WO2018096632A1 - データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム - Google Patents
データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム Download PDFInfo
- Publication number
- WO2018096632A1 WO2018096632A1 PCT/JP2016/084847 JP2016084847W WO2018096632A1 WO 2018096632 A1 WO2018096632 A1 WO 2018096632A1 JP 2016084847 W JP2016084847 W JP 2016084847W WO 2018096632 A1 WO2018096632 A1 WO 2018096632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- patient
- sensor
- data processing
- state
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0024—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0266—Operational features for monitoring or limiting apparatus function
- A61B2560/0276—Determining malfunction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
Definitions
- the present invention relates to a data processing device, a computer-readable medium, a data processing method, and a program.
- An information processing system that analyzes data representing a physiological index of a patient (hereinafter referred to as biological data) is known for use in the treatment or prevention of a disease.
- Patent Literature 1 describes a patient preventive hygiene system that processes data received from a wearable sensor.
- wearable sensors including wearable sensors makes it possible to continuously and routinely acquire patient biometric data. Thereby, since it becomes possible to grasp
- wearable sensors have many different points from biosensors conventionally used at the bedside of medical institutions and the like (hereinafter referred to as bedside sensors).
- bedside sensors unlike a bedside sensor used in a controlled specific environment, a wearable sensor is used in various environments during the daily life of a patient.
- bedside sensors that acquire biometric data from a patient in a resting state wearable sensors can be used from patients in various active states (eg, exercise patients, sleeping patients, etc.). Obtain biometric data.
- the wearable sensor uses a battery as a power source.
- an object of one aspect of the present invention is to provide a technique for correctly evaluating biometric data acquired from a wearable sensor.
- a data processing apparatus includes a circuit, and the circuit includes first biological data of the target patient collected by a wearable sensor attached to the target patient and a patient state of the target patient. Data is acquired, the first biological data is normalized based on the patient state data, and the normalized biological data is generated.
- a computer-readable medium is a non-transitory computer-readable medium recording a program for causing a computer to execute a process, and the process includes a wearable sensor attached to a target patient. Obtaining the first biological data of the target patient and the patient state data of the target patient collected by the step, and standardizing the first biological data based on the patient state data to generate standardized biological data And including.
- a data processing method of a data processing apparatus acquires first biological data of the target patient and patient state data of the target patient collected by a wearable sensor attached to the target patient.
- the first biometric data is standardized based on the patient state data to generate standardized biometric data.
- a program acquires first biological data of the target patient and patient state data of the target patient collected by a wearable sensor attached to the target patient, and stores the patient state data in the patient state data. Based on the first biometric data, the computer is caused to execute a process of generating the standardized biometric data.
- a data processing apparatus includes: means for acquiring first biological data of the target patient and patient state data of the target patient collected by a wearable sensor attached to the target patient; Means for standardizing the first biometric data based on the patient state data and generating standardized biometric data.
- the biometric data acquired from the wearable sensor can be correctly evaluated.
- FIG. 1 is a diagram illustrating a configuration of a biological data processing system 1.
- FIG. 2 is a diagram illustrating a hardware configuration of wearable sensor 10.
- FIG. 2 is a diagram illustrating an example of a hardware configuration of a data processing device 100.
- FIG. It is an example of the flowchart of the data processing which concerns on 1st Embodiment. It is an example of the flowchart of a reliability evaluation process. It is an example of information S1 regarding the operation permissible conditions stored in the storage 103. It is an example of the flowchart of a correction process. It is an example of information S2 regarding the correspondence relationship between the state of the sensor stored in the storage 103 and the measurement error. It is the figure which illustrated the hardware constitutions of the data processor 200 which concerns on a modification.
- FIG. 1 is a diagram illustrating the configuration of the biological data processing system 1.
- the biological data processing system 1 is a medical system that collects biological data of a target patient P using a wearable sensor attached to the target patient P, and uses the collected biological data for treatment or prevention of a disease.
- the wearable sensor refers to a sensor that can be worn on the human body and carried around, and refers to a sensor that exchanges data with external devices by wireless communication.
- the wearable sensor includes an embedded sensor to be worn inside the human body in addition to the wearable sensor worn on the surface of the human body.
- Biometric data is data representing a physiological index of a patient, and includes, for example, vital data (data of vital signs including blood pressure, pulse, respiration, and body temperature), electroencephalogram data, blood glucose level data, and the like.
- the biological data processing system 1 includes one or more wearable sensors (wearable sensor 10, embedded sensor 20, wearable sensor 30), an access point 40, and an NFC (Near field communication) reader 50.
- Each of the plurality of wearable sensors is a biometric sensor that collects biometric data of the target patient P, and is configured to collect biometric data and communicate with an external device using power supplied from a battery. Yes.
- the type of biometric data acquired by each sensor may be one type or a plurality of types.
- Wearable sensor 10 is a wrist-hand-type wearable sensor that is worn on the wrist and collects, for example, body temperature data, pulse data, and blood pressure data.
- the embedded sensor 20 is an embedded sensor that is worn by being embedded in the body, and collects blood glucose level data, for example.
- the wearable sensor 30 is a glasses-type or headset-type wearable sensor, and collects brain wave data, for example.
- the wearable sensor 10 and the wearable sensor 30 each include a display 10a and a display 30a as a configuration for visually notifying the target patient P of an abnormality.
- the wearable sensor 10 and the wearable sensor 30 are, for example, a speaker, a vibrator, and an LED (light emitting diode) as a configuration for notifying the target patient P of an abnormality instead of or in addition to the display 10a and the display 30a. You may prepare. Using these configurations, the target patient P may be notified of abnormality by sound, vibration, light emission, or the like.
- FIG. 2 is a diagram illustrating a hardware configuration of the wearable sensor 10.
- the configuration of the wearable sensor 10 will be described with reference to FIG. 2 as a representative of a plurality of wearable sensors. Note that the embedded sensor 20 and the wearable sensor 30 also have a configuration similar to that of the wearable sensor 10.
- the wearable sensor 10 includes a plurality of sensors (biological sensor 11, temperature sensor 12, acceleration sensor 13, and voltage sensor 14), a microprocessor 15, a memory 16, a wireless communication circuit 17, and a battery. 18 is provided. Wearable sensor 10 may be provided with a timer for measuring continuous use time, for example, in addition to these configurations.
- the biosensor 11 is a sensor that measures vital signs including body temperature, pulse, and blood pressure.
- the temperature sensor 12, the acceleration sensor 13, and the voltage sensor 14 are all sensors that measure the state of the wearable sensor 10.
- the wearable sensor 10 uses these sensors to collect data indicating the state of the wearable sensor 10 such as temperature, acceleration, and power supply voltage (hereinafter referred to as sensor state data). Further, when the wearable sensor 10 includes a timer, the usage time may be further measured. In this case, data indicating the usage time is also included in the sensor state data.
- the state of the sensor refers to a sensor that can change with the passage of time, and does not include, for example, a sensor that does not change with the passage of time, such as a physical configuration of the sensor.
- the temperature data and the acceleration data included in the sensor state data are examples of data indicating the use environment of the wearable sensor 10.
- the sensor state data may include other data indicating the use environment of the wearable sensor 10 such as humidity and atmospheric pressure.
- the power supply voltage data included in the sensor state data is an example of data indicating the state of the battery 18.
- the sensor state data may include other data indicating the state of the battery 18 such as a remaining battery level, for example.
- the usage time data included in the sensor state data is an example of data indicating the deterioration state of the wearable sensor 10.
- the sensor state data may include other data indicating the deterioration state of the wearable sensor 10. *
- the wireless communication circuit 17 is, for example, a communication integrated chip corresponding to a plurality of communication methods.
- a wireless LAN circuit 17a corresponding to WiFi (WirelessWireFidelity) (registered trademark) and an NFC circuit 17b corresponding to NFC is shown, but in addition, BLE (Bluetooth (registered trademark) ⁇ Low Energy ) Or the like.
- the wireless communication circuit 17 transmits the collected biological data and sensor state data to the data processing device 100.
- Data transmitted from the wireless communication circuit 17 is transferred to the data processing device 100 through the network 60 via the access point 40 or the NFC reader 50.
- the wireless communication circuit 17 may transmit data to the access point 40 or the NFC reader 50 through a mobile terminal (not shown) held by the target patient P (for example, a mobile phone, a smartphone, etc.).
- the collected biological data and sensor state data are transmitted toward the data processing apparatus 100 via the wireless communication circuits included in each of them.
- FIG. 3 is a diagram illustrating a hardware configuration of the data processing apparatus 100.
- the data processing device 100 is a device that processes biological data collected from the target patient P for use in treatment or prevention of a disease.
- the data processing apparatus 100 is, for example, a standard computer, and a processor 101, a memory 102, a storage 103, a network (NW) interface 104, and a portable recording medium 106 can be inserted as shown in FIG.
- a portable recording medium driving device 105 is provided. These components are connected to each other by a bus 107.
- the processor 101 is an electric circuit (Circuitry) such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor), and is programmed by executing a program stored in the memory 102. Process.
- the memory 102 includes, for example, a RAM (Random Access Memory), and temporarily stores a program or data stored in the storage 103 or the portable recording medium 106 when the program is executed.
- the storage 103 is, for example, a hard disk or a flash memory, and is a storage unit mainly used for recording various data and programs.
- the NW interface 104 is, for example, a NIC (Network interface controller), and is hardware that exchanges signals with devices other than the data processing device 100 (for example, the wearable sensor 10).
- the portable recording medium driving device 105 accommodates a portable recording medium 106 such as an optical disk or a compact flash (registered trademark).
- the portable recording medium 106 has a role of assisting the storage 103.
- the storage 103 and the portable recording medium 106 are examples of non-transitory computer readable media each recording a program.
- the data processing apparatus 100 may be a dedicated device instead of a general-purpose device.
- the data processing apparatus 100 may include an electrical circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) instead of or in addition to a processor that executes a program. Data may be processed.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- various services are provided in the form of SaaS, PaaS, IaaS, and the like.
- biometric data collected by a wearable sensor may be transmitted to 70 in addition to the data processing apparatus 100
- the cloud environment 70 is a storage service that accumulates biometric data and the like in the data processing apparatus 100. May be provided.
- the cloud environment 70 may provide an analysis service that analyzes biological data accumulated in the data processing apparatus 100 and that is useful for disease prevention or early treatment.
- FIG. 4 is an example of a flowchart of data processing according to the present embodiment.
- FIG. 5 is an example of a flowchart of the reliability evaluation process.
- FIG. 6 is an example of information S ⁇ b> 1 related to operation permission conditions stored in the storage 103.
- FIG. 7 is an example of a flowchart of the correction process.
- FIG. 8 is an example of information S ⁇ b> 2 regarding the correspondence between the sensor state and the measurement error stored in the storage 103.
- FIGS. 4 to 8 an example of data processing performed by the data processing apparatus 100 that acquires biometric data and sensor state data from a biometric sensor will be described with reference to FIGS. 4 to 8.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 4 is performed.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 4 is performed.
- biological data and sensor state data are periodically transmitted from the wearable wearable sensor 10 worn on the target patient P to the data processing apparatus 100 will be described as an example.
- the data processing apparatus 100 acquires data transmitted from the wearable sensor 10 (step S10).
- the processor 101 acquires body temperature data that is biological data of the target patient P collected by the wearable sensor 10 via the NW interface 104.
- the sensor state data of the wearable sensor 10 collected by the wearable sensor 10 is acquired via the NW interface 104.
- the sensor state data includes temperature, acceleration, and power supply voltage data.
- the sensor is identified in addition to the biological data and the sensor state data in order to identify which sensor among the plurality of wearable sensors worn on the target patient P. Data (hereinafter referred to as sensor identification data) may be acquired.
- the data processing apparatus 100 performs a reliability evaluation process for evaluating the reliability of the biological data acquired from the wearable sensor 10 (step S20).
- the reliability of the biological data is evaluated based on the operation permission condition of the wearable sensor 10 and the sensor state data of the wearable sensor 10 acquired in step S10.
- the reliability evaluation of biometric data refers to determining the reliability of the biometric data, more specifically, whether or not the biometric data is reliable data.
- the physiological index for example, body temperature
- the processor 101 first refers to the storage 103 which is a storage unit storing the operation permission conditions of the wearable sensor 10 (step S21).
- the sensor operation permission condition refers to a condition under which normal operation of the sensor is guaranteed, and is also referred to as a recommended operation condition, an operation condition, or the like.
- information S1 related to the operation permission condition of the wearable sensor 10 as shown in FIG. 6 is stored.
- the information S1 indicates that the wearable sensor 10 is allowed to operate when the power supply voltage is within a range of 5V ⁇ 10% (that is, the wearable sensor 10 operates normally). Further, if the temperature and the continuous use time are within the range of 5 ° C.
- step S21 the operation permissible condition of the sensor identified by the sensor identification data is referred.
- the processor 101 referring to the storage 103 determines whether or not the sensor state data acquired in step S10 satisfies the operation permission condition (step S22). Specifically, it is determined whether the power supply voltage data included in the sensor state data represents a voltage within a range of 5V ⁇ 10%, and the temperature data included in the sensor state data is 5 ° C. to 55 ° C. Determine if it represents a temperature in the range of ° C. When both of these data represent values within the above-described range, it is determined that the operation permissible condition is satisfied.
- the processor 101 determines that the wearable sensor 10 is operating normally and the biological data is reliable data (step S23), and ends the reliability evaluation process. .
- the processor 101 estimates that the measurement result of the wearable sensor 10 is likely to contain an error, and the biological data is unreliable data. Determination is made (step S24), and the reliability evaluation process is terminated.
- the data processing apparatus 100 notifies the abnormality of the wearable sensor 10 (step S40).
- the processor 101 issues a notification command for notifying the target patient P of the abnormality of the wearable sensor 10 to the wearable sensor 10 according to the sensor state data.
- the notification command may be issued when the determination that the biometric data cannot be trusted continues for a certain period.
- the notification command may be generated according to the sensor state data, and may include a message to be displayed on the display 10a.
- the message is, for example, “ ⁇ Warning> The temperature of the wearable sensor 10 exceeds the allowable operating temperature”.
- the wearable sensor 10 that has received the notification command notifies the target patient P of an abnormality of the wearable sensor 10 by executing processing according to the command (for example, processing for displaying a message or the like on the display 10a).
- the data processing device 100 performs a correction process on the biological data (step S50).
- the processor 101 corrects the biometric data so that the reliability of the biometric data is improved.
- the processor 101 first refers to the storage 103 that is a storage unit that stores the correspondence between the state of the wearable sensor 10 and the measurement error of the wearable sensor 10 ( Step S51).
- the storage 103 stores information S ⁇ b> 2 regarding the correspondence between the state of the wearable sensor 10 and the measurement error of the wearable sensor 10 as illustrated in FIG. 8.
- Information S2 indicates that a measurement error of ⁇ V * 10% occurs in the body temperature data when the power supply voltage of the battery 18 does not fall within the allowable voltage (range of 5V ⁇ 10%).
- the measurement data of ⁇ Tc ⁇ 20% and ⁇ t ⁇ 3% are generated in the body temperature data, respectively.
- ⁇ V, ⁇ Tc, and ⁇ t are allowed as the difference between the power supply voltage of the wearable sensor 10 and the allowable power supply voltage, the difference between the temperature of the wearable sensor 10 and the allowable operating temperature, and the continuous use time of the wearable sensor 10, respectively. It is the difference from continuous use time.
- FIG. 8 shows an example in which the measurement error changes linearly with respect to a parameter indicating the state of the sensor in order to simplify the description.
- the correspondence between the sensor state and the measurement error may be created based on the measurement result obtained by conducting an experiment or the like in advance. Alternatively, it may be created using computer simulation or the like based on sensor design information or the like. Further, the correspondence relationship between the sensor state and the measurement error may be expressed as a function as shown in FIG. 8, or may be expressed as a set of data stored in the table.
- the processor 101 referring to the storage 103 generates correction data corresponding to the sensor state data acquired in step S10 (step S52).
- the correction data is data representing a measurement error that is expected to occur. Specifically, based on the power supply voltage data and temperature data acquired in step S10 and the information S2 stored in the storage 103, a measurement error regarding the body temperature generated in the wearable sensor 10 is calculated, and the calculated measurement is calculated. Correction data representing an error is generated.
- the processor 101 corrects the biometric data acquired in step S10 using the generated correction data, and generates corrected biometric data that is corrected biometric data (step S53).
- the body temperature data is corrected by compensating for the measurement error included in the body temperature data acquired in step S10 with the correction data representing the measurement error, and the body temperature data after correction is generated.
- the data processing apparatus 100 stores the corrected biometric data in the storage 103 (step S60).
- the processor 101 stores the corrected biometric data generated in step S53 in the storage 103 as evaluated biometric data.
- the data processing apparatus 100 stores the biometric data in the storage 103 (step S70).
- the processor 101 stores the biometric data acquired in step S10 in the storage 103 as evaluated biometric data.
- the evaluated biometric data stored in the storage 103 in step S60 and step S70 is used for treatment or prevention of the disease of the target patient P.
- the data processing device 100 analyzes the accumulated biological data of the target patient P to create a patient visit plan, a treatment policy, or auxiliary information for the doctor in charge to determine them. May be.
- the data processing apparatus 100 analyzes the evaluated biometric data (step S80) and determines whether or not an abnormality has occurred in the target patient P (step S90).
- the processor 101 may perform analysis and determination processing based on the latest evaluated biometric data stored in the storage 103, and the history of evaluated biometric data stored in the storage 103. Analysis and determination processing may be performed based on the above.
- the specific method of abnormality determination is not limited to the specification. Any known method can be adopted for the abnormality determination. For example, the determination may be made based on whether or not the state (for example, body temperature) of the target patient P indicated by the evaluated biological data is within a predetermined range indicating the normal value range.
- step S100 the data processing device 100 notifies the abnormality of the target patient P (step S100), and then the data processing shown in FIG. .
- step S ⁇ b> 100 the processor 101 issues a notification command for notifying the target patient P of the abnormality of the target patient P toward the data processing apparatus 100.
- the notification command may be generated based on the evaluated biological data, and may include a message to be displayed on the display 10a, for example.
- the message is, for example, “ ⁇ Warning> Body temperature is high”.
- the sensor that has received the notification command notifies the abnormality of the target patient P by executing processing according to the notification command.
- the data processing apparatus 100 can execute the data processing shown in FIG. 4 to understand the state of the sensor, the living body output from the wearable sensor used in various environments in daily life. Data can be evaluated correctly. In particular, the reliability of the biological data can be easily evaluated without performing complicated calculations by comparing the predetermined permissible operating conditions with the sensor state.
- biometric data that can be used for diagnosis and the like increases by performing correction processing for improving the reliability of biometric data with low reliability. As a result, more data can be accumulated, so that the diagnostic accuracy is improved and more effective treatment or prevention of the disease is possible.
- the data processing apparatus 100 may detect the abnormality of the sensor, The following processing may be performed.
- the data processing apparatus 100 issues a command for executing a refresh operation (hereinafter referred to as a refresh command) to the sensor. May be.
- a refresh command a command for executing a refresh operation
- the sensor that has received the refresh command executes processing according to the command and the sensor function is restored, so that the sensor can be used for a longer time.
- the storage 103 may store a refresh condition that recommends a sensor refresh operation in advance, and the processor 101 performs a refresh operation on the sensor when the sensor state data satisfies the refresh condition stored in the storage 103. You may issue the refresh command which performs.
- the data processing apparatus 100 may be performed when an abnormality is detected in the target patient P.
- the data processing apparatus 100 may issue a control command for starting another sensor.
- a control command for activating the embedded sensor 20 and the wearable sensor 30 may be issued to each sensor.
- the data processing device 100 directs a control command for changing the communication setting between the data processing device 100 and the sensor to a setting with a shorter communication interval (transmission interval) for transmitting biometric data to the sensor. May be issued. Thereby, more information about the target patient P in an abnormal state can be obtained earlier.
- the storage 103 may store in advance a recommended communication interval at normal time and a recommended communication interval at abnormal time.
- the data processing apparatus 100 detects an abnormality of the target patient P
- the data processing apparatus 100 directs a control command for changing the communication interval to the sensor so that the communication interval set in the sensor is changed to the recommended communication interval at the time of abnormality. May be issued.
- a control command for changing the communication interval is issued to the sensor so that the communication interval set in the sensor is changed to the recommended communication interval at the normal time. May be.
- the recommended communication interval at the time of abnormality is preferably shorter than the recommended communication interval at the time of abnormality.
- the abnormality of the target patient P may be detected based on the evaluated biological data and sensor state data.
- the patient's activity state (rest state, exercise state, etc.) may be determined from the acceleration data included in the sensor state data, and the patient's abnormality may be detected in consideration of the patient's activity state. Accordingly, it is possible to determine whether or not the patient is in an abnormal state based on different criteria according to the activity state of the patient, and thus more appropriate abnormality detection is possible.
- the data processing apparatus 200 which is a standard computer, performs the data processing shown in FIG. 4 is shown.
- the data processing apparatus 200 which is a dedicated apparatus as shown in FIG. Processing may be performed.
- the data processing device 200 includes a data acquisition circuit 201, a reliability evaluation circuit 202, a correction circuit 203, a target person abnormality detection circuit 204, a command issue circuit 205, and a storage that is a storage unit. 206.
- the data processing device 200 performs various processes performed by the processor 101 by executing a program, such as a dedicated circuit (a data acquisition circuit 201, a reliability evaluation circuit 202, a correction circuit 203, a target person abnormality detection circuit 204, and a command issue circuit 205. ) Is different, but the other points are the same as those of the data processing apparatus 100.
- the data processor 200 can obtain the same effects as the data processor 100.
- FIG. 10 is an example of a flowchart of data processing according to the present embodiment.
- FIG. 11 is an example of a flowchart of the standardization process.
- data processing apparatus 100 that acquires biological data and sensor state data from a biological sensor will be described with reference to FIGS. 10 and 11.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 10 is performed.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 10 is performed.
- biometric data and sensor state data are periodically transmitted from the wearable wearable sensor 10 and the wearable sensor 30 attached to the target patient P to the data processing apparatus 100 will be described as an example.
- the data processing apparatus 100 acquires data transmitted from the wearable sensor 10 (step S110).
- the processor 101 acquires the pulse data collected by the wearable sensor 10 and the electroencephalogram data collected by the wearable sensor 30. Further, the sensor state data of the wearable sensor 10 and the sensor state data of the wearable sensor 30 are acquired. Furthermore, sensor identification data is also acquired in addition to biometric data and sensor state data.
- the data processing apparatus 100 performs a standardization process for standardizing the pulse data that is the biological data (step S120).
- pulse data which is biometric data acquired from the wearable sensor 10
- standardized biometric data hereinafter referred to as standardized biometric data.
- the electroencephalogram data which is biological data of a type different from the pulse data, is data that changes in accordance with the activity state of the target patient P (hereinafter referred to as patient state data), and the activity state of the target patient P is indirect. It expresses.
- the standardization of biometric data refers to conversion of biometric data acquired from a patient under a certain rule so that a physiological index represented by the biometric data can be compared regardless of the activity state of the patient. .
- the processor 101 When the standardization process is started, as shown in FIG. 11, the processor 101 first stores a storage 103 that is a storage unit that stores a correspondence relationship between a patient activity state and a physiological index represented by patient state data. Reference is made (step S121).
- the correspondence relationship stored in the storage 103 may be a correspondence relationship specific to the target patient P, or may be a correspondence relationship in a general patient.
- the processor 101 determines the activity state of the target patient P based on the patient state data acquired in step S110 (step S122).
- the processor 101 determines the activity state of the target patient P based on the correspondence stored in the storage 103 and the electroencephalogram data as the patient state data. Note that not only the latest electroencephalogram data but also the history of electroencephalogram data including previously acquired electroencephalogram data may be used for determining the activity state of the target patient P.
- the processor 101 normalizes the biometric data according to the activity state determined in step S122, generates standardized biometric data (step S123), and ends the standardization process.
- the processor 101 refers to the storage 103 in which the conversion rule for each activity state is stored, and converts the pulse data, which is biometric data, according to the conversion rule corresponding to the activity state determined in step S122.
- the conversion rule is preferably different for each activity state, the conversion rule for at least one activity state may be different from the conversion rule for other activity states.
- the data processing apparatus 100 stores the standardized biometric data in the storage 103 (step S130).
- the biometric data and sensor state data acquired in step S110 may be stored in the storage 103 together with the standardized biometric data.
- the data processing apparatus 100 analyzes the standardized biometric data (step S140) and determines whether or not an abnormality has occurred in the target patient P (step S150).
- the processor 101 may perform analysis and determination processing based on the latest standardized biometric data stored in the storage 103, and the history of the standardized biometric data stored in the storage 103. Analysis and determination processing may be performed based on the above.
- the specific method of abnormality determination is not limited to specific. Any known method can be adopted for the abnormality determination.
- the determination may be made based on whether or not the state (for example, pulse) of the target patient P indicated by the standardized biological data is within a predetermined range indicating the normal value range.
- step S160 the data processing apparatus 100 notifies the abnormality of the target patient P (step S160), and then the data processing shown in FIG. .
- the process of step S160 is the same as the process of step S100 of FIG.
- the data processing apparatus 100 executes the data processing shown in FIG. 10, the patient's biological data can be converted into comparable data regardless of the patient's activity state. For this reason, it becomes easy to correctly evaluate biometric data acquired from patients in various active states. For example, there is a great difference in pulse between resting and exercising, but by determining the pulse data, it is possible to easily determine abnormality without distinguishing between resting and exercising data.
- the patient state data is biometric data (electroencephalogram data) different from the biometric data (pulse data) to be standardized
- the patient state data indicates the activity state of the patient. It may be changed according to the sensor state data.
- the sensor acceleration data may be acquired as the patient state data in step S110 shown in FIG. 10
- the patient activity state may be determined based on the sensor acceleration data in step S120
- the pulse data may be normalized.
- the storage 103 stores a correspondence relationship between the activity state of the patient and the acceleration that is a physical index represented by the patient state data. Even when biometric data is standardized based on sensor status data, biometric data is converted to comparable data regardless of the patient's activity status, so it was obtained from patients in various activity status It becomes easy to correctly evaluate biometric data.
- the data processing apparatus 100 when an abnormality is detected in the target patient P, a control command for starting another sensor or a control for changing the sensor setting to a setting with a shorter communication interval for transmitting biological data. A command may be issued.
- the standardization process illustrated in FIG. 11 is illustrated as an example of the standardization process.
- the data processing apparatus 100 performs the standardization process illustrated in FIG. 12 instead of the standardization process illustrated in FIG. You may go.
- the processor 101 When the standardization process shown in FIG. 12 is started, the processor 101 first refers to the storage 103 that is a storage unit that stores the correspondence relationship between the activity state of the patient and the index represented by the patient state data (step S171). The activity state of the patient is determined based on the patient state data (step S172). The processes in steps S171 and S172 are the same as the processes in steps S121 and S122 shown in FIG.
- the processor 101 performs a reliability evaluation process for evaluating the reliability of the biometric data to be standardized (here, pulse data) (step S173).
- the processor 101 evaluates the reliability of the biometric data based on the sensor state data acquired in step S110 and the operation permission condition of the sensor. Then, when it is determined in the reliability evaluation process that the biometric data is not reliable (NO in step S174), the processor 101 notifies the abnormality of the wearable sensor 10 (step S175) and performs a correction process on the biometric data (step S175). Step S176). Then, the corrected biometric data generated by the correction process is stored in the storage 103 as evaluated biometric data (step S177).
- step S174 when it is determined in the reliability evaluation process that the biometric data is reliable (YES in step S174), the processor 101 stores the biometric data in the storage 103 as evaluated biometric data (step S178). Note that the processing from step S173 to step S178 is the same as the processing from step S20 to step S70 in FIG.
- step S179 When the evaluated biometric data is stored in the storage 103, the processor 101 normalizes the evaluated biometric data according to the activity state determined in step S172, and generates standardized biometric data (step S179). The standardization process ends.
- the process of step S179 is the same as step S123 of FIG. 11 except that the evaluated biometric data is normalized.
- the data processing apparatus 100 executes the standardization process shown in FIG. 12 instead of the standardization process shown in FIG. 11 in the data processing, the same effect as the data processing according to the first embodiment can be obtained.
- Can do since correction processing is performed, biometric data that can be used for diagnosis and the like increases. As a result, more data can be accumulated, so that the diagnostic accuracy is improved and more effective treatment or prevention of the disease is possible.
- abnormality of a patient is detected based on highly reliable biometric data (including corrected biometric data), accurate information can be provided to the patient.
- the corrected biometric data for detecting an abnormality of the patient it is possible to reduce the risk of missing the patient's abnormality.
- FIG. 12 shows an example in which the reliability of the biometric data to be standardized is evaluated and corrected when the reliability is low.
- a biometric that is patient state data is shown in addition to the biometric data to be standardized.
- the reliability of data may also be evaluated and corrected if the reliability is low. Thereby, since the reliability of the patient state data is also increased, it is possible to standardize the biological data with higher accuracy.
- FIG. 12 shows an example in which the sensor abnormality is notified when the sensor abnormality is detected, but instead of or in addition to notifying the sensor abnormality, the data processing apparatus 100 is the first embodiment. Similarly, a refresh command may be issued when a sensor abnormality is detected.
- the data processing apparatus 300 which is a dedicated apparatus as shown in FIG. Processing may be performed.
- the data processing apparatus 300 includes a data acquisition circuit 301, a standardization circuit 302, a subject abnormality detection circuit 303, a command issue circuit 304, and a storage 305 that is a storage unit.
- various processes performed by the processor 101 executing programs are performed by dedicated circuits (the data acquisition circuit 301, the standardization circuit 302, the target person abnormality detection circuit 303, and the command issue circuit 304).
- the other points are the same as those of the data processing apparatus 100.
- the data processor 300 can obtain the same effects as the data processor 100.
- FIG. 14 is an example of a flowchart of data processing according to the present embodiment.
- FIG. 15 is an example of a flowchart of the activity state determination process.
- an example of data processing performed by the data processing apparatus 100 that acquires biological data and sensor state data from a biological sensor will be described with reference to FIGS. 14 and 15.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 14 is performed.
- biological data and sensor state data are periodically transmitted to the data processing device 100 from the wearable wearable sensor 10 and the wearable sensor 30 that are worn on the target patient P. An example will be described.
- the data processing apparatus 100 acquires data transmitted from the wearable sensor 10 (step S210).
- the processor 101 acquires the pulse data collected by the wearable sensor 10 and the electroencephalogram data collected by the wearable sensor 30. Further, the sensor state data of the wearable sensor 10 and the sensor state data of the wearable sensor 30 are acquired. Furthermore, sensor identification data is also acquired in addition to biometric data and sensor state data.
- the data processing apparatus 100 performs an activity state determination process for determining the activity state of the target patient P (step S220).
- the activity state of the target patient P wearing the wearable sensor 30 is determined based on electroencephalogram data that is biological data acquired from the wearable sensor 30.
- electroencephalogram data which is biological data of a type different from the pulse data, is patient state data that changes in accordance with the activity state of the target patient P, and indirectly represents the activity state of the target patient P.
- the processor 101 When the activity state determination process is started, as shown in FIG. 15, the processor 101 first stores the storage 103 which is a storage unit that stores the correspondence between the patient activity state and the physiological index represented by the patient state data. Is referred to (step S221). Thereafter, the processor 101 determines the activity state of the target patient P based on the patient state data acquired in step S210 (step S222), and ends the activity state determination process. Note that the processing in steps S221 and S222 is the same as the processing in steps S121 and S122 in FIG.
- the data processing apparatus 100 stores the biometric data in the storage 103 (step S230).
- the sensor state data acquired in step S110 may be stored in the storage 103 together with the biological data (pulse data and brain wave data) acquired in step S110.
- the data processing apparatus 100 analyzes the biometric data (step S240) and determines whether an abnormality has occurred in the target patient P (step S250).
- the processor 101 detects an abnormality of the target patient P based on the activity state determined in step S220 and the pulse data that is the biological data acquired in step S210.
- the biometric data (pulse data) used for abnormality detection may be the latest biometric data stored in the storage 103 or a history of biometric data stored in the storage 103.
- the processor 101 may detect an abnormality by performing the following processing, for example.
- the processor 101 refers to a storage 103 that is a storage unit that stores a correspondence relationship between an activity state of the target patient P and a normal value range of a physiological index (here, a pulse) represented by biological data.
- the processor 101 detects an abnormality of the target patient P based on the activity state determined in step S220, the pulse data acquired in step S210, and the correspondence relationship stored in the storage 103. More specifically, the processor 101 identifies the normal value range of the pulse corresponding to the activity state determined in step S ⁇ b> 220 based on the correspondence relationship stored in the storage 103. After that, the processor 101 determines that there is an abnormality if the pulse indicated by the pulse data acquired in step S210 is not within the specified normal value range.
- step S260 the data processing apparatus 100 notifies the abnormality of the target patient P (step S260), and then the data processing shown in FIG.
- the process of step S260 is the same as the process of step S100 of FIG.
- the data processing apparatus 100 executes the data processing shown in FIG. 14, it is possible to determine whether or not the patient is in an abnormal state based on different criteria depending on the activity state of the patient. More appropriate abnormality detection becomes possible. For example, there is a great difference in pulse between resting and exercising, but it is possible to correctly detect a patient's abnormality by making judgments based on different criteria.
- the patient state data is biometric data (electroencephalogram data) different from the biometric data (pulse data) to be compared with the normal value range
- the patient state data may be changed according to the activity state of the patient, and may be sensor state data such as acceleration data, for example.
- the data processing apparatus 100 when an abnormality is detected in the target patient P, a control command for starting another sensor or a control for changing the sensor setting to a setting with a shorter communication interval for transmitting biological data. A command may be issued.
- the activity state determination process illustrated in FIG. 15 is illustrated as an example of the activity state determination process.
- the data processing apparatus 100 performs the activity illustrated in FIG. 16 instead of the activity state determination process illustrated in FIG. A state determination process may be performed.
- the processor 101 When the activity state determination process illustrated in FIG. 16 is started, the processor 101 first refers to the storage 103 that is a storage unit that stores the correspondence between the activity state of the patient and the index represented by the patient state data (step S271). ) And the activity state of the patient is determined based on the patient state data (step S272).
- the processing of step S271 and step S272 is the same as the processing of step S221 and step S222 shown in FIG.
- the processor 101 performs a reliability evaluation process for evaluating the reliability of the biological data (here, pulse data) (step S273).
- the processor 101 evaluates the reliability of the biometric data based on the sensor state data acquired in step S210 and the operation permission condition of the sensor. Then, when it is determined in the reliability evaluation process that the biometric data is reliable (YES in step S274), the processor 101 ends the activity state determination process.
- the processor 101 notifies the abnormality of the wearable sensor 10 (step S275), and performs a correction process on the biometric data (step S275).
- Step S276 the activity state determination process is terminated. Note that the processing from step S273 to step S276 is the same as the processing from step S20 to step S50 in FIG.
- the data processing device 100 executes the activity state determination process shown in FIG. 16 instead of the activity state determination process shown in FIG. 15 in the data processing, the activity state of the patient can be determined. For this reason, it is possible to correctly evaluate biometric data acquired from patients in various active states and to correctly detect patient abnormalities.
- FIG. 16 shows an example in which the reliability of biological data (here, pulse data) compared with the normal value range is evaluated and corrected when the reliability is low.
- the reliability of data here, electroencephalogram data
- the reliability of the patient state data is also increased, so that the activity state of the patient can be determined more correctly.
- FIG. 16 shows an example in which the sensor abnormality is notified when the sensor abnormality is detected, but instead of or in addition to notifying the sensor abnormality, the data processing apparatus 100 is the first embodiment. Similarly, a refresh command may be issued when a sensor abnormality is detected.
- the data processing apparatus 400 which is a standard computer, performs the data processing shown in FIG. 14 is shown.
- the data processing apparatus 400 which is a dedicated apparatus as shown in FIG. Processing may be performed.
- the data processing device 400 includes a data acquisition circuit 401, an activity state determination circuit 402, a subject abnormality detection circuit 403, a command issue circuit 404, and a storage 405 that is a storage unit.
- various processes performed by the processor 101 executing programs are performed by dedicated circuits (the data acquisition circuit 401, the activity state determination circuit 402, the target person abnormality detection circuit 403, and the command issue circuit 404).
- the other points are the same as those of the data processing apparatus 100.
- the data processor 400 can obtain the same effects as the data processor 100.
- FIG. 18 is an example of a flowchart of data processing according to the present embodiment.
- FIG. 19 is an example of a flowchart of the first communication control process.
- FIG. 20 is an example of information S3 related to recommended communication settings stored in the storage 103.
- FIG. 21 is an example of a flowchart of the second communication control process.
- the battery data is data indicating the state of the battery, and includes, for example, power supply voltage data, battery remaining amount data, and the like.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 18 is performed.
- the biological data and the battery data are periodically sent from the wearable wearable sensor 10 attached to the target patient P, and the battery data is periodically sent from the relay device (not shown) of the target patient P.
- the relay device not shown
- the data processing device 100 acquires data transmitted from the wearable sensor 10 and the repeater (step S310).
- the processor 101 acquires pulse data that is biological data collected by the wearable sensor 10 and power supply voltage data that is battery data of the battery 18 included in the wearable sensor 10. Furthermore, the power supply voltage data which is the battery data of the battery of the repeater which the subject patient P has are acquired.
- the battery data of the battery 18 is referred to as first battery data
- the battery data of the relay is referred to as second battery data.
- the data processing device 100 performs a first communication control process for controlling communication between the wearable sensor 10 and the data processing device 100 (step S320).
- the communication control command which changes the communication setting set to the wearable sensor 10 to the setting according to 1st battery data is issued.
- the processor 101 When the first communication control process is started, the processor 101, as shown in FIG. 19, first, the storage 103, which is a storage unit that stores the correspondence between the state of the battery 18 and the recommended communication setting of the wearable sensor 10. Is referred to (step S321).
- the storage 103 for example, information S3 regarding the correspondence relationship between the state of the battery 18 and the recommended communication setting of the wearable sensor 10 as illustrated in FIG. 20 is stored.
- the information S3 indicates that when the power supply voltage indicating the state of the battery 18 is 4.5 V or more, the recommended communication method is WiFi and the recommended communication interval is 60 s.
- the recommended communication method is WiFi
- the recommended communication interval is 300 s.
- the power supply voltage is less than 4V, it is indicated that the recommended communication method is NFC.
- FIG. 20 illustrates the recommended communication setting of the wearable sensor 10, but the information S3 may include information related to the recommended communication setting for each sensor (wearable sensor 10, embedded sensor 20, wearable sensor 30).
- the recommended communication setting of the sensor identified by the sensor identification data is referred to.
- the recommended communication setting only needs to include at least one of a recommended time interval and a recommended communication method for the sensor or the relay to transmit the biometric data.
- the processor 101 referring to the storage 103 generates a communication control command based on the first battery data acquired in step S310 and the correspondence relationship referred in step S321 (step S322). Furthermore, the processor 101 issues the communication control command generated in step S322 toward the wearable sensor 10 (step S323), and ends the first communication control process.
- the wearable sensor 10 that has received the communication control command changes the communication setting of the wearable sensor 10 to the recommended communication setting according to the battery state of the battery 18 by executing processing according to the command. Specifically, at least one of the communication interval and the communication method is changed.
- the data processing device 100 performs a second communication control process for controlling communication between the repeater and the data processing device 100 (step S330).
- the communication control command which changes the communication setting currently set to the repeater to the setting according to 2nd battery data is issued.
- the processor 101 When the second communication control process is started, as shown in FIG. 21, the processor 101 first stores the storage 103 that is a storage unit that stores the correspondence between the state of the repeater and the recommended communication setting of the repeater. Reference is made (step S331). Thereafter, the processor 101 generates a communication control command based on the correspondence relationship referred to in step S331 and the second battery data acquired in step S310 (step S332). Furthermore, the processor 101 issues the communication control command generated in step S332 to the repeater (step S333), and ends the second communication control process.
- the repeater that has received the communication control command executes processing according to the command to change the communication setting of the repeater to the recommended communication setting according to the battery state of the battery of the repeater. Specifically, at least one of the communication interval and the communication method is changed.
- the processor 101 When the second communication control process ends, the processor 101 notifies the state of the battery 18 (step S340).
- the processor 101 issues a notification command (hereinafter referred to as a first notification command) for notifying the target patient P of the state of the battery 18 toward the wearable sensor 10.
- the first notification command may be issued under specific conditions (for example, when the remaining battery level falls below a threshold).
- the first notification command may be generated according to the state of the battery 18 and may include a message to be displayed on the display 10a.
- the message is, for example, “The battery level of the sensor is low”.
- the wearable sensor 10 that has received the first notification command notifies the target patient P of the state of the battery 18 by executing processing according to the command (for example, processing for displaying a message or the like on the display 10a). .
- the processor 101 predicts that the wearable sensor 10 is out of battery (step S350), and notifies the result of prediction of battery exhaustion (step S360).
- the processor 101 predicts occurrence of a battery exhaustion of the wearable sensor 10 based on the first battery data. Specifically, for example, in addition to the latest first battery data, the time until the battery runs out may be predicted based on the history of the first battery data, the battery capacity of the battery 18, and the like.
- a notification command hereinafter referred to as a second notification command for notifying information based on the prediction is issued toward the wearable sensor 10.
- the second notification command may include a message to be displayed on the display 10a.
- the message is, for example, “The sensor battery has run out in about one hour.”
- the wearable sensor 10 that has received the second notification command notifies the target patient P of the predicted result of running out of the battery by executing processing according to the command (for example, processing for displaying a message or the like on the display 10a). To do.
- the data processing apparatus 100 stores the biometric data in the storage 103 (step S370).
- the battery data acquired in step S310 may be stored in the storage 103 together with the biological data (pulse data) acquired in step S310.
- the data processing apparatus 100 analyzes the biometric data (step S380) and determines whether or not an abnormality has occurred in the target patient P (step S390).
- the processes in steps S380 and S390 are the same as the processes in steps S80 and S90 in FIG.
- step S400 the data processing device 100 notifies the abnormality of the target patient P (step S400), and then the data processing shown in FIG.
- step S ⁇ b> 400 the processor 101 issues a notification command for notifying the target patient P of the abnormality of the target patient P toward the data processing apparatus 100.
- the process of step S400 is the same as the process of step S100 of FIG.
- the communication setting is changed according to the state of the sensor battery.
- the electric power consumption in a sensor is adjusted according to the state of a battery, a battery exhaustion can be delayed.
- the battery state and the prediction information of battery exhaustion are notified, it is possible to prompt the patient to take measures such as battery replacement and charging. For this reason, it is possible to avoid the occurrence of battery exhaustion that may occur such that biometric data cannot be transmitted or biometric data collection is interrupted.
- the data processing apparatus 500 that is a dedicated apparatus as shown in FIG. Processing may be performed.
- the data processing device 500 includes a data acquisition circuit 501, a battery exhaustion prediction circuit 502, a subject abnormality detection circuit 503, a command issuance circuit 504, and a storage 505 that is a storage unit.
- various processes performed by the processor 101 executing programs are performed by dedicated circuits (a data acquisition circuit 501, a battery exhaustion prediction circuit 502, a target person abnormality detection circuit 503, and a command issue circuit 504).
- the other points are the same as those of the data processing apparatus 100.
- the data processor 500 can obtain the same effects as the data processor 100.
- FIG. 23 is an example of a flowchart of data processing according to the present embodiment.
- the data processing apparatus 100 that acquires biological data and battery data from a biological sensor will be described with reference to FIG.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 23 is performed.
- the processor 101 executes one or more programs stored in the memory 102, whereby the data processing shown in FIG. 23 is performed.
- biometric data and battery data are periodically transmitted from the wearable wearable sensor 10 worn on the target patient P to the data processing apparatus 100 will be described as an example.
- the data processing apparatus 100 acquires data transmitted from the wearable sensor 10 (step S410).
- the processor 101 acquires pulse data that is biometric data collected by the wearable sensor 10 and battery data (for example, power supply voltage data) of the battery 18.
- step S420 the data processing apparatus 100 performs a correction process on the biometric data (step S420).
- the processor 101 corrects the pulse data based on the battery data so as to improve the reliability of the pulse data that is the biological data, and generates corrected pulse data that is the corrected biological data.
- the process of step S420 is the same as the correction process shown in FIG. 7 except that the biometric data is corrected based on the battery data. That is, the processor 101 refers to the storage 103 that stores the correspondence (for example, information S1 in FIG. 6) between the battery state and the measurement error of the wearable sensor 10, and generates correction data according to the battery data. Thereafter, the pulse data is corrected using the correction data to generate corrected pulse data.
- the data processing apparatus 100 stores the corrected biometric data in the storage 103 (step S430).
- the battery data acquired in step S410 may be stored in the storage 103 together with the corrected pulse data generated in step S420.
- the data processing device 100 analyzes the corrected biometric data (step S440) and determines whether or not an abnormality has occurred in the target patient P (step S450).
- the processing in step S440 and step S450 is the same as the processing in step S80 and step S90 in FIG. That is, the processor 101 detects an abnormality in the target patient P based on the corrected biometric data.
- step S460 the data processing device 100 notifies the abnormality of the target patient P (step S460), and then the data processing shown in FIG.
- step S460 the processor 101 issues a notification command for notifying the target patient P of the abnormality of the target patient P to the data processing apparatus 100.
- the process of step S460 is the same as the process of step S100 of FIG.
- the data processing apparatus 100 executes the data processing shown in FIG. 23, the measurement error due to the state of the sensor battery can be corrected. As a result, more data can be accumulated and biometric data that can be used for diagnosis and the like is increased, so that the diagnostic accuracy is improved and more effective treatment or prevention of a disease is possible.
- the data processing apparatus 100 may be performed when an abnormality is detected in the target patient P.
- the data processing apparatus 100 may issue a control command for starting another sensor. Further, for example, the data processing device 100 may issue a control command to the sensor to change the communication setting between the data processing device 100 and the sensor to a setting with a shorter communication interval for transmitting biological data. Good. Further, for example, the storage 103 may previously store a recommended communication interval at normal time and a recommended communication interval at abnormal time. When the data processing apparatus 100 detects an abnormality of the target patient P, the communication interval set in the sensor is changed to the recommended communication interval at the time of abnormality, and when no abnormality is detected, the data processing device 100 is recommended when the communication interval is normal. A control command for changing the communication interval may be issued to the sensor so that the communication interval is changed.
- the communication settings may be changed according to the battery data, as in the fourth embodiment. That is, the processor 101 may issue a communication control command for changing the communication setting set in the sensor to a setting corresponding to the battery data.
- the acquired biometric data is corrected without depending on the reliability of the biometric data.
- the biometric data may be corrected when the reliability of the biometric data is low. That is, the biometric data may be corrected when the battery data does not satisfy the operation permission condition.
- the flow of processing in this case is the same as in FIG.
- an example in which an abnormality of the target patient P is detected without considering the activity state of the target patient P has been shown.
- the data processing illustrated in FIG. In consideration of this, the abnormality of the target patient P may be detected.
- the data processing shown in FIG. 24 is based on the point that patient state data is additionally acquired in step S510, the point where the activity state is determined based on the patient state data in step S540, and the state based on the activity state and biological data in step S550.
- the point that the abnormality of the target patient P is detected is different from the data processing shown in FIG. Note that the activity state determination process in step S540 and the analysis process in step S550 are the same as steps S220 and S240 in FIG.
- an abnormality of the target patient P is detected without normalizing the biological data.
- the data processing illustrated in FIG. 25 is performed, and based on the normalized biological data.
- An abnormality of the target patient P may be detected.
- the biometric data is standardized in step S630, the biometric data standardized in step S640 is stored, and the target patient P is based on the biometric data standardized in step S650.
- the point where abnormality is detected is different from the data processing shown in FIG. Note that the normalization process in step S630, the storage process in step S640, and the analysis process in step S650 are the same as step S120 in FIG. 10 (a series of processes shown in FIG. 11 or FIG. 12), step S130, and step S140.
- the data processing apparatus 100 which is a standard computer, performs the data processing shown in FIGS. 23 to 25 is shown.
- the data processing apparatus 600 which is a dedicated apparatus as shown in FIG. Data processing may be performed.
- the data processing device 600 includes a data acquisition circuit 601, a correction circuit 602, an activity state determination circuit 603, a standardization circuit 604, a subject abnormality detection circuit 605, and a command issue circuit 606. And a storage 607 which is a storage unit.
- the data processing apparatus 600 performs various processes performed by the processor 101 executing programs, such as a dedicated circuit (data acquisition circuit 601, correction circuit 602, activity state determination circuit 603, standardization circuit 604, subject abnormality detection circuit 605, The command issuing circuit 606) is different, but the other points are the same as those of the data processing apparatus 100.
- the data processor 600 can obtain the same effects as the data processor 100.
- N / W interface 10 ⁇ ⁇ ⁇ Portable recording medium driving device, 106 ⁇ ⁇ ⁇ Portable recording medium, 107 ⁇ ⁇ ⁇ Bus, 201, 301, 401, 501, 601 ⁇ ⁇ ⁇ Data acquisition circuit, 202 ⁇ ⁇ ⁇ Reliability evaluation circuit, 203, 602 ... correction circuit, 204, 303, 403, 503, 605 ... subject abnormality detection circuit, 205, 304, 404, 504, 606 ... command issue circuit, 302, 604 ... reference Circuit, 402, 603 ... activity state determination circuit, 502 ... battery exhaustion prediction circuit, S1, S2, S3 ... information, P ... target patient
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Pulmonology (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Psychology (AREA)
- Neurosurgery (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
Abstract
データ処理装置は、回路を備える。その回路は、対象患者に取り付けられた装着型のセンサにより収集された対象患者の第1の生体データとその対象患者の患者状態データを取得する。その回路は、その患者状態データに基づいてその第1の生体データを基準化し、基準化生体データを生成する。
Description
本発明は、データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラムに関する。
疾患の治療又は予防に利用するために、患者の生理的な指標を表すデータ(以降、生体データと記す。)を解析する情報処理システムが知られている。
従来は、患者の生体データは、専ら医療機関内で取得されてきたが、ウェラブルセンサの開発が進んだ近年では、医療機関外において日常生活を送っている患者から生体データを取得することが可能となっている。例えば、特許文献1には、ウェアラブルセンサから受信したデータを処理する患者予防衛生システムが記載されている。
ウェアラブルセンサを含む装着型のセンサの利用は、患者の生体データを継続的且つ日常的に取得することを可能とする。これにより、患者の健康状態を早期に把握することが可能となることから、疾患の早期治療又は予防への応用が期待されている。
その一方で、装着型のセンサには、医療機関などのベッドサイドで従来から利用される生体センサ(以降、ベッドサイドセンサと記す)とは異なる点が多々存在する。例えば、管理された特定環境下で使用されるベッドサイドセンサとは異なり、装着型のセンサは、患者の日常生活中の様々な環境下で使用される。また、安静にしている状態の患者から生体データを取得するベッドサイドセンサとは異なり、装着型のセンサは、様々な活動状態にある患者(例えば、運動中の患者、就寝中の患者など)から生体データを取得する。さらに、安定して電力を供給できる環境にある医療機関等の屋内で使用されるベッドサイドセンサとは異なり、装着型のセンサはバッテリを電力源としている。
これらの相違により、装着型のセンサの利用は、従来とは異なる特有の課題を生じさせ得る。このため、医療分野において、疾患の治療又は予防のために装着型のセンサを効果的に利用する新たな技術が求められている。
以上の実情を踏まえて、本発明の一側面に係る目的は、装着型のセンサから取得した生体データを正しく評価する技術を提供することである。
以上の実情を踏まえて、本発明の一側面に係る目的は、装着型のセンサから取得した生体データを正しく評価する技術を提供することである。
本発明の一態様に係るデータ処理装置は、回路を備え、前記回路は、対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成するように構成される。
本発明の一態様に係るコンピュータ読取可能媒体は、コンピュータに処理を実行させるプログラムを記録した非一過性のコンピュータ読取可能媒体であって、前記処理は、対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得することと、前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成することと、を含む。
本発明の一態様に係るデータ処理装置のデータ処理方法は、対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する。
本発明の一態様に係るプログラムは、対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する処理をコンピュータに実行させる。
本発明の別の態様に係るデータ処理装置は、対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得する手段と、前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する手段と、を備える。
上記の態様によれば、装着型のセンサから取得した生体データを正しく評価することができる。
図1は、生体データ処理システム1の構成を例示した図である。生体データ処理システム1は、対象患者Pに取り付けられた装着型のセンサにより対象患者Pの生体データを収集し、収集した生体データを疾患の治療又は予防に利用する医療システムである。
ここで、装着型のセンサとは、人体に装着して持ち歩くことができるセンサをいい、外部機器と無線通信によりデータをやり取りするセンサをいう。装着型センサは、人体表面に装着するウェアラブルセンサに加えて、人体内部に装着する埋め込み型のセンサを含む。また、生体データとは、患者の生理的な指標を表すデータであり、例えば、バイタルデータ(血圧、脈拍、呼吸、体温を含むバイタルサインのデータ)、脳波データ、血糖値データなどを含む。
生体データ処理システム1は、図1に示すように、1つ以上の装着型のセンサ(ウェアラブルセンサ10、埋め込みセンサ20、ウェアラブルセンサ30)と、アクセスポイント40と、NFC(Near field communication)リーダ50と、ネットワーク60と、データ処理装置100を備える。さらに、データ処理装置100は、ネットワーク60を介して、クラウド環境70にアクセス可能に接続されていてもよい。
複数の装着型のセンサは、いずれも、対象患者Pの生体データを収集する生体センサであり、バッテリから供給される電力によって生体データの収集と外部装置との通信とを行うように構成されている。各センサが取得する生体データの種類は、それぞれ1種類であっても複数種類であってもよい。
ウェアラブルセンサ10は、手首に装着されるリストハンド型のウェアラブルセンサであり、例えば、体温データ、脈拍データ、血圧データを収集する。埋め込みセンサ20は、体内に埋め込まれることで装着される埋め込みセンサであり、例えば、血糖値データを収集する。ウェアラブルセンサ30は、メガネ型又はヘッドセット型のウェアラブルセンサであり、例えば、脳波データを収集する。
ウェアラブルセンサ10、ウェアラブルセンサ30は、それぞれ異常を対象患者Pに視覚的に報知するための構成として、ディスプレイ10a、ディスプレイ30aを備えている。なお、ウェアラブルセンサ10、ウェアラブルセンサ30は、ディスプレイ10a、ディスプレイ30aの代わりに又は加えて、対象患者Pに異常を報知するための構成として、例えば、スピーカ、バイブレータ、LED(light emitting diode)などを備えてもよい。これらの構成を用いて、音、振動、発光などによって対象患者Pに異常が報知されても良い。
図2は、ウェアラブルセンサ10のハードウェア構成を例示した図である。複数の装着型のセンサを代表してウェアラブルセンサ10の構成について、図2を参照しながら説明する。なお、埋め込みセンサ20及びウェアラブルセンサ30も、ウェアラブルセンサ10と類似の構成を有している。
ウェアラブルセンサ10は、図2に示すように、複数のセンサ(生体センサ11、温度センサ12、加速度センサ13、電圧センサ14)と、マイクロプロセッサ15と、メモリ16と、無線通信回路17と、バッテリ18を備えている。なお、ウェアラブルセンサ10は、これらの構成以外に、例えば、連続使用時間などを測定するタイマーを備えても良い。
生体センサ11は、体温、脈拍、及び血圧を含むバイタルサインを測定するセンサである。温度センサ12、加速度センサ13、電圧センサ14は、いずれもウェアラブルセンサ10の状態を測定するセンサであり、それぞれ、ウェアラブルセンサ10の温度、ウェアラブルセンサ10に加わっている加速度、バッテリ18からの電源電圧、を測定する。ウェアラブルセンサ10では、これらのセンサを用いて、温度、加速度、電源電圧といったウェアラブルセンサ10の状態を示すデータ(以降、センサ状態データと記す)が収集される。また、ウェアラブルセンサ10がタイマーを備えている場合には、さらに使用時間を測定してもよい。この場合、使用時間を示すデータもセンサ状態データに含まれる。ここで、センサの状態とは、時間の経過と共に変化し得るものを指し、例えば、センサの物理的な構成など時間の経過によって変化しないものは含まない。
なお、センサ状態データに含まれる温度データ及び加速度データは、ウェアラブルセンサ10の使用環境を示すデータの一例である。センサ状態データには、例えば、湿度、気圧など、ウェアラブルセンサ10の使用環境を示す他のデータが含まれても良い。また、センサ状態データに含まれる電源電圧データは、バッテリ18の状態を示すデータの一例である。センサ状態データには、例えば、バッテリ残量など、バッテリ18の状態を示す他のデータが含まれても良い。また、センサ状態データに含まれる使用時間データは、ウェアラブルセンサ10の劣化状態を示すデータの一例である。センサ状態データには、ウェアラブルセンサ10の劣化状態を示す他のデータが含まれてもよい。
無線通信回路17は、例えば、複数の通信方式の対応する通信統合チップである。ここでは、WiFi(Wireless Fidelity)(登録商標)に対応する無線LAN回路17aと、NFCに対応するNFC回路17bを備える例が示されているが、この他、BLE(Bluetooth(登録商標) Low Energy)などに対応してもよい。
ウェアラブルセンサ10では、収集した生体データとセンサ状態データとを、無線通信回路17がデータ処理装置100へ向けて送信する。無線通信回路17から送信されたデータは、アクセスポイント40又はNFCリーダ50を介して、ネットワーク60を通じてデータ処理装置100へ転送される。なお、無線通信回路17は、対象患者Pが保持する図示しない携帯端末(例えば、携帯電話、スマートフォンなど)を通じて、アクセスポイント40又はNFCリーダ50へデータを送信しても良い。埋め込みセンサ20、ウェアラブルセンサ30でも同様に、収集した生体データとセンサ状態データは、それぞれが有する無線通信回路を介して、データ処理装置100へ向けて送信される。
図3は、データ処理装置100のハードウェア構成を例示した図である。データ処理装置100は、疾患の治療又は予防に利用するために対象患者Pから収集した生体データを処理する装置である。
データ処理装置100は、例えば、標準的なコンピュータであり、図3に示すように、プロセッサ101、メモリ102、ストレージ103、ネットワーク(NW)インターフェース104、及び、可搬記録媒体106が挿入される可搬記録媒体駆動装置105を備える。そして、これらの構成要素はバス107によって相互に接続されている。
プロセッサ101は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)などの電気回路(Circuitry)であり、メモリ102に記憶されているプログラムを実行してプログラムされた処理を行う。メモリ102は、例えば、RAM(Random Access Memory)を含み、プログラムの実行の際に、ストレージ103または可搬記録媒体106に格納されているプログラムまたはデータを一時的に記憶する。
ストレージ103は、例えば、ハードディスク、フラッシュメモリであり、主に各種データやプログラムの記録に用いられる記憶部である。NWインターフェース104は、例えば、NIC(Network interface controller)であり、データ処理装置100以外の装置(例えば、ウェアラブルセンサ10など)と信号をやり取りするハードウェアである。可搬記録媒体駆動装置105は、光ディスクやコンパクトフラッシュ(登録商標)等の可搬記録媒体106を収容するものである。可搬記録媒体106は、ストレージ103を補助する役割を有する。ストレージ103及び可搬記録媒体106は、それぞれプログラムを記録した非一過性のコンピュータ読取可能媒体の一例である。
なお、図3は、データ処理装置100のハードウェア構成の一例であり、データ処理装置100はこの構成に限定されるものではない。データ処理装置100は、汎用装置ではなく専用装置であってもよい。データ処理装置100は、プログラムを実行するプロセッサの代わりに又は加えて、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの電気回路を備えてもよく、それらの電気回路により、生体データを処理してもよい。
クラウド環境70では、様々なサービスがSaaS、PaaS、IaaSなどの形態で提供されている。例えば、装着型のセンサで収集される生体データ等は、データ処理装置100に加えて70にも送信されてよく、クラウド環境70は、データ処理装置100に対して生体データ等を蓄積するストレージサービスを提供しても良い。また、クラウド環境70は、データ処理装置100に対して蓄積した生体データ等を分析して疾患の予防又は早期治療に役立てる分析サービスを提供しても良い。
[第1の実施形態]
図4は、本実施形態に係るデータ処理のフローチャートの一例である。図5は、信頼性評価処理のフローチャートの一例である。図6は、ストレージ103に格納された動作許容条件に関する情報S1の一例である。図7は、補正処理のフローチャートの一例である。図8は、ストレージ103に格納されたセンサの状態と測定誤差との対応関係に関する情報S2の一例である。以下、図4から図8を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
図4は、本実施形態に係るデータ処理のフローチャートの一例である。図5は、信頼性評価処理のフローチャートの一例である。図6は、ストレージ103に格納された動作許容条件に関する情報S1の一例である。図7は、補正処理のフローチャートの一例である。図8は、ストレージ103に格納されたセンサの状態と測定誤差との対応関係に関する情報S2の一例である。以下、図4から図8を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
データ処理装置100では、プロセッサ101がメモリ102に記憶されている1つ以上のプログラムを実行することで、図4に示すデータ処理が行われる。なお、ここでは、対象患者Pに装着されている装着型のウェアラブルセンサ10から定期的に生体データとセンサ状態データがデータ処理装置100へ送信されている場合を例に説明する。
まず、データ処理装置100は、ウェアラブルセンサ10から送信されたデータを取得する(ステップS10)。ここでは、プロセッサ101は、NWインターフェース104を介して、ウェアラブルセンサ10で収集された対象患者Pの生体データである体温データを取得する。さらに、NWインターフェース104を介して、ウェアラブルセンサ10で収集されたウェアラブルセンサ10のセンサ状態データを取得する。センサ状態データには、温度、加速度、電源電圧のデータが含まれている。なお、ステップS10では、対象患者Pに装着された複数の装着型のセンサのうちのどのセンサからのデータであるかを識別するために、生体データとセンサ状態データに加えて、センサを識別するデータ(以降、センサ識別データと記す。)が取得されてもよい。
次に、データ処理装置100は、ウェアラブルセンサ10から取得した生体データの信頼性を評価する信頼性評価処理を行う(ステップS20)。ここでは、ウェアラブルセンサ10の動作許容条件とステップS10で取得したウェアラブルセンサ10のセンサ状態データとに基づいて、生体データの信頼性を評価する。
なお、生体データの信頼性評価とは、その生体データの信頼性の高低を、より具体的には、生体データが信頼できるデータか否かを、決定することをいう。ステップS20の信頼性評価処理では、対象患者Pの生理的な指標(例えば、体温)を正しく測定していると推定される場合には、生体データが信頼できるデータであると決定され、正しく測定していないと推定される場合には、生体データが信頼できないデータである決定される。
信頼性評価処理が開始されると、プロセッサ101は、図5に示すように、まず、ウェアラブルセンサ10の動作許容条件を格納した記憶部であるストレージ103を参照する(ステップS21)。なお、センサの動作許容条件とは、センサの正常な動作が保証される条件のことをいい、推奨動作条件、動作条件などともいう。ストレージ103には、例えば、図6に示すようなウェアラブルセンサ10の動作許容条件に関する情報S1が格納されている。情報S1は、電源電圧が5V±10%の範囲内であれば、ウェアラブルセンサ10の動作が許容される(即ち、ウェアラブルセンサ10が正常に動作する)ことを示している。また、温度、連続使用時間については、それぞれ、5℃から55℃の範囲内、96時間以内であれば、ウェアラブルセンサ10が正常に動作することを示している。なお、図6では、ウェアラブルセンサ10の動作許容条件を例示したが、情報S1には、センサ(ウェアラブルセンサ10、埋め込みセンサ20、ウェアラブルセンサ30)毎の動作許容条件に関する情報が含まれても良い。この場合、ステップS21では、センサ識別データで識別されたセンサの動作許容条件が参照される。
その後、ストレージ103を参照したプロセッサ101は、ステップS10で取得したセンサ状態データが動作許容条件を満たしているか否かを判定する(ステップS22)。具体的には、センサ状態データに含まれる電源電圧のデータが5V±10%の範囲内の電圧を表しているかどうかを判定し、さらに、センサ状態データに含まれる温度のデータが5℃から55℃の範囲内の温度を表しているかどうかを判定する。これらの両方のデータが上述した範囲内の値を表している場合に、動作許容条件を満たすと決定する。
動作許容条件を満たしていると決定されると、プロセッサ101は、ウェアラブルセンサ10は正常に動作中であり生体データは信頼できるデータであると決定し(ステップS23)、信頼性評価処理を終了する。一方、動作許容条件を満たしていないと決定されると、プロセッサ101は、ウェアラブルセンサ10の測定結果には誤差が含まれている可能性が高いと推定し、生体データは信頼できないデータであると決定し(ステップS24)、信頼性評価処理を終了する。
データ処理装置100は、信頼性評価処理において、生体データが信頼できないと決定されると(ステップS30NO)、ウェアラブルセンサ10の異常を報知する(ステップS40)。ここでは、プロセッサ101が、センサ状態データに応じて対象患者Pにウェアラブルセンサ10の異常を報知するための報知コマンドをウェアラブルセンサ10へ向けて発行する。
報知コマンドは、生体データを信頼できないとの決定が一定期間継続したときに発行されてもよい。また、報知コマンドは、センサ状態データに応じて生成されても良く、ディスプレイ10aに表示するメッセージを含んでもよい。メッセージは、例えば、“<警告>ウェアラブルセンサ10の温度が動作許容温度を超えて高くなっています。”などである。なお、報知コマンドを受信したウェアラブルセンサ10は、コマンドに応じた処理(例えば、ディスプレイ10aにメッセージ等を表示する処理)を実行することで、ウェアラブルセンサ10の異常を対象患者Pに報知する。
その後、データ処理装置100は、生体データに対して補正処理を行う(ステップS50)。ここでは、プロセッサ101は、生体データの信頼性が改善されるように生体データを補正する。
補正処理が開始されると、プロセッサ101は、図7に示すように、まず、ウェアラブルセンサ10の状態とウェアラブルセンサ10の測定誤差との対応関係を格納した記憶部であるストレージ103を参照する(ステップS51)。ストレージ103には、例えば、図8に示すようなウェアラブルセンサ10の状態とウェアラブルセンサ10の測定誤差との対応関係に関する情報S2が格納されている。情報S2は、バッテリ18の電源電圧が許容電圧(5V±10%の範囲)に収まらないときには、体温のデータにΔV*10%の測定誤差が生じることを示している。また、ウェアラブルセンサ10の温度、連続使用時間が許容範囲に収まらないときには、体温のデータにそれぞれ、ΔTc×20%、Δt×3%の測定誤差が生じることを示している。ここで、ΔV、ΔTc、Δtは、それぞれ、ウェアラブルセンサ10の電源電圧と許容される電源電圧の差、ウェアラブルセンサ10の温度と動作許容温度の差、ウェアラブルセンサ10の連続使用時間と許容される連続使用時間との差である。
図8では、説明を簡略化するため、測定誤差がセンサの状態を示すパラメータに対して線形に変化する例が示されている。センサの状態と測定誤差の対応関係は、予め実験等を行ってその測定結果に基づいて作成されてもよい。又は、センサの設計情報等に基づいてコンピュータシミュレーション等を用いて作成されてもよい。また、センサの状態と測定誤差の対応関係は、図8に示すように関数で表されても良く、また、テーブルに格納されたデータの集合として表されても良い。
その後、ストレージ103を参照したプロセッサ101は、ステップS10で取得したセンサ状態データに応じた補正データを生成する(ステップS52)。補正データは、発生が予想される測定誤差を表すデータである。具体的には、ステップS10で取得した電源電圧のデータ及び温度のデータとストレージ103に格納されている情報S2とに基づいて、ウェアラブルセンサ10で生じる体温についての測定誤差を算出し、算出した測定誤差を表す補正データを生成する。
さらに、プロセッサ101は、生成した補正データを用いてステップS10で取得した生体データを補正し、補正された生体データである補正生体データを生成する(ステップS53)。具体的には、測定誤差を表す補正データによりステップS10で取得した体温データに含まれる測定誤差を補償することで体温データを補正し、補正後の体温データを生成する。
補正生体データが生成されて補正処理が終了すると、データ処理装置100は、補正生体データをストレージ103に格納する(ステップS60)。ここでは、プロセッサ101がストレージ103にステップS53で生成された補正生体データを評価済み生体データとして格納する。
一方、データ処理装置100は、信頼性評価処理において、生体データが信頼できると決定されると(ステップS30YES)、生体データをストレージ103に格納する(ステップS70)。ここでは、プロセッサ101がステップS10で取得された生体データを評価済み生体データとしてストレージ103に格納する。
なお、ステップS60及びステップS70でストレージ103に格納された評価済み生体データは、対象患者Pの疾患の治療又は予防に利用される。例えば、データ処理装置100は、蓄積された対象患者Pの生体データを分析することで、患者の通院計画、治療方針、又は、それらを担当医が決定するための補助的な情報などを作成しても良い。
評価済み生体データを格納すると、データ処理装置100は、評価済み生体データを解析し(ステップS80)、対象患者Pに異常が発生しているか否かを判定する(ステップS90)。ここでは、例えば、プロセッサ101は、ストレージ103に格納した最新の評価済みの生体データに基づいて解析及び判定処理を行ってもよく、また、ストレージ103に格納されている評価済みの生体データの履歴に基づいて解析及び判定処理を行ってもよい。なお、プロセッサ101が評価済みの生体データに基づいて対象患者Pの異常を検知することができる限り、異常判定の具体的な方法は特定に限定されない。異常判定には、既知の任意の方法を採用し得る。例えば、評価済みの生体データが示す対象患者Pの状態(例えば、体温)が正常値範囲を示す所定範囲内に収まっているかどうかによって判定してもよい。
対象患者Pの異常が検知されない場合には、図4に示すデータ処理が終了する。評価済み生体データに基づいて対象患者Pの異常が検知された場合には、データ処理装置100は、対象患者Pの異常を報知し(ステップS100)、その後、図4に示すデータ処理が終了する。ステップS100では、プロセッサ101が、対象患者Pの異常を対象患者Pに報知するための報知コマンドを、データ処理装置100へ向けて発行する。
報知コマンドは、評価済み生体データに基づいて生成されてもよく、例えば、ディスプレイ10aに表示するメッセージを含んでもよい。メッセージは、例えば、“<警告>体温が高い状態です”などである。なお、報知コマンドを受信したセンサは、報知コマンドに応じた処理を実行することで、対象患者Pの異常を報知する。
データ処理装置100が図4に示すデータ処理を実行することで、センサの状態を把握することが可能なため、日常生活中の様々な環境下で使用される装着型のセンサから出力された生体データを正しく評価することができる。特に予め決められている動作許容条件とセンサの状態を比較することで、複雑な演算等を行うことなく生体データの信頼性を容易に評価することができる。
また、信頼性の低い生体データに対して信頼性を改善する補正処理を行うことで、診断等に利用できる生体データが増加する。これにより、より多くのデータを蓄積することが可能となるため、診断精度が向上し、より効果的な疾患の治療又は予防が可能となる。
また、信頼性の高い生体データ(補正生体データを含む)に基づいて患者の異常を検知することで、患者に対して正確な情報提供が可能となる。これにより、提供される情報に対する患者の信頼が高まることが期待される。さらに、信頼性の低い生体データを補正することで生成された補正生体データを患者の異常検知に利用することで、患者の異常を見逃してしまうリスクを低減することができる。
また、センサの異常が患者に報知されることで、センサの交換やバッテリの充電等を患者に促すことができる。このため、患者がセンサの異常に気づかず信頼性の低い生体データが取得され続ける事態を回避することができる。
本実施形態では、センサの異常を検知したときにセンサの異常を報知する例を示したが、センサの異常を報知する代わりに又はそれに加えて、データ処理装置100は、センサの異常検知時に、以下のような処理を行ってもよい。
例えば、センサにそのセンサの機能を回復させるリフレッシュ機能がある場合には、データ処理装置100は、リフレッシュ動作を実行させるためのコマンド(以降、リフレッシュコマンドと記す。)を、センサへ向けて発行しても良い。これにより、リフレッシュコマンドを受信したセンサがコマンドに応じた処理を実行しセンサの機能が回復することで、センサをより長く使用することが可能となる。
なお、リフレッシュコマンドの発行は、センサの異常が検知された場合に限らない。ストレージ103は、予めセンサのリフレッシュ動作を推奨するリフレッシュ条件を格納していてもよく、プロセッサ101は、センサ状態データがストレージ103に格納されているリフレッシュ条件を満たしているときに、センサにリフレッシュ動作を実行させるリフレッシュコマンドを発行してもよい。
本実施形態では、対象患者Pの異常を検知したときに対象患者Pの異常を報知する例を示したが、対象患者Pの異常を報知する代わりに又はそれに加えて、データ処理装置100は、対象患者Pの異常検知時に、以下のような処理を行ってもよい。
例えば、対象患者Pに装着されている複数のセンサの一部のみが使用されている場合には、データ処理装置100は、他のセンサを起動する制御コマンドを発行してもよい。ウェアラブルセンサ10のみが起動している場合には、埋め込みセンサ20及びウェアラブルセンサ30を起動する制御コマンドをそれぞれのセンサに向けて発行しても良い。これにより、異常な状態にある対象患者Pについてより多くの情報を得ることができるため、正常時におけるバッテリの消耗を抑制しながら、対象患者Pについて正確な診断が可能となる。
また、例えば、データ処理装置100は、データ処理装置100とセンサの間の通信設定を、生体データを送信するための通信間隔(送信間隔)がより短い設定に変更する制御コマンドをセンサへ向けて発行してもよい。これにより、異常な状態にある対象患者Pについてより早くより多くの情報を得ることができる。
また、例えば、ストレージ103には、予め正常時における推奨通信間隔と異常時における推奨通信間隔が格納されていても良い。データ処理装置100は、対象患者Pの異常を検知したときには、センサに設定されている通信間隔が異常時における推奨通信間隔に変更されるように、通信間隔を変更する制御コマンドをセンサへ向けて発行しても良い。また、対象患者Pの異常を検知しなったときには、センサに設定されている通信間隔が正常時における推奨通信間隔に変更されるように、通信間隔を変更する制御コマンドをセンサへ向けて発行しても良い。なお、異常時における推奨通信間隔は、異常時における推奨通信間隔よりも短いことが望ましい。
本実施形態では、評価済み生体データに基づいて対象患者Pの異常を検知する例を示したが、対象患者Pの異常は、評価済み生体データとセンサ状態データに基づいて検知されてもよい。例えば、センサ状態データに含まれる加速度のデータから、患者の活動状態(安静状態、運動状態など)を決定し、患者の活動状態を考慮して患者の異常を検知しても良い。これにより、患者の活動状態に応じて異なる基準で患者が異常な状態か否かを判定することができるため、より適切な異常検知が可能となる。
本実施形態では、標準的なコンピュータであるデータ処理装置100が図4に示すデータ処理を行う例を示したが、図9に示すような専用装置であるデータ処理装置200が図4に示すデータ処理を行ってもよい。データ処理装置200は、図9に示すように、データ取得回路201と、信頼性評価回路202と、補正回路203と、対象者異常検知回路204と、コマンド発行回路205と、記憶部であるストレージ206を備えている。データ処理装置200は、プロセッサ101がプログラムを実行することで行う各種処理を、専用回路(データ取得回路201、信頼性評価回路202、補正回路203、対象者異常検知回路204、及びコマンド発行回路205)が行う点が異なるが、その他の点はデータ処理装置100と同様である。データ処理装置200によっても、データ処理装置100と同様の効果を得ることができる。
[第2の実施形態]
図10は、本実施形態に係るデータ処理のフローチャートの一例である。図11は、基準化処理のフローチャートの一例である。以下、図10及び図11を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
図10は、本実施形態に係るデータ処理のフローチャートの一例である。図11は、基準化処理のフローチャートの一例である。以下、図10及び図11を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
データ処理装置100では、プロセッサ101がメモリ102に記憶されている1つ以上のプログラムを実行することで、図10に示すデータ処理が行われる。なお、ここでは、対象患者Pに装着されている装着型のウェアラブルセンサ10及びウェアラブルセンサ30から定期的に生体データとセンサ状態データがデータ処理装置100へ送信されている場合を例に説明する。
まず、データ処理装置100は、ウェアラブルセンサ10から送信されたデータを取得する(ステップS110)。ここでは、プロセッサ101は、ウェアラブルセンサ10で収集された脈拍データとウェアラブルセンサ30で収集された脳波データを取得する。また、ウェアラブルセンサ10のセンサ状態データとウェアラブルセンサ30のセンサ状態データを取得する。さらに、生体データとセンサ状態データに加えて、センサ識別データも取得する。
次に、データ処理装置100は、生体データである脈拍データを基準化する基準化処理を行う(ステップS120)。ここでは、ウェアラブルセンサ30から取得した生体データである脳波データに基づいて、ウェアラブルセンサ10から取得した生体データである脈拍データを基準化し、基準化された生体データ(以降、基準化生体データと記す。)である基準化脈拍データを生成する。
なお、脈拍データとは異なる種類の生体データである脳波データは、対象患者Pの活動状態に応じて変化するデータ(以降、患者状態データと記す。)であり、対象患者Pの活動状態を間接的に表している。生体データの基準化とは、患者の活動状態によらずに生体データが表す生理的指標を比較可能とするために、患者から取得された生体データを一定のルールの下で変換することをいう。
基準化処理が開始されると、プロセッサ101は、図11に示すように、まず、患者の活動状態と患者状態データが表す生理的な指標との対応関係を格納した記憶部であるストレージ103を参照する(ステップS121)。なお、ストレージ103に格納されている対応関係は、対象患者Pに特有の対応関係であってもよく、また、一般的な患者における対応関係であってもよい。
次に、ストレージ103を参照したプロセッサ101は、ステップS110で取得した患者状態データに基づいて対象患者Pの活動状態を決定する(ステップS122)。ここでは、プロセッサ101は、患者状態データである脳波データとストレージ103に格納された対応関係に基づいて、対象患者Pの活動状態を決定する。なお、最新の脳波データだけではなく以前に取得した脳波データを含む脳波データの履歴が、対象患者Pの活動状態の決定のために利用されても良い。
その後、プロセッサ101は、ステップS122で決定された活動状態に応じて生体データを基準化して、基準化生体データを生成し(ステップS123)、基準化処理を終了する。ステップS123では、プロセッサ101は、活動状態毎の変換ルールが格納されたストレージ103を参照し、ステップS122で決定された活動状態に応じた変換ルールに従って生体データである脈拍データを変換する。なお、変換ルールは活動状態毎に異なることが望ましいが、少なくとも1つの活動状態での変換ルールが他の活動状態での変換ルールとは異なればよい。
基準化生体データが生成されて基準化処理が終了すると、データ処理装置100は、基準化生体データをストレージ103に格納する(ステップS130)。ここでは、基準化生体データとともに、ステップS110で取得した生体データ及びセンサ状態データをストレージ103に格納してもよい。
基準化生体データを格納すると、データ処理装置100は、基準化生体データを解析し(ステップS140)、対象患者Pに異常が発生しているか否かを判定する(ステップS150)。なお、ここでは、例えば、プロセッサ101は、ストレージ103に格納した最新の基準化生体データに基づいて解析及び判定処理を行ってもよく、また、ストレージ103に格納されている基準化生体データの履歴に基づいて解析及び判定処理を行ってもよい。プロセッサ101が基準化生体データに基づいて対象患者Pの異常を検知することができる限り、異常判定の具体的な方法は特定に限定されない。異常判定には、既知の任意の方法を採用し得る。例えば、基準化生体データが示す対象患者Pの状態(例えば、脈拍)が正常値範囲を示す所定範囲内に収まっているかどうかによって判定してもよい。
対象患者Pの異常が検知されない場合には、図10に示すデータ処理が終了する。基準化生体データに基づいて対象患者Pの異常が検知された場合には、データ処理装置100は、対象患者Pの異常を報知し(ステップS160)、その後、図10に示すデータ処理が終了する。ステップS160の処理は、図4のステップS100の処理と同様である。
データ処理装置100が図10に示すデータ処理を実行することで、患者の生体データを患者の活動状態によらずに比較可能なデータに変換することができる。このため、様々な活動状態にある患者から取得された生体データを正しく評価することが容易になる。例えば、安静時と運動時では脈拍には大きな違いが生じるが、脈拍データを基準化することで安静時と運動時のデータを区別することなく、容易に異常判定を行うことができる。
なお、本実施形態では、患者状態データが基準化の対象である生体データ(脈拍データ)とは異なる生体データ(脳波データ)である例を示したが、患者状態データは、患者の活動状態に応じて変化すればよく、センサ状態データであってもよい。例えば、図10に示すステップS110でセンサの加速度のデータを患者状態データとして取得して、ステップS120でセンサの加速度のデータに基づいて患者の活動状態を決定し、脈拍データを基準化してもよい。その場合、ストレージ103には、患者の活動状態と患者状態データが表す物理的な指標である加速度との対応関係が格納されている。センサ状態データに基づいて生体データを基準化した場合であっても、生体データは患者の活動状態によらずに比較可能なデータに変換されるため、様々な活動状態にある患者から取得された生体データを正しく評価することが容易になる。
また、本実施形態では、対象患者Pの異常を検知したときに対象患者Pの異常を報知する例を示したが、対象患者Pの異常を報知する代わりに又はそれに加えて、データ処理装置100は、第1の実施形態と同様に、対象患者Pの異常検知時に、他のセンサを起動する制御コマンドや、生体データを送信するための通信間隔がより短い設定にセンサの設定を変更する制御コマンドを発行してもよい。
また、本実施形態では、基準化処理の一例として図11に示す基準化処理を例示したが、データ処理装置100は、図11に示す基準化処理の代わりに、図12に示す基準化処理を行ってもよい。
図12に示す基準化処理が開始されると、プロセッサ101は、まず、患者の活動状態と患者状態データが表す指標との対応関係を格納した記憶部であるストレージ103を参照し(ステップS171)、患者状態データに基づいて患者の活動状態を決定する(ステップS172)。ステップS171及びステップS172の処理は、図11に示すステップS121及びステップS122の処理と同様である。
その後、プロセッサ101は、基準化対象の生体データ(ここでは、脈拍データ)の信頼性を評価する信頼性評価処理を行う(ステップS173)。ここでは、プロセッサ101は、ステップS110で取得したセンサ状態データとセンサの動作許容条件とに基づいて生体データの信頼性を評価する。そして、プロセッサ101は、信頼性評価処理において、生体データが信頼できないと決定されると(ステップS174NO)、ウェアラブルセンサ10の異常を報知し(ステップS175)、生体データに対して補正処理を行う(ステップS176)。そして、補正処理で生成された補正生体データを評価済みの生体データとしてストレージ103に格納する(ステップS177)。一方、プロセッサ101は、信頼性評価処理において、生体データが信頼できると決定されると(ステップS174YES)、その生体データを評価済みの生体データとしてストレージ103に格納する(ステップS178)。なお、ステップS173からステップS178の処理は、図4のステップS20からステップS70までの処理と同様である。
評価済みの生体データがストレージ103に格納されると、プロセッサ101は、ステップS172で決定された活動状態に応じて評価済みの生体データを基準化して、基準化生体データを生成し(ステップS179)、基準化処理を終了する。なお、ステップS179の処理は、評価済みの生体データを基準化する点を除き、図11のステップS123と同様である。
データ処理装置100がデータ処理において、図11に示す基準化処理の代わりに図12に示す基準化処理を実行した場合であっても、患者の生体データが患者の活動状態によらずに比較可能なデータに変換される。このため、様々な活動状態にある患者から取得された生体データを正しく評価することが容易になる。
さらに、データ処理装置100がデータ処理において、図11に示す基準化処理の代わりに図12に示す基準化処理を実行することで、第1の実施形態に係るデータ処理と同様の効果を得ることができる。具体的には、補正処理が行われるため、診断等に利用できる生体データが増加する。これにより、より多くのデータを蓄積することが可能となるため、診断精度が向上し、より効果的な疾患の治療又は予防が可能となる。また、信頼性の高い生体データ(補正生体データを含む)に基づいて患者の異常が検知されるため、患者に対して正確な情報提供が可能となる。また、補正生体データを患者の異常検知に利用することで、患者の異常を見逃してしまうリスクを低減することができる。また、センサの異常が患者に報知されるため、センサの交換やバッテリの充電等を患者に促すことができる。このため、患者がセンサの異常に気づかず信頼性の低い生体データが取得され続ける事態を回避することができる。
なお、図12では、基準化対象の生体データの信頼性を評価し、信頼性が低い場合には補正する例を示したが、基準化対象の生体データに加えて、患者状態データである生体データについても、信頼性を評価し、信頼性が低い場合には補正してもよい。これにより、患者状態データの信頼性も高まるため、より高い精度で生体データを基準化することが可能となる。
また、図12では、センサの異常を検知したときにセンサの異常を報知する例を示したが、センサの異常を報知する代わりに又はそれに加えて、データ処理装置100は、第1の実施形態と同様に、センサの異常検知時に、リフレッシュコマンドを発行しても良い。
本実施形態では、標準的なコンピュータであるデータ処理装置100が図10に示すデータ処理を行う例を示したが、図13に示すような専用装置であるデータ処理装置300が図10に示すデータ処理を行ってもよい。データ処理装置300は、図13に示すように、データ取得回路301と、基準化回路302と、対象者異常検知回路303と、コマンド発行回路304と、記憶部であるストレージ305を備えている。データ処理装置300は、プロセッサ101がプログラムを実行することで行う各種処理を、専用回路(データ取得回路301、基準化回路302、対象者異常検知回路303、及びコマンド発行回路304)が行う点が異なるが、その他の点はデータ処理装置100と同様である。データ処理装置300によっても、データ処理装置100と同様の効果を得ることができる。
[第3の実施形態]
図14は、本実施形態に係るデータ処理のフローチャートの一例である。図15は、活動状態決定処理のフローチャートの一例である。以下、図14及び図15を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
図14は、本実施形態に係るデータ処理のフローチャートの一例である。図15は、活動状態決定処理のフローチャートの一例である。以下、図14及び図15を参照しながら、生体センサから生体データとセンサ状態データとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
データ処理装置100では、プロセッサ101がメモリ102に記憶されている1つ以上のプログラムを実行することで、図14に示すデータ処理が行われる。なお、ここでは、第2の実施形態と同様に、対象患者Pに装着されている装着型のウェアラブルセンサ10及びウェアラブルセンサ30から定期的に生体データとセンサ状態データがデータ処理装置100へ送信されている場合を例に説明する。
まず、データ処理装置100は、ウェアラブルセンサ10から送信されたデータを取得する(ステップS210)。ここでは、プロセッサ101は、ウェアラブルセンサ10で収集された脈拍データとウェアラブルセンサ30で収集された脳波データを取得する。また、ウェアラブルセンサ10のセンサ状態データとウェアラブルセンサ30のセンサ状態データを取得する。さらに、生体データとセンサ状態データに加えて、センサ識別データも取得する。
次に、データ処理装置100は、対象患者Pの活動状態を決定する活動状態決定処理を行う(ステップS220)。ここでは、ウェアラブルセンサ30から取得した生体データである脳波データに基づいて、ウェアラブルセンサ30を装着している対象患者Pの活動状態を決定する。なお、脈拍データとは異なる種類の生体データである脳波データは、対象患者Pの活動状態に応じて変化する患者状態データであり、対象患者Pの活動状態を間接的に表している。
活動状態決定処理が開始されると、プロセッサ101は、図15に示すように、まず、患者の活動状態と患者状態データが表す生理的な指標との対応関係を格納した記憶部であるストレージ103を参照する(ステップS221)。その後、プロセッサ101は、ステップS210で取得した患者状態データに基づいて対象患者Pの活動状態を決定し(ステップS222)、活動状態決定処理を終了する。なお、ステップS221及びステップS222の処理は、図11のステップS121及びステップS122の処理と同様である。
活動状態決定処理が終了すると、データ処理装置100は、生体データをストレージ103に格納する(ステップS230)。ここでは、ステップS110で取得した生体データ(脈拍データと脳波データ)とともに、ステップS110で取得したセンサ状態データをストレージ103に格納してもよい。
生体データを格納すると、データ処理装置100は、生体データを解析し(ステップS240)、対象患者Pに異常が発生しているか否かを判定する(ステップS250)。ここでは、プロセッサ101は、ステップS220で決定した活動状態とステップS210で取得した生体データである脈拍データに基づいて、対象患者Pの異常を検知する。なお、異常検知に用いられる生体データ(脈拍データ)は、ストレージ103に格納した最新の生体データであってもよく、また、ストレージ103に格納されている生体データの履歴であってもよい。
より具体的には、プロセッサ101は、例えば、以下の処理を行って異常を検知してもよい。まず、プロセッサ101は、対象患者Pの活動状態と生体データが表す生理的指標(ここでは、脈拍)の正常値範囲との対応関係を格納した記憶部であるストレージ103を参照する。そして、プロセッサ101は、ステップS220で決定した活動状態とステップS210で取得した脈拍データとストレージ103に格納されている対応関係に基づいて、対象患者Pの異常を検知する。更に詳細には、プロセッサ101は、ステップS220で決定した活動状態に対応する脈拍の正常値範囲内を、ストレージ103に格納された対応関係に基づいて特定する。その後、プロセッサ101は、ステップS210で取得した脈拍データが示す脈拍が特定された正常値範囲内になければ、異常有りと判断する。
対象患者Pの異常が検知されない場合には、図14に示すデータ処理が終了する。対象患者Pの異常が検知された場合には、データ処理装置100は、対象患者Pの異常を報知し(ステップS260)、その後、図14に示すデータ処理が終了する。ステップS260の処理は、図4のステップS100の処理と同様である。
データ処理装置100が図14に示すデータ処理を実行することで、患者の活動状態に応じて異なる基準で患者が異常な状態か否かを判定することができるため、生体データを正しく評価してより適切な異常検知が可能となる。例えば、安静時と運動時では脈拍には大きな違いが生じるが、異なる基準で判定することで、患者の異常を正しく検知することができる。
なお、本実施形態では、患者状態データが正常値範囲と比較される生体データ(脈拍データ)とは異なる生体データ(脳波データ)である例を示したが、第2の実施形態と同様に、患者状態データは、患者の活動状態に応じて変化すればよく、例えば、加速度のデータなどセンサ状態データであってもよい。
また、本実施形態では、対象患者Pの異常を検知したときに対象患者Pの異常を報知する例を示したが、対象患者Pの異常を報知する代わりに又はそれに加えて、データ処理装置100は、第1の実施形態と同様に、対象患者Pの異常検知時に、他のセンサを起動する制御コマンドや、生体データを送信するための通信間隔がより短い設定にセンサの設定を変更する制御コマンドを発行してもよい。
また、本実施形態では、活動状態決定処理の一例として図15に示す活動状態決定処理を例示したが、データ処理装置100は、図15に示す活動状態決定処理の代わりに、図16に示す活動状態決定処理を行ってもよい。
図16に示す活動状態決定処理が開始されると、プロセッサ101は、まず、患者の活動状態と患者状態データが表す指標との対応関係を格納した記憶部であるストレージ103を参照し(ステップS271)、患者状態データに基づいて患者の活動状態を決定する(ステップS272)。ステップS271及びステップS272の処理は、図15に示すステップS221及びステップS222の処理と同様である。
その後、プロセッサ101は、生体データ(ここでは、脈拍データ)の信頼性を評価する信頼性評価処理を行う(ステップS273)。ここでは、プロセッサ101は、ステップS210で取得したセンサ状態データとセンサの動作許容条件とに基づいて生体データの信頼性を評価する。そして、プロセッサ101は、信頼性評価処理において、生体データが信頼できると決定されると(ステップS274YES)、活動状態決定処理を終了する。一方、プロセッサ101は、信頼性評価処理において、生体データが信頼できないと決定されると(ステップS274NO)、ウェアラブルセンサ10の異常を報知し(ステップS275)、生体データに対して補正処理を行い(ステップS276)、活動状態決定処理を終了する。なお、ステップS273からステップS276の処理は、図4のステップS20からステップS50までの処理と同様である。
データ処理装置100がデータ処理において、図15に示す活動状態決定処理の代わりに図16に示す活動状態決定処理を実行した場合であっても、患者の活動状態を決定することができる。このため、様々な活動状態にある患者から取得された生体データを正しく評価し、患者の異常を正しく検知することができる。
さらに、データ処理装置100がデータ処理において、図15に示す基準化処理の代わりに図16に示す基準化処理を実行することで、第1の実施形態に係るデータ処理と同様の効果を得ることができる。
なお、図16では、正常値範囲と比較される生体データ(ここでは、脈拍データ)の信頼性を評価し、信頼性が低い場合には補正する例を示したが、患者状態データである生体データ(ここでは、脳波データ)についても、信頼性を評価し、信頼性が低い場合には補正してもよい。これにより、患者状態データの信頼性も高まるため、患者の活動状態をより正しく決定することができる。
また、図16では、センサの異常を検知したときにセンサの異常を報知する例を示したが、センサの異常を報知する代わりに又はそれに加えて、データ処理装置100は、第1の実施形態と同様に、センサの異常検知時に、リフレッシュコマンドを発行しても良い。
本実施形態では、標準的なコンピュータであるデータ処理装置100が図14に示すデータ処理を行う例を示したが、図17に示すような専用装置であるデータ処理装置400が図14に示すデータ処理を行ってもよい。データ処理装置400は、図17に示すように、データ取得回路401と、活動状態決定回路402と、対象者異常検知回路403と、コマンド発行回路404と、記憶部であるストレージ405を備えている。データ処理装置400は、プロセッサ101がプログラムを実行することで行う各種処理を、専用回路(データ取得回路401、活動状態決定回路402、対象者異常検知回路403、及びコマンド発行回路404)が行う点が異なるが、その他の点はデータ処理装置100と同様である。データ処理装置400によっても、データ処理装置100と同様の効果を得ることができる。
[第4の実施形態]
図18は、本実施形態に係るデータ処理のフローチャートの一例である。図19は、第1の通信制御処理のフローチャートの一例である。図20は、ストレージ103に格納された推奨通信設定に関する情報S3の一例である。図21は、第2の通信制御処理のフローチャートの一例である。以下、図18から図21を参照しながら、生体センサから生体データとバッテリデータとを取得し、中継器からバッテリデータを取得したデータ処理装置100が行うデータ処理の一例について説明する。なお、バッテリデータとは、バッテリの状態を示すデータであり、例えば、電源電圧データ、バッテリ残量データなどを含む。
図18は、本実施形態に係るデータ処理のフローチャートの一例である。図19は、第1の通信制御処理のフローチャートの一例である。図20は、ストレージ103に格納された推奨通信設定に関する情報S3の一例である。図21は、第2の通信制御処理のフローチャートの一例である。以下、図18から図21を参照しながら、生体センサから生体データとバッテリデータとを取得し、中継器からバッテリデータを取得したデータ処理装置100が行うデータ処理の一例について説明する。なお、バッテリデータとは、バッテリの状態を示すデータであり、例えば、電源電圧データ、バッテリ残量データなどを含む。
データ処理装置100では、プロセッサ101がメモリ102に記憶されている1つ以上のプログラムを実行することで、図18に示すデータ処理が行われる。なお、ここでは、対象患者Pに装着されている装着型のウェアラブルセンサ10から定期的に生体データとバッテリデータが、また、対象患者Pが有する図示しない中継器から定期的にバッテリデータが、データ処理装置100へ送信されている場合を例に説明する。
まず、データ処理装置100は、ウェアラブルセンサ10及び中継器から送信されたデータを取得する(ステップS310)。ここでは、プロセッサ101は、ウェアラブルセンサ10で収集された生体データである脈拍データとウェアラブルセンサ10が有するバッテリ18のバッテリデータである電源電圧データを取得する。さらに、対象患者Pが有する中継器のバッテリのバッテリデータである電源電圧データを取得する。以降では、バッテリ18のバッテリデータを第1のバッテリデータと記し、中継器のバッテリデータを第2のバッテリデータと記す。
次に、データ処理装置100は、ウェアラブルセンサ10とデータ処理装置100の間の通信を制御する第1の通信制御処理を行う(ステップS320)。ここでは、ウェアラブルセンサ10から取得した第1のバッテリデータに基づいて、ウェアラブルセンサ10に設定されている通信設定を第1のバッテリデータに応じた設定に変更する通信制御コマンドを発行する。
第1の通信制御処理が開始されると、プロセッサ101は、図19に示すように、まず、バッテリ18の状態とウェアラブルセンサ10の推奨通信設定との対応関係を格納した記憶部であるストレージ103を参照する(ステップS321)。ストレージ103には、例えば、図20に示すようなバッテリ18の状態とウェアラブルセンサ10の推奨通信設定との対応関係に関する情報S3が格納されている。情報S3は、バッテリ18の状態を示す電源電圧が4.5V以上の場合には、推奨通信方式はWiFiであり、推奨通信間隔は60sであることを示している。電源電圧が4V以上4.5V未満の場合には、推奨通信方式はWiFiであり、推奨通信間隔は300sであることを示している。電源電圧が4V未満の場合には、推奨通信方式はNFCであることを示している。
図20では、ウェアラブルセンサ10の推奨通信設定を例示したが、情報S3には、センサ(ウェアラブルセンサ10、埋め込みセンサ20、ウェアラブルセンサ30)毎の推奨通信設定に関する情報が含まれても良い。この場合、ステップS321では、センサ識別データで識別されたセンサの推奨通信設定が参照される。なお、推奨通信設定には、センサ又は中継器が生体データを送信するための推奨時間間隔又は推奨通信方式の少なくとも一方が含まれていればよい。
その後、ストレージ103を参照したプロセッサ101は、ステップS310で取得した第1のバッテリデータとステップS321で参照した対応関係に基づいて、通信制御コマンドを生成する(ステップS322)。さらに、プロセッサ101は、ウェアラブルセンサ10へ向けてステップS322で生成した通信制御コマンドを発行し(ステップS323)、第1の通信制御処理を終了する。なお、通信制御コマンドを受信したウェアラブルセンサ10は、そのコマンドに応じた処理を実行することで、ウェアラブルセンサ10の通信設定をバッテリ18のバッテリ状態に応じた推奨通信設定に変更する。具体的には、通信間隔又は通信方式の少なくとも一方を変更する。
さらに、データ処理装置100は、中継器とデータ処理装置100の間の通信を制御する第2の通信制御処理を行う(ステップS330)。ここでは、中継器から取得した第2のバッテリデータに基づいて、中継器に設定されている通信設定を第2のバッテリデータに応じた設定に変更する通信制御コマンドを発行する。
第2の通信制御処理が開始されると、プロセッサ101は、図21に示すように、まず、中継器の状態と中継器の推奨通信設定との対応関係を格納した記憶部であるストレージ103を参照する(ステップS331)。その後、プロセッサ101は、ステップS310で取得した第2のバッテリデータとステップS331で参照した対応関係に基づいて、通信制御コマンドを生成する(ステップS332)。さらに、プロセッサ101は、中継器へ向けてステップS332で生成した通信制御コマンドを発行し(ステップS333)、第2の通信制御処理を終了する。なお、通信制御コマンドを受信した中継器は、そのコマンドに応じた処理を実行することで、中継器の通信設定を中継器のバッテリのバッテリ状態に応じた推奨通信設定に変更する。具体的には、通信間隔又は通信方式の少なくとも一方を変更する。
第2の通信制御処理が終了すると、プロセッサ101は、バッテリ18の状態を報知する(ステップS340)。ここでは、プロセッサ101は、対象患者Pにバッテリ18の状態を報知するための報知コマンド(以降、第1の報知コマンドと記す。)をウェアラブルセンサ10へ向けて発行する。第1の報知コマンドは、特定の条件(例えば、バッテリ残量が閾値を下回ったときなど)下で発行されてもよい。
第1の報知コマンドは、バッテリ18の状態に応じて生成されても良く、ディスプレイ10aに表示するメッセージを含んでもよい。メッセージは、例えば、“センサのバッテリ残量が少なくなっています。”などである。なお、第1の報知コマンドを受信したウェアラブルセンサ10は、コマンドに応じた処理(例えば、ディスプレイ10aにメッセージ等を表示する処理)を実行することで、バッテリ18の状態を対象患者Pに報知する。
次に、プロセッサ101は、ウェアラブルセンサ10のバッテリ切れを予測し(ステップS350)、バッテリ切れ予測結果を報知する(ステップS360)。ここでは、プロセッサ101は、第1のバッテリデータに基づいて、ウェアラブルセンサ10のバッテリ切れの発生を予測する。具体的には、例えば、最新の第1のバッテリデータに加えて、第1のバッテリデータの履歴、バッテリ18のバッテリ容量などに基づいて、バッテリ切れまでの時間を予測してもよい。その後、予測に基づく情報を報知するための報知コマンド(以降、第2の報知コマンドと記す。)をウェアラブルセンサ10へ向けて発行する。
第2の報知コマンドは、ディスプレイ10aに表示するメッセージを含んでもよい。メッセージは、例えば、“およそ1時間でセンサのバッテリ切れが発生します。”などである。なお、第2の報知コマンドを受信したウェアラブルセンサ10は、コマンドに応じた処理(例えば、ディスプレイ10aにメッセージ等を表示する処理)を実行することで、バッテリ切れの予測結果を対象患者Pに報知する。
報知処理が終了すると、データ処理装置100は、生体データをストレージ103に格納する(ステップS370)。ここでは、ステップS310で取得した生体データ(脈拍データ)とともに、ステップS310で取得したバッテリデータをストレージ103に格納してもよい。
生体データを格納すると、データ処理装置100は、生体データを解析し(ステップS380)、対象患者Pに異常が発生しているか否かを判定する(ステップS390)。ステップS380及びステップS390の処理は、図18のステップS80及びステップS90の処理と同様である。
対象患者Pの異常が検知されない場合には、図18に示すデータ処理が終了する。対象患者Pの異常が検知された場合には、データ処理装置100は、対象患者Pの異常を報知し(ステップS400)、その後、図18に示すデータ処理が終了する。ステップS400では、プロセッサ101が、対象患者Pの異常を対象患者Pに報知するための報知コマンドを、データ処理装置100へ向けて発行する。ステップS400の処理は、図4のステップS100の処理と同様である。
データ処理装置100が図18に示すデータ処理を実行することで、センサのバッテリの状態に応じて通信設定が変更される。これにより、バッテリの状態に応じてセンサにおける電力消費量が調整されるため、バッテリ切れを遅らせることができる。また、バッテリの状態やバッテリ切れの予測情報が報知されるため、患者にバッテリの交換や充電などの対応を促すことができる。このため、生体データの送信ができなくなる、生体データの収集が中断される、などの事態が生じ得るバッテリ切れの発生を回避することができる。
本実施形態では、標準的なコンピュータであるデータ処理装置100が図18に示すデータ処理を行う例を示したが、図22に示すような専用装置であるデータ処理装置500が図18に示すデータ処理を行ってもよい。データ処理装置500は、図22に示すように、データ取得回路501と、バッテリ切れ予測回路502と、対象者異常検知回路503と、コマンド発行回路504と、記憶部であるストレージ505を備えている。データ処理装置500は、プロセッサ101がプログラムを実行することで行う各種処理を、専用回路(データ取得回路501、バッテリ切れ予測回路502、対象者異常検知回路503、及びコマンド発行回路504)が行う点が異なるが、その他の点はデータ処理装置100と同様である。データ処理装置500によっても、データ処理装置100と同様の効果を得ることができる。
[第5の実施形態]
図23は、本実施形態に係るデータ処理のフローチャートの一例である。以下、図23を参照しながら、生体センサから生体データとバッテリデータとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
図23は、本実施形態に係るデータ処理のフローチャートの一例である。以下、図23を参照しながら、生体センサから生体データとバッテリデータとを取得したデータ処理装置100が行うデータ処理の一例について説明する。
データ処理装置100では、プロセッサ101がメモリ102に記憶されている1つ以上のプログラムを実行することで、図23に示すデータ処理が行われる。なお、ここでは、対象患者Pに装着されている装着型のウェアラブルセンサ10から定期的に生体データとバッテリデータがデータ処理装置100へ送信されている場合を例に説明する。
まず、データ処理装置100は、ウェアラブルセンサ10から送信されたデータを取得する(ステップS410)。ここでは、プロセッサ101は、ウェアラブルセンサ10で収集された生体データである脈拍データとバッテリ18のバッテリデータ(例えば、電源電圧データ)を取得する。
次に、データ処理装置100は、生体データに対して補正処理を行う(ステップS420)。ここでは、プロセッサ101は、生体データである脈拍データの信頼性が改善されるように、バッテリデータに基づいて脈拍データを補正し、補正生体データである補正脈拍データを生成する。なお、ステップS420の処理は、バッテリデータに基づいて生体データが補正される点を除き、図7に示す補正処理と同様である。即ち、プロセッサ101は、バッテリの状態とウェアラブルセンサ10の測定誤差との対応関係(例えば、図6の情報S1)を格納したストレージ103を参照して、バッテリデータに応じた補正データを生成する。その後、補正データを用いて脈拍データを補正して、補正脈拍データを生成する。
補正処理が終了すると、データ処理装置100は、補正生体データをストレージ103に格納する(ステップS430)。ここでは、ステップS420で生成した補正脈拍データとともに、ステップS410で取得したバッテリデータをストレージ103に格納してもよい。
補正生体データを格納すると、データ処理装置100は、補正生体データを解析し(ステップS440)、対象患者Pに異常が発生しているか否かを判定する(ステップS450)。ステップS440及びステップS450の処理は、図4のステップS80及びステップS90の処理と同様である。即ち、プロセッサ101は、補正生体データに基づいて、対象患者Pに異常を検知する。
対象患者Pの異常が検知されない場合には、図23に示すデータ処理が終了する。対象患者Pの異常が検知された場合には、データ処理装置100は、対象患者Pの異常を報知し(ステップS460)、その後、図23に示すデータ処理が終了する。ステップS460では、プロセッサ101が、対象患者Pの異常を対象患者Pに報知するための報知コマンドを、データ処理装置100へ向けて発行する。ステップS460の処理は、図4のステップS100の処理と同様である。
データ処理装置100が図23に示すデータ処理を実行することで、センサのバッテリの状態に起因する測定誤差を補正することができる。これにより、より多くのデータを蓄積することが可能となり診断等に利用できる生体データが増加するため、診断精度が向上し、より効果的な疾患の治療又は予防が可能となる。
また、信頼性の高い生体データに基づいて患者の異常を検知することで、患者に対して正確な情報提供が可能となる。これにより、提供される情報に対する患者の信頼が高まることが期待される。
本実施形態では、対象患者Pの異常を検知したときに対象患者Pの異常を報知する例を示したが、対象患者Pの異常を報知する代わりに又はそれに加えて、データ処理装置100は、対象患者Pの異常検知時に、以下のような処理を行ってもよい。
例えば、対象患者Pに装着されている複数のセンサの一部のみが使用されている場合には、データ処理装置100は、他のセンサを起動する制御コマンドを発行してもよい。また、例えば、データ処理装置100は、データ処理装置100とセンサの間の通信設定を、生体データを送信するための通信間隔がより短い設定に変更する制御コマンドをセンサへ向けて発行してもよい。また、例えば、ストレージ103には、予め正常時における推奨通信間隔と異常時における推奨通信間隔が格納されていても良い。データ処理装置100は、対象患者Pの異常を検知したときには、センサに設定されている通信間隔が異常時における推奨通信間隔に変更され、異常を検知しなったときには、通信間隔が正常時における推奨通信間隔に変更されるように、通信間隔を変更する制御コマンドをセンサへ向けて発行しても良い。
また、本実施形態でも、第4の実施形態と同様に、バッテリデータに応じて通信設定を変更してもよい。即ち、プロセッサ101は、センサに設定されている通信設定をバッテリデータに応じた設定に変更する通信制御コマンドを発行してもよい。
また、本実施形態では、取得した生体データを生体データの信頼性によらずに補正する例を示したが、生体データの信頼性が低いときにその生体データを補正してもよい。即ち、バッテリデータが動作許容条件を満たしていないときに、生体データを補正してもよい。この場合の処理の流れは、図4と同様である。
また、本実施形態では、対象患者Pの異常を対象患者Pの活動状態を考慮することなく検知する例を示したが、例えば、図24に示すデータ処理を行って、対象患者Pの活動状態を考慮して対象患者Pの異常を検知してもよい。
図24に示すデータ処理は、ステップS510で患者状態データが追加的に取得される点、ステップS540で患者状態データに基づいて活動状態が決定される点、ステップS550で活動状態と生体データに基づいて対象患者Pの異常が検知される点が、図23に示すデータ処理とは異なる。なお、ステップS540の活動状態決定処理、ステップS550の解析処理は、図14のステップS220、ステップS240と同様である。
また、本実施形態では、生体データを基準化することなく対象患者Pの異常を検知する例を示したが、例えば、図25に示すデータ処理を行って、基準化された生体データに基づいて対象患者Pの異常を検知しても良い。
図25に示すデータ処理は、ステップS630で生体データを基準化する点、ステップS640で基準化された生体データが格納される点、ステップS650で基準化された生体データに基づいて対象患者Pの異常が検知される点が、図23に示すデータ処理とは異なる。なお、ステップS630の基準化処理、ステップS640の格納処理、ステップS650の解析処理は、図10のステップS120(図11又は図12に示す一連の処理)、ステップS130、ステップS140と同様である。
本実施形態では、標準的なコンピュータであるデータ処理装置100が図23乃至図25に示すデータ処理を行う例を示したが、図26に示すような専用装置であるデータ処理装置600がこれらのデータ処理を行ってもよい。データ処理装置600は、図26に示すように、データ取得回路601と、補正回路602と、活動状態決定回路603と、基準化回路604と、対象者異常検知回路605と、コマンド発行回路606と、記憶部であるストレージ607を備えている。データ処理装置600は、プロセッサ101がプログラムを実行することで行う各種処理を、専用回路(データ取得回路601、補正回路602、活動状態決定回路603、基準化回路604、対象者異常検知回路605、コマンド発行回路606)が行う点が異なるが、その他の点はデータ処理装置100と同様である。データ処理装置600によっても、データ処理装置100と同様の効果を得ることができる。
上述した実施形態は、発明の理解を容易にするための具体例を示したものであり、本発明の実施形態はこれらに限定されるものではない。データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラムは、特許請求の範囲の記載を逸脱しない範囲において、さまざまな変形、変更が可能である。
1・・・生体データ処理システム、10、30・・・ウェアラブルセンサ、10a、30a・・・ディスプレイ、11・・・生体センサ、12・・・温度センサ、13・・・加速
度センサ、14・・・電圧センサ、15・・・マイクロプロセッサ、16、102・・・メモリ、17・・・無線通信回路、17a・・・無線LAN回路、17b・・・NFC回路、18・・・バッテリ、20・・・埋め込みセンサ、40・・・アクセスポイント、50・・・NFCリーダ、60・・・ネットワーク、70・・・クラウド環境、100、200、300、400、500、600・・・データ処理装置、101・・・プロセッサ、103、206、305、405、505、607・・・ストレージ、104・・・N/Wインターフェース、105・・・可搬記録媒体駆動装置、106・・・可搬記録媒体、107・・・バス、201、301、401、501、601・・・データ取得回路、202・・・信頼性評価回路、203、602・・・補正回路、204、303、403、503、605・・・対象者異常検知回路、205、304、404、504、606・・・コマンド発行回路、302、604・・・基準化回路、402、603・・・活動状態決定回路、502・・・バッテリ切れ予測回路、S1、S2、S3・・・情報、P・・・対象患者
度センサ、14・・・電圧センサ、15・・・マイクロプロセッサ、16、102・・・メモリ、17・・・無線通信回路、17a・・・無線LAN回路、17b・・・NFC回路、18・・・バッテリ、20・・・埋め込みセンサ、40・・・アクセスポイント、50・・・NFCリーダ、60・・・ネットワーク、70・・・クラウド環境、100、200、300、400、500、600・・・データ処理装置、101・・・プロセッサ、103、206、305、405、505、607・・・ストレージ、104・・・N/Wインターフェース、105・・・可搬記録媒体駆動装置、106・・・可搬記録媒体、107・・・バス、201、301、401、501、601・・・データ取得回路、202・・・信頼性評価回路、203、602・・・補正回路、204、303、403、503、605・・・対象者異常検知回路、205、304、404、504、606・・・コマンド発行回路、302、604・・・基準化回路、402、603・・・活動状態決定回路、502・・・バッテリ切れ予測回路、S1、S2、S3・・・情報、P・・・対象患者
Claims (18)
- データ処理装置であって、
回路を備え、
前記回路は、
対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、
前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する
ように構成されることを特徴とするデータ処理装置。 - 請求項1に記載のデータ処理装置において、
前記基準化生体データを生成することは、
前記患者状態データに基づいて前記対象患者の活動状態を決定することと、
決定された前記対象患者の活動状態に応じて前記第1の生体データを基準化し、前記基準化生体データを生成すること、を含む
ことを特徴とするデータ処理装置。 - 請求項2に記載のデータ処理装置において、さらに、
患者の活動状態と前記患者状態データが表す生理的な指標との第1の対応関係を格納した記憶部と、を備え、
前記対象患者の活動状態を決定することは、
前記第1の対応関係を格納した前記記憶部を参照することと、
前記患者状態データと前記第1の対応関係に基づいて前記対象患者の活動状態を決定することと、を含む
ことを特徴とするデータ処理装置。 - 請求項3に記載のデータ処理装置において、
前記患者状態データは、前記第1の生体データとは異なる種類の生体データである第2の生体データである
ことを特徴とするデータ処理装置。 - 請求項2に記載のデータ処理装置において、さらに、
患者の活動状態と前記患者状態データが表す物理的な指標との第2の対応関係を格納した記憶部と、を備え、
前記対象患者の活動状態を決定することは、
前記第2の対応関係を格納した前記記憶部を参照することと、
前記患者状態データと前記第2の対応関係に基づいて前記対象患者の活動状態を決定することと、を含む
ことを特徴とするデータ処理装置。 - 請求項5に記載のデータ処理装置において、
前記患者状態データは、前記センサの第1のセンサ状態データである
ことを特徴とするデータ処理装置。 - 請求項1に記載のデータ処理装置において、
前記回路は、さらに、
前記センサの第2のセンサ状態データを取得するように構成され、
前記基準化生体データを生成することは、
前記患者状態データに基づいて前記対象患者の活動状態を決定することと、
前記第2のセンサ状態データと前記センサの動作許容条件とに基づいて、前記第1の生体データの信頼性を評価し、前記第1の生体データが信頼できるデータか否かを決定することと、
前記第1の生体データが信頼できるデータであると決定したときに、決定された前記対象患者の活動状態に応じて前記第1の生体データを基準化し、前記基準化生体データを生成すること、を含む
ことを特徴とするデータ処理装置。 - 請求項7に記載のデータ処理装置において、
前記記憶部は、さらに、前記センサの状態と前記センサの測定誤差との第3の対応関係を格納していて、
前記基準化生体データを生成することは、さらに、
前記第1の生体データが信頼できないデータであると決定したときに、
前記第3の対応関係を格納した前記記憶部を参照して、前記第2のセンサ状態データに応じた補正データを生成することと、
前記補正データを用いて前記第1の生体データを補正して、補正生体データを生成することと、
決定された前記対象患者の活動状態に応じて前記補正生体データを基準化し、前記基準化生体データを生成すること、を含む
ことを特徴とするデータ処理装置。 - 請求項7又は請求項8に記載のデータ処理装置において、
前記回路は、さらに、
前記第1の生体データが信頼できないデータであると決定したときに、前記第2のセンサ状態データに応じて、前記対象患者に前記センサの異常を報知するためのコマンドを発行する
ように構成されることを特徴とするデータ処理装置。 - 請求項7乃至請求項9のいずれか1項に記載のデータ処理装置において、
前記回路は、さらに、
前記第1の生体データが信頼できないデータであると決定したときに、前記センサにリフレッシュ動作を実行させるリフレッシュコマンドを発行する
ように構成されることを特徴とするデータ処理装置。 - 請求項1乃至請求項10のいずれか1項に記載のデータ処理装置において、
前記回路は、さらに、
前記基準化生体データに基づいて、前記対象患者の異常を検知する
ように構成されることを特徴とするデータ処理装置。 - 請求項11に記載のデータ処理装置において、
前記回路は、さらに、
前記対象患者の異常を検知したときに、前記対象患者の異常を前記対象患者に報知するためのコマンドを発行する
ように構成されることを特徴とするデータ処理装置。 - 請求項11または請求項12に記載のデータ処理装置において、
前記回路は、さらに、
前記対象患者の異常を検知したときに、前記データ処理装置と前記センサの間の通信設定を、前記第1の生体データを送信するための通信間隔がより短い設定に変更する制御コマンドを発行する
ように構成されることを特徴とするデータ処理装置。 - 請求項11乃至請求項13のいずれか1項に記載のデータ処理装置において、
前記回路は、さらに、
前記対象患者の異常を検知したときに、前記対象患者に取り付けられた前記センサである第1のセンサとは異なる第2のセンサを起動する制御コマンドを発行する
ように構成されることを特徴とするデータ処理装置。 - コンピュータに処理を実行させるプログラムを記録した非一過性のコンピュータ読取可能媒体であって、
前記処理は、
対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得することと、
前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成することと、を含む
ことを特徴とする非一過性のコンピュータ読取可能媒体。 - データ処理装置のデータ処理方法であって、
対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、
前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する
ことを特徴とするデータ処理方法。 - 対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得し、
前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する
処理をコンピュータに実行させるプログラム。 - データ処理装置であって、
対象患者に取り付けられた装着型のセンサにより収集された前記対象患者の第1の生体データと前記対象患者の患者状態データを取得する手段と、
前記患者状態データに基づいて前記第1の生体データを基準化し、基準化生体データを生成する手段と、を備える
ことを特徴とするデータ処理装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/084847 WO2018096632A1 (ja) | 2016-11-24 | 2016-11-24 | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム |
US15/832,927 US20180140193A1 (en) | 2016-11-24 | 2017-12-06 | Apparatus, computer-readable medium, and method for detecting biological data of target patient from attachable sensor attached to target patient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/084847 WO2018096632A1 (ja) | 2016-11-24 | 2016-11-24 | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,927 Continuation US20180140193A1 (en) | 2016-11-24 | 2017-12-06 | Apparatus, computer-readable medium, and method for detecting biological data of target patient from attachable sensor attached to target patient |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018096632A1 true WO2018096632A1 (ja) | 2018-05-31 |
Family
ID=62144515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084847 WO2018096632A1 (ja) | 2016-11-24 | 2016-11-24 | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180140193A1 (ja) |
WO (1) | WO2018096632A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020070817A1 (ja) | 2018-10-03 | 2020-04-09 | 三菱電機株式会社 | ソフトウェア解析装置、ソフトウェア解析方法およびソフトウェア解析プログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238971A (ja) * | 2005-02-28 | 2006-09-14 | Sanyo Electric Co Ltd | 周期算出装置及びプログラム |
JP2011170943A (ja) * | 2010-02-22 | 2011-09-01 | Sony Corp | 記憶制御装置、記憶装置、記憶装置システム |
JP2014094085A (ja) * | 2012-11-08 | 2014-05-22 | Nippon Koden Corp | 生体情報表示装置、および生体情報表示システム |
JP2016043041A (ja) * | 2014-08-22 | 2016-04-04 | セイコーエプソン株式会社 | 生体情報検出装置及び生体情報検出方法 |
-
2016
- 2016-11-24 WO PCT/JP2016/084847 patent/WO2018096632A1/ja active Application Filing
-
2017
- 2017-12-06 US US15/832,927 patent/US20180140193A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238971A (ja) * | 2005-02-28 | 2006-09-14 | Sanyo Electric Co Ltd | 周期算出装置及びプログラム |
JP2011170943A (ja) * | 2010-02-22 | 2011-09-01 | Sony Corp | 記憶制御装置、記憶装置、記憶装置システム |
JP2014094085A (ja) * | 2012-11-08 | 2014-05-22 | Nippon Koden Corp | 生体情報表示装置、および生体情報表示システム |
JP2016043041A (ja) * | 2014-08-22 | 2016-04-04 | セイコーエプソン株式会社 | 生体情報検出装置及び生体情報検出方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020070817A1 (ja) | 2018-10-03 | 2020-04-09 | 三菱電機株式会社 | ソフトウェア解析装置、ソフトウェア解析方法およびソフトウェア解析プログラム |
US11630662B2 (en) | 2018-10-03 | 2023-04-18 | Mitsubishi Electric Corporation | Software analysis device, software analysis method, and software analysis program |
Also Published As
Publication number | Publication date |
---|---|
US20180140193A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10929510B2 (en) | Patient care systems employing control devices to identify and configure sensor devices for patients | |
JP6277716B2 (ja) | 生体情報計測機器、生体情報処理方法及びプログラム | |
US20140206946A1 (en) | Apparatus and method for measuring stress based on behavior of a user | |
US20150088463A1 (en) | Measurement data processing method and apparatus | |
US20170290553A1 (en) | Sensor system | |
JP2021035355A (ja) | 家畜の健康状態管理システム、家畜用ウェアラブルデバイス、家畜の健康状態管理方法及びプログラム | |
JP6534192B2 (ja) | 患者健康状態複合スコア分布及び/又はこれに基づく代表複合スコア | |
WO2018096631A1 (ja) | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム | |
WO2018096634A1 (ja) | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム | |
JP6110348B2 (ja) | 生体情報測定システムおよび方法 | |
US10456037B2 (en) | Terminal device and information processing system | |
JP2015114761A (ja) | 情報処理システム、電子機器、方法及びプログラム | |
WO2018096632A1 (ja) | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム | |
WO2018096633A1 (ja) | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム | |
WO2018096630A1 (ja) | データ処理装置、コンピュータ読取可能媒体、データ処理方法、及びプログラム | |
KR101586729B1 (ko) | 생체신호 모니터링 장치 및 시스템, 및 이를 이용한 생체신호 모니터링 방법 | |
EP3644324A1 (en) | Detecting an ictal of a subject | |
US20190223724A1 (en) | Adaptive health score | |
KR101774702B1 (ko) | 응급 상황 자동 신고 시스템 및 방법 | |
KR20200031355A (ko) | 대규모 작업을 수행하는 작업자의 작업효율성 평가 및 알림 방법 | |
KR102463572B1 (ko) | 체온계를 이용한 체온 정보 제공 방법, iot 기반 신체 탈부착형 센서 단말의 제어 방법, 및 iot 기반 신체 탈부착형 센서 단말 | |
US20180235469A1 (en) | Vital sign monitoring apparatus | |
US11843905B2 (en) | Sensor device, sensing method, and program storage medium | |
JP7563465B2 (ja) | 判定装置 | |
US20230346317A1 (en) | Determination apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16922394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |