[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018004288A2 - Polyester multilayered film - Google Patents

Polyester multilayered film Download PDF

Info

Publication number
WO2018004288A2
WO2018004288A2 PCT/KR2017/006938 KR2017006938W WO2018004288A2 WO 2018004288 A2 WO2018004288 A2 WO 2018004288A2 KR 2017006938 W KR2017006938 W KR 2017006938W WO 2018004288 A2 WO2018004288 A2 WO 2018004288A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polyester
weight
hours
Prior art date
Application number
PCT/KR2017/006938
Other languages
French (fr)
Korean (ko)
Other versions
WO2018004288A3 (en
Inventor
조은혜
이봉석
임미소
박재봉
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170082477A external-priority patent/KR102296195B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201780041046.XA priority Critical patent/CN109476864B/en
Priority to JP2018567597A priority patent/JP6859370B2/en
Publication of WO2018004288A2 publication Critical patent/WO2018004288A2/en
Publication of WO2018004288A3 publication Critical patent/WO2018004288A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyester multilayer film, and has excellent oligomer barrier property, and relates to an optical polyester multilayer film having excellent antistatic property and excellent transmittance.
  • Antistatic refers to discharging the electric charge accumulated on the insulator surface by an appropriate method.
  • the reason for requiring such antistatic property is that static electricity is generated in the film manufacturing process or the film processing process to cause dust or foreign matter to adhere to the product, and discharge occurs to generate a risk of ignition when an organic solvent is used. Therefore, providing antistatic performance has become an essential requirement.
  • Films with antistatic properties are used in the manufacture of electronic materials and optical products.
  • the conductive polymer antistatic film is mainly used without a humidity dependence, and when the conductive polymer is used to reduce the generation of static electricity, the light transmittance is lowered, and thus there is a limitation in using it as an electronic material and an optical film.
  • such an antistatic film may have a problem that the oligomer is migrated to the surface of the film when the high temperature process is performed in a later process, thereby deteriorating optical properties and charging performance.
  • the present invention is to provide a polyester multilayer film that can be used as an optical film with excellent antistatic properties and at the same time excellent light transmittance.
  • the present invention provides a polyester multilayer film having a low change in surface resistance and excellent antistatic property even after a high temperature and high humidity process.
  • the present invention is formed on the polyester base film, one surface of the polyester base film and formed on the other surface of the antistatic layer and the polyester base film comprising a conductive polymer and an aqueous polyurethane binder, the refractive index is 1.4 ⁇ 1.5 A primer layer,
  • the polyester base film includes a base layer and a skin layer in which at least one layer is laminated on both sides of the base layer, wherein the oligomer content of the polyester resin constituting the skin layer is 0.3 to 0.6 wt%, and diethylene
  • the content of the glycol is 0.1 to 1.2% by weight, and the inherent viscosity relates to a polyester multilayer film satisfying the following formula 1.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the present invention can provide a polyester film having low oligomer migration, low surface resistance change, excellent silicon adhesion and printability, and excellent transmittance under high temperature and high humidity conditions.
  • the polyester film of the present invention has antistatic properties and at the same time excellent in transmittance, it can be used as an optical member for various displays.
  • 'oligomer' is a by-product generated during the polycondensation reaction of terephthalic acid or its derivatives and ethylene glycol during polyester polymerization, and has a weight average molecular weight of about 500 to 10,000 g / mol dimer, tri It means a trimer, a tetramer, etc.
  • One embodiment of the present invention is formed on the polyester base film, and one surface of the polyester base film, an antistatic layer comprising a conductive polymer and an aqueous polyurethane binder and formed on the other surface of the polyester base film, the refractive index is 1.4 ⁇ 1.5 Phosphorus primer layer,
  • the polyester base film includes a base layer and a skin layer in which at least one layer is laminated on both sides of the base layer, wherein the oligomer content of the polyester resin constituting the skin layer is 0.3 to 0.6 wt%, and diethylene
  • the content of the glycol is 0.1 to 1.2% by weight, and the inherent viscosity relates to a polyester multilayer film satisfying the following formula 1.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the polyester multilayer film has a surface resistance of 10 5 to 10 9 ⁇ / sq, less than 2% haze, total light transmittance of 90% or more before heat treatment,
  • the haze change rate ⁇ H 1 satisfies the following formula 2
  • the light transmittance change rate ⁇ TT 1 satisfies the following formula 3
  • the antistatic layer and the primer layer were the polyester base in the evaluation of the adhesive force.
  • H f the haze of the film after holding at 85 ° C., 85% for 72 hours
  • H i the haze of the film before heating.
  • ⁇ TT 1 TT f ⁇ TT i in Formula 3
  • TT f It is the total light transmittance of a film after hold
  • TT i the total light transmittance of a film before heating.
  • the antistatic layer and the primer layer may be maintained on the polyester base film.
  • ⁇ H 2 H f ⁇ H i
  • H f is the haze of the film after holding at 60 ° C., 95% for 120 hours
  • H i is the haze of the film before heating.
  • ⁇ TT 1 TT f ⁇ TT i in Formula 5
  • TT f It is the total light transmittance of a film after hold
  • TT i the total light transmittance of a film before heating.
  • the polyester multilayer film is less than 30 oligomers of the antistatic layer after holding at 85 °C, 85% 72 hours or 60 °C, 95% 120 hours, at 85 °C, 85% 72 After maintaining for 120 hours at 60 ° C. for 95 hours, the number of oligomers in the primer layer may be less than 20.
  • the antistatic layer has a water contact angle of 90 degrees or more
  • the silicone adhesive is applied on the antistatic layer, and the silicone coating layer is maintained when the adhesion evaluation according to ASTM B905 after 2 hours in water at 100 °C It may be.
  • the antistatic layer may be formed by applying an antistatic composition comprising a conductive polymer solution, an aqueous polyurethane binder solution, an organic solvent and water.
  • the organic solvent may be any one or two or more mixed solvents selected from alcohol organic solvents, aprotic high polar organic solvents and amide organic solvents.
  • the antistatic layer may include 1 to 30% by weight of the conductive polymer and 70 to 99% by weight of the aqueous polyurethane binder in 100% by weight of the solid content.
  • the conductive polymer may be a polystyrene sulfonate doped with polyethylene dioxythiophene.
  • the primer layer may be one containing any one or two or more selected from acrylic resin, polyester resin and urethane resin.
  • the primer layer may include a binder resin having a weight ratio of 20 to 80:80 to 20 of the acrylic resin copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer and the water-dispersible polyester resin. have.
  • the water-dispersible polyester-based resin is a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol,
  • the acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components.
  • the polyester base film has a thickness of 12 to 250 ⁇ m, the base layer is 60 to 90% by weight, the skin layer may be 10 to 40% by weight.
  • the antistatic layer may have a dry coating thickness of 10 to 500 nm, and the primer layer may have a dry coating thickness of 20 to 300 nm.
  • Still another aspect of the present invention is an optical film having at least one functional coating layer selected from a hard coating layer, a printing layer, an adhesive layer, and a release agent layer on the polyester multilayer film.
  • the inventors of the present invention have studied to solve the problem that the total light transmittance of the film is lowered when the conductive polymer is used to improve the antistatic property, a primer layer having a refractive index of 1.4 to 1.5 on the other surface where the antistatic layer is formed.
  • the present invention was completed by finding that physical properties of the total light transmittance of the entire film can be achieved by forming more than 90%.
  • a base film and a skin layer are co-extruded and laminated using three or more layers of films, and the oligomer content is 0.3 to 0.6% by weight, and the content of diethylene glycol is 0.1 to 1.2% by weight.
  • the surface resistance, haze change rate and light transmittance change rate are low under high temperature and high humidity, and the polyester base film, antistatic layer and primer The present invention was completed by finding a small change in adhesion between layers.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the present invention has a feature that can achieve all the desired effects by the combination of the antistatic layer, the polyester base film and the primer layer.
  • polyester base film of the present invention will be described.
  • the polyester base film may be formed of three or more layers, including a skin layer in which at least one or more layers are laminated on both sides of the base layer and the base layer, and may be formed by coextrusion.
  • the polyester base film preferably has a thickness of 12 to 250 ⁇ m, more preferably 50 to 188 ⁇ m, but is not limited thereto.
  • the content of the base layer is 60 to 90% by weight of the entire film
  • the content of the skin layer is preferably 10 to 40% by weight, more preferably the content of the base layer is 70 to 80% by weight
  • the skin layer The content of 20 to 30% by weight is effective because of excellent interfacial stability during coextrusion and excellent barrier property of the oligomer.
  • the base layer may be made of a polyester resin, more specifically, polyethylene terephthalate (PET) resin, but is not limited thereto.
  • PET polyethylene terephthalate
  • the polyethylene terephthalate resin used is preferably used having an intrinsic viscosity of 0.5 to 1.0, more preferably 0.60 to 0.80. When the intrinsic viscosity of the polyethylene terephthalate resin is less than 0.5, the heat resistance may be reduced. If the intrinsic viscosity of the polyethylene terephthalate resin is greater than 1.0, it may not be easy to process the raw material, thereby reducing workability.
  • Skin layer formed by co-extrusion of at least one layer or more on each of both sides of the polyester base layer has an oligomer content of 0.3 to 0.6% by weight, more preferably 0.4 to 0.5% by weight based on the total film weight, diethylene glycol ( The content of DEG) is preferably 0.1 to 1.2% by weight, more preferably 0.7 to 0.8% by weight.
  • the content of DEG is preferably 0.1 to 1.2% by weight, more preferably 0.7 to 0.8% by weight.
  • the polyester resin of the skin layer may be prepared by a synthetic method known in the art in order to have a content of the oligomer and diethylene glycol in the above range, in particular, that is prepared by the solid-phase polymerization of the oligomer and diethylene glycol Effective in reducing the content.
  • the intrinsic viscosity of the polyester resin of the skin layer is preferably 0.6 to 1.0, more preferably 0.65 to 0.85.
  • the heat resistance may be reduced, and if it is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
  • the base layer and the skin layer may include an inorganic particle, such as an additive added during the manufacture of a conventional film.
  • the polyester base film may be a substrate layer and the skin layer is co-extruded and laminated, it is preferable to satisfy the following formula 1 to improve the workability when co-extruded the base layer and the skin layer.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the intrinsic viscosity ratio of the skin layer and the base layer is more than 1.1, the problem of interfacial instability may occur due to coextrusion, so that the multilayer structure may not be formed, and it is preferable to satisfy the above range, more preferably 1.0 to 1.05. It is effective to improve workability.
  • the present invention includes an antistatic layer on one surface of the polyester base film.
  • the antistatic layer is characterized in that it comprises a conductive polymer and an aqueous polyurethane binder, the water contact angle is 90 degrees or more by including them, the silicone pressure-sensitive adhesive on the antistatic layer, water at 100 °C After leaving for 2 hours at the evaluation of adhesion may be to maintain the silicone coating layer.
  • the antistatic layer comprises a conductive polymer and an aqueous polyurethane binder, the conductive polymer of 1 to 30% by weight, the aqueous polyurethane binder of 70 to 99% by weight of the solid content of 100% by weight It may be. More specifically, the conductive polymer may be 5 to 25% by weight, polyurethane binder may be included in 75 to 95% by weight. More specifically, the conductive polymer may be 10 to 20% by weight, polyurethane binder may be included in 80 to 90% by weight.
  • the antistatic layer may be formed by applying an antistatic composition including a conductive polymer solution, an aqueous polyurethane binder solution, an organic solvent, and water.
  • the antistatic composition may include 40 to 90 wt% of a conductive polymer solution having a solid content of 1 to 3 wt%, 5 to 50 wt% of an aqueous polyurethane binder solution having a solid content of 30 to 40 wt%, It may include 3 to 50% by weight of the organic solvent and the balance of water.
  • the antistatic composition may be any one or two or more additives selected from silicone wetting agents, fluorine wetting agents, slip agents, antifoaming agents, wetting agents, surfactants, thickeners, plasticizers, antioxidants, ultraviolet absorbers, preservatives, crosslinking agents, and the like. It may be to include more.
  • the conductive polymer may be a polythiophene-based, polypyrrole-based, polyaniline-based polymer resin and the like, but is not limited thereto. It is better to use a polythiophene-based conductive polymer resin, and most preferably, a polystyrene sulfonate doped (PEDOT: PSS) in polyethylene dioxythiophene has excellent water dispersibility, thereby forming an antistatic layer by an inline coating process. Although it is possible to pass through the stretching process after the in-line coating process, the transparency is not lowered, and preferred from the viewpoint of expressing heat resistance and the desired surface resistance, but is not limited thereto.
  • the conductive polymer is preferably used in a range satisfying the physical properties of the surface resistance of 10 5 ⁇ 10 9 ⁇ / sq, but is not limited thereto.
  • the conductive polymer resin may be used as a conductive polymer solution mixed with a solvent in order to express optimal dispersibility.
  • a solvent having a high water, alcohol, and dielectric constant It may be used to mix and the like.
  • Commercialized examples may include, but are not limited to, Clevios P (1.2 to 1.4 wt.% Solids content) from Heraeus.
  • the content of the conductive polymer solution in the antistatic composition may be 40 to 90% by weight, and more preferably 50 to 70% by weight, but is not limited thereto in a sufficient amount to achieve the desired physical properties in the above range.
  • the water-based polyurethane binder mixed with the conductive polymer by using the water-based polyurethane binder mixed with the conductive polymer, excellent miscibility, surface resistance performance, excellent adhesion to the polyester base film, physical properties change at high temperature and high humidity conditions it is possible to form an antistatic layer with less yellowing and less yellowing.
  • the water-based polyurethane binder can achieve physical properties with excellent heat resistance and low surface resistance change rate by using a polyurethane binder in which a polycarbonate-based polyol and diisocyanate are reacted. More preferably, the use of hexamethylene diisocyanate as a specific example of the diisocyanate is good from the viewpoint of improving heat resistance to form a coating film with less yellowing, but is not limited thereto.
  • the aqueous polyurethane binder may be dispersed in a solvent, and the solvent is not limited, but any one or two or more selected from the group consisting of an amide organic solvent and an aprotic highly dipolar (AHD) organic solvent. It may be to use a solvent, but is not limited thereto.
  • AHD aprotic highly dipolar
  • Commercialized examples include Neo Rez R-860, R-960, R-972, etc. of Neo Resins, but are not limited thereto.
  • the content of the water-based polyurethane binder in the antistatic composition may be 5 to 50% by weight, and more preferably 10 to 30% by weight, but is not limited thereto in a sufficient amount to achieve the desired physical properties in the above range. .
  • the organic solvent used in the antistatic composition is any one or two or more mixed solvents selected from alcohol-based organic solvents, Aprotic Highly Dipolar (AHD) organic solvents and amide-based organic solvents It may be
  • the content of the organic solvent may be 3 to 50% by weight, more specifically 5 to 40% by weight, more specifically 10 to 30% by weight of the antistatic composition, the content of the conductive polymer and the polyurethane binder in the above range
  • a content suitable for enhancing acidity is not limited thereto.
  • the dispersibility of the conductive polymer is improved, and doping is activated to provide surface resistance.
  • the effect which further improves the performance can be expressed.
  • alcoholic organic solvent More specifically 1 to 30% by weight alcoholic organic solvent, more specifically 5 to 20% by weight of any one or two or more mixed solvents selected from aprotic high polar organic solvent and amide organic solvent, more Specifically, it may be to use 5 to 10% by weight.
  • the alcohol-based organic solvent is not limited, but specifically, for example, methanol, ethanol, propanol, isopropanol, butanol, 2-amino-2-methyl-1-propanol, and the like may be used. Can be used.
  • an alcohol-based organic solvent By using an alcohol-based organic solvent, the mixing and dispersibility between the conductive polymer and the water-based polyurethane resin can be further improved.
  • the aprotic high polar organic solvent is not limited, but specifically, for example, dimethyl sulfoxide, propylene carbonate, or the like may be used, and may be used alone or in combination of two or more. By using an aprotic high polar organic solvent, the conductivity of the conductive polymer can be further improved. When using an aprotic high polar organic solvent alone, it may further include a dispersion stabilizer such as ethylene glycol, glycerin and sorbitol, but is not limited thereto.
  • the amide organic solvent is not limited, but specifically, for example, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N-dimethylacetamide, N- Methylpyrrolidone and 2-amino-2-methyl-1-propanol and the like can be used, and can be used alone or in combination of two or more.
  • an amide organic solvent By using an amide organic solvent, the conductivity of the conductive polymer can be further improved.
  • the antistatic composition may further include a wetting agent to further improve coating properties.
  • a wetting agent to further improve coating properties.
  • Specific examples include, but are not limited to, for example, Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, and modified silicone-based wetting agents such as ZONyl's FSH and the like. It is not limited.
  • Wetting agent is preferably used in 0.1 to 2% by weight, it is possible to achieve the desired coating properties in the above range, but is not limited thereto.
  • the antistatic layer may be a dry coating thickness of 10 ⁇ 500nm. If the dry coating thickness is less than 10nm, the surface resistance may not be sufficient, and if the dry coating thickness is greater than 500nm, the blocking range is more likely to occur, but the above range is recommended, but is not limited thereto.
  • the present invention includes a primer layer on the other surface of the antistatic layer is formed.
  • the primer layer preferably has a refractive index of 1.4 ⁇ 1.5, even if the antistatic layer is formed by using a conductive polymer by satisfying the above range, the total light transmittance is 90% or more transparent to the optical film Suitable for use
  • the total light transmittance is low, which is not suitable for use as an optical film.
  • the antistatic layer and the primer layer are formed at the same time, so that the total light transmittance is 90% or more, more specifically, 90 to 95%, and the physical properties with little change in haze can be satisfied at the same time.
  • the primer layer may be formed by applying a water-dispersible resin composition, it may be made of acrylic resin, polyester resin and urethane resin.
  • the primer layer may be formed by applying a water-dispersible resin composition having an oligomer blocking property, and specifically, for example, a glycidyl group-containing radical polymerization of the water-dispersible resin composition having the oligomer blocking property.
  • the unsaturated unsaturated monomer may be copolymerized acrylic resin and water-dispersible polyester resin.
  • the solids content of the water-dispersible polyester resin (B) is less than 20% by weight and the solids content of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is greater than 80% by weight, As the particle size increases, staining occurs during inline coating, adhesion and transparency with the polyester base film decrease, and the solid content of the water-dispersible polyester resin (B) is greater than 80 wt%, and glycy
  • the solid content of the acrylic resin (A) copolymerized with a dill-containing radically polymerizable unsaturated monomer is less than 20% by weight, sufficient oligomer blocking effect cannot be exhibited, and light transmittance is improved and haze, surface resistance, etc. under high temperature and high humidity conditions. It may not be enough to minimize the change.
  • the water-dispersible resin composition of the present invention may be prepared by mixing a water-dispersible polyester resin (B) and a binder resin mixed with an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer, It is also possible to polymerize and produce a glycidyl group-containing radically polymerizable unsaturated monomer alone or a radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer in an aqueous dispersion of the water-dispersible polyester resin (B). At this time, surfactant and a polymerization initiator can be used.
  • the surfactant and the polymerization initiator may be used without limitation as long as it is conventionally used in emulsion polymerization.
  • anionic surfactants, nonionic surfactants or non-reactive surfactants can be used, and these can also be used in combination.
  • the polymerization initiator is a radically polymerizable initiator, and nitrogen compounds such as a peroxide initiator or azobis isobutyronitrile can be used.
  • the water dispersion composition of the present invention may further include an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an antioxidant, a UV absorber, a preservative, a crosslinking agent and the like as necessary.
  • the crosslinking agent may include a compound of Formula 1, but is not limited thereto.
  • a crosslinking agent of Formula 1 the reaction rate is faster, a primer layer may be formed at a low temperature, and may completely block an oligomer which may be partially leaked by heating after forming the primer layer.
  • a 1 to A 3 are each independently a chemical bond or are selected from (C1-C10) alkylene, and R 1 to R 3 are each independently selected from hydrogen and (C1-C10) alkyl. )
  • the alkyl or alkylene includes both straight and branched chains.
  • a 1 to A 3 are each independently selected from (C 1 -C 5) alkylene, and R 1 to R 3 are each independently selected from (C 1 -C 5) alkyl.
  • a compound of Formula 2 may be used.
  • the compound of Formula 2 while the reaction rate is fast, the reaction temperature is 120 ⁇ 140 °C, more specifically 130 °C in the preheating zone (Preheating Zone) during the film forming process of the polyester film, accordingly glycidyl group It is possible to react with the glycidyl group of the acrylic resin (A) in which the containing radically polymerizable unsaturated monomer is copolymerized, thereby forming a primer coating film having a more dense structure.
  • the crosslinking agent is 1 to 40 parts by weight based on 100 parts by weight of the total solid content of the acrylic resin (A) in which the aqueous dispersion of the water-dispersible polyester resin (B) and the glycidyl group-containing radically polymerizable unsaturated monomer in the water dispersion composition are copolymerized. It is preferable to use a weight part, More preferably, it is 5-20 weight part. If it is less than 1 part by weight, its use effect is insignificant, and when it is used in excess of 40 parts by weight, the properties of the main binder may be lowered, thereby lowering the adhesive strength.
  • the water-dispersible polyester-based resin (B) may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
  • the dicarboxylic acid component an aromatic dicarboxylic acid and a sulfonic acid alkali metal salt compound may be used, and the sulfonic acid alkali metal salt compound may contain 6 to 20 mol% of the total acid component.
  • the dicarboxylic acid component is an aromatic dicarboxylic acid such as phthalic acid, terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalic acid, 2,5-dimethyl terephthalic acid, 2,6-naphthalene dicarboxylic acid, biphenyldicarboxylic acid and the like.
  • Aliphatic dicarboxylic acids such as an acid, adipic acid, a sebacic acid, alicyclic dicarboxylic acids, such as cyclohexane dicarboxylic acid, etc. can be used.
  • the sulfonic acid alkali metal salt compound include alkali metal salts such as sulfoterephthalic acid, 5-sulfo isophthalic acid, 4-sulfo isophthalic acid, 4-sulfo naphthalic acid-2,7-dicarboxylic acid, and the like. , 6 to 20 mol% may be used. When using less than 6 mol%, the dispersion time of resin to water becomes long, dispersibility is low, and when it uses more than 20 mol%, water resistance may fall.
  • glycol component diethylene glycol and aliphatic glycols having 2 to 8 carbon atoms or alicyclic glycols having 6 to 12 carbon atoms may be used.
  • ethylene glycol, 1,3-propanediol, 1,2-propylene glycol, neopentyl glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol , 1,2-cyclohexanedimethanol, 1,6-hexanediol, P-xylene glycol, triethylene glycol and the like can be used.
  • the number average molecular weights of the said water-dispersible polyester resin (B) are 1000-50000, More preferably, the number average molecular weights are 2000-30000. When the number average molecular weight is less than 1000, the oligomer blocking effect is insignificant, and when the number average molecular weight is more than 50000, water dispersibility may be difficult.
  • the water-dispersible polyester-based resin (B) is used by uniformly dispersing by heating and stirring the water or water containing an aqueous solvent at 50 ⁇ 90 °C.
  • the aqueous dispersion thus prepared has a solid content of 30 wt% or less, more preferably 10 to 30 wt%, for uniform dispersion.
  • the aqueous solvent may be alcohols such as methanol, ethanol, propanol, polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, and the like.
  • Acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer is a homopolymer of a glycidyl group-containing radically polymerizable unsaturated monomer or another radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer. It is resin copolymerized.
  • the acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components. Since the glycidyl group-containing radically polymerizable unsaturated monomer improves the strength of the coating film of the primer layer by the crosslinking reaction and increases the crosslinking density, it is possible to block the outflow of the oligomer.
  • glycidyl ethers such as glycidyl acrylate, glycidyl methacrylate, and arylglycidyl ether can be used.
  • Radical polymerizable unsaturated monomers copolymerizable with glycidyl group-containing radical polymerizable unsaturated monomers include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers and hydrocarbon vinyl monomers. Or a vinyl silane compound. Vinyl propionate, vinyl stearate, vinyl chloride, etc. can be used as vinyl ester.
  • Unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate, Hydroxyethyl acrylate, methacrylate hydroxypropyl, hydroxypropyl acrylate and the like can be used.
  • unsaturated carboxylic acid amide acrylamide, methacrylamide, metyrolacrylamide, butoxy methirol acrylamide, and the like can be used. Acrylonitrile etc.
  • unsaturated nitrile can be used as unsaturated nitrile.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid acid ester, fumaric acid acid ester, itaconic acid acid ester and the like can be used.
  • allyl compound allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconic acid, diallyl itaconic acid and the like can be used.
  • Vinylpyridine, vinyl imidazole, etc. can be used as a nitrogen-containing vinyl monomer.
  • hydrocarbon vinyl monomer ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene and the like can be used.
  • vinyl silane compound dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxysilane, gamma-methacryloxy propyl dimethoxy silane, etc. Can be used.
  • the water-dispersible resin composition according to one embodiment of the present invention has a solid content of 0.5 to 10 weight of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer as a binder resin. It is preferable that it is a water dispersible or water-soluble composition which is%. More specifically, the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is 0.5 to 10% by weight, and the remainder includes water. It may further include additives such as a wetting agent, a dispersing agent.
  • the wetting agent is used to improve the coating property.
  • a modified silicone wetting agent such as Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, etc. may be used. It doesn't happen.
  • Wetting agent is preferably used in 0.1 to 0.5% by weight, it is possible to achieve the desired coating properties in the above range, but is not limited thereto.
  • the primer layer may be a dry coating thickness of 20 ⁇ 300nm.
  • the dry coating thickness is less than 20 nm, the oligomer blocking property may not be sufficiently exhibited.
  • the dry coating thickness is greater than 300 nm, a blocking phenomenon may occur after winding the film.
  • the production of the polyester multilayer film including the base layer and the skin layer of the present invention is not limited, but may be obtained by extrusion fusion and casting by biaxial stretching in at least two melt extruders.
  • one extruder is used to extrude polyester, and another extruder is melt extruded simultaneously with additives such as polyester, inorganic particles such as silica, kaolin, and zeolite, and each melt is coextruded in the feed block. After casting, casting, cooling and then biaxial stretching in sequence.
  • the antistatic composition and the water dispersible primer composition may be applied by an in-line coating method of the polyester film manufacturing process.
  • the polyester base film may be prepared by applying an in-line coating method before stretching or before the second stretching after the primary stretching, or by stretching. Water is evaporated by heating during the secondary stretching and heat setting. Layers can be formed.
  • the coating method is not limited as long as it is a known coating method.
  • the polyester multilayer film of the present invention has a surface resistance of 10 5 to 10 9 ⁇ / sq, a haze of 2% or less, a total light transmittance of 90% or more before the heat treatment,
  • the haze change rate ⁇ H 1 satisfies the following formula 2
  • the light transmittance change rate ⁇ TT 1 satisfies the following formula 3
  • the antistatic layer and the primer layer were the polyester base in the evaluation of the adhesion. It can be seen that the optical properties in the high temperature and high humidity conditions are satisfied by satisfying the physical properties maintained in the film.
  • H f the haze of the film after holding at 85 ° C., 85% for 72 hours
  • H i the haze of the film before heating.
  • ⁇ TT 1 TT f ⁇ TT i in Formula 3
  • TT f It is the total light transmittance of a film after hold
  • TT i the total light transmittance of a film before heating.
  • a haze rate of change ⁇ satisfies the H 2 is the following formula 4 and, ⁇ light transmittance change rate TT 2 to have the formula 5 It can be seen that the antistatic layer and the primer layer satisfy all of the physical properties maintained in the polyester base film when the adhesive force is evaluated.
  • ⁇ H 2 H f ⁇ H i
  • H f is the haze of the film after holding at 60 ° C., 95% for 120 hours
  • H i is the haze of the film before heating.
  • ⁇ TT 1 TT f ⁇ TT i in Formula 5
  • TT f It is the total light transmittance of a film after hold
  • TT i the total light transmittance of a film before heating.
  • Hard coating layer, pressure-sensitive adhesive layer, light diffusing layer, ITO layer, printing layer, etc. may be formed on the polyester film of the present invention, and even after heating the functional coating layer, the outflow of the oligomer is blocked to provide optical properties. Since it can be maintained, the polyester film of this invention is suitable for use as an optical film.
  • C represents the concentration of the sample.
  • oligomer By quantitative method, chloroform is added to 1,1,1,3,3,3-hexafluoro-2-propanol, a sample solvent, dissolved at room temperature, and then acetonitrile is precipitated as a polymer. After that, a calibration curve of the cyclic trimer CT-3, which is a standard material, is prepared by using an LC analyzer, and cyclic oligomer purity is determined through sample analysis. As analytical equipment, LC (liquid chromatography) and Agilent's 1100 series were used.
  • Diethylene Glycol (DEG) content is 1 g of a sample in a 50 mL container, 3 mL of monoethanolamine is added and heated using a hot plate to completely dissolve the sample, then cooled to 100 °C 1
  • a solution of 0.005 g of 6-hexanediol dissolved in 20 mL of methanol was added, followed by neutralization by addition of 10 g of terephthalic acid.
  • the obtained neutralized liquid was filtered using a funnel and filter paper, and the filtrate was subjected to gas chromatography (Gas Chromatography) to measure the DEG content (% by weight).
  • GC analysis was measured using a Shimadzu GC analyzer and in accordance with the Shimazu GC manual.
  • Specimens of the film formed were measured using a HAZE METER (model name: Nipon denshoku, Model NDH 5000).
  • the film was placed in a box having a height of 3 cm, a width of 21 cm, and a height of 27 cm with an open top, and then heat-treated at 85 ° C., 85%, 72 Hr and 60 ° C., 95%, 120 Hr, and left for 5 minutes. Then, haze change rate ( ⁇ H) and light transmittance change rate ( ⁇ TT) were measured using a HAZE METER (Nipon denshoku, Model NDH 5000) according to JIS K 715.
  • the haze change rate was calculated according to the following formula 1, and the light transmittance change rate was calculated according to the following formula 2.
  • H f is the haze of the film after holding at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours
  • Hi is the haze of the film before heating.
  • ⁇ TT TT f -TT i
  • TT f is the total light transmittance of the film after holding at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours
  • TT i is the total light transmittance of the film before heating.
  • the surface resistance of the antistatic layer of the present invention was evaluated. As a measurement method, surface resistance was measured at 25 ° C., 50% Rh, 10 V, and 10 seconds using a Simco ST-4 device.
  • the surface resistance change was also measured.
  • Coating thickness was measured using a TEM instrument.
  • Drop shape analyzer DSA100 (KRUSS Co., Ltd.) was used as the contact angle measuring instrument, and 4 ⁇ l of water was dropped on the basis of the Tangent Method. If the contact angle is more than 90 °, it indicates the use criteria.
  • Adhesion was measured according to ASTM B905.
  • Momentive PSA6574 was coated on the surface coated with the antistatic coating composition with a silicone adhesive and dried at 150 ° C. for 4 minutes to form a silicon coating layer having a thickness of 30 ⁇ m.
  • the adhesive coated film was placed in boiling water for 2 hours, and then checked for dropping during rubbing to evaluate the adhesion between the antistatic coating layer and the silicone adhesive layer.
  • the polyester film was cut to a size of 100 mm ⁇ 100 mm and then aged in a constant temperature and humidity chamber at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours. Then, using a reflection mode of the microscope (Leica, DM 2500M) can be observed 27000 ⁇ m 2 when observed at 500 times magnification, the surface area observed 10 times, the number of oligomer particles observed surface 10 times Averaged. The average size of the oligomer particles is 15 ⁇ 5 ⁇ m and observed as black dots when observed.
  • Number of oligomers per unit area (10000 ⁇ m 2 ) (number of oligomer particles per observation / 2.7)
  • the adhesive layer was evaluated by checking whether the coating layer was dropped.
  • the refractive index was measured using an ABBE refractometer (DRGO, ATAGO Co., Ltd.).
  • the first antistatic composition was prepared in a second dilution.
  • the water-dispersible antistatic composition (1) was prepared by mixing 40 wt% of the primary antistatic composition, 59.6 wt% of water, and 0.4 wt% of fluorine-based wetting agent (Zonyl FSH).
  • the acrylic resin (A) contains 50 mol% of glycidyl group-containing radically polymerizable unsaturated monomer as a copolymerization monomer in all monomer components, and the water-dispersible polyester resin contains 50 mol% of diethylene glycol in all glycol components.
  • a sulfonic acid alkali metal salt compound containing 10 mol% of all the acid components and having a weight average molecular weight of 32000 were used.
  • the water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%.
  • As the resin polymerized using a weight average molecular weight of 12000 was used.
  • a water dispersible primer composition 2 was prepared by mixing 2 wt% of the solid content of the binder, 0.3 wt% of a silicone-based wetting agent (BYK 348 by BYK CHEMIE), and the balance of water.
  • a silicone-based wetting agent BYK 348 by BYK CHEMIE
  • a conductive polymer aqueous solution Heraeus, Clevios P (solid content 1.3 wt%), 30 wt%, water 6wt%, isopropyl alcohol 5wt% were added to the mixing vessel and stirred for 1 hour, 2-Amino-2-methyl-1-propanol 2 wt% (Alfa aesar, 95%) was added to the mixing vessel and stirred for another 1 hour, followed by adding 50 wt% of NeoRez R-972 (34 wt% solid) of Neo resins with an aqueous polyurethane binder resin and restirring for 30 minutes.
  • NeoRez R-972 34 wt% solid
  • the first antistatic composition to prepare a second dilution.
  • 40 wt% of the primary antistatic composition, 59.6 wt% of water, and 0.4 wt% of a fluorine-based wetting agent (Zonyl FSH) were prepared to prepare a water dispersible antistatic composition (2).
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 ⁇ m to the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C. Thereafter, heat treatment was performed at 230 ° C. in a five-stage tenter, and at 200 ° C., 10% was relaxed in the longitudinal and transverse directions to prepare a 75 ⁇ m biaxially stretched film coated on both sides.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
  • a polyester multilayer film was manufactured in the same manner as in Example 1, except that the dry coating thickness of the primer layer was changed to 100 nm in Example 1.
  • a polyester multilayer film was manufactured in the same manner as in Example 1, except that the dry coating thickness of the primer layer was changed to 150 nm in Example 1.
  • a polyester multilayer film was manufactured in the same manner as in Example 1, except that the base layer was 80% by weight of the total film weight in Example 1, and the skin layer was changed to be 20% by weight of the total film weight.
  • Example 1 except that polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.5% by weight was used as the base layer (B). A polyester multilayer film was prepared.
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 ⁇ m to the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (2) prepared in Preparation Example 3 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 ⁇ m to the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and then stretched 3.5 times in a transverse direction (TD) at 150 ° C.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film had a base layer of 60% by weight of the total film weight, a skin layer of 40% by weight of the total film weight, and a dry coating thickness of the antistatic layer was 50 nm.
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 ⁇ m to the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on both sides by a bar coating method, and then stretched 3.5 times in a transverse direction (TD) at 150 ° C.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, and the dry coating thickness of the antistatic layer was 50 nm, respectively.
  • polyester base film a single-layer polyester film was used without co-extrusion into three layers as in Example 1.
  • a polyethylene terephthalate having an intrinsic viscosity of 0.63, a diethylene glycol content of 0.96% by weight, and an oligomer content of 1.8% by weight was added to an extruder to melt extrusion to prepare a single layer polyethylene terephthalate film.
  • a film was prepared in the same manner as in Example 1.
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 ⁇ m to the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and then the other surface was coated with a water-dispersible primer composition including a polyurethane-based binder having a refractive index of 1.58. After coating by the (Bar Coating) method, it was stretched 3.5 times in the transverse direction (TD) at 150 °C.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
  • polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion.
  • the polyethylene terephthalate chip having an intrinsic viscosity of 0.67, the content of diethylene glycol of 1.3% by weight, the oligomer content of 0.7% by weight, and the silica particles having an average particle diameter of 0.5 ⁇ m are compared with the total polyethylene terephthalate weight.
  • the sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C.
  • MD machine direction
  • TD transverse direction
  • the prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
  • ⁇ H 1 is a haze change rate measured after 85 ° C. and 85% 72 hours
  • ⁇ H 2 is a haze change rate measured after 60 ° C. and 95% 120 hours.
  • ⁇ TT 1 is the rate of change in total light transmittance measured after 85 ° C. and 85% 72 hours
  • ⁇ TT 2 is the rate of change in total light transmittance measured after 120 hours at 60 ° C., 95%.
  • Adhesion of the antistatic layer 1) is the adhesion of the antistatic layer to the base film measured after 85 °C, 85% 72 hours
  • adhesion of the antistatic layer 2 is the antistatic layer to the base film measured after 60 °C, 95% 120 hours Of adhesion.
  • the adhesion of the primer layer 1) is the adhesion of the primer layer to the base film measured after 85 °C, 85% 72 hours
  • the adhesion of the primer layer 2 is the primer layer to the base film measured after 60 °C, 95% 120 hours Of adhesion.
  • the number of oligomers of the antistatic layer 1) is the number of oligomers of the antistatic layer relative to the base film measured after 85 ° C., 85% 72 hours, and the number of oligomers of the antistatic layer 2) is the base film measured after 60 ° C., 95% 120 hours. Is the number of oligomers of the antistatic layer.
  • Oligomer number 1) of the primer layer is the number of oligomers of the primer layer for the base film measured after 85 °C, 85% 72 hours, oligomer number 2) of the primer layer was measured on the base film measured after 60 °C, 95% 120 hours Is the number of oligomers of the primer layer.
  • Examples 1 to 6 by forming an antistatic layer on one side, and a primer coating layer on the other side, there is little change in surface resistance even after a high temperature and high humidity process, excellent antistatic properties At the same time, it can be seen that the light transmittance is remarkably improved as compared with the comparative example, and the number of oligomers of the antistatic layer and the primer layer is significantly reduced.
  • Example 1 92 10 5.8 10 6.2 10 6.4 ⁇ 1.48
  • Example 2 96 10 5.5 10 5.8 10 6.0 ⁇ 1.48
  • Example 3 100 10 5.2 10 5.4 10 5.6 ⁇ 1.48
  • Example 4 92 10 5.8 10 6.7 10 6.8 ⁇ 1.48
  • Example 5 92 10 5.8 10 6.6 10 6.8 ⁇ 1.48
  • Example 6 90 10 8.2 10 8.6 10 8.8 ⁇ 1.48 Comparative Example 1 92 10 5.8 10 7.4 10 7.6 ⁇ - Comparative Example 2 92 10 5.8 10 7.2 10 7.4 ⁇ - Comparative Example 3 92 10 5.8 10 7.8 10 8.0 ⁇ 1.48 Comparative Example 4 92 10 5.8 10 7.4 10 7.7 ⁇ 1.58 Comparative Example 5 92 10 5.8 10 7.9 10 7.2 ⁇ 1.48
  • the surface resistance 1) is the surface resistance measured after 85 ° C. and 85% 72 hours
  • the surface resistance 2) is the surface resistance measured after 60 ° C. and 95% 120 hours.
  • Examples 1 to 6 was confirmed that the change in the surface resistance is small even after the high temperature and high humidity process, and excellent in antistatic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a polyester multilayered film which is an optical polyester multilayered film being excellent in oligomer blocking properties, antistatic properties and transmittance.

Description

폴리에스테르 다층필름Polyester multilayer film
본 발명은 폴리에스테르 다층필름에 관한 것으로, 올리고머 차단성이 우수하며, 대전방지성이 우수하면서도 투과도가 우수한 광학용 폴리에스테르 다층필름에 관한 것이다.The present invention relates to a polyester multilayer film, and has excellent oligomer barrier property, and relates to an optical polyester multilayer film having excellent antistatic property and excellent transmittance.
최근 각종 전자, 전기 및 정보통신 분야의 급속한 발달에 따라 이를 적용한 산업용품 및 생활용품에 이르기까지 많은 분야에서 정전기로 인한 문제가 발생하여 이들 기기 및 현장에서의 대전방지 기능은 필수 기능으로 대두되고 있다. 대전방지란 절연체 표면에 축적되어 있는 전하를 적절한 방법으로 방전시키는 것을 가리킨다. In recent years, due to the rapid development of various electronic, electrical, and information communication fields, many fields, such as industrial products and household products, have applied with static electricity, and antistatic functions in these devices and on-site are becoming essential functions. . Antistatic refers to discharging the electric charge accumulated on the insulator surface by an appropriate method.
이러한 대전 방지성을 요구하는 이유는 필름 제조공정이나 필름 가공공정에서 정전기를 일으켜 제품에 먼지나 이물을 부착시키고, 방전현상을 일으켜 유기 용제를 사용하는 경우 인화 위험을 발생시키기 때문이다. 따라서 대전방지 성능을 부여하는 것이 필수 요건이 되고 있다.The reason for requiring such antistatic property is that static electricity is generated in the film manufacturing process or the film processing process to cause dust or foreign matter to adhere to the product, and discharge occurs to generate a risk of ignition when an organic solvent is used. Therefore, providing antistatic performance has become an essential requirement.
대전방지 성능을 부여한 필름은 전자재료 및 광학제품의 제조 시에 사용된다. 이때 습도 의존성이 없는 전도성고분자 대전방지 필름을 주로 사용하며, 정전기 발생을 줄이기 위하여 전도성 고분자를 사용하는 경우 광투과율이 저하되어 전자재료용 및 광학용 필름으로 사용하는데 제한이 있다. 또한 이러한 대전방지 필름은 후공정에서 고온 공정을 거치는 경우 올리고머가 필름 표면으로 마이그레이션 되어 광학적인 물성 및 대전성능이 저하 되는 문제가 발생하는 경우가 있다. Films with antistatic properties are used in the manufacture of electronic materials and optical products. At this time, the conductive polymer antistatic film is mainly used without a humidity dependence, and when the conductive polymer is used to reduce the generation of static electricity, the light transmittance is lowered, and thus there is a limitation in using it as an electronic material and an optical film. In addition, such an antistatic film may have a problem that the oligomer is migrated to the surface of the film when the high temperature process is performed in a later process, thereby deteriorating optical properties and charging performance.
본 발명은 대전방지성이 우수하면서 동시에 광투과율이 우수하여 광학용 필름으로 사용할 수 있는 폴리에스테르 다층필름을 제공하고자 한다.The present invention is to provide a polyester multilayer film that can be used as an optical film with excellent antistatic properties and at the same time excellent light transmittance.
또한, 고온고습 공정을 거친 후에도 표면저항의 변화가 적고 대전방지성이 우수한 폴리에스테르 다층필름을 제공하고자 한다.In addition, the present invention provides a polyester multilayer film having a low change in surface resistance and excellent antistatic property even after a high temperature and high humidity process.
상기 목적을 달성하기 위하여 연구한 결과, 일면에는 대전방지성을 부여하기 위하여 전도성 고분자수지를 사용하여 대전방지층을 형성하고, 타면에는 굴절율이 1.4 ~ 1.5인 프라이머 코팅층을 형성하는 경우, 올리고머 차단성뿐만 아니라 투과율이 향상되어 광학 특성이 매우 향상되는 것을 발견하여 본 발명을 완성하였다.As a result of the study to achieve the above object, when forming an antistatic layer using a conductive polymer resin to give an antistatic property on one surface, and a primer coating layer having a refractive index of 1.4 ~ 1.5 on the other surface, The present invention was completed by finding that the transmittance is improved and the optical properties are greatly improved.
구체적으로 본 발명은 폴리에스테르 베이스필름과, 상기 폴리에스테르 베이스필름의 일면에 형성되며 전도성 고분자와 수계 폴리우레탄 바인더를 포함하는 대전방지층 및 상기 폴리에스테르 베이스필름의 타면에 형성되며 굴절율이 1.4 ~ 1.5인 프라이머층을 포함하며,Specifically, the present invention is formed on the polyester base film, one surface of the polyester base film and formed on the other surface of the antistatic layer and the polyester base film comprising a conductive polymer and an aqueous polyurethane binder, the refractive index is 1.4 ~ 1.5 A primer layer,
상기 폴리에스테르 베이스필름은 기재층과 상기 기재층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%이고, 고유점도가 하기 식 1을 만족하는 것인 폴리에스테르 다층필름에 관한 것이다.The polyester base film includes a base layer and a skin layer in which at least one layer is laminated on both sides of the base layer, wherein the oligomer content of the polyester resin constituting the skin layer is 0.3 to 0.6 wt%, and diethylene The content of the glycol is 0.1 to 1.2% by weight, and the inherent viscosity relates to a polyester multilayer film satisfying the following formula 1.
[식 1][Equation 1]
1 < Ns/Nc ≤ 1.11 <Ns / Nc ≤ 1.1
상기 식 1에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르 수지의 고유점도이다.In Formula 1, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
본 발명은 고온고습 조건에서 올리고머 마이그레이션이 적고, 표면저항의 변화가 적으며, 실리콘 접착력 및 인쇄성이 우수하며, 투과도가 우수한 폴리에스테르 필름을 제공할 수 있다.The present invention can provide a polyester film having low oligomer migration, low surface resistance change, excellent silicon adhesion and printability, and excellent transmittance under high temperature and high humidity conditions.
본 발명의 폴리에스테르 필름은 대전방지성을 가지며, 동시에 투과도가 우수하므로 각종 디스플레이용 광학부재로 사용할 수 있다.The polyester film of the present invention has antistatic properties and at the same time excellent in transmittance, it can be used as an optical member for various displays.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. DETAILED DESCRIPTION Hereinafter, the present invention will be described in more detail with reference to the accompanying examples or embodiments. However, the following specific examples or examples are only one reference for describing the present invention in detail, but the present invention is not limited thereto and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. Also, unless defined otherwise, all technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used in the description in the present invention are only for effectively describing specific embodiments and are not intended to limit the present invention.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. Also, the singular forms used in the specification and the appended claims may be intended to include the plural forms as well, unless the context clearly indicates otherwise.
본 발명에서 ‘올리고머’는 폴리에스테르 중합 시, 더욱 구체적으로 테레프탈산 또는 그 유도체와 에틸렌글리콜의 중축합 반응 시 발생되는 부산물로써, 중량평균분자량이 500 ~ 10,000g/mol 정도인 다이머(dimer), 트라이머(trimer), 테트라머(tetramer) 등을 의미한다. In the present invention, 'oligomer' is a by-product generated during the polycondensation reaction of terephthalic acid or its derivatives and ethylene glycol during polyester polymerization, and has a weight average molecular weight of about 500 to 10,000 g / mol dimer, tri It means a trimer, a tetramer, etc.
본 발명의 일 양태는 폴리에스테르 베이스필름과, 상기 폴리에스테르 베이스필름의 일면에 형성되며 전도성 고분자와 수계 폴리우레탄 바인더를 포함하는 대전방지층 및 상기 폴리에스테르 베이스필름의 타면에 형성되며 굴절율이 1.4 ~ 1.5인 프라이머층을 포함하며,One embodiment of the present invention is formed on the polyester base film, and one surface of the polyester base film, an antistatic layer comprising a conductive polymer and an aqueous polyurethane binder and formed on the other surface of the polyester base film, the refractive index is 1.4 ~ 1.5 Phosphorus primer layer,
상기 폴리에스테르 베이스필름은 기재층과 상기 기재층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%이고, 고유점도가 하기 식 1을 만족하는 것인 폴리에스테르 다층필름에 관한 것이다.The polyester base film includes a base layer and a skin layer in which at least one layer is laminated on both sides of the base layer, wherein the oligomer content of the polyester resin constituting the skin layer is 0.3 to 0.6 wt%, and diethylene The content of the glycol is 0.1 to 1.2% by weight, and the inherent viscosity relates to a polyester multilayer film satisfying the following formula 1.
[식 1][Equation 1]
1 < Ns/Nc ≤ 1.11 <Ns / Nc ≤ 1.1
상기 식 1에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르 수지의 고유점도이다.In Formula 1, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 열처리 전 필름의 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈가 2%이하이고, 전광선투과율이 90% 이상이며, In one embodiment of the present invention, the polyester multilayer film has a surface resistance of 10 5 to 10 9 Ω / sq, less than 2% haze, total light transmittance of 90% or more before heat treatment,
85℃, 85%에서 72시간 유지 후, 헤이즈 변화율 △H1가 하기 식 2를 만족하고, 광투과도 변화율 △TT1이 하기 식 3을 만족하고, 접착력 평가 시 대전방지층 및 프라이머층이 폴리에스테르 베이스필름에 유지되고,After 72 hours at 85 ° C. and 85%, the haze change rate ΔH 1 satisfies the following formula 2, the light transmittance change rate ΔTT 1 satisfies the following formula 3, and the antistatic layer and the primer layer were the polyester base in the evaluation of the adhesive force. Kept on film,
[식 2][Equation 2]
△H1 < 0.5 %ΔH 1 <0.5%
상기 식 2에서 △H1 = Hf - Hi이고, Hf는 85℃, 85%에서 72시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.ΔH 1 = H f −H i in Equation 2, H f is the haze of the film after holding at 85 ° C., 85% for 72 hours, and H i is the haze of the film before heating.
[식 3][Equation 3]
△TT1 < 0.5 %TT 1 <0.5%
상기 식 3에서 △TT1 = TTf - TTi이고, TTf 85℃, 85%에서 72시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 3, and TT f is It is the total light transmittance of a film after hold | maintaining at 85 degreeC and 85% for 72 hours, and TT i is the total light transmittance of a film before heating.
60℃, 95%에서 120시간 유지 후, 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈 변화율 △H2가 하기 식 4를 만족하고, 광투과도 변화율 △TT2이 하기 식 5를 만족하고, 접착력 평가 시 대전방지층 및 프라이머층이 폴리에스테르 베이스필름에 유지되는 것일 수 있다.After 120 hours of maintenance at 60 ° C. and 95%, the surface resistance was 10 5 to 10 9 μs / sq, and the haze change rate ΔH 2 satisfied the following Equation 4, and the light transmittance change rate TT 2 satisfied the following Equation 5. In the evaluation of adhesion, the antistatic layer and the primer layer may be maintained on the polyester base film.
[식 4][Equation 4]
△H2 < 1.0 %ΔH 2 <1.0%
상기 식 4에서 △H2 = Hf - Hi이고, Hf는 60℃, 95%에서 120시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.In Formula 4, ΔH 2 = H f −H i , H f is the haze of the film after holding at 60 ° C., 95% for 120 hours, and H i is the haze of the film before heating.
[식 5][Equation 5]
△TT2 < 1.0 %TT 2 <1.0%
상기 식 5에서 △TT1 = TTf - TTi이고, TTf 60℃, 95%에서 120시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 5, and TT f is It is the total light transmittance of a film after hold | maintaining at 60 degreeC and 95% for 120 hours, and TT i is the total light transmittance of a film before heating.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지 후 대전방지층의 올리고머 개수가 30개 미만이고, 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지 후 프라이머층의 올리고머 개수가 20개 미만인 것일 수 있다.In one embodiment of the present invention, the polyester multilayer film is less than 30 oligomers of the antistatic layer after holding at 85 ℃, 85% 72 hours or 60 ℃, 95% 120 hours, at 85 ℃, 85% 72 After maintaining for 120 hours at 60 ° C. for 95 hours, the number of oligomers in the primer layer may be less than 20.
본 발명의 일 양태에서, 상기 대전방지층은 수접촉각이 90도 이상이고, 상기 대전방지층 상에 실리콘 점착제를 도포하고, 100 ℃의 물에서 2시간 방치 후 ASTM B905에 따른 접착력 평가 시 실리콘 코팅층이 유지되는 것일 수 있다.In one embodiment of the present invention, the antistatic layer has a water contact angle of 90 degrees or more, the silicone adhesive is applied on the antistatic layer, and the silicone coating layer is maintained when the adhesion evaluation according to ASTM B905 after 2 hours in water at 100 ℃ It may be.
본 발명의 일 양태에서, 상기 대전방지층은 전도성 고분자 용액과 수계 폴리우레탄 바인더 용액, 유기용매 및 물을 포함하는 대전방지조성물을 도포하여 형성된 것일 수 있다.In one aspect of the invention, the antistatic layer may be formed by applying an antistatic composition comprising a conductive polymer solution, an aqueous polyurethane binder solution, an organic solvent and water.
본 발명의 일 양태에서, 상기 유기용매는 알코올계 유기용매, 비양자성 고극성 유기용매 및 아마이드계 유기용매에서 선택되는 어느 하나 또는 둘 이상의 혼합용매인 것일 수 있다.In one embodiment of the present invention, the organic solvent may be any one or two or more mixed solvents selected from alcohol organic solvents, aprotic high polar organic solvents and amide organic solvents.
본 발명의 일 양태에서, 상기 대전방지층은 고형분 함량 100 중량% 중 전도성 고분자 1 ~ 30 중량% 및 수계 폴리우레탄 바인더 70 ~ 99 중량%를 포함하는 것일 수 있다.In one embodiment of the present invention, the antistatic layer may include 1 to 30% by weight of the conductive polymer and 70 to 99% by weight of the aqueous polyurethane binder in 100% by weight of the solid content.
본 발명의 일 양태에서, 상기 전도성 고분자는 폴리에틸렌다이옥시티오펜에 폴리스티렌설포네이트가 도핑된 것일 수 있다.In one aspect of the invention, the conductive polymer may be a polystyrene sulfonate doped with polyethylene dioxythiophene.
본 발명의 일 양태에서, 상기 프라이머층은 아크릴계 수지, 폴리에스테르계 수지 및 우레탄계 수지에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것일 수 있다.In one aspect of the invention, the primer layer may be one containing any one or two or more selected from acrylic resin, polyester resin and urethane resin.
본 발명의 일 양태에서, 상기 프라이머층은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지와 수분산성 폴리에스테르계 수지의 중량비가 20 ~ 80 : 80 ~ 20인 바인더수지를 포함하는 것일 수 있다.In one embodiment of the present invention, the primer layer may include a binder resin having a weight ratio of 20 to 80:80 to 20 of the acrylic resin copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer and the water-dispersible polyester resin. have.
본 발명의 일 양태에서, 상기 수분산성 폴리에스테르계 수지는 술폰산 알칼리 금속염 화합물을 포함하는 디카르복실산 성분과, 디에틸렌글리콜을 포함하는 글리콜성분이 공중합된 것이고,In one embodiment of the present invention, the water-dispersible polyester-based resin is a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol,
상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 ~ 80 몰% 함유하는 것일 수 있다.The acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components.
본 발명의 일 양태에서, 상기 폴리에스테르 베이스필름은 두께가 12 ~ 250 ㎛이고, 기재층이 60 ~ 90 중량%이고, 스킨층이 10 ~ 40 중량%인 것일 수 있다.In one embodiment of the present invention, the polyester base film has a thickness of 12 to 250 ㎛, the base layer is 60 to 90% by weight, the skin layer may be 10 to 40% by weight.
본 발명의 일 양태에서, 상기 대전방지층은 건조도포두께가 10 ~ 500 nm이고, 상기 프라이머층은 건조도포두께가 20 ~ 300 nm인 것일 수 있다.In an aspect of the present invention, the antistatic layer may have a dry coating thickness of 10 to 500 nm, and the primer layer may have a dry coating thickness of 20 to 300 nm.
본 발명의 또 다른 양태는 상기 폴리에스테르 다층필름의 상부에 하드코팅층, 인쇄층, 점착제층 및 이형제층에서 선택되는 어느 하나 이상의 기능성 코팅층을 형성한 광학필름이다.Still another aspect of the present invention is an optical film having at least one functional coating layer selected from a hard coating layer, a printing layer, an adhesive layer, and a release agent layer on the polyester multilayer film.
이하는 본 발명의 구성에 대하여 보다 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in more detail.
본 발명의 발명자들은 대전방지성을 향상시키기 위하여 전도성 고분자를 사용하는 경우, 필름의 전광선투과도가 낮아지는 문제를 해결하기 위하여 연구한 결과, 대전방지층이 형성된 타면에 굴절률이 1.4 ~ 1.5인 프라이머층을 형성함으로써 전체 필름의 전광선투과율이 90%이상인 물성을 달성할 수 있음을 발견하여 본 발명을 완성하였다. The inventors of the present invention have studied to solve the problem that the total light transmittance of the film is lowered when the conductive polymer is used to improve the antistatic property, a primer layer having a refractive index of 1.4 to 1.5 on the other surface where the antistatic layer is formed. The present invention was completed by finding that physical properties of the total light transmittance of the entire film can be achieved by forming more than 90%.
또한, 폴리에스테르 베이스필름으로 기재층과 스킨층이 공압출되어 적층된 3층 이상의 필름을 사용하고, 상기 스킨층에 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%인 폴리에스테르 수지를 사용하고, 고유점도가 하기 식 1을 만족하는 폴리에스테르 수지를 사용함으로써, 고온고습 하에서 표면저항, 헤이즈 변화율, 광투과도 변화율이 적으며, 폴리에스테르 베이스필름과 대전방지층 및 프라이머층 간의 접착력의 변화가 적은 것을 발견하여 본 발명을 완성하였다.In addition, a base film and a skin layer are co-extruded and laminated using three or more layers of films, and the oligomer content is 0.3 to 0.6% by weight, and the content of diethylene glycol is 0.1 to 1.2% by weight. By using a polyester resin of %% and using a polyester resin having an intrinsic viscosity satisfying the following formula 1, the surface resistance, haze change rate and light transmittance change rate are low under high temperature and high humidity, and the polyester base film, antistatic layer and primer The present invention was completed by finding a small change in adhesion between layers.
[식 1][Equation 1]
1 < Ns/Nc ≤ 1.11 <Ns / Nc ≤ 1.1
상기 식 1에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르 수지의 고유점도이다.In Formula 1, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
즉, 본 발명은 대전방지층과, 폴리에스테르 베이스필름 및 프라이머층의 조합에 의해 목적으로 하는 효과를 모두 달성할 수 있는 특징이 있다.That is, the present invention has a feature that can achieve all the desired effects by the combination of the antistatic layer, the polyester base film and the primer layer.
보다 구체적으로 본 발명의 폴리에스테르 베이스필름에 대하여 설명한다.More specifically, the polyester base film of the present invention will be described.
본 발명에서 상기 폴리에스테르 베이스필름은 기재층, 상기 기재층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하여 3층 이상으로 이루어진 것일 수 있으며, 공압출에 의해 형성된 것일 수 있다.In the present invention, the polyester base film may be formed of three or more layers, including a skin layer in which at least one or more layers are laminated on both sides of the base layer and the base layer, and may be formed by coextrusion.
상기 폴리에스테르 베이스필름의 두께는 12 내지 250㎛인 것이 바람직하고, 보다 바람직하게는 50 내지 188㎛인 것이 효과적이나, 이에 제한되는 것은 아니다.The polyester base film preferably has a thickness of 12 to 250 μm, more preferably 50 to 188 μm, but is not limited thereto.
또한, 기재층의 함량이 전체필름의 60 내지 90중량%이고, 스킨층의 함량이 10 내지 40중량%인 것이 바람직하고, 보다 바람직하게는 기재층의 함량이 70 내지 80 중량%이며, 스킨층의 함량이 20 내지 30중량%인 것이 공압출 시 계면안정화가 우수하고 올리고머의 차단성이 우수하므로 효과적이다.In addition, the content of the base layer is 60 to 90% by weight of the entire film, the content of the skin layer is preferably 10 to 40% by weight, more preferably the content of the base layer is 70 to 80% by weight, the skin layer The content of 20 to 30% by weight is effective because of excellent interfacial stability during coextrusion and excellent barrier property of the oligomer.
상기 기재층은 폴리에스테르 수지, 더욱 구체적으로 폴리에틸렌테레프탈레이트(PET) 수지로 이루어진 것일 수 있으나 이에 제한되는 것은 아니다. 이때 사용되는 폴리에틸렌테레프탈레이트 수지는 고유점도가 0.5 내지 1.0인 것을 사용하는 것이 바람직하며, 보다 바람직하게는 0.60 내지 0.80인 것이 효과적이다. 폴리에틸렌테레프탈레이트 수지의 고유점도가 0.5 미만일 경우에는 내열성이 감소될 수 있으며, 1.0초과일 경우에는 원료 가공이 용이하지 않아 작업성이 감소할 수 있다. The base layer may be made of a polyester resin, more specifically, polyethylene terephthalate (PET) resin, but is not limited thereto. In this case, the polyethylene terephthalate resin used is preferably used having an intrinsic viscosity of 0.5 to 1.0, more preferably 0.60 to 0.80. When the intrinsic viscosity of the polyethylene terephthalate resin is less than 0.5, the heat resistance may be reduced. If the intrinsic viscosity of the polyethylene terephthalate resin is greater than 1.0, it may not be easy to process the raw material, thereby reducing workability.
상기 폴리에스테르 기재층의 양면에 각각 적어도 1층 이상 공압출되어 형성되는 스킨층은 전체 필름 중량에 대하여 올리고머 함량이 0.3 내지 0.6중량%, 더욱 바람직하게는 0.4 ~ 0.5 중량%이고, 디에틸렌글리콜(DEG)의 함량은 0.1 내지 1.2중량%, 더욱 바람직하게는 0.7 ~ 0.8 중량%인 것이 좋다. 폴리에스테르 수지의 올리고머 및 디에틸렌글리콜의 함량이 상기 범위 초과일 경우에는 초기 필름의 헤이즈값이 상승하고, 열처리 가공했을 때 헤이즈 변화율이 급격이 높아짐으로써, 광학필름으로 적용 가능한 광학특성을 달성할 수 없는 문제가 발생할 수 있다. Skin layer formed by co-extrusion of at least one layer or more on each of both sides of the polyester base layer has an oligomer content of 0.3 to 0.6% by weight, more preferably 0.4 to 0.5% by weight based on the total film weight, diethylene glycol ( The content of DEG) is preferably 0.1 to 1.2% by weight, more preferably 0.7 to 0.8% by weight. When the content of oligomer and diethylene glycol of the polyester resin exceeds the above range, the haze value of the initial film is increased, and the rate of change of haze is sharply increased during heat treatment, thereby achieving optical properties applicable to the optical film. Missing problems can occur.
또한, 스킨층의 폴리에스테르 수지가 상기 범위의 올리고머 및 디에틸렌글리콜의 함량을 갖기 위해서 당해 기술분야에서 자명한 합성방법으로 제조할 수 있으나, 특히, 고상중합으로 제조되는 것이 올리고머 및 디에틸렌글리콜의 함량을 줄이는데 효과적이다. In addition, the polyester resin of the skin layer may be prepared by a synthetic method known in the art in order to have a content of the oligomer and diethylene glycol in the above range, in particular, that is prepared by the solid-phase polymerization of the oligomer and diethylene glycol Effective in reducing the content.
또한 스킨층의 폴리에스테르 수지의 고유점도는 0.6 내지 1.0인 것이 바람직하고, 보다 바람직하게는 0.65 내지 0.85인 것이 효과적이다. 스킨층 폴리에틸렌테레프탈레이트 수지의 고유점도가 0.6 미만일 경우에는 내열성이 감소될 수 있으며, 1.0초과일 경우에는 원료 가공이 용이하지 않아 작업성이 감소할 수 있다. The intrinsic viscosity of the polyester resin of the skin layer is preferably 0.6 to 1.0, more preferably 0.65 to 0.85. When the intrinsic viscosity of the skin layer polyethylene terephthalate resin is less than 0.6, the heat resistance may be reduced, and if it is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
또한 상기 기재층 및 스킨층은 통상의 필름 제조 시 첨가되는 첨가제인 무기입자 등을 포함하는 것일 수 있다.In addition, the base layer and the skin layer may include an inorganic particle, such as an additive added during the manufacture of a conventional film.
상기 폴리에스테르 베이스필름은 기재층 및 스킨층이 공압출되어 적층되는 것일 수 있으며, 상기 기재층과 스킨층을 공압출 할 때 작업성을 향상시키기 위하여 하기 식 1을 만족하는 것이 바람직하다. The polyester base film may be a substrate layer and the skin layer is co-extruded and laminated, it is preferable to satisfy the following formula 1 to improve the workability when co-extruded the base layer and the skin layer.
[식 1] [Equation 1]
1 < Ns/Nc ≤ 1.11 <Ns / Nc ≤ 1.1
상기 식 1에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르 수지의 고유점도이다.In Formula 1, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
스킨층과 기재층의 고유점도 비율이 1.1 초과일 경우에는 공압출 시 계면불안정의 문제가 발생하여 다층구조를 형성하지 못할 수 있으므로, 상기 범위를 만족하는 것이 바람직하고, 보다 바람직하게는 1.0 내지 1.05인 것이 작업성 향상에 효과적이다.When the intrinsic viscosity ratio of the skin layer and the base layer is more than 1.1, the problem of interfacial instability may occur due to coextrusion, so that the multilayer structure may not be formed, and it is preferable to satisfy the above range, more preferably 1.0 to 1.05. It is effective to improve workability.
본 발명은 상기 폴리에스테르 베이스필름의 일면에 대전방지층을 포함한다.The present invention includes an antistatic layer on one surface of the polyester base film.
본 발명의 일 양태에서, 대전방지층은 전도성 고분자와 수계 폴리우레탄 바인더를 포함하는데 특징이 있으며, 이들을 포함함으로써 수접촉각이 90도 이상이고, 상기 대전방지층 상에 실리콘 점착제를 도포하고, 100 ℃의 물에서 2시간 방치 후 접착력 평가 시 실리콘 코팅층이 유지되는 것일 수 있다. In one aspect of the invention, the antistatic layer is characterized in that it comprises a conductive polymer and an aqueous polyurethane binder, the water contact angle is 90 degrees or more by including them, the silicone pressure-sensitive adhesive on the antistatic layer, water at 100 ℃ After leaving for 2 hours at the evaluation of adhesion may be to maintain the silicone coating layer.
본 발명의 일 양태에서, 상기 대전방지층은 전도성 고분자와 수계 폴리우레탄 바인더를 포함하며, 고형분 함량 100 중량% 중 전도성 고분자가 1 ~ 30 중량%, 수계 폴리우레탄 바인더가 70 ~ 99 중량%로 포함되는 것일 수 있다. 더욱 구체적으로, 전도성 고분자가 5 ~ 25 중량%, 폴리우레탄 바인더가 75 ~ 95 중량%로 포함되는 것일 수 있다. 더욱 구체적으로, 전도성 고분자가 10 ~ 20 중량%, 폴리우레탄 바인더가 80 ~ 90 중량%로 포함되는 것일 수 있다.In one embodiment of the present invention, the antistatic layer comprises a conductive polymer and an aqueous polyurethane binder, the conductive polymer of 1 to 30% by weight, the aqueous polyurethane binder of 70 to 99% by weight of the solid content of 100% by weight It may be. More specifically, the conductive polymer may be 5 to 25% by weight, polyurethane binder may be included in 75 to 95% by weight. More specifically, the conductive polymer may be 10 to 20% by weight, polyurethane binder may be included in 80 to 90% by weight.
보다 구체적으로 상기 대전방지층은 전도성 고분자 용액과 수계 폴리우레탄 바인더 용액, 유기용매 및 물을 포함하는 대전방지조성물을 도포하여 형성한 것일 수 있다.More specifically, the antistatic layer may be formed by applying an antistatic composition including a conductive polymer solution, an aqueous polyurethane binder solution, an organic solvent, and water.
더욱 구체적으로 예를 들면, 상기 대전방지조성물은 고형분 함량이 1 ~ 3 중량%인 전도성 고분자 용액 40 ~ 90 중량%, 고형분 함량이 30 ~ 40 중량%인 수계 폴리우레탄 바인더 용액 5 ~ 50 중량%, 유기용매 3 ~ 50 중량% 및 잔량의 물을 포함하는 것일 수 있다.More specifically, for example, the antistatic composition may include 40 to 90 wt% of a conductive polymer solution having a solid content of 1 to 3 wt%, 5 to 50 wt% of an aqueous polyurethane binder solution having a solid content of 30 to 40 wt%, It may include 3 to 50% by weight of the organic solvent and the balance of water.
또한, 상기 대전방지조성물은 필요에 따라 실리콘계 웨팅제, 불소계 웨팅제, 슬립제, 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제, 가교제 등에서 선택되는 어느 하나 또는 둘 이상의 첨가제를 더 포함하는 것일 수 있다. In addition, the antistatic composition may be any one or two or more additives selected from silicone wetting agents, fluorine wetting agents, slip agents, antifoaming agents, wetting agents, surfactants, thickeners, plasticizers, antioxidants, ultraviolet absorbers, preservatives, crosslinking agents, and the like. It may be to include more.
본 발명의 일 양태에서, 상기 전도성 고분자는 폴리티오펜계, 폴리피롤계, 폴리아닐린계 고분자 수지 등을 사용할 수 있으며, 이에 제한되는 것은 아니다. 폴리티오펜계 전도성 고분자 수지를 사용하는 것이 더욱 좋으며, 가장 좋게는 폴리에틸렌다이옥시티오펜에 폴리스티렌설포네이트가 도핑(PEDOT:PSS)된 것을 사용하는 것이 수분산성이 우수하여 인라인도포공정으로 대전방지층을 형성할 수 있으며, 인라인 도포 공정 후 연신공정을 거치면서도 투명성이 저하되지 않으며, 내열성 및 목적으로 하는 표면저항을 발현하기 위한 관점에서 바람직하나 이에 제한되지 않는다. 상기 전도성 고분자는 표면저항이 105 ~ 109 Ω/sq인 물성을 만족하는 범위로 사용되는 것이 바람직하며, 이에 제한되지 않는다.In one embodiment of the present invention, the conductive polymer may be a polythiophene-based, polypyrrole-based, polyaniline-based polymer resin and the like, but is not limited thereto. It is better to use a polythiophene-based conductive polymer resin, and most preferably, a polystyrene sulfonate doped (PEDOT: PSS) in polyethylene dioxythiophene has excellent water dispersibility, thereby forming an antistatic layer by an inline coating process. Although it is possible to pass through the stretching process after the in-line coating process, the transparency is not lowered, and preferred from the viewpoint of expressing heat resistance and the desired surface resistance, but is not limited thereto. The conductive polymer is preferably used in a range satisfying the physical properties of the surface resistance of 10 5 ~ 10 9 Ω / sq, but is not limited thereto.
상기 전도성 고분자 수지는 최적의 분산성을 발현하기 위하여 용매에 혼합된 상태의 전도성 고분자 용액으로 사용하는 것일 수 있으며, 구체적으로 예를 들어 PEDOT:PSS를 사용하는 경우 물, 알코올 및 유전상수가 큰 용매 등에 혼합하여 사용하는 것일 수 있다. 상업화된 예로는 Heraeus사의 Clevios P(고형분 함량 1.2 ~ 1.4 중량%)등을 사용할 수 있으나 이에 제한되는 것은 아니다. The conductive polymer resin may be used as a conductive polymer solution mixed with a solvent in order to express optimal dispersibility. Specifically, for example, when PEDOT: PSS is used, a solvent having a high water, alcohol, and dielectric constant It may be used to mix and the like. Commercialized examples may include, but are not limited to, Clevios P (1.2 to 1.4 wt.% Solids content) from Heraeus.
상기 대전방지조성물 중 전도성 고분자 용액의 함량은 40 ~ 90 중량%, 더욱 좋게는 50 ~ 70 중량%인 것일 수 있으며, 상기 범위에서 목적으로 하는 물성을 달성하기에 충분한 함량이나 이에 제한되는 것은 아니다.The content of the conductive polymer solution in the antistatic composition may be 40 to 90% by weight, and more preferably 50 to 70% by weight, but is not limited thereto in a sufficient amount to achieve the desired physical properties in the above range.
본 발명의 일 양태에서, 상기 수계 폴리우레탄 바인더를 전도성 고분자와 혼합하여 사용함으로써 혼화성이 우수하고, 표면저항 성능을 향상시키며, 폴리에스테르 베이스필름과의 밀착력이 우수하고, 고온고습 조건에서 물성 변화가 적고, 황변현상이 적은 대전방지층을 형성할 수 있다. In one aspect of the present invention, by using the water-based polyurethane binder mixed with the conductive polymer, excellent miscibility, surface resistance performance, excellent adhesion to the polyester base film, physical properties change at high temperature and high humidity conditions It is possible to form an antistatic layer with less yellowing and less yellowing.
상기 수계 폴리우레탄 바인더는 폴리카보네이트계 폴리올과 디이소시아네이트를 반응시킨 폴리우레탄 바인더를 사용함으로써 내열성이 우수하고, 표면저항 변화율이 적은 물성을 달성할 수 있다. 더욱 좋게는 상기 디이소시아네이트의 구체적인 예로 헥사메틸렌 디이소시아네이트를 사용하는 것이 내열성을 향상시켜 황변현상이 적은 도막을 형성하기 위한 관점에서 좋으나 이에 제한되는 것은 아니다.The water-based polyurethane binder can achieve physical properties with excellent heat resistance and low surface resistance change rate by using a polyurethane binder in which a polycarbonate-based polyol and diisocyanate are reacted. More preferably, the use of hexamethylene diisocyanate as a specific example of the diisocyanate is good from the viewpoint of improving heat resistance to form a coating film with less yellowing, but is not limited thereto.
또한 상기 수계 폴리우레탄 바인더는 용매에 분산된 것일 수 있으며, 용매는 제한되는 것은 아니나 아마이드계 유기용매 및 비양자성 고극성(Aprotic Highly Dipolar, AHD) 유기용매로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되는 것은 아니다. 상업화된 예로는 Neo Resins사의 Neo Rez R-860, R-960, R-972등이 있으며, 이에 제한되는 것은 아니다.In addition, the aqueous polyurethane binder may be dispersed in a solvent, and the solvent is not limited, but any one or two or more selected from the group consisting of an amide organic solvent and an aprotic highly dipolar (AHD) organic solvent. It may be to use a solvent, but is not limited thereto. Commercialized examples include Neo Rez R-860, R-960, R-972, etc. of Neo Resins, but are not limited thereto.
상기 대전방지조성물 중 수계 폴리우레탄 바인더의 함량은 5 ~ 50 중량%, 더욱 좋게는 10 ~ 30 중량%인 것일 수 있으며, 상기 범위에서 목적으로 하는 물성을 달성하기에 충분한 함량이나 이에 제한되는 것은 아니다.The content of the water-based polyurethane binder in the antistatic composition may be 5 to 50% by weight, and more preferably 10 to 30% by weight, but is not limited thereto in a sufficient amount to achieve the desired physical properties in the above range. .
본 발명의 일 양태에서, 상기 대전방지조성물에 사용되는 유기용매는 알코올계 유기용매, 비양자성 고극성(Aprotic Highly Dipolar, AHD) 유기용매 및 아마이드계 유기용매에서 선택되는 어느 하나 또는 둘 이상의 혼합용매인 것일 수 있다.In one aspect of the invention, the organic solvent used in the antistatic composition is any one or two or more mixed solvents selected from alcohol-based organic solvents, Aprotic Highly Dipolar (AHD) organic solvents and amide-based organic solvents It may be
상기 유기용매의 함량은 상기 대전방지조성물 중 3 ~ 50 중량%, 더욱 구체적으로 5 ~ 40 중량%, 더욱 구체적으로 10 ~ 30 중량%인 것일 수 있으며, 상기 범위에서 전도성 고분자와 폴리우레탄 바인더의 분산성을 향상시키기에 적합한 함량이나 이에 제한되는 것은 아니다.The content of the organic solvent may be 3 to 50% by weight, more specifically 5 to 40% by weight, more specifically 10 to 30% by weight of the antistatic composition, the content of the conductive polymer and the polyurethane binder in the above range A content suitable for enhancing acidity is not limited thereto.
더욱 좋게는 알코올계 유기용매와 함께, 비양자성 고극성 유기용매 및 아마이드계 유기용매에서 선택되는 어느 하나 또는 둘 이상의 혼합용매를 사용함으로써, 전도성 고분자의 분산성을 향상시키고, 도핑이 활성화되어 표면저항 성능이 더욱 향상되는 효과를 발현할 수 있다.More preferably, by using one or two or more mixed solvents selected from an aprotic high polar organic solvent and an amide organic solvent together with an alcoholic organic solvent, the dispersibility of the conductive polymer is improved, and doping is activated to provide surface resistance. The effect which further improves the performance can be expressed.
더욱 구체적으로 알코올계 유기용매 1 ~ 30 중량%, 더욱 구체적으로 5 ~ 20 중량%와 비양자성 고극성 유기용매 및 아마이드계 유기용매에서 선택되는 어느 하나 또는 둘 이상의 혼합용매 2 ~ 20 중량%, 더욱 구체적으로 5 ~ 10 중량%를 사용하는 것일 수 있다.More specifically 1 to 30% by weight alcoholic organic solvent, more specifically 5 to 20% by weight of any one or two or more mixed solvents selected from aprotic high polar organic solvent and amide organic solvent, more Specifically, it may be to use 5 to 10% by weight.
상기 알코올계 유기용매는 제한되는 것은 아니지만 구체적으로 예를 들면, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올 및 2-아미노-2-메틸-1-프로판올 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용할 수 있다. 알코올계 유기용매를 사용함으로써 전도성 고분자와 수계 폴리우레탄 수지간의 혼합성 및 분산성을 더욱 향상시킬 수 있다. The alcohol-based organic solvent is not limited, but specifically, for example, methanol, ethanol, propanol, isopropanol, butanol, 2-amino-2-methyl-1-propanol, and the like may be used. Can be used. By using an alcohol-based organic solvent, the mixing and dispersibility between the conductive polymer and the water-based polyurethane resin can be further improved.
상기 비양자성 고극성 유기용매는 제한되는 것은 아니지만 구체적으로 예를 들면, 디메틸설폭사이드, 프로필렌 카보네이트 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용할 수 있다. 비양자성 고극성 유기용매를 사용함으로써 전도성 고분자의 전도도를 더욱 향상시킬 수 있다. 비양자성 고극성 유기용매를 단독으로 사용하는 경우는 에틸렌글리콜, 글리세린 및 솔비톨 등의 분산안정제를 더 포함할 수 있으나 이에 제한되는 것은 아니다.The aprotic high polar organic solvent is not limited, but specifically, for example, dimethyl sulfoxide, propylene carbonate, or the like may be used, and may be used alone or in combination of two or more. By using an aprotic high polar organic solvent, the conductivity of the conductive polymer can be further improved. When using an aprotic high polar organic solvent alone, it may further include a dispersion stabilizer such as ethylene glycol, glycerin and sorbitol, but is not limited thereto.
상기 아마이드계 유기용매는 제한되는 것은 아니지만 구체적으로 예를 들면, 포름아미드, N-메틸포름아미드, N,N-디메틸포름아미드, 아세트아미드, N-메틸아세트아미드, N-디메틸아세트아미드, N-메틸피롤리돈 및 2-아미노-2-메틸-1-프로판올 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용할 수 있다. 아마이드계 유기용매를 사용함으로써 전도성 고분자의 전도도를 더욱 향상시킬 수 있다.The amide organic solvent is not limited, but specifically, for example, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N-dimethylacetamide, N- Methylpyrrolidone and 2-amino-2-methyl-1-propanol and the like can be used, and can be used alone or in combination of two or more. By using an amide organic solvent, the conductivity of the conductive polymer can be further improved.
본 발명의 일 양태에서 상기 대전방지조성물은 웨팅제를 더 포함하여 코팅성을 더욱 향상시키는 것일 수 있다. 제한되는 것은 아니나 구체적으로 예를 들면, Dow Corning 사의 Q2-5212, ENBODIC사의 TEGO WET 250, BYK CHEMIE사의 BYK 348 등의 변성 실리콘계 웨팅제, Zonyl사의 FSH 등의 불소계 웨팅제 등을 사용할 수 있으나, 이로 한정되는 것은 아니다. 웨팅제는 0.1 ~ 2 중량%로 사용하는 것이 바람직하며, 상기 범위에서 목적으로 하는 코팅성 향상을 달성할 수 있으나 이에 제한되지 않는다.In one aspect of the present invention, the antistatic composition may further include a wetting agent to further improve coating properties. Specific examples include, but are not limited to, for example, Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, and modified silicone-based wetting agents such as ZONyl's FSH and the like. It is not limited. Wetting agent is preferably used in 0.1 to 2% by weight, it is possible to achieve the desired coating properties in the above range, but is not limited thereto.
본 발명의 일 양태에서, 상기 대전방지층은 건조도포두께가 10 ~ 500nm인 것일 수 있다. 건조도포두께가 10nm 미만인 경우는 표면저항이 충분하지 않을 수 있으며, 500nm 초과인 경우는 블록킹(Blocking) 현상이 발생할 가능성이 높아지므로 상기 범위가 추천되지만 이에 제한되는 것은 아니다.In one aspect of the invention, the antistatic layer may be a dry coating thickness of 10 ~ 500nm. If the dry coating thickness is less than 10nm, the surface resistance may not be sufficient, and if the dry coating thickness is greater than 500nm, the blocking range is more likely to occur, but the above range is recommended, but is not limited thereto.
본 발명은 상기 대전방지층이 형성된 타면에 프라이머층을 포함한다.The present invention includes a primer layer on the other surface of the antistatic layer is formed.
본 발명의 일 양태에서, 상기 프라이머층은 굴절율이 1.4 ~ 1.5인 것이 바람직하며, 상기 범위를 만족함으로써 전도성 고분자를 사용하여 대전방지층을 형성함에도 불구하고 전광선투과율이 90%이상으로 투명하여 광학필름으로 사용하기에 적합하다. 상기 프라이머층을 형성하지 않고, 대전방지층만을 형성하는 경우는 전광선투과율이 낮아서, 광학필름으로 사용하기에 적합하지 않으므로 바람직하지 않다. 더욱 구체적으로 본 발명은 상기 대전방지층과 프라이머층을 동시에 형성함으로써 전광선투과율이 90% 이상, 더욱 구체적으로 90 내지 95%이고, 헤이즈의 변화가 적은 물성을 동시에 만족할 수 있다. 또한, 고온고습 조건에서도 전광선투과율 및 헤이즈의 변화가 적은 필름을 제공할 수 있다.In one embodiment of the present invention, the primer layer preferably has a refractive index of 1.4 ~ 1.5, even if the antistatic layer is formed by using a conductive polymer by satisfying the above range, the total light transmittance is 90% or more transparent to the optical film Suitable for use When only the antistatic layer is formed without forming the primer layer, the total light transmittance is low, which is not suitable for use as an optical film. More specifically, in the present invention, the antistatic layer and the primer layer are formed at the same time, so that the total light transmittance is 90% or more, more specifically, 90 to 95%, and the physical properties with little change in haze can be satisfied at the same time. In addition, it is possible to provide a film with little change in total light transmittance and haze even under high temperature and high humidity conditions.
본 발명의 일 양태에서, 상기 프라이머층은 수분산성 수지조성물이 도포되어 형성되는 것일 수 있으며, 아크릴계 수지, 폴리에스테르계 수지 및 우레탄계 수지 등으로 이루어진 것일 수 있다.In one aspect of the present invention, the primer layer may be formed by applying a water-dispersible resin composition, it may be made of acrylic resin, polyester resin and urethane resin.
본 발명의 일 양태에서 상기 프라이머층은 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 형성된 것일 수 있으며, 상기 올리고머 차단특성을 갖는 수분산성 수지 조성물을 구체적으로 예를 들면, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지와 수분산성 폴리에스테르계 수지를 포함하는 것일 수 있다.In one embodiment of the present invention, the primer layer may be formed by applying a water-dispersible resin composition having an oligomer blocking property, and specifically, for example, a glycidyl group-containing radical polymerization of the water-dispersible resin composition having the oligomer blocking property. The unsaturated unsaturated monomer may be copolymerized acrylic resin and water-dispersible polyester resin.
본 발명의 일 양태에서 상기 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A):(B) = 20 ~ 80 : 80 ~ 20일 수 있다. 보다 바람직하게는 40 ~ 60 : 60 ~ 40 중량비로 사용될 수 있다. 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 20 중량% 미만이고, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 고형분 함량이 80 중량%를 초과하는 경우는 에멀젼의 입자크기(Particle Size)가 커짐에 따라 인라인 코팅 시 얼룩이 발생하고 폴리에스테르 베이스필름과의 밀착성과 투명성이 저하되고, 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 80 중량% 초과이고, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 고형분 함량이 20 중량% 미만인 경우는 충분한 올리고머 차단 효과를 발현할 수 없으며, 광투과율의 향상 및 고온고습조건에서 헤이즈, 표면저항 등의 변화를 최소화하는데 충분하지 않을 수 있다.In one embodiment of the present invention, the water-dispersible resin composition has a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer (A) and a water-dispersible polyester resin (B) (A) :( B) = 20 to 80: may be 80 to 20. More preferably, it may be used in a weight ratio of 40 to 60: 60 to 40. If the solids content of the water-dispersible polyester resin (B) is less than 20% by weight and the solids content of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is greater than 80% by weight, As the particle size increases, staining occurs during inline coating, adhesion and transparency with the polyester base film decrease, and the solid content of the water-dispersible polyester resin (B) is greater than 80 wt%, and glycy When the solid content of the acrylic resin (A) copolymerized with a dill-containing radically polymerizable unsaturated monomer is less than 20% by weight, sufficient oligomer blocking effect cannot be exhibited, and light transmittance is improved and haze, surface resistance, etc. under high temperature and high humidity conditions. It may not be enough to minimize the change.
본 발명의 수분산성 수지 조성물은 수분산성 폴리에스테르계 수지(B)와 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)를 혼합한 바인더 수지와 물을 혼합하여 제조할 수 있으며, 수분산성 폴리에스테르계 수지(B)의 수성 분산액 중에서 글리시딜기 함유 라디칼 중합성 불포화 모노머 단독 또는 글리시딜기함유 라디칼 중합성 불포화 모노머와 공중합 가능한 라디칼 중합성 불포화 모노머를 중합하여 제조하는 것도 가능하다. 이때는 계면활성제, 중합개시제를 사용할 수 있다. 상기 계면활성제 및 중합개시제는 유화중합에 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 계면활성제로는 음이온성 계면활성제, 비이온성 계면활성제 또는 비반응성 계면활성제를 사용할 수 있으며, 이들을 병용해서 사용하는 것도 가능하다. 중합개시제는 라디칼 중합성 개시제로, 퍼옥사이드계 개시제 또는 아조비스 이소부티로니트릴 등의 질소화합물을 사용할 수 있다.The water-dispersible resin composition of the present invention may be prepared by mixing a water-dispersible polyester resin (B) and a binder resin mixed with an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer, It is also possible to polymerize and produce a glycidyl group-containing radically polymerizable unsaturated monomer alone or a radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer in an aqueous dispersion of the water-dispersible polyester resin (B). At this time, surfactant and a polymerization initiator can be used. The surfactant and the polymerization initiator may be used without limitation as long as it is conventionally used in emulsion polymerization. Specifically, for example, as the surfactant, anionic surfactants, nonionic surfactants or non-reactive surfactants can be used, and these can also be used in combination. The polymerization initiator is a radically polymerizable initiator, and nitrogen compounds such as a peroxide initiator or azobis isobutyronitrile can be used.
본 발명의 수분산 조성물은 필요에 따라 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제, 가교제 등을 더 포함할 수 있다.The water dispersion composition of the present invention may further include an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an antioxidant, a UV absorber, a preservative, a crosslinking agent and the like as necessary.
본 발명의 일 양태에서, 상기 가교제는 하기 화학식 1의 화합물을 포함할 수 있으며, 이에 제한되는 것은 아니다. 하기 화학식 1의 가교제를 포함함으로써 반응속도가 더욱 빠르고, 저온에서 프라이머층이 형성될 수 있으며, 프라이머층 형성 후 가열에 의해 일부 유출될 수 있는 올리고머를 완전히 차단할 수 있다. In one embodiment of the present invention, the crosslinking agent may include a compound of Formula 1, but is not limited thereto. By including a crosslinking agent of Formula 1, the reaction rate is faster, a primer layer may be formed at a low temperature, and may completely block an oligomer which may be partially leaked by heating after forming the primer layer.
[화학식 1][Formula 1]
Figure PCTKR2017006938-appb-I000001
Figure PCTKR2017006938-appb-I000001
(상기 식에서, A1 내지 A3는 각각 독립적으로 화학결합이거나, (C1-C10)알킬렌에서 선택되고, R1 내지 R3는 각각 독립적으로, 수소, (C1-C10)알킬에서 선택된다.)Wherein A 1 to A 3 are each independently a chemical bond or are selected from (C1-C10) alkylene, and R 1 to R 3 are each independently selected from hydrogen and (C1-C10) alkyl. )
상기 알킬 또는 알킬렌은 직쇄 또는 분지쇄를 모두 포함한다.The alkyl or alkylene includes both straight and branched chains.
더욱 구체적으로 상기 A1 내지 A3는 각각 독립적으로 (C1-C5)알킬렌에서 선택되고, R1 내지 R3는 각각 독립적으로, (C1-C5)알킬에서 선택된다.More specifically, A 1 to A 3 are each independently selected from (C 1 -C 5) alkylene, and R 1 to R 3 are each independently selected from (C 1 -C 5) alkyl.
상기 화학식 1의 보다 구체적인 예로는 하기 화학식 2의 화합물을 사용할 수 있다.As a more specific example of Formula 1, a compound of Formula 2 may be used.
[화학식 2][Formula 2]
Figure PCTKR2017006938-appb-I000002
Figure PCTKR2017006938-appb-I000002
상기 화학식 2의 화합물은 반응속도를 빠르게 하면서도, 반응온도가 120 ~ 140℃, 보다 구체적으로 130℃ 정도로 폴리에스테르 필름의 제막공정 시 예열존(Preheating Zone)에서 반응이 시작되며, 이에 따라 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 글리시딜기와 반응이 가능하여 보다 치밀한 구조의 프라이머 도막을 형성할 수 있다. The compound of Formula 2, while the reaction rate is fast, the reaction temperature is 120 ~ 140 ℃, more specifically 130 ℃ in the preheating zone (Preheating Zone) during the film forming process of the polyester film, accordingly glycidyl group It is possible to react with the glycidyl group of the acrylic resin (A) in which the containing radically polymerizable unsaturated monomer is copolymerized, thereby forming a primer coating film having a more dense structure.
따라서, 상기 화학식 2의 화합물을 사용하는 경우 폴리에스테르 필름의 제막공정 시 인라인 도포공정에서 도포가 가능하고, 이에 따라 필름 제조 후 별도로 프라이머층을 도포하는 공정이 필요하지 않으므로 공정이 간단해지며, 인라인 도포공정에 의해 도포 후 연신되어 균일한 도막두께를 형성할 수 있게 되므로 우수한 광학물성을 갖는 폴리에스테르 필름을 제조할 수 있다.Therefore, in the case of using the compound of Formula 2, it is possible to apply in the in-line coating process during the film forming process of the polyester film, and thus, the process is simplified since the process of applying the primer layer separately after film production is not necessary. Since it can be stretched after coating by the coating process to form a uniform coating film thickness, it is possible to produce a polyester film having excellent optical properties.
상기 가교제는 수분산 조성물 내 수분산성 폴리에스테르계 수지(B)의 수성 분산액과 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 전체 고형분 함량 100 중량부에 대하여, 1 ~ 40 중량부, 보다 바람직하게는 5 ~ 20 중량부를 사용하는 것이 바람직하다. 1 중량부 미만인 경우는 그 사용 효과가 미미하고, 40 중량부를 초과하여 사용하는 경우는 Main Binder의 특성이 저하되어 접착력이 떨어질 수 있다.The crosslinking agent is 1 to 40 parts by weight based on 100 parts by weight of the total solid content of the acrylic resin (A) in which the aqueous dispersion of the water-dispersible polyester resin (B) and the glycidyl group-containing radically polymerizable unsaturated monomer in the water dispersion composition are copolymerized. It is preferable to use a weight part, More preferably, it is 5-20 weight part. If it is less than 1 part by weight, its use effect is insignificant, and when it is used in excess of 40 parts by weight, the properties of the main binder may be lowered, thereby lowering the adhesive strength.
본 발명의 수분산 조성물에서, 상기 수분산성 폴리에스테르계 수지(B)는 술폰산 알칼리 금속염 화합물을 포함하는 디카르복실산 성분과, 디에틸렌글리콜을 포함하는 글리콜성분이 공중합된 것일 수 있다. In the water dispersion composition of the present invention, the water-dispersible polyester-based resin (B) may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
보다 구체적으로 디카르복실산 성분으로, 방향족 디카르복실산과 술폰산 알칼리 금속 염 화합물을 사용할 수 있으며, 상기 술폰산 알칼리 금속 염 화합물을 전체 산 성분 중 6 ~ 20몰% 함유하는 것일 수 있다. More specifically, as the dicarboxylic acid component, an aromatic dicarboxylic acid and a sulfonic acid alkali metal salt compound may be used, and the sulfonic acid alkali metal salt compound may contain 6 to 20 mol% of the total acid component.
상기 디카르복실산 성분은 프탈산, 테레프탈산, 테레프탈산디메틸, 이소프탈산, 이소프탈산 디메틸, 2,5-디메틸테레프탈산, 2,6-나프탈렌 디카르복실산, 비페닐디카르복실산 등의 방향족 디카르복실산, 아디핀산, 세바신산 등의 지방족 디카르복실산, 시클로헥산 디카르복실산 등의 지환족 디카르복실산 등을 사용할 수 있다.The dicarboxylic acid component is an aromatic dicarboxylic acid such as phthalic acid, terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalic acid, 2,5-dimethyl terephthalic acid, 2,6-naphthalene dicarboxylic acid, biphenyldicarboxylic acid and the like. Aliphatic dicarboxylic acids, such as an acid, adipic acid, a sebacic acid, alicyclic dicarboxylic acids, such as cyclohexane dicarboxylic acid, etc. can be used.
상기 술폰산 알칼리 금속염 화합물은 구체적으로 예를 들면, 술포테레프탈산, 5-술포 이소프탈산, 4-술포 이소프탈산, 4-술포 나프탈렌산-2,7-디카르복실산 등의 알칼리 금속염 등을 사용할 수 있으며, 6 ~ 20몰% 사용하는 것일 수 있다. 6 몰% 미만으로 사용하는 경우는 물에 대한 수지의 분산 시간이 길어지고, 분산성이 낮으며, 20몰%를 초과하여 사용하는 경우는 내수성이 저하될 수 있다.Specific examples of the sulfonic acid alkali metal salt compound include alkali metal salts such as sulfoterephthalic acid, 5-sulfo isophthalic acid, 4-sulfo isophthalic acid, 4-sulfo naphthalic acid-2,7-dicarboxylic acid, and the like. , 6 to 20 mol% may be used. When using less than 6 mol%, the dispersion time of resin to water becomes long, dispersibility is low, and when it uses more than 20 mol%, water resistance may fall.
상기 글리콜 성분은 디에틸렌글리콜과 탄소수 2~8의 지방족 또는 탄소수 6~12의 지환족 글리콜 등을 사용할 수 있다. 구체적으로 예를 들면, 에틸렌글리콜, 1,3-프로판디올, 1,2-프로필렌글리콜, 네오펜틸글리콜, 1,4-부탄디올, 1,4-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,2-시클로헥산디메탄올, 1,6-헥산디올, P-자일렌글리콜, 트리에틸렌글리콜 등을 사용할 수 있다. 이때 디에틸렌글리콜을 전체 글리콜 성분 중 20 ~ 80몰% 함유하는 것이 바람직하다. As the glycol component, diethylene glycol and aliphatic glycols having 2 to 8 carbon atoms or alicyclic glycols having 6 to 12 carbon atoms may be used. Specifically, for example, ethylene glycol, 1,3-propanediol, 1,2-propylene glycol, neopentyl glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol , 1,2-cyclohexanedimethanol, 1,6-hexanediol, P-xylene glycol, triethylene glycol and the like can be used. At this time, it is preferable to contain 20-80 mol% of diethylene glycol among all the glycol components.
상기 수분산성 폴리에스테르계 수지(B)는 수평균 분자량이 1000 ~ 50000인 것이 바람직하고, 보다 바람직하게는 수평균 분자량이 2000 ~ 30000이다. 수평균 분자량이 1000 미만인 경우는 올리고머 차단 효과가 미미하고, 50000 초과인 경우는 수분산성이 곤란할 수 있다.It is preferable that the number average molecular weights of the said water-dispersible polyester resin (B) are 1000-50000, More preferably, the number average molecular weights are 2000-30000. When the number average molecular weight is less than 1000, the oligomer blocking effect is insignificant, and when the number average molecular weight is more than 50000, water dispersibility may be difficult.
상기 수분산성 폴리에스테르계 수지(B)는 물 또는 수성 용제를 포함하는 물에 50 ~ 90℃로 가열 교반하여 균일하게 수분산시킨 것을 사용한다. 이렇게 제조된 수분산체는 균일한 분산을 위해 고형분 농도가 30 중량% 이하, 보다 바람직하게는 10 ~ 30 중량%인 것이 바람직하다. 상기 수성용제는 메탄올, 에탄올, 프로판올 등의 알콜류, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 글리세린 등의 다가 알코올 등을 사용할 수 있다. The water-dispersible polyester-based resin (B) is used by uniformly dispersing by heating and stirring the water or water containing an aqueous solvent at 50 ~ 90 ℃. The aqueous dispersion thus prepared has a solid content of 30 wt% or less, more preferably 10 to 30 wt%, for uniform dispersion. The aqueous solvent may be alcohols such as methanol, ethanol, propanol, polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, and the like.
다음으로, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)에 대하여 설명한다. Next, the acrylic resin (A) to which the glycidyl group containing radically polymerizable unsaturated monomer was copolymerized is demonstrated.
글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)는 글리시딜기 함유 라디칼 중합성불포화 모노머의 단독중합물 또는 글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 다른 라디칼중합성 불포화 모노머를 공중합한 수지이다.Acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer is a homopolymer of a glycidyl group-containing radically polymerizable unsaturated monomer or another radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer. It is resin copolymerized.
상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 ~ 80 몰% 함유하는 것일 수 있다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머는 가교반응에 의해 프라이머층의 도막의 강도를 향상시키고 가교밀도를 높이게 되므로, 올리고머의 유출을 차단할 수 있다. 구체적으로 예를 들면, 아크릴산 글리시딜, 메타크릴산 글리시딜, 아릴글리시딜에테르 등의 글리시딜 에테르 등을 사용할 수 있다. The acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components. Since the glycidyl group-containing radically polymerizable unsaturated monomer improves the strength of the coating film of the primer layer by the crosslinking reaction and increases the crosslinking density, it is possible to block the outflow of the oligomer. Specifically, for example, glycidyl ethers such as glycidyl acrylate, glycidyl methacrylate, and arylglycidyl ether can be used.
글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 라디칼 중합성 불포화 모노머는 비닐에스테르, 불포화카르본산에스테르, 불포화 카르본산 아미드, 불포화 니트릴, 불포화 카르본산, 알릴화합물, 함질소계 비닐 모노머, 탄화수소 비닐 모노머 또는 비닐 실란화합물 등을 들 수 있다. 비닐에스테르로는 프로피온산비닐, 스테아린산비닐, 염화비닐등을 사용할 수 있다. 불포화카르본산에스테르로는 아크릴산메틸, 아크릴산에틸, 아크릴산부틸, 아크릴산 2-에틸헥실, 메타크릴산 에틸, 메타크릴산 부틸, 말레인산 부틸, 말레인산 옥틸, 푸마르산부틸, 푸마르산 옥틸, 메타크릴산 히드록시 에틸, 아크릴산 히드록시에틸, 메타크릴산 히드록시 프로필, 아크릴산 히드록시 프로필 등을 사용할 수 있다. 불포화 카르본산 아미드로는 아크릴아미드, 메타크릴아미드, 메티롤아크릴아미드, 부톡시 메티롤 아크릴아미드 등을 사용할 수 있다. 불포화 니트릴로는 아크릴로니트릴 등을 사용할 수 있다. 불포화 카르본산으로는 아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산, 말레인산 산성 에스테르, 푸마르산 산성 에스테르, 이타콘산 산성 에스테르 등을 사용할 수 있다. 알릴화합물로는 초산알릴, 메타크릴산 알릴, 아크릴산 알릴, 이타콘산 알릴, 이타콘산 디알릴 등을 사용할 수 있다. 함질소계 비닐 모노머로는 비닐피리딘, 비닐 이미다졸 등을 사용할 수 있다. 탄화수소 비닐 모노머로는 에틸렌, 프로필렌, 헥센, 옥텐, 스티렌, 비닐톨루엔, 부타디엔 등을 사용할 수 있다. 비닐 실란화합물로는 디메틸 비닐 메톡시 실란, 디메틸 비닐에톡시 실란, 메틸 비닐 디메톡시 실란, 메틸 비닐 디에톡시 실란, 감마-메타크릴옥시 프로필 트리 메톡시실란, 감마-메타크릴록시 프로필 디메톡시 실란 등을 사용할 수 있다.Radical polymerizable unsaturated monomers copolymerizable with glycidyl group-containing radical polymerizable unsaturated monomers include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers and hydrocarbon vinyl monomers. Or a vinyl silane compound. Vinyl propionate, vinyl stearate, vinyl chloride, etc. can be used as vinyl ester. Unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate, Hydroxyethyl acrylate, methacrylate hydroxypropyl, hydroxypropyl acrylate and the like can be used. As the unsaturated carboxylic acid amide, acrylamide, methacrylamide, metyrolacrylamide, butoxy methirol acrylamide, and the like can be used. Acrylonitrile etc. can be used as unsaturated nitrile. As the unsaturated carboxylic acid, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid acid ester, fumaric acid acid ester, itaconic acid acid ester and the like can be used. As the allyl compound, allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconic acid, diallyl itaconic acid and the like can be used. Vinylpyridine, vinyl imidazole, etc. can be used as a nitrogen-containing vinyl monomer. As the hydrocarbon vinyl monomer, ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene and the like can be used. As a vinyl silane compound, dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxysilane, gamma-methacryloxy propyl dimethoxy silane, etc. Can be used.
본 발명의 일 양태에 따른 수분산성 수지조성물은 바인더수지인 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 0.5 ~ 10 중량%인 수분산성 또는 수용성의 조성물인 것이 바람직하다. 보다 구체적으로 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 0.5 ~ 10 중량%와 나머지는 물을 포함하며, 필요에 따라 웨팅제, 분산제 등의 첨가제를 더 포함할 수 있다. 웨팅제는 코팅성을 향상시키기 위하여 사용되는 것으로 구체적으로 예를 들면, Dow Corning 사의 Q2-5212, ENBODIC사의 TEGO WET 250, BYK CHEMIE사의 BYK 348 등의 변성 실리콘계 웨팅제 등을 사용할 수 있으나, 이로 한정되는 것은 아니다. 웨팅제는 0.1 ~ 0.5 중량%로 사용하는 것이 바람직하며, 상기 범위에서 목적으로 하는 코팅성 향상을 달성할 수 있으나, 이에 제한되는 것은 아니다.The water-dispersible resin composition according to one embodiment of the present invention has a solid content of 0.5 to 10 weight of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer as a binder resin. It is preferable that it is a water dispersible or water-soluble composition which is%. More specifically, the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is 0.5 to 10% by weight, and the remainder includes water. It may further include additives such as a wetting agent, a dispersing agent. The wetting agent is used to improve the coating property. Specifically, for example, a modified silicone wetting agent such as Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, etc. may be used. It doesn't happen. Wetting agent is preferably used in 0.1 to 0.5% by weight, it is possible to achieve the desired coating properties in the above range, but is not limited thereto.
본 발명에서 상기 프라이머층은 건조도포두께가 20 ~ 300nm인 것일 수 있다. 건조도포두께가 20nm 미만인 경우는 올리고머 차단특성이 충분히 나타나지 않을 수 있으며, 300nm 초과인 경우는 필름 권취 후 블록킹(Blocking) 현상이 발생할 가능성이 있다.In the present invention, the primer layer may be a dry coating thickness of 20 ~ 300nm. When the dry coating thickness is less than 20 nm, the oligomer blocking property may not be sufficiently exhibited. When the dry coating thickness is greater than 300 nm, a blocking phenomenon may occur after winding the film.
본 발명의 기재층과 스킨층을 포함하는 폴리에스테르 다층필름의 제조는 제한되지 않지만 적어도 두 개 이상의 용융압출기에서 압출 용융 후 캐스팅하고, 이축연신에 의하여 얻어질 수 있다. 보다 구체적으로 설명하면, 한 압출기에서 폴리에스테르를 압출시키고, 또 다른 압출기에서 폴리에스테르와 실리카나 카올린, 제올라이트와 같은 무기입자 등의 첨가제를 동시에 용융 압출시킨 후 각각의 용융물이 피드블럭에서 만나 공압출되고 캐스팅하고, 냉각한 다음 순차적으로 이축연신한다.The production of the polyester multilayer film including the base layer and the skin layer of the present invention is not limited, but may be obtained by extrusion fusion and casting by biaxial stretching in at least two melt extruders. In more detail, one extruder is used to extrude polyester, and another extruder is melt extruded simultaneously with additives such as polyester, inorganic particles such as silica, kaolin, and zeolite, and each melt is coextruded in the feed block. After casting, casting, cooling and then biaxial stretching in sequence.
본 발명에서 상기 대전방지조성물 및 수분산성 프라이머 조성물은 폴리에스테르 필름 제조 공정 중 인라인 도포방법으로 도포되는 것일 수 있다. 즉 폴리에스테르 베이스필름 제조 시 연신 전 또는 1차 연신 후 2차 연신 전에 인라인 도포방법으로 도포한 후, 연신함으로써 제조될 수 있으며, 2차 연신 및 열고정 과정에서 가열에 의해 물이 증발하게 되어 프라이머층이 형성될 수 있다. 도포방법은 공지의 도포방법이라면 제한되지 않는다.In the present invention, the antistatic composition and the water dispersible primer composition may be applied by an in-line coating method of the polyester film manufacturing process. In other words, the polyester base film may be prepared by applying an in-line coating method before stretching or before the second stretching after the primary stretching, or by stretching. Water is evaporated by heating during the secondary stretching and heat setting. Layers can be formed. The coating method is not limited as long as it is a known coating method.
본 발명의 폴리에스테르 다층필름은 열처리 전 필름의 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈가 2%이하이고, 전광선투과율이 90% 이상이며, The polyester multilayer film of the present invention has a surface resistance of 10 5 to 10 9 Ω / sq, a haze of 2% or less, a total light transmittance of 90% or more before the heat treatment,
85℃, 85%에서 72시간 유지 후, 헤이즈 변화율 △H1가 하기 식 2를 만족하고, 광투과도 변화율 △TT1이 하기 식 3을 만족하고, 접착력 평가 시 대전방지층 및 프라이머층이 폴리에스테르 베이스필름에 유지되는 물성을 만족하여 고온고습 조건에서의 광학적 물성이 우수함을 알 수 있다.After 72 hours at 85 ° C. and 85%, the haze change rate ΔH 1 satisfies the following formula 2, the light transmittance change rate ΔTT 1 satisfies the following formula 3, and the antistatic layer and the primer layer were the polyester base in the evaluation of the adhesion. It can be seen that the optical properties in the high temperature and high humidity conditions are satisfied by satisfying the physical properties maintained in the film.
[식 2][Equation 2]
△H1 < 0.5 %ΔH 1 <0.5%
상기 식 2에서 △H1 = Hf - Hi이고, Hf는 85℃, 85%에서 72시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.ΔH 1 = H f −H i in Equation 2, H f is the haze of the film after holding at 85 ° C., 85% for 72 hours, and H i is the haze of the film before heating.
[식 3][Equation 3]
△TT1 < 0.5 %TT 1 <0.5%
상기 식 3에서 △TT1 = TTf - TTi이고, TTf 85℃, 85%에서 72시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 3, and TT f is It is the total light transmittance of a film after hold | maintaining at 85 degreeC and 85% for 72 hours, and TT i is the total light transmittance of a film before heating.
또한, 60℃, 95%에서 120시간 유지 후, 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈 변화율 △H2가 하기 식 4를 만족하고, 광투과도 변화율 △TT2이 하기 식 5를 만족하고, 접착력 평가 시 대전방지층 및 프라이머층이 폴리에스테르 베이스필름에 유지되는 물성을 모두 만족할 수 있음을 알 수 있다.In addition, 60 ℃, then at 95% maintained 120 hours, and a surface resistance of 10 5 ~ 10 9 Ω / sq , a haze rate of change △ satisfies the H 2 is the following formula 4 and, △ light transmittance change rate TT 2 to have the formula 5 It can be seen that the antistatic layer and the primer layer satisfy all of the physical properties maintained in the polyester base film when the adhesive force is evaluated.
[식 4][Equation 4]
△H2 < 1.0 %ΔH 2 <1.0%
상기 식 4에서 △H2 = Hf - Hi이고, Hf는 60℃, 95%에서 120시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.In Formula 4, ΔH 2 = H f −H i , H f is the haze of the film after holding at 60 ° C., 95% for 120 hours, and H i is the haze of the film before heating.
[식 5][Equation 5]
△TT2 < 1.0 %TT 2 <1.0%
상기 식 5에서 △TT1 = TTf - TTi이고, TTf 60℃, 95%에서 120시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 5, and TT f is It is the total light transmittance of a film after hold | maintaining at 60 degreeC and 95% for 120 hours, and TT i is the total light transmittance of a film before heating.
본 발명의 폴리에스테르 필름의 상부에 하드코팅층, 점착제층, 광확산층, ITO층, 인쇄층 등이 형성될 수 있으며, 이러한 기능성 코팅층을 형성한 후 가열을 하여도 올리고머의 유출이 차단되어 광학적 특성을 유지할 수 있으므로, 본 발명의 폴리에스테르 필름은 광학 필름으로 사용하기에 적합하다.Hard coating layer, pressure-sensitive adhesive layer, light diffusing layer, ITO layer, printing layer, etc. may be formed on the polyester film of the present invention, and even after heating the functional coating layer, the outflow of the oligomer is blocked to provide optical properties. Since it can be maintained, the polyester film of this invention is suitable for use as an optical film.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the following Examples and Comparative Examples are only examples for explaining the present invention in more detail, the present invention is not limited by the following Examples and Comparative Examples.
1) 고유 점도(I.V.; dl/g) 1) intrinsic viscosity (I.V .; dl / g)
페놀과 1,1,2,2-테트라클로로 에탄올을 6:4의 무게비로 혼합한 시약 100ml에 PET 펠렛(샘플) 0.4g을 넣고 90분간 용해시킨 후, 우베로데 점도계에 옮겨 담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인 장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V 값 및 I.V값을 계산하였다.Into 100 ml of a mixture of phenol and 1,1,2,2-tetrachloroethanol at a weight ratio of 6: 4, 0.4 g of PET pellet (sample) was dissolved for 90 minutes, and then transferred to a Uberode viscometer and placed in a 30 ° C thermostat. The solution was held for 10 minutes, and the number of seconds of the drop of the solution was determined using a viscometer and an aspirator. The number of falling seconds of the solvent was also determined in the same manner, and then R.V and I.V values were calculated by the following equations (1) and (2).
하기 수학식에서 C는 시료의 농도를 나타낸다. In the following equation, C represents the concentration of the sample.
[수학식 1][Equation 1]
R.V = 시료의 낙하 초수/용매의 낙하 초수R.V = number of drops of sample / number of drops of solvent
[수학식 2][Equation 2]
Figure PCTKR2017006938-appb-I000003
Figure PCTKR2017006938-appb-I000003
2) 올리고머 함량(%)2) oligomer content (%)
올리고머 정량적인 방법으로 시료용매인 1,1,1,3,3,3-헥사플루오르-2-프로판올에 클로로포름을 첨가하여 실온에서 용해를 한 후 아세토니트릴을 폴리머로 석출한다. 그런 후 LC분석장비를 이용하여 표준물질인 고리형 삼량체(Cyclic trimer) CT-3의 검량선을 작성한 후, 시료분석을 통해 고리형 올리고머 순도 결정을 하게 된다. 분석장비는 LC(liquid chromatography)와 Agilent사 1100series를 이용하였다.Oligomer By quantitative method, chloroform is added to 1,1,1,3,3,3-hexafluoro-2-propanol, a sample solvent, dissolved at room temperature, and then acetonitrile is precipitated as a polymer. After that, a calibration curve of the cyclic trimer CT-3, which is a standard material, is prepared by using an LC analyzer, and cyclic oligomer purity is determined through sample analysis. As analytical equipment, LC (liquid chromatography) and Agilent's 1100 series were used.
3) DEG(Diethylene glycol) 함량(%)3) DEG (Diethylene glycol) content (%)
디에틸렌글리콜(DEG, Diethylene Glycol)의 함량은 시료 1 g을 50 mL 용기에 넣은 후, 모노에탄올아민 3 mL를 가하고 핫 플레이트를 이용하여 가열하여 시료를 완전히 용해시킨 다음, 100 ℃로 냉각시켜 1,6-헥산디올 0.005g을 메탄올 20 mL에 용해시킨 용액을 가하고, 테레프탈산 10 g을 가하여 중화시켰다. 얻어진 중화액을 깔대기 및 여과지를 사용하여 여과한 후 여액을 기체 크로마토그래피(Gas Chromatography)하여 DEG 함량(중량%)을 측정하였다. GC 분석은 시마주(Shimadzu) GC 분석기를 사용하고 시마주 GC 매뉴얼에 따라 측정하였다.Diethylene Glycol (DEG) content is 1 g of a sample in a 50 mL container, 3 mL of monoethanolamine is added and heated using a hot plate to completely dissolve the sample, then cooled to 100 ℃ 1 A solution of 0.005 g of 6-hexanediol dissolved in 20 mL of methanol was added, followed by neutralization by addition of 10 g of terephthalic acid. The obtained neutralized liquid was filtered using a funnel and filter paper, and the filtrate was subjected to gas chromatography (Gas Chromatography) to measure the DEG content (% by weight). GC analysis was measured using a Shimadzu GC analyzer and in accordance with the Shimazu GC manual.
4) 헤이즈 및 전광선투과율4) Haze and total light transmittance
제막된 필름의 시편을 HAZE METER(모델명: Nipon denshoku, Model NDH 5000)를 이용하여 측정하였다. Specimens of the film formed were measured using a HAZE METER (model name: Nipon denshoku, Model NDH 5000).
5) 헤이즈 변화율(△H) 및 광투과율 변화율(△TT )5) Haze change rate (△ H) and light transmittance change rate (△ TT)
필름을 상부가 열려있는 높이 3cm, 가로 21cm, 세로 27cm인 상자에 넣고 85℃, 85%, 72Hr 및 60℃, 95%, 120Hr 으로 각각 열처리한 후 5분간 방치하였다. 이후, JIS K 715 규격에 따라 HAZE METER (Nipon denshoku, Model NDH 5000)를 이용하여 헤이즈 변화율(△H) 및 광투과율 변화율(△TT )을 측정하였다. The film was placed in a box having a height of 3 cm, a width of 21 cm, and a height of 27 cm with an open top, and then heat-treated at 85 ° C., 85%, 72 Hr and 60 ° C., 95%, 120 Hr, and left for 5 minutes. Then, haze change rate (ΔH) and light transmittance change rate (ΔTT) were measured using a HAZE METER (Nipon denshoku, Model NDH 5000) according to JIS K 715.
헤이즈 변화율은 하기 계산식 1에 따라 계산하였으며, 광투과율 변화율은 하기 계산식 2에 따라 계산하였다.The haze change rate was calculated according to the following formula 1, and the light transmittance change rate was calculated according to the following formula 2.
[계산식 1][Calculation 1]
△H = Hf - Hi ΔH = H f -H i
상기 식에서, Hf는 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.In the above formula, H f is the haze of the film after holding at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours, and Hi is the haze of the film before heating.
[계산식 2][Calculation 2]
△TT = TTf - TTi △ TT = TT f -TT i
상기 식에서, TTf는 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.In the above formula, TT f is the total light transmittance of the film after holding at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours, and TT i is the total light transmittance of the film before heating.
6) 표면저항6) surface resistance
본 발명의 대전방지층의 표면저항을 평가하였다. 측정 방법은 Simco社 ST-4 장비를 사용하여 25℃, 50%Rh, 10V, 10초의 조건으로 표면저항을 측정하였다.The surface resistance of the antistatic layer of the present invention was evaluated. As a measurement method, surface resistance was measured at 25 ° C., 50% Rh, 10 V, and 10 seconds using a Simco ST-4 device.
또한, 시료를 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지시킨 후, 표면저항 변화도 측정하였다.In addition, after maintaining the sample at 85 ° C., 85% at 72 hours or 60 ° C., 95% at 120 hours, the surface resistance change was also measured.
7) 코팅두께 측정7) Coating thickness measurement
TEM 장비를 이용하여 코팅 두께를 측정하였다.Coating thickness was measured using a TEM instrument.
8) 수접촉각8) Water contact angle
접촉각 측정기로 Drop shape Analyzer DSA100(KRUSS사)을 사용하여 부피기준 4㎕의 물을 떨어뜨려 Tangent Method로 측정하였다. 접촉각이 90°이상인 경우에 사용기준에 부합함을 나타낸다.Drop shape analyzer DSA100 (KRUSS Co., Ltd.) was used as the contact angle measuring instrument, and 4 μl of water was dropped on the basis of the Tangent Method. If the contact angle is more than 90 °, it indicates the use criteria.
9) 실리콘 접착력 측정9) Silicone Adhesion Measurement
ASTM B905에 따라 접착력을 측정하였다.Adhesion was measured according to ASTM B905.
필름 제조 후 대전방지코팅 조성물이 코팅된 면에 실리콘 점착제로 Momentive PSA6574를 도포하고 150℃에서 4분간 건조하여 30㎛ 두께의 실리콘 코팅층을 형성하였다. 접착 코팅한 필름을 끓는 물에 2시간 넣은 후, Rubbing시 탈락 여부를 확인하여 대전방지 코팅층과 실리콘 접착층 간의 접착력을 평가하였다.After the film was prepared, Momentive PSA6574 was coated on the surface coated with the antistatic coating composition with a silicone adhesive and dried at 150 ° C. for 4 minutes to form a silicon coating layer having a thickness of 30 μm. The adhesive coated film was placed in boiling water for 2 hours, and then checked for dropping during rubbing to evaluate the adhesion between the antistatic coating layer and the silicone adhesive layer.
○ : 실리콘 접착층이 그대로 유지○: The silicone adhesive layer is kept as it is
X : 실리콘 접착층이 일부 탈락되거나 완전히 탈락X: The silicone adhesive layer is partially dropped or completely dropped
10) 프라이머층 및 대전방지층의 올리고머 마이그레이션 정도 평가10) Evaluation of the degree of oligomer migration of the primer layer and the antistatic layer
폴리에스테르 필름을 100mm×100mm의 크기로 자른 후 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 항온항습기에서 에이징(Aging)하였다. 이후, 현미경(Leica, DM 2500M)의 반사모드를 이용하여 500 배 배율로 관찰시 27000㎛2을 관찰할 수 있고, 이와 같은 면적을 10회 표면 관찰하고, 10회 표면 관찰 한 올리고머 입자의 개수를 평균하여 나타내었다. 올리고머 입자의 평균 크기는 15±5 ㎛이며, 관찰 시 검은색의 점과 같이 관찰된다.The polyester film was cut to a size of 100 mm × 100 mm and then aged in a constant temperature and humidity chamber at 85 ° C., 85% for 72 hours or 60 ° C., 95% for 120 hours. Then, using a reflection mode of the microscope (Leica, DM 2500M) can be observed 27000㎛ 2 when observed at 500 times magnification, the surface area observed 10 times, the number of oligomer particles observed surface 10 times Averaged. The average size of the oligomer particles is 15 ± 5 μm and observed as black dots when observed.
단위 면적당(10000㎛2 )올리고머의 수 = (1회 관찰시의 올리고머 입자의 수 / 2.7)Number of oligomers per unit area (10000 μm 2 ) = (number of oligomer particles per observation / 2.7)
11) 베이스필름과 프라이머층 및 대전방지층의 접착력11) Adhesion between base film, primer layer and antistatic layer
극세사 천 위에 넓이 25 mm × 25 mm, 무게 915g의 금속판을 올려놓고 10회 문지른 후, 코팅층 탈락 여부를 확인하여 접착력 평가를 실시하였다.After placing a metal plate having a width of 25 mm × 25 mm and a weight of 915 g on the microfiber cloth and rubbing ten times, the adhesive layer was evaluated by checking whether the coating layer was dropped.
○ : 코팅층이 그대로 유지○: The coating layer is maintained as it is
X : 코팅층의 일부 혹은 전체가 벗겨짐X: part or all of the coating layer is peeled off
12) 굴절율 12) refractive index
ASTM D1218에 의거, ABBE 굴절계(ATAGO사, DR-M2)를 이용하여 굴절율을 측정하였다.According to ASTM D1218, the refractive index was measured using an ABBE refractometer (DRGO, ATAGO Co., Ltd.).
[제조예 1] 수분산성 대전방지 조성물의 제조(1)Preparation Example 1 Preparation of Water Dispersible Antistatic Composition (1)
전도성 고분자 수분산액으로 Heraeus사, Clevios P(고형분 1.3 wt%) 60wt%, 물 6wt%, 이소프로필알코올 5wt%을 혼합용기에 넣고 1시간 동안 교반하고, 2-Amino-2-methyl-1-propanol(Alfa aesar, 95%) 2wt%를 혼합용기에 추가로 넣어 다시 1시간 동안 교반한 후에 수계 폴리우레탄 바인더 수지로 Neo resins사 NeoRez R-972(고형분 34 중량%)를 20wt% 넣어 30분간 재교반한 후, 혼합용기에 디메틸설폭사이드 5wt%, 실리콘계 웨팅제(BYK사 BYK 348) 1wt%, 슬립제(Dow corning사, Q8-8211) 1wt% 첨가하여 1시간 동안 추가 교반하여 1차 대전방지조성물을 제조하였다.As a conductive polymer aqueous solution, Heraeus, Clevios P (solid content 1.3 wt%), 60 wt%, water 6wt%, isopropyl alcohol 5wt% were put in a mixed container and stirred for 1 hour, 2-Amino-2-methyl-1-propanol 2 wt% (Alfa aesar, 95%) was added to the mixing vessel and stirred for another 1 hour, followed by adding 20 wt% of NeoRez R-972 (34 wt% solid) of Neo resins with aqueous polyurethane binder resin and restirring for 30 minutes. Then, 5 wt% of dimethyl sulfoxide, 1 wt% of a silicone-based wetting agent (BYK company BYK 348), and 1 wt% of a slip agent (Dow corning company, Q8-8211) were added to the mixed container and further stirred for 1 hour to prepare a primary antistatic composition. Prepared.
그리고 상기 1차 대전방지조성물을 2차 희석 제조하였다. 이때 상기 1차 대전방지조성물 40wt%와 물 59.6wt% 및 불소계 웨팅제(Zonyl FSH) 0.4wt%를 혼합하여 수분산성 대전방지조성물(1)을 제조하였다.And the first antistatic composition was prepared in a second dilution. At this time, the water-dispersible antistatic composition (1) was prepared by mixing 40 wt% of the primary antistatic composition, 59.6 wt% of water, and 0.4 wt% of fluorine-based wetting agent (Zonyl FSH).
[제조예 2] 수분산성 프라이머 조성물(2)의 제조Preparation Example 2 Preparation of Water Dispersible Primer Composition (2)
바인더로 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A) : (B) = 50 : 50인 바인더를 사용하였다.As the binder, a binder having a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer and a water-dispersible polyester resin (B) (A) :( B) = 50: 50 was used.
상기 아크릴계 수지(A)는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 50 몰% 함유하고, 상기 수분산성 폴리에스테르계 수지는 디에틸렌글리콜을 전체 글리콜 성분 중 50 몰% 함유하고, 술폰산 알칼리 금속염 화합물을 전체 산 성분 중 10몰% 함유하며, 중량평균분자량이 32000인 것을 사용하였다.The acrylic resin (A) contains 50 mol% of glycidyl group-containing radically polymerizable unsaturated monomer as a copolymerization monomer in all monomer components, and the water-dispersible polyester resin contains 50 mol% of diethylene glycol in all glycol components. A sulfonic acid alkali metal salt compound containing 10 mol% of all the acid components and having a weight average molecular weight of 32000 were used.
상기 수분산성 폴리에스테르계 수지(B)는 디에틸렌글리콜 50 몰%, 에틸렌글리콜 50몰%의 글리콜성분 50몰%에 대하여, 술포테레프탈산 15몰%, 테레프탈산 85몰%의 산성분을 50몰%를 사용하여 중합된 수지로, 중량평균분자량이 12000인 것을 사용하였다.The water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%. As the resin polymerized using, a weight average molecular weight of 12000 was used.
상기 바인더의 고형분 함량 2 중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 wt% 및 잔량의 물을 혼합하여 수분산성 프라이머 조성물(2)을 제조하였다.A water dispersible primer composition 2 was prepared by mixing 2 wt% of the solid content of the binder, 0.3 wt% of a silicone-based wetting agent (BYK 348 by BYK CHEMIE), and the balance of water.
[제조예 3] 수분산성 대전방지 조성물(2)의 제조Preparation Example 3 Preparation of Water Dispersible Antistatic Composition (2)
전도성 고분자 수분산액으로 Heraeus사, Clevios P(고형분 1.3 wt%) 30wt%, 물 6wt%, 이소프로필알코올 5wt%을 혼합용기에 넣고 1시간 동안 교반하고, 2-Amino-2-methyl-1-propanol(Alfa aesar, 95%) 2wt%를 혼합용기에 추가로 넣어 다시 1시간 동안 교반한 후에 수계 폴리우레탄 바인더 수지로 Neo resins사 NeoRez R-972(고형분 34 중량%)를 50wt% 넣어 30분간 재교반한 후, 혼합용기에 디메틸설폭사이드 5wt%, 실리콘계 웨팅제(BYK사 BYK 348) 1wt%, 슬립제(Dow corning사, Q8-8211) 1wt% 첨가하여 1시간 동안 추가 교반하여 1차 대전방지조성물을 제조하였다.As a conductive polymer aqueous solution, Heraeus, Clevios P (solid content 1.3 wt%), 30 wt%, water 6wt%, isopropyl alcohol 5wt% were added to the mixing vessel and stirred for 1 hour, 2-Amino-2-methyl-1-propanol 2 wt% (Alfa aesar, 95%) was added to the mixing vessel and stirred for another 1 hour, followed by adding 50 wt% of NeoRez R-972 (34 wt% solid) of Neo resins with an aqueous polyurethane binder resin and restirring for 30 minutes. Then, 5 wt% of dimethyl sulfoxide, 1 wt% of a silicone-based wetting agent (BYK company BYK 348), and 1 wt% of a slip agent (Dow corning company, Q8-8211) were added to the mixed container and further stirred for 1 hour to prepare a primary antistatic composition. Prepared.
그리고 상기 1차 대전방지조성물을 2차 희석 제조한다. 이때 상기 1차 대전방지조성물 40wt%와 물 59.6wt%와 불소계 웨팅제(Zonyl FSH) 0.4wt%를 혼합하여 수분산성 대전방지조성물(2)을 제조하였다.And the first antistatic composition to prepare a second dilution. At this time, 40 wt% of the primary antistatic composition, 59.6 wt% of water, and 0.4 wt% of a fluorine-based wetting agent (Zonyl FSH) were prepared to prepare a water dispersible antistatic composition (2).
[실시예 1] 폴리에스테르필름의 제조Example 1 Preparation of Polyester Film
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. The skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 µm to the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 1에서 제조한 수분산성 대전방지조성물(1)을 바코팅(Bar Coating)방법으로 일면에 코팅하고, 제조예 2에서 제조한 수분산성 프라이머 조성물(2)을 타면에 바코팅 방법으로 코팅 한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신 하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 양면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C. Thereafter, heat treatment was performed at 230 ° C. in a five-stage tenter, and at 200 ° C., 10% was relaxed in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 50 nm이고, 프라이머층의 건조도포두께는 50 nm이었다. The prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[실시예 2]Example 2
상기 실시예 1에서 프라이머층의 건조도포두께를 100nm로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스테르 다층필름을 제조하였다. A polyester multilayer film was manufactured in the same manner as in Example 1, except that the dry coating thickness of the primer layer was changed to 100 nm in Example 1.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[실시예 3]Example 3
상기 실시예 1에서 프라이머층의 건조도포두께를 150nm로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리에스테르 다층필름을 제조하였다. A polyester multilayer film was manufactured in the same manner as in Example 1, except that the dry coating thickness of the primer layer was changed to 150 nm in Example 1.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[실시예 4]Example 4
상기 실시예 1에서 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%가 되도록 변경한 것을 제외하고 실시예 1과 동일한 방법으로 폴리에스테르 다층필름을 제조하였다. A polyester multilayer film was manufactured in the same manner as in Example 1, except that the base layer was 80% by weight of the total film weight in Example 1, and the skin layer was changed to be 20% by weight of the total film weight.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[실시예 5]Example 5
상기 실시예 1에서 기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.5중량%인 폴리에틸렌테레프탈레이트를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 폴리에스테르 다층필름을 제조하였다. In Example 1, except that polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.5% by weight was used as the base layer (B). A polyester multilayer film was prepared.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[실시예 6] Example 6
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. The skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 µm to the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 3에서 제조한 수분산성 대전방지조성물(2)을 바코팅(Bar Coating)방법으로 일면에 코팅하고, 제조예 2에서 제조한 수분산성 프라이머 조성물(2)을 타면에 바코팅 방법으로 코팅 한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (2) prepared in Preparation Example 3 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C.
이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 양면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. Thereafter, heat treatment was performed at 230 ° C. in a five-stage tenter, and at 200 ° C., 10% was relaxed in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 50 nm이고, 프라이머층의 건조도포두께는 50 nm이었다. The prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
[비교예 1]Comparative Example 1
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. The skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 µm to the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 1에서 제조한 수분산성 대전방지조성물(1)을 바코팅(Bar Coating)방법으로 일면에 코팅 한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and then stretched 3.5 times in a transverse direction (TD) at 150 ° C.
이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 일면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, and 10% relaxation was performed at 200 ° C. in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on one surface.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 50 nm이었다.The prepared polyester multilayer film had a base layer of 60% by weight of the total film weight, a skin layer of 40% by weight of the total film weight, and a dry coating thickness of the antistatic layer was 50 nm.
[비교예 2]Comparative Example 2
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. The skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 µm to the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 1에서 제조한 수분산성 대전방지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅 한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on both sides by a bar coating method, and then stretched 3.5 times in a transverse direction (TD) at 150 ° C.
이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 양면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. Thereafter, heat treatment was performed at 230 ° C. in a five-stage tenter, and at 200 ° C., 10% was relaxed in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 각각 50 nm이었다.The prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, and the dry coating thickness of the antistatic layer was 50 nm, respectively.
[비교예 3] Comparative Example 3
폴리에스테르 베이스필름으로 실시예 1과 같이 3층으로 공압출하지 않고 단층의 폴리에스테르 필름을 사용하였다.As the polyester base film, a single-layer polyester film was used without co-extrusion into three layers as in Example 1.
고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.8중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하여 단층의 폴리에틸렌테레프탈레이트 필름을 제조하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였다. A polyethylene terephthalate having an intrinsic viscosity of 0.63, a diethylene glycol content of 0.96% by weight, and an oligomer content of 1.8% by weight was added to an extruder to melt extrusion to prepare a single layer polyethylene terephthalate film. A film was prepared in the same manner as in Example 1.
[비교예 4][Comparative Example 4]
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. The skin layer (A) has an intrinsic viscosity of 0.67, a content of diethylene glycol of 0.8% by weight, an oligomer content of 0.5% by weight of polyethylene terephthalate chips and an average particle diameter of 0.5 µm to the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 1에서 제조한 수분산성 대전방지조성물(1)을 바코팅(Bar Coating)방법으로 일면에 코팅 한 후, 타면에 굴절율이 1.58인 폴리우레탄계 바인더를 포함하는 수분산성 프라이머조성물을 바코팅(Bar Coating)방법으로 코팅한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and then the other surface was coated with a water-dispersible primer composition including a polyurethane-based binder having a refractive index of 1.58. After coating by the (Bar Coating) method, it was stretched 3.5 times in the transverse direction (TD) at 150 ℃.
이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 일면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, and 10% relaxation was performed at 200 ° C. in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on one surface.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 50 nm고, 프라이머층의 건조도포두께는 50 nm이었다.The prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
[비교예 5] [Comparative Example 5]
기재층(B)으로 고유점도가 0.63이고, 디에틸렌글리콜의 함량이 0.96중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트 칩을 압출기에 투입하여 용융압출하였다. 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 1.3중량%이며, 올리고머 함량이 0.7중량%인 폴리에틸렌테레프탈레이트 칩 및 평균입경이 0.5㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. As the base material layer (B), polyethylene terephthalate chips having an intrinsic viscosity of 0.63, a content of diethylene glycol of 0.96% by weight, and an oligomer content of 1.4% by weight were introduced into an extruder to melt extrusion. In the skin layer (A), the polyethylene terephthalate chip having an intrinsic viscosity of 0.67, the content of diethylene glycol of 1.3% by weight, the oligomer content of 0.7% by weight, and the silica particles having an average particle diameter of 0.5 µm are compared with the total polyethylene terephthalate weight. A sheet co-extruded to the A / B / A three layer using 50 ppm was prepared.
상기 시트를 120 ℃에서 기계방향(MD)으로 3배 연신을 하였다. 이후, 제조예 1에서 제조한 수분산성 대전방지조성물(1)을 바코팅(Bar Coating)방법으로 일면에 코팅하고, 제조예 2에서 제조한 수분산성 프라이머 조성물(2)을 타면에 바코팅 방법으로 코팅 한 후, 150 ℃에서 횡방향(TD)으로 3.5배 연신하였다. The sheet was stretched three times in the machine direction (MD) at 120 ° C. Thereafter, the water-dispersible antistatic composition (1) prepared in Preparation Example 1 was coated on one surface by a bar coating method, and the water-dispersible primer composition (2) prepared in Preparation Example 2 was applied to the other surface by a bar coating method. After coating, the film was stretched 3.5 times in the transverse direction (TD) at 150 ° C.
이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완하여 양면에 코팅된 75㎛의 2축 연신 필름을 제조하였다. Thereafter, heat treatment was performed at 230 ° C. in a five-stage tenter, and at 200 ° C., 10% was relaxed in the longitudinal and transverse directions to prepare a 75 μm biaxially stretched film coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 60중량%이고, 스킨층이 전체필름 중량의 40중량%였으며, 상기 대전방지층의 건조도포두께는 50 nm이고, 프라이머층의 건조도포두께는 50 nm이었다. The prepared polyester multilayer film was 60% by weight of the total film weight, the skin layer was 40% by weight of the total film weight, the dry coating thickness of the antistatic layer is 50 nm, the dry coating thickness of the primer layer is 50 nm.
물성을 측정하여 하기 표 1 및 표 2에 나타내었다.Physical properties were measured and shown in Tables 1 and 2 below.
헤이즈(%)Haze (%) 전광선투과율(%)Total light transmittance (%) 대전방지층의 접착력Adhesive force of antistatic layer 프라이머층의 접착력Adhesion of Primer Layer 대전방지층의 올리고머 개수Oligomer Number of Antistatic Layers 프라이머층의 올리고머 개수Oligomer Number of Primer Layers
초기Early △H1 △ H 1 △H2 △ H 2 초기Early △TT1 △ TT 1 △TT2 △ TT 2 초기Early 1)One) 2)2) 초기Early 1)One) 2)2) 1)One) 2)2) 1)One) 2)2)
실시예 1Example 1 1.151.15 0.30.3 0.30.3 91.2091.20 0.140.14 0.140.14 1212 1414 88 1010
실시예 2Example 2 1.171.17 0.20.2 0.20.2 92.3092.30 0.110.11 0.110.11 88 99 55 66
실시예 3Example 3 1.191.19 0.10.1 0.10.1 93.2093.20 0.080.08 0.080.08 44 44 22 22
실시예 4Example 4 1.051.05 0.50.5 0.50.5 91.4091.40 0.260.26 0.260.26 2828 2929 1616 1818
실시예 5Example 5 1.161.16 0.40.4 0.40.4 91.5091.50 0.240.24 0.240.24 2626 2727 1212 1414
실시예 6Example 6 1.151.15 0.50.5 0.50.5 91.9091.90 0.150.15 0.150.15 2020 2121 88 1010
비교예 1Comparative Example 1 1.101.10 2.52.5 2.72.7 89.0089.00 0.340.34 0.340.34 -- -- -- 4242 4646 -- --
비교예 2Comparative Example 2 1.121.12 2.02.0 2.02.0 87.6087.60 0.280.28 0.280.28 -- -- -- 3737 3838 -- --
비교예 3Comparative Example 3 1.331.33 4.54.5 4.54.5 90.2090.20 1.121.12 1.141.14 9292 9696 5858 5858
비교예 4Comparative Example 4 1.141.14 3.53.5 3.73.7 88.7088.70 0.440.44 0.440.44 4242 4646 3232 3737
비교예 5Comparative Example 5 1.251.25 2.62.6 2.62.6 91.2091.20 0.340.34 0.350.35 4242 4444 2828 3030
상기 표 1에서 △H1은 85℃, 85% 72시간 후 측정한 헤이즈 변화율이고, △H2는 60℃, 95% 120시간 후 측정한 헤이즈 변화율이다.In Table 1, ΔH 1 is a haze change rate measured after 85 ° C. and 85% 72 hours, and ΔH 2 is a haze change rate measured after 60 ° C. and 95% 120 hours.
△TT1은 85℃, 85% 72시간 후 측정한 전광선투과율의 변화율이고, △TT2는 60℃, 95% 120시간 후 측정한 전광선투과율의 변화율이다.ΔTT 1 is the rate of change in total light transmittance measured after 85 ° C. and 85% 72 hours, and ΔTT 2 is the rate of change in total light transmittance measured after 120 hours at 60 ° C., 95%.
대전방지층의 접착력 1)은 85℃, 85% 72시간 후 측정한 베이스필름에 대한 대전방지층의 접착력이고, 대전방지층의 접착력 2)는 60℃, 95% 120시간 후 측정한 베이스필름에 대한 대전방지층의 접착력이다.Adhesion of the antistatic layer 1) is the adhesion of the antistatic layer to the base film measured after 85 ℃, 85% 72 hours, adhesion of the antistatic layer 2) is the antistatic layer to the base film measured after 60 ℃, 95% 120 hours Of adhesion.
프라이머층의 접착력 1)은 85℃, 85% 72시간 후 측정한 베이스필름에 대한 프라이머층의 접착력이고, 프라이머층의 접착력 2)는 60℃, 95% 120시간 후 측정한 베이스필름에 대한 프라이머층의 접착력이다.The adhesion of the primer layer 1) is the adhesion of the primer layer to the base film measured after 85 ℃, 85% 72 hours, the adhesion of the primer layer 2) is the primer layer to the base film measured after 60 ℃, 95% 120 hours Of adhesion.
대전방지층의 올리고머 개수 1)은 85℃, 85% 72시간 후 측정한 베이스필름에 대한 대전방지층의 올리고머 개수이고, 대전방지층의 올리고머 개수 2)는 60℃, 95% 120시간 후 측정한 베이스필름에 대한 대전방지층의 올리고머 개수이다.The number of oligomers of the antistatic layer 1) is the number of oligomers of the antistatic layer relative to the base film measured after 85 ° C., 85% 72 hours, and the number of oligomers of the antistatic layer 2) is the base film measured after 60 ° C., 95% 120 hours. Is the number of oligomers of the antistatic layer.
프라이머층의 올리고머 개수 1)은 85℃, 85% 72시간 후 측정한 베이스필름에 대한 프라이머층의 올리고머 개수이고, 프라이머층의 올리고머 개수 2)는 60℃, 95% 120시간 후 측정한 베이스필름에 대한 프라이머층의 올리고머 개수이다.Oligomer number 1) of the primer layer is the number of oligomers of the primer layer for the base film measured after 85 ℃, 85% 72 hours, oligomer number 2) of the primer layer was measured on the base film measured after 60 ℃, 95% 120 hours Is the number of oligomers of the primer layer.
상기 표 1에서 보는 바와 같이, 실시예 1 내지 6은 일면에 대전방지층을 형성하고, 다른 면에는 프라이머 코팅층을 형성함으로써, 고온고습 공정을 거친 후에도 표면저항의 변화가 적고, 대전방지성이 우수하며, 동시에 광투과율이 비교예에 비하여 현저하게 향상됨을 알 수 있고, 대전방지층 및 프라이머층의 올리고머 개수가 현저히 감소되는 것을 확인하였다.As shown in Table 1, Examples 1 to 6 by forming an antistatic layer on one side, and a primer coating layer on the other side, there is little change in surface resistance even after a high temperature and high humidity process, excellent antistatic properties At the same time, it can be seen that the light transmittance is remarkably improved as compared with the comparative example, and the number of oligomers of the antistatic layer and the primer layer is significantly reduced.
비교예 1의 경우는 실시예 1과 동일한 조성의 수분산성 대전방지조성물을 사용했음에도 불구하고 일면에 대전방지층만 형성된 경우에는 광투과율이 급격하게 저하되어 전자재료용 및 광학용 필름으로 사용이 불가능함을 확인하였으며, 올리고머 개수가 증가함을 알 수 있었다. In the case of Comparative Example 1, even though the water-dispersible antistatic composition having the same composition as in Example 1 was used, when only the antistatic layer was formed on one surface, the light transmittance rapidly decreased, and thus it was impossible to use it as an electronic material and an optical film. It was confirmed that the oligomer number was found to increase.
비교예 2와 같이 수분산성 대전방지조성물을 양면에 도포한 경우에도 올리고머 개수가 증가함을 알 수 있었다. It was found that the number of oligomers increased even when the water-dispersible antistatic composition was applied to both surfaces as in Comparative Example 2.
대전방지층Antistatic layer 프라이머층 굴절율Primer layer refractive index
수접촉각(도)Water contact angle (degrees) 표면저항(Ω/sq)Surface resistance (Ω / sq) 실리콘 접착력Silicone adhesion
초기Early 1)One) 2)2)
실시예 1Example 1 9292 105.8 10 5.8 106.2 10 6.2 106.4 10 6.4 1.481.48
실시예 2Example 2 9696 105.5 10 5.5 105.8 10 5.8 106.0 10 6.0 1.481.48
실시예 3Example 3 100100 105.2 10 5.2 105.4 10 5.4 105.6 10 5.6 1.481.48
실시예 4Example 4 9292 105.8 10 5.8 106.7 10 6.7 106.8 10 6.8 1.481.48
실시예 5Example 5 9292 105.8 10 5.8 106.6 10 6.6 106.8 10 6.8 1.481.48
실시예 6Example 6 9090 108.2 10 8.2 108.6 10 8.6 108.8 10 8.8 1.481.48
비교예 1Comparative Example 1 9292 105.8 10 5.8 107.4 10 7.4 107.6 10 7.6 --
비교예 2Comparative Example 2 9292 105.8 10 5.8 107.2 10 7.2 107.4 10 7.4 --
비교예 3Comparative Example 3 9292 105.8 10 5.8 107.8 10 7.8 108.0 10 8.0 1.481.48
비교예 4Comparative Example 4 9292 105.8 10 5.8 107.4 10 7.4 107.7 10 7.7 1.581.58
비교예 5Comparative Example 5 9292 105.8 10 5.8 107.9 10 7.9 107.2 10 7.2 1.481.48
상기 표 2에서 표면저항 1)은 85℃, 85% 72시간 후 측정한 표면저항이고, 표면저항 2)는 60℃, 95% 120시간 후 측정한 표면저항이다. In Table 2, the surface resistance 1) is the surface resistance measured after 85 ° C. and 85% 72 hours, and the surface resistance 2) is the surface resistance measured after 60 ° C. and 95% 120 hours.
상기 표 2에서 보는 바와 같이, 실시예 1 내지 6은 고온고습 공정을 거친 후에도 표면저항의 변화가 적고, 대전방지성이 우수함을 확인하였다.As shown in Table 2, Examples 1 to 6 was confirmed that the change in the surface resistance is small even after the high temperature and high humidity process, and excellent in antistatic properties.

Claims (13)

  1. 폴리에스테르 베이스필름과, 상기 폴리에스테르 베이스필름의 일면에 형성되며 전도성 고분자와 수계 폴리우레탄 바인더를 포함하는 대전방지층 및 상기 폴리에스테르 베이스필름의 타면에 형성되며 굴절율이 1.4 ~ 1.5인 프라이머층을 포함하며,It includes a polyester base film, an antistatic layer formed on one surface of the polyester base film and a conductive polymer and an aqueous polyurethane binder, and a primer layer formed on the other surface of the polyester base film and having a refractive index of 1.4 to 1.5. ,
    상기 폴리에스테르 베이스필름은 기재층과 상기 기재층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%이고, 고유점도가 하기 식 1을 만족하는 것인 폴리에스테르 다층필름.The polyester base film includes a base layer and a skin layer in which at least one layer is laminated on both sides of the base layer, wherein the oligomer content of the polyester resin constituting the skin layer is 0.3 to 0.6 wt%, and diethylene The content of glycol is 0.1 to 1.2% by weight, the intrinsic viscosity of the polyester multilayer film satisfying the following formula 1.
    [식 1][Equation 1]
    1 < Ns/Nc ≤ 1.11 <Ns / Nc ≤ 1.1
    상기 식 1에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르 수지의 고유점도이다.In Formula 1, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  2. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 다층필름은 열처리 전 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈가 2%이하이고, 전광선투과율이 90% 이상이며, The polyester multilayer film has a surface resistance of 10 5 to 10 9 Ω / sq before heat treatment, a haze of 2% or less, a total light transmittance of 90% or more,
    85℃, 85%에서 72시간 유지 후, 헤이즈 변화율 △H1가 하기 식 2를 만족하고, 광투과도 변화율 △TT1이 하기 식 3을 만족하고, After 72 hours of holding at 85 ° C. and 85%, the haze change rate ΔH 1 satisfies the following equation 2 and the light transmittance change rate ΔTT 1 satisfies the following equation 3
    [식 2][Equation 2]
    △H1 < 0.5 %ΔH 1 <0.5%
    상기 식 2에서 △H1 = Hf - Hi이고, Hf는 85℃, 85%에서 72시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.ΔH 1 = H f −H i in Equation 2, H f is the haze of the film after holding at 85 ° C., 85% for 72 hours, and H i is the haze of the film before heating.
    [식 3][Equation 3]
    △TT1 < 0.5 %TT 1 <0.5%
    상기 식 3에서 △TT1 = TTf - TTi이고, TTf 85℃, 85%에서 72시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 3, and TT f is It is the total light transmittance of a film after hold | maintaining at 85 degreeC and 85% for 72 hours, and TT i is the total light transmittance of a film before heating.
    60℃, 95%에서 120시간 유지 후, 표면저항이 105 ~ 109 Ω/sq이고, 헤이즈 변화율 △H2가 하기 식 4를 만족하고, 광투과도 변화율 △TT2이 하기 식 5를 만족하는 폴리에스테르 다층필름. After 120 hours of maintenance at 60 ° C. and 95%, the surface resistance was 10 5 to 10 9 μs / sq, the haze change rate ΔH 2 satisfied the following formula 4, and the light transmittance change rate ΔTT 2 satisfied the following formula 5. Polyester multilayer film.
    [식 4][Equation 4]
    △H2 < 1.0 %ΔH 2 <1.0%
    상기 식 4에서 △H2 = Hf Hi이고, Hf는 60℃, 95%에서 120시간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.In Formula 4, ΔH 2 = H f H i , H f is the haze of the film after holding at 60 ° C., 95% for 120 hours, and H i is the haze of the film before heating.
    [식 5][Equation 5]
    △TT2 < 1.0 %TT 2 <1.0%
    상기 식 5에서 △TT1 = TTf - TTi이고, TTf 60℃, 95%에서 120시간 유지시킨 후 필름의 전광선투과율이고, TTi는 가열 전 필름의 전광선투과율이다.ΔTT 1 = TT f − TT i in Formula 5, and TT f is It is the total light transmittance of a film after hold | maintaining at 60 degreeC and 95% for 120 hours, and TT i is the total light transmittance of a film before heating.
  3. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 다층필름은 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지 후 대전방지층의 올리고머 개수가 30개 미만이고, 85℃, 85%에서 72시간 또는 60℃, 95%에서 120시간 유지 후 프라이머층의 올리고머 개수가 20개 미만인 폴리에스테르 다층필름.The polyester multilayer film is less than 30 oligomers of the antistatic layer after holding at 85 ℃, 85% 72 hours or 60 ℃, 95% 120 hours, 85 ℃, 85% 72 hours or 60 ℃, 95% The polyester multilayer film having a number of oligomers of the primer layer after 20 hours in less than 20.
  4. 제 1항에 있어서,The method of claim 1,
    상기 대전방지층은 수접촉각이 90도 이상이고, 상기 대전방지층 상에 실리콘 점착제를 도포하고, 100 ℃의 물에서 2시간 방치 후 ASTM B905에 따른 접착력 평가 시 실리콘 코팅층이 유지되는 것인 폴리에스테르 다층필름.The antistatic layer has a water contact angle of 90 degrees or more, a polyester multilayer film is applied on the antistatic layer and the silicone coating layer is maintained upon evaluation of adhesion according to ASTM B905 after 2 hours in water at 100 ° C. .
  5. 제 1항에 있어서,The method of claim 1,
    상기 대전방지층은 전도성 고분자 용액과 수계 폴리우레탄 바인더 용액, 유기용매 및 물을 포함하는 대전방지조성물을 도포하여 형성된 것인 폴리에스테르 다층필름.The antistatic layer is a polyester multilayer film formed by applying an antistatic composition comprising a conductive polymer solution, an aqueous polyurethane binder solution, an organic solvent and water.
  6. 제 5항에 있어서,The method of claim 5,
    상기 유기용매는 알코올계 유기용매, 비양자성 고극성 유기용매 및 아마이드계 유기용매에서 선택되는 어느 하나 또는 둘 이상의 혼합용매인 폴리에스테르 다층필름.The organic solvent is any one or two or more mixed solvents selected from alcohol organic solvents, aprotic high polar organic solvents and amide organic solvents.
  7. 제 1항에 있어서,The method of claim 1,
    상기 대전방지층은 고형분 함량 100 중량% 중 전도성 고분자 1 ~ 30 중량% 및 수계 폴리우레탄 바인더 70 ~ 99 중량%를 포함하는 것인 폴리에스테르 다층필름.The antistatic layer is a polyester multilayer film comprising 1 to 30% by weight of the conductive polymer and 70 to 99% by weight of the aqueous polyurethane binder in 100% by weight of solids.
  8. 제 1항에 있어서,The method of claim 1,
    상기 전도성 고분자는 폴리에틸렌다이옥시티오펜에 폴리스티렌설포네이트가 도핑(PEDOT:PSS)된 것인 폴리에스테르 다층필름.Wherein the conductive polymer is a polystyrene sulfonate doped with polyethylene dioxythiophene (PEDOT: PSS) polyester multilayer film.
  9. 제 1항에 있어서,The method of claim 1,
    상기 프라이머층은 아크릴계 수지, 폴리에스테르계 수지 및 우레탄계 수지에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 폴리에스테르 다층필름.The primer layer is a polyester multilayer film containing any one or two or more selected from acrylic resin, polyester resin and urethane resin.
  10. 제 1항에 있어서,The method of claim 1,
    상기 프라이머층은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지와 수분산성 폴리에스테르계 수지의 중량비가 20 ~ 80 : 80 ~ 20인 바인더수지를 포함하는 것인 폴리에스테르 다층필름.The primer layer is a polyester multilayer film comprising a binder resin having a weight ratio of 20 to 80: 80 to 20 of the acrylic resin copolymerized with glycidyl group-containing radically polymerizable unsaturated monomer and water-dispersible polyester resin.
  11. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 베이스필름은 두께가 12 ~ 250 ㎛이고,The polyester base film has a thickness of 12 ~ 250 ㎛,
    기재층이 60 ~ 90 중량%이고, 스킨층이 10 ~ 40 중량%인 것인 폴리에스테르 다층필름.The base layer is 60 to 90% by weight, the skin layer is 10 to 40% by weight of the polyester multilayer film.
  12. 제 1항에 있어서,The method of claim 1,
    상기 대전방지층은 건조도포두께가 10 ~ 500 nm이고,The antistatic layer has a dry coating thickness of 10 to 500 nm,
    상기 프라이머층은 건조도포두께가 20 ~ 300 nm인 폴리에스테르 다층필름.The primer layer has a dry coating thickness of 20 to 300 nm polyester multilayer film.
  13. 제 1항 내지 제 12항에서 선택되는 어느 한 항의 폴리에스테르 다층필름의 상부에 이형코팅층, 점착제층, 하드코팅층 및 인쇄층에서 선택되는 어느 하나 이상의 기능성 코팅층을 형성한 광학필름.An optical film having at least one functional coating layer selected from a release coating layer, an adhesive layer, a hard coating layer, and a printing layer on the polyester multilayer film of any one of claims 1 to 12.
PCT/KR2017/006938 2016-06-30 2017-06-30 Polyester multilayered film WO2018004288A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780041046.XA CN109476864B (en) 2016-06-30 2017-06-30 Polyester multilayer film
JP2018567597A JP6859370B2 (en) 2016-06-30 2017-06-30 Polyester multilayer film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0082985 2016-06-30
KR20160082985 2016-06-30
KR1020170082477A KR102296195B1 (en) 2016-06-30 2017-06-29 Polyester muti-layer film
KR10-2017-0082477 2017-06-29

Publications (2)

Publication Number Publication Date
WO2018004288A2 true WO2018004288A2 (en) 2018-01-04
WO2018004288A3 WO2018004288A3 (en) 2018-02-22

Family

ID=60787391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006938 WO2018004288A2 (en) 2016-06-30 2017-06-30 Polyester multilayered film

Country Status (1)

Country Link
WO (1) WO2018004288A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031801B1 (en) * 2018-06-04 2019-10-14 동우 화인켐 주식회사 Hard coating film and image display device using the same
KR20210039224A (en) * 2019-10-01 2021-04-09 동우 화인켐 주식회사 Hard coating film and image display device using the same
CN115298027A (en) * 2020-03-09 2022-11-04 东洋纺株式会社 White polyester film with easy adhesion
US11613658B2 (en) 2019-10-01 2023-03-28 Dongwoo Fine-Chem Co., Ltd. Hard coating film and window and image display device using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388321B1 (en) * 2009-11-30 2014-04-22 다이니폰 인사츠 가부시키가이샤 Optical film and touch panel
JP6056480B2 (en) * 2010-05-12 2017-01-11 大日本印刷株式会社 Optical laminate, method for producing optical laminate, polarizing plate, and image display device
WO2013002406A1 (en) * 2011-06-30 2013-01-03 Jnc株式会社 Weather-resistant layered film
TWI679655B (en) * 2014-03-13 2019-12-11 日商長瀨化成股份有限公司 Method for repairing and regenerating transparent conductive film and transparent conductive laminated body
JP6029632B2 (en) * 2014-09-27 2016-11-24 三菱樹脂株式会社 Laminated polyester film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031801B1 (en) * 2018-06-04 2019-10-14 동우 화인켐 주식회사 Hard coating film and image display device using the same
WO2019235770A1 (en) * 2018-06-04 2019-12-12 동우 화인켐 주식회사 Hard coating film and image display device comprising same
KR20210039224A (en) * 2019-10-01 2021-04-09 동우 화인켐 주식회사 Hard coating film and image display device using the same
KR102327415B1 (en) * 2019-10-01 2021-11-17 동우 화인켐 주식회사 Hard coating film and image display device using the same
US11613658B2 (en) 2019-10-01 2023-03-28 Dongwoo Fine-Chem Co., Ltd. Hard coating film and window and image display device using same
US11760898B2 (en) 2019-10-01 2023-09-19 Dongwoo Fine-Chem Co., Ltd. Hard coating film and window and image display device using same
CN115298027A (en) * 2020-03-09 2022-11-04 东洋纺株式会社 White polyester film with easy adhesion
CN115298027B (en) * 2020-03-09 2024-01-12 东洋纺株式会社 White easy-to-adhere polyester film

Also Published As

Publication number Publication date
WO2018004288A3 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2014178517A1 (en) Polyester-based primer composition, optical film using same and polarizing plate comprising same
WO2017111299A1 (en) Polyamic acid composition with improved adhesive strength and polyimide film comprising same
WO2018004288A2 (en) Polyester multilayered film
WO2018147602A1 (en) Polyamide-imide film
WO2017209473A1 (en) Polarizer protection film, polarizing plate comprising same, and display provided with same
WO2020159085A1 (en) Polyamide resin film, and resin laminate using same
WO2014185685A1 (en) Polarizing plate
WO2019107950A2 (en) Film for optical display apparatus, optical member comprising same, and optical display apparatus comprising same
WO2014148684A1 (en) Protection film and polarizing plate using same
WO2014209056A1 (en) Polyester film and method for manufacturing same
WO2014157848A1 (en) Optical film having superior ultraviolet ray protection function and polarizing plate comprising same
WO2014204168A1 (en) Multilayer optical film, method for preparing same and polarizing plate comprising same
WO2018147606A1 (en) Polyamide-imide film and method for preparing same
WO2021045557A1 (en) Polyester protection film for flexible display device
WO2022220349A1 (en) Double-sided antistatic silicone release film
WO2020189882A1 (en) Antistatic silicone release film
WO2018147617A1 (en) Polyamide-imide film and method for producing same
WO2015102354A1 (en) Polyester film and method for preparing same
WO2020105810A1 (en) Cellulose ester phase difference film
WO2020209625A1 (en) Polyamide-imide block copolymer, method for preparing same, and polyamide-imide film comprising same
WO2019066448A1 (en) Polyester polymer composition, polyester resin master batch chip and polyester film using same
WO2021246851A1 (en) Polyester release film and method for manufacturing same
WO2021112322A1 (en) Adhesive film
WO2023128476A1 (en) Polyester release film and method for manufacturing same
WO2021194071A1 (en) Adhesive composition for protective film, adhesive including same, and adhesive sheet using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820564

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018567597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820564

Country of ref document: EP

Kind code of ref document: A2