WO2018097484A2 - Combined/hybrid charging system - Google Patents
Combined/hybrid charging system Download PDFInfo
- Publication number
- WO2018097484A2 WO2018097484A2 PCT/KR2017/011626 KR2017011626W WO2018097484A2 WO 2018097484 A2 WO2018097484 A2 WO 2018097484A2 KR 2017011626 W KR2017011626 W KR 2017011626W WO 2018097484 A2 WO2018097484 A2 WO 2018097484A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- power
- charging
- fuel
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/51—Photovoltaic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/62—Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the present invention relates to a fusion charging system, and more particularly, to a fusion charging system capable of supporting both vehicle charging for hydrogen and electric power.
- Electric vehicles use a battery formed of a pack of a plurality of secondary batteries capable of charging and discharging as a main power source, and thus have almost no exhaust gas and have a very small noise.
- the electric vehicle is largely composed of an electric motor driven by electricity to drive the electric vehicle, and a battery supplying electricity to the electric motor.
- electric motors and batteries are replacing engines and fuel in ordinary cars.
- the charging system for charging the battery of the electric vehicle has only a structure for supplying power as disclosed in Korean Patent Publication No. 10-2013-0134290.
- hydrogen used as a fuel is a colorless, tasteless, and odorless explosive gas because it has a property of easily igniting even minute static electricity, so a system that can cope with safety in case of leakage of hydrogen is required.
- the present invention was devised to solve the above requirements, and an object thereof is to provide a fusion charging system capable of stably supplying both hydrogen and power supply.
- a fusion charging system includes a power generation unit for generating electric power from at least one of sunlight and biomass; A power storage unit storing power generated by the power generation unit; An electric vehicle charging unit configured to supply electric power stored in the power storage unit to the electric vehicle; A hydrogen station in which hydrogen is stored; A hydrogen car charging unit configured to supply hydrogen stored in the hydrogen station to a hydrogen car; A hydrogen storage detection sensor for detecting a hydrogen storage stored in the hydrogen station; A charging power detection sensor detecting a charging power amount of the power storage unit; And a central manager configured to receive the information detected by the hydrogen storage amount detection sensor and the information detected by the charging power detection sensor to identify and manage the charging state of the hydrogen station and the power storage unit.
- the hydrogen station is controlled by the central management unit is provided with an electrolysis hydrogen generator for generating hydrogen by electrolysis to supply to the hydrogen storage container, the central management unit is the hydrogen When the amount of hydrogen stored in the storage container is less than the set reference value, the electrolytic hydrogen generator is controlled to operate.
- the electrolytic hydrogen generator is preferably connected to be operated by receiving power from the power storage unit.
- the hydrogen station is controlled by the central management unit and comprises a fuel reforming hydrogen generator for reforming the hydrocarbon-based liquid fuel to produce hydrogen to supply to the hydrogen storage container.
- the fusion-charging system while supporting the charging of the electric car and the hydrogen car, it is possible to efficiently control the power distribution and provides an advantage that the supply process can be stably performed.
- FIG. 1 is a view schematically showing a fusion filling system according to the present invention
- FIG. 2 is a view showing a hydrogen sensor of FIG.
- FIG. 3 is a cross-sectional view showing the fuel reforming portion of FIG. 1,
- FIG. 4 is a perspective view showing an extract of the fuel disperser of FIG.
- FIG. 5 is a plan view of the fuel spreader of FIG.
- Figure 6 is a plan view showing a fuel disperser according to another embodiment of the present invention.
- FIG. 1 is a view schematically showing a fusion filling system according to the present invention.
- the fusion and charging system 100 includes a power generation unit 110, a power storage unit 132, an electric vehicle charging unit 140, a hydrogen station 150, a hydrogen vehicle charging unit 167, and charging.
- the power detection sensor 132, the hydrogen storage amount detection sensor 157, and the central management unit 180 are provided.
- the power generation unit 110 is a solar generator 112 and the biomass generator 114 is applied.
- the photovoltaic generator 112 generates power from the sunlight by the arrayed solar cells (not shown) and supplies it to the power storage unit 132.
- the biomass generator 114 supplies the generated power to the power storage unit 132 by rotating the turbine with biomass, for example, steam generated by burning pellets.
- the power storage unit 130 stores the power generated by the power generation unit 110.
- the power storage unit 130 can be charged by the power supplied from the commercial power supply 120 through the first switch element 122.
- Reference numeral 125 is an AC-DC converter that converts AC power into DC power.
- the charging power detection sensor 132 detects the amount of charging power of the power storage unit 132 and provides it to the central management unit 180.
- the electric vehicle charging unit 140 supplies electric power stored in the power storage unit 130 to the electric vehicle.
- the method of supplying electricity to the electric vehicle from the electric vehicle charging unit 140 may be applied to various charging methods such as a method of directly connecting the electric vehicle or a method of charging the electric vehicle indirectly by electromagnetic induction.
- the hydrogen station 150 stores hydrogen and includes an electrolysis hydrogen generator 152, a buffer container 153, a compressor 154, a hydrogen storage container 151, and a fuel reforming hydrogen generator 160.
- the electrolysis hydrogen generator 152 is controlled to be operated by the central management unit 180 and generates hydrogen by electrolysis to supply the hydrogen storage container 151 through the buffer container 153 and the compressor 154. .
- the buffer container 153 or the hydrogen storage container 151 is constructed to receive and fill hydrogen from a hydrogen tank car that is capable of moving hydrogen through a vehicle.
- the fuel reforming hydrogen generator 160 is controlled to be operated by the central management unit 180 to generate hydrogen by reforming a hydrocarbon-based liquid fuel and supply the hydrogen to the hydrogen storage vessel 151 through the buffer vessel 153. .
- the fuel reformed hydrogen generator 160 includes a fuel storage tank 161, a fuel reformer 200, and a water gas converting unit 165.
- the fuel storage tank 161 stores a hydrocarbon-based liquid fuel.
- the hydrocarbon liquid fuel may be applied to ethanol, methanol, liquefied petroleum gas, gasoline.
- the fuel reforming unit 200 generates hydrogen gas by reforming the liquid fuel supplied by the operation of the pump P162 in the fuel storage tank 161.
- the water gas converting unit 165 removes carbon monoxide present in a small amount in addition to hydrogen gas in the gas generated by the fuel reformer 200 with a catalyst, for example, palladium, and removes the hydrogen gas from which carbon monoxide has been removed. 153 is supplied to the hydrogen storage container (151).
- the water gas conversion unit 165 may be omitted, and in this case, the water gas conversion unit 165 may be configured to supply the gas generated by the fuel reformer 200 to the buffer container 153.
- the fuel reformer 200 includes a reactor 210, a heater 220, a vaporization derivative 230, a fuel disperser 240, a mixture feeder 250, and a catalyst bed 260.
- the reactor 210 is formed to have an internal reaction space 212.
- the reactor 210 extends from the fuel storage tank 161 so that the supply pipe 161a to which the liquid fuel is supplied is connected to communicate with the internal reaction space 212.
- the reactor 210 is divided into a header region 214, a main body 216, and a sub-cylindrical portion 218.
- the header region 214 is formed such that the supply pipe 161a is connected to the internal reaction space 212, and is equipped with a heater 220 that heats to promote vaporization around the internal reaction space 212.
- the header region 214 forms an upper inner reaction space in which the lower portion is open and becomes part of the inner reaction space 212.
- the main body 216 is a portion which is coupled under the header region 214 to form a lower internal reaction space that is part of the internal reaction space so as to communicate with the upper internal reaction space.
- the sub-cylindrical portion 218 forms a sub-circulation space to be closed between the outer side of the main body 216 outside the main body 216.
- Reference numeral 218a is an inlet pipe through which the air or water vapor supplied from the mixture feeder 250 can be introduced into the sub circulation space of the sub-cylindrical portion 218, and reference numeral 218b denotes the sub circulation space and the internal reaction space 212.
- the main body 216 is a distribution hole formed to be spaced apart from each other along the circumferential direction to communicate the.
- the vaporization derivative 230 is installed in the internal reaction space 212 of the reactor 210 to face the supply pipe 161a to vaporize the liquid fuel flowing through the supply pipe 161a.
- the vaporized derivative 230 is formed of a porous medium.
- the vaporization derivative 230 may be formed in a porous plate shape of a stainless steel material.
- the vaporization derivative 230 is preferably used having a porosity of 35% to 65% and a particle size of 20 ⁇ m to 300 ⁇ m. If the porosity is less than 35% or the particle size is less than 20 ⁇ m, the liquid fuel is difficult to pass through and subjected to a lot of pressure upon inflow may cause problems in durability. In addition, when the porosity is greater than 65% or the particle size is greater than 300 ⁇ m, the liquid fuel can pass through without vaporization, the high heat porosity may cause a problem of low heat transfer rate.
- the fuel disperser 240 is installed between the vaporization conductor 230 and the supply pipe 161a to disperse the liquid fuel introduced through the supply pipe 161a and supply it to the vaporization derivative 230.
- the fuel disperser 240 has a structure having a center dispersion guide portion 244, a ring portion 247, and a support rib 248.
- the center dispersion guide portion 214 is divided into a cone portion 241, a reverse cone portion 242, and a center seating portion 243.
- the cone portion 241 is spaced apart from the supply pipe 161a and is formed to gradually expand its outer diameter as it moves away from the supply pipe 161a.
- This cone portion 241 serves to diffuse the liquid fuel discharged from the supply pipe 161a inclined with respect to the liquid fuel discharge direction.
- the first turning guide groove 241a and the second turning guide groove 241b are alternately formed along the circumferential direction so as to induce turbulence of the liquid fuel.
- the first pivot guide groove 241a extends from the surface to the edge in the radial direction at the center of the circumferential portion 241 and is formed in an arc shape along the first pivot direction.
- the second pivot guide groove 241b is formed in an arc shape so as to be drawn from the surface to extend from the center of the cone portion 241 to the edge along the radial direction so that the pivot direction is opposite to the first pivot direction 241a.
- the first and second swing guide grooves 241a and 241b may respectively form swirl flows in the liquid fuel flowing in different directions, thereby increasing the efficiency of forming turbulence due to mutual collisions.
- the cone portion 241 is divided into two portions along the dotted line indicated by the English letter C, and the first region C1 and the second region C2 are formed in the first region C1.
- One turning guide groove 241a may be formed, and a second turning guide groove 241b may be formed in the second region C2.
- the conical portion 241 may improve the dispersion efficiency and vaporization efficiency by causing the liquid fuel to swing and collide.
- the reverse cone portion 242 is a portion formed to gradually decrease in outer diameter as it proceeds downward from the edge of the cone portion 241.
- the central seating portion 243 is formed in a disc shape having a smaller outer diameter than the cone portion 241 at the lower end of the inverted cone portion 242 and is seated on the vaporization derivative 230.
- the ring portion 247 is formed in a ring shape so as to be spaced apart from the central seating portion 243 concentrically about the center seating portion 243.
- the ring portion 247 is formed to be sized to be seated along the edge of the vaporization conductor 220, but is formed to sufficiently secure the liquid fuel permeation region 246 between the central seating portion 243.
- the support bar 248 extends from the position spaced apart along the inner circumferential surface of the ring portion 247 to the center seating portion 243 to interconnect the ring portion 247 and the center seating portion 243.
- Three support arms 248 are applied.
- the mixture supplier 250 supplies at least one of air and water vapor to be mixed with the vaporized fuel through the vaporization derivative 230.
- the mixture feeder 250 supplies at least one of air and water vapor into the internal reaction space 212 through an inlet pipe 218a formed at the side of the reactor 210 and a distribution hole 218b formed at the outer side of the main body 216. It is supposed to supply.
- the catalyst bed 260 is installed below the main body 216.
- the catalyst bed 260 generates a hydrogen mixed gas containing a large amount of hydrogen and a small amount of carbon monoxide by catalytic reaction with a mixture gas mixed with air or steam and vaporized fuel.
- Catalyst bed 260 is filled with a catalyst for the reforming reaction.
- the catalyst bed 260 is a pellet-type carrier made of alumina (Al 2 O 3 ), silica (SiO 2 ) or titanium dioxide (TiO 2 ), and includes copper (Cu), nickel (Ni), and platinum (Pt). It may be formed in a structure supporting a catalyst material such as.
- the catalyst bed 260 may be formed of a conventional honey comb type in which a catalyst material is supported on the inner surface of the cell of the ceramic carrier or the metal carrier having a plurality of parallel through holes, that is, the cell.
- a heater for applying heat outside the catalyst bed 260 may be further provided.
- the hydrogen vehicle charging unit 167 is capable of supplying hydrogen stored in the hydrogen storage container 151 of the hydrogen station 150 to the hydrogen vehicle.
- the hydrogen car charging unit 167 is equipped with a hydrogen sensor 170 for detecting hydrogen leaking to the injection gun 168 for injecting hydrogen into the hydrogen car.
- the hydrogen sensor 170 applies a method of detecting by light so as to prevent an explosion caused by the leaked hydrogen and a detailed structure will be described with reference to FIG. 2.
- the hydrogen sensor 170 includes a light source 171, an optical circulator 172, a sensing optical fiber 173, a reaction layer 175, a photodetector 176, and a hydrogen concentration calculator 177.
- the driving of the light source 171 is controlled by the hydrogen concentration calculator 177.
- the optical circulator 172 transmits the light emitted from the light source 171 and input through the input terminal 172c through the first output terminal 172a, and is reversed from the sensing optical fiber 173 at the first output terminal 172a. The advancing light is output to the second output terminal 172b.
- One end of the sensing optical fiber 173 is connected to the first output terminal 172a to guide the light.
- the sensing optical fiber 173 has a core 173a, a cladding 173b surrounding the core, and a coating layer 173c coated on the outside of the clad, and a reaction layer 175 is formed at an end thereof.
- the reaction layer 175 is bonded to the core 173a at the end of the sensing optical fiber 173 and is formed of palladium reacting with hydrogen.
- the photodetector 176 detects the light output from the second output terminal 172b and outputs it to the hydrogen concentration calculator 177.
- the hydrogen concentration calculator 177 controls the light source 171 and calculates the hydrogen concentration from the light detected by the photodetector 176.
- the hydrogen concentration calculated in advance by the experiment is recorded as a lookup table in response to a change in the amount of light reflected from the reaction layer 175 according to the hydrogen concentration.
- the hydrogen concentration calculator 177 calculates the hydrogen concentration by referring to the lookup table for the hydrogen concentration corresponding to the signal in the photodetector 176.
- the hydrogen concentration calculator 177 transmits the calculated hydrogen concentration to the central management unit 180.
- the hydrogen storage amount detection sensor 157 detects the hydrogen storage amount stored in the hydrogen storage container 151 of the hydrogen station 150, and provides the detected hydrogen storage amount information to the central management unit 180.
- the central management unit 180 receives the information detected by the hydrogen storage amount detection sensor 157 and the information detected by the charging power detection sensor 132, records the information in the storage device, and stores the hydrogen station 150 and the power storage unit 130. Understand and manage the state of charge.
- the central management unit 180 controls the driving of the first switch element 122 to be charged by the commercial power supply 120 to the power storage unit 130 at a set late night time, which is relatively cheap.
- the central management unit 180 controls the electrolysis hydrogen generator 152 to operate when the hydrogen storage amount stored in the hydrogen storage container 151 is less than the set reference value.
- the central management unit 180 may be configured to control the fuel reforming hydrogen generator 160 to operate together with the electrolysis hydrogen generator 152 when the hydrogen storage amount stored in the hydrogen storage container 151 is less than a predetermined reference value.
- the electrolytic hydrogen generator 152 is configured to perform electrolysis by a DC power supply so as to be connected to the DC power supply from the power storage unit 130 so as to be operated as compared to the method using the commercial power supply 120. The process of converting to direct current is omitted, thereby increasing power use efficiency.
- the central management unit 180 controls the hydrogen charging unit 167 to stop the hydrogen charging in the hydrogen vehicle charging unit 167 when it is determined that the hydrogen concentration detected from the hydrogen sensor 170 corresponds to the set leakage concentration. Hydrogen leakage information is output to the administrator through the output device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Fuel Cell (AREA)
Abstract
The present invention relates to a combined/hybrid charging system comprising: a power storage unit for storing power generated by a power generation unit; an electric vehicle charging unit which can supply power stored in the power storage unit to an electric vehicle; a hydrogen station in which hydrogen is stored; a hydrogen vehicle charging unit which can supply hydrogen stored in the hydrogen station to a hydrogen vehicle; and a central management unit for receiving information detected by a hydrogen storage amount detection sensor and information detected by a charging power detection sensor, so as to recognize and manage the charging statuses of the hydrogen station and the power storage unit. According to the combined/hybrid charging system, it is possible to efficiently control power distribution while supporting charging of both an electric vehicle and a hydrogen vehicle.
Description
본 발명은 융복합 충전 시스템에 관한 것으로서, 더욱 상세하게는 수소 및 전력에 대한 차량 충전을 모두 지원할 수 있도록 된 융복합 충전시스템에 관한 것이다.The present invention relates to a fusion charging system, and more particularly, to a fusion charging system capable of supporting both vehicle charging for hydrogen and electric power.
전기 자동차는 충방전이 가능한 다수의 2차 전지가 하나의 팩으로 형성된 배터리를 주동력원으로 이용하기 때문에 배기가스가 거의 없고 소음이 아주 작은 장점이 있다. Electric vehicles use a battery formed of a pack of a plurality of secondary batteries capable of charging and discharging as a main power source, and thus have almost no exhaust gas and have a very small noise.
이러한 전기자동차는 크게 전기에 의해 구동되어 전기자동차를 운행시키기 위한 전기 모터와, 그 전기 모터에 전기를 공급하는 배터리로 구성된다. 즉, 전기 모터와 배터리가 일반 자동차의 엔진과 연료를 대체하는 것이다.The electric vehicle is largely composed of an electric motor driven by electricity to drive the electric vehicle, and a battery supplying electricity to the electric motor. In other words, electric motors and batteries are replacing engines and fuel in ordinary cars.
전기자동차의 배터리를 충전하기 위한 충전 시스템은 국내 공개특허 제10-2013-0134290호에 개시된 바와 같이 전력을 공급하는 구조로만 되어있다. The charging system for charging the battery of the electric vehicle has only a structure for supplying power as disclosed in Korean Patent Publication No. 10-2013-0134290.
한편, 최근에는 수소를 공급받아 가동되는 수소차도 개발되고 있어 수소차 및 전기차 모두에 대해서 충전을 지원할 수 있는 시스템이 요구되고 있다.On the other hand, in recent years, a hydrogen car that is operated by receiving hydrogen has been developed, and a system capable of supporting charging for both a hydrogen car and an electric car is required.
또한, 연료로 사용되는 수소의 경우 무색, 무미, 무취의 폭발성이 강한 기체이므로 아주 미세한 정전기에도 쉽게 발화하는 성질이 있어 수소의 누출시 안전하에 대처할 수 있는 시스템이 요구된다.In addition, hydrogen used as a fuel is a colorless, tasteless, and odorless explosive gas because it has a property of easily igniting even minute static electricity, so a system that can cope with safety in case of leakage of hydrogen is required.
본 발명은 상기의 요구사항을 해결하기 위하여 창안된 것으로서, 수소 및 전력 공급을 모두 안정적으로 공급할 수 있는 융복합 충전시스템을 제공하는데 그 목적이 있다.The present invention was devised to solve the above requirements, and an object thereof is to provide a fusion charging system capable of stably supplying both hydrogen and power supply.
상기의 목적을 달성하기 위하여 본 발명에 따른 융복합 충전시스템은 태양광과 바이오매스 중 적어도 하나로부터 전력을 생성하는 발전부와; 상기 발전부에서 생성된 전력을 저장하는 축전부와; 상기 축전부에 저장된 전력을 전기차에 공급할 수 있도록 된 전기차 충전부와; 수소가 저장된 수소 스테이션과; 상기 수소 스테이션에 저장된 수소를 수소차에 공급할 수 있도록 된 수소차 충전부와; 상기 수소스테이션에 저장된 수소저장량을 검출하는 수소저장량 검출센서와; 상기 축전부의 충전 전력량을 검출하는 충전전력 검출센서와; 상기 수소저장량 검출센서에서 검출된 정보와, 상기 충전전력 검출센서에서 검출된 정보를 수신받아 상기 수소스테이션과 상기 축전부의 충전 상태를 파악 및 관리하는 중앙 관리부;를 구비한다.In order to achieve the above object, a fusion charging system according to the present invention includes a power generation unit for generating electric power from at least one of sunlight and biomass; A power storage unit storing power generated by the power generation unit; An electric vehicle charging unit configured to supply electric power stored in the power storage unit to the electric vehicle; A hydrogen station in which hydrogen is stored; A hydrogen car charging unit configured to supply hydrogen stored in the hydrogen station to a hydrogen car; A hydrogen storage detection sensor for detecting a hydrogen storage stored in the hydrogen station; A charging power detection sensor detecting a charging power amount of the power storage unit; And a central manager configured to receive the information detected by the hydrogen storage amount detection sensor and the information detected by the charging power detection sensor to identify and manage the charging state of the hydrogen station and the power storage unit.
본 발명의 일 측면에 따르면, 상기 수소 스테이션은 상기 중앙 관리부에 의해 가동이 제어되며 전기분해에 의해 수소를 생성하여 수소저장용기에 공급하는 전기분해 수소 생성기;를 구비하고, 상기 중앙 관리부는 상기 수소저장용기에 저장된 수소저장량이 설정된 기준값 미만이면 상기 전기분해 수소생성기가 가동되게 제어한다.According to an aspect of the present invention, the hydrogen station is controlled by the central management unit is provided with an electrolysis hydrogen generator for generating hydrogen by electrolysis to supply to the hydrogen storage container, the central management unit is the hydrogen When the amount of hydrogen stored in the storage container is less than the set reference value, the electrolytic hydrogen generator is controlled to operate.
또한, 전기분해 수소생성기는 상기 축전부로부터 전력을 공급받아 가동될 수 있게 접속된 것이 바람직하다.In addition, the electrolytic hydrogen generator is preferably connected to be operated by receiving power from the power storage unit.
본 발명의 또 다른 측면에 따르면, 상기 수소 스테이션은 상기 중앙 관리부에 의해 가동이 제어되며 탄화수소계열의 액체 연료를 개질하여 수소를 생성하여 수소저장용기에 공급하는 연료개질 수소생성기;를 구비한다.According to another aspect of the present invention, the hydrogen station is controlled by the central management unit and comprises a fuel reforming hydrogen generator for reforming the hydrocarbon-based liquid fuel to produce hydrogen to supply to the hydrogen storage container.
본 발명에 따른 융복합 충전시스템에 의하면, 전기차 및 수소차의 충전을 지원하면서도 전력 분배를 효율적으로 제어할 수 있고 안정적으로 공급처리를 수행할 수 있는 장점을 제공한다. According to the fusion-charging system according to the present invention, while supporting the charging of the electric car and the hydrogen car, it is possible to efficiently control the power distribution and provides an advantage that the supply process can be stably performed.
도 1은 본 발명에 따른 융복합 충전시스템을 개략적으로 나타내 보인 도면이고,1 is a view schematically showing a fusion filling system according to the present invention,
도 2는 도 1의 수소센서를 나타내 보인 도면이고,2 is a view showing a hydrogen sensor of FIG.
도 3은 도 1의 연료 개질부를 나타내 보인 단면도이고,3 is a cross-sectional view showing the fuel reforming portion of FIG. 1,
도 4는 도 3의 연료분산기를 발췌하여 나타내 보인 사시도이고,4 is a perspective view showing an extract of the fuel disperser of FIG.
도 5는 도 4의 연료분산기의 평면도이고,5 is a plan view of the fuel spreader of FIG.
도 6은 본 발명의 또 다른 실시예에 따른 연료분산기를 나타내 보인 평면도이다.Figure 6 is a plan view showing a fuel disperser according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 융복합 충전시스템에 대하여 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the fusion charging system according to a preferred embodiment of the present invention.
도 1은 본 발명에 따른 융복합 충전시스템을 개략적으로 나타내 보인 도면이다.1 is a view schematically showing a fusion filling system according to the present invention.
도 1을 참조하면, 본 발명에 따른 융복합 충전시스템(100)은 발전부(110), 축전부(132), 전기차 충전부(140), 수소 스테이션(150), 수소차 충전부(167), 충전전력 검출센서(132), 수소저장량 검출센서(157) 및 중앙 관리부(180)를 구비한다.Referring to FIG. 1, the fusion and charging system 100 according to the present invention includes a power generation unit 110, a power storage unit 132, an electric vehicle charging unit 140, a hydrogen station 150, a hydrogen vehicle charging unit 167, and charging. The power detection sensor 132, the hydrogen storage amount detection sensor 157, and the central management unit 180 are provided.
발전부(110)는 태양광 발전기(112)와 바이오매스 발전기(114)가 적용되어 있다.The power generation unit 110 is a solar generator 112 and the biomass generator 114 is applied.
태양광 발전기(112)는 어레이된 태양전지(미도시)에 의해 태양광으로부터 전력을 생성하여 축전부(132)로 공급한다.The photovoltaic generator 112 generates power from the sunlight by the arrayed solar cells (not shown) and supplies it to the power storage unit 132.
바이오매스 발전기(114)는 바이오매스 예를 들면, 펠렛을 연소시켜 생성된 증기로 터빈을 회전시켜 생성된 전력을 축전부(132)로 공급한다.The biomass generator 114 supplies the generated power to the power storage unit 132 by rotating the turbine with biomass, for example, steam generated by burning pellets.
축전부(130)는 발전부(110)에서 생성된 전력을 저장한다.The power storage unit 130 stores the power generated by the power generation unit 110.
축전부(130)는 상용전원(120)로부터 제1스위치소자(122)를 통해 공급된 전력에 의해 충전될 수 있게 되어 있다.The power storage unit 130 can be charged by the power supplied from the commercial power supply 120 through the first switch element 122.
참조부호 125는 교류전력을 직류전력으로 변환하는 교류-직류 변환기이다. Reference numeral 125 is an AC-DC converter that converts AC power into DC power.
충전전력 검출센서(132)는 축전부(132)의 충전 전력량을 검출하여 중앙 관리부(180)에 제공한다.The charging power detection sensor 132 detects the amount of charging power of the power storage unit 132 and provides it to the central management unit 180.
전기차 충전부(140)는 축전부(130)에 저장된 전력을 전기차에 공급한다.The electric vehicle charging unit 140 supplies electric power stored in the power storage unit 130 to the electric vehicle.
전기차 충전부(140)에서 전기차로 전기를 공급하는 방식은 전기적으로 직접 결선하는 방식 또는 전자기 유도에 의해 간접 방식으로 전기차에 충전하는 방식 등 다양한 충전방식이 적용될 수 있다.The method of supplying electricity to the electric vehicle from the electric vehicle charging unit 140 may be applied to various charging methods such as a method of directly connecting the electric vehicle or a method of charging the electric vehicle indirectly by electromagnetic induction.
수소 스테이션(150)은 수소가 저장되며, 전기분해 수소생성기(152), 버퍼용기(153), 압축기(154), 수소저장용기(151), 연료개질 수소생성기(160)를 구비한다.The hydrogen station 150 stores hydrogen and includes an electrolysis hydrogen generator 152, a buffer container 153, a compressor 154, a hydrogen storage container 151, and a fuel reforming hydrogen generator 160.
전기분해 수소 생성기(152)는 중앙 관리부(180)에 의해 가동이 제어되며 전기분해에 의해 수소를 생성하여 버퍼용기(153) 및 압축기(154)를 통해 수소저장용기(151)에 공급하도록 되어 있다.The electrolysis hydrogen generator 152 is controlled to be operated by the central management unit 180 and generates hydrogen by electrolysis to supply the hydrogen storage container 151 through the buffer container 153 and the compressor 154. .
여기서, 버퍼 용기(153) 또는 수소저장용기(151)에는 차량을 통해 수소를 이동할 수 있도록 된 수소탱크차로부터 수소를 공급받아 충진할 수 있도록 구축되어 있는 것이 바람직하다.Here, it is preferable that the buffer container 153 or the hydrogen storage container 151 is constructed to receive and fill hydrogen from a hydrogen tank car that is capable of moving hydrogen through a vehicle.
연료개질 수소생성기(160)는 중앙 관리부(180)에 의해 가동이 제어되며 탄화수소계열의 액체 연료를 개질하여 수소를 생성하여 버퍼용기(153)를 통해 수소저장용기(151)에 공급할 수 있도록 되어 있다.The fuel reforming hydrogen generator 160 is controlled to be operated by the central management unit 180 to generate hydrogen by reforming a hydrocarbon-based liquid fuel and supply the hydrogen to the hydrogen storage vessel 151 through the buffer vessel 153. .
연료개질 수소생성기(160)는 연료저장탱크(161), 연료개질부(200) 및 수성가스 전환부(165)를 구비한다.The fuel reformed hydrogen generator 160 includes a fuel storage tank 161, a fuel reformer 200, and a water gas converting unit 165.
연료저장탱크(161)는 탄화수소계열 액체 연료가 저장되어 있다.The fuel storage tank 161 stores a hydrocarbon-based liquid fuel.
여기서, 탄화수소 액체연료는 에탄올, 메탄올, 액화석유가스, 가솔린이 적용될 수 있다. Here, the hydrocarbon liquid fuel may be applied to ethanol, methanol, liquefied petroleum gas, gasoline.
연료 개질부(200)는 연료저장탱크(161)에서 펌프(P)162)의 가동에 의해 공급된 액체 연료를 개질하여 수소가스를 생성한다.The fuel reforming unit 200 generates hydrogen gas by reforming the liquid fuel supplied by the operation of the pump P162 in the fuel storage tank 161.
연료개질부(200)의 상세 구조는 후술한다.The detailed structure of the fuel reformer 200 will be described later.
수성가스 전환부(165)는 연료개질부(200)에서 생성된 가스 중 수소가스 이외에 소량으로 존재하는 일산화탄소를 촉매 예를 들면, 팔라듐에 의해 제거하고, 일산화 탄소가 제거된 수소가스를 버퍼용기(153)를 통해 수소저장용기(151)로 공급한다.The water gas converting unit 165 removes carbon monoxide present in a small amount in addition to hydrogen gas in the gas generated by the fuel reformer 200 with a catalyst, for example, palladium, and removes the hydrogen gas from which carbon monoxide has been removed. 153 is supplied to the hydrogen storage container (151).
도시된 예와 다르게 수성가스 전환부(165)는 생략될 수 있고, 이 경우 연료개질부(200)에서 생성된 가스를 버퍼용기(153)로 공급하게 구축하면 된다.Unlike the illustrated example, the water gas conversion unit 165 may be omitted, and in this case, the water gas conversion unit 165 may be configured to supply the gas generated by the fuel reformer 200 to the buffer container 153.
이하에서는 연료개질부(200)의 상세구조를 도 3 내지 도 5를 참조하여 설명한다.Hereinafter, the detailed structure of the fuel reforming unit 200 will be described with reference to FIGS. 3 to 5.
연료개질부(200)는 반응기(210), 히터(220), 기화유도체(230), 연료분산기(240), 혼합체 공급기(250) 및 촉매베드(260)를 구비한다.The fuel reformer 200 includes a reactor 210, a heater 220, a vaporization derivative 230, a fuel disperser 240, a mixture feeder 250, and a catalyst bed 260.
반응기(210)는 내부 반응공간(212)을 갖게 형성되어 있다.The reactor 210 is formed to have an internal reaction space 212.
반응기(210)는 연료저장탱크(161)로부터 연장되어 액체 연료가 공급되는 공급관(161a)이 내부 반응공간(212)과 연통되게 접속되어 있다.The reactor 210 extends from the fuel storage tank 161 so that the supply pipe 161a to which the liquid fuel is supplied is connected to communicate with the internal reaction space 212.
반응기(210)를 구분하면, 헤더영역(214), 메인바디(216) 및 서브통형부분(218)으로 되어 있다.The reactor 210 is divided into a header region 214, a main body 216, and a sub-cylindrical portion 218.
헤더 영역(214)은 공급관(161a)이 내부 반응공간(212)과 접속되게 형성되어 있고, 내부반응공간(212) 주위에서 기화를 촉진시키기 위해 가열하는 히터(220)가 장착되어 있다.The header region 214 is formed such that the supply pipe 161a is connected to the internal reaction space 212, and is equipped with a heater 220 that heats to promote vaporization around the internal reaction space 212.
헤더 영역(214)은 하부가 개방되며 내부 반응공간(212)의 일부가 되는 상부 내부반응공간을 형성한다.The header region 214 forms an upper inner reaction space in which the lower portion is open and becomes part of the inner reaction space 212.
메인바디(216)는 헤더영역(214)의 하부에서 결합되어 내부 반응공간의 일부가 되는 하부 내부반응공간을 상부 내부 반응공간과 연통되게 형성하는 부분이다.The main body 216 is a portion which is coupled under the header region 214 to form a lower internal reaction space that is part of the internal reaction space so as to communicate with the upper internal reaction space.
서브 통형부분(218)은 메인 바디(216) 외측에서 메인 바디(216)의 외측면과의 사이에 서브 유통공간을 폐쇄되게 형성한다.The sub-cylindrical portion 218 forms a sub-circulation space to be closed between the outer side of the main body 216 outside the main body 216.
참조부호 218a는 혼합체 공급기(250)로부터 공급되는 공기 또는 수증기를 서브 통형부분(218)의 서브 유통공간 내로 유입할 수 있도록 된 유입관이고, 참조부호 218b는 서브 유통공간과 내부 반응공간(212)을 연통시키도록 메인바디(216) 외측면에 원주방향을 따라 상호 이격되게 형성된 유통홀이다. Reference numeral 218a is an inlet pipe through which the air or water vapor supplied from the mixture feeder 250 can be introduced into the sub circulation space of the sub-cylindrical portion 218, and reference numeral 218b denotes the sub circulation space and the internal reaction space 212. The main body 216 is a distribution hole formed to be spaced apart from each other along the circumferential direction to communicate the.
기화 유도체(230)는 공급관(161a)을 통하여 유입되는 액체 연료를 기화시키도록 공급관(161a)에 대향되게 반응기(210)의 내부 반응공간(212) 내에 설치되어 있다.The vaporization derivative 230 is installed in the internal reaction space 212 of the reactor 210 to face the supply pipe 161a to vaporize the liquid fuel flowing through the supply pipe 161a.
기화 유도체(230)는 다공성매질로 형성되어 있다.The vaporized derivative 230 is formed of a porous medium.
기화유도체(230)는 스테인리스 스틸소재로 다공성 판형상으로 형성될 수 있다.The vaporization derivative 230 may be formed in a porous plate shape of a stainless steel material.
기화유도체(230)는 기공률이 35% 내지 65%이고 입자 사이즈가 20㎛ 내지 300㎛인 것을 사용하는 것이 바람직하다. 기공률이 35%보다 작거나 입자 사이즈가 20㎛보다 작으면, 액체연료가 통과하기 어렵고 유입시 많은 압력을 받게 되어 내구성에 문제가 일어날 수 있다. 또한, 기공률이 65%보다 크거나 입자 사이즈가 300㎛보다 크면, 액체연료가 기화되지 않은 채로 통과할 수 있으며, 높은 기공률로 인하여 열전달율이 낮아지는 문제가 발생할 수 있다.The vaporization derivative 230 is preferably used having a porosity of 35% to 65% and a particle size of 20㎛ to 300㎛. If the porosity is less than 35% or the particle size is less than 20㎛, the liquid fuel is difficult to pass through and subjected to a lot of pressure upon inflow may cause problems in durability. In addition, when the porosity is greater than 65% or the particle size is greater than 300㎛, the liquid fuel can pass through without vaporization, the high heat porosity may cause a problem of low heat transfer rate.
연료 분산기(240)는 기화유도체(230)와 공급관(161a) 사이에 설치되어 공급관(161a)을 통해 유입되는 액체연료를 분산시켜 기화유도체(230)에 공급한다.The fuel disperser 240 is installed between the vaporization conductor 230 and the supply pipe 161a to disperse the liquid fuel introduced through the supply pipe 161a and supply it to the vaporization derivative 230.
연료분산기(240)는 센터 분산유도부(244), 링부분(247) 및 지지살(248)을 갖는 구조로 되어 있다.The fuel disperser 240 has a structure having a center dispersion guide portion 244, a ring portion 247, and a support rib 248.
센터 분산유도부(214)는 구분하면 원추부분(241), 역원추부분(242) 및 중앙 안착부분(243)으로 되어 있다.The center dispersion guide portion 214 is divided into a cone portion 241, a reverse cone portion 242, and a center seating portion 243.
원추부분(241)은 공급관(161a)에 대향되게 이격 배치되며 공급관(161a)으로부터 멀어질수록 외경이 점진적으로 확장되게 형성된 부분이다.The cone portion 241 is spaced apart from the supply pipe 161a and is formed to gradually expand its outer diameter as it moves away from the supply pipe 161a.
이러한 원추부분(241)은 공급관(161a)에서 토출되는 액체연료를 액체 연료 토출방향에 대해 경사지게 확산시키는 기능을 한다.This cone portion 241 serves to diffuse the liquid fuel discharged from the supply pipe 161a inclined with respect to the liquid fuel discharge direction.
원추부분(241)의 표면에는 액체연료의 난류를 유도할 수 있도록 제1선회유도홈(241a)와 제2선회유도홈(241b)이 교번으로 원주방향을 따라 형성되어 있다.On the surface of the cone portion 241, the first turning guide groove 241a and the second turning guide groove 241b are alternately formed along the circumferential direction so as to induce turbulence of the liquid fuel.
제1선회유도홈(241a)는 원주부분(241)의 중앙에서 방사방향을 따라 가장자리까지 연장되게 표면으로부터 인입되되 제1선회방향을 따라 호형으로 형성되어 있다.The first pivot guide groove 241a extends from the surface to the edge in the radial direction at the center of the circumferential portion 241 and is formed in an arc shape along the first pivot direction.
제2선회유도홈(241b)은 원추부분(241)의 중앙에서 방사방향을 따라 가장자리까지 연장되게 표면으로부터 인입되되 제1선회방향(241a)과 선회방향이 반대가 되게 호형으로 형성되어 있다.The second pivot guide groove 241b is formed in an arc shape so as to be drawn from the surface to extend from the center of the cone portion 241 to the edge along the radial direction so that the pivot direction is opposite to the first pivot direction 241a.
이러한 제1 및 제2선회유도홈(241a)(241b)은 유입되는 액체 연료를 상호 다른 방향으로 각각 선회류를 형성함으로써 상호 충돌에 의한 난류의 형성효율을 높일 수 있다.The first and second swing guide grooves 241a and 241b may respectively form swirl flows in the liquid fuel flowing in different directions, thereby increasing the efficiency of forming turbulence due to mutual collisions.
이와는 다르게 도 6에 도시된 바와 같이 원추부분(241)을 영문자 C로 표기한 점선을 따라 2분할하여 형성되는 제1영역(C1)과 제2영역(C2) 중 제1영역(C1)에 제1선회유도홈(241a)을 형성하고, 제2영역(C2)에 제2선회유도홈(241b)을 형성할 수 있다.In contrast, as illustrated in FIG. 6, the cone portion 241 is divided into two portions along the dotted line indicated by the English letter C, and the first region C1 and the second region C2 are formed in the first region C1. One turning guide groove 241a may be formed, and a second turning guide groove 241b may be formed in the second region C2.
이러한 원추부분(241)은 액체연료가 선회 및 충돌되게 함으로써 분산효율 및 기화효율을 향상시킬 수 있다.The conical portion 241 may improve the dispersion efficiency and vaporization efficiency by causing the liquid fuel to swing and collide.
역원추부분(242)은 원추부분(241)의 가장자리로부터 하방으로 진행할수록 외경이 점진적으로 작아지게 형성된 부분이다.The reverse cone portion 242 is a portion formed to gradually decrease in outer diameter as it proceeds downward from the edge of the cone portion 241.
중앙 안착부분(243)은 역원추부분(242)의 하단에서 원추부분(241)보다 작은 외경을 갖게 원판형으로 형성되어 기화유도체(230)에 안착된다.The central seating portion 243 is formed in a disc shape having a smaller outer diameter than the cone portion 241 at the lower end of the inverted cone portion 242 and is seated on the vaporization derivative 230.
링부분(247)은 중앙 안착부분(243)을 중심으로 동심상으로 중앙 안착부분(243)에 대해 이격되게 링형상으로 형성되어 있다.The ring portion 247 is formed in a ring shape so as to be spaced apart from the central seating portion 243 concentrically about the center seating portion 243.
링부분(247)은 기화유도체(220)의 가장자리를 따라 안착될 수 있는 크기로 형성되되 중앙 안착부분(243)과의 사이의 액체 연료 투과영역(246)을 충분히 확보할 수 있게 형성한다.The ring portion 247 is formed to be sized to be seated along the edge of the vaporization conductor 220, but is formed to sufficiently secure the liquid fuel permeation region 246 between the central seating portion 243.
지지살(248)은 링부분(247)의 내주면을 따라 상호 이격된 위치에서 중앙 안착부분(243)까지 연장되어 링부분(247)과 중앙 안착부분(243)을 상호 연결한다.The support bar 248 extends from the position spaced apart along the inner circumferential surface of the ring portion 247 to the center seating portion 243 to interconnect the ring portion 247 and the center seating portion 243.
지지살(248)은 3개가 적용되어 있다.Three support arms 248 are applied.
한편, 혼합체 공급기(250)는 공기와 수증기 중 적어도 하나를 기화유도체(230)를 통과하여 기화된 연료에 혼합되게 공급한다.Meanwhile, the mixture supplier 250 supplies at least one of air and water vapor to be mixed with the vaporized fuel through the vaporization derivative 230.
혼합체 공급기(250)는 반응기(210)의 측면에 형성된 유입관(218a) 및 메인바디(216) 외측면에 형성된 유통홀(218b)을 통해 내부 반응공간(212) 내로 공기와 수증기 중 적어도 하나를 공급하도록 되어 있다.The mixture feeder 250 supplies at least one of air and water vapor into the internal reaction space 212 through an inlet pipe 218a formed at the side of the reactor 210 and a distribution hole 218b formed at the outer side of the main body 216. It is supposed to supply.
촉매베드(260)는 메인바디(216)의 하부에 설치되어 있다.The catalyst bed 260 is installed below the main body 216.
촉매베드(260)는 공기 또는 수증기와 기화된 연료가 혼합된 혼합기체에 대해 촉매반응에 의해 다량의 수소와 소량의 일산화탄소를 포함하는 수소혼합가스를 생성한다.The catalyst bed 260 generates a hydrogen mixed gas containing a large amount of hydrogen and a small amount of carbon monoxide by catalytic reaction with a mixture gas mixed with air or steam and vaporized fuel.
촉매베드(260)는 개질반응을 하는 촉매가 충진되어 있다. Catalyst bed 260 is filled with a catalyst for the reforming reaction.
촉매베드(260)는 알루미나(Al2O3), 실리카(SiO2) 또는 이산화 티탄(TiO2)으로 이루어진 펠릿(pellet) 형태의 담체에 구리(Cu), 니켈(Ni), 백금(Pt)과 같은 촉매 물질을 담지하고 있는 구조로 형성될 수 있다.The catalyst bed 260 is a pellet-type carrier made of alumina (Al 2 O 3 ), silica (SiO 2 ) or titanium dioxide (TiO 2 ), and includes copper (Cu), nickel (Ni), and platinum (Pt). It may be formed in a structure supporting a catalyst material such as.
또 다르게는 촉매베드(260)는 다수의 평행한 관통 구멍 즉, 셀을 가진 세라믹 담체 또는 금속 담체의 셀내부 표면에 촉매 물질을 담지시킨 통상적인 허니콤(honey comb) 타입으로 형성될 수도 있다.Alternatively, the catalyst bed 260 may be formed of a conventional honey comb type in which a catalyst material is supported on the inner surface of the cell of the ceramic carrier or the metal carrier having a plurality of parallel through holes, that is, the cell.
도시되지는 않았지만 촉매베드(260) 외측에서 열을 인가하는 히터가 더 구비될 수 있다.Although not shown, a heater for applying heat outside the catalyst bed 260 may be further provided.
한편, 수소차 충전부(167)는 수소 스테이션(150)의 수소저장용기(151)에 저장된 수소를 수소차에 공급할 수 있도록 되어 있다.Meanwhile, the hydrogen vehicle charging unit 167 is capable of supplying hydrogen stored in the hydrogen storage container 151 of the hydrogen station 150 to the hydrogen vehicle.
수소차 충전부(167)는 수소차에 수소를 주입하는 주입건(168)에는 외부로 누출되는 수소를 검출하는 수소센서(170)가 장착되어 있다.The hydrogen car charging unit 167 is equipped with a hydrogen sensor 170 for detecting hydrogen leaking to the injection gun 168 for injecting hydrogen into the hydrogen car.
수소센서(170)는 누출된 수소에 의한 폭발을 방지할 수 있도록 광에 의해 검출하는 방식을 적용하고 상세 구조를 도 2를 참조하여 설명한다.The hydrogen sensor 170 applies a method of detecting by light so as to prevent an explosion caused by the leaked hydrogen and a detailed structure will be described with reference to FIG. 2.
수소센서(170)는 광원(171), 광써큘레이터(172), 센싱 광섬유(173), 반응층(175), 광검출기(176), 수소농도 산출기(177)을 구비한다.The hydrogen sensor 170 includes a light source 171, an optical circulator 172, a sensing optical fiber 173, a reaction layer 175, a photodetector 176, and a hydrogen concentration calculator 177.
광원(171)은 수소농도 산출기(177)에 의해 구동이 제어된다. The driving of the light source 171 is controlled by the hydrogen concentration calculator 177.
광써큘레이터(172)는 광원(171)에서 출사되어 입력단(172c)을 통해 입력된 광을 제1출력단(172a)을 통해 전송하고, 제1출력단(172a)에서 센싱광섬유(173)으로부터 역으로 진행되는 광을 제2출력단(172b)으로 출력한다.The optical circulator 172 transmits the light emitted from the light source 171 and input through the input terminal 172c through the first output terminal 172a, and is reversed from the sensing optical fiber 173 at the first output terminal 172a. The advancing light is output to the second output terminal 172b.
센싱광섬유(173)는 일단이 제1출력단(172a)을 통해 접속되어 광을 도파한다.One end of the sensing optical fiber 173 is connected to the first output terminal 172a to guide the light.
센싱 광섬유(173)는 코어(173a), 코어를 감싸는 클래드(173b) 및 클래드 외측에 피복된 피복층(173c)을 갖으며 종단에 반응층(175)이 형성되어 있다.The sensing optical fiber 173 has a core 173a, a cladding 173b surrounding the core, and a coating layer 173c coated on the outside of the clad, and a reaction layer 175 is formed at an end thereof.
반응층(175)은 센싱 광섬유(173)의 종단의 코어(173a)에 접합되며 수소에 반응하는 팔라듐으로 형성된다.The reaction layer 175 is bonded to the core 173a at the end of the sensing optical fiber 173 and is formed of palladium reacting with hydrogen.
광검출기(176)는 제2출력단(172b)에서 출력되는 광을 검출하여 수소농도 산출기(177)로 출력한다.The photodetector 176 detects the light output from the second output terminal 172b and outputs it to the hydrogen concentration calculator 177.
수소농도 산출기(177)는 광원(171)을 제어하고, 광검출기(176)에서 검출된 광으로부터 수소농도를 산출한다.The hydrogen concentration calculator 177 controls the light source 171 and calculates the hydrogen concentration from the light detected by the photodetector 176.
수소농도 산출기(177)에는 수소농도에 따라 반응층(175)에서 반사되는 광량 변화에 대응하여 실험에 의해 미리 산출된 수소농도가 룩업테이블로 기록되어 있다.In the hydrogen concentration calculator 177, the hydrogen concentration calculated in advance by the experiment is recorded as a lookup table in response to a change in the amount of light reflected from the reaction layer 175 according to the hydrogen concentration.
따라서, 수소농도 산출기(177)는 광검출기(176)에서 신호에 대응되는 수소농도를 룩업테이블을 참조하여 수소농도를 산출한다.Therefore, the hydrogen concentration calculator 177 calculates the hydrogen concentration by referring to the lookup table for the hydrogen concentration corresponding to the signal in the photodetector 176.
수소농도 산출기(177)는 산출된 수소농도를 중앙 관리부(180)로 전송한다.The hydrogen concentration calculator 177 transmits the calculated hydrogen concentration to the central management unit 180.
수소저장량 검출센서(157)는 수소스테이션(150)의 수소저장용기(151)에 저장된 수소저장량을 검출하고, 검출된 수소저장량 정보를 중앙 관리부(180)에 제공한다.The hydrogen storage amount detection sensor 157 detects the hydrogen storage amount stored in the hydrogen storage container 151 of the hydrogen station 150, and provides the detected hydrogen storage amount information to the central management unit 180.
중앙관리부(180)는 수소저장량 검출센서(157)에서 검출된 정보와, 충전전력 검출센서(132)에거 검출된 정보를 수신받아 기억장치에 기록하고, 수소스테이션(150)과 축전부(130)의 충전 상태를 파악 및 관리한다.The central management unit 180 receives the information detected by the hydrogen storage amount detection sensor 157 and the information detected by the charging power detection sensor 132, records the information in the storage device, and stores the hydrogen station 150 and the power storage unit 130. Understand and manage the state of charge.
중앙 관리부(180)는 상대적으로 전기료가 싼 설정된 심야시간에 축전부(130)로 상용전원(120)에 의해 충전이 이루어지도록 제1스위치소자(122)의 구동을 제어한다.The central management unit 180 controls the driving of the first switch element 122 to be charged by the commercial power supply 120 to the power storage unit 130 at a set late night time, which is relatively cheap.
또한, 중앙 관리부(180)는 수소저장용기(151)에 저장된 수소저장량이 설정된 기준값 미만이면 전기분해 수소생성기(152)가 가동되게 제어한다.In addition, the central management unit 180 controls the electrolysis hydrogen generator 152 to operate when the hydrogen storage amount stored in the hydrogen storage container 151 is less than the set reference value.
또 다르게는 중앙 관리부(180)는 수소저장용기(151)에 저장된 수소저장량이 설정된 기준값 미만이면 연료개질 수소생성기(160)를 전기분해 수소생성기(152)와 함께 가동되게 제어하도록 구축될 수 있다.Alternatively, the central management unit 180 may be configured to control the fuel reforming hydrogen generator 160 to operate together with the electrolysis hydrogen generator 152 when the hydrogen storage amount stored in the hydrogen storage container 151 is less than a predetermined reference value.
여기서, 전기분해 수소생성기(152)는 직류전원에 의해 전기분해를 수행하도록 되어 있어 축전부(130)로부터 직류 전력을 공급받아 가동될 수 있게 접속됨으로써 상용 전원(120)을 이용하는 방식에 비해 교류를 직류로 변환하는 과정이 생략되어 전력이용 효율을 높일 수 있다.Here, the electrolytic hydrogen generator 152 is configured to perform electrolysis by a DC power supply so as to be connected to the DC power supply from the power storage unit 130 so as to be operated as compared to the method using the commercial power supply 120. The process of converting to direct current is omitted, thereby increasing power use efficiency.
또한, 중앙 관리부(180)는 수소센서(170)로부터 검출된 수소농도가 설정된 누출농도에 해당한 것으로 판단되면 수소차 충전부(167)에서의 수소충전이 중단되게 수소차 충전부(167)를 제어하고, 수소누출 정보를 출력장치를 통해 관리자가 확인할 수 있도록 출력한다.In addition, the central management unit 180 controls the hydrogen charging unit 167 to stop the hydrogen charging in the hydrogen vehicle charging unit 167 when it is determined that the hydrogen concentration detected from the hydrogen sensor 170 corresponds to the set leakage concentration. Hydrogen leakage information is output to the administrator through the output device.
이러한 융복합 충전시스템에 의하면, 전기차 및 수소차의 충전을 지원하면서도 전력분배를 효율적으로 제어할 수 있고 안정적으로 공급처리를 수행할 수 있는 장점을 제공한다. According to such a fusion charging system, it is possible to efficiently control electric power distribution while supporting charging of an electric vehicle and a hydrogen vehicle, and provide an advantage of performing a stable supply process.
Claims (9)
- 태양광과 바이오매스 중 적어도 하나로부터 전력을 생성하는 발전부와;A power generation unit generating power from at least one of sunlight and biomass;상기 발전부에서 생성된 전력을 저장하는 축전부와;A power storage unit storing power generated by the power generation unit;상기 축전부에 저장된 전력을 전기차에 공급할 수 있도록 된 전기차 충전부와;An electric vehicle charging unit configured to supply electric power stored in the power storage unit to the electric vehicle;수소가 저장된 수소 스테이션과;A hydrogen station in which hydrogen is stored;상기 수소 스테이션에 저장된 수소를 수소차에 공급할 수 있도록 된 수소차 충전부와;A hydrogen car charging unit configured to supply hydrogen stored in the hydrogen station to a hydrogen car;상기 수소스테이션에 저장된 수소저장량을 검출하는 수소저장량 검출센서와;A hydrogen storage detection sensor for detecting a hydrogen storage stored in the hydrogen station;상기 축전부의 충전 전력량을 검출하는 충전전력 검출센서와;A charging power detection sensor detecting a charging power amount of the power storage unit;상기 수소저장량 검출센서에서 검출된 정보와, 상기 충전전력 검출센서에서 검출된 정보를 수신받아 상기 수소스테이션과 상기 축전부의 충전 상태를 파악 및 관리하는 중앙 관리부;를 구비하는 것을 특징으로 하는 융복합 충전시스템.And a central management unit configured to receive the information detected by the hydrogen storage amount detection sensor and the information detected by the charging power detection sensor to identify and manage the charging state of the hydrogen station and the power storage unit. system.
- 제1항에 있어서, 상기 중앙 관리부는 According to claim 1, wherein the central management unit설정된 심야시간에 상기 축전부로 상용전원에 의해 충전이 이루어지도록 제어하는 것을 특징으로 하는 융복합 충전시스템.Convergence charging system, characterized in that the charge is controlled by a commercial power supply to the power storage unit at a set night time.
- 제1항에 있어서, 상기 수소 스테이션은 The method of claim 1, wherein the hydrogen station상기 중앙 관리부에 의해 가동이 제어되며 전기분해에 의해 수소를 생성하여 수소저장용기에 공급하는 전기분해 수소 생성기;를 구비하고,An electrolysis hydrogen generator which is controlled by the central management unit and generates hydrogen by electrolysis and supplies it to a hydrogen storage container;상기 중앙 관리부는 상기 수소저장용기에 저장된 수소저장량이 설정된 기준값 미만이면 상기 전기분해 수소생성기가 가동되게 제어하는 것을 특징으로 하는 융복합 충전시스템.And the central management unit controls the electrolysis hydrogen generator to operate when the hydrogen storage amount stored in the hydrogen storage container is less than a predetermined reference value.
- 제3항에 있어서, 상기 전기분해 수소생성기는 상기 축전부로부터 전력을 공급받아 가동될 수 있게 접속된 것을 특징으로 하는 융복합 충전시스템.4. The fusion charging system according to claim 3, wherein the electrolytic hydrogen generator is connected to be operated by receiving electric power from the power storage unit.
- 제3항에 있어서, 상기 수소차 충전부의 수소차에 수소를 주입하는 주입건에는 외부로 누출되는 수소를 검출하는 수소센서가 장착되어 있고, According to claim 3, wherein the injection gun for injecting hydrogen into the hydrogen difference between the hydrogen charging unit is equipped with a hydrogen sensor for detecting the leakage of hydrogen to the outside,상기 수소센서는 The hydrogen sensor광원과;A light source;상기 광원에서 출사된 광을 제1출력단을 통해 전송하고, 상기 제1출력단에서 역으로 진행되는 광을 제2출력단으로 출력하는 광써큘레이터와;An optical circulator for transmitting the light emitted from the light source through a first output terminal, and outputting the light traveling backward from the first output terminal to a second output terminal;일단이 상기 제1출력단을 통해 접속되어 광을 도파하는 센싱 광섬유와;A sensing optical fiber having one end connected through the first output terminal to guide light;상기 센싱 광섬유의 종단에 팔라듐으로 형성된 반응층과;A reaction layer formed of palladium at an end of the sensing optical fiber;상기 제2출력단에서 출력되는 광을 검출하는 광검출기와;A photo detector for detecting light output from the second output terminal;상기 광원을 제어하고, 상기 광검출기에서 검출된 광으로부터 수소농도를 산출하는 수소농도 산출기;를 구비하는 것을 특징으로 하는 융복합 충전시스템.And a hydrogen concentration calculator that controls the light source and calculates a hydrogen concentration from the light detected by the photodetector.
- 제1항에 있어서, 상기 수소 스테이션은 The method of claim 1, wherein the hydrogen station상기 중앙 관리부에 의해 가동이 제어되며 탄화수소계열의 액체 연료를 개질하여 수소를 생성하여 수소저장용기에 공급하는 연료개질 수소생성기;를 구비하는 것을 특징으로 하는 융복합 충전시스템.And a fuel reforming hydrogen generator configured to control operation by the central management unit and to generate hydrogen by reforming a hydrocarbon-based liquid fuel and supplying it to a hydrogen storage container.
- 제6항에 있어서, 상기 연료개질 수소생성기는 7. The fuel reforming hydrogen generator of claim 6, wherein상기 액체 연료가 저장된 연료저장탱크와;A fuel storage tank in which the liquid fuel is stored;상기 연료저장탱크에서 공급된 액체 연료를 개질하여 수소가스를 생성하는 연료개질부;를 구비하고,And a fuel reformer for reforming the liquid fuel supplied from the fuel storage tank to generate hydrogen gas.상기 연료개질부는 The fuel reformer상기 액체 연료가 공급되는 공급관이 내부 반응공간과 연통되게 형성된 반응기와;A reactor in which a supply pipe to which the liquid fuel is supplied is formed in communication with an internal reaction space;상기 공급관을 통하여 유입되는 액체 연료를 기화시키도록 상기 공급관에 대향되게 상기 반응기의 내부 반응공간내에 설치되며 다공성매질로 된 기화유도체와;A vaporization conductor made of a porous medium and installed in an internal reaction space of the reactor so as to vaporize the liquid fuel flowing through the supply pipe;상기 기화유도체와 상기 공급관 사이에 설치되어 상기 공급관을 통해 유입되는 액체연료를 분산시켜 상기 기화유도체에 공급하는 연료분산기와;A fuel disperser disposed between the vaporization conductor and the supply pipe and dispersing the liquid fuel introduced through the supply pipe to supply the vaporization conductor;공기와 수증기 중 적어도 하나를 상기 기화유도체를 통과하여 기화된 연료에 혼합되게 공급하도록 상기 반응기의 측면에 형성된 유입홀을 통해 공급하는 혼합체 공급기;를 구비하고,And a mixture feeder for supplying at least one of air and water vapor through the vaporization inductor to be mixed with the vaporized fuel through an inlet hole formed in the side of the reactor.상기 연료 분산기는The fuel disperser상기 공급관에 대향되게 이격 배치되며 상기 공급관으로부터 멀어질 수록 외경이 점진적으로 확장되는 원추부분과, 상기 원추부분의 가장자리로부터 하방으로 진행할수록 외경이 점진적으로 작아지게 연장된 역원추부분과 상기 역원추부분의 하단에서 상기 원추부분보다 작은 외경을 갖게 형성되어 상기 기화유도체에 안착되는 중앙 안착부분을 갖는 센터 분산유도부와;The conical part is spaced apart from the supply pipe and the outer diameter gradually extends away from the supply pipe, and the reverse cone portion and the reverse cone portion extended downward so that the outer diameter gradually decreases from the edge of the cone. A center dispersion guide part having a central seating portion formed at a lower end of the conical portion and having a smaller outer diameter than the conical portion;상기 기화유도체의 가장자리를 따라 안착될 수 있게 링형태로 형성된 링부분과;A ring portion formed in a ring shape to be seated along an edge of the vaporization derivative;상기 링부분의 내주면을 따라 상호 이격된 위치에서 상기 중앙 안착부분까지 연장되어 상기 링부분과 상기 중앙 안착부분을 상호 연결하는 복수개의 지지살;을 구비하는 것을 특징으로 하는 융복합 충전시스템.And a plurality of support bars extending from the positions spaced apart from each other along the inner circumferential surface of the ring portion to the center seating portion and interconnecting the ring portion and the center seating portion.
- 제7항에 있어서, The method of claim 7, wherein상기 원추부분은 중앙에서 방사방향을 따라 인입되어 가장자리까지 연장되게 인입되되 제1선회방향을 따라 호형으로 형성된 제1선회유도홈과, 상기 원추부분의 중앙에서 방사방향을 따라 인입되어 가장자리까지 연장되게 인입되되 상기 제1선회방향과 선회방향이 반대가 되게 호형으로 형성된 제2선회유도홈이 상기 원주부분의 원주방향을 따라 교번으로 형성된 것을 특징으로 하는 융복합 충전시스템.The cone portion is drawn along the radial direction from the center to extend to the edge, but the first pivot guide groove formed in an arc shape along the first pivot direction, and is drawn along the radial direction from the center of the cone to extend to the edge And a second turning guide groove formed in an arc shape such that the first turning direction and the turning direction are opposite to each other, and are alternately formed along the circumferential direction of the circumferential portion.
- 제7항에 있어서, The method of claim 7, wherein상기 원추부분은 중앙에서 방사방향을 따라 인입되어 가장자리까지 연장되게 인입되되 제1선회방향을 따라 호형으로 형성되되 상기 원추부분을 2분할하여 형성되는 제1영역과 제2영역 중 제1영역에 형성된 제1선회유도홈과, 상기 원추부분의 중앙에서 방사방향을 따라 인입되어 가장자리까지 연장되게 인입되되 상기 제1선회방향과 선회방향이 반대가 되게 호형으로 상기 제2영역에 형성된 제2선회유도홈을 구비하는 것을 특징으로 하는 융복합 충전시스템.The cone portion is drawn in the radial direction from the center and extends to the edge, but is formed in an arc shape along the first turning direction, and is formed in the first region of the first region and the second region formed by dividing the cone portion. A first turning guide groove and a second turning guide groove formed in the second region in an arc shape such that the first turning direction and the turning direction extend from the center of the cone portion to the edge, and are reversed. Fusion charging system characterized in that it comprises a.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160157754 | 2016-11-24 | ||
KR10-2016-0157754 | 2016-11-24 | ||
KR1020170135554A KR102026404B1 (en) | 2016-11-24 | 2017-10-19 | Fusing and combing charging system |
KR10-2017-0135554 | 2017-10-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018097484A2 true WO2018097484A2 (en) | 2018-05-31 |
WO2018097484A3 WO2018097484A3 (en) | 2018-08-09 |
Family
ID=62195617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011626 WO2018097484A2 (en) | 2016-11-24 | 2017-10-20 | Combined/hybrid charging system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018097484A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111301207A (en) * | 2020-03-18 | 2020-06-19 | 重庆工业职业技术学院 | New energy automobile energy charging device and control method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4153690B2 (en) * | 2001-10-25 | 2008-09-24 | 本田技研工業株式会社 | Hydrogen stand filling management device |
KR20120075530A (en) * | 2010-11-22 | 2012-07-09 | 탁승호 | Smart card payment system for electric power sale of electric vehicle and plug-in hybrid car on road side or public parking area |
JP5839545B2 (en) * | 2011-04-26 | 2016-01-06 | 株式会社神戸製鋼所 | Hydrogen station |
JP6042385B2 (en) * | 2014-08-20 | 2016-12-14 | 国立大学法人九州大学 | Stand-alone energy supply facility equipped with solar hydrogen fuel supply and electric vehicle charger |
KR101683999B1 (en) * | 2014-11-20 | 2016-12-07 | 현대자동차주식회사 | Emergency charging device and method for fuel cell vehicle |
-
2017
- 2017-10-20 WO PCT/KR2017/011626 patent/WO2018097484A2/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111301207A (en) * | 2020-03-18 | 2020-06-19 | 重庆工业职业技术学院 | New energy automobile energy charging device and control method |
Also Published As
Publication number | Publication date |
---|---|
WO2018097484A3 (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101796680B (en) | Hot box design with multi-stream heat exchanger and single air control | |
KR102026404B1 (en) | Fusing and combing charging system | |
WO2003067698A1 (en) | Solid oxide type fuel cell system | |
KR20010030874A (en) | Integrated solid oxide fuel cell and reformer | |
JP5376384B2 (en) | Combustion reformer applied to fuel cell power generation system | |
WO2024063347A1 (en) | Air and fuel supply module, and fuel cell system comprising same | |
WO2016167461A1 (en) | Vapor generation apparatus and fuel-cell system comprising same | |
WO2019209045A1 (en) | Fuel cell system | |
JP2006269419A (en) | Solid oxide type fuel cell and operation method thereof | |
JP2017212204A (en) | High-temperature operation fuel cell system | |
JP2003123827A (en) | Heat exchange structure of fuel cell | |
JP2017076609A (en) | Fuel cell module including heat exchanger and method for actuating such module | |
JP2017195084A (en) | Fuel cell system | |
WO2018097484A2 (en) | Combined/hybrid charging system | |
JP2005100687A (en) | Fuel cell | |
WO2017222253A1 (en) | Fuel cell system comprising heat exchanger using anode gas or anode exhaust gas | |
CN217300714U (en) | Methanol fuel double-circuit power generation device and heat exchange system thereof | |
WO2017003089A1 (en) | Solid oxide fuel cell system heated by external heat source | |
US20180076472A1 (en) | Integrated fuel cell systems | |
WO2024025289A1 (en) | Steam generating device, and fuel cell system including same | |
JP2015018622A (en) | Fuel cell unit, fuel cell system, and hybrid power generation system | |
WO2012091463A2 (en) | Fuel cell system and stack | |
WO2024005269A1 (en) | Combustion system using ammonia as raw material | |
JP4942292B2 (en) | Power generator | |
WO2020262776A1 (en) | Fuel processing apparatus and virtual power plant system using fuel processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17874578 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17874578 Country of ref document: EP Kind code of ref document: A2 |