1 , a 2 , and a 3 are constants, SOC 1 (t) is the SOC during dark current discharge, and SOC 2 (t) is the SOC at rest. These SOCs are a function of time t.
  • a 1 shown in Equation (5) includes three terms.
  • the first term is It is.
  • This term includes a time integral of the absolute value of the current I (t) and a coefficient a 1 multiplied by the time integral.
  • the current I (t) is a numerical value representing the operating state of the electricity storage device
  • the time integral of the absolute value of the current I (t) represents the total amount of current flowing through the electricity storage device during the usage period
  • the coefficient a 1 represents the rate of deterioration of the electricity storage device relative to the total amount of current. Therefore, the term represented by Equation (6) represents deterioration based on the total amount of current flowing through the power storage device (hereinafter referred to as energization deterioration).
  • t1 is charging / discharging time.
  • characteristic parameters of the electricity storage device there are a plurality of characteristic parameters of the electricity storage device, and the values of these characteristic parameters change as the deterioration progresses. However, the change due to energization deterioration may be increased or decreased depending on the characteristic parameters. . Therefore, the sign of the coefficient a 1 is determined for each characteristic parameter.
  • the second term is It is.
  • This term includes the time integral of the absolute value of the current I (t), the coefficient a 2 multiplied by the time integral, and the depth of discharge (DOD).
  • DOD is a constant, for example.
  • DOD may be a function of time t, in which case the product of the absolute value of I (t) and DOD (t) is time integrated.
  • the coefficient a 2 which represents the rate of deterioration of the electric storage device for DOD. Therefore, the term represented by Formula (7) represents deterioration based on DOD (DOD deterioration) of the electricity storage device. Note that the amount of change in the characteristic parameter due to DOD deterioration may be increased or decreased depending on the characteristic parameter. Therefore, the sign of the coefficient a 2 is determined for each characteristic parameter.
  • the third and fourth terms are It is.
  • the third term includes the time integral of SOC 1 (t) and a coefficient a 3 multiplied by this time integral.
  • the fourth term includes a time integral of SOC 2 (t) and a coefficient a 3 common to the third term multiplied by the time integral.
  • SOC 1 (t) and SOC 2 (t) are numerical values representing the operating state of the electricity storage device.
  • the coefficient a 3 represents the rate of deterioration of the electricity storage device with respect to each SOC during dark current discharge and rest.
  • the third term and the fourth term represented by Expression (8) represent deterioration (dark current discharge deterioration and rest deterioration) based on each SOC during dark current discharge and rest of the electricity storage device, respectively.
  • the change in the characteristic parameter due to the dark current discharge deterioration and the pause deterioration may be increased or decreased depending on the characteristic parameter. Therefore, the sign of the coefficient a 3 is determined for each characteristic parameter.
  • the dark current discharge is a weak current supplied to the car navigation system and the timepiece when the vehicle engine is stopped (ie, the alternator is not generating power, except when idling is stopped).
  • the dark current discharge is a period during which such a weak current flows.
  • the term “rest” refers to a state in which no dark current flows, and the term “rest” refers to a period in which the rest state is maintained.
  • t2 dark current discharge time
  • t3 is rest time.
  • one of the time integral terms of SOC 1 (t) and SOC 2 (t) (that is, one of the third term and the fourth term) may be omitted as necessary.
  • the second term A 1 of the formula (4) is defined as the following formula (9), for example.
  • a 1 shown in Equation (9) includes three terms.
  • the first term is an energization deterioration term.
  • the second term is It is.
  • This term includes the time integral of the absolute value of the current I (t), the coefficient a 2 multiplied by the time integral, and the self-heating multiplied by the time integral. That is, the function T of time ⁇ represented by the following formula (11) represents self-heating of the electricity storage device.
  • the self-heating T is obtained by time integration of the square of the current I ( ⁇ ) as shown in the equation (11).
  • the coefficient a 2 represents the speed of deterioration of the electricity storage device with respect to the self-heating T. Therefore, the term represented by Formula (10) represents deterioration based on self-heating of the electricity storage device (hereinafter referred to as self-heating deterioration).
  • the third term is It is. This term includes the time integration of SOC 2 (t) at rest and the coefficient a 3 multiplied by the time integration. These meanings are the same as the fourth term in the case of the lead storage battery described above. That is, this term is a pause degradation term.
  • the dark current discharge deterioration term exists in Equation (8), but the same dark current discharge deterioration term does not exist in Equation (12).
  • the reason is as follows. For example, when a single electricity storage device is used, there is always a period during which dark current flows even when the vehicle engine is stopped. Examples of such a single electricity storage device include a lead storage battery.
  • a single electricity storage device includes a lead storage battery.
  • the main power storage device and the sub power storage device are used as in the ⁇ HEV system, a situation is considered in which dark current is supplied only from the main power storage device and no dark current is supplied from the sub power storage device. In such a situation, no dark current state occurs in the sub power storage device. Lithium ion batteries are often used as such sub power storage devices. Therefore, the dark current discharge deterioration term is omitted in Equation (12).
  • the electric storage device be a nickel-zinc battery
  • the second term A 1 Equation (4) is defined as for example, the following equation (13).
  • a 1 shown in Equation (13) includes three terms.
  • the first term is an energization deterioration term.
  • the second term is a DOD degradation term.
  • the third term is a pause deterioration term.
  • the nickel zinc battery is also often used as a sub power storage device, similar to the lithium ion battery described above. Therefore, the dark current discharge deterioration term is omitted in Equation (13).
  • FIGS. 6A to 6C are graphs conceptually showing examples of such a waveform of the current I (t).
  • the vertical axis represents current I (t)
  • the horizontal axis represents time.
  • These current waveforms include a constant voltage charging period Ta, a constant current discharging period Tb, and a rest period Tc.
  • FIG. 6A shows a case where the current in the constant voltage charging period Ta is relatively large, and the constant current discharging period Tb is lengthened by the amount of the charging current being large.
  • FIG. 6B shows a case where the current in the constant voltage charging period Ta is relatively small, and the constant current discharging period Tb is shortened by the amount of the charging current being small.
  • FIG. 6C shows a case where the suspension period Tc is longer than those in FIGS. 6A and 6B.
  • FIG. 7 shows a direct current resistance (resistance value of the resistor 11 in FIG. 2) among a plurality of characteristic parameters when the current waveforms in FIGS. 6 (a) to 6 (c) are input using a lithium ion battery as an example. It is a graph which shows a change. The vertical axis represents DC resistance (unit: m ⁇ ), and the horizontal axis represents total cycle time (usage time, unit: time). Further, in the figure, a rhombus plot P1 shows a case where the current waveform shown in FIG. 6A is inputted, and a square plot P2 shows a case where the current waveform shown in FIG. 6B is inputted. A triangular plot P3 shows a case where the current waveform shown in FIG. As shown in FIG. 7, it can be seen that when the waveform of the input current I (t) is different, the degradation of the DC resistance (A 1 in Formula (4)) changes accordingly.
  • a rhombus plot P1 shows a case where the current waveform shown in FIG
  • FIG. 8 is a graph plotting calculated values of the time integral of the energization deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c).
  • FIG. 9 is a graph plotting calculated values of the time integration of the self-heating deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c).
  • FIG. 10 is a graph plotting calculated values of the time integration of the pause degradation term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). 8 to 10, the vertical axis represents the time integral value, and the horizontal axis represents the total cycle time (unit: time).
  • the rhombus plot P4 shows the values when the current waveform shown in FIG. 6A is input
  • the square plot P5 inputs the current waveform shown in FIG. 6B.
  • the triangular plot P6 shows the values when the current waveform shown in FIG. 6C is input.
  • FIGS. 8 to 10 the time integral values in the energization degradation term, the self-heating degradation term, and the pause degradation term are calculated based on the current waveforms in FIGS. 6 (a) to 6 (c). Is done. Therefore, three independent functions including the coefficients a 1 , a 2 , and a 3 as variables can be created, and the coefficients a 1 , a 2 , and a 3 are obtained by performing optimization by curve fitting with experimental values. be able to.
  • FIG. 11A to FIG. 11C are graphs conceptually showing the state of curve fitting.
  • FIGS. 11 (a) to 11 (c) show how the functions of a 1 , a 2 , and a 3 obtained from the current waveforms shown in FIGS. 6 (a) to 6 (c) are fitted with experimental values, respectively. Is shown. Plots P7 to P9 in the figure are experimental values, and curves R1 to R3 are estimated values from functions.
  • FIG. 12 is a chart showing numerical examples of the coefficients a 1 , a 2 , and a 3 of each characteristic parameter obtained by the method described above. As shown in FIG. 12, the coefficients a 1 , a 2 , and a 3 are suitably obtained by the method described above. FIG. 12 also shows the fitting error (%). The error between the first polarization resistance and the second polarization resistance is relatively large. This is considered to be caused by the fact that the test period is short and the progress of deterioration is small.
  • At least one characteristic parameter A includes a time function A 1 that represents the influence of deterioration of the power storage device.
  • the time function A 1 includes a coefficient (for example, a 1 , a 2 , a 3, etc.) indicating the deterioration rate, and a numerical value (for example, current I (t), SOC indicating the operating state of the power storage device. 1 (t), SOC 2 (t), etc.) by including a term (for example, formulas (6) to (8), (10) to (12), etc.)) multiplied by the time integral of the storage device usage history.
  • a term for example, formulas (6) to (8), (10) to (12), etc.
  • the present embodiment it is possible to accurately estimate the input / output characteristics of the electricity storage device when it has deteriorated without using an actually deteriorated electricity storage device, such as a fuel consumption simulation using the deteriorated electricity storage device. Can be performed with high accuracy.
  • FIG. 13 shows the case where the characteristic parameter of the present embodiment is used for the equivalent circuit model of the lithium ion battery in the vehicle fuel consumption simulation (graph G11), and the characteristic parameter that does not consider the influence of deterioration (that is, the right side of Expression (4)). It is a graph showing a result of comparing the maximum value of the fuel consumption error in the case with (graph G12) using second term a 1 that there is no).
  • the vertical axis represents the maximum value (unit:%) of the fuel efficiency error
  • the horizontal axis represents the test period (unit: day). Note that the current waveform shown in FIG.
  • This current waveform repeats the first to third periods TA to TC including the constant voltage charging period T1, the constant current discharging period T2 after the constant voltage charging period T1, and the cranking period T3 after the constant current discharging period T2. Contains. Note that the voltage value of the constant voltage charging period T1 in the first to third periods TA to TC is constant at 14 (V), and the time of the constant current discharging period T2 and the cranking period T3 is 59 seconds, 1 Constant in seconds.
  • the current values in the first to third periods TA to TC are as follows.
  • Constant voltage charging period T1 100 (A) Constant current discharge period T2: -20 (A) Cranking period T3: -300 (A) ⁇ Second period TB> Constant voltage charging period T1: 200 (A) Constant current discharge period T2: -45 (A) Cranking period T3: -300 (A) ⁇ Third period TC> Constant voltage charging period T1: 50 (A) Constant current discharge period T2: -10 (A) Cranking period T3: -300 (A)
  • the maximum value of the fuel efficiency error is the maximum value of the difference between the result of the fuel efficiency simulation using the equivalent circuit model including the characteristic parameter and the actually measured fuel efficiency.
  • the voltage error difference between the measured value of the terminal voltage of the power storage device and the estimated value of the terminal voltage by the model
  • the fuel consumption calculation result varies depending on the combination of the characteristic parameter values.
  • the above-mentioned “maximum value” refers to the value of the maximum fuel efficiency error among the calculated fuel efficiency errors by preparing a plurality of combinations of characteristic parameter values that have the same voltage error, calculating the fuel efficiency error for each combination.
  • the fuel efficiency error increases as the test period becomes longer.
  • the maximum value of the fuel efficiency error exceeds 0.3% after the test period exceeds 60 days. ing.
  • the maximum value of the fuel consumption error is 0.05% or less even when the test period exceeds 60 days.
  • the fuel consumption simulation result according to the present embodiment can be applied to, for example, selection of the power storage device capacity employed in the vehicle.
  • the fuel efficiency of a vehicle becomes better as the capacity of an electricity storage device mounted increases.
  • the performance of the electricity storage device deteriorates, and the fuel consumption of the vehicle decreases.
  • an electricity storage device capacity having a sufficient margin than the electricity storage device capacity selected from the fuel consumption simulation result was selected. In such a selection method, the storage device capacity tends to increase more than necessary, which may hinder vehicle cost reduction.
  • the simulation method and the simulation apparatus 1 can perform a simulation according to the degree of deterioration of the power storage device, and therefore accurately perform a fuel consumption simulation in consideration of the years since the start of use. Can do. Therefore, based on the estimated fuel consumption after a predetermined number of years, it is possible to accurately select the power storage device capacity that can satisfy the predetermined fuel consumption condition.
  • FIG. 15 is a graph showing an example of a fuel consumption simulation result according to the present embodiment.
  • the vertical axis represents fuel consumption (unit: km / l), and the horizontal axis represents the number of years of use (unit: year).
  • a rhombus plot P10, a square plot P11, and a triangle plot P12 in the figure indicate cases where the initial storage device capacities are 3 Ah, 5 Ah, and 7 Ah, respectively.
  • the fuel consumption of the vehicle is better as the storage device capacity is larger. However, the fuel consumption of the vehicle is lower as the service life is longer.
  • the initial capacity of the power storage device mounted on the vehicle should be 5 Ah.
  • the selection of the storage device capacity is not limited to the case where the estimated fuel consumption is used as a reference. According to the present embodiment, it is possible to accurately select a power storage device capacity that can satisfy a predetermined condition based on the estimated characteristics of the power storage device after a predetermined number of years.
  • the numerical value representing the operating state of the power storage device and time-integrated may be the current I (t) flowing through the equivalent circuit model (for example, Formula (6), Formula (7), (See Equation (11)). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration (energization deterioration) based on the total amount of current flowing through the power storage device during the usage period.
  • the term obtained by multiplying the coefficient and the time integral may further include a DOD multiplied by the time integral (see, for example, Equation (7)). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of the deterioration based on the DOD of the power storage device during the usage period.
  • the numerical values that represent the operating state of the power storage device and are integrated over time are the SOC during dark current discharge (that is, SOC 1 (t) in Expression (8)) and the SOC during rest (that is, One or both of Formula (8) and SOC 2 (t) in Formula (12) may be used (see Formula (8) and Formula (12), for example). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration during dark current discharge or rest.
  • the coefficients a 1 , a 2 , and a 3 may be functions a 1 (TH), a 2 (TH), and a 3 (TH) of the temperature TH, or differ for each of a plurality of temperatures.
  • the coefficients a 1 , a 2 , and a 3 may be set. Therefore, when performing optimization by curve fitting with experimental values, it is preferable to acquire experimental values while changing the temperature of the power storage device.
  • the simulation method and the simulation apparatus according to the present invention are not limited to the above-described embodiments and modification examples, and various other modifications are possible.
  • the current I (t) flowing through the power storage device, the SOC 1 (t) during dark current discharge, and the SOC 2 (when resting) are represented as numerical values that represent the operating state of the power storage device and are integrated over time.
  • t has been illustrated, as the numerical value in the present invention, various numerical values other than these can be adopted as long as they represent the operating state of the electric storage device.
  • the terminal voltage of the electricity storage device may be used as a numerical value instead of SOC 1 (t) and SOC 2 (t).
  • the present invention can be used as a simulation method and a simulation apparatus that can accurately estimate the characteristics of a deteriorated power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a simulation method such that the characteristics of a power storage device after deterioration can be estimated accurately. In this simulation method, a simulation is performed using an equivalent circuit model for the power storage device. The simulation method comprises the step of calculating a terminal voltage V(t) in the equivalent circuit model on the basis of a current I(t) flowing through the equivalent circuit model. The equivalent circuit model comprises a plurality of characteristic parameters. At least one of the characteristic parameters includes a time function representing an effect of deterioration on the power storage device. The time function has terms including a time integral of a value representing the operating state of the power storage device, and a coefficient representing a deterioration rate multiplied by the time integral.

Description

シミュレーション方法及びシミュレーション装置Simulation method and simulation apparatus
 本発明は、シミュレーション方法及びシミュレーション装置に関する。 The present invention relates to a simulation method and a simulation apparatus.
 特許文献1には、電池モデル同定方法が記載されている。この方法では、電池に入力される電流波形を電流センサを用いて測定し、電池の端子電圧の電圧波形を電圧センサを用いて測定する。そして、システム同定演算部が、これらの電流波形及び電圧波形に基づいて、電池モデルのシステム同定を行う。 Patent Document 1 describes a battery model identification method. In this method, the current waveform input to the battery is measured using a current sensor, and the voltage waveform of the battery terminal voltage is measured using a voltage sensor. And a system identification calculating part performs system identification of a battery model based on these current waveforms and voltage waveforms.
特開2016-3963号公報JP 2016-3963 A
 現在、車載用蓄電デバイスとして、鉛蓄電池、リチウムイオン電池、リチウムイオンキャパシタといった様々な蓄電デバイスが用いられている。そして、これらの電池を組み合わせて、様々な種類のハイブリッド方式が実用化されている。例えば、メイン蓄電デバイスとは別に、減速の際のエネルギー回生及び補機への給電のためのサブ蓄電デバイスを設ける、いわゆるμHEV(Hybrid Electric Vehicle)方式が近年特に有用とされている。 Currently, various power storage devices such as lead storage batteries, lithium ion batteries, and lithium ion capacitors are used as in-vehicle power storage devices. Various types of hybrid systems have been put into practical use by combining these batteries. For example, in recent years, a so-called μHEV (Hybrid Electric 設 け る Vehicle) method, in which a sub power storage device for energy regeneration during deceleration and power supply to an auxiliary device is provided separately from the main power storage device, has been particularly useful.
 一方、例えば車両の燃費シュミレーションにおいては、エンジン及び蓄電デバイスといった様々な動力源並びに負荷をモデル化し、規定の走行パターンを該モデルに入力して燃費を算出することが行われている。このような燃費シュミレーション等に含まれる蓄電デバイスのシミュレーションにおいて、ハイブリッド方式における複雑化した蓄電デバイス構成を正確にモデル化することは、シミュレーションを精度よく行うために極めて重要である。しかしながら、従来のシュミレーションにおいては、蓄電デバイスの使用による劣化を考慮せずに蓄電デバイスをモデル化しているので、劣化したときの蓄電デバイスの特性を精度良く推定するためには、モデルの特性パラメータを同定する際に、実際に劣化した蓄電デバイスを用意する必要があるという問題がある。 On the other hand, for example, in a fuel consumption simulation of a vehicle, various power sources such as an engine and a power storage device and a load are modeled, and a fuel consumption is calculated by inputting a predetermined traveling pattern into the model. In the simulation of power storage devices included in such fuel consumption simulations, it is extremely important to accurately model the complicated power storage device configuration in the hybrid system in order to perform simulation accurately. However, in the conventional simulation, the power storage device is modeled without considering the deterioration due to the use of the power storage device. Therefore, in order to accurately estimate the characteristics of the power storage device at the time of deterioration, the characteristic parameter of the model is set. When identifying, there is a problem that it is necessary to prepare an actually deteriorated power storage device.
 本発明は、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定することができるシミュレーション方法及びシミュレーション装置を提供することを目的とする。 An object of the present invention is to provide a simulation method and a simulation apparatus that can accurately estimate the characteristics of an electricity storage device when it has deteriorated without using an actually deteriorated electricity storage device.
 本発明の一実施形態によるシミュレーション方法は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行う方法であって、等価回路モデルを流れる電流に基づいて等価回路モデルの端子電圧を計算するステップを含み、等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含んでおり、時間関数が、蓄電デバイスの動作状態を表す数値の時間積分と、該時間積分に乗算された劣化速度を表す係数とを含む項を有する。 A simulation method according to an embodiment of the present invention is a method of performing a simulation using an equivalent circuit model of an electricity storage device, and includes a step of calculating a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model, The equivalent circuit model includes a plurality of characteristic parameters, and at least one characteristic parameter includes a time function indicating the influence of deterioration of the storage device, and the time function is a time integration of a numerical value indicating the operating state of the storage device. And a coefficient representing the deterioration rate multiplied by the time integration.
 また、本発明の一実施形態によるシミュレーション装置は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行う装置であって、等価回路モデルを流れる電流に基づいて等価回路モデルの端子電圧を計算する電圧計算部を含み、等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含んでおり、時間関数が、蓄電デバイスの動作状態を表す数値の時間積分と、該時間積分に乗算された劣化速度を表す係数とを含む項を有する。 The simulation device according to an embodiment of the present invention is a device that performs a simulation using an equivalent circuit model of a power storage device, and calculates a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model. The equivalent circuit model includes a plurality of characteristic parameters, at least one characteristic parameter includes a time function representing an influence of deterioration of the power storage device, and the time function represents an operation state of the power storage device. A term including a numerical time integration and a coefficient representing a deterioration rate multiplied by the time integration.
 これらのシミュレーション方法及びシミュレーション装置では、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含む。このような時間関数に蓄電デバイスの使用期間(トータルサイクル時間)内の適切な時間(例えば動作状態を表す数値に関わる動作時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータに反映させることができる。そして、本発明者の知見によれば、その時間関数が、劣化速度を表す係数と、蓄電デバイスの動作状態を表す数値の時間積分(すなわち蓄電デバイスの使用履歴)とを乗算した項を含むことによって、蓄電デバイスの劣化度合いを精度良く表すことができる。従って、上記の方法及び装置によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度良く推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。なお、この蓄電デバイスは、例えば鉛蓄電池である。 In these simulation methods and simulation apparatuses, at least one characteristic parameter includes a time function representing the influence of deterioration of the electricity storage device. By inputting an appropriate time within the usage period (total cycle time) of the electricity storage device (for example, an operation time related to a numerical value representing an operation state) to such a time function, the degree of deterioration of the electricity storage device when the usage time has elapsed Can be reflected in the characteristic parameter. According to the knowledge of the present inventor, the time function includes a term obtained by multiplying the coefficient representing the deterioration rate by the time integral of the numerical value representing the operating state of the power storage device (that is, the usage history of the power storage device). Thus, it is possible to accurately represent the degree of deterioration of the electricity storage device. Therefore, according to the above method and apparatus, it is possible to accurately estimate the input / output characteristics of the electricity storage device when it is deteriorated without using the actually deteriorated electricity storage device. Simulation and the like can be performed with high accuracy. In addition, this electrical storage device is a lead acid battery, for example.
 上記のシミュレーション方法において、蓄電デバイスの動作状態を表す数値は上記電流であってもよい。これにより、使用期間における蓄電デバイスを流れる総電流量に基づく劣化(通電劣化)による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。この場合、上記項は、時間積分に乗算された放電深度(Depth of Discharge;DOD)を更に含んでもよい。これにより、使用期間における蓄電デバイスのDODに基づく劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。 In the above simulation method, the numerical value indicating the operating state of the power storage device may be the current. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration (energization deterioration) based on the total amount of current flowing through the power storage device during the usage period. In this case, the term may further include depth of discharge (DOD) multiplied by time integration. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of the deterioration based on the DOD of the power storage device during the usage period.
 上記のシミュレーション方法において、蓄電デバイスの動作状態を表す数値は、蓄電デバイスの暗電流放電時の充電率(State Of Charge;SOC)及び休止時のSOCの一方または双方であってもよい。これにより、使用期間における暗電流放電時または休止時の劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。 In the above simulation method, the numerical value representing the operation state of the power storage device may be one or both of a charging rate (State Of Charge; SOC) during dark current discharge and a SOC during rest. Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration during dark current discharge or rest during the use period.
 上記のシミュレーション方法において、係数は蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。 In the above simulation method, the coefficient may change according to the temperature of the electricity storage device. Thereby, the deterioration degree which changes according to the temperature of an electrical storage device can be represented accurately.
 本発明によるシミュレーション方法及びシミュレーション装置によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定することができる。 According to the simulation method and the simulation apparatus of the present invention, it is possible to accurately estimate the characteristics of the electricity storage device when it is deteriorated without using the actually deteriorated electricity storage device.
図1は、燃費シミュレーションを行う装置の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of an apparatus that performs a fuel consumption simulation. 図2は、等価回路モデルの例を示す図である。FIG. 2 is a diagram illustrating an example of an equivalent circuit model. 図3は、一実施形態に係るシミュレーション装置の概略構成を示す図である。FIG. 3 is a diagram illustrating a schematic configuration of a simulation apparatus according to an embodiment. 図4は、図3のシミュレーション装置のハードウェア構成の例を示す図である。FIG. 4 is a diagram illustrating an example of a hardware configuration of the simulation apparatus of FIG. 図5は、シミュレーション装置が実行する端子電圧の計算処理を説明する図である。FIG. 5 is a diagram illustrating terminal voltage calculation processing executed by the simulation apparatus. 図6(a)~図6(c)は、蓄電デバイスを流れる電流の波形の例を概念的に示すグラフである。FIG. 6A to FIG. 6C are graphs conceptually showing examples of the waveform of the current flowing through the power storage device. 図7は、リチウムイオン電池を例として図6(a)~図6(c)の電流波形を入力したときの直流抵抗の変化を示すグラフである。FIG. 7 is a graph showing changes in DC resistance when the current waveforms of FIGS. 6 (a) to 6 (c) are input using a lithium ion battery as an example. 図8は、図6(a)~図6(c)の電流波形に対応する、通電劣化項の時間積分の計算値をプロットしたグラフである。FIG. 8 is a graph plotting calculated values of the time integral of the energization deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). 図9は、図6(a)~図6(c)の電流波形に対応する、自己発熱劣化項の時間積分の計算値をプロットしたグラフである。FIG. 9 is a graph plotting calculated values of the time integration of the self-heating deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). 図10は、図6(a)~図6(c)の電流波形に対応する、休止劣化項の時間積分の計算値をプロットしたグラフである。FIG. 10 is a graph plotting calculated values of the time integration of the pause degradation term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). 図11(a)~図11(c)は、カーブフィッティングの様子を概念的に示すグラフである。FIG. 11A to FIG. 11C are graphs conceptually showing the state of curve fitting. 図12は、各特性パラメータの係数の数値例を示す図表である。FIG. 12 is a chart showing numerical examples of coefficients of each characteristic parameter. 図13は、車両の燃費シミュレーションにおいて、蓄電デバイスの等価回路モデルに一実施形態の特性パラメータを使用した場合と、劣化による影響を考慮しない特性パラメータを使用した場合とにおける燃費誤差の最大値を比較した結果を示すグラフである。FIG. 13 compares the maximum value of the fuel consumption error between the case where the characteristic parameter of the embodiment is used for the equivalent circuit model of the power storage device and the case where the characteristic parameter not considering the influence of deterioration is used in the vehicle fuel consumption simulation. It is a graph which shows the result. 図14は、各特性パラメータの同定に用いた電流波形を示す図である。FIG. 14 is a diagram illustrating a current waveform used for identification of each characteristic parameter. 図15は、一実施形態による燃費シミュレーション結果の一例を示すグラフである。FIG. 15 is a graph illustrating an example of a fuel consumption simulation result according to an embodiment.
 以下、添付図面を参照しながら本発明によるシミュレーション方法及びシミュレーション装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。以下の説明において、蓄電デバイスを流れる電流とは、蓄電デバイスに入力される充電電流および蓄電デバイスから出力される放電電流の双方を指し、電流の符号が正である場合は充電を表し、電流の符号が負である場合は放電を表す。 Hereinafter, embodiments of a simulation method and a simulation apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In the following description, the current flowing through the power storage device refers to both the charging current input to the power storage device and the discharge current output from the power storage device. When the sign of the current is positive, it represents charging. When the sign is negative, it represents discharge.
 一実施形態に係るシミュレーション方法及びシミュレーション装置は、たとえば、蓄電デバイスが搭載された車両の燃費シミュレーションにおいて用いられる。この蓄電デバイスは、例えばμHEV方式を採用した車両に搭載されるメイン蓄電デバイス、若しくはメイン蓄電デバイスとは別に設けられたサブ蓄電デバイスである。蓄電デバイスがサブ蓄電デバイスである場合、蓄電デバイスは、車両に搭載された12V系の補機の消費電流を賄うために用いられる。 The simulation method and simulation apparatus according to an embodiment are used, for example, in a fuel consumption simulation of a vehicle equipped with an electricity storage device. This power storage device is, for example, a main power storage device mounted on a vehicle adopting the μHEV method, or a sub power storage device provided separately from the main power storage device. When the power storage device is a sub power storage device, the power storage device is used to cover the current consumption of a 12V auxiliary device mounted on the vehicle.
 [燃費シミュレーション装置の概要]
 図1は、燃費シミュレーションを行う装置の概略構成を示す図である。図1に示されるように、燃費シミュレーション装置90は、その機能ブロックとして、入力部91と、制御部92と、出力部93とを含む。
[Outline of fuel consumption simulation device]
FIG. 1 is a diagram illustrating a schematic configuration of an apparatus that performs a fuel consumption simulation. As shown in FIG. 1, the fuel consumption simulation device 90 includes an input unit 91, a control unit 92, and an output unit 93 as functional blocks.
 入力部91は、燃費シミュレーションに必要なデータを入力する。入力データの例は、車両の走行パターンである。それ以外にも、車両に搭載されるエンジンなどの各種デバイスの特性を定めるパラメータ、蓄電デバイスの充放電の制御方法の種類、蓄電デバイスの構成、車両に搭載される補機の消費電力、および車両の重量などのデータが入力され得る。 The input unit 91 inputs data necessary for fuel consumption simulation. An example of input data is a running pattern of a vehicle. In addition, parameters that determine characteristics of various devices such as an engine mounted on the vehicle, types of charge / discharge control methods for the power storage device, configuration of the power storage device, power consumption of auxiliary devices mounted on the vehicle, and vehicle Data such as the weight of the can be entered.
 制御部92は、入力部91によって入力されたデータを用いて、燃費シミュレーションを行う。燃費シミュレーションの具体的な手法は特に限定されないが、たとえば、次のような手順で行われる。 The control unit 92 performs a fuel consumption simulation using the data input by the input unit 91. Although the specific method of a fuel consumption simulation is not specifically limited, For example, it performs in the following procedures.
 まず、制御部92は、入力部91によって入力された走行パターンなどから、たとえば区間ごとに、車両が走行するために要求されるパワー(以下、単に「要求パワー」という)および補機の消費電流を算出する。区間としては、停止区間、加速区間、定速走行区間、および減速区間などがある。要求パワーは、加速区間では比較的大きく、定速走行区間では比較的小さい。要求パワーは、停止区間および減速区間では0であってもよい。補機の消費電流は、補機の種類によって異なる。たとえばオーディオ機器など連続的に使用される補機の消費電流の大きさは、区間によらずほぼ一定である。これに対し、エンジンの点火装置など一時的に使用される補機の消費電流の大きさは、使用時のみ大きくなる。 First, the control unit 92 determines, for example, the power required for the vehicle to travel for each section from the traveling pattern input by the input unit 91 (hereinafter simply referred to as “required power”) and the consumption current of the auxiliary machine. Is calculated. The sections include a stop section, an acceleration section, a constant speed traveling section, and a deceleration section. The required power is relatively large in the acceleration section and relatively small in the constant speed traveling section. The required power may be 0 in the stop section and the deceleration section. The current consumption of the auxiliary machine varies depending on the type of the auxiliary machine. For example, the consumption current of an auxiliary machine that is continuously used, such as an audio device, is almost constant regardless of the section. On the other hand, the current consumption of auxiliary equipment that is temporarily used, such as an engine ignition device, increases only during use.
 次に、制御部92は、区間ごとのエンジンの出力を算出する。エンジンの出力は、たとえば、停止区間ではエンジンが停止して0となり、それ以外の区間では所定の出力とされる。エンジンの出力のうち、要求パワーを上回る分の出力が、オルタネータによって電力に変換され、オルタネータから補機および蓄電デバイスに向かって供給される。オルタネータから供給される電力が補機の消費電力を上回ると、オルタネータから蓄電デバイスに電流が流れ、蓄電デバイスが充電される。オルタネータから供給される電力が補機の消費電力を下回ると、蓄電デバイスから補機に電流が流れ、蓄電デバイスが放電する。ここで、蓄電デバイスの端子電圧は、蓄電デバイスのSOCおよび充放電電流の大きさなどに依存する。この蓄電デバイスの端子電圧が、たとえば、蓄電デバイスの端子電圧を計算するための等価回路モデルを用いて推定される。端子電圧の推定の詳細については後述する。蓄電デバイスの充放電電流および蓄電デバイスの端子電圧から、制御部92は、区間ごとの蓄電デバイスの充放電電力も算出する。 Next, the control unit 92 calculates the engine output for each section. The engine output is, for example, 0 when the engine is stopped in a stop section, and a predetermined output in other sections. Of the engine output, the output exceeding the required power is converted into electric power by the alternator and supplied from the alternator toward the auxiliary device and the power storage device. When the power supplied from the alternator exceeds the power consumption of the auxiliary machine, a current flows from the alternator to the power storage device, and the power storage device is charged. When the power supplied from the alternator falls below the power consumption of the auxiliary machine, a current flows from the power storage device to the auxiliary machine, and the power storage device is discharged. Here, the terminal voltage of the electricity storage device depends on the SOC of the electricity storage device, the magnitude of the charge / discharge current, and the like. The terminal voltage of the electricity storage device is estimated using, for example, an equivalent circuit model for calculating the terminal voltage of the electricity storage device. Details of terminal voltage estimation will be described later. From the charge / discharge current of the power storage device and the terminal voltage of the power storage device, the control unit 92 also calculates charge / discharge power of the power storage device for each section.
 その後、制御部92は、全区間におけるエンジンの出力および蓄電デバイスの充放電電力の積算値を算出する。全区間におけるエンジンの出力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、エンジンが消費するであろうエネルギー量を示す。全区間における蓄電デバイスの充放電電力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、蓄電デバイスにおいて増減するであろうエネルギー量の大きさを示す。エンジンが消費するであろうエネルギー量と、蓄電デバイスにおいて減少するであろうエネルギー量との合計のエネルギー量は、入力部91によって入力された走行パターンの車両の走行に要するエネルギー量となる。走行パターンから車両の走行距離も分かるので、当該走行距離とそれに要するエネルギー量とに基づいて、制御部92は、所定エネルギー量当たりに走行可能な距離を燃費として算出する。 Thereafter, the control unit 92 calculates an integrated value of the engine output and the charge / discharge power of the power storage device in all sections. The integrated value of the engine output in all sections indicates the amount of energy that the engine will consume when the vehicle travels in the travel pattern input by the input unit 91. The integrated value of the charge / discharge power of the power storage device in all sections indicates the amount of energy that will increase or decrease in the power storage device when the vehicle travels in the travel pattern input by the input unit 91. The total energy amount of the energy amount that the engine will consume and the energy amount that will decrease in the power storage device is the energy amount required for traveling of the vehicle of the traveling pattern input by the input unit 91. Since the travel distance of the vehicle is also known from the travel pattern, the control unit 92 calculates a travelable distance per predetermined energy amount as fuel consumption based on the travel distance and the energy amount required for the travel distance.
 出力部93は、制御部92によって算出された燃費を出力する。これにより、入力部91によって入力された走行パターンなどに基づく燃費シミュレーションの結果が得られる。 The output unit 93 outputs the fuel consumption calculated by the control unit 92. Thereby, the result of the fuel consumption simulation based on the running pattern inputted by the input unit 91 is obtained.
 上述のように、燃費シミュレーションにおいては、蓄電デバイスの端子電圧が推定される。蓄電デバイスの端子電圧の推定精度を向上させることによって燃費シミュレーションの精度も向上するので、たとえば燃費の計算精度を向上させることを目的として、実施形態に係るシミュレーション装置(蓄電デバイスシミュレータ)が用いられてもよい。なお、以下の説明において、蓄電デバイスとしては、単一の鉛蓄電池が用いられる。蓄電デバイスは、鉛蓄電池に限られず、他の蓄電デバイスであってもよく、複数の蓄電デバイスを組み合わせた複合型の蓄電デバイスであってもよい。 As described above, the terminal voltage of the electricity storage device is estimated in the fuel consumption simulation. Since the accuracy of the fuel consumption simulation is improved by improving the estimation accuracy of the terminal voltage of the electricity storage device, for example, the simulation apparatus (an electricity storage device simulator) according to the embodiment is used for the purpose of improving the accuracy of calculation of the fuel consumption. Also good. In the following description, a single lead storage battery is used as the power storage device. The power storage device is not limited to a lead storage battery, and may be another power storage device or a composite power storage device in which a plurality of power storage devices are combined.
 本実施形態では、シミュレーション装置は、蓄電デバイスの端子電圧を計算するための蓄電デバイスモデルを用いて、蓄電デバイスの端子電圧を推定する。本実施形態では、蓄電デバイスモデルとして、蓄電デバイスの等価回路モデルを用いることとする。まず、等価回路モデルの例について、図2を参照して説明する。 In the present embodiment, the simulation apparatus estimates the terminal voltage of the power storage device using the power storage device model for calculating the terminal voltage of the power storage device. In the present embodiment, an equivalent circuit model of an electricity storage device is used as the electricity storage device model. First, an example of an equivalent circuit model will be described with reference to FIG.
 [蓄電デバイスの等価回路モデル]
 図2に示される例では、等価回路モデル40は、互いに逆極性のノードNおよびノードNの間に直列に接続された、回路10と、回路20と、定電圧源30とを含む。
[Equivalent circuit model of electricity storage device]
In the example shown in FIG. 2, the equivalent circuit model 40 includes a circuit 10, a circuit 20, and a constant voltage source 30 that are connected in series between nodes N 1 and N 2 having opposite polarities.
 ノードNおよびノードNは、蓄電デバイスの外部の要素と電気的に接続される部分であり、等価回路モデル40に発生する電圧を与える。等価回路モデル40に発生する電圧は、蓄電デバイスの端子電圧V(t)である。ノードNはアノードであり、蓄電デバイスを流れる電流I(t)を与える。なお、電圧および電流などの時間変化する物理量を示す符号に(t)などを付す場合があるが、このように示された物理量は、時刻tにおける当該物理量の値を意味するものとする。また、時刻tは、0以上の整数であり、端子電圧V(t)の推定の開始時刻からの経過時間を示す。時刻t=0は、端子電圧V(t)の推定の開始時刻である。 The node N 1 and the node N 2 are portions that are electrically connected to an external element of the power storage device, and provide a voltage generated in the equivalent circuit model 40. The voltage generated in the equivalent circuit model 40 is the terminal voltage V (t) of the electricity storage device. Node N 1 is an anode, providing a current flowing in the electricity storage device I (t). In addition, (t) etc. may be attached | subjected to the code | symbol which shows the physical quantity which changes with time, such as a voltage and an electric current, but the physical quantity shown in this way shall mean the value of the said physical quantity at the time t. The time t is an integer equal to or greater than 0, and indicates the elapsed time from the start time of the estimation of the terminal voltage V (t). Time t = 0 is the estimation start time of the terminal voltage V (t).
 回路10は、蓄電デバイスの直流インピーダンス(直流抵抗成分)を模擬する直流抵抗部である。回路10は、抵抗器11を含む。抵抗器11は、蓄電デバイスの線形直流抵抗成分を模擬している。線形直流抵抗成分としては、電極の抵抗が挙げられる。抵抗器11の抵抗値は定数である。回路10の抵抗器11の抵抗値によって、回路10のインピーダンスが定まる。回路10のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路10にも流れるので、電流I(t)と回路10のインピーダンスとから、回路10に発生する電圧が計算できる。回路10に発生する電圧を、直流抵抗電圧Vdc(t)と称し図示する。 The circuit 10 is a DC resistance unit that simulates the DC impedance (DC resistance component) of the power storage device. The circuit 10 includes a resistor 11. The resistor 11 simulates a linear DC resistance component of the electricity storage device. Examples of the linear DC resistance component include electrode resistance. The resistance value of the resistor 11 is a constant. The impedance of the circuit 10 is determined by the resistance value of the resistor 11 of the circuit 10. If the impedance of the circuit 10 is determined, when the current I (t) flows in the equivalent circuit model 40, the current I (t) also flows in the circuit 10, so that the current I (t) and the impedance of the circuit 10 From this, the voltage generated in the circuit 10 can be calculated. A voltage generated in the circuit 10 is referred to as a DC resistance voltage Vdc (t).
 回路20は、蓄電デバイスの分極インピーダンス成分を模擬する分極モデル部である。回路20は、並列接続された抵抗器およびコンデンサ(RC並列回路)を含む。図2に示される例では、2つのRC並列回路が直列に接続されている。具体的に、並列接続された抵抗器21およびコンデンサ22(第1のRC並列回路)と、並列接続された抵抗器23およびコンデンサ24(第2のRC並列回路)とが、直列に接続されている。第1のRC並列回路を構成する抵抗器21の抵抗値およびコンデンサ22の容量値は定数である。抵抗器21は、蓄電デバイスの第1の分極抵抗成分を模擬し、コンデンサ22は、蓄電デバイスの第1の分極容量成分を模擬している。第2のRC並列回路を構成する抵抗器23の抵抗値およびコンデンサ24の容量値は定数である。抵抗器23は蓄電デバイスの第2の分極抵抗成分を模擬し、コンデンサ24は蓄電デバイスの第2の分極容量成分を模擬している。 The circuit 20 is a polarization model unit that simulates the polarization impedance component of the electricity storage device. The circuit 20 includes a resistor and a capacitor (RC parallel circuit) connected in parallel. In the example shown in FIG. 2, two RC parallel circuits are connected in series. Specifically, a resistor 21 and a capacitor 22 (first RC parallel circuit) connected in parallel and a resistor 23 and a capacitor 24 (second RC parallel circuit) connected in parallel are connected in series. Yes. The resistance value of the resistor 21 and the capacitance value of the capacitor 22 constituting the first RC parallel circuit are constants. The resistor 21 simulates the first polarization resistance component of the electricity storage device, and the capacitor 22 simulates the first polarization capacitance component of the electricity storage device. The resistance value of the resistor 23 and the capacitance value of the capacitor 24 constituting the second RC parallel circuit are constants. The resistor 23 simulates the second polarization resistance component of the electricity storage device, and the capacitor 24 simulates the second polarization capacitance component of the electricity storage device.
 なお、図2に示される例では回路20は、第1及び第2の2つのRC並列回路を含むが、回路20は、少なくとも第1のRC並列回路(抵抗器21およびコンデンサ22)を含んでいればよい。また、回路20は、3つ以上のRC並列回路を含んでいてもよい。 In the example shown in FIG. 2, the circuit 20 includes first and second RC parallel circuits, but the circuit 20 includes at least a first RC parallel circuit (resistor 21 and capacitor 22). It only has to be. The circuit 20 may include three or more RC parallel circuits.
 回路20の各抵抗器の抵抗値および各コンデンサの容量値によって、回路20のインピーダンスが定まる。回路20のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路20にも流れるので、電流I(t)と回路20のインピーダンスとから、回路20に発生する電圧が計算できる。回路20に発生する電圧を、分極電圧Vpol(t)と称し図示する。 The impedance of the circuit 20 is determined by the resistance value of each resistor of the circuit 20 and the capacitance value of each capacitor. If the impedance of the circuit 20 is determined, when the current I (t) flows in the equivalent circuit model 40, the current I (t) also flows in the circuit 20, so that the current I (t) and the impedance of the circuit 20 From this, the voltage generated in the circuit 20 can be calculated. A voltage generated in the circuit 20 is referred to as a polarization voltage Vpol (t).
 分極電圧Vpolは、抵抗器21およびコンデンサ22に発生する電圧と、抵抗器23およびコンデンサ24に発生する電圧との合計電圧である。抵抗器21およびコンデンサ22に発生する電圧を、第1分極電圧Vp1(t)と称し図示する。抵抗器23およびコンデンサ24に発生する電圧を、第2分極電圧Vp2(t)と称し図示する。すなわち、回路20において、以下の関係式(1)が成立する。
Figure JPOXMLDOC01-appb-M000001
The polarization voltage Vpol is a total voltage of the voltage generated in the resistor 21 and the capacitor 22 and the voltage generated in the resistor 23 and the capacitor 24. A voltage generated in the resistor 21 and the capacitor 22 is referred to as a first polarization voltage Vp1 (t) and illustrated. A voltage generated in the resistor 23 and the capacitor 24 is referred to as a second polarization voltage Vp2 (t) and illustrated. That is, in the circuit 20, the following relational expression (1) is established.
Figure JPOXMLDOC01-appb-M000001
 ここで、抵抗器21およびコンデンサ22から構成される第1のRC並列回路の時定数を時定数τ1とすると、時定数τ1は、抵抗器21の抵抗値とコンデンサ22の容量値とを乗じた値として定められる。時定数τ1は、抵抗器21およびコンデンサ22に発生する第1分極電圧Vp1(t)の時間変化に反映される。たとえば、時定数τ1が大きいほど、第1分極電圧Vp1(t)の時間変化は遅くなる。同様に、抵抗器23およびコンデンサ24から構成される第2のRC並列回路の時定数を時定数τ2とすると、時定数τ2は、抵抗器23の抵抗値とコンデンサ24の容量値とを乗じた値として定められる。時定数τ2は、抵抗器23およびコンデンサ24に発生する第2分極電圧Vp2(t)の時間変化に反映される。時定数τ1及びτ2は互いに異なる値に設定されてよい。回路20が複数の異なる時定数を有するRC並列回路を含むことで、分極電圧Vpol(t)の電圧の時間変化をより正確に表すことができる。各時定数は、たとえば、時定数τ1<時定数τ2となるように設定されてよい。 Here, when the time constant of the first RC parallel circuit composed of the resistor 21 and the capacitor 22 is a time constant τ1, the time constant τ1 is obtained by multiplying the resistance value of the resistor 21 and the capacitance value of the capacitor 22. It is determined as a value. The time constant τ1 is reflected in the time change of the first polarization voltage Vp1 (t) generated in the resistor 21 and the capacitor 22. For example, the time change of the first polarization voltage Vp1 (t) becomes slower as the time constant τ1 is larger. Similarly, when the time constant of the second RC parallel circuit composed of the resistor 23 and the capacitor 24 is a time constant τ2, the time constant τ2 is obtained by multiplying the resistance value of the resistor 23 and the capacitance value of the capacitor 24. It is determined as a value. The time constant τ2 is reflected in the time change of the second polarization voltage Vp2 (t) generated in the resistor 23 and the capacitor 24. The time constants τ1 and τ2 may be set to different values. Since the circuit 20 includes RC parallel circuits having a plurality of different time constants, the time change of the voltage of the polarization voltage Vpol (t) can be expressed more accurately. Each time constant may be set such that time constant τ1 <time constant τ2, for example.
 定電圧源30は、一定の直流(DC)電圧を有する。定電圧源30の有する電圧は、蓄電デバイスの開放電圧(OCV:Open Circuit Voltage)である。定電圧源30のインピーダンスは0である。蓄電デバイスの開放電圧を、開放電圧Vocv(t)と称し図示する。開放電圧Vocv(t)は、たとえば、蓄電デバイスのSOCから求められる。その場合、開放電圧Vocv(t)は、SOCを引数とする関数となる。蓄電デバイスの温度なども、引数に含まれてもよい。 The constant voltage source 30 has a constant direct current (DC) voltage. The voltage of the constant voltage source 30 is an open circuit voltage (OCV: Open Circuit Voltage) of the electricity storage device. The impedance of the constant voltage source 30 is zero. The open circuit voltage of the electricity storage device is referred to as open circuit voltage Vocv (t). The open circuit voltage Vocv (t) is obtained from the SOC of the power storage device, for example. In that case, the open circuit voltage Vocv (t) is a function with the SOC as an argument. The temperature of the electricity storage device may be included in the argument.
 以上説明した回路10に発生する直流抵抗電圧Vdc(t)、回路20に発生する分極電圧Vpol(t)および定電圧源30が有する開放電圧Vocv(t)と、端子電圧V(t)との間には、以下の関係式(2)が成立する。
Figure JPOXMLDOC01-appb-M000002
The DC resistance voltage Vdc (t) generated in the circuit 10 described above, the polarization voltage Vpol (t) generated in the circuit 20, the open-circuit voltage Vocv (t) of the constant voltage source 30, and the terminal voltage V (t) In the meantime, the following relational expression (2) holds.
Figure JPOXMLDOC01-appb-M000002
 以上説明した蓄電デバイスの等価回路モデル40を用いて、実施形態に係るシミュレーション装置は、蓄電デバイスの端子電圧V(t)を推定する。 Using the above-described equivalent circuit model 40 of the electricity storage device, the simulation apparatus according to the embodiment estimates the terminal voltage V (t) of the electricity storage device.
 図3は、一実施形態に係るシミュレーション装置の概略構成を示す図である。シミュレーション装置1は、その機能ブロックとして、入力部2と、SOC計算部3と、パラメータ設定部4と、直流抵抗計算部5と、分極計算部6と、OCV計算部7と、端子電圧計算部8とを含む。 FIG. 3 is a diagram illustrating a schematic configuration of a simulation apparatus according to an embodiment. The simulation apparatus 1 includes an input unit 2, an SOC calculation unit 3, a parameter setting unit 4, a DC resistance calculation unit 5, a polarization calculation unit 6, an OCV calculation unit 7, and a terminal voltage calculation unit as functional blocks. 8 and so on.
 図4は、図3のシミュレーション装置1のハードウェア構成の例を示す図である。図4に示されるように、シミュレーション装置1は、物理的には、一または複数のCPU(Central Processing Unit)101と、主記憶装置であるRAM(Random Access Memory)102およびROM(Read Only Memory)103と、データ送受信デバイスである通信モジュール104と、ハードディスクおよびフラッシュメモリなどの補助記憶装置105と、キーボードなどのユーザの入力を受け付ける入力装置106と、ディスプレイなどの出力装置107と、を備えるコンピュータとして構成されている。図3に示されるシミュレーション装置1の各機能は、CPU101およびRAM102などのハードウェア上に一または複数の所定のコンピュータソフトウェアを読み込ませることにより、CPU101の制御のもとで通信モジュール104、入力装置106、および出力装置107を動作させるとともに、RAM102および補助記憶装置105におけるデータの読み出しおよび書き込みを行うことで実現される。なお、上記の説明はシミュレーション装置1のハードウェア構成として説明したが、燃費シミュレーション装置90がCPU101、RAM102およびROM103などの主記憶装置、通信モジュール104、補助記憶装置105、入力装置106、および出力装置107などを含む通常のコンピュータシステムとして構成されてもよい。 FIG. 4 is a diagram illustrating an example of a hardware configuration of the simulation apparatus 1 of FIG. As shown in FIG. 4, the simulation apparatus 1 physically includes one or more CPUs (Central Processing Units) 101, a RAM (Random Access Memory) 102 as a main storage device, and a ROM (Read Only Memory). 103, a communication module 104 that is a data transmission / reception device, an auxiliary storage device 105 such as a hard disk and a flash memory, an input device 106 that accepts user input such as a keyboard, and an output device 107 such as a display. It is configured. Each function of the simulation apparatus 1 shown in FIG. 3 is obtained by reading one or a plurality of predetermined computer software on hardware such as the CPU 101 and the RAM 102, thereby controlling the communication module 104 and the input device 106 under the control of the CPU 101. And the output device 107 are operated, and data is read and written in the RAM 102 and the auxiliary storage device 105. Although the above description has been given as the hardware configuration of the simulation apparatus 1, the fuel consumption simulation apparatus 90 is a main storage device such as the CPU 101, the RAM 102 and the ROM 103, the communication module 104, the auxiliary storage device 105, the input device 106, and the output device. 107 may be configured as a normal computer system.
 再び図3を参照して、シミュレーション装置1の各機能の詳細を説明する。入力部2は、蓄電デバイスへの指定値(bat_demand)を入力する部分である。指定値は、たとえば上述の燃費シミュレーション装置90による燃費計算において蓄電デバイスに要求される、充放電電流の大きさ、および充放電電力の大きさなどを含む。入力部2は、入力した指定値を直流抵抗計算部5に出力する。 Referring to FIG. 3 again, details of each function of the simulation apparatus 1 will be described. The input unit 2 is a part for inputting a specified value (bat_demand) to the power storage device. The specified value includes, for example, the magnitude of charge / discharge current and the magnitude of charge / discharge power required for the power storage device in the fuel consumption calculation by the fuel consumption simulation apparatus 90 described above. The input unit 2 outputs the input specified value to the DC resistance calculation unit 5.
 SOC計算部3は、蓄電デバイスのSOCを計算する部分である。たとえば、蓄電デバイスの初期のSOC(0)と、その後の蓄電デバイスの充放電電気量とから、蓄電デバイスのSOC(t)が計算される。蓄電デバイスの初期のSOC(0)の値は特に限定されず、適宜設定されてよい。蓄電デバイスの充放電電気量は、蓄電デバイスの充放電電流を充放電時間で積算することによって求められる。蓄電デバイスのSOC(t)は、時刻tにおける蓄電デバイスの充放電電気量と蓄電デバイスの満充電容量とに基づいて求められる。時刻tのSOC(t)の計算において、蓄電デバイスに流れる電流として、等価回路モデル40を時刻0から時刻t-1までに流れた電流Iが用いられ得る。この場合、SOC計算部3は、たとえば以下の式(3)によってSOC(t)を計算する。SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7にそれぞれ出力する。
Figure JPOXMLDOC01-appb-M000003
The SOC calculation unit 3 is a part that calculates the SOC of the power storage device. For example, the SOC (t) of the power storage device is calculated from the initial SOC (0) of the power storage device and the subsequent charge / discharge electricity amount of the power storage device. The initial SOC (0) value of the electricity storage device is not particularly limited, and may be set as appropriate. The amount of charge / discharge electricity of the electricity storage device is obtained by integrating the charge / discharge current of the electricity storage device by the charge / discharge time. The SOC (t) of the power storage device is obtained based on the charge / discharge electricity amount of the power storage device and the full charge capacity of the power storage device at time t. In the calculation of the SOC (t) at time t, the current I that has flowed through the equivalent circuit model 40 from time 0 to time t−1 can be used as the current flowing through the power storage device. In this case, the SOC calculation unit 3 calculates SOC (t) by the following equation (3), for example. The SOC calculation unit 3 outputs the calculated SOC (t) to the parameter setting unit 4, the polarization calculation unit 6, and the OCV calculation unit 7, respectively.
Figure JPOXMLDOC01-appb-M000003
 パラメータ設定部4は、蓄電デバイスの端子電圧の推定に必要な種々の特性パラメータの値を設定する部分である。特性パラメータは、例えば、抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)である。なお、各特性パラメータの値は、蓄電デバイスのSOCに応じて変更されてもよい。 The parameter setting unit 4 is a part for setting various characteristic parameter values necessary for estimating the terminal voltage of the power storage device. The characteristic parameters include, for example, the resistance value (DC resistance) of the resistor 11, the resistance value of the resistor 21 (first polarization resistance), the time constant τ1 (first polarization time constant), and the resistance value of the resistor 23 ( Second polarization resistance) and time constant τ2 (second polarization time constant). In addition, the value of each characteristic parameter may be changed according to the SOC of the power storage device.
 パラメータ設定部4は、たとえば、各パラメータの値を記述するルックアップテーブルを参照することによって、各パラメータの値を設定する。ルックアップテーブルは、パラメータごとに設けられる。ルックアップテーブルは、たとえばSOCと各パラメータの値とが対応付けられたテーブルである。この場合、パラメータ設定部4は、各ルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。なお、各ルックアップテーブルは、蓄電デバイスの温度ごとに準備されていてもよい。その場合には、さらに、蓄電デバイスの温度も考慮して、各パラメータの値が設定される。また、各パラメータの値は予め定められていてもよい。パラメータ設定部4は、設定した各パラメータの値を直流抵抗計算部5および分極計算部6に出力する。 The parameter setting unit 4 sets the value of each parameter by referring to, for example, a lookup table that describes the value of each parameter. A lookup table is provided for each parameter. The lookup table is a table in which, for example, the SOC is associated with the value of each parameter. In this case, the parameter setting unit 4 acquires the value of each parameter associated with the SOC (t) received from the SOC calculation unit 3 by referring to each lookup table, and uses the acquired value for each parameter. Set to value. Each lookup table may be prepared for each temperature of the power storage device. In that case, the value of each parameter is set in consideration of the temperature of the power storage device. The value of each parameter may be determined in advance. The parameter setting unit 4 outputs the set parameter values to the DC resistance calculation unit 5 and the polarization calculation unit 6.
 直流抵抗計算部5は、等価回路モデル40中の回路10に発生する直流抵抗電圧Vdc(t)を計算する部分である。また、直流抵抗計算部5は、入力部2によって入力された指定値(bat_demand)から、等価回路モデル40に流れる電流I(t)を計算する部分でもある。分極計算部6は、等価回路モデル40中の回路20に発生する分極電圧Vpol(t)を計算する部分である。OCV計算部7は、蓄電デバイスの開放電圧Vocv(t)を計算する部分である。先に説明したように、開放電圧Vocv(t)は、蓄電デバイスのSOCから求められる。たとえば、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルが予め準備されている。OCV計算部7は、当該テーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。なお、上述のテーブルが、温度ごとに準備されていてもよく、その場合には、さらに、蓄電デバイスの温度も考慮して、開放電圧Vocv(t)が計算される。 The DC resistance calculation unit 5 is a part that calculates the DC resistance voltage Vdc (t) generated in the circuit 10 in the equivalent circuit model 40. The direct current resistance calculation unit 5 is also a part that calculates the current I (t) flowing through the equivalent circuit model 40 from the specified value (bat_demand) input by the input unit 2. The polarization calculator 6 is a part that calculates a polarization voltage Vpol (t) generated in the circuit 20 in the equivalent circuit model 40. The OCV calculation unit 7 is a part that calculates the open circuit voltage Vocv (t) of the power storage device. As described above, the open circuit voltage Vocv (t) is obtained from the SOC of the power storage device. For example, a table in which each SOC value is associated with the open circuit voltage Vocv is prepared in advance. The OCV calculation unit 7 calculates the open circuit voltage Vocv (t) from the SOC (t) received from the SOC calculation unit 3 by referring to the table. Note that the above-described table may be prepared for each temperature. In that case, the open-circuit voltage Vocv (t) is calculated in consideration of the temperature of the power storage device.
 端子電圧計算部8は、蓄電デバイスの端子電圧V(t)を計算する部分である。先に説明したように、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)が端子電圧計算部8に送られる。端子電圧計算部8は、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部および直流抵抗計算部5に出力する。 The terminal voltage calculation part 8 is a part which calculates the terminal voltage V (t) of an electrical storage device. As described above, the DC resistance voltage Vdc (t) calculated by the DC resistance calculator 5, the polarization voltage Vpol (t) calculated by the polarization calculator 6, and the open circuit voltage calculated by the OCV calculator 7. Vocv (t) is sent to the terminal voltage calculator 8. The terminal voltage calculation unit 8 calculates the terminal voltage V (t) based on the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t). Specifically, the terminal voltage calculator 8 adds the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t) as shown in the above equation (2), The total voltage is calculated as the terminal voltage V (t). The terminal voltage calculation unit 8 outputs the calculated terminal voltage V (t) to the outside of the simulation apparatus 1 and the DC resistance calculation unit 5.
 次に、図5を参照して、シミュレーション装置1が実行する端子電圧V(t)の計算処理(シミュレーション方法)を説明する。図5は、シミュレーション装置1が実行する端子電圧V(t)の計算処理の例を示すフローチャートである。図5に示されるフローチャートの処理は、たとえば燃費シミュレーション装置90の燃費計算において、ある時刻tにおける蓄電デバイスの端子電圧を推定する際に実行される。 Next, a calculation process (simulation method) of the terminal voltage V (t) executed by the simulation apparatus 1 will be described with reference to FIG. FIG. 5 is a flowchart illustrating an example of calculation processing of the terminal voltage V (t) executed by the simulation apparatus 1. The process of the flowchart shown in FIG. 5 is executed, for example, when estimating the terminal voltage of the electricity storage device at a certain time t in the fuel consumption calculation of the fuel consumption simulation device 90.
 まず、入力部2が指定値(bat_demand)を入力する(ステップS01)。たとえば、入力部2は、シミュレーション装置1の外部装置から指定値を受け取ることにより、その指定値を入力する。そして、入力部2は、入力した指定値を直流抵抗計算部5に出力する。そして、SOC計算部3は、蓄電デバイスのSOCを計算する(ステップS02)。SOC計算部3は、たとえば、上述された式(3)を用いてSOC(t)を計算する。そして、SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7に出力する。 First, the input unit 2 inputs a specified value (bat_demand) (step S01). For example, the input unit 2 receives a specified value from an external device of the simulation apparatus 1 and inputs the specified value. Then, the input unit 2 outputs the input designated value to the DC resistance calculation unit 5. Then, the SOC calculation unit 3 calculates the SOC of the power storage device (step S02). The SOC calculation unit 3 calculates SOC (t) using, for example, the above-described equation (3). Then, the SOC calculation unit 3 outputs the calculated SOC (t) to the parameter setting unit 4, the polarization calculation unit 6, and the OCV calculation unit 7.
 続いて、パラメータ設定部4は、等価回路モデル40の各特性パラメータを設定する(ステップS03)。ステップS03において設定される特性パラメータは、たとえば、抵抗器11の抵抗値、抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2である。パラメータ設定部4は、たとえば、各特性パラメータの値を記述するルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。そして、パラメータ設定部4は、設定したパラメータを直流抵抗計算部5および分極計算部6に出力する。 Subsequently, the parameter setting unit 4 sets each characteristic parameter of the equivalent circuit model 40 (step S03). The characteristic parameters set in step S03 are, for example, the resistance value of the resistor 11, the resistance value of the resistor 21, the time constant τ1, the resistance value of the resistor 23, and the time constant τ2. The parameter setting unit 4 acquires, for example, the value of each parameter associated with the SOC (t) received from the SOC calculation unit 3 by referring to a lookup table that describes the value of each characteristic parameter. Set the value to the value of each parameter. Then, the parameter setting unit 4 outputs the set parameters to the DC resistance calculation unit 5 and the polarization calculation unit 6.
 続いて、直流抵抗計算部5は、パラメータ設定部4から提供された抵抗器11の抵抗値を用いて、電流I(t)および直流抵抗電圧Vdc(t)を計算する(ステップS04)。直流抵抗計算部5は、充放電モードが定電流放電モード(端子電圧V(t)によらず、一定の電流を流すモード)である場合には、入力部2によって入力された指定値に含まれる指定電流を電流I(t)に設定する。そして、直流抵抗計算部5は、この電流I(t)に基づいて直流抵抗電圧Vdc(t)を計算する。また、直流抵抗計算部5は、充放電モードが定電圧充電モード(蓄電デバイスを充電するための電圧源(たとえばオルタネータ)の出力電圧を一定にした状態で蓄電デバイスを充電するモード)である場合には、まず直流抵抗電圧Vdc(t)を計算する。そして、この直流抵抗電圧Vdc(t)に基づいて、等価回路モデル40に流れる電流I(t)を計算する。 Subsequently, the DC resistance calculation unit 5 calculates the current I (t) and the DC resistance voltage Vdc (t) using the resistance value of the resistor 11 provided from the parameter setting unit 4 (step S04). When the charge / discharge mode is a constant current discharge mode (a mode in which a constant current flows regardless of the terminal voltage V (t)), the DC resistance calculation unit 5 is included in the specified value input by the input unit 2 The designated current is set to the current I (t). Then, the DC resistance calculation unit 5 calculates the DC resistance voltage Vdc (t) based on the current I (t). Further, in the DC resistance calculation unit 5, the charge / discharge mode is a constant voltage charge mode (a mode in which the power storage device is charged with a constant output voltage of a voltage source (eg, an alternator) for charging the power storage device). First, the DC resistance voltage Vdc (t) is calculated. Based on the DC resistance voltage Vdc (t), a current I (t) flowing through the equivalent circuit model 40 is calculated.
 続いて、分極計算部6は、分極電圧Vpol(t)を計算する(ステップS05)。具体的には、分極計算部6は、パラメータ設定部4から提供された抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2を用いて、第1分極電圧Vp1(t)および第2分極電圧Vp2(t)を計算する。そして、分極計算部6は、それら第1分極電圧Vp1(t)および第2分極電圧Vp2(t)の合計値を、分極電圧Vpol(t)として計算する。 Subsequently, the polarization calculator 6 calculates the polarization voltage Vpol (t) (step S05). Specifically, the polarization calculation unit 6 uses the resistance value of the resistor 21, the time constant τ 1, the resistance value of the resistor 23, and the time constant τ 2 provided from the parameter setting unit 4 to use the first polarization voltage Vp 1. (T) and the second polarization voltage Vp2 (t) are calculated. Then, the polarization calculator 6 calculates the total value of the first polarization voltage Vp1 (t) and the second polarization voltage Vp2 (t) as the polarization voltage Vpol (t).
 続いて、OCV計算部7は、開放電圧Vocv(t)を計算する(ステップS06)。たとえば、OCV計算部7は、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。そして、OCV計算部7は、計算した開放電圧Vocv(t)を端子電圧計算部8に出力する。 Subsequently, the OCV calculation unit 7 calculates the open circuit voltage Vocv (t) (step S06). For example, the OCV calculation unit 7 calculates the open-circuit voltage Vocv (t) from the SOC (t) received from the SOC calculation unit 3 by referring to a table in which each SOC value is associated with the open-circuit voltage Vocv value. To do. Then, the OCV calculation unit 7 outputs the calculated open circuit voltage Vocv (t) to the terminal voltage calculation unit 8.
 続いて、端子電圧計算部8は、端子電圧V(t)を計算する(ステップS07)。具体的には、端子電圧計算部8は、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。より具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。そして、端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部、および直流抵抗計算部5に出力する。以上のようにして、時刻tにおける端子電圧V(t)の計算処理が終了する。 Subsequently, the terminal voltage calculation unit 8 calculates the terminal voltage V (t) (step S07). Specifically, the terminal voltage calculation unit 8 includes a DC resistance voltage Vdc (t) calculated by the DC resistance calculation unit 5, a polarization voltage Vpol (t) calculated by the polarization calculation unit 6, and an OCV calculation unit 7. Based on the calculated open circuit voltage Vocv (t), the terminal voltage V (t) is calculated. More specifically, the terminal voltage calculator 8 adds the DC resistance voltage Vdc (t), the polarization voltage Vpol (t), and the open circuit voltage Vocv (t) as shown in the above equation (2), The total voltage is calculated as the terminal voltage V (t). Then, the terminal voltage calculation unit 8 outputs the calculated terminal voltage V (t) to the outside of the simulation apparatus 1 and the DC resistance calculation unit 5. As described above, the calculation process of the terminal voltage V (t) at time t is completed.
 なお、ステップS05の処理とステップS06の処理とは、並行して行われてもよく、実施される順番が逆になってもよい。 In addition, the process of step S05 and the process of step S06 may be performed in parallel, and the order of implementation may be reversed.
 ここで、等価回路モデル40を構成する特性パラメータについて詳細に説明する。前述したように、等価回路モデル40は、例えば抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)といった複数の特性パラメータを有する。通常、これらの特性パラメータは、蓄電デバイスの使用による劣化を考慮せずに算出される。その場合、劣化したときの蓄電デバイスの入出力特性を精度よく推定することができないという問題がある。 Here, the characteristic parameters constituting the equivalent circuit model 40 will be described in detail. As described above, the equivalent circuit model 40 includes, for example, the resistance value (DC resistance) of the resistor 11, the resistance value of the resistor 21 (first polarization resistance), the time constant τ1 (first polarization time constant), and resistance. It has a plurality of characteristic parameters such as a resistance value (second polarization resistance) of the capacitor 23 and a time constant τ2 (second polarization time constant). Normally, these characteristic parameters are calculated without taking into account deterioration due to the use of the electricity storage device. In that case, there is a problem that the input / output characteristics of the electricity storage device when it deteriorates cannot be estimated with high accuracy.
 そこで、本実施形態では、複数の特性パラメータのうち少なくとも一つの特性パラメータを以下の数式(4)のように設定する。すなわち、任意の特性パラメータAを
Figure JPOXMLDOC01-appb-M000004
としてモデル化する。右辺の第1項A0は蓄電デバイス未使用時に対応する特性パラメータの初期値であり、右辺の第2項A1は、蓄電デバイスを或る時間使用した後における特性パラメータの変化分である。この変化分は、蓄電デバイスの劣化の影響を表す時間関数であり、使用期間内の適切な時間を入力することによって、当該使用時間経過後に対応する劣化した特性パラメータが得られる。なお、この時間は、例えば数百時間ないし数千時間といった長さである。
Therefore, in the present embodiment, at least one characteristic parameter among the plurality of characteristic parameters is set as in the following formula (4). That is, an arbitrary characteristic parameter A is
Figure JPOXMLDOC01-appb-M000004
As a model. The first term A 0 on the right side is an initial value of the characteristic parameter corresponding to when the power storage device is not used, and the second term A 1 on the right side is a change in the characteristic parameter after the power storage device has been used for a certain period of time. This change is a time function representing the influence of the deterioration of the electricity storage device, and by inputting an appropriate time within the use period, a corresponding deteriorated characteristic parameter can be obtained after the use time has elapsed. This time is, for example, several hundred hours to thousands of hours.
 特性パラメータAを数式(4)のように表現することにより、例えば未使用状態の蓄電デバイスを用いて初期特性パラメータA0を同定するだけで、任意の期間経過後の特性パラメータAを計算によって求めることができる。 By expressing the characteristic parameter A as shown in Formula (4), for example, the characteristic parameter A after an arbitrary period of time is obtained by calculation only by identifying the initial characteristic parameter A 0 using an unused power storage device. be able to.
 上記の第2項A1は、蓄電デバイスの種類によって異なってもよい。蓄電デバイスが鉛蓄電池である場合、第2項A1は例えば次の数式(5)のように定義される。なお、係数a1、a2、及びa3は定数であり、SOC1(t)は暗電流放電時のSOCであり、SOC2(t)は休止時のSOCである。これらのSOCは時間tの関数となっている。
Figure JPOXMLDOC01-appb-M000005
The second term A 1 described above may be different depending on the type of the electric storage device. When the electricity storage device is a lead storage battery, the second term A 1 is defined as, for example, the following formula (5). The coefficients a 1 , a 2 , and a 3 are constants, SOC 1 (t) is the SOC during dark current discharge, and SOC 2 (t) is the SOC at rest. These SOCs are a function of time t.
Figure JPOXMLDOC01-appb-M000005
 数式(5)に示されるA1は、3つの項を含んでいる。第1項は、
Figure JPOXMLDOC01-appb-M000006
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a1とを含む。この場合、電流I(t)は蓄電デバイスの動作状態を表す数値であって、電流I(t)の絶対値の時間積分は即ち、使用期間中に蓄電デバイスを流れる総電流量を表し、係数a1は、総電流量に対する蓄電デバイスの劣化の速度を表す。従って、数式(6)で表される項は、蓄電デバイスを流れる総電流量に基づく劣化(以下、通電劣化という)を表す。なお、t1は充放電時間である。また、蓄電デバイスの特性パラメータは複数あり、劣化の進行に伴ってこれらの特性パラメータの値が変化するが、通電劣化による変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a1の符号が決定される。
A 1 shown in Equation (5) includes three terms. The first term is
Figure JPOXMLDOC01-appb-M000006
It is. This term includes a time integral of the absolute value of the current I (t) and a coefficient a 1 multiplied by the time integral. In this case, the current I (t) is a numerical value representing the operating state of the electricity storage device, and the time integral of the absolute value of the current I (t) represents the total amount of current flowing through the electricity storage device during the usage period, and the coefficient a 1 represents the rate of deterioration of the electricity storage device relative to the total amount of current. Therefore, the term represented by Equation (6) represents deterioration based on the total amount of current flowing through the power storage device (hereinafter referred to as energization deterioration). In addition, t1 is charging / discharging time. In addition, there are a plurality of characteristic parameters of the electricity storage device, and the values of these characteristic parameters change as the deterioration progresses. However, the change due to energization deterioration may be increased or decreased depending on the characteristic parameters. . Therefore, the sign of the coefficient a 1 is determined for each characteristic parameter.
 第2項は、
Figure JPOXMLDOC01-appb-M000007
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2及び放電深度(DOD)とを含む。DODは、例えば定数である。或いは、DODは時間tの関数であってもよく、その場合、I(t)の絶対値とDOD(t)との積が時間積分される。また、係数a2は、DODに対する蓄電デバイスの劣化の速度を表す。従って、数式(7)で表される項は、蓄電デバイスのDODに基づく劣化(DOD劣化)を表す。なお、DOD劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数aの符号が決定される。
The second term is
Figure JPOXMLDOC01-appb-M000007
It is. This term includes the time integral of the absolute value of the current I (t), the coefficient a 2 multiplied by the time integral, and the depth of discharge (DOD). DOD is a constant, for example. Alternatively, DOD may be a function of time t, in which case the product of the absolute value of I (t) and DOD (t) is time integrated. The coefficient a 2, which represents the rate of deterioration of the electric storage device for DOD. Therefore, the term represented by Formula (7) represents deterioration based on DOD (DOD deterioration) of the electricity storage device. Note that the amount of change in the characteristic parameter due to DOD deterioration may be increased or decreased depending on the characteristic parameter. Therefore, the sign of the coefficient a 2 is determined for each characteristic parameter.
 第3項及び第4項は、
Figure JPOXMLDOC01-appb-M000008
である。第3項は、SOC1(t)の時間積分と、この時間積分に乗算された係数a3とを含む。また、第4項は、SOC2(t)の時間積分と、この時間積分に乗算された、第3項と共通の係数a3とを含む。SOC1(t)及びSOC2(t)は蓄電デバイスの動作状態を表す数値である。係数a3は、暗電流放電時及び休止時の各SOCに対する蓄電デバイスの劣化の速度を表す。数式(8)で表される第3項及び第4項は、それぞれ蓄電デバイスの暗電流放電時及び休止時の各SOCに基づく劣化(暗電流放電劣化および休止劣化)を表す。暗電流放電劣化および休止劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数aの符号が決定される。なお、暗電流放電とは、車両のエンジンが停止している状態(すなわちオルタネータが発電していない状態。但し、アイドリングストップ時を除く)において、カーナビゲーションシステム及び時計などに供給される微弱な電流をいい、暗電流放電時とはこのような微弱が流れている期間をいう。また、休止とは、暗電流が全く流れていない状態をいい、休止時とは休止状態である期間をいう。なお、t2は暗電流放電時間であり、t3は休止時間である。数式(8)においては、必要に応じて、SOC1(t)及びSOC2(t)の各時間積分項の一方(すなわち第3項及び第4項の一方)を省略してもよい。
The third and fourth terms are
Figure JPOXMLDOC01-appb-M000008
It is. The third term includes the time integral of SOC 1 (t) and a coefficient a 3 multiplied by this time integral. The fourth term includes a time integral of SOC 2 (t) and a coefficient a 3 common to the third term multiplied by the time integral. SOC 1 (t) and SOC 2 (t) are numerical values representing the operating state of the electricity storage device. The coefficient a 3 represents the rate of deterioration of the electricity storage device with respect to each SOC during dark current discharge and rest. The third term and the fourth term represented by Expression (8) represent deterioration (dark current discharge deterioration and rest deterioration) based on each SOC during dark current discharge and rest of the electricity storage device, respectively. The change in the characteristic parameter due to the dark current discharge deterioration and the pause deterioration may be increased or decreased depending on the characteristic parameter. Therefore, the sign of the coefficient a 3 is determined for each characteristic parameter. The dark current discharge is a weak current supplied to the car navigation system and the timepiece when the vehicle engine is stopped (ie, the alternator is not generating power, except when idling is stopped). The dark current discharge is a period during which such a weak current flows. The term “rest” refers to a state in which no dark current flows, and the term “rest” refers to a period in which the rest state is maintained. Note that t2 is dark current discharge time, and t3 is rest time. In Equation (8), one of the time integral terms of SOC 1 (t) and SOC 2 (t) (that is, one of the third term and the fourth term) may be omitted as necessary.
 なお、通常の充放電時においてはSOC1(t)=0、SOC2(t)=0である。暗電流放電時においてはI(t)=0、SOC2(t)=0である。休止時においてはI(t)=0、SOC1(t)=0である。 Note that SOC 1 (t) = 0 and SOC 2 (t) = 0 during normal charging / discharging. At the time of dark current discharge, I (t) = 0 and SOC 2 (t) = 0. At the time of rest, I (t) = 0 and SOC 1 (t) = 0.
 また、蓄電デバイスがリチウムイオン電池である場合、数式(4)の第2項A1は例えば次の数式(9)のように定義される。
Figure JPOXMLDOC01-appb-M000009
Further, when the power storage device is a lithium ion battery, the second term A 1 of the formula (4) is defined as the following formula (9), for example.
Figure JPOXMLDOC01-appb-M000009
 数式(9)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項は、
Figure JPOXMLDOC01-appb-M000010
である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2と、該時間積分に乗算された自己発熱とを含む。すなわち、次の数式(11)によって表される時間τの関数Tは、蓄電デバイスの自己発熱を表す。
Figure JPOXMLDOC01-appb-M000011
自己発熱Tは、数式(11)に示されるように、電流I(τ)の二乗の時間積分によって求められる。また、係数a2は、自己発熱Tに対する蓄電デバイスの劣化の速度を表す。従って、数式(10)で表される項は、蓄電デバイスの自己発熱に基づく劣化(以下、自己発熱劣化という)を表す。
A 1 shown in Equation (9) includes three terms. The first term is an energization deterioration term. The second term is
Figure JPOXMLDOC01-appb-M000010
It is. This term includes the time integral of the absolute value of the current I (t), the coefficient a 2 multiplied by the time integral, and the self-heating multiplied by the time integral. That is, the function T of time τ represented by the following formula (11) represents self-heating of the electricity storage device.
Figure JPOXMLDOC01-appb-M000011
The self-heating T is obtained by time integration of the square of the current I (τ) as shown in the equation (11). The coefficient a 2 represents the speed of deterioration of the electricity storage device with respect to the self-heating T. Therefore, the term represented by Formula (10) represents deterioration based on self-heating of the electricity storage device (hereinafter referred to as self-heating deterioration).
 第3項は、
Figure JPOXMLDOC01-appb-M000012
である。この項は、休止時のSOC2(t)の時間積分と、該時間積分に乗算された係数a3とを含む。これらの意味付けは、前述した鉛蓄電池の場合の第4項と同様である。すなわち、この項は休止劣化項である。
The third term is
Figure JPOXMLDOC01-appb-M000012
It is. This term includes the time integration of SOC 2 (t) at rest and the coefficient a 3 multiplied by the time integration. These meanings are the same as the fourth term in the case of the lead storage battery described above. That is, this term is a pause degradation term.
 上記の例では、数式(8)において暗電流放電劣化項が存在するが、数式(12)においては同様の暗電流放電劣化項が存在しない。それは次の理由による。例えば蓄電デバイスが単一で用いられる場合には、車両のエンジンが停止しても暗電流が流れる期間が必ず存在する。このような単一で用いられる蓄電デバイスとしては、鉛蓄電池が挙げられる。これに対し、例えばμHEV方式のようにメイン蓄電デバイス及びサブ蓄電デバイスが用いられる場合には、メイン蓄電デバイスのみから暗電流が供給され、サブ蓄電デバイスからは暗電流が供給されない状況が考えられる。そのような状況では、サブ蓄電デバイスにおいて暗電流状態は生じない。リチウムイオン電池は、このようなサブ蓄電デバイスとして用いられることが多い。従って、数式(12)においては暗電流放電劣化項が省略されている。 In the above example, the dark current discharge deterioration term exists in Equation (8), but the same dark current discharge deterioration term does not exist in Equation (12). The reason is as follows. For example, when a single electricity storage device is used, there is always a period during which dark current flows even when the vehicle engine is stopped. Examples of such a single electricity storage device include a lead storage battery. On the other hand, for example, when the main power storage device and the sub power storage device are used as in the μHEV system, a situation is considered in which dark current is supplied only from the main power storage device and no dark current is supplied from the sub power storage device. In such a situation, no dark current state occurs in the sub power storage device. Lithium ion batteries are often used as such sub power storage devices. Therefore, the dark current discharge deterioration term is omitted in Equation (12).
 また、蓄電デバイスがニッケル亜鉛電池である場合、数式(4)の第2項A1は例えば次の数式(13)のように定義される。
Figure JPOXMLDOC01-appb-M000013
数式(13)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項はDOD劣化項である。第3項は休止劣化項である。ニッケル亜鉛電池もまた、上述したリチウムイオン電池と同様に、サブ蓄電デバイスとして用いられることが多い。従って、数式(13)においては暗電流放電劣化項が省略されている。
Further, the electric storage device be a nickel-zinc battery, the second term A 1 Equation (4) is defined as for example, the following equation (13).
Figure JPOXMLDOC01-appb-M000013
A 1 shown in Equation (13) includes three terms. The first term is an energization deterioration term. The second term is a DOD degradation term. The third term is a pause deterioration term. The nickel zinc battery is also often used as a sub power storage device, similar to the lithium ion battery described above. Therefore, the dark current discharge deterioration term is omitted in Equation (13).
 ここで、上述した係数a1,a2,a3の算出方法について説明する。3つの係数a1,a2,a3を算出するためには、3つの異なるモデル式が必要となる。そこで、互いに時間波形が異なる3つの電流I(t)を特性パラメータの式に入力して3つのモデル式を立て、それらに基づいて係数a1,a2,a3を求める。図6(a)~図6(c)は、そのような電流I(t)の波形の例を概念的に示すグラフである。これらの図において、縦軸は電流I(t)を表し、横軸は時間を表す。これらの電流波形は、定電圧充電期間Ta、及び定電流放電期間Tb、及び休止期間Tcを含む。図6(a)は、定電圧充電期間Taにおける電流が比較的大きい場合を示し、充電電流が大きい分だけ定電流放電期間Tbが長くなっている。図6(b)は、定電圧充電期間Taにおける電流が比較的小さい場合を示し、充電電流が小さい分だけ定電流放電期間Tbが短くなっている。図6(c)は、図6(a)及び図6(b)と較べて休止期間Tcが長い場合を示している。 Here, a method of calculating the coefficients a 1, a 2, a 3 described above. In order to calculate the three coefficients a 1 , a 2 , and a 3 , three different model expressions are required. Therefore, three currents I (t) having different time waveforms from each other are input to the characteristic parameter formulas, three model formulas are established, and the coefficients a 1 , a 2 , and a 3 are obtained based on them. FIGS. 6A to 6C are graphs conceptually showing examples of such a waveform of the current I (t). In these figures, the vertical axis represents current I (t), and the horizontal axis represents time. These current waveforms include a constant voltage charging period Ta, a constant current discharging period Tb, and a rest period Tc. FIG. 6A shows a case where the current in the constant voltage charging period Ta is relatively large, and the constant current discharging period Tb is lengthened by the amount of the charging current being large. FIG. 6B shows a case where the current in the constant voltage charging period Ta is relatively small, and the constant current discharging period Tb is shortened by the amount of the charging current being small. FIG. 6C shows a case where the suspension period Tc is longer than those in FIGS. 6A and 6B.
 図7は、リチウムイオン電池を例として図6(a)~図6(c)の電流波形を入力したときの、複数の特性パラメータのうち直流抵抗(図2の抵抗器11の抵抗値)の変化を示すグラフである。縦軸は直流抵抗(単位:mΩ)を表し、横軸はトータルサイクル時間(使用時間、単位:時間)を示す。また、同図において、菱形のプロットP1は図6(a)に示された電流波形を入力した場合を示し、正方形のプロットP2は図6(b)に示された電流波形を入力した場合を示し、三角形のプロットP3は図6(c)に示された電流波形を入力した場合を示す。図7に示されるように、入力される電流I(t)の波形が異なると、それに伴い直流抵抗の劣化分(数式(4)のA1)が変化することがわかる。 FIG. 7 shows a direct current resistance (resistance value of the resistor 11 in FIG. 2) among a plurality of characteristic parameters when the current waveforms in FIGS. 6 (a) to 6 (c) are input using a lithium ion battery as an example. It is a graph which shows a change. The vertical axis represents DC resistance (unit: mΩ), and the horizontal axis represents total cycle time (usage time, unit: time). Further, in the figure, a rhombus plot P1 shows a case where the current waveform shown in FIG. 6A is inputted, and a square plot P2 shows a case where the current waveform shown in FIG. 6B is inputted. A triangular plot P3 shows a case where the current waveform shown in FIG. As shown in FIG. 7, it can be seen that when the waveform of the input current I (t) is different, the degradation of the DC resistance (A 1 in Formula (4)) changes accordingly.
 図8は、図6(a)~図6(c)の電流波形に対応する、通電劣化項の時間積分の計算値をプロットしたグラフである。図9は、図6(a)~図6(c)の電流波形に対応する、自己発熱劣化項の時間積分の計算値をプロットしたグラフである。図10は、図6(a)~図6(c)の電流波形に対応する、休止劣化項の時間積分の計算値をプロットしたグラフである。なお、図8~図10において、縦軸は時間積分値を表し、横軸はトータルサイクル時間(単位:時間)を表す。また、これらの図において、菱形のプロットP4は図6(a)に示された電流波形を入力したときの数値を示し、正方形のプロットP5は図6(b)に示された電流波形を入力したときの数値を示し、三角形のプロットP6は図6(c)に示された電流波形を入力したときの数値を示す。 FIG. 8 is a graph plotting calculated values of the time integral of the energization deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). FIG. 9 is a graph plotting calculated values of the time integration of the self-heating deterioration term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). FIG. 10 is a graph plotting calculated values of the time integration of the pause degradation term corresponding to the current waveforms of FIGS. 6 (a) to 6 (c). 8 to 10, the vertical axis represents the time integral value, and the horizontal axis represents the total cycle time (unit: time). In these figures, the rhombus plot P4 shows the values when the current waveform shown in FIG. 6A is input, and the square plot P5 inputs the current waveform shown in FIG. 6B. The triangular plot P6 shows the values when the current waveform shown in FIG. 6C is input.
 図8~図10に示されるように、図6(a)~図6(c)の電流波形に基づいて、通電劣化項、自己発熱劣化項、及び休止劣化項それぞれにおける時間積分の値が計算される。従って、係数a1,a2,a3を変数として含む互いに独立した3つの関数を作成でき、実験値とのカーブフィッティングによる最適化を行うことで、係数a1,a2,a3を求めることができる。図11(a)~図11(c)は、カーブフィッティングの様子を概念的に示すグラフである。図11(a)~図11(c)は、それぞれ図6(a)~図6(c)の電流波形により得られたa1,a2,a3の関数と実験値とのフィッティングの様子を示している。図中のプロットP7~P9が実験値であり、曲線R1~R3が関数からの推定値である。 As shown in FIGS. 8 to 10, the time integral values in the energization degradation term, the self-heating degradation term, and the pause degradation term are calculated based on the current waveforms in FIGS. 6 (a) to 6 (c). Is done. Therefore, three independent functions including the coefficients a 1 , a 2 , and a 3 as variables can be created, and the coefficients a 1 , a 2 , and a 3 are obtained by performing optimization by curve fitting with experimental values. be able to. FIG. 11A to FIG. 11C are graphs conceptually showing the state of curve fitting. FIGS. 11 (a) to 11 (c) show how the functions of a 1 , a 2 , and a 3 obtained from the current waveforms shown in FIGS. 6 (a) to 6 (c) are fitted with experimental values, respectively. Is shown. Plots P7 to P9 in the figure are experimental values, and curves R1 to R3 are estimated values from functions.
 図12は、上述した方法によって得られた、各特性パラメータの係数a1,a2,a3の数値例を示す図表である。図12に示されるように、上述した方法によって係数a1,a2,a3が好適に求められる。なお、図12には、フィッティング誤差(%)が併せて示されている。第1分極抵抗及び第2分極抵抗の誤差が比較的大きくなっているが、これは、試験期間が短く、劣化の進行度合いが小さい段階であることが原因と考えられる。 FIG. 12 is a chart showing numerical examples of the coefficients a 1 , a 2 , and a 3 of each characteristic parameter obtained by the method described above. As shown in FIG. 12, the coefficients a 1 , a 2 , and a 3 are suitably obtained by the method described above. FIG. 12 also shows the fitting error (%). The error between the first polarization resistance and the second polarization resistance is relatively large. This is considered to be caused by the fact that the test period is short and the progress of deterioration is small.
 以上に説明した本実施形態によるシミュレーション方法およびシミュレーション装置1によって得られる効果について説明する。本実施形態のシミュレーション方法及びシミュレーション装置1では、数式(4)に示したように、少なくとも一つの特性パラメータAが、蓄電デバイスの劣化の影響を表す時間関数A1を含む。このような時間関数A1に蓄電デバイスの使用時間(トータルサイクル時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータAに反映させることができる。 The effects obtained by the simulation method and the simulation apparatus 1 according to the present embodiment described above will be described. In the simulation method and the simulation apparatus 1 according to the present embodiment, as shown in Formula (4), at least one characteristic parameter A includes a time function A 1 that represents the influence of deterioration of the power storage device. By inputting the usage time (total cycle time) of the electricity storage device to such a time function A 1 , the deterioration degree of the electricity storage device when the usage time has elapsed can be reflected in the characteristic parameter A.
 そして、本発明者は、その時間関数A1が、劣化速度を表す係数(例えばa1,a2,a3など)と、蓄電デバイスの動作状態を表す数値(例えば電流I(t)、SOC1(t)、SOC2(t)など)の時間積分すなわち蓄電デバイスの使用履歴とを乗算した項(例えば数式(6)~(8)、(10)~(12)など)を含むことによって、蓄電デバイスの劣化度合いを精度良く表すことができることを見出した。従って、本実施形態によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度良く推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。 The present inventor has found that the time function A 1 includes a coefficient (for example, a 1 , a 2 , a 3, etc.) indicating the deterioration rate, and a numerical value (for example, current I (t), SOC indicating the operating state of the power storage device. 1 (t), SOC 2 (t), etc.) by including a term (for example, formulas (6) to (8), (10) to (12), etc.)) multiplied by the time integral of the storage device usage history. The present inventors have found that the deterioration degree of the electricity storage device can be expressed with high accuracy. Therefore, according to the present embodiment, it is possible to accurately estimate the input / output characteristics of the electricity storage device when it has deteriorated without using an actually deteriorated electricity storage device, such as a fuel consumption simulation using the deteriorated electricity storage device. Can be performed with high accuracy.
 図13は、車両の燃費シミュレーションにおいて、リチウムイオン電池の等価回路モデルに本実施形態の特性パラメータを使用した場合(グラフG11)と、劣化による影響を考慮しない特性パラメータ(すなわち数式(4)の右辺第2項A1がないもの)を使用した場合(グラフG12)とにおける燃費誤差の最大値を比較した結果を示すグラフである。図13において、縦軸は燃費誤差の最大値(単位:%)を表し、横軸は試験期間(単位:日)を表す。なお、特性パラメータの初期値(すなわち数式(4)の右辺第1項A0)の同定に用いる電流I(t)としては、図14に示される電流波形を用いた。この電流波形は、定電圧充電期間T1、定電圧充電期間T1後の定電流放電期間T2、及び定電流放電期間T2後のクランキング期間T3を含む第1~第3の期間TA~TCを繰り返し含んでいる。なお、これら第1~第3の期間TA~TCにおける定電圧充電期間T1の電圧値は14(V)で一定であり、定電流放電期間T2及びクランキング期間T3の時間はそれぞれ59秒、1秒で一定である。また、第1~第3の期間TA~TCにおける電流値は次の通りである。
<第1の期間TA>
定電圧充電期間T1:100(A)
定電流放電期間T2:-20(A)
クランキング期間T3:-300(A)
<第2の期間TB>
定電圧充電期間T1:200(A)
定電流放電期間T2:-45(A)
クランキング期間T3:-300(A)
<第3の期間TC>
定電圧充電期間T1:50(A)
定電流放電期間T2:-10(A)
クランキング期間T3:-300(A)
FIG. 13 shows the case where the characteristic parameter of the present embodiment is used for the equivalent circuit model of the lithium ion battery in the vehicle fuel consumption simulation (graph G11), and the characteristic parameter that does not consider the influence of deterioration (that is, the right side of Expression (4)). it is a graph showing a result of comparing the maximum value of the fuel consumption error in the case with (graph G12) using second term a 1 that there is no). In FIG. 13, the vertical axis represents the maximum value (unit:%) of the fuel efficiency error, and the horizontal axis represents the test period (unit: day). Note that the current waveform shown in FIG. 14 was used as the current I (t) used to identify the initial value of the characteristic parameter (that is, the first term A 0 on the right side of Equation (4)). This current waveform repeats the first to third periods TA to TC including the constant voltage charging period T1, the constant current discharging period T2 after the constant voltage charging period T1, and the cranking period T3 after the constant current discharging period T2. Contains. Note that the voltage value of the constant voltage charging period T1 in the first to third periods TA to TC is constant at 14 (V), and the time of the constant current discharging period T2 and the cranking period T3 is 59 seconds, 1 Constant in seconds. The current values in the first to third periods TA to TC are as follows.
<First period TA>
Constant voltage charging period T1: 100 (A)
Constant current discharge period T2: -20 (A)
Cranking period T3: -300 (A)
<Second period TB>
Constant voltage charging period T1: 200 (A)
Constant current discharge period T2: -45 (A)
Cranking period T3: -300 (A)
<Third period TC>
Constant voltage charging period T1: 50 (A)
Constant current discharge period T2: -10 (A)
Cranking period T3: -300 (A)
 また、燃費誤差の最大値とは、特性パラメータを含む等価回路モデルを用いて燃費シミュレーションを行った結果と、実際に測定された燃費との差の最大値である。ここで、蓄電デバイスの特性パラメータ抽出時の電圧誤差(蓄電デバイスの端子電圧の実測値とモデルによる端子電圧の推定値との差)が同値となる特性パラメータの値の組合せは無数に存在し、同じ電圧誤差の値であっても特性パラメータの値の組合せによって燃費計算結果は異なる。上述した「最大値」とは、同じ電圧誤差になる特性パラメータの値の組み合わせを複数用意し、それぞれの組み合わせで燃費誤差を算出し、算出した燃費誤差のうち最大の燃費誤差の値をいう。 Also, the maximum value of the fuel efficiency error is the maximum value of the difference between the result of the fuel efficiency simulation using the equivalent circuit model including the characteristic parameter and the actually measured fuel efficiency. Here, there are innumerable combinations of characteristic parameter values in which the voltage error (difference between the measured value of the terminal voltage of the power storage device and the estimated value of the terminal voltage by the model) at the time of extracting the characteristic parameter of the power storage device is the same value Even with the same voltage error value, the fuel consumption calculation result varies depending on the combination of the characteristic parameter values. The above-mentioned “maximum value” refers to the value of the maximum fuel efficiency error among the calculated fuel efficiency errors by preparing a plurality of combinations of characteristic parameter values that have the same voltage error, calculating the fuel efficiency error for each combination.
 図13に示されるように、試験期間が長くなるほど燃費誤差は大きくなるが、劣化による影響を考慮しない場合には、試験期間が60日を過ぎると燃費誤差の最大値が0.3%を超えている。これに対し、劣化による影響を考慮した本実施形態では、試験期間が60日を過ぎても燃費誤差の最大値が0.05%以下に収まっている。このように、本実施形態の方法および装置によれば、試験期間が長くなるほど、蓄電デバイスの劣化の状態を精度よく燃費シミュレーション結果に反映させることができる。 As shown in FIG. 13, the fuel efficiency error increases as the test period becomes longer. However, when the influence of deterioration is not taken into consideration, the maximum value of the fuel efficiency error exceeds 0.3% after the test period exceeds 60 days. ing. On the other hand, in the present embodiment in which the influence due to deterioration is taken into consideration, the maximum value of the fuel consumption error is 0.05% or less even when the test period exceeds 60 days. Thus, according to the method and apparatus of this embodiment, the longer the test period, the more accurately the deterioration state of the electricity storage device can be reflected in the fuel consumption simulation result.
 本実施形態による燃費シミュレーション結果は、例えば、車両に採用される蓄電デバイス容量の選択に応用することができる。一般に、車両の燃費は搭載する蓄電デバイスの容量が大きいほど良くなる。一方、使用開始からの年数を経るほど、蓄電デバイスの性能が劣化し、車両の燃費は低下する。従来は、シミュレーションにおいて蓄電デバイスの劣化により性能がどれほど低下するかが不明であったため、燃費シミュレーション結果から選択される蓄電デバイス容量よりも十分に余裕のある蓄電デバイス容量が選択されていた。このような選択方法では、蓄電デバイス容量が必要以上に大きくなり易く、車両コスト低減の妨げとなるおそれがある。 The fuel consumption simulation result according to the present embodiment can be applied to, for example, selection of the power storage device capacity employed in the vehicle. In general, the fuel efficiency of a vehicle becomes better as the capacity of an electricity storage device mounted increases. On the other hand, as the years from the start of use, the performance of the electricity storage device deteriorates, and the fuel consumption of the vehicle decreases. Conventionally, since it was unclear how much performance deteriorated due to deterioration of the electricity storage device in the simulation, an electricity storage device capacity having a sufficient margin than the electricity storage device capacity selected from the fuel consumption simulation result was selected. In such a selection method, the storage device capacity tends to increase more than necessary, which may hinder vehicle cost reduction.
 そのような問題に対し、本実施形態のシミュレーション方法およびシミュレーション装置1では、蓄電デバイスの劣化度合いに応じたシミュレーションを行うことができるので、使用開始からの年数を考慮した燃費シミュレーションを精度良く行うことができる。従って、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。 In order to solve such a problem, the simulation method and the simulation apparatus 1 according to the present embodiment can perform a simulation according to the degree of deterioration of the power storage device, and therefore accurately perform a fuel consumption simulation in consideration of the years since the start of use. Can do. Therefore, based on the estimated fuel consumption after a predetermined number of years, it is possible to accurately select the power storage device capacity that can satisfy the predetermined fuel consumption condition.
 図15は、本実施形態による燃費シミュレーション結果の一例を示すグラフである。図15において、縦軸は燃費(単位:km/l)を表し、横軸は使用年数(単位:年)を表す。また、図中の菱形のプロットP10、正方形のプロットP11、及び三角形のプロットP12は、蓄電デバイス初期容量がそれぞれ3Ah、5Ah、及び7Ahである場合を示す。図15に示されるように、車両の燃費は蓄電デバイス容量が大きいほど良いが、使用年数が長くなるほど車両の燃費は低下する。そこで、例えば使用年数が5年経過した時点での燃費を30(km/l)以上としたい場合、このグラフによれば、車両に搭載する蓄電デバイス初期容量を5Ahとすれば良いことがわかる。このように、本実施形態によれば、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。 FIG. 15 is a graph showing an example of a fuel consumption simulation result according to the present embodiment. In FIG. 15, the vertical axis represents fuel consumption (unit: km / l), and the horizontal axis represents the number of years of use (unit: year). In addition, a rhombus plot P10, a square plot P11, and a triangle plot P12 in the figure indicate cases where the initial storage device capacities are 3 Ah, 5 Ah, and 7 Ah, respectively. As shown in FIG. 15, the fuel consumption of the vehicle is better as the storage device capacity is larger. However, the fuel consumption of the vehicle is lower as the service life is longer. Therefore, for example, when it is desired to set the fuel consumption at the time of five years of use to 30 (km / l) or more, according to this graph, it is understood that the initial capacity of the power storage device mounted on the vehicle should be 5 Ah. As described above, according to the present embodiment, it is possible to accurately select the power storage device capacity that can satisfy the predetermined fuel consumption condition based on the estimated fuel consumption after a predetermined number of years.
 なお、蓄電デバイス容量の選択は、推定燃費を基準として行う場合に限られない。本実施形態によれば、所定の年数を経た後の蓄電デバイスの推定特性に基づいて、所定の条件を満足できる蓄電デバイス容量を的確に選択することができる。 Note that the selection of the storage device capacity is not limited to the case where the estimated fuel consumption is used as a reference. According to the present embodiment, it is possible to accurately select a power storage device capacity that can satisfy a predetermined condition based on the estimated characteristics of the power storage device after a predetermined number of years.
 また、本実施形態のように、蓄電デバイスの動作状態を表し時間積分される数値は、等価回路モデルを流れる電流I(t)であってもよい(例えば数式(6)、数式(7)、数式(11)を参照)。これにより、使用期間における蓄電デバイスを流れる総電流量に基づく劣化(通電劣化)による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。この場合、係数と時間積分とを乗算した項は、該時間積分に乗算されたDODを更に含んでもよい(例えば数式(7)を参照)。これにより、使用期間における蓄電デバイスのDODに基づく劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。 Further, as in the present embodiment, the numerical value representing the operating state of the power storage device and time-integrated may be the current I (t) flowing through the equivalent circuit model (for example, Formula (6), Formula (7), (See Equation (11)). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration (energization deterioration) based on the total amount of current flowing through the power storage device during the usage period. In this case, the term obtained by multiplying the coefficient and the time integral may further include a DOD multiplied by the time integral (see, for example, Equation (7)). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of the deterioration based on the DOD of the power storage device during the usage period.
 また、本実施形態のように、蓄電デバイスの動作状態を表し時間積分される数値は、暗電流放電時のSOC(すなわち数式(8)のSOC1(t))、及び休止時のSOC(すなわち数式(8)、数式(12)のSOC2(t))の一方または双方であってもよい(例えば数式(8)、数式(12)を参照)。これにより、暗電流放電時または休止時の劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。 Further, as in the present embodiment, the numerical values that represent the operating state of the power storage device and are integrated over time are the SOC during dark current discharge (that is, SOC 1 (t) in Expression (8)) and the SOC during rest (that is, One or both of Formula (8) and SOC 2 (t) in Formula (12) may be used (see Formula (8) and Formula (12), for example). Accordingly, the input / output characteristics of the deteriorated power storage device can be estimated with higher accuracy in consideration of the influence of deterioration during dark current discharge or rest.
 (変形例)
上記実施形態では、係数a1,a2,a3と蓄電デバイスの温度との関係については述べていない。すなわち、係数a1,a2,a3は、蓄電デバイスの温度によらず一定であってもよい。しかしながら、多くの場合において、好適な係数a1,a2,a3の値は蓄電デバイスの温度に依存する。従って、係数a1,a2,a3は、蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。
(Modification)
In the above embodiment, it does not describe the relationship between the coefficient a 1, a 2, a 3 and a temperature of the electric storage device. That is, the coefficients a 1 , a 2 , and a 3 may be constant regardless of the temperature of the power storage device. However, in many cases, the preferable values of the coefficients a 1 , a 2 , and a 3 depend on the temperature of the electricity storage device. Accordingly, the coefficients a 1 , a 2 , and a 3 may change according to the temperature of the electricity storage device. Thereby, the deterioration degree which changes according to the temperature of an electrical storage device can be represented accurately.
 具体的には、係数a1,a2,a3が温度THの関数a1(TH),a2(TH),a3(TH)であってもよく、或いは、複数の温度毎に異なる係数a1,a2,a3が設定されてもよい。そのために、実験値とのカーブフィッティングによる最適化を行う際に、蓄電デバイスの温度を変えながら実験値を取得するとよい。 Specifically, the coefficients a 1 , a 2 , and a 3 may be functions a 1 (TH), a 2 (TH), and a 3 (TH) of the temperature TH, or differ for each of a plurality of temperatures. The coefficients a 1 , a 2 , and a 3 may be set. Therefore, when performing optimization by curve fitting with experimental values, it is preferable to acquire experimental values while changing the temperature of the power storage device.
 本発明によるシミュレーション方法及びシミュレーション装置は、上述した実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態では、蓄電デバイスの動作状態を表し時間積分される数値として、蓄電デバイスを流れる電流I(t)、暗電流放電時のSOC1(t)、及び休止時のSOC2(t)を例示したが、本発明における当該数値としては、蓄電デバイスの動作状態を表すものであればこれら以外にも様々な数値を採用し得る。例えば、SOC1(t)、SOC2(t)に代わる数値として、蓄電デバイスの端子電圧を用いてもよい。 The simulation method and the simulation apparatus according to the present invention are not limited to the above-described embodiments and modification examples, and various other modifications are possible. For example, in the above-described embodiment, the current I (t) flowing through the power storage device, the SOC 1 (t) during dark current discharge, and the SOC 2 (when resting) are represented as numerical values that represent the operating state of the power storage device and are integrated over time. Although t) has been illustrated, as the numerical value in the present invention, various numerical values other than these can be adopted as long as they represent the operating state of the electric storage device. For example, the terminal voltage of the electricity storage device may be used as a numerical value instead of SOC 1 (t) and SOC 2 (t).
 本発明は、劣化した蓄電デバイスの特性を精度良く推定することができるシミュレーション方法及びシミュレーション装置として利用可能である。 The present invention can be used as a simulation method and a simulation apparatus that can accurately estimate the characteristics of a deteriorated power storage device.
 1…シミュレーション装置、2…入力部、3…SOC計算部、4…パラメータ設定部、5…直流抵抗計算部、6…分極計算部、7…OCV計算部、8…端子電圧計算部、10,20…回路、11,21,23…抵抗器、22,24…コンデンサ、30…定電圧源、40…等価回路モデル、90…燃費シミュレーション装置、91…入力部、92…制御部、93…出力部、N,N…ノード。 DESCRIPTION OF SYMBOLS 1 ... Simulation apparatus, 2 ... Input part, 3 ... SOC calculation part, 4 ... Parameter setting part, 5 ... DC resistance calculation part, 6 ... Polarization calculation part, 7 ... OCV calculation part, 8 ... Terminal voltage calculation part, 10, DESCRIPTION OF SYMBOLS 20 ... Circuit, 11, 21, 23 ... Resistor, 22, 24 ... Capacitor, 30 ... Constant voltage source, 40 ... Equivalent circuit model, 90 ... Fuel consumption simulation apparatus, 91 ... Input part, 92 ... Control part, 93 ... Output Part, N 1 , N 2 ... Node.

Claims (7)

  1.  蓄電デバイスの等価回路モデルを用いてシミュレーションを行う方法であって、
     前記等価回路モデルを流れる電流に基づいて前記等価回路モデルの端子電圧を計算するステップを含み、
     前記等価回路モデルが複数の特性パラメータを含んでおり、
     少なくとも一つの前記特性パラメータが、前記蓄電デバイスの劣化の影響を表す時間関数を含んでおり、
     前記時間関数が、前記蓄電デバイスの動作状態を表す数値の時間積分と、前記時間積分に乗算された劣化速度を表す係数とを含む項を有する、シミュレーション方法。
    A method of performing simulation using an equivalent circuit model of an electricity storage device,
    Calculating a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model;
    The equivalent circuit model includes a plurality of characteristic parameters;
    At least one of the characteristic parameters includes a time function representing an influence of deterioration of the electricity storage device;
    The simulation method has a term in which the time function includes a time integration of a numerical value representing an operating state of the power storage device and a coefficient representing a deterioration rate multiplied by the time integration.
  2.  前記蓄電デバイスの動作状態を表す数値が前記電流である、請求項1に記載のシミュレーション方法。 The simulation method according to claim 1, wherein a numerical value representing an operating state of the power storage device is the current.
  3.  前記項が、前記時間積分に乗算された放電深度を更に含む、請求項2に記載のシミュレーション方法。 3. The simulation method according to claim 2, wherein the term further includes a discharge depth multiplied by the time integration.
  4.  前記蓄電デバイスの動作状態を表す数値が、暗電流放電時の充電率及び休止時の充電率の一方または双方である、請求項1に記載のシミュレーション方法。 The simulation method according to claim 1, wherein the numerical value representing the operating state of the electricity storage device is one or both of a charging rate during dark current discharge and a charging rate during rest.
  5.  前記係数が前記蓄電デバイスの温度に応じて変化する、請求項1~4のいずれか一項に記載のシミュレーション方法。 The simulation method according to any one of claims 1 to 4, wherein the coefficient changes according to a temperature of the power storage device.
  6.  前記蓄電デバイスが鉛蓄電池である、請求項1~5のいずれか一項に記載のシミュレーション方法。 6. The simulation method according to claim 1, wherein the power storage device is a lead storage battery.
  7.  蓄電デバイスの等価回路モデルを用いてシミュレーションを行う装置であって、
     前記等価回路モデルを流れる電流に基づいて前記等価回路モデルの端子電圧を計算する電圧計算部を含み、
     前記等価回路モデルが複数の特性パラメータを含んでおり、
     少なくとも一つの前記特性パラメータが、前記蓄電デバイスの劣化の影響を表す時間関数を含んでおり、
     前記時間関数が、前記蓄電デバイスの動作状態を表す数値の時間積分と、前記時間積分に乗算された劣化速度を表す係数とを含む項を有する、シミュレーション装置。
    An apparatus that performs a simulation using an equivalent circuit model of an electricity storage device,
    A voltage calculator that calculates a terminal voltage of the equivalent circuit model based on a current flowing through the equivalent circuit model;
    The equivalent circuit model includes a plurality of characteristic parameters;
    At least one of the characteristic parameters includes a time function representing an influence of deterioration of the electricity storage device;
    The simulation apparatus, wherein the time function includes a term including a time integral of a numerical value representing an operating state of the power storage device and a coefficient representing a deterioration rate multiplied by the time integral.
PCT/JP2016/071079 2016-07-15 2016-07-15 Simulation method and simulation device WO2018011993A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/071079 WO2018011993A1 (en) 2016-07-15 2016-07-15 Simulation method and simulation device
JP2017068134A JP6988132B2 (en) 2016-07-15 2017-03-30 Simulation method and simulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071079 WO2018011993A1 (en) 2016-07-15 2016-07-15 Simulation method and simulation device

Publications (1)

Publication Number Publication Date
WO2018011993A1 true WO2018011993A1 (en) 2018-01-18

Family

ID=60952914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071079 WO2018011993A1 (en) 2016-07-15 2016-07-15 Simulation method and simulation device

Country Status (2)

Country Link
JP (1) JP6988132B2 (en)
WO (1) WO2018011993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184236A (en) * 2023-04-26 2023-05-30 宁德时代新能源科技股份有限公司 Battery calibration method, battery calibration device, electronic equipment and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240893B2 (en) * 2019-02-18 2023-03-16 ビークルエナジージャパン株式会社 battery controller
JP7342671B2 (en) * 2019-06-20 2023-09-12 株式会社Gsユアサ Development support device, development support method, and state detection method
JP7393822B1 (en) 2022-07-29 2023-12-07 株式会社スリーダムアライアンス Lithium secondary battery deterioration determination method, battery deterioration determination device
WO2024095436A1 (en) * 2022-11-04 2024-05-10 武蔵精密工業株式会社 Storage battery management device, storage battery management system, and management method for storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250905A (en) * 2005-03-14 2006-09-21 Fuji Heavy Ind Ltd Battery management system
JP2011214843A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Device and method for estimating internal state of battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864383B2 (en) * 2005-08-24 2012-02-01 富士重工業株式会社 Deterioration state estimation device for power storage device
JP5466564B2 (en) * 2010-04-12 2014-04-09 本田技研工業株式会社 Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
JP6499075B2 (en) * 2013-07-15 2019-04-10 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JPWO2016059869A1 (en) * 2014-10-17 2017-04-27 株式会社東芝 Secondary battery charge state estimation apparatus and charge state estimation method thereof
KR101619634B1 (en) * 2014-11-06 2016-05-10 현대자동차주식회사 System for estimating state of health using battery moedel parameter and method thereof
JP6737022B2 (en) * 2016-07-15 2020-08-05 日立化成株式会社 Simulation method and simulation device
JP6737023B2 (en) * 2016-07-15 2020-08-05 日立化成株式会社 Simulation method and simulation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250905A (en) * 2005-03-14 2006-09-21 Fuji Heavy Ind Ltd Battery management system
JP2011214843A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Device and method for estimating internal state of battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184236A (en) * 2023-04-26 2023-05-30 宁德时代新能源科技股份有限公司 Battery calibration method, battery calibration device, electronic equipment and storage medium
CN116184236B (en) * 2023-04-26 2023-08-04 宁德时代新能源科技股份有限公司 Battery calibration method, battery calibration device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP2018009963A (en) 2018-01-18
JP6988132B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6737022B2 (en) Simulation method and simulation device
WO2020143193A1 (en) Method, device, and computer-readable storage medium for estimating charge state of battery
WO2018011993A1 (en) Simulation method and simulation device
CN103630843A (en) Battery state estimation system, battery control system,and battery system
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
CN102368091A (en) Adaptive battery parameter extraction and SOC estimation for lithium-ion battery
CN105899395B (en) Energy in assessment motor vehicle battery
JP6534746B2 (en) Battery control device and battery system
CN110290972B (en) Method for estimating state of charge of battery cell
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
US12122262B2 (en) Battery management system, battery pack, electric vehicle, and battery management method
KR20190099904A (en) Battery management system
JP2019100897A (en) Device status detection apparatus, power supply system, and vehicle
JP6737023B2 (en) Simulation method and simulation device
JP6740764B2 (en) Storage device capacity selection method
WO2013057784A1 (en) Battery control device and secondary battery system
CN113826019A (en) Method for estimating battery state
EP3872506A1 (en) Battery control device
JP6801715B2 (en) Simulation method and simulation equipment
JP7554580B2 (en) Zinc battery voltage estimation method and voltage estimation device
CN115248386A (en) State of charge prediction method, electric quantity prediction method and electronic equipment
JP6790621B2 (en) Simulation method and simulation equipment
JP2017169347A (en) Secondary battery control device
JP6801314B2 (en) Simulation method and simulation equipment
CN105487013B (en) Method and system for determining operating conditions of an energy storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP