WO2018002786A1 - Dispositif de broyage a haut debit comportant une operation de broyage reglable - Google Patents
Dispositif de broyage a haut debit comportant une operation de broyage reglable Download PDFInfo
- Publication number
- WO2018002786A1 WO2018002786A1 PCT/IB2017/053753 IB2017053753W WO2018002786A1 WO 2018002786 A1 WO2018002786 A1 WO 2018002786A1 IB 2017053753 W IB2017053753 W IB 2017053753W WO 2018002786 A1 WO2018002786 A1 WO 2018002786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grinding
- rotor
- axis
- unit
- drive unit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C4/00—Crushing or disintegrating by roller mills
- B02C4/10—Crushing or disintegrating by roller mills with a roller co-operating with a stationary member
- B02C4/26—Crushing or disintegrating by roller mills with a roller co-operating with a stationary member in the form of a grid or grating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/14—Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/062—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives with rotor elements extending axially in close radial proximity of a concentrically arranged slotted or perforated ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/16—Details
- B02C18/18—Knives; Mountings thereof
- B02C18/186—Axially elongated knives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/16—Details
- B02C18/24—Drives
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F11/00—Stairways, ramps, or like structures; Balustrades; Handrails
- E04F11/18—Balustrades; Handrails
- E04F11/1863—Built-in aids for ascending or descending stairs
Definitions
- High flow milling device having an adjustable grinding operation
- the present invention relates to a grinding device that can implement a grinding operation that adjusts the grinding parameters and allows a high flow of the ground material.
- the material to be milled is milled between a rotating rotor and a sieve.
- the desired properties of the milled material such as particle size and particle flow velocity, can be obtained by appropriately selecting the appropriate milling parameters, such as the rotational speed of the rotor and / or the amplitude of oscillation and frequency in the case where the rotor is oscillating.
- Proper selection of the appropriate grinding parameters is also critical to avoid a significant increase in temperature which could be detrimental to the quality of the milled material. During most grinding operations, however, it can be difficult to choose which parameters are
- the material can change its properties, for example due to the high temperature and / or humidity, which makes the grinding parameters insufficient.
- the present invention relates to a grinding device for implementing a grinding operation, comprising:
- a grinding unit including a body which has a grinding chamber, which can be filled with a grinding material, a rotor rotatably mounted about an axis in the body, a sieve, and a drive unit controlling the movements the rotor with respect to the screen during the grinding operation;
- the drive unit is adapted to provide oscillation movement to the rotor about the axis, the oscillation angle being varied during the grinding operation;
- the grinding chamber is configured to direct the product to be milled in a direction substantially parallel to the axis of rotation of the rotor.
- the grinding device of the invention allows to implement a grinding operation in which it is possible to adjust the grinding parameters, while allowing a high flow rate of the ground material.
- Figure 1 shows a grinding device 1 comprising a rotor and a screen, according to one embodiment
- Figure 2 shows a perspective view of the screen
- Figure 3 shows a detailed view of the rotor, according to one embodiment.
- FIG. 1 shows a grinding device 1 for implementing a grinding operation, according to one embodiment.
- the grinding unit 2 comprises a body 3 comprising a grinding chamber 20.
- a rotor 4 is rotatably mounted about an axis 5 in the body 3.
- a screen 21 is mounted concentrically around the rotor 4.
- a drive unit 60 (only partially visible in FIG.
- the rotor 4 is mounted substantially vertically,
- the material to be ground can be introduced into the grinding chamber 20 from above, through an inlet 32. During the grinding operation, the material is ground by the combined action of the rotor 4 and the sieve 21 and the crushed material which has passed through the sieve 21 leaves the grinding unit 2 through an outlet 33 (from the bottom).
- the grinding device 1 comprises a transmission element 61 comprising a grinding shaft 6 on which the rotor 4 is mounted.
- the transmission element 61 is configured to transmit the drive of the drive unit 60 to the grinding shaft 6.
- the grinding shaft 6 is mounted in a grinding shaft bearing 64 and the transmission shaft 63 is mounted in a transmission bearing 65.
- the transmission element 61 can also be configured to drive the rotor 4 directly from the top or from the bottom, that is to say ie, provide a functional connection according to the orientation of the axis 5 of rotation of the rotor 4 (direct transmission).
- the transmission element 61 also comprises a connection unit 30 for functionally connecting the grinding unit 2 to the drive unit 60, via the transmission element 61.
- the connection unit 30 is configured to enable the transmission element 61 to be connected to the drive unit 60 removably.
- the connection of the transmission member 61 to the drive unit 60 may include a "tri-clamp" type collar or other suitable quick connect system.
- the drive unit 60 drives the grinding shaft 6 in rotation about the axis 5.
- the movements of the rotor 4 with respect to the sieve 21 can be controlled so as to carry out the grinding operation, that is to say, to allow the fractionation of the material to be ground by the combined action of the rotor 4 and the sieve 21, according to
- the grinding chamber 2 configured so that the material flows from top to bottom (between the inlet 32 and the outlet 33), in a direction substantially parallel to the axis 5 of rotation of the rotor 4, allows to take advantage of the gravity and increase the flow rate of the ground material with respect to a device in which the rotor and the screen are oriented horizontally.
- the flow rate of the milled material is also increased by the larger surface of the sieve 21 concentric with respect to a sieve placed under a rotating rotor along a horizontally oriented axis.
- connection unit 30 includes an adapter module 31 configured to adapt the characteristics of the drive unit 60 to the needs of the grinding unit 2 functionally connected to the unit of operation. 60. It is thus possible to connect functionally different grinding units 2 depending on the grinding process that is desired to perform.
- An advantage of the connection unit 30 is that a single drive unit 60 can be used for a plurality of grinding chambers 2, reducing the costs of
- the flow rate of the material to be milled entering the grinding chamber 2 can be regulated by the addition of a metering system (not shown).
- the flow rate can also be changed by driving the material into an air stream (not shown).
- a protective air flow 50 may be injected along the rotor shaft 5, directed towards the rotor 4 so as to prevent infiltration of the material to be ground in the transmission element 61 and avoid a risk of overheating of the transmission element 61 and the rotor 4.
- the drive unit 60 and / or the transmission element 61 can integrate a cooling system to allow heat sensitive materials to be processed.
- FIG. 2 shows a perspective view of the screen 21, according to one embodiment.
- the screen 21 is cylindrical and can be mounted in the body 3 of the grinding chamber 2 concentrically with the axis 5 of rotation of the rotor 4.
- the screen 21 is mounted between two support rings 22
- the lower support ring 22 comprises a sieve bearing 24 for mounting the sieve 21 on the grinding shaft bearing 64.
- the screen 21 may consist of a filtering portion 25 and a support portion 26.
- the support portion 26 is provided with large openings 27 through which the milled material passes through the filtering portion 25 when the grinding operation.
- the support portion 26 may consist of a thick and solid element, ensuring the sieve 21 a certain rigidity.
- the filtering portion 25 may be composed of thin openings to facilitate a fluid flow rate of the materials.
- the screen 21 may be coupled to a vibration generator (not shown) so as to facilitate the flow of the ground material through the sieve 21.
- the effect of the vibration prevents the material from coming s agglomerating in the openings of the screen 21 during the grinding operation, thus allowing a continuous flow of the milled material, without human intervention. Indeed, the vibrations generated by the
- Vibration generator is transmitted to the filter portion 25 of the screen 21 in a very efficient manner. This leads to an acceleration of the circulation of the crushed material, in particular to avoid the risk of stagnation of powdery materials.
- the sieve 21 formed in one piece is advantageous since the latter is devoid of bonding areas or welding and does not risk being weakened by the vibrations exerted by the vibration generator.
- the rotor 4 comprises a bearing 40 arranged to be mounted on a grinding shaft 6 parallel to the axis 5.
- a plurality of blades 41 are disposed concentrically with the axis 5 of rotation of the rotor 4 and substantially parallel to this axis 5.
- the rotor 4 comprises a disc 42 extending radially from the bearing 40.
- the blades are mounted at the In the illustrated example, the rotor comprises five blades 41 distributed angularly equidistant. However, a different number of blades 41 and a different arrangement are also possible depending on the needs of the grinding process.
- the disc 42 occupies substantially the entire surface under the screen 21 so as to direct the material to be grinded on the sides, that is to say passing through the sieve 21.
- the disc 42 has a frustoconical shape so that the material to be ground is guided towards the grinding zone, that is to say towards the blades 41 and the sieve 21. In this way, the form
- frustoconical disc 42 prevents the material to grind lies too long (in other words, avoids a retention zone of the material to grind) in the region between the rotor bearing 40 and the blades 41.
- the movement of the rotor 4 relative to the screen 21 comprises a rotary movement about the axis 5.
- the rotational speed of the rotor 4 can be varied, for example, according to the grinding process , the type of rotor 4 and / or sieve 21 and the material to be ground.
- the rotational speed of the rotor 4 can also be varied during the grinding process.
- the movement of the rotor 4 relative to the screen 21 also comprises an oscillation movement with an oscillation frequency that can be varied during the grinding operation.
- the rotor 4 can be pivoted in one direction or the other with respect to the screen 21.
- the oscillation movement can be done with an oscillation angle
- predetermined i.e. with a predetermined oscillation amplitude
- the predetermined oscillation angle can have a value between 0 and 360 °.
- the predetermined oscillation angle may also correspond to several complete turns in the same direction.
- the rotor can oscillate with an oscillation frequency between 0 and 4 Hz.
- the oscillation frequency can be varied during the grinding operation.
- a vibratory movement of the rotor 4 can be obtained when the latter is oscillated with an oscillation frequency of less than approximately 2 °.
- an offset of the oscillation angle during the grinding operation for example at each oscillation of the oscillation movement of the rotor 4.
- Such an offset of the oscillation angle means that the angular position of the rotor 4 is shifted by the offset value of the oscillation angle after the completion of an oscillation cycle (an oscillation motion).
- the offset of the oscillation angle can be between 0 and 90 °.
- the offset of the oscillation angle can be varied during the grinding operation.
- the drive unit 60 may comprise a controller configured to determine grinding parameters on the basis of signals provided by a sensor. The parameters determined by the controller can then be used to control the drive unit 60 so as to drive the rotor 4 according to the determined parameters. In this way, the grinding operation can be optimized depending on the material to be ground and the grinding conditions, which are measured by the sensor. The movements of the rotor 4 can therefore be controlled in real time during the grinding operation.
- a first longitudinal face 43 of the blade 41 has a profile which differs from a second longitudinal face 44 opposite to the first face 43.
- one of the first or second face 43, 44 corresponds to the leading edge, that is to say the side of the blade 41 which faces the material when When the rotor 4 rotates in the opposite direction, the other face 44, 43 corresponds to the leading edge. In this way, it is possible to perform two different grinding processes according to the direction of rotation of the rotor 4.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Crushing And Grinding (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
Dispositif (1) de broyage pour mettre en œuvre une opération de broyage, comprenant: une unité de broyage (2) incluant un corps (3) qui comporte une chambre (20) de broyage, laquelle peut être remplie d'une matière à broyer, un rotor (4) monté rotatif autour d'un axe (5) dans le corps (3), un tamis (21), et une unité d'entrainement (60) commandant les mouvements du rotor (4) par rapport au tamis (21) pendant l'opération de broyage; dans lequel l'unité d'entrainement (60) est conçue pour fournir un mouvement d'oscillation au rotor (4) autour de l'axe (5), l'angle d'oscillation pouvant être varié pendant l'opération de broyage; dans lequel la chambre de broyage (2) est configurée de manière à diriger le produit à broyer selon une direction sensiblement parallèle à l'axe (5) de rotation du rotor (4).
Description
Dispositif de broyage à haut débit comportant une opération de broyage réglable
Domaine technique
[0001] La présente invention concerne un dispositif de broyage pouvant mettre en œuvre une opération de broyage qui permet d'ajuster les paramètres de broyage et qui permet un débit élevé de la matière broyée.
Etat de la technique
[0002] Dans les broyeurs oscillants classiques, le matériau à broyer est broyé entre un rotor rotatif et un tamis. Les propriétés souhaitées du matériau broyé, comme la taille des grains de particules et la vitesse d'écoulement des particules, peuvent être obtenues en sélectionnant de manière adéquate les paramètres de broyage appropriés, tels que la vitesse de rotation du rotor et/ou l'amplitude d'oscillation et de la fréquence dans le cas où le rotor est oscillant. La sélection correcte des paramètres de broyage appropriés est également critique pour éviter une augmentation importante de la température qui pourrait être préjudiciable à la qualité de la matière broyée. Au cours de la plupart des opérations de broyage, cependant, il peut être difficile de choisir les paramètres qui sont
appropriés pendant toute l'opération de broyage. En effet, lors du broyage, le matériau peut modifier ses propriétés, par exemple en raison de la température et/ou humidité élevée, ce qui rend les paramètres de broyage insuffisants. Pour obtenir une taille de particule acceptable et uniforme du matériau broyé, il est nécessaire de modifier les paramètres de broyage pendant l'opération de broyage. Un autre problème est d'obtenir un débit élevé de la matière broyée.
Bref résumé de l'invention
[0003] La présente invention concerne un dispositif de broyage pour mettre en oeuvre une opération de broyage, comprenant:
une unité de broyage incluant un corps qui comporte une chambre de broyage, laquelle peut être remplie d'une matière à broyer, un rotor monté rotatif autour d'un axe dans le corps, un tamis , et une unité d'entraînement commandant les mouvements de le rotor par rapport au tamis pendant l'opération de broyage;
dans lequel l'unité d'entraînement est conçue pour fournir un mouvement d'oscillation au rotor autour de l'axe, l'angle d'oscillation pouvant être varié pendant l'opération de broyage; et
dans lequel la chambre de broyage est configurée de manière à diriger le produit à broyer selon une direction sensiblement parallèle à l'axe de rotation du rotor.
[0004] Le dispositif de broyage de l'invention permet de mettre en oeuvre une opération de broyage dans laquelle il est possible d'ajuster les paramètre de broyage, tout en permettant un débit élevé de la matière broyée.
Brève description des figures
[0005] Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles : la figure 1 montre un dispositif 1 de broyage comportant un rotor et un tamis, selon un mode de réalisation; la figure 2 montre une vue en perspective du tamis; et la figure 3 montre une vue détaillée du rotor, selon un mode de réalisation.
Exemple(s) de mode de réalisation
[0006] La figure 1 montre un dispositif 1 de broyage pour mettre en oeuvre une opération de broyage, selon un mode de réalisation. L'unité de broyage 2 comprend un corps 3 comportant une chambre 20 de broyage. Un rotor 4 est monté rotatif autour d'un axe 5 dans le corps 3. Un tamis 21 est monté concentrique autour du rotor 4. Une unité d'entraînement 60 (seulement partiellement visible dans la figure 1) peut être
fonctionnellement connectée à l'unité de broyage 2 afin d'entraîner le rotor 4 par rapport au tamis 21 pendant l'opération de broyage. Selon cet arrangement, le rotor 4 est monté sensiblement verticalement,
concentrique avec le tamis 21.
[0007] La matière à broyer peut être introduite dans la chambre 20 de broyage du dessus, par une entrée 32. Lors de l'opération de broyage, la matière est broyée par l'action combinée du rotor 4 et du tamis 21 et la matière broyé qui a traversé le tamis 21 sort de l'unité de broyage 2 par une sortie 33 (par le bas).
[0008] Le dispositif 1 de broyage comporte un élément de transmission 61 comprenant un arbre de broyage 6 sur lequel est monté le rotor 4.
L'élément de transmission 61 est configuré pour transmettre l'entraînement de l'unité d'entraînement 60 à l'arbre de broyage 6.
[0009] Selon une forme préférée, l'élément de transmission 61
comprend un joint de transmission 62 permettant l'entraînement de l'arbre de broyage 6 par l'intermédiaire d'un arbre de transmission 63,
sensiblement orthogonal à l'arbre de broyage 6. L'arbre de broyage 6 est monté dans un palier d'arbre de broyage 64 et l'arbre de transmission 63 est monté dans un palier de transmission 65.
[0010] L'élément de transmission 61 peut également être configuré de manière à entraîner le rotor 4 directement par le haut ou par le bas, c'est-à-
dire, fournir une connexion fonctionnelle selon l'orientation de l'axe 5 de rotation du rotor 4 (transmission directe).
[0011] Avantageusement, l'élément de transmission 61 comporte également une unité de connexion 30 permettant de connecter de manière fonctionnelle l'unité de broyage 2 à l'unité d'entraînement 60, par l'intermédiaire de l'élément de transmission 61. L'unité de connexion 30 est configurée pour permettre de connecter l'élément de transmission 61 à l'unité d'entraînement 60 de manière amovible. La connexion de l'élément de transmission 61 à l'unité d'entraînement 60 peut comprendre un collier de type "Tri-clamp " ou tout autre système de connexion rapide approprié.
[0012] Lorsque l'unité de broyage 2 est connecté à l'unité
d'entraînement 60, par l'intermédiaire de l'élément de transmission 61 et de l'unité de connexion 30, l'unité d'entraînement 60 entraîne l'arbre de broyage 6 en rotation autour de l'axe 5. Les mouvements du rotor 4 par rapport au tamis 21 peuvent être commandés de sorte à réaliser l'opération de broyage, c'est-à-dire, permettre le fractionnement de la matière à broyer par l'action combinée du rotor 4 et du tamis 21 , selon les
spécifications de broyage désirées.
[0013] La chambre de broyage 2 configurée de manière à ce que la matière circule de haut en bas (entre l'entrée 32 et la sortie 33), selon une direction sensiblement parallèle à l'axe 5 de rotation du rotor 4, permet de profiter de la gravité et d'augmenter le débit de la matière broyée par rapport à un dispositif dans lequel le rotor et le tamis sont orientés horizontalement. Le débit de la matière broyée est également augmenté par la surface plus grande du tamis 21 concentrique par rapport à un tamis placé sous un rotor tournant selon un axe orienté horizontalement.
[0014] Dans un mode de réalisation, l'unité de connexion 30 inclut un module adaptateur 31 configuré pour adapter les caractéristiques de l'unité d'entraînement 60 aux besoins de l'unité de broyage 2 fonctionnellement connectée à l'unité d'entraînement 60. Il est ainsi possible de connecter de
manière fonctionnelle différentes unités de broyage 2 en fonction du procédé de broyage que l'on souhaite exécuter. Un avantage de l'unité de connexion 30 est qu'une seule unité d'entraînement 60 peut être utilisée pour plusieurs chambres de broyage 2, diminuant les coûts de
l'équipement.
[0015] Le débit de la matière à broyer entrant dans la chambre 2 de broyage peut être régulé par l'ajout d'un système de dosage (non représenté). Le débit peut également être modifié par entraînement de la matière dans un flux d'air (non représenté).
[0016] Un flux d'air de protection 50 peut être injecté le long de l'arbre 5 de rotor, dirigé vers le rotor 4 de manière à empêcher une infiltration de la matière à broyer dans l'élément de transmission 61 et d'éviter un risque de surchauffe de l'élément de transmission 61 et du rotor 4.
[0017] L'unité d'entraînement 60 et/ou l'élément de transmission 61 peuvent intégrer un système de refroidissement pour permettre de traiter des matières sensibles thermiquement.
[0018] Le dispositif 1 de broyage peut être adapté pour du broyage cryogénique ou du broyage sous vide. Le dispositif 1 de broyage peut être utilisé sous atmosphère inerte pour permettre de traiter des produits explosifs.
[0019] La figure 2 montre une vue en perspective du tamis 21 , selon un mode de réalisation. Le tamis 21 est cylindrique et peut être monté dans le corps 3 de la chambre de broyage 2 de manière concentrique à l'axe 5 de rotation du rotor 4. Dans l'exemple illustré, le tamis 21 est monté entre deux anneaux de support 22 maintenus solidaires par des vis 23. L'anneau de support 22 inférieur comprend un palier de tamis 24 pour le montage du tamis 21 sur le palier d'arbre de broyage 64.
[0020] Le tamis 21 peut être constitué d'une partie filtrante 25 et d'une partie support 26. La partie support 26 est pourvue de larges ouvertures 27 par lesquelles la matière broyée passe au travers de la partie filtrante 25 lors de l'opération de broyage. La partie support 26 peut être constituée d'un élément épais et solide, assurant au tamis 21 une certaine rigidité. La partie filtrante 25 peut être composée de fines ouvertures afin de faciliter un débit fluide d'écoulement des matières. Le tamis 21 peut être fabriqué dans un matériau en alliage métallique. De façon préférée, la partie filtrante 25 et la partie support 26 sont formées intégralement de sorte que le tamis 21 est formé d'une seule pièce. Un tel tamis 21 permet, par opposition aux tamis constitués de plusieurs éléments collés ou soudés, d'éviter que les matières poudreuses s'immiscent dans des cavités, entre la partie filtrante 25 et la partie support 26. Le tamis 21 cylindrique permet une plus grande surface de broyage.
[0021] Le tamis 21 peut être couplé à un générateur de vibrations (non représenté) de manière à faciliter l'écoulement de la matière broyée au travers du tamis 21. L'effet de la vibration permet d'éviter que la matière vienne s'agglomérer dans les ouvertures du tamis 21 pendant l'opération de broyage, permettant ainsi un flux continu de la matière broyée, sans intervention humaine. En effet, les vibrations engendrées par le
générateur de vibrations sont transmises à la partie filtrante 25 du tamis 21 de manière très efficace. Cela entraine une accélération de la circulation de la matière broyée, en permettant notamment d'éviter les risques de stagnation des matières poudreuses. Dans ce cas, le tamis 21 formé d'une seule pièce est avantageux puisque ce dernier est dépourvu de zones de collage ou de soudure et ne risque pas d'être fragilisé par les vibrations exercées par le générateur de vibrations.
[0022] Une vue détaillée du rotor 4 est montrée à la figure 3, selon un mode de réalisation. Le rotor 4 comporte un palier 40 arrangé pour être monté sur un arbre de broyage 6 parallèle à l'axe 5. Une pluralité de lames 41 sont disposées concentriques avec l'axe 5 de rotation du rotor 4 et sensiblement parallèle à cet axe 5. Le rotor 4 comprend un disque 42 s'étendant radialement à partir du palier 40. Les lames sont montées à la
périphérie du disque 42. Dans l'exemple illustré, le rotor comporte cinq lames 41 distribuée angulairement équidistantes. Cependant un nombre différent de lames 41 ainsi qu'une disposition différente sont également possibles selon les besoin du procédé de broyage.
[0023] De manière préférée, le disque 42 occupe sensiblement toute la surface sous le tamis 21 de sorte à diriger la matière à broyer sur les côtés, c'est-à-dire en passant au travers du tamis 21.
[0024] Avantageusement, le disque 42 a une forme tronconique de manière à ce que la matière à broyer est guidée vers la zone de broyage, c'est-à-dire vers les lames 41 et le tamis 21. De la sorte, la forme
tronconique du disque 42 évite que la matière à broyer réside trop longtemps (autrement dit, évite une zone de rétention de la matière à broyer) dans la région comprise entre le palier de rotor 40 et les lames 41.
[0025] Dans un mode de réalisation, le mouvement du rotor 4 par rapport au tamis 21 comprend un mouvement de rotatif autour de l'axe 5. La vitesse de rotation du rotor 4 peut être variée, par exemple, selon le procédé de broyage, le type de rotor 4 et/ou de tamis 21 et la matière à broyer. La vitesse de rotation du rotor 4 peut également être variée pendant le procédé de broyage.
[0026] Le mouvement du rotor 4 par rapport au tamis 21 comprend également un mouvement d'oscillation avec une fréquence d'oscillation qui peut être variée pendant l'opération de broyage. En particulier, le rotor 4 peut être pivoté dans un sens ou dans l'autre par rapport au tamis 21. Le mouvement d'oscillation peut se faire avec un angle d'oscillation
prédéterminé (c'est-à-dire avec une amplitude d'oscillation prédéterminée).
[0027] L'angle d'oscillation prédéterminé peut avoir une valeur comprise entre 0 and 360°. L'angle d'oscillation prédéterminé peut également correspondre à plusieurs tours complets dans un même sens.
[0028] Le rotor peut osciller avec une fréquence d'oscillation entre 0 et 4 Hz. La fréquence d'oscillation peut être variée pendant l'opération de broyage. Dans une variante, un mouvement vibratoire du rotor 4 peut être obtenu lorsque ce dernier est oscillé avec une fréquence d'oscillation inférieure à environ 2°.
[0029] Le mouvement du rotor 4 par rapport au tamis 21 peut
également comprendre un décalage de l'angle d'oscillation pendant l'opération de broyage, par exemple à chaque oscillation du mouvement d'oscillation du rotor 4. Un tel décalage de l'angle d'oscillation signifie que la position angulaire du rotor 4 est décalée par la valeur de décalage de l'angle d'oscillation après la complétion d'un cycle d'oscillation (un mouvement d'oscillation). Le décalage de l'angle d'oscillation peut être compris entre 0 et 90°. Le décalage de l'angle d'oscillation peut être varié pendant l'opération de broyage.
[0030] Selon une variante non illustrée, l'unité d'entraînement 60 peut comprendre un contrôleur configuré de manière à déterminer des paramètres de broyage sur la base de signaux fournis par un capteur. Les paramètres déterminés par le contrôleur peuvent être alors utilisés pour contrôler l'unité d'entraînement 60 de sorte à entraîner le rotor 4 en fonction des paramètres déterminés. De la sorte, l'opération de broyage peut être optimisée en fonction de la matière à broyer et des conditions de broyage, qui sont mesurées par le capteur. Les mouvements du rotor 4 peuvent donc être contrôlés en temps réel pendant l'opération de broyage.
[0031] Les mouvements du rotor 4 par rapport au tamis 21 décrit ci- dessus peuvent être ajustés selon les paramètres de broyage déterminés par le contrôleur sur la base des signaux fournis par le capteur.
[0032] Dans l'exemple de la figure 3, les lames 41 sont illustrées avec une section sensiblement carrée. Cependant, d'autres configurations de lames 41 sont également possibles selon le ou les procédés de broyage que l'on souhaite réaliser.
[0033] Selon un mode de réalisation non illustré, une première face 43 longitudinale de la lame 41 comporte un profil qui diffère d'une seconde face 44 longitudinale opposée à la première face 43. Dans cette
configuration, lorsque le rotor 4 tourne dans un sens, l'une de la première ou seconde face 43, 44 correspond au bord d'attaque, c'est-à-dire le côté de la lame 41 qui fait face à la matière lors de la rotation de rotor 4. Lorsque le rotor 4 tourne dans le sens opposé, l'autre face 44, 43 correspond au bord d'attaque. De la sorte, il est possible de réaliser deux procédés de broyage différents selon le sens de rotation du rotor 4.
[0034] Selon un autre mode de réalisation, les lames 41 sont configurées de manière à exercer une poussée vers le tamis 21 de la matière. Ce type de configuration des lames 41 est particulièrement approprié lorsque le rotor tourne à basse vitesse, par exemple, lorsque la vitesse du rotor 4 est entreO et 200 rpm. Un exemple d'une telle configuration est montré à la figure 3, dans lequel les lames 41 de section sensiblement carrée sont disposées avec les faces 43, 44 faisant un angle Θ par rapport un rayon 45 du rotor 4. Une telle configuration des lames 41 a pour effet que la matière broyée est poussée vers le tamis 21 de par l'inclinaison des faces 43, 44 par rapport au tamis 21. L'angle Θ peut varier entre 10° et 80°, mais est préférablement compris entre 40° et 60°. On comprendra cependant que les lames peuvent être disposées avec l'une des faces sensiblement parallèle au tamis 21, c'est-à-dire, avec un angle Θ sensiblement nul ou tout autre angle Θ entre 0° et 10° et entre 80° et 90°. La vitesse du rotor 4 peut également être supérieure à 200 rpm.
Numéros de référence employés sur les figures dispositif de broyage
unité de broyage
chambre de broyage
tamis
anneau de support
vis
partie filtrante
partie support
ouverture
corps
unité de connexion
module adaptateur
entrée
sortie
rotor
palier de rotor
lame
disque
première face
seconde face
rayon
axe
flux d'air de protection
arbre de broyage
unité d'entraînement
élément de transmission
joint de transmission
arbre de transmission
palier d'arbre de broyage
palier de transmission
axe d'entraînement
Claims
1. Dispositif (1) de broyage pour mettre en oeuvre une opération de broyage, comprenant: une unité de broyage (2) incluant un corps (3) qui comporte une chambre (20) de broyage, laquelle peut être remplie d'une matière à broyer, un rotor (4) monté rotatif autour d'un axe (5) dans le corps (3), un tamis (21) , et une unité d'entraînement (60) commandant les mouvements du rotor (4) par rapport au tamis (21) pendant l'opération de broyage; dans lequel l'unité d'entraînement (60) est conçue pour fournir un mouvement d'oscillation au rotor (4) autour de l'axe (5), l'angle d'oscillation pouvant être varié pendant l'opération de broyage; et dans lequel la chambre de broyage (2) est configurée de manière à diriger le produit à broyer selon une direction sensiblement parallèle à l'axe (5) de rotation du rotor (4).
2. Le dispositif selon la revendication 1 ,
dans lequel le tamis (21) est cylindrique et concentrique à l'axe (5) de rotation du rotor (4).
3. Le dispositif selon la revendication 1 ou 2,
dans lequel le rotor (4) comprend une pluralité de lames (41) concentriques avec l'axe (5) et sensiblement parallèle à cet axe (5).
4. Le dispositif selon la revendication 3,
dans lequel le rotor (4) comprend un disque (42) s'étendant radialement à partir du palier (40).
5. Le dispositif selon la revendication 4,
dans lequel le disque (42) est de forme tronconique, de sorte à guider la matière à broyer vers les lames (41) et le tamis (21).
6. Le dispositif selon l'une des revendications de 1 à 5,
comportant un élément de transmission (61) comprenant un arbre de broyage (6) sur lequel est monté le rotor (4), l'élément de transmission (61) étant arrangé pour transmettre l'entraînement de l'unité d'entraînement (60) à l'arbre de broyage (6).
7. Le dispositif selon la revendication 6,
dans lequel l'élément de transmission (61) comprend un joint de
transmission (62) permettant l'entraînement de l'arbre de broyage (6) par l'intermédiaire d'un arbre de transmission (63), sensiblement orthogonal à l'arbre de broyage (6).
8. Le dispositif selon la revendication 6 ou 7,
comportant en outre une unité de connexion (30) configurée pour connecter l'élément de transmission (61) à l'unité d'entraînement (60) de manière fonctionnelle et amovible.
9. Le dispositif selon la revendication 8,
dans lequel l'unité de connexion (30) comprend un module adaptateur (31) configuré pour adapter les caractéristiques de l'unité d'entraînement (60) aux besoins de l'unité de broyage (2) fonctionnellement connectée à l'unité d'entraînement (60).
10. Le dispositif selon l'une des revendications de 1 à 9,
dans lequel le mouvement d'oscillation comprend une fréquence
d'oscillation qui peut être variée pendant l'opération de broyage.
1 1. Le dispositif selon l'une des revendications de 1 à 10, dans lequel l'angle d'oscillation peut être décalé pendant l'opération de broyage.
12. Le dispositif selon l'une des revendications de 1 à 1 1 , dans lequel la vitesse de rotation du rotor (4) peut être variée pendant l'opération de broyage.
13. Le dispositif selon l'une des revendications de 3 à 12, dans lequel une première face (43) longitudinale de la lame (41) comporte un profil qui diffère d'une seconde face (44) longitudinale opposée à la première face (43) de sorte que deux procédés de broyage peuvent être réalisés selon le sens de rotation du rotor (4).
14. Le dispositif selon l'une des revendications de 3 à 13, dans lequel les lames (41) sont configurées de manière à exercer une poussée vers le tamis (21) de la matière à broyer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/309,636 US11440019B2 (en) | 2016-06-28 | 2017-06-23 | High-throughput milling device comprising an adjustable milling operation |
EP17737057.4A EP3474995B1 (fr) | 2016-06-28 | 2017-06-23 | Dispositif de broyage à haut débit comportant une opération de broyage réglable |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00820/16 | 2016-06-28 | ||
CH00820/16A CH712632A2 (fr) | 2016-06-28 | 2016-06-28 | Dispositif de broyage. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018002786A1 true WO2018002786A1 (fr) | 2018-01-04 |
Family
ID=60719747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/053753 WO2018002786A1 (fr) | 2016-06-28 | 2017-06-23 | Dispositif de broyage a haut debit comportant une operation de broyage reglable |
Country Status (4)
Country | Link |
---|---|
US (1) | US11440019B2 (fr) |
EP (1) | EP3474995B1 (fr) |
CH (1) | CH712632A2 (fr) |
WO (1) | WO2018002786A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108187855A (zh) * | 2018-01-16 | 2018-06-22 | 李姗姗 | 一种带有异形粉碎筒的中草药碎化装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114100790A (zh) * | 2022-01-24 | 2022-03-01 | 江苏七子建设科技有限公司 | 一种建筑工程施工用垃圾破碎装置 |
CN118384969B (zh) * | 2024-06-24 | 2024-09-24 | 山东雷丰智能科技有限公司 | 一种天然石墨粉体整形设备及其使用方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138258A1 (en) * | 2003-01-17 | 2006-06-29 | Jussi Jarvinen | Method for defining the degree of fullness in a mill |
US20110114775A1 (en) * | 2008-06-26 | 2011-05-19 | Frewitt Fabrique De Machines S.A. | Conical reducing apparatus |
US20130119172A1 (en) * | 2010-07-09 | 2013-05-16 | Frewitt Fabrique De Machines Sa | Milling device with adjustable milling operation |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2947486A (en) * | 1956-06-11 | 1960-08-02 | Higer Harry | Cutting and disintegrating machine |
US3249310A (en) * | 1956-08-06 | 1966-05-03 | Willems Peter | Apparatus and method for mixing and comminuting materials |
US3236462A (en) * | 1962-10-26 | 1966-02-22 | Fmc Corp | Waste disposer |
US3591095A (en) * | 1968-11-25 | 1971-07-06 | Albert Di Stefano | Combination garbage grinder and pump |
US4128210A (en) * | 1977-03-24 | 1978-12-05 | Whirlpool Corporation | Food waste disposal apparatus |
US4610397A (en) * | 1983-10-27 | 1986-09-09 | Urschel Laboratories Incorporated | Comminuting equipment |
US4630780A (en) * | 1984-12-24 | 1986-12-23 | Somat Corporation | Replaceable beveled shear members for a waste pulping machine |
US5330113A (en) * | 1993-03-29 | 1994-07-19 | Quadro Engineering Inc. | Underdriven size reduction machine |
US6439487B1 (en) * | 2000-03-14 | 2002-08-27 | Emerson Electric Co. | Grinding mechanism for a food waste disposer and method of making the grinding mechanism |
US7607599B2 (en) * | 2003-06-06 | 2009-10-27 | Emerson Electric Co. | Food waste reduction mechanism for disposer |
NO324316B1 (no) * | 2003-06-19 | 2007-09-24 | Tomra Systems Asa | Desintegreringsanordning med kraftoverforingsanordning, samt anvendelse derav |
US20060118668A1 (en) * | 2004-12-03 | 2006-06-08 | Eiji Matsumoto | Vegetable cutting device |
US8500050B2 (en) * | 2010-10-04 | 2013-08-06 | Emerson Electric Co. | Food waste disposer with restricted grind chamber discharge |
US9186684B2 (en) * | 2012-04-16 | 2015-11-17 | Harris Waste Management Group, Inc. | Comminuting machine drive system |
US9222246B2 (en) * | 2013-10-28 | 2015-12-29 | General Electric Company | Waste disposal with enhanced water management features |
US9458613B2 (en) * | 2013-10-28 | 2016-10-04 | Haier Us Appliance Solutions, Inc. | Waste disposal with improved housing configuration |
DE102016014636A1 (de) * | 2016-04-01 | 2017-10-05 | Retsch Gmbh | Laborgerät |
-
2016
- 2016-06-28 CH CH00820/16A patent/CH712632A2/fr unknown
-
2017
- 2017-06-23 EP EP17737057.4A patent/EP3474995B1/fr active Active
- 2017-06-23 US US16/309,636 patent/US11440019B2/en active Active
- 2017-06-23 WO PCT/IB2017/053753 patent/WO2018002786A1/fr unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138258A1 (en) * | 2003-01-17 | 2006-06-29 | Jussi Jarvinen | Method for defining the degree of fullness in a mill |
US20110114775A1 (en) * | 2008-06-26 | 2011-05-19 | Frewitt Fabrique De Machines S.A. | Conical reducing apparatus |
US20130119172A1 (en) * | 2010-07-09 | 2013-05-16 | Frewitt Fabrique De Machines Sa | Milling device with adjustable milling operation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108187855A (zh) * | 2018-01-16 | 2018-06-22 | 李姗姗 | 一种带有异形粉碎筒的中草药碎化装置 |
CN108187855B (zh) * | 2018-01-16 | 2019-08-16 | 安徽三义堂中药饮片有限公司 | 一种带有异形粉碎筒的中草药碎化装置 |
Also Published As
Publication number | Publication date |
---|---|
CH712632A2 (fr) | 2017-12-29 |
EP3474995A1 (fr) | 2019-05-01 |
EP3474995B1 (fr) | 2020-04-08 |
US11440019B2 (en) | 2022-09-13 |
US20190308199A1 (en) | 2019-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3474995B1 (fr) | Dispositif de broyage à haut débit comportant une opération de broyage réglable | |
EP3485975B1 (fr) | Dispositif de broyage permettant un débit de broyage élevé et de varier la distribution de taille des particules broyées | |
EP2323807B1 (fr) | Procédé de polissage de disques munis d'un aubage pour turbomachine et dispositif de polissage | |
CH308058A (fr) | Procédé de broyage de matières solides et appareil pour la mise en oeuvre de ce procédé. | |
FR2596291A1 (fr) | Melangeur de matiere pulverulente et de liquide, notamment de ciment et d'eau, ou liquide-liquide | |
CH683752A5 (fr) | Appareil de broyage continu à sec. | |
EP1745704B1 (fr) | Dispositif pour fabriquer un produit granulaire par extrusion et découpage | |
EP0642387B1 (fr) | Broyeur vibrant a cone et procede de reglage de la marche d'un tel broyeur | |
EP3031527A1 (fr) | Système de tamis pour un dispositif de broyage et dispositif de broyage utilisant un tel système de tamis | |
BE632805A (fr) | ||
FR3003778A1 (fr) | Procede et dispositif de tri de billes | |
FR2614221A1 (fr) | Classificateur a force centrifuge pour la separation d'un materiau finement disperse. | |
EP2718028A2 (fr) | Séparateur dynamique pour matériaux pulvérulents | |
EP3074136B1 (fr) | Dispositif de broyage en continu pour des matériaux solides divisés | |
CA2107788A1 (fr) | Broyeur a cone fixe | |
CH251956A (fr) | Procédé de broyage par voie humide et broyeur pour la mise en oeuvre du procédé. | |
FR2898286A1 (fr) | Dispositif pour le broyage et le calibrage d'objets | |
FR3014154A1 (fr) | Arbre a balourd, systeme de vibration et dispositif de tamisage | |
EP0351306A2 (fr) | Broyeur cylindrique comportant des rouleaux intérieurs de broyage | |
FR2645061A1 (fr) | Dispositif pour le traitement centrifuge de pieces | |
JPH0114828B2 (fr) | ||
FR2878180A1 (fr) | Outil de decoupe et dispositif de decoupe a ultrasons equipe dudit outil de decoupe | |
FR2518437A1 (fr) | Dispositif et procede pour former de fines gouttelettes de metal liquide | |
FR2590806A3 (fr) | Dispositif de reduction dimensionnelle de particules de matiere en suspension | |
BE493723A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17737057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017737057 Country of ref document: EP Effective date: 20190128 |