WO2018008052A1 - スクリュー圧縮機および冷凍サイクル装置 - Google Patents
スクリュー圧縮機および冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2018008052A1 WO2018008052A1 PCT/JP2016/069740 JP2016069740W WO2018008052A1 WO 2018008052 A1 WO2018008052 A1 WO 2018008052A1 JP 2016069740 W JP2016069740 W JP 2016069740W WO 2018008052 A1 WO2018008052 A1 WO 2018008052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- discharge port
- screw
- temperature
- port valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/48—Rotary-piston pumps with non-parallel axes of movement of co-operating members
- F04C18/50—Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
- F04C18/52—Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
Definitions
- the present invention relates to a refrigeration cycle apparatus having a screw compressor that compresses and discharges a fluid.
- a screw compressor that compresses and discharges a fluid.
- liquid compression in a screw compressor is prevented.
- the screw compressor compresses low-temperature and low-pressure gaseous refrigerant (refrigerant gas) and discharges high-temperature and high-pressure refrigerant gas. Then, the condenser exchanges heat between the refrigerant gas and the external heat source so that the refrigerant gas becomes a high-pressure refrigerant liquid. Thereafter, the expansion valve squeezes and expands the high-pressure refrigerant liquid to obtain a low-temperature and low-pressure gas-liquid two-phase refrigerant.
- refrigerant gas low-temperature and low-pressure gaseous refrigerant
- the condenser exchanges heat between the refrigerant gas and the external heat source so that the refrigerant gas becomes a high-pressure refrigerant liquid.
- the expansion valve squeezes and expands the high-pressure refrigerant liquid to obtain a low-temperature and low-pressure gas-liquid two-phase refrigerant.
- the evaporator exchanges heat between the external heat source and the low-pressure gas-liquid two-phase refrigerant so that the low-pressure gas-liquid two-phase refrigerant becomes low-temperature and low-pressure refrigerant gas.
- the low and low pressure refrigerant gas returns to the screw compressor.
- the external heat source heat-exchanged with the low-pressure gas-liquid two-phase refrigerant in the evaporator has a low temperature.
- thermometer and pressure gauge are input to the controller, and the saturation temperature and measured temperature at the measured pressure are Calculate the difference.
- the superheat degree control which adjusts the opening degree of an expansion valve is performed so that measurement temperature may always become only a fixed value higher than saturation temperature (for example, refer patent document 1, 2).
- the refrigerant liquid is prevented from flowing into the compressor by performing the superheat degree control for controlling the refrigerant to the superheated gas state.
- the opening degree adjustment of the expansion valve cannot be followed.
- the refrigerant liquid accumulates in the evaporator, eventually returning to the refrigerant liquid flowing into the compressor, and the gate rotor of the screw compressor may be damaged by the liquid compression. It was.
- the present invention has been made to solve the above-described problems, and provides a screw compressor and a refrigeration cycle apparatus capable of suppressing breakage and the like even when refrigerant liquid returns to the compressor. With the goal.
- a screw compressor includes a cylindrical casing main body, a screw rotor housed in an inner cylindrical surface of the casing main body and having a plurality of screw grooves on the outer peripheral surface, and a plurality of teeth meshed with the screw grooves.
- a discharge port valve disposed between the casing main body, the casing main body and the screw rotor, wherein the discharge timing of the compressed refrigerant is changed according to the position in the direction of the rotation axis of the screw rotor; And a drive device that moves the discharge port valve according to the superheat temperature of the refrigerant flowing on the side.
- the refrigeration cycle apparatus includes the above-described screw compressor, condenser, decompression device, and evaporator connected to each other to form a refrigerant circuit in which refrigerant is circulated, and overheating in the refrigerant flowing out of the evaporator
- a discharge port valve control device that determines the position of the discharge port valve of the screw compressor according to the temperature is provided.
- the drive device is arranged so that the discharge port valve is positioned at a position where the refrigerant discharge timing is advanced. Control.
- the refrigeration cycle apparatus relates to a temperature detection device that detects a temperature on the refrigerant outflow side of the evaporator, a pressure detection device that detects a pressure on the refrigerant outflow side of the evaporator, and a detection of the temperature detection device.
- An arithmetic device that calculates the superheat temperature from the temperature and the pressure related to detection by the pressure detection device is further provided.
- the position of the discharge port valve is determined by the refrigerant overheating temperature, for example, when it is predicted that the refrigerant liquid has returned to the compression chamber, the discharge is performed.
- the discharge timing can be advanced, the compression time can be reduced, and the pressure rise in the compression chamber can be suppressed. For this reason, the screw compressor is hardly damaged by liquid compression, and a highly reliable screw compressor and refrigeration cycle apparatus can be obtained.
- FIG. (1) explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention.
- FIG. (2) explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention.
- FIG. (2) explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention.
- FIG. (1) explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention.
- FIG. (2) explaining the internal structure in the screw compressor 102 which concerns on Embodiment 1 of this invention.
- FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus 100 including a screw compressor 102 according to Embodiment 1 of the present invention.
- the screw compressor 102 will be described as a device that constitutes a refrigerant circuit in which refrigerant is circulated.
- the fluid that is sucked, compressed, and discharged by the screw compressor 102 according to the first embodiment will be described as a refrigerant that changes its state to gas and liquid.
- the refrigeration cycle apparatus 100 in the first embodiment has a refrigerant circuit configured by connecting a screw compressor 102, a condenser 104, an expansion valve 105, and an evaporator 106 in order by refrigerant piping.
- the inverter device 101 controls the power supply to the screw compressor 102 based on the instructed frequency, and controls the drive rotation speed of the screw compressor 102.
- the screw compressor 102 is driven by electric power supplied via an inverter device 101 from a power supply source (not shown). The configuration of the screw compressor 102 will be described later.
- the condenser 104 cools and condenses the refrigerant gas that is a gaseous refrigerant discharged from the screw compressor 102.
- An expansion valve 105 serving as a decompression device decompresses and expands the refrigerant liquid that is a liquid refrigerant that has flowed out of the condenser 104.
- the evaporator 106 evaporates the refrigerant that has passed through the expansion valve 105.
- the refrigeration cycle apparatus 100 further includes a calculation device 107, a pressure sensor 108, a temperature sensor 109, and a control device 110.
- the computing device 107 performs computation based on the input physical quantity data.
- the refrigerant gas superheat temperature of the refrigerant flowing out of the evaporator 106 is calculated from the pressure data detected by the pressure sensor 108 and the temperature data detected by the temperature sensor 109.
- a pressure sensor 108 serving as a pressure detection device and a temperature sensor 109 serving as a temperature detection device are installed on the refrigerant suction side of the screw compressor 102 and on the refrigerant outlet side of the evaporator 106 on the refrigerant outflow side.
- the pressure sensor 108 detects the pressure of the refrigerant flowing out from the evaporator 106.
- the temperature sensor 109 detects the temperature of the refrigerant flowing out of the evaporator 106.
- the control device 110 controls the frequency of the inverter device 101, the opening degree of the expansion valve 105, and the like, and sends instructions to each device.
- the control device 110 of the first embodiment has a discharge port valve control device 111.
- the discharge port valve control device 111 performs position control of the discharge port valve 7 included in the screw compressor 102, as will be described later.
- the screw compressor 102 sucks and compresses a refrigerant gas, which is a gaseous refrigerant, and then discharges it.
- the discharge gas discharged from the screw compressor 102 is cooled by the condenser 104.
- the refrigerant cooled by the condenser 104 is decompressed by the expansion valve 105.
- the decompressed refrigerant is heated by the evaporator 106 and becomes refrigerant gas.
- the refrigerant gas flowing out of the evaporator 106 is sucked into the screw compressor 102.
- FIG. 2 and 3 are diagrams illustrating an internal configuration in screw compressor 102 according to Embodiment 1 of the present invention.
- FIG. 2 is a view showing a state where the discharge port valve 7 accommodated in the inner cylinder surface of the casing body 1 is located on the discharge side in the rotation axis direction of the screw rotor 3.
- FIG. 3 is a view showing a state where the discharge port valve 7 is located on the suction side of the screw rotor 3 in the rotation axis direction.
- the screw compressor 102 according to the first embodiment is a single screw compressor provided with one screw rotor 3 and two gate rotors 6.
- 2 and 3 are diagrams showing a configuration of a portion located on the upper side of the screw shaft 4 serving as a rotation shaft. The structure of the lower part of the screw shaft 4 is the same as that of the upper part.
- the screw compressor 102 includes a casing body 1, a screw rotor 3, a gate rotor 6, a motor 2 that rotationally drives the screw rotor 3, a discharge port valve 7, and the like. ing.
- the cylindrical casing body 1 accommodates the screw rotor 3, the gate rotor 6, the motor 2, the discharge port valve 7, and the like inside the cylinder.
- the motor 2 includes a stator 2a that is inscribed and fixed to the casing body 1, and a motor rotor 2b that is disposed inside the stator 2a. The motor 2 is driven at a driving rotational speed based on the electric power supplied from the inverter device 101.
- a screw rotor 3 is arranged in the casing body 1.
- the screw rotor 3 and the motor rotor 2b are disposed and fixed around the screw shaft 4 serving as a rotation shaft.
- the screw rotor 3 has a plurality of spiral screw grooves 5a formed on the outer peripheral surface thereof.
- the screw rotor 3 rotates as the motor rotor 2b fixed to the screw shaft 4 rotates.
- the screw compressor 102 according to the first embodiment has two gate rotors 6.
- the two gate rotors 6 are symmetric with respect to the screw shaft 4 and are respectively disposed on both sides of the screw rotor 3.
- the gate rotor 6 has a disk shape, and a plurality of teeth 6a are provided on the outer peripheral surface in the outer peripheral portion along the circumferential direction.
- the teeth 6a of the gate rotor 6 are meshed with the screw grooves 5a.
- a space surrounded by the teeth 6 a of the gate rotor 6, the screw groove 5 a, and the cylinder inner surface side of the casing body 1 becomes the compression chamber 5.
- a plurality of compression chambers 5 are formed at positions that are point-symmetric with respect to the radial center of the screw rotor 3.
- the inside of the screw compressor 102 is divided into a low pressure side which is a refrigerant suction side and a high pressure side which is a refrigerant discharge side by a partition wall (not shown).
- the space on the low-pressure side is a low-pressure chamber (not shown) that serves as a suction pressure atmosphere.
- the space on the high pressure side is a high pressure chamber (not shown) serving as a discharge pressure atmosphere.
- a discharge port 10 is provided at a position on the high pressure side of the compression chamber 5 so as to communicate the discharge flow path 11 connected to the high pressure chamber and the compression chamber 5.
- a slide groove 1 a extending in the direction of the rotation axis of the screw rotor 3 is formed at a position corresponding to the compression chamber 5 inside the casing body 1.
- a discharge port valve 7 is accommodated in the slide groove 1a so as to be slidable along the slide groove 1a.
- the discharge port valve 7 is integrated with the casing body 1 and forms a compression chamber 5 together with the casing body 1.
- the discharge port valve 7 is connected to a drive device 9 such as a piston via a connecting rod 8.
- a drive device 9 such as a piston
- the discharge port valve 7 moves in the slide groove 1 a in the direction of the rotation axis of the screw rotor 3.
- the driving device 9 for driving the discharge port valve 7 is not limited to a driving power source such as a device driven by a gas pressure, a device driven by a hydraulic pressure, a device driven by a motor or the like apart from a piston.
- the internal volume ratio is a ratio between the volume of the compression chamber 5 at the time of completion of suction (start of compression) and the volume of the compression chamber 5 just before discharge from the discharge port 10. The internal volume ratio is changed by adjusting the timing at which the refrigerant is discharged from the discharge port 10.
- an inappropriate compression loss does not occur when the actual compression ratio is an operation condition of an appropriate compression ratio that matches the internal volume ratio.
- the time until the compression chamber 5 reaches the position of the discharge port 10 is long, and the compressed refrigerant gas is over-compressed to the discharge pressure or higher. For this reason, the screw compressor 102 performs extra compression work.
- the time until the compression chamber 5 reaches the position of the discharge port 10 is short, the discharge port 10 opens before reaching the discharge pressure, and the refrigerant gas flows backward. Will result in insufficient compression. Therefore, the position of the discharge port valve 7 is adjusted so that the discharge start timing is optimal.
- FIG. 4 is a diagram illustrating a compression principle of the screw compressor 102 according to the first embodiment of the present invention.
- the operation of the screw compressor 102 according to Embodiment 1 will be described.
- the screw rotor 3 is rotated by the motor 2 shown in FIGS. 2 and 3 via the screw shaft 4 shown in FIGS. 2 and 3, the teeth 6a of the gate rotor 6 are moved as shown in FIG. It moves relatively in the compression chamber 5 (screw groove 5a).
- a suction stroke, a compression stroke, and a discharge stroke are sequentially performed.
- the cycle is repeated with the suction stroke, compression stroke, and discharge stroke as one cycle.
- each stroke will be described.
- the discharge port valve 7 and the slide groove 1a are not shown.
- FIG. 4A shows the state of the compression chamber 5 in the suction stroke.
- the screw rotor 3 is driven by the motor 2 and rotates in the direction of the solid arrow.
- the volume of the compression chamber 5 decreases as shown in FIG.
- the compression chamber 5 communicates with the outside through the discharge flow path 11 as shown in FIG. Thereby, the high-pressure refrigerant gas compressed in the compression chamber 5 is discharged from the discharge passage 11 to the outside. Then, the same compression is performed again on the back surface of the screw rotor 3.
- FIG. 5 is a diagram showing a flowchart relating to the position control of the discharge port valve 7 of the screw compressor 102 according to Embodiment 1 of the present invention.
- the position control of the discharge port valve 7 performed by the control device 110 will be described based on FIG.
- the arithmetic unit 107 calculates the refrigerant gas overheating temperature based on the pressure detected by the pressure sensor 108 and the temperature detected by the temperature sensor 109.
- the control device 110 determines whether or not the refrigerant gas superheat temperature calculated by the arithmetic device 107 is lower than a preset target refrigerant gas superheat temperature A (step S1).
- the controller 110 determines that the calculated refrigerant gas superheat temperature is equal to or higher than the target refrigerant gas superheat temperature A
- the discharge port 10 is placed at an arbitrary position according to the operating state of the refrigeration cycle apparatus 100 as shown in FIG.
- the discharge port valve 7 is moved so that is positioned (step S2). For example, the screw compressor 102 is moved to a position where the operating efficiency is highest.
- step S1 when the controller 110 determines in step S1 that the calculated refrigerant gas superheat temperature is lower than the target refrigerant gas superheat temperature A, the position of the discharge port 10 is the lowest internal volume as shown in FIG.
- the discharge port valve 7 is moved so as to reach the suction side position that is the ratio (step S3).
- step S3 when the discharge port valve 7 is located at the lowest internal volume ratio, the control device 110 determines whether or not the refrigerant gas superheat temperature is lower than the preset target refrigerant gas superheat temperature B. (Step S4). When the control device 110 determines that the refrigerant gas superheat temperature is lower than the target refrigerant gas superheat temperature B, the control device 110 returns to step S3 and continues to position the discharge port valve 7 at the suction side position where the lowest internal volume ratio is obtained. Let Here, the target refrigerant gas superheat temperature A ⁇ the target refrigerant gas superheat temperature B.
- step S4 when the control device 110 determines in step S4 that the refrigerant gas superheat temperature is equal to or higher than the target refrigerant gas superheat temperature B, the control device 110 transitions to step S2 and takes an arbitrary position according to the operating state of the refrigeration cycle apparatus 100.
- the discharge port valve 7 is moved so that the discharge port 10 is located.
- the screw compressor 102 includes the discharge port valve 7 that adjusts the discharge timing of the refrigerant gas from the compression chamber 5, and the control device 110 includes: If it is determined that the refrigerant gas superheat temperature is lower than the target refrigerant gas superheat temperature, the discharge port valve 7 is moved to the suction side that has the lowest internal volume ratio, and the pressure increase in the compression stroke in the compression chamber 5 is reduced. Since it did in this way, even if refrigerant liquid returns in the screw compressor 102, damage to the gate rotor 6 etc. by the liquid compression in the compression chamber 5 can be suppressed. For this reason, the highly reliable screw compressor 102 and the refrigeration cycle apparatus 100 can be obtained. In addition, an accumulator that is connected to the refrigerant suction side of the screw compressor 102 and accumulates the refrigerant liquid is unnecessary or can be configured as a small accumulator.
- Embodiment 2 FIG.
- the screw compressor 102 has been described as a single screw compressor.
- the present invention is not limited to this.
- the present invention can also be applied to a twin screw compressor in which a compression chamber is formed by meshing grooves of two screw rotors.
- the present invention can also be applied to a mono-gate rotor type screw compressor in which one gate rotor 6 is arranged.
- the pressure sensor 108 and the temperature sensor 109 are provided at the outlet of the evaporator 106, but the refrigerant is sucked into the compression chamber 5 of the screw compressor 102 from the outlet of the evaporator 106. It may be provided anywhere between.
- the saturation temperature in the pressure and the refrigerant gas superheating temperature which is the difference between the temperatures are calculated.
- the refrigerant liquid may return to the compression chamber 5 even if the calculated refrigerant gas overheating temperature is 0 ° C. or higher. Therefore, by setting the target refrigerant gas superheat temperature A to, for example, 3 ° C., the screw compressor 102 and the refrigeration cycle apparatus 100 can be obtained with high reliability by suppressing damage to the screw compressor 102. Can do.
- the refrigeration apparatus has been described as an example of the refrigeration cycle apparatus, but the present invention is not limited to this.
- the present invention can be applied to other refrigeration cycle apparatuses such as an air conditioner, a refrigerator, and a refrigeration apparatus.
- 1 casing body 1a slide groove, 2 motor, 2a stator, 2b motor rotor, 3 screw rotor, 4 screw shaft, 5 compression chamber, 5a screw groove, 6 gate rotor, 6a teeth, 7 discharge port valve, 8 connecting rod, 9 Drive device, 10 discharge port, 11 discharge flow path, 100 refrigeration cycle device, 101 inverter device, 102 screw compressor, 104 condenser, 105 expansion valve, 106 evaporator, 107 arithmetic device, 108 pressure sensor, 109 temperature sensor, 110 control device, 111 discharge port valve control device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
本発明に係るスクリュー圧縮機は、筒状のケーシング本体と、ケーシング本体の内筒面に収容され、複数のスクリュー溝を外周面に有するスクリューロータと、スクリュー溝に噛み合わされる複数の歯が外周部に配置されたゲートロータと、ケーシング本体とスクリューロータとの間にあって、スクリューロータの回転軸の方向における位置により、圧縮された冷媒を吐出するタイミングが変更される吐出ポート弁と、吸入側を流れる冷媒の過熱温度により、吐出ポート弁を移動させる駆動装置とを備えるものである。
Description
本発明は、流体を圧縮して吐出するスクリュー圧縮機を有する冷凍サイクル装置に関するものである。特に、スクリュー圧縮機における液圧縮を防止するものである。
たとえば、スクリュー圧縮機を搭載する冷凍装置では、スクリュー圧縮機が、低温および低圧のガス状の冷媒(冷媒ガス)を圧縮して、高温および高圧の冷媒ガスを吐出する。そして、凝縮器が、冷媒ガスと外部熱源とを熱交換させて、冷媒ガスを高圧の冷媒液とする。その後、膨張弁が高圧の冷媒液を絞り膨張させて、低温および低圧の気液二相状態の冷媒とする。蒸発器が、外部熱源と低圧の気液二相状態の冷媒とを熱交換させて、低圧の気液二相状態の冷媒を、低温および低圧の冷媒ガスにする。低温および低圧の冷媒ガスは、スクリュー圧縮機に戻る。一方、蒸発器において低圧の気液二相状態の冷媒と熱交換された外部熱源は、低温となる。
このような冷凍装置では、蒸発器の冷媒出口側における冷媒を過熱冷媒ガス状態に保持するため、温度計および圧力計における測定値を調節計に入力し、測定圧力における飽和温度と測定温度との差を演算する。そして、測定温度が常に飽和温度よりも一定値だけ高くなるように、膨張弁の開度を調整する過熱度制御を行う(たとえば、特許文献1、2参照)。
上記の特許文献の装置では、冷媒を過熱ガス状態に制御する過熱度制御を行うことで、圧縮機内に冷媒液が流入することを防止している。しかしながら、たとえば、冷凍装置の運転状態が急激に変化した場合などにおいては、膨張弁の開度調整を追従させることができなくなる。このため、蒸発器内に冷媒液が溜まってしまい、遂には圧縮機内に冷媒液が流入する冷媒液戻りが発生し、スクリュー圧縮機のゲートロータなどが液圧縮によって破損してしまう可能性があった。
本発明は、上記のような課題を解決するためになされたものであり、圧縮機に冷媒液戻りが生じた場合でも、破損などを抑制することができるスクリュー圧縮機および冷凍サイクル装置を得ることを目的とする。
本発明に係るスクリュー圧縮機は、筒状のケーシング本体と、ケーシング本体の内筒面に収容され、複数のスクリュー溝を外周面に有するスクリューロータと、スクリュー溝に噛み合わされる複数の歯が外周部に配置されたゲートロータと、ケーシング本体とスクリューロータとの間にあって、スクリューロータの回転軸の方向における位置に応じて、圧縮された冷媒を吐出するタイミングが変更される吐出ポート弁と、吸入側を流れる冷媒の過熱温度により、吐出ポート弁を移動させる駆動装置とを備えるものである。
また、本発明に係る冷凍サイクル装置は、上記のスクリュー圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路が構成され、蒸発器から流出する冷媒における過熱温度により、スクリュー圧縮機が有する吐出ポート弁の位置を決める吐出ポート弁制御装置を備えるものである。
さらに、本発明に係る冷凍サイクル装置の吐出ポート弁制御装置は、過熱温度が目標よりも低いと判定すると、冷媒を吐出するタイミングが早くなる位置に、吐出ポート弁を位置させるように駆動装置を制御する。
そして、本発明に係る冷凍サイクル装置は、蒸発器の冷媒流出側における温度を検出する温度検出装置と、蒸発器の冷媒流出側における圧力を検出する圧力検出装置と、温度検出装置の検出に係る温度と圧力検出装置の検出に係る圧力とから過熱温度を演算する演算装置とをさらに備える。
本発明によれば、スクリュー圧縮機において、冷媒の過熱温度によって、吐出ポート弁の位置が決められるようにすることで、たとえば、圧縮室内へ冷媒液戻りが生じていると予測されるときには、吐出ポート弁を吸込側に位置させることで、吐出タイミングを早くすることができ、圧縮時間が減って、圧縮室内における圧力上昇を抑制することができる。このため、液圧縮によるスクリュー圧縮機の破損が生じにくくなり、信頼性の高いスクリュー圧縮機および冷凍サイクル装置を得ることができる。
以下、本発明の実施の形態について、図面を参照しつつ説明する。ここで、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適宜、適用することができる。そして、圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
図1は、本発明の実施の形態1に係るスクリュー圧縮機102を備える冷凍サイクル装置100の構成を示す図である。以下において、スクリュー圧縮機102は、冷媒の循環が行われる冷媒回路を構成する機器であるものとして説明する。このため、実施の形態1などのスクリュー圧縮機102が吸入、圧縮および吐出する流体は、気体および液体に状態変化する冷媒であるものとして説明する。
図1は、本発明の実施の形態1に係るスクリュー圧縮機102を備える冷凍サイクル装置100の構成を示す図である。以下において、スクリュー圧縮機102は、冷媒の循環が行われる冷媒回路を構成する機器であるものとして説明する。このため、実施の形態1などのスクリュー圧縮機102が吸入、圧縮および吐出する流体は、気体および液体に状態変化する冷媒であるものとして説明する。
実施の形態1における冷凍サイクル装置100は、スクリュー圧縮機102と、凝縮器104と、膨張弁105と、蒸発器106とを順に冷媒配管で接続して構成した冷媒回路を有している。
インバータ装置101は、指示された周波数に基づいてスクリュー圧縮機102への電力供給を制御して、スクリュー圧縮機102の駆動回転数を制御する。スクリュー圧縮機102は、電力供給源(図示せず)から、インバータ装置101を介して供給された電力で駆動する。スクリュー圧縮機102の構成などについては後述する。凝縮器104は、スクリュー圧縮機102が吐出したガス状の冷媒である冷媒ガスを冷却し、凝縮させる。また、減圧装置となる膨張弁105は凝縮器104から流出した液状の冷媒である冷媒液を減圧させ、膨張させる。蒸発器106は、膨張弁105を通過した冷媒を蒸発させる。
冷凍サイクル装置100は、さらに、演算装置107、圧力センサー108および温度センサー109並びに制御装置110を備えている。演算装置107は、入力される物理量のデータに基づいて演算を行う。特に、実施の形態1では、圧力センサー108が検出した圧力のデータおよび温度センサー109が検出した温度のデータから、蒸発器106から流出する冷媒の冷媒ガス過熱温度を演算する。
圧力検出装置となる圧力センサー108および温度検出装置となる温度センサー109は、スクリュー圧縮機102の冷媒吸入側であり、蒸発器106の冷媒流出側となる冷媒出口に設置される。そして、圧力センサー108は、蒸発器106から流出する冷媒の圧力を検出する。また、温度センサー109は、蒸発器106から流出する冷媒の温度を検出する。
制御装置110は、インバータ装置101の周波数、膨張弁105の開度などを制御し、各機器に指示を送る。特に、実施の形態1の制御装置110は、吐出ポート弁制御装置111を有している。吐出ポート弁制御装置111は、後述するように、スクリュー圧縮機102が有する吐出ポート弁7の位置制御などを行う。
(冷媒回路の動作説明)
次に、図1に基づいて、実施の形態1の冷凍サイクル装置100の動作について説明する。スクリュー圧縮機102は、ガス状の冷媒である冷媒ガスを吸込して圧縮した後、吐出する。スクリュー圧縮機102から吐出された吐出ガスは、凝縮器104で冷却される。凝縮器104で冷却された冷媒は、膨張弁105で減圧される。減圧された冷媒は、蒸発器106で加熱され、冷媒ガスとなる。蒸発器106から流出した冷媒ガスはスクリュー圧縮機102に吸い込まれる。
次に、図1に基づいて、実施の形態1の冷凍サイクル装置100の動作について説明する。スクリュー圧縮機102は、ガス状の冷媒である冷媒ガスを吸込して圧縮した後、吐出する。スクリュー圧縮機102から吐出された吐出ガスは、凝縮器104で冷却される。凝縮器104で冷却された冷媒は、膨張弁105で減圧される。減圧された冷媒は、蒸発器106で加熱され、冷媒ガスとなる。蒸発器106から流出した冷媒ガスはスクリュー圧縮機102に吸い込まれる。
(スクリュー圧縮機)
図2および図3は、本発明の実施の形態1に係るスクリュー圧縮機102における内部構成を説明する図である。図2は、ケーシング本体1の内筒面に収容された吐出ポート弁7が、スクリューロータ3の回転軸方向の吐出側に位置している状態を示す図である。また、図3は、吐出ポート弁7が、スクリューロータ3の回転軸方向の吸込側に位置している状態を示す図である。ここで、実施の形態1のスクリュー圧縮機102は、1つのスクリューロータ3と2つのゲートロータ6とを備えたシングルスクリュー圧縮機であるものとする。そして、図2および図3では、回転軸となるスクリュー軸4の上側に位置する部分の構成を示す図となっている。スクリュー軸4の下側における部分の構成も、上側における部分と同様の構成である。
図2および図3は、本発明の実施の形態1に係るスクリュー圧縮機102における内部構成を説明する図である。図2は、ケーシング本体1の内筒面に収容された吐出ポート弁7が、スクリューロータ3の回転軸方向の吐出側に位置している状態を示す図である。また、図3は、吐出ポート弁7が、スクリューロータ3の回転軸方向の吸込側に位置している状態を示す図である。ここで、実施の形態1のスクリュー圧縮機102は、1つのスクリューロータ3と2つのゲートロータ6とを備えたシングルスクリュー圧縮機であるものとする。そして、図2および図3では、回転軸となるスクリュー軸4の上側に位置する部分の構成を示す図となっている。スクリュー軸4の下側における部分の構成も、上側における部分と同様の構成である。
図2および図3に示すように、実施の形態1のスクリュー圧縮機102は、ケーシング本体1、スクリューロータ3、ゲートロータ6、スクリューロータ3を回転駆動させるモータ2、吐出ポート弁7などを備えている。筒状のケーシング本体1は、スクリューロータ3、ゲートロータ6、モータ2、吐出ポート弁7などを筒の内側に収容する。モータ2は、ケーシング本体1に内接固定されたステータ2aと、ステータ2aの内側に配置されたモータロータ2bとを備えている。モータ2は、インバータ装置101から供給された電力に基づく駆動回転数で駆動する。
また、ケーシング本体1内にはスクリューロータ3が配置されている。スクリューロータ3とモータロータ2bとは、互いに、回転軸となるスクリュー軸4の周りに配置され、固定されている。スクリューロータ3は、外周面に複数の螺旋状のスクリュー溝5aが形成されている。スクリューロータ3は、スクリュー軸4に固定されたモータロータ2bの回転に伴って回転する。また、実施の形態1のスクリュー圧縮機102は、2つのゲートロータ6を有している。2つのゲートロータ6は、スクリュー軸4に対して対称となる位置であって、スクリューロータ3の両側にそれぞれ配置されている。ゲートロータ6は、円板状の形状をしており、外周部分にある外周面には周方向に沿って複数の歯6aが設けられている。ゲートロータ6の歯6aは、スクリュー溝5aに噛み合わされている。そして、ゲートロータ6の歯6a、スクリュー溝5aおよびケーシング本体1の筒内面側によって囲まれた空間が圧縮室5となる。圧縮室5は、スクリューロータ3の径方向中心に対して、点対称となる位置に複数形成される。
ここで、スクリュー圧縮機102内は、隔壁(図示せず)により冷媒の吸込側となる低圧側と冷媒の吐出側となる高圧側とに区画される。低圧側の空間は、吸込圧力雰囲気となる低圧室(図示せず)となる。また、高圧側の空間は、吐出圧力雰囲気となる高圧室(図示せず)となる。ケーシング本体1において、圧縮室5の高圧側となる位置には、高圧室に連なる吐出流路11と圧縮室5とを連通させる吐出口10が設けられている。
さらに、ケーシング本体1の内側において、圧縮室5に対応する位置に、スクリューロータ3の回転軸方向に延びるスライド溝1aが形成されている。そして、スライド溝1a内には吐出ポート弁7が、スライド溝1aに沿ってスライド移動自在に収容されている。吐出ポート弁7は、ケーシング本体1と一体となって、ケーシング本体1とともに圧縮室5を形成している。
吐出ポート弁7は、連結棒8を介して、たとえば、ピストンなどの駆動装置9に接続されている。駆動装置9を駆動させることにより、吐出ポート弁7は、スライド溝1a内を、スクリューロータ3の回転軸方向に移動する。吐出ポート弁7が移動することにより、圧縮室5で圧縮される冷媒が吐出口10から吐出開始されるタイミングが調整される。ここで、吐出ポート弁7を駆動する駆動装置9は、ガス圧で駆動するもの、油圧で駆動するもの、ピストンとは別に、モータなどにより駆動するものなど、駆動の動力源は限定しない。
吐出ポート弁7をスクリューロータ3の回転軸方向の吸込側へ移動させると、吐出開始のタイミングが早まる低内部容積比の運転となる。また、吐出ポート弁7をスクリューロータ3の回転軸方向の吐出側へ移動させると、吐出開始のタイミングが遅くなる高内部容積比の運転となる。ここで、内部容積比とは、吸込完了(圧縮開始)時の圧縮室5の容積と吐出口10から吐出寸前の圧縮室5の容積との比である。内部容積比の変更は、冷媒が吐出口10から吐出されるタイミングを調整することで行う。
一般的に、スクリュー圧縮機102では、実際の圧縮比が内部容積比に見合う適正圧縮比の運転条件の場合には、不適正な圧縮損失は生じない。しかし、低内部圧縮比の運転を行うと、圧縮室5が吐出口10の位置に到達するまでの時間が長く、圧縮された冷媒ガスは吐出圧力以上に過圧縮される。このため、スクリュー圧縮機102は、余分な圧縮仕事を行うことになる。また、逆に、高内部圧縮比の運転を行うと、圧縮室5が吐出口10の位置に到達するまでの時間が短く、吐出圧力に到達する前に吐出口10が開き、冷媒ガスの逆流を生じる圧縮不足の状態となる。そこで、吐出開始のタイミングが最適となるように、吐出ポート弁7の位置が調整される。
(スクリュー圧縮機102の動作説明)
図4は、本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。次に、実施の形態1に係るスクリュー圧縮機102の動作について説明する。たとえば、スクリューロータ3が、図2および図3に示すモータ2により、図2および図3に示すスクリュー軸4を介して回転させられると、図4に示すように、ゲートロータ6の歯6aが圧縮室5(スクリュー溝5a)内を相対的に移動する。このとき、圧縮室5内では、吸込行程、圧縮行程および吐出行程が順次行われる。吸込行程、圧縮行程および吐出行程を1つのサイクルとして、サイクルが繰り返される。ここでは、図4においてドット状のハッチングで示した圧縮室5に着目して、各行程について説明する。ここで、図4では、吐出ポート弁7およびスライド溝1aについては図示を省略している。
図4は、本発明の実施の形態1に係るスクリュー圧縮機102の圧縮原理を示す図である。次に、実施の形態1に係るスクリュー圧縮機102の動作について説明する。たとえば、スクリューロータ3が、図2および図3に示すモータ2により、図2および図3に示すスクリュー軸4を介して回転させられると、図4に示すように、ゲートロータ6の歯6aが圧縮室5(スクリュー溝5a)内を相対的に移動する。このとき、圧縮室5内では、吸込行程、圧縮行程および吐出行程が順次行われる。吸込行程、圧縮行程および吐出行程を1つのサイクルとして、サイクルが繰り返される。ここでは、図4においてドット状のハッチングで示した圧縮室5に着目して、各行程について説明する。ここで、図4では、吐出ポート弁7およびスライド溝1aについては図示を省略している。
図4(a)は、吸込行程における圧縮室5の状態を示している。スクリューロータ3がモータ2により駆動して、実線矢印の方向に回転する。スクリューロータ3が回転すると、図4(b)に示すように圧縮室5の容積が縮小していく。
引き続き、スクリューロータ3が回転すると、図4(c)に示すように、圧縮室5が吐出流路11を介して、外部と連通する。これにより、圧縮室5内で圧縮された高圧の冷媒ガスが、吐出流路11から外部へ吐出される。そして、再び、スクリューロータ3の背面で同様の圧縮が行われる。
図5は、本発明の実施の形態1におけるスクリュー圧縮機102の吐出ポート弁7の位置制御に係るフローチャートを示す図である。図5に基づいて、制御装置110が行う吐出ポート弁7の位置制御について説明する。ここで、演算装置107は、圧力センサー108が検出した圧力および温度センサー109が検出した温度に基づいて、冷媒ガス過熱温度を演算する。
制御装置110は、演算装置107により演算された冷媒ガス過熱温度が、あらかじめ設定された目標冷媒ガス過熱温度Aよりも低いかどうかを判定する(ステップS1)。制御装置110は、演算された冷媒ガス過熱温度が目標冷媒ガス過熱温度A以上であると判定すると、図2に示すように、冷凍サイクル装置100の運転状態に応じた任意の位置に吐出口10が位置するように、吐出ポート弁7を移動させる(ステップS2)。たとえば、スクリュー圧縮機102の運転効率が最も高くなる位置へ移動させる。
一方、ステップS1において、制御装置110は、演算された冷媒ガス過熱温度が目標冷媒ガス過熱温度Aよりも低いと判定すると、図3に示すように、吐出口10の位置が、最も低い内部容積比となる吸込側の位置となるように、吐出ポート弁7を移動させる(ステップS3)。
ステップS3において、吐出ポート弁7が最も低い内部容積比となる位置にある場合に、制御装置110は、冷媒ガス過熱温度が、あらかじめ設定された目標冷媒ガス過熱温度Bよりも低いかどうかを判定する(ステップS4)。制御装置110は、冷媒ガス過熱温度が目標冷媒ガス過熱温度Bよりも低いと判定すると、ステップS3に戻って、最も低い内部容積比となる吸込側の位置に吐出ポート弁7を継続して位置させる。ここで、目標冷媒ガス過熱温度A<目標冷媒ガス過熱温度Bである。
一方、ステップS4において、制御装置110は、冷媒ガス過熱温度が目標冷媒ガス過熱温度B以上であると判定すると、ステップS2に遷移して、冷凍サイクル装置100の運転状態に応じた任意の位置に吐出口10が位置するように、吐出ポート弁7を移動させる。
以上のように、実施の形態1の冷凍サイクル装置100によれば、スクリュー圧縮機102が、圧縮室5からの冷媒ガスの吐出タイミングを調整する吐出ポート弁7を有し、制御装置110が、冷媒ガス過熱温度が目標冷媒ガス過熱温度よりも低いと判定すると、吐出ポート弁7を最も低い内部容積比となる吸込側に移動させて、圧縮室5内での圧縮行程における圧力上昇が小さくなるようにしたので、スクリュー圧縮機102に冷媒液戻りがあっても、圧縮室5内での液圧縮によるゲートロータ6などの破損を抑制することができる。このため、信頼性の高いスクリュー圧縮機102および冷凍サイクル装置100を得ることができる。また、スクリュー圧縮機102の冷媒吸入側に配管接続され、冷媒液をためるアキュムレータが不要または小型のアキュムレータで構成することができる。
実施の形態2.
前述した実施の形態1では、スクリュー圧縮機102がシングルスクリュー圧縮機であるものとして説明したが、これに限定するものではない。たとえば、2つのスクリューロータの溝部を噛み合わせて圧縮室を形成するツインスクリュー圧縮機においても、本発明を適用することができる。また、ゲートロータ6が1つ配置されたモノゲートロータ方式のスクリュー圧縮機においても、本発明を適用することができる。
前述した実施の形態1では、スクリュー圧縮機102がシングルスクリュー圧縮機であるものとして説明したが、これに限定するものではない。たとえば、2つのスクリューロータの溝部を噛み合わせて圧縮室を形成するツインスクリュー圧縮機においても、本発明を適用することができる。また、ゲートロータ6が1つ配置されたモノゲートロータ方式のスクリュー圧縮機においても、本発明を適用することができる。
また、前述した実施の形態1では、圧力センサー108および温度センサー109を蒸発器106の出口に設けたが、蒸発器106の出口から、冷媒がスクリュー圧縮機102の圧縮室5内へ吸入されるまでの間であればどこへ設けてもよい。
また、上記の実施の形態1において、圧力センサー108および温度センサー109が検出した圧力と温度とに基づいて、圧力における飽和温度と、温度との差である冷媒ガス過熱温度を演算した。ここで、圧力センサー108および温度センサー109の計測誤差などから、演算された冷媒ガス過熱温度が0℃以上であっても、圧縮室5内への冷媒液戻りが生じている場合がある。したがって、目標冷媒ガス過熱温度Aを、たとえば3℃と設定しておくようにすることで、スクリュー圧縮機102の破損を抑制して信頼性の高いスクリュー圧縮機102および冷凍サイクル装置100を得ることができる。
上述の実施の形態1では、冷凍サイクル装置の例として冷凍装置について説明したが、これに限定するものではない。たとえば、空気調和装置、冷蔵装置、冷凍装置など、他の冷凍サイクル装置にも適用することができる。
1 ケーシング本体、1a スライド溝、2 モータ、2a ステータ、2b モータロータ、3 スクリューロータ、4 スクリュー軸、5 圧縮室、5a スクリュー溝、6 ゲートロータ、6a 歯、7 吐出ポート弁、8 連結棒、9 駆動装置、10 吐出口、11 吐出流路、100 冷凍サイクル装置、101 インバータ装置、102 スクリュー圧縮機、104 凝縮器、105 膨張弁、106 蒸発器、107 演算装置、108 圧力センサー、109 温度センサー、110 制御装置、111 吐出ポート弁制御装置。
Claims (4)
- 筒状のケーシング本体と、
該ケーシング本体の内筒面に収容され、複数のスクリュー溝を外周面に有するスクリューロータと、
前記スクリュー溝に噛み合わされる複数の歯が外周部に配置されたゲートロータと、
前記ケーシング本体と前記スクリューロータとの間にあって、前記スクリューロータの回転軸の方向における位置に応じて、圧縮された冷媒を吐出するタイミングが変更される吐出ポート弁と、
吸入側を流れる前記冷媒の過熱温度により、前記吐出ポート弁を移動させる駆動装置と
を備えるスクリュー圧縮機。 - 請求項1に記載のスクリュー圧縮機、凝縮器、減圧装置および蒸発器が配管接続され、冷媒の循環が行われる冷媒回路が構成され、
前記蒸発器から流出する前記冷媒における過熱温度により、前記スクリュー圧縮機が有する吐出ポート弁の位置を決める吐出ポート弁制御装置を備える冷凍サイクル装置。 - 前記吐出ポート弁制御装置は、前記過熱温度が目標よりも低いと判定すると、前記冷媒を吐出するタイミングが早くなる位置に、前記吐出ポート弁を位置させるように駆動装置を制御する請求項2に記載の冷凍サイクル装置。
- 前記蒸発器の冷媒流出側における温度を検出する温度検出装置と、
前記蒸発器の冷媒流出側における圧力を検出する圧力検出装置と、
前記温度検出装置の検出に係る温度と前記圧力検出装置の検出に係る圧力とから前記過熱温度を演算する演算装置と
をさらに備える請求項2または請求項3に記載の冷凍サイクル装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069740 WO2018008052A1 (ja) | 2016-07-04 | 2016-07-04 | スクリュー圧縮機および冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069740 WO2018008052A1 (ja) | 2016-07-04 | 2016-07-04 | スクリュー圧縮機および冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008052A1 true WO2018008052A1 (ja) | 2018-01-11 |
Family
ID=60901736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069740 WO2018008052A1 (ja) | 2016-07-04 | 2016-07-04 | スクリュー圧縮機および冷凍サイクル装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018008052A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0439573A (ja) * | 1990-06-04 | 1992-02-10 | Kobe Steel Ltd | セパレート形ヒートポンプ |
JPH06213515A (ja) * | 1993-01-18 | 1994-08-02 | Kobe Steel Ltd | スクリュー式冷凍機の冷媒制御装置 |
JP2001065480A (ja) * | 1999-08-26 | 2001-03-16 | Daikin Ind Ltd | スクリュー圧縮機 |
JP2010255595A (ja) * | 2009-04-28 | 2010-11-11 | Daikin Ind Ltd | スクリュー圧縮機 |
JP2012197734A (ja) * | 2011-03-22 | 2012-10-18 | Daikin Industries Ltd | スクリュー圧縮機 |
-
2016
- 2016-07-04 WO PCT/JP2016/069740 patent/WO2018008052A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0439573A (ja) * | 1990-06-04 | 1992-02-10 | Kobe Steel Ltd | セパレート形ヒートポンプ |
JPH06213515A (ja) * | 1993-01-18 | 1994-08-02 | Kobe Steel Ltd | スクリュー式冷凍機の冷媒制御装置 |
JP2001065480A (ja) * | 1999-08-26 | 2001-03-16 | Daikin Ind Ltd | スクリュー圧縮機 |
JP2010255595A (ja) * | 2009-04-28 | 2010-11-11 | Daikin Ind Ltd | スクリュー圧縮機 |
JP2012197734A (ja) * | 2011-03-22 | 2012-10-18 | Daikin Industries Ltd | スクリュー圧縮機 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4927468B2 (ja) | 2段スクリュ圧縮機及びそれを用いた2段圧縮冷凍機 | |
WO2004036045A1 (ja) | 可変内部容積比式インバータスクリュー圧縮機 | |
JP4949768B2 (ja) | スクリュー圧縮機 | |
US9234684B2 (en) | Refrigerant passage change-over valve and air conditioner using the same | |
CN109154455B (zh) | 制冷循环装置 | |
WO2017149659A1 (ja) | スクリュー圧縮機および冷凍サイクル装置 | |
CN107110585B (zh) | 压头控制 | |
TWI626380B (zh) | 螺桿壓縮機以及具有螺桿壓縮機之冷凍循環裝置 | |
KR20140048620A (ko) | 터보 냉동기 | |
WO2017094057A1 (ja) | シングルスクリュー圧縮機および冷凍サイクル装置 | |
JP6373034B2 (ja) | 冷凍機 | |
WO2018008052A1 (ja) | スクリュー圧縮機および冷凍サイクル装置 | |
JP2018119777A5 (ja) | ||
JP2018119777A (ja) | 冷凍サイクル装置 | |
EP3505765B1 (en) | Screw compressor and refrigeration cycle device | |
JP6193555B2 (ja) | 冷凍サイクル装置 | |
US20230184475A1 (en) | Refrigeration cycle apparatus | |
WO2017203642A1 (ja) | スクリュー圧縮機及び冷凍サイクル装置 | |
JP2014142158A (ja) | 冷凍サイクル装置 | |
WO2018146805A1 (ja) | 冷凍装置 | |
WO2018139066A1 (ja) | 冷凍サイクル装置 | |
WO2014030237A1 (ja) | 冷凍装置 | |
WO2018131089A1 (ja) | 冷凍サイクル装置 | |
WO2016088207A1 (ja) | 冷凍サイクル回路 | |
WO2021171489A1 (ja) | スクリュー圧縮機および冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908096 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908096 Country of ref document: EP Kind code of ref document: A1 |