WO2018090972A1 - 继电器的触点保护电路及包含该触点保护电路的供电控制装置 - Google Patents
继电器的触点保护电路及包含该触点保护电路的供电控制装置 Download PDFInfo
- Publication number
- WO2018090972A1 WO2018090972A1 PCT/CN2017/111625 CN2017111625W WO2018090972A1 WO 2018090972 A1 WO2018090972 A1 WO 2018090972A1 CN 2017111625 W CN2017111625 W CN 2017111625W WO 2018090972 A1 WO2018090972 A1 WO 2018090972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control module
- relay
- time
- protection circuit
- module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/02—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K2017/515—Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais
Definitions
- the invention relates to a smart device control technology, in particular to a contact protection circuit for a relay and a power supply control device including the contact protection circuit.
- the wall switch used in smart homes generally follows the standard of the 86 bottom case. Since there are more power supply parts, radio frequency parts and electronic control parts than the traditional switches, the space is very limited.
- the mechanical relay is used as the conduction control device. Since the contact resistance of the mechanical relay contact is small, the heat generated by the large current is small, which is suitable for high-power control, but it is difficult to put it if multi-channel control is to be realized. In the case of large mechanical relays, only small mechanical relays can be used, while small mechanical relays have weaker conductance and electromagnetic attraction due to the small contact area and small suction coil.
- LED is a capacitive AC load. Unlike traditional resistive lamps, it will produce 20 to 40 times its own rated working current at the moment of power-on. Large currents will act on the small contacts of the relay, causing high temperatures and contact material transfer. Eventually, after multiple firings, the contacts will stick together and the loop will not be released, causing malfunction.
- a contact protection circuit for a relay comprising: a first control module and a second control module, the first control module comprising a relay, the second control module comprising a semiconductor control module, the first control module and the The second control modules are connected in parallel with each other and are electrically connected to the AC input circuit and the capacitive AC load, respectively.
- the contact protection circuit further includes: a timing control module, a relay control module, and a zero-crossing detection module; the relay control module is configured to control on and off of the relay; and the zero-crossing detection module is configured to control the semiconductor
- the control module is turned on when the alternating current zero-crossing point is used;
- the timing control module is configured to control the zero-crossing detection module to be turned on at a first time when receiving the on-signal to turn on the semiconductor control module when the alternating current zero-crossing point Controlling the relay control module to be turned on to close the relay at a second time, and controlling the zero-crossing detection module to be turned off to close the semiconductor control module at a third time, the second time being at the first
- the first predetermined time is delayed after the time
- the third time is delayed by the second predetermined time after the second time.
- an overheat protection circuit breaker is further connected in series in the second control module, and the overheat protection circuit breaker is configured to close the method when detecting that the temperature of the semiconductor control module reaches a set temperature Semiconductor control module.
- the timing control module is further configured to control the relay control module to be turned off to disconnect the relay when receiving the disconnection signal.
- the contact protection circuit further includes: when it is detected that the cumulative number of times the semiconductor control module is turned on/off within a predetermined period of time exceeds a predetermined value, the timing control module increases control The time interval during which the semiconductor control module is turned on/off.
- a power supply control device including a relay contact protection circuit for supplying power to a capacitive AC load, the relay contact protection circuit comprising: a first control module and a second control module, the first control module including a relay
- the second control module includes a semiconductor control module, wherein the relay contact protection circuit further includes: a timing control module, a relay control module, and a zero-crossing detection module; the relay control module is used to control the The on/off detection module is configured to control the semiconductor control module to be turned on when an alternating current zero crossing point; the timing control module is configured to control the first time when receiving the on signal The zero detection module is turned on to turn on the semiconductor control module, and the relay control module is controlled to be turned on to close the relay at a second time, and the zero-cross detection module is turned off to turn off the semiconductor at a third time. Controlling, the second time is delayed by the first predetermined time after the first time, the third Between a second predetermined delay time after the second time.
- an overheat protection circuit breaker is also connected in series in the second control module.
- the timing control module is further configured to control the relay control module to be turned off to disconnect the relay when receiving the disconnection signal.
- the zero-crossing detection module remains in an off state during the process of controlling the relay control module to be disconnected.
- the timing control module when it is detected that the cumulative number of times the semiconductor control module is turned on/off within a predetermined period of time exceeds a predetermined value, the timing control module is increased. Controlling a time interval during which the semiconductor control module is turned on/off.
- the semiconductor device first absorbs the large pulse current at the time of power-on, and the general semiconductor device has a certain equivalent internal resistance.
- the long-time conduction of the high-power load generates a large amount of heat, and needs to be installed with heat dissipation.
- the film can work stably for a long time, and the relay has very small contact resistance, which is suitable for working with a high-power load for a long time. Therefore, after the circuit enters the steady state, it switches to the relay contact to maintain conduction.
- FIG. 1 is a circuit block diagram of a power supply control device including a relay contact protection circuit provided in Embodiment 1.
- FIG. 2 is a circuit block diagram of a power supply control device including a relay contact protection circuit provided in Embodiment 2.
- FIG. 3 is a circuit block diagram of a power supply control device including a relay contact protection circuit provided in Embodiment 3.
- Embodiment 1 of the present invention provides a power supply control apparatus including a relay contact protection circuit, including: a first control module 11, a second control module 12, a timing control module 13, a relay control module 14, and Zero detection module 15.
- the first control module 11 and the second control module 12 are connected in parallel with each other and are electrically connected to the AC input circuit 16 and the capacitive AC load 17 respectively.
- the AC input circuit 16 is connected to an external circuit such as an AC input.
- the first control module 11 includes a relay 111 therein.
- the second control module 12 includes a semiconductor control module 121.
- the relay 111 is a mechanical relay, but is not limited to a normal pull-in type relay or a magnetic holding relay.
- the semiconductor control module 121 includes a semiconductor switching device and a corresponding control circuit thereof.
- the semiconductor switching device 121 is not limited to a power device such as a field effect transistor, a thyristor, or an insulated gate bipolar transistor (IGBT).
- IGBT insulated gate bipolar transistor
- the capacitive AC load 17 refers to a device whose electrical characteristics are similar to those of a capacitor, which generate a large inrush current at the moment of power-on, which may be the device itself or a circuit for supplying alternating current to other capacitive devices. Switches, sockets, sockets, etc.
- the relay control module 14 is used to control the on and off of the relay 111, which may specifically include a coil of the relay and a drive circuit corresponding to the type of the relay.
- the zero-crossing detection module 15 includes an AC zero-crossing detection circuit and a control signal output function.
- the zero-crossing detection module 15 is used to control the on and off of the semiconductor control module 121, and can ensure that the turn-on of the semiconductor control module 121 can be completed at the voltage zero point of the alternating current to ensure that the impact energy of the semiconductor control module 121 is minimized.
- the timing control module 13 implements receiving "on” and “off” signals and controls the on-off timing of the relay control module 14 and the zero-crossing detection module 15 in accordance with predetermined logic.
- the "on” and “off” signals may be derived from control commands received by the network module, or switching signals triggered by physical switches.
- the timing control module 13 can be implemented by a hardware circuit or a general control chip plus logic code without any limitation.
- the timing control module 13 controls the zero-crossing detection module 15 to be turned on to turn on the semiconductor control module 121 at the first time, and to control the relay control module 14 to be turned on and closed at the second time.
- the relay 111 controls the zero-crossing detection module 15 to be turned off to turn off the semiconductor control module 121, the second time is delayed by the first predetermined time after the first time, and the third time is delayed by the second predetermined time after the second time.
- an AC cycle of AC is about 20 milliseconds, and for a capacitive AC load, most of the inrush current will last only one AC cycle, that is, 20 milliseconds.
- the first predetermined time can be based on Zero detection result (ie, the time point when the semiconductor control module is turned on 121)
- the calculation is made to ensure that the relay 111 has passed the current surge time when it is turned on at the second time. Therefore, the second time is determined to be the zero-crossing detection module 15 after the zero-point conduction of the semiconductor control module 121 is delayed by more than one AC cycle. Therefore, in the embodiment, the first predetermined time can be set to 1.5. Communication cycle.
- the control zero-crossing detection module 15 is turned off, that is, the second predetermined time delay exceeds the conduction time of the relay.
- the conduction time needs to be according to the type of the relay and The control circuit is confirmed by measurement.
- the second predetermined time can also be very short, that is, the second time is substantially the same as the third time.
- the second predetermined time is maintained at a fixed value, for example, 10 milliseconds. At this time, the second predetermined time remains unchanged regardless of how the on-time of the relay is reduced.
- the timing control module 13 turns on the relay control module 14, and after the relay control module 14 is turned on, the timing control module 13 controls the zero-crossing detection module. 15 closed. Since the relay action takes time, it is ensured that the relay 111 is already in the on state at the third time.
- the semiconductor control module 121 after receiving the "on" signal, the semiconductor control module 121 is first turned on, and a loop is formed between the alternating current input circuit 16 and the capacitive alternating current load 17, and the capacitive alternating current load 17 begins.
- the capacitive AC load 17 has entered a stable operating state, at which time the relay 111 is turned on and the semiconductor control module 121 is turned off, between the AC input circuit 16 and the capacitive AC load 17.
- the loop is changed via relay 111.
- the timing control module 13 controls the relay control module 14 to open to open the relay 111.
- the zero crossing detection module 15 does not need to be operated, and thus can remain in the off state.
- the AC input circuit 16 and the capacitive AC load 17 The circuit was cut off.
- the semiconductor device first absorbs the large pulse current at the time of power-on, and the general semiconductor device has a certain equivalent internal resistance.
- the long-time conduction of the high-power load generates a large amount of heat, and needs to be installed.
- the heat sink can work stably for a long time, and the relay has very small contact resistance, which is suitable for working with a large power load for a long time. Therefore, after the circuit enters the steady state, it switches to the relay contact to maintain conduction.
- FIG. 2 it is a contact protection circuit for a small relay according to Embodiment 2 of the present invention, which is similar to the circuit shown in Embodiment 1, except that the second control module 12 further includes a semiconductor control module 121.
- the overheat protection circuit breaker 122 is connected in series.
- the overheat protection circuit breaker 122 is not limited to a fuse, or an electronic temperature detection controlled circuit breaker.
- the reason for using the overheat protection circuit breaker 122 in series with the semiconductor control module 121 is that once the semiconductor control module 121 fails, the second control module is turned off.
- the overheat protection circuit breaker 122 is used to detect the temperature of the semiconductor control module 121. When the surface temperature of the semiconductor control module 121 reaches the set temperature, the control branch of the semiconductor control module 121 is completely cut off to avoid an accident.
- the semiconductor control module 121 When the semiconductor control module 121 is turned on, a large amount of heat is generated. However, due to the small space, it is not conducive to heat dissipation. When the heat is accumulated too much and exceeds the semiconductor junction temperature, the semiconductor control module 121 will fail, and most semiconductor control modules will fail. The 121 failure usually manifests as a breakdown and is always on, so it will generate more heat and cannot be turned off. By introducing the overheat protection circuit breaker 122, the semiconductor control module 121 can be prevented from overheating and the reliability of the circuit can be improved.
- FIG. 3 it is a control flow chart of the timing control module 13 of the contact protection circuit of the small relay according to Embodiment 3 of the present invention. As shown in FIG. 3, the timing control module 13 performs the following steps in addition to the on/off of the flow control circuit according to the above embodiment:
- Step S1 accumulating the number of switches when receiving the on/off signal of the semiconductor control module 121;
- step S2 when it is detected that the switch control frequency within the predetermined time period exceeds the predetermined value, the timing control module 13 increases the time interval for controlling the on/off of the semiconductor control module 121.
- the semiconductor control module 121 When the switch is frequently controlled, the semiconductor control module 121 rapidly accumulates a large amount of heat, so the timing control module 13 needs to realize that when several frequent controls occur, the control reaction speed is slowed down and the heat generation is reduced. That is, when the semiconductor control module 121 is frequently switched in a short time, the interval time during which the timing control module 13 controls the semiconductor control module 121 to be turned on/off within a certain period of time is limited, and if the continuous switch is continued, the limit is always extended. In addition, the interval time can be extended as the frequency of switching control of the semiconductor control module increases.
- the on/off operation of the semiconductor control module 121 is increased by a predetermined time, such as an interval of 1 second.
- a predetermined time such as an interval of 1 second.
- the interval time can also be related to the frequency of on/off. For example, when the current is turned on/off 5 times in 1 second, the time interval of 1 second can be increased, and when the current is turned on/off 10 times in 1 second, the time interval of 2 seconds can be increased.
Landscapes
- Electronic Switches (AREA)
Abstract
一种继电器的触点保护电路,包括:相互之间并联且两端分别与交流电输入电路(16)以及容性交流负载(17)电性相连的第一控制模块(11)与第二控制模块(12),第一控制模块包括继电器(111),第二控制模块包括半导体控制模块(121),该保护电路还包括时序控制模块(13)、继电器控制模块(14)及过零检测模块(15)。时序控制模块当接收到导通信号时在第一时间控制过零检测模块导通从而导通半导体控制模块,在第二时间控制继电器控制模块导通从而闭合继电器,并在第三时间控制过零检测模块关闭,第二时间及第三时间分别在第一时间后延迟预定时间。该保护电路可以避免继电器承受负载上电期间的大电流冲击。此外,还提供一种包括该保护电路的供电控制装置。
Description
本发明涉及智能设备控制技术,尤其涉及一种继电器的触点保护电路及包含该触点保护电路的供电控制装置。
智能家居使用的墙壁开关一般遵循86底壳标准,由于比传统开关多出电源部分,无线射频部分,电控部分,因此空间十分有限。
现有技术中控制交流负载通断通常采用两种方案:
1)使用半导体器件作为导通控制器件,由于半导体器件等效内阻都比较大,在导通过程中会产生大量的热,而开关底壳空间狭小,不利于热量耗散,因此,使用此方案的开关允许功率都比较小,一般只有200~300W,因此不适于智能家居中大部分设备的控制使用。
2)使用机械式继电器作为导通控制器件,由于机械式继电器触点接触电阻小,通过大电流时发热量很小,比较适合做大功率控制使用,但如果要实现多路控制时,难以放入大型的机械式继电器,因此只能选用小型机械式继电器,而小型机械式继电器由于触点面积小,吸合线圈小,所以导流能力和电磁吸合力都偏弱。
而现在越来越多人都开始选择LED作为家用灯具,LED属于容性交流负载,不同于传统的阻性灯具,在上电的瞬间会产生20~40倍与自身额定的工作电流,瞬间的大电流会作用在继电器的小触点上,引起高温和触点物质转移,最终,经过多次的打火,会使得触点粘连,无法释放回路,造成故障。
由于机械式继电器的导通是靠电磁力吸合衔铁,使得衔铁连接的簧片
上的触点闭合,使电路导通,而机械动作时间在不同使用环境里,都不尽相同,因此难以实现与交流电同步过零导通,而如果正好在交流电相位的峰谷时刻导通电路,将会造成更大的瞬间冲击电流。
发明内容
有鉴于此,有必要提供一种继电器的触点保护电路及包含该触点保护电路的供电控制装置,其可以解决现有技术中容性负载上电瞬间对继电器触点的损伤问题。
一种继电器的触点保护电路,包括:第一控制模块与第二控制模块,所述第一控制模块包括继电器,所述第二控制模块包括半导体控制模块,所述第一控制模块与所述第二控制模块相互之间并联且两端分别与交流电输入电路以及容性交流负载电性相连。所述触点保护电路还包括:时序控制模块、继电器控制模块、以及过零检测模块;所述继电器控制模块用于控制所述继电器的通断;所述过零检测模块用于控制所述半导体控制模块在交流电过零点时导通;所述时序控制模块用于当接收到导通信号时在第一时间控制所述过零检测模块导通从而在交流电过零点时导通所述半导体控制模块,在第二时间控制所述继电器控制模块导通从而闭合所述继电器,并在第三时间控制所述过零检测模块关闭从而关闭所述半导体控制模块,所述第二时间在所述第一时间后延迟第一预定时间,所述第三时间在所述第二时间后延迟第二预定时间。
作为上述技术方案的进一步改进,所述第二控制模块内还串接有过热保护断路器,所述过热保护断路器用于当探测到所述半导体控制模块的温度达到设定温度时,关闭所述半导体控制模块。
作为上述技术方案的进一步改进,所述时序控制模块还用于当接收到断开信号时控制所述继电器控制模块断开从而断开所述继电器。
作为上述技术方案的进一步改进,在控制继电器控制模块断开的过程
中所述过零检测模块保持断开状态。
作为上述技术方案的进一步改进,上述触点保护电路还包括:当检测到在预定时间段内所述半导体控制模块导通/关闭的累计次数超过预定值时,所述时序控制模块增加控制所述半导体控制模块导通/关闭的时间间隔。
一种包括继电器触点保护电路的供电控制装置,用于向容性交流负载提供电力,所述继电器触点保护电路包括:第一控制模块与第二控制模块,所述第一控制模块包括继电器,所述第二控制模块包括半导体控制模块,其特征在于,所述继电器触点保护电路电路还包括:时序控制模块、继电器控制模块、以及过零检测模块;所述继电器控制模块用于控制所述继电器的通断;所述过零检测模块用于控制所述半导体控制模块在交流电过零点时导通;所述时序控制模块用于当接收到导通信号时在第一时间控制所述过零检测模块导通从而导通所述半导体控制模块,在第二时间控制所述继电器控制模块导通从而闭合所述继电器,并在第三时间控制所述过零检测模块关闭从而关闭所述半导体控制模块,所述第二时间在所述第一时间后延迟第一预定时间,所述第三时间在所述第二时间后延迟第二预定时间。
作为上述技术方案的进一步改进,所述第二控制模块内还串接有过热保护断路器。
作为上述技术方案的进一步改进,所述时序控制模块还用于当接收到断开信号时控制所述继电器控制模块断开从而断开所述继电器。
作为上述技术方案的进一步改进,在控制继电器控制模块断开的过程中所述过零检测模块保持断开状态。
作为上述技术方案的进一步改进,当检测到在预定时间段内所述半导体控制模块导通/关闭的累计次数超过预定值时,所述时序控制模块增加
控制所述半导体控制模块导通/关闭的时间间隔。
根据上述技术方案,通过半导体器件先吸收上电时的大脉冲电流,而一般半导体器件都会有一定的等效内阻,长时间导通大功率的负载会产生很大的热量,需要加装散热片才能长时间稳定工作,而继电器由于触点接触电阻非常小,很适合长时间带大功率负载工作,因此待电路进入稳态后,切换至继电器触点吸合来维持导通。此方案利用两种器件的优势互补,可使智能设备的工作寿命大大延长,同时保留小巧的电路体积。
图1为实施例1提供的包括继电器触点保护电路的供电控制装置的电路模块图。
图2为实施例2提供的包括继电器触点保护电路的供电控制装置的电路模块图。
图3为实施例3提供的包括继电器触点保护电路的供电控制装置的电路模块图。
为更进一步阐述本发明为实现预约发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
参阅图1,本发明实施例1提供一种包括继电器触点保护电路的供电控制装置,其包括:第一控制模块11、第二控制模块12、时序控制模块13、继电器控制模块14、以及过零检测模块15。
其中,第一控制模块11与第二控制模块12相互之间并联且其两端分别与交流电输入电路16以及容性交流负载17电性相连。交流电输入电路16与外部电路例如交流电输入相连。第一控制模块11内包括继电器111,
第二控制模块12包括半导体控制模块121。继电器111为机械继电器,但不限于普通吸合导通型继电器或是磁保持继电器。半导体控制模块121包含半导体开关器件与其对应的控制电路,半导体开关器件121不限于使用场效应管、可控硅、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等功率器件。容性交流负载17是指其电性特性类似于电容,在上电的瞬间会产生较大冲击电流的器件,其可以是设备本身,也可以是用于给其他电容性设备提供交流电的电路如开关、插座、排插等。
继电器控制模块14用于控制继电器111的通断,其具体可包括继电器的线圈以及对应继电器种类的驱动电路。过零检测模块15包含交流电过零检测电路与控制信号输出功能。过零检测模块15用于控制半导体控制模块121的通断,而且可保证半导体控制模块121的接通可以在交流电的电压零点时完成,以保证半导体控制模块121承受的冲击能量最小。
时序控制模块13实现接收“导通”与“断开”信号,并按照预定的逻辑控制继电器控制模块14和过零检测模块15的通断时序。“导通”与“断开”信号可来自于网络模块接收的控制指令,或者物理开关触发的开关信号。时序控制模块13可完全由硬件电路实现,也可以采用通用控制芯片加逻辑代码的方式实现,并不受任何限制。
具体地,当接收到“导通”信号时,时序控制模块13在第一时间控制过零检测模块15导通从而导通半导体控制模块121,在第二时间控制继电器控制模块14导通从而闭合继电器111,并在第三时间控制过零检测模块15关闭从而关闭半导体控制模块121,第二时间在第一时间后延迟第一预定时间,第三时间在第二时间后延迟第二预定时间。一般来说,交流电的一个交流周期约为20毫秒,而对于容性交流负载来说,绝大部分冲击电流只会持续一个交流周期,也就是20毫秒,因此,该第一预定时间可以根据过零检测结果(即半导体控制模块导通121的时间点)进行
推算以确保继电器111在第二时间导通时已经过了电流冲击时间。因此,将上述的第二时间确定为过零检测模块15在零点导通半导体控制模块121后延迟超过一个交流周期后即可,因此在本实施方式中,可将第一预定时间设置为1.5个交流周期。
而当确认继电器控制模块14导通完成后再控制过零检测模块15关闭,即上述的第二预定时间延迟超过该继电器的导通时间即可,具体的,该导通时间需根据继电器种类和控制电路实测确认。可以理解,当继电器的导通时间接近于零时,该第二预定时间也可非常短,也就是说,此时第二时间与第三时间基本相同。当然,为了提升电路的容错性,当继电器的导通时间小于一个预定值如10毫秒时,该第二预定时间维持一个固定值例如10毫秒。此时,无论继电器的导通时间如何减小,该第二预定时间维持不变。
在一个具体的实施方式中,在约30毫秒后(1.5个交流周期),时序控制模块13导通继电器控制模块14,在继电器控制模块14导通完成后,时序控制模块13控制过零检测模块15关闭。由于继电器动作需要时间,如此可以确保第三时间时,继电器111已经处于导通状态。
可以理解,按照上述的控制逻辑,在接收到“导通”信号后,首先半导体控制模块121被导通,在交流电输入电路16以及容性交流电负载17之间形成回路,容性交流电负载17开始工作,在大约1.5个交流电周期后,容性交流电负载17已经进入稳定的工作状态,此时,继电器111被导通而半导体控制模块121被关闭,交流电输入电路16与容性交流电负载17之间的回路改为经由继电器111。
当接收到“断开”信号时,时序控制模块13控制继电器控制模块14断开从而断开继电器111,在此过程中,过零检测模块15无需工作,因此可保持断开状态。如此,交流电输入电路16与容性交流电负载17之间
的回路被切断。
采用这种技术方案,通过半导体器件先吸收上电时的大脉冲电流,而一般半导体器件都会有一定的等效内阻,长时间导通大功率的负载会产生很大的热量,需要加装散热片才能长时间稳定工作,而继电器由于触点接触电阻非常小,很适合长时间带大功率负载工作,因此待电路进入稳态后,切换至继电器触点吸合来维持导通。此方案利用两种器件的优势互补,可使智能设备的工作寿命大大延长,同时保留小巧的电路体积。
参阅图2,其为本发明实施例2提供的小型继电器的触点保护电路,其与实施例1所示的电路相似,其不同之处在于,第二控制模块12还包括与半导体控制模块121串联的过热保护断路器122。过热保护断路器122不限于保险丝,或电子温度检测控制的断路器。将过热保护断路器122与半导体控制模块121串联使用的原因为一旦半导体控制模块121失效,即将第二控制模块断开。过热保护断路器122用于探测半导体控制模块121的温度,当半导体控制模块121表面温度达到设定温度时,随即将半导体控制模块121的控制支路彻底切断,避免发生事故。
半导体控制模块121导通时会产生大量的热量,但由于空间狭小,不利于热量的散发,当热量积聚过多,超过半导体结温时,半导体控制模块121将会失效,而大多数半导体控制模块121失效通常表现为击穿,一直导通,因此将会产生更多的热量且无法关断。通过引入过热保护断路器122,可以避免半导体控制模块121过热失效,提升电路的可靠性。
参阅图3,其为本发明实施例3提供的小型继电器的触点保护电路的时序控制模块13的控制流程图。如图3所示,时序控制模块13在按以上实施例的流程控制电路的通断外,还执行以下步骤:
步骤S1、在接收到半导体控制模块121导通/断开信号时累计开关次数;以及
步骤S2,当检测到在预定时间段内的开关控制频率超过预定值后,时序控制模块13增加控制半导体控制模块121导通/关闭的时间间隔。
当频繁控制开关时,半导体控制模块121会迅速聚积大量的热,因此时序控制模块13需要实现当出现数次频繁控制后,减慢控制反应速度,降低发热量。即:当检测到短时间内半导体控制模块121频繁开关时,会限制后面一段时间内时序控制模块13控制半导体控制模块121导通/关闭的间隔时间,如果还继续连续开关就一直拉长限制。此外,间隔时间还可随着半导体控制模块开关控制频率的增加而延长。举例来说,若检测到在一秒内半导体控制模块121导通/断开的次数超过5次,则给半导体控制模块121导通/断开动作增加预定时间如1秒的间隔时间。如此,可以保证1秒内半导体控制模块121只能导通/断开1次,从而可以避免半导体控制模块121发热。进一步地,间隔时间还可以与导通/断开的频率相关。例如,当1秒内导通/断开5次时,可以增加1秒的时间间隔,而当1秒内导通/断开10次时,可以增加2秒的时间间隔。
采用这种方式,可以避免频繁开关导致产生大量热,避免半导体控制模块121击穿失效,提升安全性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (10)
- 一种继电器的触点保护电路,其特征在于,包括:第一控制模块与第二控制模块,所述第一控制模块包括继电器,所述第二控制模块包括半导体控制模块,所述第一控制模块与所述第二控制模块相互之间并联且两端分别与交流电输入电路以及容性交流负载电性相连,所述触点保护电路还包括:时序控制模块、继电器控制模块、以及过零检测模块;所述继电器控制模块用于控制所述继电器的通断;所述过零检测模块用于控制所述半导体控制模块在交流电过零点时导通;所述时序控制模块用于当接收到导通信号时在第一时间控制所述过零检测模块导通从而在交流电过零点时导通所述半导体控制模块,在第二时间控制所述继电器控制模块导通从而闭合所述继电器,并在第三时间控制所述过零检测模块关闭从而关闭所述半导体控制模块,所述第二时间在所述第一时间后延迟第一预定时间,所述第三时间在所述第二时间后延迟第二预定时间。
- 如权利要求1所述的继电器的触点保护电路,其特征在于,所述第二控制模块内还串接有过热保护断路器,所述过热保护断路器用于当探测到所述半导体控制模块的温度达到设定温度时,关闭所述半导体控制模块。
- 如权利要求1所述的继电器的触点保护电路,其特征在于,所述时序控制模块还用于当接收到断开信号时控制所述继电器控制模块断开从而断开所述继电器。
- 如权利要求3所述的继电器的触点保护电路,其特征在于,在控制继电器控制模块断开的过程中所述过零检测模块保持断开状态。
- 如权利要求1所述的继电器的触点保护电路,其特征在于,还包括:当检测到在预定时间段内所述半导体控制模块导通/关闭的累计次数超过预定值时,所述时序控制模块增加控制所述半导体控制模块导通/关闭的时间间隔。
- 一种包括继电器触点保护电路的供电控制装置,用于向容性交流负载提供电力,其特征在于,所述继电器触点保护电路包括:第一控制模块与第二控制模块,所述第一控制模块包括继电器,所述第二控制模块包括半导体控制模块,所述第一控制模块与所述第二控制模块相互之间并联且两端分别与交流电输入电路以及容性交流负载电性相连,所述继电器触点保护电路还包括:时序控制模块、继电器控制模块、以及过零检测模块;所述继电器控制模块用于控制所述继电器的通断;所述过零检测模块用于控制所述半导体控制模块在交流电过零点时导通;所述时序控制模块用于当接收到导通信号时在第一时间控制所述过零检测模块导通从而导通所述半导体控制模块,在第二时间控制所述继电器控制模块导通从而闭合所述继电器,并在第三时间控制所述过零检测模块关闭从而关闭所述半导体控制模块,所述第二时间在所述第一时间后延迟第一预定时间,所述第三时间在所述第二时间后延迟第二预定时间。
- 如权利要求6所述的包括继电器触点保护电路的供电控制装置, 其特征在于,所述第二控制模块内还串接有过热保护断路器,所述过热保护断路器用于当探测到所述半导体控制模块的温度达到设定温度时,关闭所述半导体控制模块。
- 如权利要求6所述的包括继电器触点保护电路的供电控制装置,其特征在于,所述时序控制模块还用于当接收到断开信号时控制所述继电器控制模块断开从而断开所述继电器。
- 如权利要求8所述的包括继电器触点保护电路的供电控制装置,其特征在于,在控制继电器控制模块断开的过程中所述过零检测模块保持断开状态。
- 如权利要求6所述的包括继电器触点保护电路的供电控制装置,其特征在于,当检测到在预定时间段内所述半导体控制模块导通/关闭的累计次数超过预定值时,所述时序控制模块增加控制所述半导体控制模块导通/关闭的时间间隔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611040751.1A CN106783394A (zh) | 2016-11-17 | 2016-11-17 | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 |
CN201611040751.1 | 2016-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090972A1 true WO2018090972A1 (zh) | 2018-05-24 |
Family
ID=58975565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/111625 WO2018090972A1 (zh) | 2016-11-17 | 2017-11-17 | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106783394A (zh) |
WO (1) | WO2018090972A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113433451A (zh) * | 2021-06-21 | 2021-09-24 | 西蒙电气(中国)有限公司 | 一种继电器过零开关及其校准方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106783394A (zh) * | 2016-11-17 | 2017-05-31 | 深圳市欧瑞博电子有限公司 | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 |
CN110148543B (zh) * | 2019-04-26 | 2020-07-03 | 中国科学院长春光学精密机械与物理研究所 | 一种磁保持继电器的上电自动切换电路 |
CN113629458B (zh) * | 2021-07-27 | 2023-05-05 | 广州市威士丹利智能科技有限公司 | 一种带过零检测保护的智能插座 |
CN114400167A (zh) * | 2021-12-16 | 2022-04-26 | 阳光电源股份有限公司 | 电气系统、接口装置以及接口电路及其导通方法和关断方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1466160A (zh) * | 2002-06-20 | 2004-01-07 | 北海市深蓝科技发展有限责任公司 | 一种低压复合式开关 |
CN201523347U (zh) * | 2009-09-22 | 2010-07-07 | 新疆特变(集团)有限公司 | 一种智能型复合开关 |
CN201830223U (zh) * | 2010-10-29 | 2011-05-11 | 山东泰华电讯有限责任公司 | 一种有源无源组合功率开关 |
US20130057998A1 (en) * | 2011-09-01 | 2013-03-07 | Osram Sylvania Inc. | Systems and methods for switching a relay at zero cross |
CN106783394A (zh) * | 2016-11-17 | 2017-05-31 | 深圳市欧瑞博电子有限公司 | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102209333B (zh) * | 2010-03-31 | 2014-08-20 | 大唐移动通信设备有限公司 | 电源控制方法和设备 |
CN202013405U (zh) * | 2010-12-17 | 2011-10-19 | 杭州鸿雁电器有限公司 | 一种感应电子延时开关的寿命检测装置 |
JP2014049386A (ja) * | 2012-09-03 | 2014-03-17 | Panasonic Corp | 点灯装置および照明装置 |
CN103943386B (zh) * | 2013-01-18 | 2016-04-06 | 珠海市伏安达电子科技有限公司 | 可控开关及其控制方法 |
-
2016
- 2016-11-17 CN CN201611040751.1A patent/CN106783394A/zh active Pending
-
2017
- 2017-11-17 WO PCT/CN2017/111625 patent/WO2018090972A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1466160A (zh) * | 2002-06-20 | 2004-01-07 | 北海市深蓝科技发展有限责任公司 | 一种低压复合式开关 |
CN201523347U (zh) * | 2009-09-22 | 2010-07-07 | 新疆特变(集团)有限公司 | 一种智能型复合开关 |
CN201830223U (zh) * | 2010-10-29 | 2011-05-11 | 山东泰华电讯有限责任公司 | 一种有源无源组合功率开关 |
US20130057998A1 (en) * | 2011-09-01 | 2013-03-07 | Osram Sylvania Inc. | Systems and methods for switching a relay at zero cross |
CN106783394A (zh) * | 2016-11-17 | 2017-05-31 | 深圳市欧瑞博电子有限公司 | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113433451A (zh) * | 2021-06-21 | 2021-09-24 | 西蒙电气(中国)有限公司 | 一种继电器过零开关及其校准方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106783394A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018090972A1 (zh) | 继电器的触点保护电路及包含该触点保护电路的供电控制装置 | |
US11791616B2 (en) | Solid-state circuit interrupters | |
JP7519363B2 (ja) | ソリッドステート回路遮断器 | |
JP5594728B2 (ja) | 直流スイッチ | |
US7612471B2 (en) | Hybrid electrical switching device | |
KR101057958B1 (ko) | 돌입전류 충격방지 및 대기전력 차단을 위한 스위치 | |
US20180013282A1 (en) | Short-circuit-protection electronic switch | |
EP2700165B1 (en) | Semiconductor switch with reliable blackout behavior and low control power | |
JP2017527067A (ja) | 直流遮断用遮断スイッチ | |
WO2016091178A1 (zh) | 灭弧器件 | |
JP2017126544A (ja) | 無アーク電流開閉装置 | |
Zen et al. | Development of an arcless DC circuit break using a mechanical contact and a semiconductor device | |
CN110416009B (zh) | 无电弧长寿命的继电器开关电路及控制器 | |
WO2017016501A1 (zh) | 无涌流投切装置及其控制方法 | |
CN201830223U (zh) | 一种有源无源组合功率开关 | |
JP2018125270A (ja) | 直流電力系の安全開閉装置 | |
CN201928186U (zh) | 应用于电磁感应加热电源的滑频软启动电路 | |
CN102064549A (zh) | 交流电容器投切方法及投切开关电路 | |
WO2018223329A1 (zh) | 抑制浪涌电流的控制系统和装置及其应用方法 | |
CN203658770U (zh) | 功率开关控制电路、功率开关元件、电子元器件和功率开关控制元件 | |
JP2012519462A (ja) | スイッチ電源サイクル毎の過電圧保護回路 | |
CN210222578U (zh) | 一种静音保温水壶的控制电路 | |
CN204089761U (zh) | 一种用于电容器投切的开关电路 | |
CN221009626U (zh) | 一种cap2降压站直流屏柜散热装置 | |
CN110957739B (zh) | 复合开关及其投入方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870738 Country of ref document: EP Kind code of ref document: A1 |