[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018003657A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018003657A1
WO2018003657A1 PCT/JP2017/023045 JP2017023045W WO2018003657A1 WO 2018003657 A1 WO2018003657 A1 WO 2018003657A1 JP 2017023045 W JP2017023045 W JP 2017023045W WO 2018003657 A1 WO2018003657 A1 WO 2018003657A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
idt electrode
insulating film
wave device
thickness
Prior art date
Application number
PCT/JP2017/023045
Other languages
English (en)
French (fr)
Inventor
彰 紺野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020187029988A priority Critical patent/KR102107393B1/ko
Priority to JP2018525116A priority patent/JP6624289B2/ja
Priority to CN201780038832.4A priority patent/CN109417371B/zh
Publication of WO2018003657A1 publication Critical patent/WO2018003657A1/ja
Priority to US16/157,139 priority patent/US10554193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02937Means for compensation or elimination of undesirable effects of chemical damage, e.g. corrosion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present invention relates to an acoustic wave device in which an insulating film is provided so as to cover an IDT electrode.
  • an IDT electrode is provided on a LiNbO 3 substrate, and a silicon oxide film for temperature compensation is provided so as to cover the IDT electrode.
  • a silicon oxide film is provided so as to fill the gap between the electrode fingers of the IDT electrode and further cover the upper surface of the IDT electrode. The upper surface of the silicon oxide film is planarized.
  • the elastic wave to be used is a Rayleigh wave, but higher-order modes are also excited.
  • This higher-order mode may occur strongly in a frequency range of about 1.2 to 1.3 times the frequency of the Rayleigh wave. For this reason, higher-order modes of Rayleigh waves sometimes become a problem as spurious.
  • the elastic wave mode to be used in a structure in which an insulating film is provided so as to cover the IDT electrode, not only the elastic wave mode to be used but also higher order modes are excited, which may cause a problem as spurious. .
  • An object of the present invention is to provide an elastic wave device that can reduce high-order mode spurious waves of elastic waves such as Rayleigh waves.
  • An elastic wave device includes an element substrate having a piezoelectric layer, an IDT electrode provided on the piezoelectric layer, and an insulating film covering the IDT electrode, and the IDT electrode includes an elastic wave.
  • the crossing region in the elastic wave propagation direction is a first end and the other end is a second end
  • the crossing region of the IDT electrode The insulating film becomes thinner or thicker from the first end and the second end of the IDT electrode toward the center of the elastic wave propagation direction.
  • the insulating film is a dielectric layer that directly covers the IDT electrode.
  • the insulating film has an inclined surface that is inclined with respect to the upper surface of the piezoelectric layer in the elastic wave propagation direction.
  • the thickness of the insulating film continuously changes along the acoustic wave propagation direction at least above the intersection region of the IDT electrode.
  • the insulating film is thinner or thicker from the third end and the fourth end toward the center in the cross width direction.
  • the piezoelectric layer is made of LiNbO 3 .
  • a Rayleigh wave propagating through the LiNbO 3 is used.
  • an elastic wave device which is an elastic wave resonator having the IDT electrode is provided.
  • Still another specific aspect of the present invention provides an elastic wave device that is a longitudinally coupled resonator type elastic wave filter having a plurality of the IDT electrodes.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front cross-sectional view of the acoustic wave device according to the first embodiment of the present invention, and is a cross-sectional view of a portion along the line AA in FIG.
  • FIGS. 3A and 3B are diagrams respectively showing the impedance-frequency characteristics and the phase-frequency characteristics of the elastic wave devices of the first embodiment and the comparative example of the present invention.
  • FIG. 4 is an enlarged view showing a part of the phase-frequency characteristic shown in FIG.
  • FIG. 5 is a front sectional view of an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 6A and 6B are diagrams showing impedance-frequency characteristics and phase-frequency characteristics of the acoustic wave devices of the second embodiment and the comparative example.
  • FIG. 7 is an enlarged view of a part of FIG.
  • FIG. 8 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 9 is a plan view of a longitudinally coupled resonator type acoustic wave filter that can be applied to the present invention.
  • FIG. 10 is a diagram showing impedance-frequency characteristics of the acoustic wave devices of Experimental Example 1 and Comparative Example 1.
  • FIG. 11 is a diagram showing the phase-frequency characteristics of the acoustic wave devices of Experimental Example 1 and Comparative Example 1.
  • FIG. 12 is a diagram showing impedance-frequency characteristics of the acoustic wave devices of Experimental Example 2 and Comparative Example 2.
  • FIG. 13 is a diagram illustrating the phase-frequency characteristics of the acoustic wave devices of Experimental Example 2 and Comparative Example 2.
  • FIG. 14 is a diagram showing impedance-frequency characteristics of the acoustic wave devices of Experimental Example 3 and Comparative Example 3.
  • FIG. 15 is a diagram illustrating phase-frequency characteristics of the acoustic wave devices of Experimental Example 3 and Comparative Example 3.
  • FIG. 16 is a diagram showing impedance-frequency characteristics of the acoustic wave devices of Experimental Example 4 and Comparative Example 4.
  • FIG. 17 is a diagram showing the phase-frequency characteristics of the acoustic wave devices of Experimental Example 4 and Comparative Example 4.
  • 18 is a cross-sectional view of a portion along the line BB in FIG.
  • FIG. 19 is a cross-sectional view of a modification of the portion along the line BB in FIG.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the acoustic wave device 1 has a piezoelectric substrate 2 as an element substrate.
  • the piezoelectric substrate 2 is made of a LiNbO 3 substrate having Euler angles (0 °, 38.5 °, 0 °).
  • other piezoelectric single crystals may be used.
  • the piezoelectric substrate 2 is composed of only a piezoelectric layer
  • the element substrate in the present invention may be one in which a piezoelectric layer is laminated on a support or an insulating film.
  • An IDT electrode 3 is provided on the piezoelectric substrate 2. Reflectors 4 and 5 are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is formed.
  • the IDT electrode 3 is a laminate of a plurality of metal films. That is, a Pt film and an Al film are stacked in this order from the LiNbO 3 substrate side.
  • the materials of the IDT electrode 3 and the reflectors 4 and 5 are not particularly limited, and an appropriate metal or alloy such as Au, Ag, Pt, W, Cu, Mo, or Al can be used.
  • a thin adhesion layer or a diffusion prevention layer may be laminated on the upper and lower surfaces of the Pt film or the Al film.
  • As the adhesion layer and the diffusion prevention layer a Ti film, a NiCr film, a Cr film, or the like can be used.
  • An insulating film 6 is provided so as to cover the IDT electrode 3 and the reflectors 4 and 5.
  • the insulating film 6 is made of silicon oxide.
  • a covering layer 7 is provided so as to cover the insulating film 6.
  • the covering layer 7 is made of silicon nitride.
  • the insulating film 6 may be made of other insulating materials such as SiON in addition to silicon oxide.
  • the covering layer 7 may also be formed of a material other than silicon nitride.
  • the acoustic wave device 1 can reduce the absolute value of the frequency temperature coefficient TCF. That is, the insulating film 6 made of silicon oxide fulfills a temperature compensation function. However, an insulating film having no temperature compensation function may be used.
  • the coating layer 7 is made of silicon nitride, thereby improving moisture resistance.
  • one end of the IDT electrode 3 in the elastic wave propagation direction is a first end 3a and the other end is a second end 3b.
  • region means the area
  • the cross width direction is the direction in which the electrode fingers extend.
  • the characteristic of the acoustic wave device 1 is that the thickness of the insulating film 6 becomes thicker toward the center in the elastic wave propagation direction of the IDT electrode 3 in the portion between the first end 3a and the second end 3b.
  • the thickness of the insulating film 6 is changing. That is, the thickness of the insulating film 6 at the center of the IDT electrode 3 in the elastic wave propagation direction is thicker than the thickness H of the insulating film 6 on the first end 3a and the second end 3b.
  • one end along the crossing width direction of the IDT electrode crossing region is defined as a third end 3c, and the other end is defined as a fourth end 3d.
  • the cross width direction is the direction in which the electrode fingers extend.
  • FIG. 18 in the cross section along the line BB in FIG. 1, in the present embodiment, compared with the thickness H of the insulating film 6 at the third end 3c and the fourth end 3d, The thickness of the insulating film portion between the third end 3c and the fourth end 3d becomes thinner toward the center in the cross width direction.
  • the thickness of the insulating film 6 does not have to change in the cross width direction. However, preferably, the thickness of the insulating film 6 is also changed in the cross width direction. Thereby, the spurious due to the higher order mode can be further reduced.
  • the insulating film 6 in the cross section of the portion along the line BB in FIG. 1, the insulating film 6 is the thickest at the center of the IDT electrode 3 in the cross width direction orthogonal to the elastic wave propagation direction.
  • the insulating film 6 may be made thinner toward the outside in the direction.
  • the design parameters of the IDT electrode and the reflector are as follows.
  • the distance between the first end 3a and the second end 3b of the IDT electrode 500 ⁇ m.
  • the number of electrode fingers in reflectors 4 and 5 20 each.
  • the laminated structure of the IDT electrode 3 and the reflectors 4 and 5 was as shown in Table 1 below.
  • the film thickness of the silicon nitride film as the coating layer 7 is 50 nm.
  • the thickness H of the insulating film 6 at the first end 3a and the second end 3b is 1680 nm.
  • the thickness H of the insulating film 6, which is the distance from the upper surface of the piezoelectric substrate 2 to the upper surface of the insulating film 6, is 1850 nm at the center of the acoustic wave propagation direction. Then, the thickness of the insulating film 6 was changed so that the thickness gradually increased from the first end 3a and the second end 3b to the center in the elastic wave propagation direction.
  • FIGS. 3A and 3B are diagrams showing impedance-frequency characteristics and phase-frequency characteristics of the elastic wave device of the present embodiment and the elastic wave device of the comparative example.
  • FIG. 4 is an enlarged view showing a part of the phase-frequency characteristic shown in FIG. A solid line shows the result of the embodiment, and a broken line shows the result of the comparative example.
  • the response of the Rayleigh wave that is the mode to be used appears in the vicinity of 0.73 GHz.
  • the elastic wave device 1 it can be seen that when Rayleigh waves are used, the influence of spurious due to the higher-order mode can be effectively suppressed.
  • FIG. 5 is a front sectional view of an acoustic wave device according to a second embodiment of the present invention.
  • the insulating film 6 ⁇ / b> A is provided so as to cover the IDT electrode 3.
  • the thickness of the insulating film decreases from the first end 3a and the second end 3b of the IDT electrode 3 toward the center of the elastic wave propagation direction.
  • the thickness H of the insulating film 6 at the first end 3a and the second end 3b is 1820 nm.
  • the thickness of the insulating film 6 in the center of the elastic wave propagation direction was 1650 nm.
  • the design parameters of the IDT electrode and the reflector in the second embodiment are the same as those in the first embodiment.
  • the distance between the first end 3a and the second end 3b of the IDT electrode 500 ⁇ m.
  • the number of electrode fingers in reflectors 4 and 5 20 each.
  • the laminated structure of the IDT electrode 3 and the reflectors 4 and 5 was as shown in Table 2 below.
  • the film thickness of the silicon nitride film as the coating layer 7 is 50 nm.
  • FIGS. 6A and 6B are diagrams showing impedance-frequency characteristics and phase-frequency characteristics of the elastic wave devices of the second embodiment and the comparative example.
  • FIG. 7 is an enlarged view of a part of FIG. In FIG. 6A, FIG. 6B, and FIG. 7, the solid line indicates the result of the second embodiment, and the broken line indicates the result of the comparative example.
  • the comparative example is the same as the comparative example shown in FIG. 3A, FIG. 3B, and FIG.
  • the second embodiment can also disperse spurious due to the higher order modes, thereby reducing the higher order mode spurious. I know you get.
  • the thickness of the insulating film 6 ⁇ / b> A may change linearly in the elastic wave propagation direction in a cross-sectional view, but may change in a curved line.
  • the thickness of the insulating film is not necessarily changed continuously in the elastic wave propagation direction.
  • Example 1 A LiNbO 3 substrate with Euler angles (0 °, ⁇ 5 °, 0 °) was used as the piezoelectric substrate.
  • the IDT electrode 3 a laminated metal film in which an Al film was laminated on a Pt film was used.
  • the thickness of the Pt film was 120 nm
  • the thickness of the Al film was 206 nm.
  • the thickness H of the silicon oxide film as the insulating film 6 at the first end 3a and the second end 3b of the IDT electrode 3 was 2130 nm.
  • the thickness of the insulating film 6 was 2450 nm at the center of the IDT electrode 3 in the elastic wave propagation direction.
  • the number of electrode fingers of the IDT electrode 3 was 100 pairs, and the number of electrode fingers of the reflector was 20.
  • the wavelength determined by the electrode finger pitch of the IDT electrode 3 was 5 ⁇ m.
  • the film thickness of the silicon nitride film as the coating layer 7 was 50 nm.
  • an elastic wave device of Comparative Example 1 was obtained in the same manner as in Experimental Example 1 except that the thickness of the insulating film made of the silicon oxide film was 2250 nm and the upper surface was flat.
  • 10 and 11 show impedance characteristics and phase characteristics of the acoustic wave devices of Experimental Example 1 and Comparative Example 1, respectively. 10 and 11, the solid line shows the result of Experimental Example 1, and the broken line shows the result of Comparative Example 1.
  • Example 2 A LiNbO 3 substrate with Euler angles (0 °, ⁇ 5 °, 0 °) was used as the piezoelectric substrate.
  • the IDT electrode 3 a laminated metal film in which an Al film was laminated on a Pt film was used. The thickness of the Pt film was 120 nm, and the thickness of the Al film was 206 nm.
  • the number of electrode fingers of the IDT electrode 3, the wavelength determined by the electrode finger pitch, and the number of electrode fingers of the reflectors 4 and 5 were the same as in Experimental Example 1.
  • the thickness H of the silicon oxide film as the insulating film 6 at the first end 3a and the second end 3b of the IDT electrode 3 was 2370 nm.
  • the thickness of the insulating film 6 was 2050 nm at the center of the IDT electrode 3 in the elastic wave propagation direction.
  • the cross section of the insulating film 6 was the same as that of the second embodiment shown in FIG.
  • the thickness of the coating layer 7 made of silicon nitride was 50 nm.
  • an elastic wave device of Comparative Example 2 was obtained in the same manner as in Experimental Example 2 except that the thickness of the insulating film made of the silicon oxide film was 2250 nm and the upper surface was flat.
  • 12 and 13 show impedance characteristics and phase characteristics of the acoustic wave devices of Experimental Example 2 and Comparative Example 2, respectively. 12 and 13, the solid line shows the result of Experimental Example 2, and the broken line shows the result of Comparative Example 2.
  • Example 3 A LiTaO 3 substrate with Euler angles (0 °, 132 °, 0 °) was used as the piezoelectric substrate.
  • the IDT electrode 3 a laminated metal film in which an Al film was laminated on a Pt film was used. The thickness of the Pt film was 200 nm, and the thickness of the Al film was 206 nm.
  • the number of electrode fingers of the IDT electrode 3, the wavelength determined by the electrode finger pitch, and the number of electrode fingers of the reflectors 4 and 5 were the same as in Experimental Example 1.
  • the cross-sectional structure of the insulating film 6 was the same as that of the first embodiment shown in FIG.
  • the thickness H of the silicon oxide film as the insulating film 6 at the first end 3a and the second end 3b of the IDT electrode 3 was 2880 nm.
  • the thickness of the insulating film 6 was 3200 nm at the center of the IDT electrode 3 in the elastic wave propagation direction.
  • the thickness of the coating layer 7 made of a silicon nitride film was 50 nm.
  • an elastic wave device of Comparative Example 3 was obtained in the same manner as in Experimental Example 3 except that the thickness of the insulating film made of the silicon oxide film was 3000 nm and the upper surface was flat.
  • 14 and 15 show impedance characteristics and phase characteristics of the acoustic wave devices of Experimental Example 3 and Comparative Example 3, respectively. 14 and 15, the solid line shows the result of Experimental Example 3, and the broken line shows the result of Comparative Example 3.
  • Example 4 A LiTaO 3 substrate with Euler angles (0 °, 132 °, 0 °) was used as the piezoelectric substrate.
  • the IDT electrode 3 a laminated metal film in which an Al film was laminated on a Pt film was used. The thickness of the Pt film was 200 nm, and the thickness of the Al film was 206 nm.
  • the number of electrode fingers of the IDT electrode 3, the wavelength determined by the electrode finger pitch, and the number of electrode fingers of the reflectors 4 and 5 were the same as in Experimental Example 1.
  • the cross-sectional structure of the insulating film 6 was the same as that of the second embodiment.
  • the thickness H of the silicon oxide film as the insulating film 6 at the first end 3a and the second end 3b of the IDT electrode 3 was 3120 nm.
  • the thickness of the insulating film 6 was 2800 nm at the center of the IDT electrode 3 in the elastic wave propagation direction.
  • the thickness of the coating layer 7 made of a silicon nitride film was 50 nm.
  • an elastic wave device of Comparative Example 4 was obtained in the same manner as in Experimental Example 4 except that the thickness of the insulating film made of the silicon oxide film was 3000 nm and the upper surface was flat.
  • 16 and 17 show impedance characteristics and phase characteristics of the acoustic wave devices of Experimental Example 4 and Comparative Example 4, respectively. 16 and 17, the solid line indicates the result of Experimental Example 4, and the broken line indicates the result of Comparative Example 4.
  • FIG. 8 is a front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • the thickness of the insulating film 6B increases from the first end 3a and the second end 3b of the IDT electrode 3 toward the center of the acoustic wave propagation direction.
  • the upper surface portions 6 ⁇ / b> B ⁇ b> 1 and 6 ⁇ / b> B ⁇ b> 2 of the insulating film 6 ⁇ / b> B are not inclined and extend in a direction parallel to the main surface of the piezoelectric substrate 2.
  • inclined surfaces 6B3 and 6B4 that increase in thickness are provided from the end portions on the IDT electrode 3 side of the upper surface portions 6B1 and 6B2 toward the first end portion 3a and the second end portion 3b, respectively.
  • the inclined surfaces 6B3 and 6B4 or the flat upper surface portions 6B1 and 6B2 may be provided on the outer side in the elastic wave propagation direction of the portion where the IDT electrode 3 is provided.
  • the acoustic wave resonator has been described.
  • the present invention may be applied to the longitudinally coupled resonator type acoustic wave filter shown in FIG.
  • An acoustic wave device 21 that is a longitudinally coupled resonator type acoustic wave filter has a plurality of IDT electrodes 22 to 26.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

レイリー波などの弾性波の高次モードによるスプリアスを小さくし得る弾性波装置を提供する。 素子基板としての圧電基板2上にIDT電極3及び絶縁膜6が設けられている弾性波装置1。IDT電極3の交差領域上において、弾性波伝搬方向一端を第1の端部3a、他端を第2の端部3bとした場合に、第1の端部3a及び第2の端部3bから、弾性波伝搬方向中央に向かうにつれて、絶縁膜6の厚みが薄くまたは厚くなっている。

Description

弾性波装置
 本発明は、IDT電極を覆うように絶縁膜が設けられている、弾性波装置に関する。
 LiNbO基板を伝搬するレイリー波を利用した弾性波装置が種々提案されている。下記の特許文献1に記載の弾性波装置では、LiNbO基板上に、IDT電極が設けられており、IDT電極を覆うように、温度補償用の酸化ケイ素膜が設けられている。特許文献1に記載の弾性波装置では、酸化ケイ素膜が、IDT電極の電極指間を埋めており、さらにIDT電極の上面を覆うように設けられている。酸化ケイ素膜の上面は、平坦化されている。
WO2005/034347
 特許文献1に記載の弾性波装置では、利用する弾性波がレイリー波であるが、高次モードも励振される。そして、この高次モードが、レイリー波の周波数の1.2~1.3倍程度の周波数域に強く発生することがあった。そのため、レイリー波の高次モードがスプリアスとして問題となることがあった。また、レイリー波に限らず、IDT電極を覆うように絶縁膜が設けられている構造においては、利用する弾性波のモードだけでなく高次モードが励振されてスプリアスとして問題となることがあった。
 本発明の目的は、レイリー波などの弾性波の高次モードのスプリアスを小さくすることができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電体層を有する素子基板と、前記圧電体層上に設けられたIDT電極と、前記IDT電極を覆う絶縁膜と、を備え、前記IDT電極が、弾性波を励振する領域である交差領域を有し、前記交差領域の弾性波伝搬方向における一端を第1の端部、他端を第2の端部とした場合に、前記IDT電極の交差領域上において、前記IDT電極の前記第1の端部及び前記第2の端部から、弾性波伝搬方向中央に向かうにつれて、前記絶縁膜の厚みが薄く、または厚くなっている。
 本発明に係る弾性波装置のある特定の局面では、前記絶縁膜が、前記IDT電極を直接覆う誘電体層である。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記絶縁膜が、前記弾性波伝搬方向において、前記圧電体層の上面に対し傾斜している傾斜面を有する。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記IDT電極の少なくとも前記交差領域の上方において、前記絶縁膜の厚みが前記弾性波伝搬方向に沿って連続的に変化している。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極の交差幅方向における前記交差領域の一端を第3の端部、他端を第4の端部とした場合に、前記第3の端部及び前記第4の端部から、交差幅方向中央に向かうにつれて、前記絶縁膜の厚みが薄く、または厚くなっている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電体層がLiNbOからなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記LiNbOを伝搬するレイリー波を利用している。
 本発明のさらに別の特定の局面では、前記IDT電極を有する弾性波共振子である弾性波装置が提供される。
 本発明のさらに他の特定の局面では、前記IDT電極を複数有する、縦結合共振子型弾性波フィルタである、弾性波装置が提供される。
 本発明に係る弾性波装置では、レイリー波などの弾性波の高次モードによるスプリアスを効果的に小さくすることができる。
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の正面断面図であり、図1中のA-A線に沿う部分の断面図である。 図3(a)及び図3(b)は、本発明の第1の実施形態及び比較例の弾性波装置のインピーダンス-周波数特性及び位相-周波数特性をそれぞれ示す図である。 図4は、図3(b)に示した位相-周波数特性の一部を拡大して示す図である。 図5は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。 図6(a)及び図6(b)は、第2の実施形態及び比較例の弾性波装置のインピーダンス-周波数特性及び位相-周波数特性を示す図である。 図7は、図6(b)の一部を拡大して示す図である。 図8は、本発明の第3の実施形態に係る弾性波装置の正面断面図である。 図9は、本発明に適用され得る縦結合共振子型弾性波フィルタの平面図である。 図10は、実験例1及び比較例1の弾性波装置のインピーダンス-周波数特性を示す図である。 図11は、実験例1及び比較例1の弾性波装置の位相-周波数特性を示す図である。 図12は、実験例2及び比較例2の弾性波装置のインピーダンス-周波数特性を示す図である。 図13は、実験例2及び比較例2の弾性波装置の位相-周波数特性を示す図である。 図14は、実験例3及び比較例3の弾性波装置のインピーダンス-周波数特性を示す図である。 図15は、実験例3及び比較例3の弾性波装置の位相-周波数特性を示す図である。 図16は、実験例4及び比較例4の弾性波装置のインピーダンス-周波数特性を示す図である。 図17は、実験例4及び比較例4の弾性波装置の位相-周波数特性を示す図である。 図18は、図1中のB-B線に沿う部分の断面図である。 図19は、図1中のB-B線に沿う部分の変形例の断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。図2は、図1中のA-A線に沿う断面図である。
 弾性波装置1は、素子基板としての圧電基板2を有する。本実施形態では、圧電基板2は、オイラー角(0°,38.5°,0°)のLiNbO基板からなる。もっとも、他の圧電単結晶が用いられてもよい。
 また、圧電基板2は、圧電体層のみからなるが、本発明における素子基板は、支持体や絶縁膜等に、圧電体層が積層されているものであってもよい。
 圧電基板2上に、IDT電極3が設けられている。IDT電極3の弾性波伝搬方向両側に反射器4,5が設けられている。それによって、1ポート型の弾性波共振子が構成されている。
 IDT電極3は、複数の金属膜の積層体である。すなわち、LiNbO基板側から、Pt膜、Al膜をこの順序で積層した構造を有する。
 IDT電極3及び反射器4,5の材料は、特に限定されず、Au、Ag、Pt、W、Cu、Mo、Al等の適宜の金属もしくは合金を用い得る。また、Pt膜やAl膜の上下面には、薄い密着層や拡散防止層を積層してもよい。密着層や拡散防止層としては、Ti膜、NiCr膜、Cr膜などを用い得る。
 IDT電極3及び反射器4,5を覆うように、絶縁膜6が設けられている。絶縁膜6は、酸化ケイ素からなる。また、絶縁膜6を覆うように、被覆層7が設けられている。被覆層7は、窒化ケイ素からなる。
 上記絶縁膜6は、酸化ケイ素の他、SiON等の他の絶縁材料からなるものであってもよい。また、被覆層7についても、窒化ケイ素以外の材料により形成されていてもよい。
 絶縁膜6は、酸化ケイ素からなるため、弾性波装置1では、周波数温度係数TCFの絶対値を小さくすることが可能とされている。すなわち、酸化ケイ素からなる絶縁膜6は、温度補償作用を果たす。もっとも、温度補償機能を有しない絶縁膜を用いてもよい。
 また、被覆層7は、窒化ケイ素からなり、それによって耐湿性を高めることが可能とされている。
 IDT電極3の交差領域において、IDT電極3の弾性波伝搬方向の一端を第1の端部3a、他端を第2の端部3bとする。なお、交差領域とは、電位の異なる電極指同士が弾性波伝搬方向において重なっている領域をいう。また、交差幅方向とは電極指の延びる方向である。弾性波装置1の特徴は、第1の端部3aと第2の端部3bとの間の部分では、絶縁膜6の厚みが、IDT電極3の弾性波伝搬方向において中央に向かうにつれて厚くなるように、絶縁膜6の厚みが変化していることにある。すなわち、第1の端部3a上及び第2の端部3b上における絶縁膜6の厚みHよりも、IDT電極3の弾性波伝搬方向中央における絶縁膜6の厚みが厚くなっている。
 他方、IDT電極の交差領域の交差幅方向に沿う一端を第3の端部3c、他端を第4の端部3dとする。なお、交差幅方向とは、電極指の延びる方向である。図18に示すように、図1中のB-B線に沿う断面において、本実施形態では、第3の端部3cと、第4の端部3dとにおける絶縁膜6の厚みHに比べ、第3の端部3c及び第4の端部3d間における絶縁膜部分の厚みが、交差幅方向において中央に向かうにつれて薄くなっている。
 なお、絶縁膜6の厚みは、交差幅方向において変化していなくともよい。もっとも、好ましくは、交差幅方向においても、絶縁膜6の厚みが変化していることが望ましい。それによって、高次モードによるスプリアスをより一層小さくすることができる。なお、図19に示すように、図1中のB-B線に沿う部分の断面において、絶縁膜6が弾性波伝搬方向と直交する交差幅方向において、IDT電極3中央において最も厚く、交差幅方向において外側につれて絶縁膜6の厚みが薄くされていてもよい。
 本実施形態の弾性波装置1では、絶縁膜6の厚みが上記のように変化しているため、レイリー波を利用した場合、高次モードによるスプリアスの影響を抑制することができる。これを、図3(a),図3(b)及び図4を参照して説明することとする。
 上記実施形態の弾性波装置1において、IDT電極及び反射器の設計パラメータを以下の通りとした。
 電極指の対数=100対、電極指ピッチで定まる波長λ=5.0μm。
 IDT電極の第1の端部3aと第2の端部3bとの間の距離=500μm。
 反射器4,5における電極指の本数=各20本。
 IDT電極3及び反射器4,5の積層構造は下記の表1に示す通りとした。
Figure JPOXMLDOC01-appb-T000001
 被覆層7としての窒化ケイ素膜の膜厚は50nm。
 第1の端部3a及び第2の端部3bにおける絶縁膜6の厚みH=1680nm。
 本実施形態では、弾性波伝搬方向中央において、圧電基板2の上面から絶縁膜6の上面までの距離である絶縁膜6の厚みHを1850nmとした。そして、第1の端部3a及び第2の端部3bから弾性波伝搬方向中央にいくにつれて、厚みが順次増加するように絶縁膜6の厚みを変化させた。
 比較のために、絶縁膜6に代えて、厚みが1750nmであり、上面が平坦な絶縁膜を設けたことを除いては、実施形態と同様にして、比較例の弾性波装置を得た。図3(a),図3(b)は、本実施形態の弾性波装置及び比較例の弾性波装置のインピーダンス-周波数特性及び位相-周波数特性を示す図である。図4は、図3(b)に示した位相-周波数特性の一部を拡大して示す図である。実線は、実施形態の結果を、破線は比較例の結果を示す。図3(a),図3(b)及び図4から明らかなように、利用するモードであるレイリー波の応答が、0.73GHz付近に現れている。レイリー波の応答は、実施形態と比較例の結果でほぼ同一である。これに対して、0.92GHz付近に、高次モードによるスプリアスが現れている。そして、図3(b)のスプリアスが現れている部分を拡大して示す図4から明らかなように、実施形態によれば、比較例に比べ、高次モードによるスプリアスの大きさを小さくし得ることがわかる。これは、絶縁膜6において、厚みが異なる絶縁膜部分が存在するので、高次モードの応答が分散しているためである。すなわち、図4に矢印S1,S2で示すように、実施形態では、高次モードによる複数の応答が得られるのに対し、比較例では、大きな応答S0のみが現れている。
 よって、弾性波装置1によれば、レイリー波を利用した場合、高次モードによるスプリアスの影響を効果的に抑制し得ることがわかる。
 図5は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。
 弾性波装置11では、絶縁膜6AがIDT電極3を覆うように設けられている。ここでは、弾性波伝搬方向において、IDT電極3の第1の端部3a及び第2の端部3bから、弾性波伝搬方向中央にいくにつれて、絶縁膜の厚みが薄くなっている。第1の端部3a及び第2の端部3bにおける絶縁膜6の厚みH=1820nm。弾性波伝搬方向中央における絶縁膜6の厚みは、1650nmとした。第2の実施形態におけるIDT電極及び反射器の設計パラメータは、上記の実施形態1の場合と同様である。
 電極指の対数=100対、電極指ピッチで定まる波長λ=5.0μm。
 IDT電極の第1の端部3aと第2の端部3bとの間の距離=500μm。
 反射器4,5における電極指の本数=各20本。
 IDT電極3及び反射器4,5の積層構造は下記の表2に示す通りとした。
Figure JPOXMLDOC01-appb-T000002
 被覆層7としての窒化ケイ素膜の膜厚は50nm。
 図6(a)及び図6(b)は、第2の実施形態及び比較例の弾性波装置のインピーダンス-周波数特性及び位相-周波数特性を示す図である。また、図7は図6(b)の一部を拡大して示す図である。図6(a),図6(b)及び図7において、実線は第2の実施形態の結果を示し、破線は比較例の結果を示す。比較例は、図3(a),図3(b)及び図4に示した比較例と同一である。
 図6(a),図6(b)及び図7から明らかなように、第2の実施形態においても、高次モードによるスプリアスを分散させることができ、それによって、高次モードスプリアスを小さくし得ることがわかる。
 なお、図5に示すように、断面視において、絶縁膜6Aの厚みが、弾性波伝搬方向において、直線的に変化していてもよいが、曲線的に変化していてもよい。また、必ずしも、弾性波伝搬方向において絶縁膜の厚みが連続的に変化されておらずともよい。
 なお、上記の実施形態においては、レイリー波を利用する場合に、レイリー波の高次モードによるスプリアスの影響を抑制しうることを示したが、レイリー波以外を利用する場合にも高次モードによるスプリアスが問題となることがある。これらの高次モードによるスプリアスに対しても、同様の方法で抑制しうることを以下の実験例1~4により説明する。以下の実験例1~4が本発明の実施例であり、それぞれ、比較例1~4と対比して説明する。
 (実験例1)
 圧電基板としてオイラー角(0°,-5°,0°)のLiNbO基板を用いた。IDT電極3として、Pt膜上にAl膜を積層した積層金属膜を用いた。Pt膜の厚みを120nm、Al膜の厚みを206nmとした。また、IDT電極3の第1の端部3a及び第2の端部3bにおける、絶縁膜6としての酸化ケイ素膜の厚みHを2130nmとした。また、絶縁膜6の厚みは、IDT電極3の弾性波伝搬方向中央において、2450nmとした。
 IDT電極3の電極指の対数は100対、反射器の電極指の本数は20本とした。IDT電極3の電極指ピッチで定まる波長は5μmとした。被覆層7としての窒化ケイ素膜の膜厚は50nmとした。
 また、実験例1では、絶縁膜6の断面は、図2に示した第1の実施形態と同様とした。
 比較のために、酸化ケイ素膜からなる絶縁膜の厚みが2250nmであり、上面が平坦なことを除いては、上記実験例1と同様にして、比較例1の弾性波装置を得た。
 実験例1及び比較例1では、主モードとしてラブ波を利用している。
 図10及び図11に、上記実験例1及び比較例1の弾性波装置のインピーダンス特性及び位相特性をそれぞれ示す。図10及び図11において、実線が実験例1の結果を、破線が比較例1の結果を示す。
 図10及び図11から明らかなように、比較例1に比べ実験例1によれば、0.91~0.94GHz付近に表れている高次モード等が抑制されていることがわかる。
 (実験例2)
 圧電基板としてオイラー角(0°,-5°,0°)のLiNbO基板を用いた。IDT電極3として、Pt膜上にAl膜を積層した積層金属膜を用いた。Pt膜の厚みを120nm、Al膜の厚みを206nmとした。IDT電極3の電極指の対数、電極指ピッチで定まる波長及び反射器4,5の電極指の本数は、実験例1と同様とした。
 また、IDT電極3の第1の端部3a及び第2の端部3bにおける、絶縁膜6としての酸化ケイ素膜の厚みHを2370nmとした。また、絶縁膜6の厚みは、IDT電極3の弾性波伝搬方向中央において、2050nmとした。
 なお、実験例2では、絶縁膜6の断面は、図5に示した第2の実施形態と同様とした。窒化ケイ素からなる被覆層7の厚みは50nmとした。
 比較のために、酸化ケイ素膜からなる絶縁膜の厚みが2250nmであり、上面が平坦なことを除いては、上記実験例2と同様にして、比較例2の弾性波装置を得た。
 実験例2及び比較例2では、主モードとしてラブ波を利用している。
 図12及び図13に、上記実験例2及び比較例2の弾性波装置のインピーダンス特性及び位相特性をそれぞれ示す。図12及び図13において、実線が実験例2の結果を、破線が比較例2の結果を示す。
 図12及び図13から明らかなように、比較例2に比べ実験例2によれば、0.91~0.94GHz付近に表れている高次モード等が抑制されていることがわかる。
 (実験例3)
 圧電基板としてオイラー角(0°,132°,0°)のLiTaO基板を用いた。IDT電極3として、Pt膜上にAl膜を積層した積層金属膜を用いた。Pt膜の厚みを200nm、Al膜の厚みを206nmとした。IDT電極3の電極指の対数、電極指ピッチで定まる波長及び反射器4,5の電極指の本数は、実験例1と同様とした。
 実験例3では、絶縁膜6の断面構造は、図2に示した第1の実施形態と同様とした。また、IDT電極3の第1の端部3a及び第2の端部3bにおける、絶縁膜6としての酸化ケイ素膜の厚みHを2880nmとした。また、絶縁膜6の厚みは、IDT電極3の弾性波伝搬方向中央において、3200nmとした。また、窒化ケイ素膜からなる被覆層7の厚みは50nmとした。
 比較のために、酸化ケイ素膜からなる絶縁膜の厚みが3000nmであり、上面が平坦なことを除いては、上記実験例3と同様にして、比較例3の弾性波装置を得た。
 実験例3及び比較例3では、主モードとしてSH波を利用している。
 図14及び図15に、上記実験例3及び比較例3の弾性波装置のインピーダンス特性及び位相特性をそれぞれ示す。図14及び図15において、実線が実験例3の結果を、破線が比較例3の結果を示す。
 図14及び図15から明らかなように、比較例3に比べ実験例3によれば、0.83~0.86GHz付近に表れている高次モード等が抑制されていることがわかる。
 (実験例4)
 圧電基板としてオイラー角(0°,132°,0°)のLiTaO基板を用いた。IDT電極3として、Pt膜上にAl膜を積層した積層金属膜を用いた。Pt膜の厚みを200nm、Al膜の厚みを206nmとした。IDT電極3の電極指の対数、電極指ピッチで定まる波長及び反射器4,5の電極指の本数は、実験例1と同様とした。
 実験例4では、絶縁膜6の断面構造は、第2の実施形態と同様とした。また、IDT電極3の第1の端部3a及び第2の端部3bにおける、絶縁膜6としての酸化ケイ素膜の厚みHを3120nmとした。また、絶縁膜6の厚みは、IDT電極3の弾性波伝搬方向中央において、2800nmとした。また、窒化ケイ素膜からなる被覆層7の厚みは50nmとした。
 比較のために、酸化ケイ素膜からなる絶縁膜の厚みが3000nmであり、上面が平坦なことを除いては、上記実験例4と同様にして、比較例4の弾性波装置を得た。
 実験例4及び比較例4では、主モードとしてSH波を利用している。
 図16及び図17に、上記実験例4及び比較例4の弾性波装置のインピーダンス特性及び位相特性をそれぞれ示す。図16及び図17において、実線が実験例4の結果を、破線が比較例4の結果を示す。
 図16及び図17から明らかなように、比較例4に比べ実験例4によれば、0.83~0.86GHz付近に表れている高次モード等が抑制されていることがわかる。
 図8は本発明の第3の実施形態に係る弾性波装置の正面断面図である。弾性波装置11Aでは、絶縁膜6Bが、IDT電極3の第1の端部3a及び第2の端部3bから、弾性波伝搬方向中央にいくにつれて、厚みが厚くなっている。反射器4及び反射器5の外側の複数本の電極指上では、絶縁膜6Bの上面部分6B1,6B2は傾斜しておらず、圧電基板2の主面と平行な方向に延びている。そして、上面部分6B1,6B2のIDT電極3側端部から、第1の端部3a及び第2の端部3bにそれぞれ向かうにつれて、厚みが増加する傾斜面6B3,6B4が設けられている。このように、IDT電極3が設けられている部分の弾性波伝搬方向において外側では、傾斜面6B3,6B4が設けられていたり、平坦な上面部分6B1,6B2が設けられていてもよい。
 また、第1~第3の実施形態では、弾性波共振子につき説明したが、図9に示す縦結合共振子型弾性波フィルタに本発明を適用してもよい。縦結合共振子型弾性波フィルタである弾性波装置21は、複数のIDT電極22~26を有している。この場合、複数のIDT電極22~26が設けられている領域を1つの領域とし、該1つの領域において、弾性波伝搬方向一端を第1の端部、他端を第2の端部として、絶縁膜の厚みを変化させればよい。
1,11,11A,21…弾性波装置
2…圧電基板
3…IDT電極
3a…第1の端部
3b…第2の端部
3c…第3の端部
3d…第4の端部
4,5…反射器
6,6A,6B…絶縁膜
6B1,6B2…上面部分
6B3,6B4…傾斜面
7…被覆層
22~26…IDT電極

Claims (9)

  1.  圧電体層を有する素子基板と、
     前記圧電体層上に設けられたIDT電極と、
     前記IDT電極を覆う絶縁膜と、
    を備え、
     前記IDT電極が、弾性波を励振する領域である交差領域を有し、
     前記交差領域の弾性波伝搬方向における一端を第1の端部、他端を第2の端部とした場合に、前記IDT電極の交差領域上において、前記IDT電極の前記第1の端部及び前記第2の端部から、弾性波伝搬方向中央に向かうにつれて、前記絶縁膜の厚みが薄く、または厚くなっている、弾性波装置。
  2.  前記絶縁膜が、前記IDT電極を直接覆う誘電体層である、請求項1に記載の弾性波装置。
  3.  前記絶縁膜が、前記弾性波伝搬方向において、前記圧電体層の上面に対し傾斜している傾斜面を有する、請求項1または2に記載の弾性波装置。
  4.  前記IDT電極の少なくとも前記交差領域の上方において、前記絶縁膜の厚みが前記弾性波伝搬方向に沿って連続的に変化している、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記IDT電極の交差幅方向における前記交差領域の一端を第3の端部、他端を第4の端部とした場合に、前記第3の端部及び前記第4の端部から、交差幅方向中央に向かうにつれて、前記絶縁膜の厚みが薄く、または厚くなっている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記圧電体層がLiNbOからなる、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記LiNbOを伝搬するレイリー波を利用している、請求項6に記載の弾性波装置。
  8.  前記IDT電極を有する弾性波共振子である、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記IDT電極を複数有する、縦結合共振子型弾性波フィルタである、請求項1~8のいずれか1項に記載の弾性波装置。
PCT/JP2017/023045 2016-06-28 2017-06-22 弾性波装置 WO2018003657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187029988A KR102107393B1 (ko) 2016-06-28 2017-06-22 탄성파 장치
JP2018525116A JP6624289B2 (ja) 2016-06-28 2017-06-22 弾性波装置
CN201780038832.4A CN109417371B (zh) 2016-06-28 2017-06-22 弹性波装置
US16/157,139 US10554193B2 (en) 2016-06-28 2018-10-11 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127911 2016-06-28
JP2016-127911 2016-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/157,139 Continuation US10554193B2 (en) 2016-06-28 2018-10-11 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2018003657A1 true WO2018003657A1 (ja) 2018-01-04

Family

ID=60787182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023045 WO2018003657A1 (ja) 2016-06-28 2017-06-22 弾性波装置

Country Status (5)

Country Link
US (1) US10554193B2 (ja)
JP (1) JP6624289B2 (ja)
KR (1) KR102107393B1 (ja)
CN (1) CN109417371B (ja)
WO (1) WO2018003657A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158673A1 (ja) * 2019-01-31 2020-08-06 株式会社村田製作所 弾性波デバイスおよびマルチプレクサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166148A (ja) * 2009-01-13 2010-07-29 Murata Mfg Co Ltd 弾性波装置
WO2011142183A1 (ja) * 2010-05-10 2011-11-17 株式会社村田製作所 弾性表面波装置
JP2014187568A (ja) * 2013-03-25 2014-10-02 Panasonic Corp 弾性波装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112004001841B4 (de) 2003-10-03 2009-03-12 Murata Mfg. Co., Ltd., Nagaokakyo-shi Oberflächenwellenbauelement
JP5025963B2 (ja) * 2006-02-16 2012-09-12 パナソニック株式会社 電子部品とその製造方法及びこの電子部品を用いた電子機器
JP5093403B2 (ja) * 2009-04-22 2012-12-12 パナソニック株式会社 弾性波素子と、これを用いた電子機器
JP5422441B2 (ja) * 2010-02-26 2014-02-19 太陽誘電株式会社 弾性波デバイス
JP2013145930A (ja) * 2010-04-21 2013-07-25 Murata Mfg Co Ltd 弾性表面波装置及びその製造方法
JPWO2012127793A1 (ja) * 2011-03-22 2014-07-24 パナソニック株式会社 弾性波素子
WO2012132238A1 (en) * 2011-03-25 2012-10-04 Panasonic Corporation Acoustic wave device with reduced higher order transverse modes
JP5880529B2 (ja) * 2013-11-29 2016-03-09 株式会社村田製作所 弾性表面波フィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166148A (ja) * 2009-01-13 2010-07-29 Murata Mfg Co Ltd 弾性波装置
WO2011142183A1 (ja) * 2010-05-10 2011-11-17 株式会社村田製作所 弾性表面波装置
JP2014187568A (ja) * 2013-03-25 2014-10-02 Panasonic Corp 弾性波装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158673A1 (ja) * 2019-01-31 2020-08-06 株式会社村田製作所 弾性波デバイスおよびマルチプレクサ
KR20210091292A (ko) * 2019-01-31 2021-07-21 가부시키가이샤 무라타 세이사쿠쇼 탄성파 디바이스 및 멀티플렉서
CN113348625A (zh) * 2019-01-31 2021-09-03 株式会社村田制作所 弹性波装置及多工器
JPWO2020158673A1 (ja) * 2019-01-31 2021-11-25 株式会社村田製作所 弾性波デバイスおよびマルチプレクサ
JP7168009B2 (ja) 2019-01-31 2022-11-09 株式会社村田製作所 弾性波デバイスおよびマルチプレクサ
KR102625090B1 (ko) * 2019-01-31 2024-01-16 가부시키가이샤 무라타 세이사쿠쇼 탄성파 디바이스 및 멀티플렉서
CN113348625B (zh) * 2019-01-31 2024-02-23 株式会社村田制作所 弹性波装置及多工器
US11936359B2 (en) 2019-01-31 2024-03-19 Murata Manufacturing Co., Ltd. Acoustic wave device and multiplexer

Also Published As

Publication number Publication date
JP6624289B2 (ja) 2019-12-25
CN109417371B (zh) 2022-03-25
US10554193B2 (en) 2020-02-04
KR102107393B1 (ko) 2020-05-07
KR20180122007A (ko) 2018-11-09
US20190044495A1 (en) 2019-02-07
JPWO2018003657A1 (ja) 2019-02-14
CN109417371A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US11616191B2 (en) Elastic wave device
JP6954799B2 (ja) 弾性波装置
JP6354839B2 (ja) 弾性波フィルタ装置
JP5035421B2 (ja) 弾性波装置
JP4968334B2 (ja) 弾性表面波装置
WO2009139108A1 (ja) 弾性境界波装置
US10312883B2 (en) Elastic wave device
US20190334499A1 (en) Elastic wave device
KR20180123562A (ko) 탄성파 장치
US11863155B2 (en) Surface acoustic wave element
KR102722448B1 (ko) 탄성파 장치
JP5152342B2 (ja) 弾性表面波装置
WO2015137089A1 (ja) 弾性波装置
WO2009081647A1 (ja) 弾性表面波装置
JP2007235711A (ja) 弾性表面波装置
JP5206692B2 (ja) 弾性表面波装置
WO2009090715A1 (ja) 弾性表面波装置
JP2009194895A (ja) 弾性表面波装置
WO2018003657A1 (ja) 弾性波装置
WO2023048256A1 (ja) 弾性波装置
WO2009090713A1 (ja) 弾性表面波装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525116

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187029988

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820014

Country of ref document: EP

Kind code of ref document: A1