[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018092502A1 - Thermochromic composition and thermochromic film - Google Patents

Thermochromic composition and thermochromic film Download PDF

Info

Publication number
WO2018092502A1
WO2018092502A1 PCT/JP2017/037930 JP2017037930W WO2018092502A1 WO 2018092502 A1 WO2018092502 A1 WO 2018092502A1 JP 2017037930 W JP2017037930 W JP 2017037930W WO 2018092502 A1 WO2018092502 A1 WO 2018092502A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermochromic
vanadium dioxide
film
dioxide particles
particles
Prior art date
Application number
PCT/JP2017/037930
Other languages
French (fr)
Japanese (ja)
Inventor
保彦 高向
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018092502A1 publication Critical patent/WO2018092502A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints

Definitions

  • the present invention relates to a thermochromic composition and a thermochromic film.
  • this invention relates to the thermochromic composition etc. which improved the heat-insulating effect of summer.
  • the near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
  • thermochromic films containing thermochromic materials that can be drawn attention.
  • thermochromic material refers to a material capable of controlling the optical properties of near-infrared light shielding and transmission by temperature.
  • a typical example of this thermochromic material is vanadium dioxide (hereinafter also referred to as “VO 2 ”).
  • VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
  • thermochromic film in which a thermochromic layer containing vanadium oxide particles is provided on a base material is known (see Patent Document 1).
  • This utilizes the change in optical properties due to the phase transition of vanadium oxide due to the temperature change. It absorbs heat in the near-infrared region (750-2500 nm) of the sun's rays in the summer and shields it in the winter. Light is taken into the room and the heating effect is used. That is, in summer, the vanadium oxide particles change to the M phase as the temperature rises, and sunlight rays are absorbed around the wavelength of light corresponding to the intrinsic plasma frequency (plasma oscillation frequency) of the M phase vanadium oxide particles.
  • the effect was limited because of absorption at a specific wavelength.
  • the present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a thermochromic composition and a thermochromic film having an improved heat shielding effect in summer.
  • thermochromic layer containing vanadium oxide by further containing a conductive substance in the thermochromic layer containing vanadium oxide, light in the near infrared region after the plasma frequency can be reflected rather than absorbed, and the heat shielding effect in summer can be achieved.
  • the present inventors have found that an improved thermochromic composition can be provided and have reached the present invention. That is, the said subject which concerns on this invention is solved by the following means.
  • thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties
  • thermochromic composition containing a conductive substance and a resin binder in addition to the vanadium dioxide particles.
  • thermochromic composition according to item 1 wherein the carrier concentration (n) at 23 ° C. is 5 ⁇ 10 20 cm ⁇ 3 or less.
  • thermochromic composition according to Item 1 or 2 wherein the conductive substance contains metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene.
  • thermochromic composition according to any one of Items 1 to 3, wherein the vanadium dioxide particles contain an element for adjusting a phase transition temperature.
  • thermochromic film containing the thermochromic composition according to any one of items 1 to 4.
  • thermochromic film of Claim 5 which has a thermochromic layer containing the said thermochromic composition on a transparent base material.
  • thermochromic composition and the thermochromic film which improved the thermal-insulation effect of summer can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
  • the vanadium dioxide particles showing thermochromic properties and the conductive material are contained in the same layer, so that the conductivity further increases when the vanadium oxide particles change to the M phase due to temperature rise in summer, and light in the near infrared region. It has been found that a thermochromic composition and a thermochromic film capable of reflecting, rather than absorbing, can be provided.
  • thermochromic film of the present invention Relationship between reflectance of light with a wavelength of 800 nm and carrier concentration
  • thermochromic composition of the present invention is a thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties, and contains a conductive substance and a resin binder in addition to the vanadium dioxide particles. This feature is a technical feature common to or corresponding to the embodiments of the present invention described below. Thereby, the thermochromic composition and thermochromic film which improved the heat-shielding effect of summer can be provided.
  • the carrier concentration (n) at 23 ° C. is preferably 5 ⁇ 10 20 cm ⁇ 3 or less because it can reflect light in the near infrared region in summer.
  • the conductive substance contains metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene because the carrier concentration can be adjusted suitably.
  • the vanadium dioxide particles preferably contain an element for adjusting the phase transition temperature. This is because by optimizing the phase transition temperature, it is possible to reduce the load on the cooling equipment in summer and promote energy saving.
  • thermochromic film of the present invention contains the thermochromic composition of the present invention.
  • thermochromic film of the present invention preferably has a thermochromic layer containing the thermochromic composition on a transparent substrate from the viewpoint of manifesting the effects of the present invention.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • thermochromic composition of the present invention is a thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties, and contains a conductive substance and a resin binder in addition to the vanadium dioxide particles.
  • Examples of the conductive material used in the present invention include metal nanofibers (for example, silver nanofibers and other metal nanofibers such as Cu, Ni, Co, Au, etc.), carbon nanotubes (hereinafter also referred to as “CNT”). Carbon nanobuds (“CNB”, so-called fullerene functionalized carbon nanotubes) and graphene, and the like, and preferably contain metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene. This is because the carrier concentration can be suitably adjusted.
  • metal nanofibers for example, silver nanofibers and other metal nanofibers such as Cu, Ni, Co, Au, etc.
  • CNT carbon nanotubes
  • Carbon nanobuds (“CNB”, so-called fullerene functionalized carbon nanotubes) and graphene, and the like and preferably contain metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene. This is because the carrier concentration can be suitably adjusted.
  • the carrier concentration (n) of the thermochromic composition at 23 ° C. is preferably 5 ⁇ 10 20 cm ⁇ 3 or less, and particularly within the range of 5 ⁇ 10 19 to 5 ⁇ 10 20 cm ⁇ 3 .
  • the light wavelength range of 2.5 to 25 ⁇ m is efficiently reflected to have a heat insulating function, and in the summer season, light in the near infrared region can also be reflected.
  • the carrier concentration (n) of the thermochromic layer at 23 ° C. in the present invention can be measured by a known method. Specifically, for example, it can be measured using a Hall measuring device (for example, ResiTest 8310 manufactured by Toyo Technica). it can.
  • the wavelength of the reflected light has a threshold value determined by the plasma frequency (plasma oscillation frequency).
  • a conductive film such as a sputtered metal oxide film such as ITO (indium tin oxide). Then, light with energy lower than that energy is reflected.
  • n carrier concentration
  • q carrier charge
  • dielectric constant
  • m electron mass.
  • the above equation is a function of the carrier concentration.
  • FIG. 1 shows the relationship between carrier concentration and reflectance. For example, the reflectance with respect to light having a wavelength of 800 nm suddenly increases from a carrier concentration of 2 ⁇ 10 21 cm ⁇ 3 , and light on the longer wavelength side is reflected.
  • vanadium dioxide particles are dispersed in a resin binder, the conductivity cannot be expressed without contact between the vanadium dioxide particles.
  • the carrier concentration does not improve, and light rays centered on the wavelength of light corresponding to the intrinsic plasma frequency (plasma oscillation frequency) possessed by the M phase vanadium oxide particles. Only absorption for a so-called specific wavelength is absorbed.
  • thermochromic layer according to the present invention is an embodiment in which vanadium dioxide is contained in the binder resin as nanoparticles (vanadium dioxide particles).
  • vanadium dioxide particles are contained in the binder resin as nanoparticles.
  • the crystal form of the vanadium dioxide particles according to the present invention is not particularly limited, but rutile vanadium dioxide particles (VO 2 particles) may be used from the viewpoint of efficiently expressing thermochromic properties (automatic light control). Is particularly preferred. Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called M-type.
  • the vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
  • the number average particle size of the primary and secondary vanadium dioxide particles in the thermochromic layer is preferably 200 nm or less, more preferably in the range of 1 to 180 nm, and still more preferably 5 Within the range of ⁇ 100 nm.
  • the average particle diameter of the vanadium dioxide particles can be determined according to the method described later.
  • the primary particle number ratio of vanadium dioxide particles in the thermochromic layer which can be determined by the measurement method, is 30% by number or more of the total number of primary particles and secondary particles. Preferably, it is 50% by number or more, particularly preferably 70% by number or more.
  • the ideal upper limit is 100% by number, but the current maximum value is 95% by number or less.
  • the aspect ratio of the vanadium dioxide particles is preferably in the range of 1.0 to 3.0. Since vanadium dioxide particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good. In addition, since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
  • the concentration of vanadium dioxide particles in the thermochromic layer is not particularly limited, but is generally preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the thermochromic layer. %, More preferably in the range of 5 to 30% by mass.
  • the vanadium dioxide particles according to the present invention preferably contain an element for adjusting the phase transition temperature.
  • elements for adjusting the phase transition temperature include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), and osmium. Selected from the group consisting of (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P) It is preferable that at least one element is contained.
  • the addition of such elements is effective in that the phase transition characteristics (particularly the phase transition temperature) of the vanadium dioxide particles can be adjusted.
  • the total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
  • a vanadium dioxide particle contains the element for adjusting a phase transition temperature
  • the method for producing vanadium dioxide particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a vanadium compound such as divanadium pentoxide (V 2 O 5 ) or ammonium vanadate as a raw material.
  • a vanadium compound such as divanadium pentoxide (V 2 O 5 ) or ammonium vanadate as a raw material.
  • An aqueous synthesis method in which particles are grown while synthesizing VO 2 in a liquid phase using an aqueous solution instead of an organic solvent is preferably used.
  • the aqueous synthesis method is preferable in that the average primary particle size is small and variation in particle size can be suppressed.
  • examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state.
  • Details of an aqueous synthesis method using a supercritical state also referred to as a supercritical hydrothermal synthesis method.
  • a supercritical hydrothermal synthesis method also referred to as a supercritical hydrothermal synthesis method.
  • a hydrothermal synthesis method is applied, and an aqueous dispersion containing vanadium dioxide particles is prepared by an aqueous synthesis method, and vanadium dioxide particles in the aqueous dispersion are dried.
  • vanadium dioxide particles are produced by adding fine particles such as fine TiO 2 as cores of particle growth as core particles and growing the core particles as necessary. You can also.
  • a substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A).
  • This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
  • the substance (I) examples include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. .
  • the substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
  • the solution (A) may further contain a substance (II) containing the element to be added.
  • a substance (II) containing the element to be added As an element to add, the element for adjusting the below-mentioned phase transition temperature is mentioned, for example.
  • the thermochromic property of the vanadium dioxide particles is controlled and adjusted to an optimum one. be able to. In this way, by adjusting and optimizing the phase transition temperature, it is possible to reduce both the load on the cooling facility in summer and the load on the heating facility in winter, thereby further saving energy.
  • the solution (A) may further contain a substance (III) having oxidizing property or reducing property.
  • the substance (III) include hydrogen peroxide (H 2 O 2 ).
  • hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
  • thermochromic vanadium dioxide VO 2
  • the dispersion of vanadium dioxide particles prepared by the above water-based synthesis method contains impurities such as residues generated during the synthesis process, which triggers the generation of secondary aggregated particles when forming the thermochromic layer.
  • the thermochromic layer may deteriorate during long-term storage, and it is preferable to remove impurities in advance at the stage of the dispersion.
  • the vanadium dioxide particle dispersion As a method for removing impurities in the vanadium dioxide particle dispersion, conventionally known means for separating foreign substances and impurities can be applied.
  • the vanadium dioxide particle dispersion is centrifuged to precipitate vanadium dioxide particles. It is possible to remove impurities in the supernatant and add and disperse the dispersion medium again, or to remove impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation, the method using an ultrafiltration membrane is most preferable.
  • Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used. By applying and drying the aqueous dispersion from which impurities have been removed, vanadium dioxide particle powder can be obtained.
  • thermochromic composition of the present invention contains a resin binder.
  • resin binder either a hydrophilic binder or a hydrophobic binder may be used.
  • the hydrophilic binder refers to a binder that dissolves 1.0 g or more per 100 g of water at 25 ° C.
  • hydrophilic binders include gelatin, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, cellulose sulfate, dextrin, dextran, dextran sulfate and other sugar derivatives, Naturally derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer Or acrylic resins such as acrylic acid-acrylic acid ester copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene, polyvinyl alcohols, polyvinylpyrrol
  • thermochromic composition of the present invention it is also preferable to apply a hydrophobic binder as a binder for holding the vanadium dioxide particles.
  • the hydrophobic binder as used in the present invention refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
  • the hydrophobic binder applied to the present invention is preferably a resin polymerized in a curing treatment step using a hydrophobic polymer or a monomer of a hydrophobic binder.
  • hydrophobic polymer examples include polyethylene, polypropylene, ethylene-propylene copolymer, olefin-based polymer such as poly (4-methyl-1-pentene), acrylate-based copolymer; Halogen-containing polymers such as vinyl and chlorinated vinyl resins; Styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate; polyamides such as nylon 6, nylon 66 and nylon 610; polyacetal; polycarbonate; polyphenylene oxide; polyphenylene sulfide; Polysulfone; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile), acrylate
  • hydrophobic binder a resin that is polymerized in a curing process using a monomer of a hydrophobic binder can be exemplified, and typical hydrophobic binder materials include active energy.
  • typical hydrophobic binder materials include active energy.
  • the compound that is cured by irradiation with a line include a radical polymerizable compound that is cured by a polymerization reaction by a radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction by a cationic active species.
  • radical polymerizable compound examples include a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid.
  • Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned.
  • cationic polymerizable compound various known cationic polymerizable monomers can be used.
  • cationic polymerizable monomers JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
  • photopolymerization initiator it is preferable to contain a photopolymerization initiator together with the above compound.
  • a photopolymerization initiator any known photopolymerization initiators published in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) may be used. it can.
  • thermochromic layer containing each constituent material and a solvent dispersion containing vanadium dioxide particles, for example, on a transparent substrate
  • an activity such as ultraviolet rays or electron beams is applied. Irradiate energy rays.
  • ultraviolet LED ultraviolet laser
  • mercury arc lamp xenon arc lamp
  • low pressure mercury lamp fluorescent lamp
  • carbon arc lamp tungsten-halogen copying lamp and sunlight
  • UV LED ultraviolet LED
  • mercury arc lamp mercury arc lamp
  • xenon arc lamp low pressure mercury lamp
  • fluorescent lamp fluorescent lamp
  • carbon arc lamp tungsten-halogen copying lamp
  • sunlight can be used.
  • curing with an electron beam curing is usually performed with an electron beam having an energy of 300 eV or less, but it is also possible to cure instantaneously with an irradiation dose of 1 to 5 Mrad.
  • thermochromic layer As another method for forming the thermochromic layer according to the present invention, vanadium dioxide particles and a hydrophilic binder are included in the hydrophobic binder which is a constituent material of the transparent substrate, as illustrated in FIG. After adding and dissolving a solvent dispersion and a solvent to prepare a dope for film formation, a hybrid that also serves as a resin base material by the solution casting method used in the conventional film formation using the dope A method of forming a thermochromic layer can also be suitably used.
  • thermochromic films examples include resin materials that are conventionally used in the formation of thermochromic films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyester such as polyester, polyethylene, polypropylene, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like
  • polyvinylidene chloride polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene tree , Polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon,
  • the solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
  • thermochromic film of the present invention contains the thermochromic composition of the present invention. Moreover, it is preferable that the thermochromic film of this invention has a thermochromic layer containing the said thermochromic composition on a transparent base material.
  • thermochromic film of the present invention may be a thermochromic film consisting only of a thermochromic layer, or may have a thermochromic layer containing a thermochromic composition on a transparent substrate.
  • FIG. 2 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film containing vanadium dioxide as nanoparticles (hereinafter, these nanoparticles are also referred to as “vanadium dioxide particles”).
  • a thermochromic film 1 shown in FIG. 2 has a configuration in which a thermochromic layer 3 is laminated on a transparent substrate 2. The thermochromic layer 3 is present in a state where vanadium dioxide particles are dispersed in the binder B1.
  • the vanadium dioxide particles constitute the primary particles VO S of vanadium dioxide particles vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also referred to as aggregates.) , there is a secondary particle VO M of vanadium dioxide particles.
  • an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
  • thermochromic layer is not particularly limited as long as it is a layer containing a thermochromic material.
  • the thermochromic layer should just be a layer containing vanadium dioxide particle, and it is preferable that it is the layer formed especially by application
  • the average particle size of the vanadium dioxide particles in the thermochromic layer can be determined according to the following method. First, the side surface of the thermochromic layer 3 is trimmed by a microtome to expose a cross section as shown in FIG. Next, the exposed cross section is photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle size of all vanadium dioxide particles present in a certain area of the photographed cross section is measured.
  • TEM transmission electron microscope
  • the vanadium dioxide particles to be measured are preferably in the range of 50 to 100 particles.
  • the shot particles, the primary particles are single particles, as shown in FIG. 2, includes a with a two or more particles of the aggregate secondary particles, the particle size of the primary particles VO S vanadium dioxide Measure the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and its diameter is taken as the particle size. On the other hand, for vanadium dioxide in which two or more particles are aggregated, the projected area of the entire aggregate is obtained, and then the projected area is converted into a circle, and the diameter is taken as the particle size. The number average diameter is obtained for each diameter of the primary particles and secondary particles obtained as described above. Since the cut-out cross-sectional portion has a variation in particle distribution, such measurement was performed for 10 different cross-sectional regions, the whole number-average diameter was obtained, and this was defined as the number-average particle size (nm).
  • the primary particle size of the vanadium dioxide particles according to the present invention is preferably in the range of 10 to 100 nm. Accordingly, the particle size of the secondary particles varies depending on the number of aggregated particles, but is preferably in the range of 50 to 500 nm.
  • thermochromic film of the present invention has a hybrid configuration in which the thermochromic layer also functions as a resin base material.
  • the thermochromic layer also functions as a resin base material.
  • FIG. 3 it is good also as a thermochromic film which has the hybrid thermochromic layer comprised by making the transparent base material 2 shown in FIG. 2, and the thermochromic layer 3 into the same layer.
  • a resin binder such as a polymer constituting a transparent substrate is used, and vanadium dioxide particles in which vanadium dioxide particles are independently present in the resin binder B2.
  • a primary particle VO S, 2 or more of the secondary particles VO M of vanadium dioxide particles are dispersed may be the thermochromic layer having both a transparent substrate functions as a single layer.
  • the resin binder used here is preferably a hydrophobic binder. It is also preferable to form a hybrid thermochromic layer that also serves as a transparent substrate by a solution casting method using a dope prepared by mixing and preparing each constituent material.
  • thermochromic layer ⁇ Other additives for thermochromic layer> Various additives that can be applied to the thermochromic layer according to the present invention as long as the effects of the present invention are not impaired are listed below.
  • surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters
  • antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers
  • additives such as dyes and pigments.
  • thermochromic film (aqueous)
  • a thermochromic layer is formed using the wet apply
  • the wet coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419, US Pat. No. 2,761791, and the like. Examples thereof include a slide hopper coating method and an extrusion coating method.
  • thermochromic film (organic solvent system 1)
  • a hydrophobic binder is further added, and coating is performed.
  • -It is also preferable to form a thermochromic film by drying to form a thermochromic film.
  • the specific production method is the same as the production method of the water-based thermochromic film.
  • thermochromic film (organic solvent system 2)
  • a method for producing a thermochromic film using an organic solvent first, an aqueous dispersion in which vanadium dioxide particles are dispersed without drying an aqueous dispersion in which vanadium dioxide particles are dispersed, obtained by an aqueous synthesis method. An aqueous solution containing a block copolymer is added to the mixture to prepare a mixed solution. Next, an organic solvent is added to the mixed solution to move the vanadium dioxide particles and the block copolymer from the aqueous phase to the organic phase, and the organic phase is separated and extracted.
  • thermochromic layer by mixing a hydrophobic binder with an organic phase, apply
  • a general liquid separation operation is performed as a method for transferring the vanadium dioxide particles and the block copolymer from the aqueous phase to the organic phase.
  • thermochromic layer that also serves as a resin base material
  • a solution casting method can be applied, and specific film forming methods include, for example, JP2013-067074A, JP In accordance with the solution casting film forming method described in JP2013-123868A, JP2013-202979A, JP2014-066958A, JP2014-095729A, JP2014-159082A, and the like. Can be formed.
  • thermochromic film of this invention you may provide various functional layers as needed other than each structure layer demonstrated above.
  • the total thickness of the thermochromic film of the present invention is not particularly limited, but is in the range of 10 to 1500 ⁇ m, preferably in the range of 20 to 1000 ⁇ m, more preferably in the range of 30 to 500 ⁇ m, Particularly preferably, it is in the range of 40 to 300 ⁇ m.
  • the visible light transmittance measured by JIS R3106 is preferably 30% or more, more preferably 50% or more, and further preferably 60% or more. It is.
  • the transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable.
  • “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles or the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the followability to the curved glass surface when bonded to the glass substrate is improved. .
  • the transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferred from the viewpoint of improving strength and suppressing thermal expansion.
  • a stretched film is more preferable.
  • the transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the thermochromic film and cracking of the thermochromic layer. Preferably, it is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
  • the transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used.
  • polyolefin films for example, cycloolefin, polyethylene) , Polypropylene, etc.
  • polyester films for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • triacetyl cellulose films, etc. can be used, preferably cycloolefin films, polyester films, triacetyl cellulose films.
  • the transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
  • thermochromic film of this invention can be set as the structure pasted on glass,
  • the glass which bonded this film can be used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
  • the glass bonded together can be used for other purposes.
  • the glass on which the film is bonded is preferably used for buildings or vehicles, and can be used for automobile windshields, side glasses, rear glasses, roof glasses, and the like.
  • thermochromic films 1-8 The method for producing thermochromic films 1 to 8 will be described below.
  • the term “film” simply represents a thermochromic film.
  • the prepared solution X is put in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body) at 100 ° C. Hydrothermal reaction treatment was applied for 8 hours, and subsequently at 270 ° C. for 24 hours.
  • HU-25 type manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body
  • reaction product was filtered, and the filtration residue was filtered and washed with water and ethanol. Further, this reaction product was dried at 60 ° C. for 10 hours by using a constant temperature dryer to obtain vanadium dioxide particle powder.
  • the obtained vanadium dioxide particle powder and ethanol were subjected to ultrasonic dispersion treatment for 30 minutes with an ultrasonic dispersing machine (UH-300 manufactured by SMT Co., Ltd.) and redispersed, and a silane coupling agent (KBM-603) was added thereto.
  • N-2- (aminoethyl) -3-aminopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • a hydrophilic binder resin aqueous solution PVA105, manufactured by Kuraray Co., Ltd.
  • vanadium dioxide particles having amine group atomic groups The mass ratio of vanadium dioxide particles / silane coupling agent / hydrophilic binder resin in the obtained vanadium dioxide particle powder was 10: 1: 0.1.
  • This is prepared by adding vanadium dioxide particles to pure water so as to have a concentration of 3.0% by mass, redispersed by ultrasonic dispersion treatment for 5 minutes with the above ultrasonic disperser, and dispersed in vanadium dioxide particles. Liquid 1 was prepared.
  • thermochromic layer forming coating solution 1 The following constituent materials were sequentially added, mixed and dissolved to prepare an aqueous thermochromic layer forming coating solution 1.
  • 3 mass% vanadium dioxide particle dispersion 1 128 mass parts
  • 3 mass% boric acid aqueous solution 10 mass parts
  • 5 mass% hydrophilic binder resin aqueous solution 60 parts by mass
  • thermochromic layer forming coating solution 1 On the transparent substrate, the prepared thermochromic layer forming coating solution 1 is wet-coated under the condition that the layer thickness after drying is 1.5 ⁇ m, and then dried by blowing hot air at 110 ° C. for 2 minutes. Thus, a thermochromic layer was formed to produce a thermochromic film 1.
  • thermochromic film 2 was prepared except that after the preparation of the vanadium dioxide particle dispersion 1, a dispersion of silver nanofibers (diameter 40 nm, length 40 ⁇ m) was added to 6.0 ⁇ 10 20 cm ⁇ 3. The same procedure as for thermochromic film 1 was performed.
  • thermochromic film 3 was produced in the same manner as the thermochromic film 2 except that an aqueous dispersion of silver nanofibers was added to 5.0 ⁇ 10 20 cm ⁇ 3 .
  • thermochromic film 4 was prepared in the same manner as the thermochromic film 2 except that an aqueous dispersion of carbon nanotubes was added to 3.0 ⁇ 10 20 cm ⁇ 3 .
  • thermochromic film 5 was produced in the same procedure as the thermochromic film 2 except that an aqueous dispersion of carbon nanobuds was added to 4.0 ⁇ 10 20 cm ⁇ 3 .
  • thermochromic film 6 was produced in the same procedure as the thermochromic film 2 except that an aqueous dispersion of graphene was added so as to be 3.5 ⁇ 10 20 cm ⁇ 3 .
  • thermochromic film 7 was produced in the same procedure as the thermochromic film 3 except that vanadium dioxide particles containing 0.5 at% (atomic concentration) of tungsten were used.
  • thermochromic film 8 was produced in the same procedure as the thermochromic film 3 except that vanadium dioxide particles containing 0.5 at% molybdenum were used.
  • thermochromic film The spectral transmittance of the obtained thermochromic film was changed using a spectral transmittance meter V-770 manufactured by JASCO Corporation, and the change in light transmittance at a wavelength of 1500 nm in the near infrared region was changed from 25 ° C. to the heating temperature. The temperature at which the light transmittance did not change was defined as the phase transition temperature of the thermochromic film.
  • carrier concentration The carrier concentration of the infrared reflective layer was measured by measuring the carrier concentration of the film at room temperature by the Van der Pauw method using a Hall effect measuring device (ResiTest manufactured by Toyo Technica Co., Ltd.).
  • the solar heat acquisition rate ( ⁇ ) is a numerical value indicating the ratio of the amount of heat flowing into the room (the sum of direct transmission and indoor re-radiation) when the solar radiation incident on the glass is 1.0.
  • JIS R3106 Testing methods for transmittance, reflectance, and solar heat gain of glass
  • the thermochromic film obtained on a transparent glass with a thickness of 3 mm was attached and evaluated, and before and after the phase transition temperature 5
  • the difference in the solar heat gain rate at ° C was determined. It shows that there is a heat-shielding effect, so that this figure is large.
  • thermochromic film was measured for the heat transmissivity according to “JIS A 5759: 2008 Film for architectural window glass”. It shows that there exists a heat insulation effect, so that this figure is small.
  • thermochromic film having a large difference in the rate of solar heat acquisition and an improved heat shielding effect in summer. Moreover, since the heat transmissivity is small, a thermochromic film having a high heat insulating effect can be provided.
  • thermochromic film containing the thermochromic composition of the present invention can be configured to be pasted on glass.
  • the glass bonded with the thermochromic film can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the glass bonded with the thermochromic film when used in an automobile, it can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a thermochromic composition and a thermochromic film that produce an improved summer heat shielding effect. The thermochromic composition according to the present invention contains vanadium dioxide particles that exhibit thermochromism, and also contains a conductive material and a resin binder in addition to the vanadium dioxide particles.

Description

サーモクロミック組成物及びサーモクロミックフィルムThermochromic composition and thermochromic film
 本発明は、サーモクロミック組成物及びサーモクロミックフィルムに関する。より詳しくは、本発明は、夏場の遮熱効果を向上させたサーモクロミック組成物等に関する。 The present invention relates to a thermochromic composition and a thermochromic film. In more detail, this invention relates to the thermochromic composition etc. which improved the heat-insulating effect of summer.
 近年、例えば、車窓から入り込む太陽光の影響によって人肌で感じる暑さを低減するため、高い断熱性又は遮熱性を備えた合わせガラスが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、合わせガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。
 近赤外光遮蔽フィルムは、車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。
In recent years, for example, in order to reduce the heat felt by human skin due to the influence of sunlight entering from a vehicle window, laminated glass having high heat insulating properties or heat shielding properties has been distributed on the market. Recently, with the spread of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to laminated glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle.
The near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
 そこで、室内や車内の温度が低下する冬場においては、太陽光をできるだけ室内等に取り込みたい場合には、入射光線を取り込み、夏場の室内等の温度が上昇する場合においては、入射光線を遮蔽することができるサーモクロミック材料を含有するサーモクロミックフィルムが注目されている。 Therefore, in winter when the temperature in the room or in the vehicle decreases, the incident light is taken in to capture sunlight as much as possible into the room, and the incident light is shielded when the temperature in the room in summer increases. Thermochromic films containing thermochromic materials that can be drawn attention.
 サーモクロミック材料とは、近赤外光の遮蔽や透過の光学的性質を温度により制御することができる材料をいう。このサーモクロミック材料の代表的な例として、二酸化バナジウム(以下、「VO」ともいう。)が挙げられる。VOは、60℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。 The thermochromic material refers to a material capable of controlling the optical properties of near-infrared light shielding and transmission by temperature. A typical example of this thermochromic material is vanadium dioxide (hereinafter also referred to as “VO 2 ”). VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
 例えば、基材に酸化バナジウム粒子を含有するサーモクロミック層を設けたサーモクロミックフィルムが知られている(特許文献1参照。)。これは、酸化バナジウムの温度変化による相転移での光学特性の変化を利用し、太陽光線の近赤外領域(750~2500nm)のエネルギーを夏場は吸収して遮熱し、冬場は透過して太陽光を室内へ取り入れて暖房効果を利用している。
 すなわち、夏場は酸化バナジウム粒子が温度上昇によりM相へ変化し、M相の酸化バナジウム粒子が有する固有のプラズマ周波数(プラズマ振動の周波数)に応じた光の波長を中心にして太陽光線が吸収されるが、特定波長に対する吸収であるためその効果は限定的であった。
For example, a thermochromic film in which a thermochromic layer containing vanadium oxide particles is provided on a base material is known (see Patent Document 1). This utilizes the change in optical properties due to the phase transition of vanadium oxide due to the temperature change. It absorbs heat in the near-infrared region (750-2500 nm) of the sun's rays in the summer and shields it in the winter. Light is taken into the room and the heating effect is used.
That is, in summer, the vanadium oxide particles change to the M phase as the temperature rises, and sunlight rays are absorbed around the wavelength of light corresponding to the intrinsic plasma frequency (plasma oscillation frequency) of the M phase vanadium oxide particles. However, the effect was limited because of absorption at a specific wavelength.
特表2015-513508号公報Special table 2015-513508 gazette
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、夏場の遮熱効果を向上させたサーモクロミック組成物及びサーモクロミックフィルムを提供することである。 The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide a thermochromic composition and a thermochromic film having an improved heat shielding effect in summer.
 本発明では、酸化バナジウムを含有するサーモクロミック層中にさらに導電性物質を含有させることにより、プラズマ周波数以降の近赤外領域の光線を吸収ではなく反射させることができ、夏場の遮熱効果を向上させたサーモクロミック組成物を提供できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In the present invention, by further containing a conductive substance in the thermochromic layer containing vanadium oxide, light in the near infrared region after the plasma frequency can be reflected rather than absorbed, and the heat shielding effect in summer can be achieved. The present inventors have found that an improved thermochromic composition can be provided and have reached the present invention.
That is, the said subject which concerns on this invention is solved by the following means.
 1.サーモクロミック性を示す二酸化バナジウム粒子を含有するサーモクロミック組成物であって、
 前記二酸化バナジウム粒子に加えて導電性物質及び樹脂バインダーを含有するサーモクロミック組成物。
1. A thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties,
A thermochromic composition containing a conductive substance and a resin binder in addition to the vanadium dioxide particles.
 2.23℃におけるキャリア濃度(n)が、5×1020cm-3以下である第1項に記載のサーモクロミック組成物。 2. The thermochromic composition according to item 1, wherein the carrier concentration (n) at 23 ° C. is 5 × 10 20 cm −3 or less.
 3.前記導電性物質が、金属ナノ繊維、カーボンナノチューブ、カーボンナノバッド、又はグラフェンを含有する第1項又は第2項に記載のサーモクロミック組成物。 3. The thermochromic composition according to Item 1 or 2, wherein the conductive substance contains metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene.
 4.前記二酸化バナジウム粒子が、相転移温度を調節するための元素を含む第1項から第3項までのいずれか一項に記載のサーモクロミック組成物。 4. The thermochromic composition according to any one of Items 1 to 3, wherein the vanadium dioxide particles contain an element for adjusting a phase transition temperature.
 5.第1項から第4項までのいずれか一項に記載のサーモクロミック組成物を含有するサーモクロミックフィルム。 5. A thermochromic film containing the thermochromic composition according to any one of items 1 to 4.
 6.前記サーモクロミック組成物を含有するサーモクロミック層を透明基材上に有する第5項に記載のサーモクロミックフィルム。 6. The thermochromic film of Claim 5 which has a thermochromic layer containing the said thermochromic composition on a transparent base material.
 本発明の上記手段により、夏場の遮熱効果を向上させたサーモクロミック組成物及びサーモクロミックフィルムを提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 サーモクロミック性を示す二酸化バナジウム粒子と導電性物質が同じ層に含有されることで、夏場に酸化バナジウム粒子が温度上昇によりM相へ変化した際に導電性がさらに高まり、近赤外領域の光線を吸収ではなく反射することができるサーモクロミック組成物及びサーモクロミックフィルムを提供できることを見いだした。
By the said means of this invention, the thermochromic composition and the thermochromic film which improved the thermal-insulation effect of summer can be provided.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
The vanadium dioxide particles showing thermochromic properties and the conductive material are contained in the same layer, so that the conductivity further increases when the vanadium oxide particles change to the M phase due to temperature rise in summer, and light in the near infrared region. It has been found that a thermochromic composition and a thermochromic film capable of reflecting, rather than absorbing, can be provided.
波長800nmの光の反射率とキャリア濃度との関係Relationship between reflectance of light with a wavelength of 800 nm and carrier concentration 本発明のサーモクロミックフィルムの基本的な構成の一例を示す概略断面図Schematic sectional view showing an example of the basic configuration of the thermochromic film of the present invention 本発明のサーモクロミックフィルムの基本的な構成の他の一例を示す概略断面図Schematic sectional view showing another example of the basic configuration of the thermochromic film of the present invention
 本発明のサーモクロミック組成物は、サーモクロミック性を示す二酸化バナジウム粒子を含有するサーモクロミック組成物であって、前記二酸化バナジウム粒子に加えて導電性物質及び樹脂バインダーを含有することを特徴とする。この特徴は下記の本発明の実施態様に共通又は対応する技術的特徴である。これにより、夏場の遮熱効果を向上させたサーモクロミック組成物及びサーモクロミックフィルムを提供することができる。 The thermochromic composition of the present invention is a thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties, and contains a conductive substance and a resin binder in addition to the vanadium dioxide particles. This feature is a technical feature common to or corresponding to the embodiments of the present invention described below. Thereby, the thermochromic composition and thermochromic film which improved the heat-shielding effect of summer can be provided.
 また、23℃におけるキャリア濃度(n)は、5×1020cm-3以下であることが、夏場の近赤外領域の光線を反射できるため好ましい。 Further, the carrier concentration (n) at 23 ° C. is preferably 5 × 10 20 cm −3 or less because it can reflect light in the near infrared region in summer.
 また、前記導電性物質は、金属ナノ繊維、カーボンナノチューブ、カーボンナノバッド、又はグラフェンを含有することが、キャリア濃度の調整を好適にできるため好ましい。 Moreover, it is preferable that the conductive substance contains metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene because the carrier concentration can be adjusted suitably.
 また、前記二酸化バナジウム粒子は、相転移温度を調節するための元素を含むことが好ましい。相転移温度を最適化することで、夏場の冷房設備への負荷を減少させて、省エネルギー化を促進することができるためである。 The vanadium dioxide particles preferably contain an element for adjusting the phase transition temperature. This is because by optimizing the phase transition temperature, it is possible to reduce the load on the cooling equipment in summer and promote energy saving.
 本発明のサーモクロミックフィルムは、本発明のサーモクロミック組成物を含有するものである。 The thermochromic film of the present invention contains the thermochromic composition of the present invention.
 また、本発明のサーモクロミックフィルムは、前記サーモクロミック組成物を含有するサーモクロミック層を透明基材上に有することが、本発明の効果発現の観点から好ましい。 In addition, the thermochromic film of the present invention preferably has a thermochromic layer containing the thermochromic composition on a transparent substrate from the viewpoint of manifesting the effects of the present invention.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《サーモクロミック組成物の概要》
 本発明のサーモクロミック組成物は、サーモクロミック性を示す二酸化バナジウム粒子を含有するサーモクロミック組成物であって、前記二酸化バナジウム粒子に加えて導電性物質及び樹脂バインダーを含有するものである。
<Outline of thermochromic composition>
The thermochromic composition of the present invention is a thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties, and contains a conductive substance and a resin binder in addition to the vanadium dioxide particles.
 <導電性物質>
 本発明で用いる導電性物質としては、例えば、金属ナノ繊維(例えば、銀ナノ繊維や、その他、Cu、Ni、Co、Au等の金属ナノ繊維など。)、カーボンナノチューブ(以下、「CNT」ともいう。)、カーボンナノバッド(「CNB」、いわゆるフラーレン官能基化カーボンナノチューブ。)及びグラフェン等を挙げることができ、金属ナノ繊維、カーボンナノチューブ、カーボンナノバッド、又はグラフェンを含有することが好ましい。これは、キャリア濃度の調整を好適にできるためである。
<Conductive substance>
Examples of the conductive material used in the present invention include metal nanofibers (for example, silver nanofibers and other metal nanofibers such as Cu, Ni, Co, Au, etc.), carbon nanotubes (hereinafter also referred to as “CNT”). Carbon nanobuds (“CNB”, so-called fullerene functionalized carbon nanotubes) and graphene, and the like, and preferably contain metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene. This is because the carrier concentration can be suitably adjusted.
 (キャリア濃度)
 23℃におけるサーモクロミック組成物のキャリア濃度(n)は、5×1020cm-3以下であることが好ましく、特に5×1019~5×1020cm-3の範囲内であることが、冬場には2.5~25μmの光波長範囲を効率的に反射して断熱機能を有するとともに、夏場には近赤外領域の光線をも反射できるため好ましい。
(Carrier concentration)
The carrier concentration (n) of the thermochromic composition at 23 ° C. is preferably 5 × 10 20 cm −3 or less, and particularly within the range of 5 × 10 19 to 5 × 10 20 cm −3 . In the winter season, the light wavelength range of 2.5 to 25 μm is efficiently reflected to have a heat insulating function, and in the summer season, light in the near infrared region can also be reflected.
 (キャリア濃度の測定方法)
 本発明における23℃におけるサーモクロミック層のキャリア濃度(n)は、公知の方法で測定でき、具体的には、例えば、ホール測定装置(例えば、東陽テクニカ製、ResiTest8310)を用いて測定することができる。
(Measurement method of carrier concentration)
The carrier concentration (n) of the thermochromic layer at 23 ° C. in the present invention can be measured by a known method. Specifically, for example, it can be measured using a Hall measuring device (for example, ResiTest 8310 manufactured by Toyo Technica). it can.
 反射される光の波長には、プラズマ周波数(プラズマ振動の周波数)で決められる閾値があり、例えばITO(インジウム・スズ酸化物)のような、金属酸化物スパッタ膜のように導電性を有する膜では、そのエネルギーより低いエネルギーの光は反射される。プラズマ周波数ωは次式で定義される。
 (ω=nq/εm
The wavelength of the reflected light has a threshold value determined by the plasma frequency (plasma oscillation frequency). For example, a conductive film such as a sputtered metal oxide film such as ITO (indium tin oxide). Then, light with energy lower than that energy is reflected. The plasma frequency ω p is defined by the following equation.
(Ω p) 2 = nq 2 / εm
 上記式においてnはキャリア濃度、qはキャリアの電荷、εは誘電率、mは電子の質量をそれぞれ示す。ここで、上記式はキャリア濃度の関数になっている。
 図1にキャリア濃度と反射率の関係を示した。例えば、波長800nmの光に対する反射率はキャリア濃度2×1021cm-3から急激に大きくなり、それより長波長側の光を反射する。
 しかし、二酸化バナジウム粒子が樹脂バインダー中に分散されているような系では、二酸化バナジウム粒子同士が接触することなく導電性が発現できない。そのため、二酸化バナジウム粒子がM相へ変化してもキャリア濃度が向上せず、M相の酸化バナジウム粒子が有する固有のプラズマ周波数(プラズマ振動の周波数)に応じた光の波長を中心にした光線が吸収される、いわゆる特定波長に対する吸収のみとなる。
In the above formula, n represents carrier concentration, q represents carrier charge, ε represents dielectric constant, and m represents electron mass. Here, the above equation is a function of the carrier concentration.
FIG. 1 shows the relationship between carrier concentration and reflectance. For example, the reflectance with respect to light having a wavelength of 800 nm suddenly increases from a carrier concentration of 2 × 10 21 cm −3 , and light on the longer wavelength side is reflected.
However, in a system in which vanadium dioxide particles are dispersed in a resin binder, the conductivity cannot be expressed without contact between the vanadium dioxide particles. Therefore, even if the vanadium dioxide particles change to the M phase, the carrier concentration does not improve, and light rays centered on the wavelength of light corresponding to the intrinsic plasma frequency (plasma oscillation frequency) possessed by the M phase vanadium oxide particles. Only absorption for a so-called specific wavelength is absorbed.
 <二酸化バナジウム粒子>
 本発明に係るサーモクロミック層の好ましい態様の一つとして、二酸化バナジウムがナノ粒子(二酸化バナジウム粒子)として、バインダー樹脂に含有されている態様があげられる。これにより、サーモクロミック材料の製造自由度が高まり、より好適に本願発明の効果を奏することができる。
 本発明に係る二酸化バナジウム粒子の結晶形は、特に制限はないが、サーモクロミック性(自動調光性)を効率よく発現させる観点から、ルチル型の二酸化バナジウム粒子(VO粒子)を用いることが、特に好ましい。
 ルチル型のVO粒子は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M型とも呼ばれる。本発明に係る二酸化バナジウム粒子においては、目的を損なわない範囲で、A型、又はB型などの他の結晶型のVO粒子を含んでもよい。
<Vanadium dioxide particles>
One preferred embodiment of the thermochromic layer according to the present invention is an embodiment in which vanadium dioxide is contained in the binder resin as nanoparticles (vanadium dioxide particles). Thereby, the manufacturing freedom degree of a thermochromic material increases and it can show | play the effect of this invention more suitably.
The crystal form of the vanadium dioxide particles according to the present invention is not particularly limited, but rutile vanadium dioxide particles (VO 2 particles) may be used from the viewpoint of efficiently expressing thermochromic properties (automatic light control). Is particularly preferred.
Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called M-type. The vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
 本発明においては、サーモクロミック層中における二酸化バナジウム粒子の一次粒子及び二次粒子の数平均粒径が、200nm以下であることが好ましく、1~180nmの範囲内がより好ましく、さらに好ましくは、5~100nmの範囲内である。
 二酸化バナジウム粒子の平均粒径は、後述の方法に従って求めることができる。
In the present invention, the number average particle size of the primary and secondary vanadium dioxide particles in the thermochromic layer is preferably 200 nm or less, more preferably in the range of 1 to 180 nm, and still more preferably 5 Within the range of ˜100 nm.
The average particle diameter of the vanadium dioxide particles can be determined according to the method described later.
 本発明のサーモクロミックフィルムにおいては、前記測定方法による求めることができるサーモクロミック層中における二酸化バナジウム粒子の一次粒子の粒子個数比率が、一次粒子及び二次粒子の総粒子数の30個数%以上であることが好ましく、さらに好ましくは50個数%以上であり、特に好ましくは70個数%以上である。理想的な上限は100個数%であるが、現状における最大値としては、95個数%以下である。 In the thermochromic film of the present invention, the primary particle number ratio of vanadium dioxide particles in the thermochromic layer, which can be determined by the measurement method, is 30% by number or more of the total number of primary particles and secondary particles. Preferably, it is 50% by number or more, particularly preferably 70% by number or more. The ideal upper limit is 100% by number, but the current maximum value is 95% by number or less.
 また、二酸化バナジウム粒子のアスペクト比としては、1.0~3.0の範囲内であることが好ましい。
 このような特徴をもつ二酸化バナジウム粒子では、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒径が十分に小さいので、従来の微粒子に比べて、良好なサーモクロミック性を発揮することができる。
Further, the aspect ratio of the vanadium dioxide particles is preferably in the range of 1.0 to 3.0.
Since vanadium dioxide particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good. In addition, since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
 なお、サーモクロミック層における二酸化バナジウム粒子の濃度としては、特に制限はないが、おおむねサーモクロミック層全質量に対し、5~60質量%の範囲内であることが好ましく、より好ましくは5~40質量%の範囲内であり、さらに好ましくは5~30質量%の範囲内である。 The concentration of vanadium dioxide particles in the thermochromic layer is not particularly limited, but is generally preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the thermochromic layer. %, More preferably in the range of 5 to 30% by mass.
 (相転移温度を調節するための元素)
 本発明に係る二酸化バナジウム粒子は、相転移温度を調節するための元素を含むことが好ましい。
 相転移温度を調節するための元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)からなる群から選定された、少なくとも一つの元素を含んでいることが好ましい。
 このような元素の添加により、二酸化バナジウム粒子の相転移特性(特に、相転移温度)を調節することができる点で有効である。なお、最終的に得られる二酸化バナジウム粒子に対する、そのような添加物の総量は、バナジウム(V)原子に対して、0.1~5.0原子%程度で十分である。
(Elements for adjusting the phase transition temperature)
The vanadium dioxide particles according to the present invention preferably contain an element for adjusting the phase transition temperature.
Examples of elements for adjusting the phase transition temperature include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), and osmium. Selected from the group consisting of (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P) It is preferable that at least one element is contained.
The addition of such elements is effective in that the phase transition characteristics (particularly the phase transition temperature) of the vanadium dioxide particles can be adjusted. The total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
 なお、二酸化バナジウム粒子が、相転移温度を調節するための元素を含有する態様としては特に限定されないが、上記二酸化バナジウム粒子を製造する際に、上記元素を添加することで含有させる態様であることが好ましい。 In addition, although it does not specifically limit as an aspect in which a vanadium dioxide particle contains the element for adjusting a phase transition temperature, It is an aspect made to contain by adding the said element when manufacturing the said vanadium dioxide particle. Is preferred.
 [二酸化バナジウム粒子の製造方法]
 一般に、二酸化バナジウム粒子の製造方法は、固相法により合成されたVO焼結体を粉砕する方法と、五酸化二バナジウム(V)やバナジン酸アンモニウムなどのバナジウム化合物を原料として、有機溶媒ではなく水溶液を使用した液相でVOを合成しながら粒子成長させる水系合成法が好ましく用いられる。
 水系合成法は、平均一次粒子径が小さく、粒径のばらつきを抑制することができる点で好ましい。
[Method for producing vanadium dioxide particles]
In general, the method for producing vanadium dioxide particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a vanadium compound such as divanadium pentoxide (V 2 O 5 ) or ammonium vanadate as a raw material. An aqueous synthesis method in which particles are grown while synthesizing VO 2 in a liquid phase using an aqueous solution instead of an organic solvent is preferably used.
The aqueous synthesis method is preferable in that the average primary particle size is small and variation in particle size can be suppressed.
 更に、水系合成法としては、水熱合成法と、超臨界状態を用いた水系合成法が挙げられ、超臨界状態を用いた水系合成法(超臨界水熱合成法ともいう。)の詳細については、例えば、特開2010-58984号公報の段落番号(0011)、同(0015)~(0018)に記載されている製造方法を参照することができる。 Furthermore, examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state. Details of an aqueous synthesis method using a supercritical state (also referred to as a supercritical hydrothermal synthesis method). For example, reference can be made to the production methods described in paragraph numbers (0011) and (0015) to (0018) of JP-A No. 2010-58984.
 具体的には、例えば、本発明においては、水熱合成法を適用し、かつ、水系合成法により二酸化バナジウム粒子を含む水系分散液として調製し、水系分散液中の二酸化バナジウム粒子を乾燥させることなく、溶媒を置換する工程により二酸化バナジウム粒子を含む溶剤分散液を調製し、二酸化バナジウム粒子が離間している分散状態で疎水性バインダー樹脂溶液と混合して、サーモクロミック層形成用塗布液を調製することができる。
 その他、二酸化バナジウム粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の微粒子を核粒子として添加し、その核粒子を成長させることにより二酸化バナジウム粒子を製造することもできる。
Specifically, for example, in the present invention, a hydrothermal synthesis method is applied, and an aqueous dispersion containing vanadium dioxide particles is prepared by an aqueous synthesis method, and vanadium dioxide particles in the aqueous dispersion are dried. Prepare a solvent dispersion containing vanadium dioxide particles by the process of replacing the solvent, and mix with a hydrophobic binder resin solution in a dispersed state where the vanadium dioxide particles are separated to prepare a coating solution for forming a thermochromic layer can do.
In addition, as a method for producing vanadium dioxide particles, vanadium dioxide particles are produced by adding fine particles such as fine TiO 2 as cores of particle growth as core particles and growing the core particles as necessary. You can also.
 次いで、本発明に好適な水熱法による二酸化バナジウム粒子の製造方法について、その詳細をさらに説明する。
 以下に、代表的な水熱法による二酸化バナジウム粒子の製造工程を示す。
Next, the details of the method for producing vanadium dioxide particles by a hydrothermal method suitable for the present invention will be described.
Below, the manufacturing process of the vanadium dioxide particle by a typical hydrothermal method is shown.
 (工程1)
 バナジウム(V)を含む物質(I)と、ヒドラジン(N)又はその水和物(N・nHO)と、水とを混ぜて溶液(A)を調製する。この溶液は、物質(I)が水中に溶解した水溶液であっても良いし、物質(I)が水中に分散した懸濁液であっても良い。
(Process 1)
A substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A). This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
 物質(I)としては、例えば、五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等が挙げられる。なお、物質(I)としては、五価のバナジウム(V)を含む化合物であれば、特に限定されない。ヒドラジン(N)及びその水和物(N・nHO)は、物質(I)の還元剤として機能するものであって、水に容易に溶解する性質を有する。 Examples of the substance (I) include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. . The substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
 溶液(A)は、最終的に得られる二酸化バナジウム(VO)の単結晶微粒子に元素を添加するため、添加する元素を含む物質(II)が更に含有していてもよい。添加する元素としては、例えば、後述の相転移温度を調節するための元素が挙げられる。 In the solution (A), an element is added to the finally obtained single crystal fine particles of vanadium dioxide (VO 2 ). Therefore, the solution (A) may further contain a substance (II) containing the element to be added. As an element to add, the element for adjusting the below-mentioned phase transition temperature is mentioned, for example.
 これらの元素を、最終的に得られる二酸化バナジウム(VO)含有の単結晶微粒子に添加することにより、二酸化バナジウム粒子のサーモクロミック性、特に、相転移温度を制御し、最適なものに調節することができる。このように、相転移温度を調節して最適化することで、夏場の冷房設備への負荷と冬場の暖房設備への負荷の双方を減少させてより省エネルギー対策をすることができる。 By adding these elements to the finally obtained vanadium dioxide (VO 2 ) -containing single crystal fine particles, the thermochromic property of the vanadium dioxide particles, in particular, the phase transition temperature is controlled and adjusted to an optimum one. be able to. In this way, by adjusting and optimizing the phase transition temperature, it is possible to reduce both the load on the cooling facility in summer and the load on the heating facility in winter, thereby further saving energy.
 また、この溶液(A)は、酸化性又は還元性を有する物質(III)が更に含有されていてもよい。物質(III)としては、例えば、過酸化水素(H)が挙げられる。酸化性又は還元性を有する物質Cを添加することにより、溶液のpHを調整したり、物質(I)であるバナジウム(V)を含む物質を均一に溶解させたりすることができる。 Further, the solution (A) may further contain a substance (III) having oxidizing property or reducing property. Examples of the substance (III) include hydrogen peroxide (H 2 O 2 ). By adding the substance C having oxidizing property or reducing property, the pH of the solution can be adjusted, or the substance containing vanadium (V) as the substance (I) can be uniformly dissolved.
 (工程2)
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(VO)含有の単結晶微粒子が得られる。
(Process 2)
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶微粒子の粒径を小さくすることができるが、過度に粒径が小さいと、結晶性が低くなる。また、水熱反応処理の時間は、例えば1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶微粒子の粒径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。 The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle diameter of the obtained single crystal fine particles can be reduced, but if the particle diameter is excessively small, the crystallinity is lowered. The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
 以上の工程1及び工程2を経て、サーモクロミック性を有する二酸化バナジウム(VO)含有の単結晶微粒子を含む分散液が得られる。 Through the above steps 1 and 2, a dispersion liquid containing single crystal fine particles containing thermochromic vanadium dioxide (VO 2 ) is obtained.
 〈二酸化バナジウム粒子分散液の不純物の除去処理〉
 上記水系合成法により調製された二酸化バナジウム粒子の分散液中には、合成過程で生じた残渣などの不純物が含まれており、サーモクロミック層を形成する際に、二次凝集粒子発生のきっかけとなり、サーモクロミック層の長期保存での劣化要因となることがあり、あらかじめ分散液の段階で不純物を除去することが好ましい。
<Removal of impurities from vanadium dioxide particle dispersion>
The dispersion of vanadium dioxide particles prepared by the above water-based synthesis method contains impurities such as residues generated during the synthesis process, which triggers the generation of secondary aggregated particles when forming the thermochromic layer. In some cases, the thermochromic layer may deteriorate during long-term storage, and it is preferable to remove impurities in advance at the stage of the dispersion.
 二酸化バナジウム粒子分散液中の不純物を除去する方法としては、従来公知の異物や不純物を分離する手段を適用することができ、例えば、二酸化バナジウム粒子分散液に遠心分離を施し、二酸化バナジウム粒子を沈殿させ、上澄み中の不純物を除去し、再び分散媒を添加、分散する方法でも良いし、限外濾過膜などの交換膜を用いて不純物を系外へ除去する方法でも良いが、二酸化バナジウム粒子の凝集を防止する観点からは、限外濾過膜を用いる方法が最も好ましい。 As a method for removing impurities in the vanadium dioxide particle dispersion, conventionally known means for separating foreign substances and impurities can be applied. For example, the vanadium dioxide particle dispersion is centrifuged to precipitate vanadium dioxide particles. It is possible to remove impurities in the supernatant and add and disperse the dispersion medium again, or to remove impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation, the method using an ultrafiltration membrane is most preferable.
 限外濾過膜の材質としては、セルロース系、ポリエーテルスルホン系、ポリテトラフルオロエチレン(略称:PTFE)などを挙げることができ、その中でも、ポリエーテルスルホン系、PTFEを用いることが好ましい。
 不純物を除去した水分散液を塗布・乾燥することにより、二酸化バナジウム粒子の粉体を得ることができる。
Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
By applying and drying the aqueous dispersion from which impurities have been removed, vanadium dioxide particle powder can be obtained.
 <樹脂バインダー>
 本発明のサーモクロミック組成物は、樹脂バインダーを含有するものである。
 樹脂バインダーとしては、親水性バインダーであっても、疎水性バインダーのいずれを用いてもよい。
<Resin binder>
The thermochromic composition of the present invention contains a resin binder.
As the resin binder, either a hydrophilic binder or a hydrophobic binder may be used.
 <親水性バインダー>
 本発明において親水性バインダーとは、25℃における水100gに対し、1.0g以上溶解するバインダーをいう。
 親水性バインダーとしては、例えば、ゼラチン、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等のタンパク質、セルロース類、アルギン酸ソーダ、セルロース硫酸エステル、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体、増粘多糖類等の天然由来素材や、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。
<Hydrophilic binder>
In the present invention, the hydrophilic binder refers to a binder that dissolves 1.0 g or more per 100 g of water at 25 ° C.
Examples of hydrophilic binders include gelatin, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, cellulose sulfate, dextrin, dextran, dextran sulfate and other sugar derivatives, Naturally derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer Or acrylic resins such as acrylic acid-acrylic acid ester copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid Mutual weight Styrene-acrylic acid resin such as styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer Styrene-sodium styrene sulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-anhydrous maleic acid Acid copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer, vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-acrylic acid copolymer Vinyl acetate copolymers such as Luo salts.
 <疎水性バインダー>
 本発明のサーモクロミック組成物は、二酸化バナジウム粒子を保持するバインダーとして、疎水性バインダーを適用することも好ましい。
 本発明でいう疎水性バインダーとは、100gの水に対し、液温25℃での溶解量が1.0g未満である樹脂をいい、さらに好ましくは、溶解量が0.5g未満の樹脂であり、さらに好ましくは、溶解量が0.25g未満の樹脂である。
 本発明に適用する疎水性バインダーとしては、疎水性ポリマー、又は疎水性バインダーのモノマーを用い、硬化処理工程でポリマー化した樹脂であることが好ましい。
<Hydrophobic binder>
In the thermochromic composition of the present invention, it is also preferable to apply a hydrophobic binder as a binder for holding the vanadium dioxide particles.
The hydrophobic binder as used in the present invention refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
The hydrophobic binder applied to the present invention is preferably a resin polymerized in a curing treatment step using a hydrophobic polymer or a monomer of a hydrophobic binder.
 本発明に適用可能な疎水性ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー、アクリル酸エステル系共重合体;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリスルホン;ポリエーテルスルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)やASA樹脂(アクリロニトリル-スチレン-アクリレート樹脂)、セルロース系樹脂、ブチラール系樹脂等が挙げられる。 Examples of the hydrophobic polymer applicable to the present invention include polyethylene, polypropylene, ethylene-propylene copolymer, olefin-based polymer such as poly (4-methyl-1-pentene), acrylate-based copolymer; Halogen-containing polymers such as vinyl and chlorinated vinyl resins; Styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate; polyamides such as nylon 6, nylon 66 and nylon 610; polyacetal; polycarbonate; polyphenylene oxide; polyphenylene sulfide; Polysulfone; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile-butadiene-styrene resin), ASA resin (acrylonitrile-styrene-acrylate resin), cellulose blended with polybutadiene rubber and acrylic rubber Resin, butyral resin, and the like.
 また、本発明に適用可能な疎水性バインダーの一種として、疎水性バインダーのモノマーを用い、硬化処理工程でポリマー化する樹脂を挙げることができ、その代表的な疎水性バインダー材料としては、活性エネルギー線の照射により硬化する化合物であり、具体的にはラジカル活性種による重合反応により硬化するラジカル重合性化合物、及びカチオン活性種によるカチオン重合反応により硬化するカチオン重合性化合物を挙げることができる。 In addition, as one type of hydrophobic binder applicable to the present invention, a resin that is polymerized in a curing process using a monomer of a hydrophobic binder can be exemplified, and typical hydrophobic binder materials include active energy. Examples of the compound that is cured by irradiation with a line include a radical polymerizable compound that is cured by a polymerization reaction by a radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction by a cationic active species.
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物が挙げられ、ラジカル重合可能なエチレン性不飽和結合を有する化合物の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等の不飽和カルボン酸及びそれらの塩、エステル、ウレタン、アミドや無水物、アクリロニトリル、スチレン、さらに種々の不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等のラジカル重合性化合物が挙げられる。具体的には、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、ビス(4-アクリロキシポリエトキシフェニル)プロパン、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、N-メチロールアクリルアミド、ジアセトンアクリルアミド、エポキシアクリレート等のアクリル酸誘導体、メチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン等のメタクリル誘導体、その他、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物の誘導体が挙げられる。 Examples of the radical polymerizable compound include a compound having an ethylenically unsaturated bond capable of radical polymerization. Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid. , Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned. Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, bis (4-acryloxypolyethoxyphenyl) propane, neopentyl glycol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol Tetraacrylate, dipentaery Acrylic acid derivatives such as lithol tetraacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, oligoester acrylate, N-methylolacrylamide, diacetoneacrylamide, epoxy acrylate, methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate , Lauryl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylol Methacryl derivatives such as tan trimethacrylate, trimethylolpropane trimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane, and other derivatives of allyl compounds such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate Is mentioned.
 カチオン重合性化合物としては、各種公知のカチオン重合性のモノマーが使用できる。例えば、特開平6-9714号公報、特開2001-31892号公報、特開2001-40068号公報、特開2001-55507号公報、特開2001-310938号公報、特開2001-310937号公報、特開2001-220526号公報に例示されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。 As the cationic polymerizable compound, various known cationic polymerizable monomers can be used. For example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
 上記化合物とともに光重合開始剤を含有することが好ましい。光重合開始剤としては、「UV・EB硬化技術の応用と市場」(シーエムシー出版、田畑米穂監修/ラドテック研究会編集)などに掲載されているあらゆる公知の光重合開始剤を用いることができる。 It is preferable to contain a photopolymerization initiator together with the above compound. As the photopolymerization initiator, any known photopolymerization initiators published in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) may be used. it can.
 本発明においては、各構成材料と、二酸化バナジウム粒子を含む溶媒分散液とを含むサーモクロミック層形成用塗布液を、例えば、透明基材上に塗布した後、その後、紫外線又は電子線等の活性エネルギー線を照射する。これにより形成したサーモクロミック層薄膜を構成する組成物は速やかに硬化する。 In the present invention, after applying a coating solution for forming a thermochromic layer containing each constituent material and a solvent dispersion containing vanadium dioxide particles, for example, on a transparent substrate, thereafter, an activity such as ultraviolet rays or electron beams is applied. Irradiate energy rays. The composition which comprises the thermochromic layer thin film formed by this hardens | cures rapidly.
 活性エネルギー線の光源としては、紫外線を照射する場合には、例えば紫外線LED、紫外線レーザー、水銀アークランプ、キセノンアークランプ、低圧水銀灯、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ及び太陽光を使用することができる。電子線により硬化させる場合には、通常300eV以下のエネルギーの電子線で硬化させるが、1~5Mradの照射量で瞬時に硬化させることも可能である。 As a light source of active energy rays, when irradiating ultraviolet rays, for example, ultraviolet LED, ultraviolet laser, mercury arc lamp, xenon arc lamp, low pressure mercury lamp, fluorescent lamp, carbon arc lamp, tungsten-halogen copying lamp and sunlight are used. Can be used. In the case of curing with an electron beam, curing is usually performed with an electron beam having an energy of 300 eV or less, but it is also possible to cure instantaneously with an irradiation dose of 1 to 5 Mrad.
 一方、本発明に係るサーモクロミック層の他の形成方法としては、図2にその構成を例示するように、透明基材の構成材料である疎水性バインダーに、二酸化バナジウム粒子や親水性バインダーを含む溶媒分散液及び溶媒を添加、溶解して、成膜用ドープを調製した後、当該ドープを用いて従来公知のフィルム成膜で用いられている溶液流延法により、樹脂基材を兼ねたハイブリッドサーモクロミック層を形成する方法も好適に用いることができる。 On the other hand, as another method for forming the thermochromic layer according to the present invention, vanadium dioxide particles and a hydrophilic binder are included in the hydrophobic binder which is a constituent material of the transparent substrate, as illustrated in FIG. After adding and dissolving a solvent dispersion and a solvent to prepare a dope for film formation, a hybrid that also serves as a resin base material by the solution casting method used in the conventional film formation using the dope A method of forming a thermochromic layer can also be suitably used.
 上記方法で適用可能な疎水性バインダーとしては、従来サーモクロミックフィルムの成膜で用いられている樹脂材料を挙げることができ、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名;JSR社製)及びアペル(商品名;三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the hydrophobic binder that can be applied by the above-described method include resin materials that are conventionally used in the formation of thermochromic films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN). Such as polyester, polyethylene, polypropylene, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like Derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene tree , Polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylate And cycloolefin resins such as Arton (trade name; manufactured by JSR) and Apel (trade name; manufactured by Mitsui Chemicals).
 また、溶媒としては、特に制限はないが、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。 The solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
 《サーモクロミックフィルムの概要》
 本発明のサーモクロミックフィルムは、本発明のサーモクロミック組成物を含有するものである。
 また、本発明のサーモクロミックフィルムは、前記サーモクロミック組成物を含有するサーモクロミック層を透明基材上に有することが好ましい。
<Outline of thermochromic film>
The thermochromic film of the present invention contains the thermochromic composition of the present invention.
Moreover, it is preferable that the thermochromic film of this invention has a thermochromic layer containing the said thermochromic composition on a transparent base material.
 《サーモクロミックフィルムの層構成の概要》
 本発明のサーモクロミックフィルムは、サーモクロミック層のみからなるサーモクロミックフィルムであってもよいし、透明基材上に、サーモクロミック組成物を含有するサーモクロミック層を有するものであってもよい。
<Overview of thermochromic film layer structure>
The thermochromic film of the present invention may be a thermochromic film consisting only of a thermochromic layer, or may have a thermochromic layer containing a thermochromic composition on a transparent substrate.
 本発明のサーモクロミックフィルムの代表的な構成例について、図2を参照して説明する。図2は、二酸化バナジウムがナノ粒子(以下、このナノ粒子を「二酸化バナジウム粒子」ともいう。)として含有されたサーモクロミックフィルムの基本的な構成の一例を示す概略断面図である。
 図2に示すサーモクロミックフィルム1は、透明基材2上に、サーモクロミック層3を積層した構成を有している。このサーモクロミック層3は、バインダーB1中に、二酸化バナジウム粒子が分散されて状態で存在している。この二酸化バナジウム粒子には、二酸化バナジウム粒子が独立して存在している二酸化バナジウム粒子の一次粒子VOと、2個以上の二酸化バナジウム粒子の集合体(凝集体ともいう。)を構成している、二酸化バナジウム粒子の二次粒子VOが存在している。本発明では、2個以上の二酸化バナジウム粒子の集合体を総括して二次粒子と称し、二次粒子凝集体、又は二次凝集粒子ともいう。
A typical configuration example of the thermochromic film of the present invention will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film containing vanadium dioxide as nanoparticles (hereinafter, these nanoparticles are also referred to as “vanadium dioxide particles”).
A thermochromic film 1 shown in FIG. 2 has a configuration in which a thermochromic layer 3 is laminated on a transparent substrate 2. The thermochromic layer 3 is present in a state where vanadium dioxide particles are dispersed in the binder B1. The vanadium dioxide particles, constitute the primary particles VO S of vanadium dioxide particles vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also referred to as aggregates.) , there is a secondary particle VO M of vanadium dioxide particles. In the present invention, an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
 [サーモクロミック層]
 サーモクロミック層は、サーモクロミック材料を含有する層であれば、特に限定されない。このため、サーモクロミック層は、二酸化バナジウム粒子を含有する層であればよく、特に塗布により形成した層であることが好ましい。
 本発明において、サーモクロミック層中における二酸化バナジウム粒子の平均粒径は、以下の方法に従って求めることができる。
 はじめに、サーモクロミック層3の側面をミクロトームによりトリミングして、図2に示すような断面を露出させる。次いで、露出した断面について、透過型電子顕微鏡(TEM)を用いて、1万~10万倍で撮影する。撮影した断面の一定領域内に存在している全ての二酸化バナジウム粒子について、その粒径を測定する。この時、測定する二酸化バナジウム粒子は、50~100個の範囲内であることが好ましい。撮影した粒子には、図2に示すように単一粒子である一次粒子と、2粒子以上の凝集体である二次粒子とが含まれており、二酸化バナジウムの一次粒子VOの粒径は、各独立している粒子の直径を測定する。もし、球形でない場合には、粒子の投影面積を円換算し、その直径をもって粒径とする。一方、2個以上の粒子が凝集して存在している二酸化バナジウムについては、凝集体全体の投影面積を求めたのち、投影面積を円換算し、その直径をもって粒径とする。以上のようにして求めた一次粒子と二次粒子の各直径について、数平均直径を求める。切り出した断面部には粒子分布のばらつきがあるため、このような測定を、異なる断面領域10か所について行い、全体の数平均直径を求め、これを数平均粒径(nm)とした。
[Thermochromic layer]
The thermochromic layer is not particularly limited as long as it is a layer containing a thermochromic material. For this reason, the thermochromic layer should just be a layer containing vanadium dioxide particle, and it is preferable that it is the layer formed especially by application | coating.
In the present invention, the average particle size of the vanadium dioxide particles in the thermochromic layer can be determined according to the following method.
First, the side surface of the thermochromic layer 3 is trimmed by a microtome to expose a cross section as shown in FIG. Next, the exposed cross section is photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle size of all vanadium dioxide particles present in a certain area of the photographed cross section is measured. At this time, the vanadium dioxide particles to be measured are preferably in the range of 50 to 100 particles. The shot particles, the primary particles are single particles, as shown in FIG. 2, includes a with a two or more particles of the aggregate secondary particles, the particle size of the primary particles VO S vanadium dioxide Measure the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and its diameter is taken as the particle size. On the other hand, for vanadium dioxide in which two or more particles are aggregated, the projected area of the entire aggregate is obtained, and then the projected area is converted into a circle, and the diameter is taken as the particle size. The number average diameter is obtained for each diameter of the primary particles and secondary particles obtained as described above. Since the cut-out cross-sectional portion has a variation in particle distribution, such measurement was performed for 10 different cross-sectional regions, the whole number-average diameter was obtained, and this was defined as the number-average particle size (nm).
 本発明に係る二酸化バナジウム粒子の一次粒子の粒径としては、10~100nmの範囲内であることが好ましい。したがって、二次粒子の粒径としては、凝集している粒子数により異なるが、おおまかには50~500nmの範囲内であることが好ましい。 The primary particle size of the vanadium dioxide particles according to the present invention is preferably in the range of 10 to 100 nm. Accordingly, the particle size of the secondary particles varies depending on the number of aggregated particles, but is preferably in the range of 50 to 500 nm.
 また、本発明のサーモクロミックフィルムの好ましい態様の他の一つは、サーモクロミック層が樹脂基材機能を兼ねたハイブリッド構成である。
 例えば、図3に示すように、図2で示した透明基材2とサーモクロミック層3を同一層となって構成されるハイブリッドサーモクロミック層を有するサーモクロミックフィルムとしてもよい。
 このようなハイブリッドサーモクロミック層を形成するには、透明基材を構成しているポリマー等の樹脂バインダーを用い、当該樹脂バインダーB2中に、二酸化バナジウム粒子が独立して存在している二酸化バナジウムの一次粒子VOと、2個以上の二酸化バナジウム粒子の二次粒子VOとを分散させて、単層で透明基材機能を兼ね備えたサーモクロミック層とすればよい。ここで用いる樹脂バインダーとしては、疎水性バインダーであることが好ましい。
 各構成材料を混合、調製したドープを用いて、溶液流延法により透明基材を兼ねたハイブリッドサーモクロミック層を成膜することも好ましい。
Another preferred embodiment of the thermochromic film of the present invention has a hybrid configuration in which the thermochromic layer also functions as a resin base material.
For example, as shown in FIG. 3, it is good also as a thermochromic film which has the hybrid thermochromic layer comprised by making the transparent base material 2 shown in FIG. 2, and the thermochromic layer 3 into the same layer.
In order to form such a hybrid thermochromic layer, a resin binder such as a polymer constituting a transparent substrate is used, and vanadium dioxide particles in which vanadium dioxide particles are independently present in the resin binder B2. a primary particle VO S, 2 or more of the secondary particles VO M of vanadium dioxide particles are dispersed may be the thermochromic layer having both a transparent substrate functions as a single layer. The resin binder used here is preferably a hydrophobic binder.
It is also preferable to form a hybrid thermochromic layer that also serves as a transparent substrate by a solution casting method using a dope prepared by mixing and preparing each constituent material.
 <サーモクロミック層のその他の添加剤>
 本発明に係るサーモクロミック層に、本発明の目的とする効果を損なわない範囲で適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
<Other additives for thermochromic layer>
Various additives that can be applied to the thermochromic layer according to the present invention as long as the effects of the present invention are not impaired are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57- No. 878989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Various surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers And various known additives such as dyes and pigments.
 [サーモクロミックフィルムの作製方法(水系)]
 本発明のサーモクロミックフィルムの作製方法としては、特に制限はないが、好ましくは湿式塗布法を用いてサーモクロミック層を形成する。湿式塗布法として具体的には、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。
[Method for producing thermochromic film (aqueous)]
Although there is no restriction | limiting in particular as a preparation method of the thermochromic film of this invention, Preferably a thermochromic layer is formed using the wet apply | coating method. Specific examples of the wet coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419, US Pat. No. 2,761791, and the like. Examples thereof include a slide hopper coating method and an extrusion coating method.
 [サーモクロミックフィルムの作製方法(有機溶媒系1)]
 本発明においては、ブロック共重合体を含有する有機溶媒に、上記水系合成法により得られた粉体の二酸化バナジウム粒子を混合して分散液を調製した後、さらに疎水性バインダーを添加し、塗布・乾燥することでサーモクロミック層を形成し、サーモクロミックフィルムを作製することも好ましい。
 この場合についても、湿式塗布法でサーモクロミックフィルムを作製することが好ましい。具体的な作製方法としては、水系のサーモクロミックフィルムの作製方法と同様である。
[Method for producing thermochromic film (organic solvent system 1)]
In the present invention, after preparing a dispersion by mixing the powdered vanadium dioxide particles obtained by the above-mentioned aqueous synthesis method with an organic solvent containing a block copolymer, a hydrophobic binder is further added, and coating is performed. -It is also preferable to form a thermochromic film by drying to form a thermochromic film.
Also in this case, it is preferable to produce a thermochromic film by a wet coating method. The specific production method is the same as the production method of the water-based thermochromic film.
 [サーモクロミックフィルムの作製方法(有機溶媒系2)]
 有機溶媒を用いてサーモクロミックフィルムを作製する方法として、まず、水系合成法により得られた、二酸化バナジウム粒子を分散させた水分散液を乾燥させることなく、二酸化バナジウム粒子を分散させた水分散液にブロック共重合体を含有する水溶液を添加し、混合溶液を作製する。次に、混合溶液に有機溶媒を加え、二酸化バナジウム粒子とブロック共重合体を水相から有機相に移動させ、当該有機相を分離抽出する。そして、有機相に疎水性バインダーを混合して塗布・乾燥することでサーモクロミック層を形成し、サーモクロミックフィルムを作製する方法も好ましい。二酸化バナジウム粒子とブロック共重合体を水相から有機相に移動させる方法としては、一般的な分液操作によって行われる。
[Method for producing thermochromic film (organic solvent system 2)]
As a method for producing a thermochromic film using an organic solvent, first, an aqueous dispersion in which vanadium dioxide particles are dispersed without drying an aqueous dispersion in which vanadium dioxide particles are dispersed, obtained by an aqueous synthesis method. An aqueous solution containing a block copolymer is added to the mixture to prepare a mixed solution. Next, an organic solvent is added to the mixed solution to move the vanadium dioxide particles and the block copolymer from the aqueous phase to the organic phase, and the organic phase is separated and extracted. And the method of forming a thermochromic layer by mixing a hydrophobic binder with an organic phase, apply | coating and drying, and producing a thermochromic film is also preferable. As a method for transferring the vanadium dioxide particles and the block copolymer from the aqueous phase to the organic phase, a general liquid separation operation is performed.
 また、樹脂基材を兼ねたハイブリッドサーモクロミック層を形成する場合は、溶液流延法を適用することができ、具体的な成膜方法としては、例えば、特開2013-067074号公報、特開2013-123868号公報、特開2013-202979号公報、特開2014-066958号公報、特開2014-095729号公報、特開2014-159082号公報等に記載されている溶液流延成膜法に従って形成することができる。 Further, when forming a hybrid thermochromic layer that also serves as a resin base material, a solution casting method can be applied, and specific film forming methods include, for example, JP2013-067074A, JP In accordance with the solution casting film forming method described in JP2013-123868A, JP2013-202979A, JP2014-066958A, JP2014-095729A, JP2014-159082A, and the like. Can be formed.
 [サーモクロミックフィルムのその他の層構成]
 本発明のサーモクロミックフィルムとしては、上記説明した各構成層の他に、必要に応じて、各種機能層を設けてもよい。
 本発明のサーモクロミックフィルムの総厚としては、特に制限はないが、10~1500μmの範囲内であり、好ましくは20~1000μmの範囲内であり、さらに好ましくは30~500μmの範囲内であり、特に好ましくは40~300μmの範囲内である。
[Other layer structure of thermochromic film]
As a thermochromic film of this invention, you may provide various functional layers as needed other than each structure layer demonstrated above.
The total thickness of the thermochromic film of the present invention is not particularly limited, but is in the range of 10 to 1500 μm, preferably in the range of 20 to 1000 μm, more preferably in the range of 30 to 500 μm, Particularly preferably, it is in the range of 40 to 300 μm.
 本発明のサーモクロミックフィルムの光学特性として、JIS R3106(1998)で測定される可視光透過率としては、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは60%以上である。 As the optical characteristics of the thermochromic film of the present invention, the visible light transmittance measured by JIS R3106 (1998) is preferably 30% or more, more preferably 50% or more, and further preferably 60% or more. It is.
 <透明基材>
 本発明に適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、可撓性の付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。本発明でいう「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
<Transparent substrate>
The transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 本発明に係る透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmの範囲内である。透明基材の厚さが30μm以上であれば、取り扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。 The thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles or the like are less likely to occur during handling, and if the thickness is 200 μm or less, the followability to the curved glass surface when bonded to the glass substrate is improved. .
 本発明に係る透明基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸又は少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度の向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明のサーモクロミックフィルムを具備した合わせガラスを、自動車用のガラスとして用いられる際に、延伸フィルムがより好ましい。 The transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferred from the viewpoint of improving strength and suppressing thermal expansion. In particular, when the laminated glass provided with the thermochromic film of the present invention is used as glass for automobiles, a stretched film is more preferable.
 本発明に係る透明基材は、サーモクロミックフィルムのシワの生成やサーモクロミック層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることがさらに好ましい。 The transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the thermochromic film and cracking of the thermochromic layer. Preferably, it is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
 本発明のサーモクロミックフィルムに適用可能な透明基材としては、透明であれば特に制限されることはないが、種々の樹脂フィルムを用いることが好ましく、例えば、ポリオレフィンフィルム(例えば、シクロオレフィン、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくは、シクロオレフィンフィルム、ポリエステルフィルム、トリアセチルセルロースフィルムである。
 透明樹脂フィルムは、成膜過程で片面又は両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、成膜工程中での下引塗布をインライン下引という。
The transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used. For example, polyolefin films (for example, cycloolefin, polyethylene) , Polypropylene, etc.), polyester films (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, triacetyl cellulose films, etc. can be used, preferably cycloolefin films, polyester films, triacetyl cellulose films. .
The transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
 《サーモクロミックフィルムの用途》
 本発明のサーモクロミックフィルムの用途としては、ガラスに後貼りする構成とすることができ、このフィルムを貼合したガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。フィルムを貼合したガラスは、これらの用途以外にも使用できる。前記フィルムを貼合したガラスは、建築用又は車両に用いることが好ましく、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。
《Uses of thermochromic film》
As a use of the thermochromic film of this invention, it can be set as the structure pasted on glass, The glass which bonded this film can be used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc. The glass bonded together can be used for other purposes. The glass on which the film is bonded is preferably used for buildings or vehicles, and can be used for automobile windshields, side glasses, rear glasses, roof glasses, and the like.
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 《サーモクロミックフィルム1~8の作製》
 以下に、サーモクロミックフィルム1~8の作製方法を示す。なお、以下の実施例及び表中で単に「フィルム」ともいうものは、サーモクロミックフィルムを表す。
<< Production of thermochromic films 1-8 >>
The method for producing thermochromic films 1 to 8 will be described below. In the following examples and tables, the term “film” simply represents a thermochromic film.
 [サーモクロミックフィルム1の作製]
 <二酸化バナジウム粒子分散液1の調製>
 純水10mLに、バナジン酸アンモニウム(NHVO、和光純薬工業社製、特級)0.433gを混合し、更に、ヒドラジン水和物(N・HO、和光純薬工業社製、特級)の5質量%水溶液をゆっくり滴下し、23℃におけるpH値が9.2の溶液Xを調製した。調製した溶液Xを、市販の水熱反応処理用オートクレーブ(三愛科学社製HU-25型、SUS製本体に25mL容積のテフロン(登録商標)製内筒を備える構成)内に入れ、100℃で8時間、引き続き270℃で24時間、水熱反応処理を施した。
[Preparation of Thermochromic Film 1]
<Preparation of vanadium dioxide particle dispersion 1>
Pure water 10 mL, ammonium vanadate (NH 4 VO 3, manufactured by Wako Pure Chemical Industries, Ltd., special grade) 0.433 g were mixed, further, hydrazine hydrate (N 2 H 4 · H 2 O, Wako Pure Chemical Industries, A 5% by mass aqueous solution of a special grade) was slowly added dropwise to prepare a solution X having a pH value of 9.2 at 23 ° C. The prepared solution X is put in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body) at 100 ° C. Hydrothermal reaction treatment was applied for 8 hours, and subsequently at 270 ° C. for 24 hours.
 次に、得られた反応生成物を濾過し、濾過残渣を水及びエタノールで濾過洗浄を行った。さらに、この反応生成物を、定温乾燥機を用いて、60℃で10時間乾燥させて、二酸化バナジウム粒子の粉体を得た。 Next, the obtained reaction product was filtered, and the filtration residue was filtered and washed with water and ethanol. Further, this reaction product was dried at 60 ° C. for 10 hours by using a constant temperature dryer to obtain vanadium dioxide particle powder.
 次いで、得られた二酸化バナジウム粒子の粉体とエタノールを超音波分散機(エスエムテー社製UH-300)で30分間の超音波分散処理を施して再分散させ、それにシランカップリング剤(KBM-603:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業社製)と親水性バインダー樹脂水溶液(PVA105、クラレ社製)を入れ、高速撹拌機において定温60℃で2時間撹拌して、遠心分離して沈殿させ、60℃で真空乾燥することで、アミン基の原子団を有する二酸化バナジウム粒子粉体を得た。得られた二酸化バナジウム粒子粉体の二酸化バナジウム粒子/シランカップリング剤/親水性バインダー樹脂の質量比は10:1:0.1だった。これを純水に二酸化バナジウム粒子が3.0質量%の濃度となるように添加して調製し、上記超音波分散機で5分間の超音波分散処理を施して再分散させ、二酸化バナジウム粒子分散液1を調製した。 Subsequently, the obtained vanadium dioxide particle powder and ethanol were subjected to ultrasonic dispersion treatment for 30 minutes with an ultrasonic dispersing machine (UH-300 manufactured by SMT Co., Ltd.) and redispersed, and a silane coupling agent (KBM-603) was added thereto. : N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and a hydrophilic binder resin aqueous solution (PVA105, manufactured by Kuraray Co., Ltd.), and at a constant temperature of 60 ° C. for 2 hours with a high-speed stirrer Stirring, centrifuging and precipitating, and vacuum drying at 60 ° C. yielded vanadium dioxide particles having amine group atomic groups. The mass ratio of vanadium dioxide particles / silane coupling agent / hydrophilic binder resin in the obtained vanadium dioxide particle powder was 10: 1: 0.1. This is prepared by adding vanadium dioxide particles to pure water so as to have a concentration of 3.0% by mass, redispersed by ultrasonic dispersion treatment for 5 minutes with the above ultrasonic disperser, and dispersed in vanadium dioxide particles. Liquid 1 was prepared.
 <サーモクロミック層形成用塗布液1の調製>
 下記の各構成材料を順次添加、混合及び溶解して水系のサーモクロミック層形成用塗布液1を調製した。
 3質量%の二酸化バナジウム粒子分散液1 128質量部
 3質量%のホウ酸水溶液          10質量部
 5質量%の親水性バインダー樹脂水溶液(PVA105、クラレ社製)
                      60質量部
<Preparation of thermochromic layer forming coating solution 1>
The following constituent materials were sequentially added, mixed and dissolved to prepare an aqueous thermochromic layer forming coating solution 1.
3 mass% vanadium dioxide particle dispersion 1 128 mass parts 3 mass% boric acid aqueous solution 10 mass parts 5 mass% hydrophilic binder resin aqueous solution (PVA105, manufactured by Kuraray Co., Ltd.)
60 parts by mass
 <サーモクロミック層の形成>
 透明基材上に、前記調製したサーモクロミック層形成用塗布液1を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで110℃の温風を2分間吹きつけて乾燥させて、サーモクロミック層を形成して、サーモクロミックフィルム1を作製した。
<Formation of thermochromic layer>
On the transparent substrate, the prepared thermochromic layer forming coating solution 1 is wet-coated under the condition that the layer thickness after drying is 1.5 μm, and then dried by blowing hot air at 110 ° C. for 2 minutes. Thus, a thermochromic layer was formed to produce a thermochromic film 1.
 [サーモクロミックフィルム2の作製]
 サーモクロミックフィルム2の作製は、二酸化バナジウム粒子分散液1の調製後に、銀ナノ繊維(直径40nm、長さ40μm)の分散液を6.0×1020cm-3となるように添加した点以外は、サーモクロミックフィルム1と同様の手順で行った。
[Preparation of Thermochromic Film 2]
The thermochromic film 2 was prepared except that after the preparation of the vanadium dioxide particle dispersion 1, a dispersion of silver nanofibers (diameter 40 nm, length 40 μm) was added to 6.0 × 10 20 cm −3. The same procedure as for thermochromic film 1 was performed.
 [サーモクロミックフィルム3の作製]
 サーモクロミックフィルム3の作製は、銀ナノ繊維の水分散液を5.0×1020cm-3となるように添加した点以外は、サーモクロミックフィルム2と同様の手順で行った。
[Preparation of Thermochromic Film 3]
The thermochromic film 3 was produced in the same manner as the thermochromic film 2 except that an aqueous dispersion of silver nanofibers was added to 5.0 × 10 20 cm −3 .
 [サーモクロミックフィルム4の作製]
 サーモクロミックフィルム4の作製は、カーボンナノチューブの水分散液を3.0×1020cm-3となるように添加した点以外は、サーモクロミックフィルム2と同様の手順で行った。
[Preparation of Thermochromic Film 4]
The thermochromic film 4 was prepared in the same manner as the thermochromic film 2 except that an aqueous dispersion of carbon nanotubes was added to 3.0 × 10 20 cm −3 .
 [サーモクロミックフィルム5の作製]
 サーモクロミックフィルム5の作製は、カーボンナノバッドの水分散液を4.0×1020cm-3となるように添加した点以外は、サーモクロミックフィルム2と同様の手順で行った。
[Preparation of Thermochromic Film 5]
The thermochromic film 5 was produced in the same procedure as the thermochromic film 2 except that an aqueous dispersion of carbon nanobuds was added to 4.0 × 10 20 cm −3 .
 [サーモクロミックフィルム6の作製]
 サーモクロミックフィルム6の作製は、グラフェンの水分散液を3.5×1020cm-3となるように添加した点以外は、サーモクロミックフィルム2と同様の手順で行った。
[Preparation of Thermochromic Film 6]
The thermochromic film 6 was produced in the same procedure as the thermochromic film 2 except that an aqueous dispersion of graphene was added so as to be 3.5 × 10 20 cm −3 .
 [サーモクロミックフィルム7の作製]
 サーモクロミックフィルム7の作製は、0.5at%(原子濃度)のタングステンが含有されている二酸化バナジウム粒子を使用した点以外は、サーモクロミックフィルム3と同様の手順で行った。
[Preparation of Thermochromic Film 7]
The thermochromic film 7 was produced in the same procedure as the thermochromic film 3 except that vanadium dioxide particles containing 0.5 at% (atomic concentration) of tungsten were used.
 [サーモクロミックフィルム8の作製]
 サーモクロミックフィルム8の作製は、0.5at%のモリブデンが含有されている二酸化バナジウム粒子を使用した点以外は、サーモクロミックフィルム3と同様の手順で行った。
[Preparation of thermochromic film 8]
The thermochromic film 8 was produced in the same procedure as the thermochromic film 3 except that vanadium dioxide particles containing 0.5 at% molybdenum were used.
 [評価方法]
 (相転移温度)
 得られたサーモクロミックフィルムの分光透過率を、日本分光社製の分光透過率計V-770を用い、近赤外領域である波長1500nmでの光透過率の変化を25℃から加熱温度変化させて測定し、光透過率が変化しなくなる温度をそのサーモクロミックフィルムの相転移温度とした。
[Evaluation methods]
(Phase transition temperature)
The spectral transmittance of the obtained thermochromic film was changed using a spectral transmittance meter V-770 manufactured by JASCO Corporation, and the change in light transmittance at a wavelength of 1500 nm in the near infrared region was changed from 25 ° C. to the heating temperature. The temperature at which the light transmittance did not change was defined as the phase transition temperature of the thermochromic film.
 (キャリア濃度)
 赤外線反射層のキャリア濃度の測定は、ホール効果測定装置(東陽テクニカ社製 ResiTest)を用いて、Van der Pauw法による、室温における膜のキャリア濃度を測定した。
(Carrier concentration)
The carrier concentration of the infrared reflective layer was measured by measuring the carrier concentration of the film at room temperature by the Van der Pauw method using a Hall effect measuring device (ResiTest manufactured by Toyo Technica Co., Ltd.).
 (日射熱取得率差)
 日射熱取得率(η)は、ガラスに入射する日射を1.0とした場合、室内に流入する熱量(直接透過と室内側再放射の和)の割合を示す数値である。JIS R3106(ガラス類の透過率・反射率・日射熱取得率の試験方法)に準拠し、厚さ3mmの透明ガラスに得られたサーモクロミックフィルムを貼り付けて評価し、相転移温度の前後5℃での日射熱取得率の差を求めた。この数値が大きい程、遮熱効果があることを示す。
(Solar heat acquisition rate difference)
The solar heat acquisition rate (η) is a numerical value indicating the ratio of the amount of heat flowing into the room (the sum of direct transmission and indoor re-radiation) when the solar radiation incident on the glass is 1.0. In accordance with JIS R3106 (Testing methods for transmittance, reflectance, and solar heat gain of glass), the thermochromic film obtained on a transparent glass with a thickness of 3 mm was attached and evaluated, and before and after the phase transition temperature 5 The difference in the solar heat gain rate at ° C was determined. It shows that there is a heat-shielding effect, so that this figure is large.
 (熱貫流率の評価)
 得られたサーモクロミックフィルムを「JIS A 5759:2008 建築窓ガラス用フィルム」に従い熱貫流率を測定した。この数値が小さい程、断熱効果があることを示す。
(Evaluation of heat transmissibility)
The obtained thermochromic film was measured for the heat transmissivity according to “JIS A 5759: 2008 Film for architectural window glass”. It shows that there exists a heat insulation effect, so that this figure is small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (まとめ)
 以上の結果から、本発明によれば、日射熱取得率差が大きく夏場の遮熱効果が向上したサーモクロミックフィルムを提供できる。また、熱貫流率が小さいことから断熱効果の高いサーモクロミックフィルムを提供できる。
(Summary)
From the above results, according to the present invention, it is possible to provide a thermochromic film having a large difference in the rate of solar heat acquisition and an improved heat shielding effect in summer. Moreover, since the heat transmissivity is small, a thermochromic film having a high heat insulating effect can be provided.
 本発明のサーモクロミック組成物を含有するサーモクロミックフィルムは、ガラスに後貼りする構成とすることができる。当該サーモクロミックフィルムを貼合したガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。当該サーモクロミックフィルムを貼合したガラスを、例えば、自動車で使用する場合には、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。 The thermochromic film containing the thermochromic composition of the present invention can be configured to be pasted on glass. The glass bonded with the thermochromic film can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. For example, when the glass bonded with the thermochromic film is used in an automobile, it can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
 1 サーモクロミックフィルム
 2 透明基材
 3 サーモクロミック層
 B1、B2 樹脂バインダー
 VO 二酸化バナジウム粒子の一次粒子
 VO 二酸化バナジウム粒子の二次粒子
DESCRIPTION OF SYMBOLS 1 Thermochromic film 2 Transparent base material 3 Thermochromic layer B1, B2 Resin binder VO S Primary particle of vanadium dioxide particle Secondary particle of VO M vanadium dioxide particle

Claims (6)

  1.  サーモクロミック性を示す二酸化バナジウム粒子を含有するサーモクロミック組成物であって、
     前記二酸化バナジウム粒子に加えて導電性物質及び樹脂バインダーを含有するサーモクロミック組成物。
    A thermochromic composition containing vanadium dioxide particles exhibiting thermochromic properties,
    A thermochromic composition containing a conductive substance and a resin binder in addition to the vanadium dioxide particles.
  2.  23℃におけるキャリア濃度(n)が、5×1020cm-3以下である請求項1に記載のサーモクロミック組成物。 The thermochromic composition according to claim 1, wherein the carrier concentration (n) at 23 ° C. is 5 × 10 20 cm −3 or less.
  3.  前記導電性物質が、金属ナノ繊維、カーボンナノチューブ、カーボンナノバッド、又はグラフェンを含有する請求項1又は請求項2に記載のサーモクロミック組成物。 The thermochromic composition according to claim 1 or 2, wherein the conductive substance contains metal nanofibers, carbon nanotubes, carbon nanobuds, or graphene.
  4.  前記二酸化バナジウム粒子が、相転移温度を調節するための元素を含む請求項1から請求項3までのいずれか一項に記載のサーモクロミック組成物。 The thermochromic composition according to any one of claims 1 to 3, wherein the vanadium dioxide particles contain an element for adjusting a phase transition temperature.
  5.  請求項1から請求項4までのいずれか一項に記載のサーモクロミック組成物を含有するサーモクロミックフィルム。 A thermochromic film containing the thermochromic composition according to any one of claims 1 to 4.
  6.  前記サーモクロミック組成物を含有するサーモクロミック層を透明基材上に有する請求項5に記載のサーモクロミックフィルム。 The thermochromic film according to claim 5, which has a thermochromic layer containing the thermochromic composition on a transparent substrate.
PCT/JP2017/037930 2016-11-16 2017-10-20 Thermochromic composition and thermochromic film WO2018092502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222983 2016-11-16
JP2016222983A JP2020012011A (en) 2016-11-16 2016-11-16 Thermochromic composition and thermochromic film

Publications (1)

Publication Number Publication Date
WO2018092502A1 true WO2018092502A1 (en) 2018-05-24

Family

ID=62145385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037930 WO2018092502A1 (en) 2016-11-16 2017-10-20 Thermochromic composition and thermochromic film

Country Status (2)

Country Link
JP (1) JP2020012011A (en)
WO (1) WO2018092502A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762552A (en) * 2019-03-19 2019-05-17 江苏江山红化纤有限责任公司 Modified photochromic micro-encapsulation of a kind of graphene and preparation method thereof
US20220089835A1 (en) * 2020-09-22 2022-03-24 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
CN118638296A (en) * 2024-08-14 2024-09-13 山东一诺威聚氨酯股份有限公司 Intelligent temperature control TPU material applied to automobile glass film and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613426B1 (en) * 2023-09-19 2023-12-13 전상남 Surface protection film for anti static and infrared reflection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221412B2 (en) * 1997-11-25 2001-10-22 日本電気株式会社 Thermal control method and device
JP2007170932A (en) * 2005-12-21 2007-07-05 National Institute Of Advanced Industrial & Technology Method for reversibly controlling surface plasmon resonance characteristic of metal particulate, material, and device
JP2012140754A (en) * 2010-12-28 2012-07-26 Hiraoka & Co Ltd Variable lighting-sheet with heat-shielding and heat-releasing properties
JP2012250879A (en) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd Thermochromic film, interlayer for laminated glass, laminated glass and pasting film
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body
WO2016017604A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Optical film and method for manufacturing optical film
WO2016152879A1 (en) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 Thermochromic film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221412B2 (en) * 1997-11-25 2001-10-22 日本電気株式会社 Thermal control method and device
JP2007170932A (en) * 2005-12-21 2007-07-05 National Institute Of Advanced Industrial & Technology Method for reversibly controlling surface plasmon resonance characteristic of metal particulate, material, and device
JP2012140754A (en) * 2010-12-28 2012-07-26 Hiraoka & Co Ltd Variable lighting-sheet with heat-shielding and heat-releasing properties
JP2012250879A (en) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd Thermochromic film, interlayer for laminated glass, laminated glass and pasting film
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body
WO2016017604A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Optical film and method for manufacturing optical film
WO2016152879A1 (en) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 Thermochromic film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762552A (en) * 2019-03-19 2019-05-17 江苏江山红化纤有限责任公司 Modified photochromic micro-encapsulation of a kind of graphene and preparation method thereof
US20220089835A1 (en) * 2020-09-22 2022-03-24 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
US11713385B2 (en) * 2020-09-22 2023-08-01 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
US20230383092A1 (en) * 2020-09-22 2023-11-30 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
CN118638296A (en) * 2024-08-14 2024-09-13 山东一诺威聚氨酯股份有限公司 Intelligent temperature control TPU material applied to automobile glass film and preparation method thereof

Also Published As

Publication number Publication date
JP2020012011A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2016052740A1 (en) Optical film and process for producing optical film
WO2018092502A1 (en) Thermochromic composition and thermochromic film
JP6384247B2 (en) Optical film and optical film manufacturing method
JP2016188939A (en) Optical film
JP2007334150A (en) Polarizing film for window and front window for vehicle
JP6465117B2 (en) Manufacturing method of optical film
JPWO2016017604A1 (en) Optical film and optical film manufacturing method
WO2017212778A1 (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP2009098598A (en) Polarizing plate, method of producing the same, and glass
WO2017077797A1 (en) Thermochromic film and thermochromic composite body
WO2017073183A1 (en) Thermochromic film and method for producing thermochromic film
WO2017104313A1 (en) Optical film
JP2018058734A (en) Thermochromic vanadium dioxide-containing core-shell particle and production process thereof, and thermochromic film and production process thereof
WO2017221633A1 (en) Thermochromic film
JP6638570B2 (en) Method for producing thermochromic film
JP2019135273A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2019058833A1 (en) Infrared absorptive material, infrared sensor, wavelength selective light source and radiation cooling system
JP2019135272A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
WO2016158620A1 (en) Optical film
CN113896232B (en) Titanium dioxide material and preparation method and application thereof
WO2017033533A1 (en) Thermochromic film and thermochromic composite
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
CN116670072A (en) Heat ray shielding resin sheet
TW202003726A (en) Silver nanowire ink, method for producing transparent conductive film, and transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP