WO2018086486A1 - 电子设备、无线通信方法以及介质 - Google Patents
电子设备、无线通信方法以及介质 Download PDFInfo
- Publication number
- WO2018086486A1 WO2018086486A1 PCT/CN2017/109353 CN2017109353W WO2018086486A1 WO 2018086486 A1 WO2018086486 A1 WO 2018086486A1 CN 2017109353 W CN2017109353 W CN 2017109353W WO 2018086486 A1 WO2018086486 A1 WO 2018086486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel state
- electronic device
- antenna
- channel
- pilot signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
Definitions
- the present disclosure relates generally to electronic devices, wireless communication methods, and media, and more particularly to signal processing techniques in duplex systems.
- Frequency division duplex (FDD) and time division duplex (TDD) technologies are widely used in current wireless communication standards.
- FDD Frequency division duplex
- TDD time division duplex
- uplink and downlink transmissions operate in different frequency bands in FDD mode and operate in different time slots in TDD mode to avoid interference between uplink and downlink transmissions.
- Massive multiple-input multiple-output technology the channel characteristics and signal processing techniques under FDD/TDD have been deeply studied by academics and industry.
- full-duplex technology is considered a key technology in future wireless communication systems.
- Full-duplex technology can simultaneously transmit and receive signals in the same frequency band.
- the technique is in A.Sabharwal, P.Schniter, D.Guo, DWBliss, and R.Wichman's article "In-Band Full-Duplex Wireless: Challenges and Opportunities The description is described in IEEE Journal on Selected Areas in Communications, vol. 32. no. 9, pp. 1637-1652, Sep. 2014.
- Figure 1 shows a shared antenna structure, which uses a circulator to isolate the transmit and receive signals of the same antenna port.
- Figure 2 shows a separate antenna structure with different antennas for transmitting and receiving RF links. Compared with the shared antenna structure, the separate structure hardware implementation is simpler, and its self-interference cancellation is more convenient and effective.
- FIG. 3 is a schematic diagram of full-duplex communication using a separate antenna structure in a multi-user MIMO (MU-MIMO) scenario in the prior art. It is assumed here that the user (UE) can also work in full duplex mode.
- the base station 3100 uses different antennas for downlink transmission and uplink reception in the spatial domain, and the uplink and downlink transmissions are separated in the spatial domain.
- the present disclosure provides the following aspects.
- an electronic device comprising: circuitry configured to: obtain a first channel state, the first channel state including at least from a first device to being associated with the electronic device a channel state of a channel of the first antenna, the first device wirelessly communicating with the electronic device; obtaining a second channel state based on the first channel state, the second channel state comprising from a second antenna associated with the electronic device The channel state of the channel of the first device.
- a method for wireless communication comprising: obtaining a first channel state, the first channel state including at least a first antenna from a first device to an electronic device a channel state of the channel, the first device wirelessly communicating with the electronic device; obtaining a second channel state based on the first channel state, the second channel state comprising from a second antenna associated with the electronic device to the first device The channel state of the channel.
- an electronic device comprising: circuitry configured to: transmit a first pilot signal to another electronic device to enable the other electronic device to obtain a first channel state and obtaining a second channel state based on the first channel state, wherein the first channel state comprises at least a channel from an antenna associated with the electronic device to a channel of a first antenna associated with the another electronic device a state, the second channel state comprising a channel state of a channel from a second antenna associated with the another electronic device to an antenna associated with the electronic device, the electronic device in wireless communication with the another electronic device; A data signal transmitted from the other electronic device using the second channel state is received.
- a method for wireless communication comprising: Transmitting, by the first electronic device, the first pilot signal to the second electronic device, to enable the second electronic device to obtain the first channel state, and obtaining the second channel state based on the first channel state, wherein the first channel state includes at least a channel state of a channel of the first electronic device to a first antenna associated with the second electronic device, the second channel state comprising a channel state from a second antenna associated with the second electronic device to a channel of the first electronic device, first The electronic device is in wireless communication with the second electronic device; receiving a data signal transmitted from the second electronic device using the second channel state.
- a computer readable storage medium having stored thereon instructions that, when executed by a processor, cause a processor to perform the above method.
- the present disclosure obtains a downlink channel state by using an uplink channel state on the basis of estimating an uplink channel state, thereby reducing system signaling overhead, improving frequency utilization efficiency, and shortening scheduling delay.
- FIG. 1 is a schematic diagram showing a shared antenna structure of a full-duplex system in the prior art.
- FIG. 2 is a schematic diagram showing a separate antenna structure of a full-duplex system in the prior art.
- FIG. 3 is a schematic diagram showing full duplex communication using a separate antenna structure in the prior art.
- FIG. 4 is a schematic diagram showing a communication system in accordance with one or more embodiments of the present disclosure.
- FIG. 5 is a flowchart illustrating communication processing in accordance with one or more embodiments of the present disclosure.
- FIG. 6 is a schematic diagram showing a communication system in accordance with one or more embodiments of the present disclosure.
- FIG. 7 is a diagram showing a frame structure for performing wireless communication in accordance with one or more embodiments of the present disclosure.
- FIG. 8 is a flowchart illustrating communication processing in accordance with one or more embodiments of the present disclosure.
- FIG. 9 is a diagram showing a frame structure for performing wireless communication in accordance with one or more embodiments of the present disclosure.
- FIG. 10 is a flowchart illustrating communication processing in accordance with one or more embodiments of the present disclosure.
- FIG. 11 is a diagram showing a frame structure for performing wireless communication, according to one or more embodiments of the present disclosure.
- FIG. 12 is a flowchart illustrating communication processing in accordance with one or more embodiments of the present disclosure.
- FIG. 13 is a diagram showing a frame structure for performing wireless communication, according to one or more embodiments of the present disclosure.
- FIG. 14 is a diagram illustrating a method for performing wireless communication, in accordance with one or more embodiments of the present disclosure.
- FIG. 15 is a schematic diagram showing a communication device in accordance with one or more embodiments of the present disclosure.
- FIG. 16 is a diagram illustrating a method for performing wireless communication, in accordance with one or more embodiments of the present disclosure.
- FIG. 17 is a schematic diagram showing an arrangement of antennas according to one or more embodiments of the present disclosure.
- Figure 18 is a schematic diagram showing beams at different antenna spacings.
- FIG. 19 is a schematic diagram showing an arrangement of antennas according to one or more embodiments of the present disclosure.
- 20 is a cumulative distribution function diagram of the downlink average spectral efficiency of a cell in an NLOS channel scenario.
- FIG. 21 is a diagram showing the downlink average spectral efficiency performance of a cell in an NLOS channel scenario and different signal to noise ratio environments.
- FIG. 22 is a diagram showing the downlink average spectral efficiency performance of a cell in the NLOS channel scenario and the number of different antennas.
- 23, 24, and 25 are respectively simulation diagrams showing a LOS channel scenario corresponding to an NLOS channel scenario.
- FIG. 26 is a block diagram showing a first example of a schematic configuration of an eNB.
- FIG. 27 is a block diagram showing a second example of a schematic configuration of an eNB.
- FIG. 28 is a block diagram showing an example of a schematic configuration of a smartphone.
- 29 is a block diagram showing an example of a schematic configuration of a car navigation device.
- the base station 3100 simultaneously serves K user equipments (UEs) (not all shown), and it is assumed that each user equipment installs one transmitting antenna and one receiving antenna.
- the cell center base station 3100 operates in a full duplex mode using a conventional split antenna structure.
- a narrowband multipath spatial channel is employed, assuming P multipath, and the transmit antenna array 3120 and the receive antenna array 3110 of the base station 3100 are both Mx1 uniform linear antenna arrays (ULAs).
- the downlink and uplink channels between the base station 3100 and the kth user equipment are respectively recorded as versus
- the steering vector (AoA) of the p-th sub-path of the uplink channel of the base station 3100 and the kth user equipment is And corresponding to the large-scale fading coefficient
- the channel model can be used for non-line-of-sight (NLOS) and line-of-sight (LOS) models, where versus Represents the direct path component.
- NLOS non-line-of-sight
- LOS line-of-sight
- self-interference can be suppressed in, for example, a digital domain, an analog circuit domain, or a signal propagation domain, such that downlink and uplink transmissions are considered independent of each other.
- Existing signal processing algorithms such as channel estimation, signal detection, and beamforming for FDD/TDD systems can be applied to the system.
- FIG. 4 is a schematic diagram showing a communication system 4000 in accordance with one or more embodiments of the present disclosure.
- device 4100 is in wireless communication with device 4210, device 4220, and other user equipment (not shown).
- Apparatus 4100 includes a receive radio frequency link 4110, a transmit radio frequency link 4120, an electronic device 4130, a receive antenna array 4140 (filled circles), a transmit antenna array 4150 (open circles), and other components (not shown).
- the receive RF link 4110 is coupled to the receive antenna array 4140 (filled circles) and the transmit RF link 4120 is coupled to the transmit antenna array 4150 (open circles).
- the receive RF link 4110 and the transmit RF link 4120 are also coupled to the electronic device 4130.
- the electronic device 4130 can exchange signals with the receiving radio frequency link 4110 and the transmitting radio frequency link 4120.
- the electronic device 4130 can also control the operations in the receiving radio frequency link 4110 and the transmitting radio frequency link 4120.
- the electronic device 4130 is shown separated from the receiving radio frequency link 4110, the transmitting radio frequency link 4120, the receiving antenna array 4140, and the transmitting antenna array 4150 in FIG. 4, the electronic device 4130 may also be implemented to further include receiving the radio frequency link. 4110, transmitting one or more of the radio link 4120, the receive antenna array 4140, and the transmit antenna array 4150, or implemented as the device 4100 itself.
- receive antenna array 4140 is a uniform linear array of antenna spacings ⁇ , including antenna elements 4140-1, 4140-2, 4140-3, 4140-4, ....
- Transmit antenna array 4150 is a uniform linear array of antenna spacings ⁇ , including antenna elements 4150-1, 4150-2, 4150-3, 4150-4, .
- the transmitting antenna array 4150 and the receiving antenna array 4140 respectively have M antenna elements, and M is an arbitrary positive integer.
- the transmit antenna array 4150 and the receive antenna array 4140 are staggered. Therefore, the combination of the transmit antenna array 4150 and the receive antenna array 4140 constitutes a uniform linear array of 2M x 1.
- the transmitting antenna column 4150 and the receiving antenna column 4140 are in the same spatial region and are staggered instead of being completely separated like the separate antenna structure in FIG.
- the spatial correlation of the uplink and downlink channels can be used to reduce channel estimation overhead and improve spectral efficiency.
- the downlink and uplink channels are respectively recorded as versus
- the downlink and uplink steering vectors a DL ( ⁇ k,p ) and a UL ( ⁇ k,p ) are
- the transmission angle of the downlink channel is consistent with the arrival angle of the uplink channel, and its large-scale fading coefficient remains the same. This is the result of channel reciprocity.
- This assumption is not consistent in the conventional split antenna structure because the spatial division of the downlink antenna and the uplink antenna causes channel asymmetry.
- a DL ( ⁇ k, p ) and a UL ( ⁇ k, p) satisfy the relation:
- Equation 5 characterizes the channel correlation that exists between the downlink channel and the upstream channel. Especially in the LOS channel, since the direct path energy attenuation is small and the reflection path has a weak influence, it can have the following approximation.
- Equation 6 illustrates that the downlink channel can be estimated from the estimated upstream channel.
- One or more embodiments of the present invention provide an electronic device and a corresponding communication method for performing simple downlink channel estimation without requiring an additional downlink reference signal by utilizing the above-described properties of the uplink channel and the downlink channel, and providing Improved frame structure.
- the device 4100 can be implemented as a base station, a Node B, an e-NodeB, a repeater, and the like.
- the devices 4210 and 4220 can be implemented as terminal devices of a cellular phone, an in-vehicle terminal, and the like.
- device 4100 As a base station, devices 4210 and 4220 being implemented as user equipment.
- the transmission from device 4100 to devices 4210 and 4220 herein is referred to as downlink transmission
- the transmission from devices 4210 and 4220 to device 4100 is referred to as uplink transmission.
- downlink transmission the transmission from devices 4210 and 4220 to device 4100
- uplink transmission the transmission from devices 4210 and 4220 to device 4100
- device 4100 is not a base station
- devices 4210 and 4220 are not user equipment
- transmissions from device 4100 to devices 4210 and 4220 may not be referred to as downlink transmissions
- transmissions from devices 4210 and 4220 to device 4100 may not be referred to as Uplink transmission.
- electronic device 4130 can be configured to obtain a first channel state.
- the first channel state includes at least a state of the upstream channel from the device 4210 to the receive antenna array 4140 associated with the electronic device 4130.
- the electronic device 4130 can obtain the second channel state based on the first channel state.
- the second channel state includes the channel state of the downstream channel from the transmit antenna array 4150 associated with the electronic device 4130 to the device 4210.
- the first channel state may also include the channel state of the upstream channel from device 4210 to transmit antenna array 4150 associated with electronic device 4130.
- the transmitting antenna array 4150 can transmit not only signals but also signals.
- the electronic device 4130 may be based on the uplink and downlink. The channel reciprocity obtains the channel state of the downstream channel from the transmit antenna array 4150 associated with the electronic device 4130 to the device 4210.
- the electronic device 4130 can perform joint channel estimation based on the uplink pilot signals received by the receive antenna array 4140 and the transmit antenna array 4150 from the device 4210, thereby obtaining an uplink channel state from the device 4210 to the receive antenna array 4140, and from the transmit antenna array.
- the joint channel estimation refers to performing overall channel estimation based on the pilot signals received by the receiving antenna array 4140 and the transmitting antenna array 4150, instead of separately performing channel estimation based on the pilot signals received by the receiving antenna array 4140 and separately.
- Channel estimation is performed based on the pilot signals received by the transmit antenna array 4150.
- the electronic device 4130 may obtain a joint channel matrix by joint channel estimation, and then replace the row or column of the joint channel matrix to obtain a downlink channel state.
- FIG. 5 illustrates a flow diagram of communication processing between device 4100 and device 4210 in accordance with one or more embodiments.
- the receiving radio frequency link 4110 can receive an uplink pilot signal from the device 4210 via the receive antenna array 4140 and the transmit antenna array 4150.
- the electronic device 4130 may perform joint channel estimation based on the uplink pilot signal 5100 received by the receive antenna array 4140 and the transmit antenna array 4150, obtain a joint channel matrix, and further obtain a downlink from the transmit antenna array 4150 to the device 4210. The channel state of the channel.
- the transmitting radio frequency link 4120 can transmit the downlink data via the transmit antenna array 4150 using the obtained downlink channel state.
- the receive radio frequency link 4110 can receive uplink data via the receive antenna array 4140.
- the receiving antenna array 4140 and the transmitting antenna array 4150 each have M antenna elements.
- a device 4100 e.g., a base station
- communicates with only one device 4210 e.g., the kth user equipment
- the joint channel matrix G J ⁇ C 2M ⁇ 1 the joint channel matrix G J ⁇ C 2M ⁇ 1 .
- Equation 7 P J is a permutation matrix, and its The rows are rearranged. The rows are rearranged to correspond to the joint upstream channel under a 2M x 1 uniform linear antenna array.
- I is a column vector, so will Left multiply A permutation matrix P J that performs row permutation. in In the case of a row vector, Right multiply A permutation matrix P J for column permutation.
- the joint uplink channel matrix G J obtained by the electronic device 4130 for joint channel estimation is a rearrangement result of a combination of the uplink channel matrix G UL and the uplink channel matrix G' UL . Therefore, the electronic device 4130 can replace the row of the joint uplink channel matrix G J such that the first M rows correspond to the upstream channel from the device 4210 to the receiving antenna array 4140, and the last M rows correspond to the slave device 4210 to the transmitting antenna array 4150. Upstream channel.
- the electronic device 4130 can obtain an uplink channel estimation result from the device 4210 to the receiving antenna array 4140.
- the electronic device 4130 can estimate the uplink channel according to the reciprocity between the uplink and downlink channels according to the uplink channel from the device 4210 to the transmit antenna array 4150. Obtaining downlink channel estimation results from transmit antenna array 4150 to device 4210
- the downlink channel state from the transmit antenna array 4150 to the device 4210 is estimated in the above manner, the algorithm complexity is low, and the complexity of the signaling interaction flow can be reduced.
- the transmit antenna array 4150 is coupled to both the transmit RF link 4120 and the receive RF link 4110 (shown in Figure 6).
- the device 4100 communicates with a plurality of devices 4210 (for example, K) in the same frequency at the same time
- the joint channel matrix G J ⁇ C 2M ⁇ K the joint channel matrix G J ⁇ C 2M ⁇ K , And the permutation matrix P J can be adjusted accordingly.
- FIG. 7 illustrates a frame structure for wireless communication between device 4100 and device 4210, in accordance with one or more embodiments.
- the period 7100 of the upstream channel is divided into sub-periods 7110 and 7120.
- the period 7200 of the downlink channel is divided into sub-periods 7210 and 7220, which respectively correspond to the sub-periods 7110 and 7120 of the upstream channel.
- electronic device 4130 performs control such that receiving radio frequency link 4110 receives an uplink pilot signal from device 4210 via receive antenna array 4140 and transmit antenna array 4150.
- electronic device 4130 utilizes uplink channel estimation results from slave device 4210 to receive antenna array 4140 obtained by joint channel estimation. Receive upstream data.
- electronic device 4130 utilizes downlink channel estimation results from transmit antenna array 4150 to device 4210. Send downlink data.
- the time period 7100 corresponds to the time period 7200, which are substantially aligned in time or have a slight delay.
- the periods 7100 and 7200 and the sub-periods 7110, 7120, 7210, and 7220 may correspond to one or more frames, one or more subframes, one or more slots, or one or more OFDM symbols.
- the uplink channel may be divided into a plurality of identical time periods 7100, and may be inserted between the plurality of time periods 7100 in other manners.
- the downlink channel can be divided into a plurality of identical time periods 71200, and the time periods divided in other manners can also be inserted between the plurality of time periods 7200.
- the period and sub-period in FIGS. 9, 11, and 13 described later also have such a property.
- electronic device 4130 may obtain a downlink channel state from transmit antenna array 4150 to device 4210 based on feedback signals from device 4210.
- the first channel state is the upstream channel state of the slave antenna 4210 to the receive antenna array 4140 obtained by the receive radio frequency link 4110 based on the uplink pilot signal received by the receive antenna array 4140 from the device 4210, from the transmit antenna array 4150.
- the downlink channel state to device 4210 is obtained by the downlink pilot signal received by device 4210 from transmit antenna array 4150 and is included in the feedback signal.
- the electronic device 4130 can perform control such that the downlink pilot signal is transmitted via the transmit antenna array when the uplink pilot signal is received via the receive antenna array 4140.
- the electronic device 4130 can perform control such that the transmit antenna array 4150 is in the operational mode 1 or the operational mode 2 prior to obtaining the second channel state in the current time period.
- transmit antenna array 4150 is in an idle state.
- the transmit radio frequency link 4120 transmits downlink data to the device 4210 via the transmit antenna array 4150 using the downlink channel state obtained in the previous time period.
- FIG. 8 shows a flow diagram of communication processing between device 4100 and device 4210 in accordance with one or more embodiments.
- the receive radio frequency link 4110 in device 4100 can receive an uplink pilot signal from device 4210 via receive antenna array 4140.
- the transmit radio frequency link 4120 in device 4100 can transmit a downlink pilot signal to device 4210 via transmit antenna array 4150.
- the receive radio frequency link 4110 in device 4100 can estimate the upstream channel state from device 4210 to receive antenna array 4140 based on the uplink pilot signal and provide the upstream channel state to electronic device 4130.
- device 4210 can estimate a downlink channel state from transmit antenna array 4150 to device 4210 based on the received downlink pilot signals.
- the device 4210 includes the estimation result of the downlink channel state as, for example, the downlink channel CSI (channel state information) in the feedback signal, and transmits the feedback signal to the device 4100.
- the electronic device 4130 in the device 4100 can obtain a slave transmit antenna array based on the feedback signal. 4150 to the downstream channel state of device 4210.
- the electronic device 4130 can perform control such that the transmitting radio frequency link 4120 directly transmits downlink data via the transmit antenna array 4150 using the downlink channel state included in the feedback signal.
- the electronic device 4130 may combine (eg, weight, etc.) the downlink channel state obtained by using the method of the other embodiments of the present invention with the downlink channel state included in the feedback signal, and utilize the combined downlink channel state. Send downlink data.
- step 8400 the electronic device 4130 has not yet obtained the downlink channel state, so the electronic device 4130 may cause the transmit antenna array 4150 to be in an idle state, or to transmit downlink data using the downlink channel state obtained in the previous period.
- the receiving RF link 4110 and the transmitting RF link 4120 are coupled to the receiving antenna array 4140 and the transmitting antenna array 4150, respectively.
- the receive RF link 4110 need not be coupled to the transmit antenna array 4150. Therefore, the hardware implementation is simpler, but the signaling interaction is more complicated.
- FIG. 9 illustrates a frame structure for wireless communication between device 4100 and device 4210, in accordance with one or more embodiments of the present invention.
- the period 9100 of the upstream channel is divided into three sub-periods 9110, 9120, and 9130.
- the period 9200 of the downlink channel is divided into three sub-periods 9210, 9220, and 9230, which respectively correspond to the sub-periods 9110, 9120, and 9130 of the upstream channel.
- receive radio frequency link 4110 can receive an uplink pilot signal from device 4210 via receive antenna array 4140.
- transmit radio link 4120 can transmit a downlink pilot signal to device 4210 via transmit antenna array 4150.
- receive radio frequency link 4110 can receive downlink channel CSI feedback from device 4210 via receive antenna array 4140.
- the electronic device 4130 can perform control such that the transmit antenna array 4150 is in the above-described operational mode 1 or operational mode 2.
- the receiving radio frequency link 4110 can receive the uplink data using the uplink channel estimation result from the device 4210 to the receiving antenna array 4140 obtained by the device 4100 based on the uplink pilot signal received in the period 9110.
- transmit radio link 4120 can transmit downlink data using downlink channel CSI feedback received in time slot 9120.
- the electronic device 4130 may utilize the slave device 4210 to receive the day
- the correlation between the upstream channel of line array 4140 and the downstream channel from transmit antenna array 4150 to device 4210 estimates the downlink channel state based on the upstream channel state.
- the electronic device 4130 can obtain the downlink channel state by phase shifting the uplink channel state. This phase shift can be performed by calculation or by a phase shifter in the electronic device 4130.
- FIG. 10 shows a flow diagram of communication processing between device 4100 and device 4210 in accordance with one or more embodiments.
- the receive radio frequency link 4110 in device 4100 can receive an uplink pilot signal from device 4210 via receive antenna array 4140.
- the receiving radio frequency link 4110 may estimate an uplink channel state from the device 4210 to the receiving antenna array 4140 based on the received uplink pilot signal, and provide the estimated uplink channel state to the electronic device 4130 in the device 4100.
- the electronic device 4130 may estimate a downlink channel state from the transmit antenna array 4150 to the device 4210 based on the obtained uplink channel state and provide the downlink channel state to the transmit radio link 4120 in the device 4100.
- the transmitting radio frequency link can transmit downlink data via the transmit antenna array 4150 using the downlink channel state.
- the receiving radio frequency link 4110 can receive the uplink data using the uplink channel status.
- step 10200 the electronic device 4130 has not yet obtained the downlink channel state, so the transmitting radio frequency link 4120 can transmit the downlink data to the device 4210 via the transmit antenna array 4150 using the downlink channel state obtained in the previous period.
- the electronic device 4130 may obtain the downlink channel state by phase-shifting the uplink channel state based on the spatial correlation between the uplink channel and the downlink channel.
- the downlink channel state can be obtained by multiplying the upstream channel matrix by the phase shift matrix S.
- the phase shifting matrix S can be expressed as:
- the above scheme is more suitable for LOS channel and millimeter wave channel.
- deviations are generated when estimating the downlink channel state, and the performance of beamforming using the downlink channel state is reduced. Especially when the multipath angle spread is large, the performance loss is more serious.
- FIG. 11 illustrates wireless for use between device 4100 and device 4210, in accordance with one or more embodiments.
- the frame structure of the communication is described
- the period 11100 of the upstream channel is divided into two sub-periods 11110 and 11120.
- the period 11200 of the downlink channel is divided into two sub-periods 11210 and 11220, which respectively correspond to the sub-periods 11110 and 11120 of the upstream channel.
- receive radio frequency link 4110 can receive an uplink pilot signal via receive antenna array 4140.
- uplink data may be received via receive antenna array 4140.
- the electronic device 4130 has not obtained the downlink channel state in the current time period 11100. So in sub-period 11210, transmit radio link 4120 can transmit downlink data via transmit antenna array 4150 using the downlink channel status obtained in the previous time period. In the sub-period 11200, the electronic device 4130 has obtained the downlink channel state in the current time period 11100 based on the uplink channel state, so the transmitting radio frequency link 4120 can transmit the downlink data via the transmit antenna array 4150 using the downlink channel state obtained in the current time period 11100.
- electronic device 4130 can beamform the downstream pilot signals using the upstream channel state from device 4210 to receive antenna array 4140.
- the transmit RF link 4120 can transmit the beamformed downlink pilot signal to the device 4210 via the transmit antenna array 4150.
- Receive RF link 4110 can then receive a downlink channel state from transmit antenna array 4150 to device 4210 from device 4210.
- the downlink channel state is obtained by the device 4210 based on the beamformed downlink pilot signal.
- the electronic device 4130 may obtain an inaccurate downlink channel state based on the uplink channel state, and then beamform the downlink pilot signal using the obtained inaccurate downlink channel state.
- the inaccurate downlink channel state may be obtained by the electronic device 4130 using the spatial correlation between the uplink and downlink channels, which indicates the channel state of the downlink channel from the transmit antenna array 4150 to the device 4210.
- FIG. 12 shows a flow diagram of communication processing between device 4100 and device 4210 in accordance with one or more embodiments.
- the processing in steps 12100, 12200, 12210, 12220, 12300 is similar to the processing in steps 10100, 10200, 10210, 10220, 10300 in FIG. 10, and details are not described herein again.
- the downlink channel state obtained by the electronic device 4130 based on the uplink channel state in step 10220 is referred to as an inaccurate downlink channel state in step 12220.
- the transmit radio frequency link 4120 can beamform the downlink pilot signal with an inaccurate downlink channel state.
- the transmit radio frequency link 4120 can transmit the beamformed downlink pilot signal via the transmit antenna array 4150.
- device 4210 estimates the downlink channel state from transmit antenna array 4150 to device 4210 based on the received beam-formed downlink pilot signals. Step The processing in steps 12500, 12600, 12610, 12700, 12800 is similar to the processing in steps 8300, 8400, 8410, 8500, 8600 in FIG. 8, and will not be described again here.
- the above solution is applicable to multiple channel environments and supports beam-formed downlink reference signal transmission mode, but the signaling interaction process is complicated.
- the transmit radio frequency link 4120 when the receiving radio frequency link 4110 receives an uplink pilot signal or a downlink channel state from the device 4210 via the receive antenna array 4140, the transmit radio frequency link 4120 can be transmitted to the device via the transmit antenna array.
- the 4220 transmits a signal (eg, data or a downlink pilot signal).
- the receiving radio frequency link 4120 can receive the uplink pilot from the device 4220 via the receive antenna array 4140 when the transmit radio frequency link 4120 transmits a signal (eg, data or downlink pilot signal) to the device 4210 via the transmit antenna array 4150. Signal or downlink channel status.
- the downlink channel can be used to transmit signals of other user equipments, thereby improving time utilization.
- FIG. 13 illustrates a frame structure for wireless communication between device 4100, device 4210, device 4220, in accordance with one or more embodiments.
- the blank block area indicates the transmission and reception of the device 4210 related signals
- the shaded area indicates the transmission and reception of the device 4220 related signals.
- the period 13100 in the upstream channel is divided into four sub-periods 1310, 13120, 13130, 13140.
- the period 13200 in the downlink channel is divided into four sub-periods 13210, 13220, 13230, 13240, which respectively correspond to sub-periods 1310, 13120, 13130, 13140 in the upstream channel.
- receive radio frequency link 4110 can receive an uplink pilot signal from device 4210 via receive antenna array 4140.
- the device 4100 estimates an uplink channel state according to the uplink pilot signal reception condition of the device 4210 as a reference for uplink transmission resource scheduling; and further estimates a downlink channel according to the correlation between the uplink channel and the downlink channel, and particularly determines a downlink channel direction, to It is used to preprocess the downlink pilot signal to obtain more accurate downlink channel feedback.
- receive radio frequency link 4110 can receive uplink data from device 4210 via receive antenna array 4140.
- the receiving radio frequency link 4110 can receive downlink CSI feedback from the device 4210 via the receive antenna array 4140, wherein the downlink CSI feedback of the device 4210 is based on the reception of the pre-processed downlink pilot signal, thus More accurate channel conditions can be fed back with less signaling resources.
- receive radio frequency link 4110 can receive uplink data from device 4210 via receive antenna array 4140.
- the transmit radio frequency link 4120 can be sent to the device 4220 via the transmit antenna array 4150. Downstream data or idle.
- transmit radio link 4120 can transmit, for example, a beamformed downlink pilot signal to device 4210 via transmit antenna array 4150, as described above, the beamformed parameters are calculated based on the upstream channel state. Specifically, the beam-formed downlink pilot signal is directed to the device 4201.
- transmit radio link 4120 may be idle or transmit downlink data to device 4220 via transmit antenna array 4150 to take advantage of the downlink period.
- the transmitting radio frequency link 4120 can transmit downlink data to the device 4210 via the transmit antenna array 4150, wherein the device 4100 determines the downlink data signal transmission mode based on the downlink CSI feedback received in the sub-period 13130, specifically, for example, Demodulating a coding scheme of the downlink data signal based on the CQI included in the CSI, and performing precoding/beamforming processing on the downlink data signal, for example, based on the channel direction information contained therein, for example, by transmitting the radio frequency link 4120 Sub-period 13240 is transmitted.
- the period 13300 in the uplink channel and the period 13400 in the downlink channel are divided in the same manner as the period 13100 and the period 13200, respectively.
- the means for which the signals transmitted or received in the respective sub-periods of the periods 13300 and 13400 are directed is opposite to the means for which the signals transmitted or received in the respective sub-periods of the periods 13300 and 13400 are directed.
- the uplink pilot signal from the device 4210 is received in the sub-period 1310 in the period 13100
- the uplink pilot signal from the device 4220 is received in the sub-period 13310 corresponding to the sub-period 13110 in the period 13300, and so on.
- the example of FIG. 13 is particularly applicable to scenarios where the device 4100 employs a large-scale antenna, which can improve channel estimation accuracy without additional pilot transmission.
- the electronic device 4130, the communication processing flow, and the corresponding frame structure in accordance with one or more embodiments of the present invention are described above.
- a method for performing wireless communication that can be performed in the electronic device 4130 is described below.
- FIG. 14 illustrates a method 14000 for conducting wireless communication in accordance with one or more embodiments of the present invention.
- a first channel state is obtained, the first channel state including at least a channel state of a channel from device 4210 to receiving antenna array 1440 associated with electronic device 1430.
- a second channel state is obtained based on the first channel state, the second channel state including a channel state of the channel from the transmit antenna array 1450 to the device 4210 associated with the electronic device 1430.
- the apparatus and processing at the base station side have been described above, and related wireless communication methods are described. Next, the device and processing of the client will be described.
- FIG. 15 illustrates a specific structure of a device 4210 in accordance with one or more embodiments of the present invention.
- Device 4210 can include electronics 15100, antenna 15200, and other components (not shown). Similar to the electronic device 4130 in the device 4100, the electronic device 15100 can also be implemented to include one or more of the antenna 15200 or other components in the device 4210, or as the device 4210 itself.
- the electronic device 15100 can transmit an uplink pilot signal to the device 4100 to enable the device 4100 to obtain the first channel state and obtain the slave transmit antenna array 4150 from the device 4100 based on the first channel state.
- the first channel state includes at least a channel state from the antenna 15200 to the upstream channel of the receiving antenna array 4140 with the device 4100.
- the electronic device 15100 can receive a data signal transmitted by the device 4100 using the downlink channel state.
- the first channel state may also include the channel state of the upstream channel from antenna 15200 to transmit antenna array 4150.
- electronic device 15100 can receive a downlink pilot signal from transmit antenna array 4150 via antenna 15200. The electronic device 15100 can then obtain the downlink channel state of the downlink channel from the transmit antenna array 4150 to the antenna 15200 based on the downlink pilot signal and transmit the downlink channel state to the device 4100.
- the downlink channel state may be derived from the first channel state estimate by the device 4100 using the spatial correlation between the channel from the antenna 15200 to the receive antenna array 4140 antenna and the channel from the transmit antenna array 4150 to the antenna 15200.
- the electronic device 15100 can receive, via the antenna 15200, a downlink pilot signal after beamforming the downlink pilot signal using the first channel state.
- the electronic device 15100 can obtain a downlink channel state based on the beamformed downlink pilot signal and transmit a downlink channel state to the device 4100.
- the electronic device 15100 in the device 4210 is described above.
- the wireless communication method performed in the device 4210 will be described below.
- FIG. 16 illustrates a method 16000 for conducting wireless communications in accordance with one or more embodiments of the present invention.
- the slave device 4210 transmits a first pilot signal to the device 4100 to enable the device 4100 to obtain the first channel state and obtain a downlink channel from the transmit antenna array 4150 of the device 4100 to the device 4210 based on the first channel state.
- the first channel state includes at least from the antenna 15200 to the device 4100 The channel state of the uplink channel of the receiving antenna array 4140.
- step 16200 a data signal transmitted by the device 4100 using the downlink channel state is received.
- the device and processing of the client are described above, and the related wireless communication method is described. Next, the antenna at the base station side will be described.
- the transmit antenna array 4150 and the receive antenna array 4140 can transmit signals at the same frequency and at the same time, thereby achieving full duplex communication.
- transmit antenna array 4150 and receive antenna array 4140 may have spatial correlation. As such, this spatial correlation can be utilized to estimate the downlink channel state based on the upstream channel state.
- the respective antenna elements of the transmit antenna array 4150 and the receive antenna array 4140 are staggered.
- the transmit antenna array 4150 and the receive antenna array 4140 may also adopt the arrangement shown in FIG.
- transmit antenna array 4150 and receive antenna array 4140 are two adjacent sub-arrays of a linear array.
- transmit antenna array 4150 may be partially interleaved with receive antenna array 4140.
- the transmit antenna array 4150 and the receive antenna array 4140 may also employ other arrangements that make them spatially dependent.
- transmit antenna array 4150 and receive antenna array 4140 may also not have spatial correlation.
- the transmit antenna array 4150 and the receive antenna array 4140 can also adopt an arrangement that does not have spatial correlation.
- transmitting antenna array 4150, the receiving antenna array 4140, or a combination thereof is a linear array has been described above.
- transmit antenna array 4150, receive antenna array 4140, or a combination thereof may also be a 3D antenna.
- the device 4100 can employ a Uniformly-spaced rectangular array (URA) to obtain degrees of freedom in the vertical and horizontal directions and to generate a three-dimensional beam.
- UAA Uniformly-spaced rectangular array
- each of the antenna elements of the transmitting antenna array and the receiving antenna array may be staggered in the vertical direction and continuously arranged in the horizontal direction.
- Figure 19 shows a specific arrangement of 8 x 8 URAs in accordance with one or more embodiments of the present invention. As shown in FIG. 19, the transmitting antenna array and the receiving antenna array are continuous in the horizontal direction and staggered in the vertical direction.
- the transmit antenna array 4150 and the receive antenna array 4140 are described herein as a uniform linear array and a uniform rectangular array, the transmit antenna array 4150 and the receive antenna array 4140 may also take the form of a non-uniform array.
- the spacing between the antenna elements of the transmit antenna array 4150 can be increased or decreased in the vertical direction as the height increases, and the receive antenna array 4140 can also be arranged in this manner.
- the transmitting antenna array 4150 and the receiving antenna array 4140 may adopt the above-described non-uniform arrangement in the vertical direction and a uniform arrangement in the horizontal direction.
- non-uniform antennas The arrangement of non-uniform antennas is specifically described in the patent application entitled “Non-Uniform Antenna Array and Signal Processing” thereof, filed on Jan. 26, 2016, which is hereby incorporated by reference. The entire content of this is incorporated herein by reference.
- the transmit antenna array 4150 and the receive antenna array 4140 can be used in combination with a non-uniform arrangement and a staggered arrangement.
- 19-24 illustrate simulation results in the case of employing an electronic device and communication method in accordance with one or more embodiments of the present invention.
- Table 1 gives the system simulation parameters used, assuming that the multipath angular expansion obeys a uniform distribution.
- the 20 is a cumulative distribution function diagram of a downlink average spectral efficiency of a cell in an NLOS channel scenario.
- the traditional split antenna structure, the accurate downlink channel estimation using the interleaved structure and the approximate downlink channel estimation by the phase shifter are simulated respectively.
- the downlink spectrum efficiency of the scheme using the interlaced structure for accurate downlink channel estimation and the approximate phased channel estimation with the phase shifter is more efficient according to one or more embodiments of the present invention.
- the phase shifter is used to estimate the downlink channel, the resulting downlink beamforming vector deviation will increase inter-user interference and reduce system performance.
- FIG. 21 is a diagram showing the downlink average spectral efficiency performance of a cell in an NLOS channel scenario and different signal to noise ratio environments.
- the spectral efficiency of the solution provided by the present invention will be higher than that of the conventional scheme.
- Figure 22 shows the performance comparison of the downlink average spectral efficiency of the cell in the NLOS channel scenario and the number of different antennas.
- the signal-to-noise ratio SNR 20 dB is employed.
- Increasing the number of antennas will improve the performance of all schemes because a narrower downstream beam will be produced.
- the performance of the solution provided by the present invention will be improved more quickly, and the performance spacing from the conventional solution will also be expanded.
- the performance degradation due to the bias caused by the phase shifter still exists and does not decrease as the antenna increases. Ii. LOS channel scene simulation
- FIG. 23, FIG. 24, and FIG. 25 respectively show simulation comparisons of the LOS channel scenarios corresponding to the simulation parameters in the above NLOS channel scenario.
- the results show that the performance of the present invention in the LOS channel is still superior to the conventional scheme, and the scheme of estimating the downlink channel by the phase shifter does not bring performance loss. This is because in the LOS channel, the line-of-sight channel occupies the main energy, and the phase shifter estimates are more accurate.
- apparatus 4100 can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
- the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
- device 4100 can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
- BTS base transceiver station
- Apparatus 4100 can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
- RRHs remote wireless headends
- various types of terminals which will be described below, can operate as the device 4100 by performing base station functions temporarily or semi-persistently.
- the device 4210 can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
- the device 4210 can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
- the device 4210 may be a wireless communication module (such as an integrated circuit module including a single wafer) mounted on each of the above terminals.
- FIG. 26 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
- the eNB 800 includes one or more antennas 810 and a base station device 820.
- the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
- Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
- eNB 800 can include multiple antennas 810.
- multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
- FIG. 26 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
- the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
- the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets.
- the controller 821 can have an implementation such as Logic function of the lower control: The control is such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
- the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
- Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
- the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
- Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
- the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
- BB processor 826 may have some or all of the above described logic functions.
- the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
- the update program can cause the function of the BB processor 826 to change.
- the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
- the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
- the wireless communication interface 825 can include a plurality of BB processors 826.
- multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
- the wireless communication interface 825 can include a plurality of RF circuits 827.
- multiple RF circuits 827 can be compatible with multiple antenna elements.
- FIG. 26 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
- FIG. 27 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
- the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860. RRH 860 and each antenna The 840s may be connected to each other via an RF cable.
- the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
- Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
- eNB 830 can include multiple antennas 840.
- multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
- FIG. 27 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
- the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- Wireless communication interface 855 can generally include, for example, BB processor 856.
- the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 26 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 can include a plurality of BB processors 856.
- multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
- FIG. 27 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
- the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 can also be a communication module for communication in the above high speed line.
- the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
- Wireless communication interface 863 can typically include, for example, RF circuitry 864.
- the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 can include a plurality of RF circuits 864.
- multiple RF circuits 864 can support multiple antenna elements.
- FIG. 27 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also A single RF circuit 864 is included.
- the use of the electronic devices 4130 and 15100 can be implemented by the wireless communication interface 825 and the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851.
- the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
- the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
- the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
- the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
- USB universal serial bus
- the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
- Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
- the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
- the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts the audio signal output from the smartphone 900 into sound.
- the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
- Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
- the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
- RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
- Wireless communication interface 912 can be integrated thereon There is a chip module of the BB processor 913 and the RF circuit 914. As shown in FIG.
- the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
- FIG. 28 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
- wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
- the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
- Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
- Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
- smart phone 900 can include multiple antennas 916.
- FIG. 28 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
- smart phone 900 can include an antenna 916 for each wireless communication scheme.
- the antenna switch 915 can be omitted from the configuration of the smartphone 900.
- the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
- Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 28 via a feeder, which is partially shown as a dashed line in the figure.
- the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
- the electronic devices 4130 and 15100 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
- the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
- the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
- the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
- the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
- Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
- the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
- the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
- the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
- the speaker 931 outputs the sound of the navigation function or the reproduced content.
- the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
- Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
- the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
- the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
- the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
- the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
- FIG. 29 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
- the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
- the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
- Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
- Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
- car navigation device 920 can include a plurality of antennas 937.
- FIG. 29 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
- car navigation device 920 can include an antenna 937 for each wireless communication scheme.
- the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
- Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 29 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
- the electronic devices 4130 and 15100 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
- the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
- vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
- the above describes a device in a communication system and a corresponding communication processing method according to one or more embodiments of the present invention.
- the electronic devices 4130 and 15100 are described herein as performing various operations, these operations may actually be performed by circuitry in the electronic devices 4130 and 15100. Moreover, operations performed herein for other components may also be performed by electronic devices 4130 and 15100, or under the control of devices 4130 and 15100. For example, one or more operations performed by transmitting radio frequency link 4150 and receiving radio frequency link 4140 may be performed by electronic devices 4130 and 15100, or under the control of devices 4130 and 15100.
- Electronic devices 4130 and 15100 can be implemented as a chip or a complete device, such as devices 4100 and 4210 themselves.
- electronic devices 4130 and 15100 may include an interface to exchange signals with other components or devices in addition to circuitry.
- FIG. 1 The detailed description set forth above with reference to the accompanying drawings, FIG.
- the words “exemplary” and “exemplary” when used in the specification mean “serving as an example, instance or description”, and does not mean “preferred” or “more beneficial than other examples.”
- the detailed description includes specific details to provide an understanding of the described techniques. However, these techniques can be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the examples.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, and/or state machine.
- the processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, and/or any other such configuration.
- the functions described herein can be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on a computer readable medium or transmitted as one or more instructions or code on a computer readable medium. Other examples and implementations are within the scope and spirit of the disclosure and the appended claims. For example, in view of the nature of the software, the functions described above can be performed using software, hardware, firmware, hardwired, or any combination of these, executed by the processor. Features that implement the functionality may also be physically placed at various locations, including being distributed such that portions of the functionality are implemented at different physical locations.
- Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
- a computer readable medium may comprise RAM, ROM, EEPROM, flash memory, CD-ROM, DVD or other optical disk storage, disk storage or other magnetic storage device, or can be used to carry or store Desired program code components in the form of instructions or data structures and any other medium that can be accessed by a general purpose or special purpose computer or a general purpose or special purpose processor.
- any connection is properly termed a computer-readable medium.
- the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- coaxial cable, Optical cables, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave
- the coaxial cable, Optical cables, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the medium.
- the discs and discs used herein include compact discs (CDs) and laser discs. Films, optical discs, digital versatile discs (DVD), floppy discs, and Blu-ray discs, where the disc typically magnetically replicates data while the disc uses lasers to optically replicate data. Combinations of the above are also included within the scope of computer readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本公开涉及电子设备、无线通信方法以及介质。该电子设备包括被配置为执行以下操作的电路:获得第一信道状态,第一信道状态至少包括从第一装置到与所述电子设备关联的第一天线的信道的信道状态,第一装置与所述电子设备进行无线通信;基于第一信道状态获得第二信道状态,第二信道状态包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
Description
优先权声明
本申请要求于2016年11月8日递交、申请号为201610976414.7、发明名称为“电子设备、无线通信方法以及介质”的中国专利申请的优先权,其全部内容通过引用并入本文。
本公开一般地涉及电子设备、无线通信方法以及介质,更具体地,涉及双工系统中的信号处理技术。
频分双工(FDD)与时分双工(TDD)技术在现行的无线通信标准中被广泛应用。在蜂窝通信中,上行与下行传输在FDD模式下工作于不同频段内,在TDD模式下工作于不同时隙内,以避免上下行传输间的干扰。在应用大规模多天线(Massive multiple-input multiple-output)技术的情况下,FDD/TDD下的信道特性与信号处理技术被学术界与工业界深入研究。
但是FDD/TDD系统采用正交的频率/时间资源块,降低了资源块利用率并导致系统容量下降。为了进一步利用频率和时间资源,全双工技术被认为是未来无线通信系统中的关键技术。全双工技术可在同一频段内同时发送和接收信号,该技术在A.Sabharwal、P.Schniter、D.Guo、D.W.Bliss和R.Wichman的文章“In-Band Full-Duplex Wireless:Challenges and Opportunities.”IEEE Journal on Selected Areas in Communications,vol.32.no.9,pp.1637-1652,Sep.2014.中进行了描述。
对比现行的FDD/TDD技术,全双工技术可更高效地利用频率与时间资源,并显著地提升系统容量。D.Kim、H.Lee和D.Hong的文章“A Survey of In-Band Full-Duplex Transmission:From the Perspective of PHY and MACLayers,”IEEE Communications Surveys&Tutorials,vol.17,no.4,pp.2017–2046,Nov.2015.中介绍了两种主要的全双工终端结构,如图1和图2所示。
图1为共享式天线结构,需硬件上采用环形器隔离同一天线端口的发送信号与接收信号。图2为分离式天线结构,发送与接收射频链路连接不同天线。相比共享式天线结构,分离式结构硬件实现较简单,并且其自干扰消除更方便有效。
图3是现有技术中多用户MIMO(MU-MIMO)场景下采用分离式天线结构的全双工通信示意图。这里假设用户(UE)也可以工作在全双工的模式下。基站3100在空间域采用不同的天线进行下行发送与上行接收,上下行传输在空间域被分离。
发明内容
然而,本公开的发明人发现,在图3的结构中,由于下行信道与上行信道的相关性并没有得到有效利用,所以需要额外的开销进行下行信道估计和信令交互,从而会影响系统的工作效率。
因此,为了解决或减轻至少上述问题,本公开提供了如下方面。
根据本公开的一个方面,提供了一种电子设备,其特征在于包括被配置为进行以下操作的电路:获得第一信道状态,第一信道状态至少包括从第一装置到与所述电子设备关联的第一天线的信道的信道状态,第一装置与所述电子设备进行无线通信;基于第一信道状态获得第二信道状态,第二信道状态包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
根据本公开的另一个方面,提供了一种用于进行无线通信的方法,其特征在于包括:获得第一信道状态,第一信道状态至少包括从第一装置到与电子设备关联的第一天线的信道的信道状态,第一装置与所述电子设备进行无线通信;基于第一信道状态获得第二信道状态,第二信道状态包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
根据本公开的另一个方面,提供了一种电子设备,其特征在于包括被配置为进行以下操作的电路:向另一电子设备发送第一导频信号,以使得所述另一电子设备能够获得第一信道状态以及基于第一信道状态获得第二信道状态,其中,第一信道状态至少包括从与所述电子设备关联的天线到与所述另一电子设备关联的第一天线的信道的信道状态,第二信道状态包括从与所述另一电子设备关联的第二天线到与所述电子设备关联的天线的信道的信道状态,所述电子设备与所述另一电子设备进行无线通信;接收从所述另一电子设备利用第二信道状态发送的数据信号。
根据本公开的另一个方面,提供了一种用于进行无线通信的方法,其特征在于包括:
从第一电子设备向第二电子设备发送第一导频信号,以使得第二电子设备能够获得第一信道状态以及基于第一信道状态获得第二信道状态,其中,第一信道状态至少包括从第一电子设备到与第二电子设备关联的第一天线的信道的信道状态,第二信道状态包括从与第二电子设备关联的第二天线到第一电子设备的信道的信道状态,第一电子设备与第二电子设备进行无线通信;接收从第二电子设备利用第二信道状态发送的数据信号。
根据本公开的另一个方面,提供了一种计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行上述方法。
本公开通过在估计出上行信道状态的基础上,利用上行信道状态获得下行信道状态,从而降低系统信令开销,提升频率利用效率,缩短调度时延。
图1是示出现有技术中全双工系统的共享式天线结构的示意图。
图2是示出现有技术中全双工系统的分离式天线结构的示意图。
图3是示出现有技术中采用分离式天线结构的全双工通信示意图。
图4是示出根据本公开的一个或多个实施例的通信系统的示意图。
图5是示出根据本公开的一个或多个实施例的通信处理的流程图。
图6是示出根据本公开的一个或多个实施例的通信系统的示意图。
图7是示出根据本公开的一个或多个实施例的用于进行无线通信的帧结构。
图8是示出根据本公开的一个或多个实施例的通信处理的流程图。
图9是示出根据本公开的一个或多个实施例的用于进行无线通信的帧结构。
图10是示出根据本公开的一个或多个实施例的通信处理的流程图。
图11是示出根据本公开的一个或多个实施例的用于进行无线通信的帧结构。
图12是示出根据本公开的一个或多个实施例的通信处理的流程图。
图13是示出根据本公开的一个或多个实施例的用于进行无线通信的帧结构。
图14是示出根据本公开的一个或多个实施例的用于进行无线通信的方法。
图15是示出根据本公开的一个或多个实施例的通信装置的示意图。
图16是示出根据本公开的一个或多个实施例的用于进行无线通信的方法。
图17是示出根据本公开的一个或多个实施例的天线的排列的示意图。
图18是示出不同天线间距下的波束的示意图。
图19是示出根据本公开的一个或多个实施例的天线的排列的示意图。
图20是NLOS信道场景下小区下行平均频谱效率的累积分布函数图。
图21是NLOS信道场景、不同信噪比环境下的小区下行平均频谱效率性能的示图。
图22是示出为NLOS信道场景、不同天线个数下的小区下行平均频谱效率性能的示图。
图23、图24、图25分别是示出与NLOS信道场景对应的LOS信道场景的仿真图。
图26是示出eNB的示意性配置的第一示例的框图。
图27是示出eNB的示意性配置的第二示例的框图。
图28是示出智能电话的示意性配置的示例的框图。
图29是示出汽车导航设备的示意性配置的示例的框图。
在下文中,将参照附图详细地描述本公开内容的优选实施例。注意,在本说明书和附图中,用相同的附图标记来表示具有基本上相同的功能和结构的结构元件,并且省略对这些结构元件的重复说明。
将按照以下顺序进行描述。
1.系统概述
2.基站端的设备和处理
3.用户端的设备和处理
4.天线的设计
5.仿真结果
6.应用示例
7.结论
<1.系统概述>
在图3的系统中,考虑单小区多用户场景。假设基站3100同时服务K个用户设备(UE)(未全部示出),且假设每个用户设备安装1根发送天线与1根接收天线。在图3中,采用传统分离式天线结构,小区中心基站3100工作于全双工模式下。采用窄带多径空间信道,假设有P条多径,并且基站3100的发送天线阵列3120与接收天线阵列3110均为M×1的均匀线性天线阵列(ULA)。基站3100与第k个用户设备间的下行与上行信道分
别记为与
对于下行信道为基站3100与第k个用户设备的下行信道的第p条子径的导向矢量,m为天线序号,其发射角(AoD)为θk,p且大尺度衰落系数为一般地,天线间距D=λ/2。同理对上行信道
为基站3100与第k个用户设备的上行信道的第p条子径的导向矢量,其到达角(AoA)为且对应大尺度衰落系数为
该信道模型可用于非视距(Non-line-of-sight,NLOS)与视距信道(Line-of-sight,LOS)模型,其中与代表直射径分量。对NLOS信道,有与对LOS信道,与一般比和大5dB至10dB。在该模型中,可以在例如数字域、模拟电路域或信号传播域对自干扰进行抑制,使得下行与上行传输视为互相独立。现有的用于FDD/TDD系统的信道估计、信号检测和波束赋形等信号处理算法可应用于该系统中。
图4是示出根据本公开的一个或多个实施例的通信系统4000的示意图。在通信系统4000中,装置4100与装置4210、装置4220以及其它用户设备(未示出)进行无线通信。
装置4100包括接收射频链路4110、发送射频链路4120、电子设备4130、接收天线阵列4140(实心圆)、发送天线阵列4150(空心圆)和其它部件(未示出)。接收射频链路4110耦接到接收天线阵列4140(实心圆),发送射频链路4120耦接到发送天线阵列4150(空心圆)。此外,接收射频链路4110和发送射频链路4120还耦接到电子设备4130。
这里,电子设备4130可以与接收射频链路4110和发送射频链路4120交换信号。电子设备4130也可以对接收射频链路4110和发送射频链路4120中的操作进行控制。虽然在图4中示出了电子设备4130与接收射频链路4110、发送射频链路4120、接收天线阵列4140和发送天线阵列4150分离,但是电子设备4130也可以被实现为还包括接收射频链路4110、发送射频链路4120、接收天线阵列4140和发送天线阵列4150的一个或多个,或者被实现为装置4100本身。
在通信系统4000中,接收天线阵列4140为天线间距为λ的均匀线性阵列,包括天线单元4140-1、4140-2、4140-3、4140-4……。发送天线阵列4150是天线间距为λ的均匀线性阵列,包括天线单元4150-1、4150-2、4150-3、4150-4……。这里假设发送天线阵列4150与接收天线阵列4140分别具有M个天线单元,M为任意正整数。然而,与图3中的通信系统不同,在通信系统4000中,发送天线阵列4150与接收天线阵列4140交错排列。因此,发送天线阵列4150与接收天线阵列4140的组合构成2M×1的均匀线性阵列。在该2M×1的均匀线性阵列中,相邻天线之间的间距优选地为D=λ/2。
与图3中的分离式天线结构相比,在通信系统4000中,发送天线阵列4150和接收天线阵列4140各自的等效天线间距为D′=2D=λ。从而,可用于产生更窄的波束,提升波束赋形的性能。同时,在通信系统4000中,发送天线列4150与接收天线列4140处于同一空间区域内并交错排列,而不是像图3中的分离式天线结构完全分离。因此,在通信系统4000中,上下行信道的空间相关性可用于降低信道估计开销并提升频谱效率。
其中,与公式1和2中相同的符号具有相同的含义,在此不再赘述。而下行与上行导向矢量aDL(θk,p)与aUL(θk,p)分别为
在通信系统4000中,下行信道的发射角与上行信道到达角保持一致,并且其大尺度衰落系数保持一致。这是基于信道互易性得到的结果。而该假设在传统分离式天线结构中是不符合的,因为下行天线与上行天线在空间上的划分造成了信道的非对称性。同时,aDL(θk,p)与aUL(θk,p)满足关系:
公式5表征了下行信道与上行信道间存在的信道相关性。尤其在LOS信道中,由于直射径能量衰减较小,反射径影响微弱,故可以有如下近似
公式6说明可以通过已估计出的上行信道来估计下行信道。
本发明的一个或多个实施例通过利用上行信道与下行信道的上述性质,提供了在不需要额外的下行参考信号的情况进行简单的下行信道估计的电子设备和相应的通信方法,并且提供了改进的帧结构。
下面,以通信系统4000为例来描述本发明的一个或多个实施例。装置4100可以被实现为基站、Node B、e-NodeB、中继器等。装置4210和4220可以实现为蜂窝电话、车载终端等的终端设备。
下面以装置4100被实现为基站、装置4210和4220被实现为用户设备为例来说明本发明的一个或多个实施例。为了方便描述,本文将从装置4100到装置4210和4220的传输称为下行传输,将从装置4210和4220到装置4100的传输称为上行传输。在装置4100不是基站、装置4210和4220不是用户设备的情况下,从装置4100到装置4210和4220的传输可以不被称为下行传输,从装置4210和4220到装置4100的传输可以不被称为上行传输。
<2.基站端的设备和处理>
根据本发明的一个或多个实施例,电子设备4130可以被配置为获得第一信道状态。第一信道状态至少包括从装置4210到与电子设备4130关联的接收天线阵列4140的上行信道的状态。电子设备4130可以基于第一信道状态获得第二信道状态。第二信道状态包括从与电子设备4130关联的发送天线阵列4150到装置4210的下行信道的信道状态。
下面,将结合图5-14具体描述电子设备4130、以及相应的帧结构。
在本发明的一个或多个实施例中,第一信道状态还可以包括从装置4210到与电子设备4130关联的发送天线阵列4150的上行信道的信道状态。这里,发送天线阵列4150不仅可以发送信号也可以接收信号。在获得从装置4210到与电子设备4130关联的发送天线阵列4150的上行信道的信道状态之后,电子设备4130可以基于上下行
信道互易性获得从与电子设备4130关联的发送天线阵列4150到装置4210的下行信道的信道状态。
例如,电子设备4130可以基于接收天线阵列4140和发送天线阵列4150从装置4210接收的上行导频信号进行联合信道估计,从而获得从装置4210到接收天线阵列4140的上行信道状态、以及从发送天线阵列4150到装置4210的下行信道的信道状态。这里,联合信道估计是指基于接收天线阵列4140和发送天线阵列4150接收到的导频信号进行整体的信道估计,而不是单独地基于接收天线阵列4140接收到的导频信号进行信道估计以及单独地基于发送天线阵列4150接收到的导频信号进行信道估计。例如,电子设备4130可以通过联合信道估计获得联合信道矩阵,然后对联合信道矩阵的行或列进行置换,从而获得下行信道状态。
图5示出了根据一个或多个实施例的装置4100和装置4210之间的通信处理的流程图。
在步骤5100中,接收射频链路4110可以经由接收天线阵列4140和发送天线阵列4150从装置4210接收上行导频信号。在步骤5110中,电子设备4130可以基于接收天线阵列4140和发送天线阵列4150接收到的上行导频信号5100进行联合信道估计,获得联合信道矩阵,并进一步获得从发送天线阵列4150到装置4210的下行信道的信道状态。在步骤5200中,发送射频链路4120可以利用所获得的下行信道状态经由发送天线阵列4150发送下行数据。在步骤5300中,接收射频链路4110可以经由接收天线阵列4140接收上行数据。
假设接收天线阵列4140和发送天线阵列4150各有M个天线单元。为了简化描述,这里以装置4100(例如,基站)在同一时间同一频率中只与一个装置4210(例如,第k个用户设备)进行通信的情况。因此,联合信道矩阵GJ∈C2M×1。
联合信道矩阵GJ包括从装置4210到接收天线阵列4140的上行信道的信道矩阵以及从装置4210到发送天线阵列4150的上行信道的信道矩阵G′UL=g′k
UL∈CM×1。这里,为从第k个用户的装置4210到接收天线阵列4140的上行信道,g′k
UL为从第k个用户的装置4210到发送天线阵列4150的上行信道。也就是说,联合信道矩阵GJ指示从装置4210到接收天线阵列4140和发送天线阵列4150排列成的2M×1的均匀线性天线阵列的上行信道的信道状态。由于接收天线阵列4140与发送天线阵列4150交错排列,所以联合信道矩阵GJ可以表示为:
在公式7中,PJ为置换矩阵,其对的行进行重排。的行被重排之后对应于2M×1的均匀线性天线阵列下的联合上行信道。这里,由于为列向量,所以将左乘对进行行置换的置换矩阵PJ。在为行向量的情况下,将右乘对进行列置换的置换矩阵PJ。
由上可知,电子设备4130进行联合信道估计获得的联合上行信道矩阵GJ是将上行信道矩阵GUL和上行信道矩阵G′UL的组合的重排结果。所以,电子设备4130可以对联合上行信道矩阵GJ的行进行置换,使得前M行对应于从装置4210到接收天线阵列4140的上行信道,后M行对应于从装置4210到发送天线阵列4150的上行信道。从而,电子设备4130可以获得从装置4210到接收天线阵列4140的上行信道估计结果以及从装置4210到天线阵列4150的上行信道估计结果然后,电子设备4130可以基于上下行信道之间的互易性,根据从装置4210到发送天线阵列4150的上行信道估计结果获得从发送天线阵列4150到装置4210的下行信道估计结果
通过上述方式来估计从发送天线阵列4150到装置4210的下行信道状态,算法复杂度低,并且可以降低信令交互流程的复杂度。在这种情况下,发送天线阵列4150既要耦接到发送射频链路4120也要耦接到接收射频链路4110(如图6所示)。
图7示出了根据一个或多个实施例的用于在装置4100和装置4210之间进行无线通信的帧结构。
上行信道的时段7100被划分为子时段7110和7120。下行信道的时段7200被划分为子时段7210和7220,其分别与上行信道的子时段7110和7120对应。
在子时段7110和7210中,电子设备4130执行控制以使得接收射频链路4110经由接收天线阵列4140和发送天线阵列4150从装置4210接收上行导频信号。在子时段7120中,电子设备4130利用通过联合信道估计获得的从装置4210到接收天线阵列4140的上行信道估计结果接收上行数据。在子时段7210中,电子设备4130利用从发送天线阵列4150到装置4210的下行信道估计结果发送下行数据。
时段7100与时段7200对应,它们在时间上基本对齐或者有稍微的时延。时段7100和7200以及子时段7110、7120、7210和7220可以对应于一个或多个帧、一个或多个子帧、一个或多个时隙或一个或多个OFDM符号。上行信道可以划分为多个相同的时段7100,也可以在多个时段7100之间插入以其它方式划分的时段。同理,下行信道可以划分为多个相同的时段71200,也可以在多个时段7200之间插入以其它方式划分的时段。后面描述的图9、11、13中的时段和子时段也具备这样的性质。
在本发明的一个或多个实施例中,电子设备4130可以基于来自装置4210的反馈信号获得从发送天线阵列4150到装置4210的下行信道状态。在这种情况下,第一信道状态是接收射频链路4110基于接收天线阵列4140从装置4210接收的上行导频信号获得的从装置4210到接收天线阵列4140的上行信道状态,从发送天线阵列4150到装置4210的下行信道状态是由装置4210从发送天线阵列4150接收的下行导频信号获得的,并且被包括在所述反馈信号中。
例如,电子设备4130可以执行控制以使得在经由接收天线阵列4140接收上行导频信号时经由发送天线阵列发送下行导频信号。
例如,电子设备4130可以执行控制以使得在当前时段中获得第二信道状态之前发送天线阵列4150处于工作模式1或工作模式2。在工作模式1中,发送天线阵列4150处于空闲状态。在工作模式2中,发送射频链路4120利用先前时段中获得的下行信道状态经由发送天线阵列4150向装置4210发送下行数据。
图8示出了根据一个或多个实施例的装置4100和装置4210之间的通信处理的流程图。
在步骤8100中,装置4100中的接收射频链路4110可以经由接收天线阵列4140从装置4210接收上行导频信号。在步骤8200中,装置4100中的发送射频链路4120可以经由发送天线阵列4150向装置4210发送下行导频信号。在步骤8210中,装置4100中的接收射频链路4110可以基于上行导频信号估计从装置4210到接收天线阵列4140的上行信道状态,并将上行信道状态提供给电子设备4130。在步骤8220中,装置4210可以基于接收到的下行导频信号估计从发送天线阵列4150到装置4210的下行信道状态。在步骤8300中,装置4210将下行信道状态的估计结果例如作为下行信道CSI(信道状态信息)包括在反馈信号中,并将反馈信号发送给装置4100。在步骤8410中,装置4100中的电子设备4130可以基于反馈信号获得从发送天线阵列
4150到装置4210的下行信道状态。
例如,电子设备4130可以执行控制以使得发送射频链路4120直接利用反馈信号中所包括的下行信道状态经由发送天线阵列4150发送下行数据。替代地,电子设备4130可以通过对反馈信号中所包括的下行信道状态与利用本发明的其它实施例的方法获得的下行信道状态进行组合(例如,加权等),并利用组合后的下行信道状态发送下行数据。
此外,在步骤8400中,电子设备4130还未获得下行信道状态,所以电子设备4130可以使得发送天线阵列4150处于空闲状态,或者利用先前时段中获得的下行信道状态发送下行数据。
在上述方案中,接收射频链路4110和发送射频链路4120分别耦接至接收天线阵列4140和发送天线阵列4150。接收射频链路4110无需耦接至发送天线阵列4150。因而,硬件实现较简单,但信令交互较为复杂。
图9示出了根据本发明的一个或多个实施例的用于在装置4100和装置4210之间进行无线通信的帧结构。
上行信道的时段9100被划分成三个子时段9110、9120和9130。下行信道的时段9200被划分成三个子时段9210、9220和9230,其分别与上行信道的子时段9110、9120和9130对应。
在子时段9110中,接收射频链路4110可以经由接收天线阵列4140从装置4210接收上行导频信号。在子时段9210中,发送射频链路4120可以经由发送天线阵列4150向装置4210发送下行导频信号。
在子时段9120中,接收射频链路4110可以经由接收天线阵列4140从装置4210接收下行信道CSI反馈。在子时段9220中,由于此时下行信道CSI反馈还未被完全接收,所以还不能使用时段9100中的下行信道状态发送下行数据。因此,在子时段9200中,电子设备4130可以执行控制以使得发送天线阵列4150处于上述工作模式1或工作模式2。
在子时段9130中,接收射频链路4110可以利用装置4100基于时段9110中接收到的上行导频信号获得的从装置4210到接收天线阵列4140的上行信道估计结果接收上行数据。在子时段9230中,发送射频链路4120可以利用在时段9120中接收到的下行信道CSI反馈发送下行数据。
根据本发明的一个或多个实施例,电子设备4130可以利用从装置4210到接收天
线阵列4140的上行信道与从发送天线阵列4150到装置4210的下行信道之间的相关性,基于上行信道状态估计下行信道状态。
例如,电子设备4130可以通过对上行信道状态进行移相来获得下行信道状态。该移相可以通过计算来进行,也可以由电子设备4130中的移相器来进行。
图10示出了根据一个或多个实施例的装置4100和装置4210之间的通信处理的流程图。
参照图10,在步骤10100中,装置4100中的接收射频链路4110可以经由接收天线阵列4140从装置4210接收上行导频信号。在步骤10210中,接收射频链路4110可以基于接收到的上行导频信号估计从装置4210到接收天线阵列4140的上行信道状态,并将估计得到的上行信道状态提供给装置4100中的电子设备4130。在步骤10220中,电子设备4130可以基于获得的上行信道状态估计从发送天线阵列4150到装置4210的下行信道状态,并将下行信道状态提供给装置4100中的发送射频链路4120。在步骤10300中,发送射频链路可以利用下行信道状态经由发送天线阵列4150发送下行数据。在步骤10400中,接收射频链路4110可以利用上行信道状态接收上行数据。
此外,在步骤10200中,电子设备4130还未获得下行信道状态,所以发送射频链路4120可以利用先前时段中获得的下行信道状态经由发送天线阵列4150向装置4210发送下行数据。
在上述处理过程中,电子设备4130可以基于上行信道与下行信道之间的空间相关性,通过对上行信道状态进行移相来获得下行信道状态。
例如,在装置4100与K(K≥1)个装置4210进行通信的情况下,可以通过将上行信道矩阵乘以移相矩阵S来获得下行信道状态。这里,移相矩阵S可以表示为:
上述方案更适用于LOS信道和毫米波信道。而对于NLOS信道,在估计下行信道状态时会产生偏差,降低利用下行信道状态进行的波束赋形的性能。尤其当多径角度扩展较大时,性能损失更严重。
图11示出了根据一个或多个实施例的用于在装置4100和装置4210之间进行无线
通信的帧结构。
如图11所示,上行信道的时段11100被划分为两个子时段11110和11120。下行信道的时段11200被划分为两个子时段11210和11220,其分别与上行信道的子时段11110和11120对应。
在子时段11110,接收射频链路4110可以经由接收天线阵列4140接收上行导频信号。在子时段11120,可以经由接收天线阵列4140接收上行数据。
在子时段11210,电子设备4130还未获得当前时段11100中的下行信道状态。所以在子时段11210,发送射频链路4120可以经由发送天线阵列4150利用先前时段中获得的下行信道状态发送下行数据。在子时段11200,电子设备4130已经基于上行信道状态获得了当前时段11100中的下行信道状态,所以发送射频链路4120可以经由发送天线阵列4150利用当前时段11100中获得的下行信道状态发送下行数据。
根据本发明的一个或多个实施例,电子设备4130可以利用从装置4210到接收天线阵列4140的上行信道状态对下行导频信号进行波束赋形。发送射频链路4120可以经由发送天线阵列4150将波束赋形后的下行导频信号发送给装置4210。然后,接收射频链路4110可以从装置4210接收从发送天线阵列4150到装置4210的下行信道状态。这里,下行信道状态是由装置4210基于波束赋形后的下行导频信号获得的。
例如,电子设备4130可以基于上行信道状态获得不精确的下行信道状态,然后利用获得的不精确的下行信道状态对下行导频信号进行波束赋形。不精确的下行信道状态可以由电子设备4130利用上下行信道之间的空间相关性获得,其指示从发送天线阵列4150到装置4210的下行信道的信道状态。
图12示出了根据一个或多个实施例的装置4100和装置4210之间的通信处理的流程图。在图12中,步骤12100、12200、12210、12220、12300中的处理与图10中步骤10100、10200、10210、10220、10300中的处理类似,这里不再赘述。但是,在步骤10220中由电子设备4130基于上行信道状态获得的下行信道状态在步骤12220中被称为不精确的下行信道状态。
在步骤12230中,发送射频链路4120可以利用不精确的下行信道状态对下行导频信号进行波束赋形。在步骤12400中,发送射频链路4120可以经由发送天线阵列4150发送波束赋形后的下行导频信号。在步骤12410中,装置4210基于接收到的波束赋形后的下行导频信号估计从发送天线阵列4150到装置4210的下行信道状态。步
骤12500、12600、12610、12700、12800中的处理与图8中步骤8300、8400、8410、8500、8600中的处理类似,这里不再赘述。
上述方案适用于多种信道环境,并支持波束赋型的下行参考信号传输模式,但其信令交互过程较复杂。
在本发明的一个或多个实施例中,在接收射频链路4110经由接收天线阵列4140接收来自装置4210的上行导频信号或下行信道状态时,发送射频链路4120可以经由发送天线阵列向装置4220发送信号(例如,数据或下行导频信号)。又例如,在发送射频链路4120经由发送天线阵列4150向装置4210发送信号(例如,数据或下行导频信号)时,接收射频链路4120可以经由接收天线阵列4140接收来自装置4220的上行导频信号或下行信道状态。
因此,在上行信道用于反馈下行信道CSI时,下行信道可用于传输其他用户设备的信号,从而提高了时间利用率。
图13示出了根据一个或多个实施例的用于在装置4100、装置4210、装置4220之间进行无线通信的帧结构。在图13中,空白方框区域表示装置4210相关信号的发送和接收,阴影区域表示装置4220相关信号的发送和接收。
上行信道中的时段13100被划分为4个子时段13110、13120、13130、13140。下行信道中的时段13200被划分为4个子时段13210、13220、13230、13240,其分别与上行信道中的子时段13110、13120、13130、13140对应。
在子时段13110,接收射频链路4110可以经由接收天线阵列4140接收来自装置4210的上行导频信号。装置4100根据对装置4210的上行导频信号接收情况估计上行信道状态,以作为上行传输资源调度的参考;同时根据上行信道与下行信道的相关性进一步估计下行信道,尤其是确定下行信道方向,以用于对下行导频信号进行预处理来获得更精确的下行信道反馈。在子时段13120,接收射频链路4110可以经由接收天线阵列4140接收来自装置4210的上行数据。在子时段13130,接收射频链路4110可以经由接收天线阵列4140接收来自装置4210的下行CSI反馈,其中,装置4210的下行CSI反馈是基于经过预处理的下行导频信号的接收情况进行的,因而可以利用较少的信令资源反馈较精准的信道状态。在子时段13140,接收射频链路4110可以经由接收天线阵列4140接收来自装置4210的上行数据。
在子时段13210,发送射频链路4120可以经由发送天线阵列4150向装置4220发送
下行数据或空闲。在子时段13220,发送射频链路4120可以经由发送天线阵列4150向装置4210发送例如波束赋形后的下行导频信号,如上所述的,波束赋形的参数是基于上行信道状态计算得到的。具体地,使得经过波束赋形后的下行导频信号指向装置4201。在子时段13230,发送射频链路4120可以空闲或经由发送天线阵列4150向装置4220发送下行数据以充分利用下行时段。在子时段13240,发送射频链路4120可以经由发送天线阵列4150向装置4210发送下行数据,其中,装置4100基于在子时段13130接收到的下行CSI反馈来确定下行数据信号传输方式,具体地,例如基于CSI中包含的CQI确定下行数据信号的调制编码方案,又例如基于其中包含的信道方向信息例如PMI,来对下行数据信号进行预编码/波束赋形等处理,以通过发送射频链路4120在子时段13240传输。
参见图13,上行信道中的时段13300与下行信道中的时段13400的划分方式分别与时段13100和时段13200相同。区别在于,时段13300和13400中各个子时段发送或接收的信号所针对的装置与时段13300和13400中各个子时段发送或接收的信号所针对的装置相反。例如,在时段13100中的子时段13110中接收来自装置4210的上行导频信号,但是在时段13300中与子时段13110对应的子时段13310中接收来自装置4220的上行导频信号,以此类推。图13的示例尤其适用于装置4100采用大规模天线的场景,可以在不额外增加导频传输的情况下提高信道估计精度。
以上描述了根据本发明的一个或多个实施例的电子设备4130、通信处理流程以及相应的帧结构。
下面描述可以在电子设备4130中执行的用于进行无线通信的方法。
图14示出了根据本发明的一个或多个实施例的用于进行无线通信的方法14000。如图14所示,在步骤14100,获得第一信道状态,第一信道状态至少包括从装置4210到与电子设备1430关联的接收天线阵列1440的信道的信道状态。在步骤14200中,基于第一信道状态获得第二信道状态,第二信道状态包括从与电子设备1430关联的发送天线阵列1450到装置4210的信道的信道状态。
方法14000中具体步骤的实现方式已经在上面参照图5-13进行了描述,这里不再赘述。
以上对基站端的设备和处理进行了描述,并且描述了相关无线通信方法。下面,将对用户端的设备和处理进行描述。
<3.用户端的设备和处理>
图15示出了根据本发明的一个或多个实施例的装置4210的具体结构。装置4210可以包括电子设备15100、天线15200以及其它部件(未示出)。类似于装置4100中的电子设备4130,电子设备15100也可以被实现为包括天线15200或者装置4210中的其它部件中的一个或多个,或者实现为装置4210本身。
根据本发明的一个或多个实施例,电子设备15100可以向装置4100发送上行导频信号,以使得装置4100能够获得第一信道状态以及基于第一信道状态获得从装置4100的发送天线阵列4150到天线15200的下行信道的信道状态。这里,第一信道状态至少包括从天线15200到与装置4100的接收天线阵列4140的上行信道的信道状态。电子设备15100可以接收从装置4100利用下行信道状态发送的数据信号。
例如,第一信道状态还可以包括从天线15200到发送天线阵列4150的上行信道的信道状态。
例如,电子设备15100可以经由天线15200从发送天线阵列4150接收下行导频信号。然后,电子设备15100可以基于下行导频信号获得从发送天线阵列4150到天线15200的下行信道的下行信道状态,并向装置4100发送下行信道状态。
例如,下行信道状态可以是由装置4100利用从天线15200到接收天线阵列4140天线的信道与从发送天线阵列4150到天线15200的信道之间的空间相关性基于第一信道状态估计得到的。
例如,电子设备15100可以经由天线15200接收利用第一信道状态对下行导频信号进行波束赋形后的下行导频信号。电子设备15100可以基于波束赋形后的下行导频信号获得下行信道状态,并且向装置4100发送下行信道状态。
前面在描述装置4100中的处理时已经描述了第一信道状态和下行信道状态的具体内容以及如何获得它们,这里将不再赘述。
上面描述了装置4210中的电子设备15100。下面将描述装置4210中进行的无线通信方法。
图16示出了根据本发明的一个或多个实施例的用于进行无线通信的方法16000。
在步骤16100中,从装置4210向装置4100发送第一导频信号,以使得装置4100能够获得第一信道状态以及基于第一信道状态获得从装置4100的发送天线阵列4150到装置4210的下行信道的信道状态。这里,第一信道状态至少包括从天线15200到与装置4100
的接收天线阵列4140的上行信道的信道状态。
在步骤16200中,接收从装置4100利用下行信道状态发送的数据信号。
以上对用户端的设备和处理进行了描述,并且描述了相关无线通信方法。下面,将对基站端的天线进行描述。
<4.天线的设计>
返回参照图4,发送天线阵列4150和接收天线阵列4140可以在相同频率并且在相同时间发送信号,从而实现了全双工通信。
例如,发送天线阵列4150和接收天线阵列4140可以具有空间相关性。如此,可以利用这种空间相关性来基于上行信道状态估计下行信道状态。
在图4中,发送天线阵列4150和接收天线阵列4140的各个天线元件交错排列。替代地,发送天线阵列4150和接收天线阵列4140也可以采用图17中示出的排列方式。在图17中,发送天线阵列4150和接收天线阵列4140是线性阵列的两个相邻子阵列。采用图4和图17的组合也是可以的,例如,发送天线阵列4150可以部分地与接收天线阵列4140交错排列。除图4和图17中示出的排列方式之外,发送天线阵列4150和接收天线阵列4140还可以采用使得其具有空间相关性的其它排列方式。
此外,在本发明的一个或多个实施例中,发送天线阵列4150和接收天线阵列4140也可以不具有空间相关性。因而,发送天线阵列4150和接收天线阵列4140也可以采用不具有空间相关性的排列方式。
上面描述了发送天线阵列4150、接收天线阵列4140或其组合是线性阵列的情况。在本发明的一个或多个实施例中,发送天线阵列4150、接收天线阵列4140或其组合也可以是3D天线。
例如,在3D MIMO系统中,装置4100可以采用均匀矩形阵列(Uniformly-spaced rectangular array,URA),以获得垂直方向与水平方向的自由度并可产生三维波束。在本发明中,下行天线阵列等效间距为D′=λ,大于半波长,在进行波束赋形时会在非目标方向产生额外的错误波束,会产生较大的用户间干扰。
如图18所示,可以发现较大的天线间距可以产生更窄的波束,但会在角度大于π/2的方向产生一个额外波束。在实际系统中,水平方向发射角(A-AoD)与到达角(A-AoA)通常随机分布于[0,π]之间,这表明水平方向上采用间距大于半波长的天线阵列会产生较
大的用户间干扰。而在3D MIMO系统下,垂直方向发射角(E-AoD)与到达角(E-AoA)一般小于π/2,因此在垂直方向产生的额外错误波束不会造成用户间干扰。所以本发明非常适合3D MIMO系统。在本发明的一个或多个实施例中,可以使得发送天线阵列与接收天线阵列的各天线单元在垂直方向上交错排列而在水平方向上连续排列。
图19给出了根据本发明的一个或多个实施例的8×8URA的具体排列方式。如图19所示,发送天线阵列与接收天线阵列在水平方向是连续的,而在垂直方向彼此交错排列。
此外,虽然在本文中以均匀线性阵列和均匀矩形阵列为例描述了发送天线阵列4150和接收天线阵列4140,但是发送天线阵列4150和接收天线阵列4140还可以采用非均匀阵列的形式。例如,发送天线阵列4150的天线单元之间的间距可以在垂直方向上随着高度的增加而增加或减小,接收天线阵列4140也可以采用这种排列方式。在3DMIMO中,发送天线阵列4150和接收天线阵列4140可以在垂直方向上采用上述非均匀排布方式而在水平方向上采用均匀排布方式。在本申请的同一申请人于2016年1月26日提交的申请号为201610051745.X、名称为“非均匀天线阵列及其信号处理”的专利申请中具体描述了非均匀天线的排布方式,其全部内容通过引用并入本文。此外,发送天线阵列4150和接收天线阵列4140可以将非均匀排布和交错排布结合起来使用。
<5.仿真结果>
图19-24示出了在采用根据本发明的一个或多个实施例的电子设备和通信方法的情况下的仿真结果。
考虑单小区多用户场景,并且小区中心基站配置ULA。设置用户到达角均匀分布于[0,π/2]以避免错误波束产生的干扰。同时,假设自干扰被有效消除而忽略其带来的影响。由于上行频谱效率与天线间距无关,本仿真中只关注下行波束赋型下的频谱效率。
表1给出了所采用的系统仿真参数,其中假设多径角度扩展服从均匀分布。
表1 仿真系统参数
小区内径rmin | 50m |
小区外径rmax | 250m |
用户个数K | 8 |
路径损耗系数 | 3.5 |
阴影衰落系数 | 8dB |
天线个数M | 8,16,32,64,128 |
载频f | 2GHz |
天线间距D | λ/2 |
多径个数P | 10 |
NLOS信道角度扩展 | 30度 |
LOS信道角度扩展 | 5度 |
i.NLOS信道场景仿真
图20为NLOS信道场景下小区下行平均频谱效率的累积分布函数图。这里对传统分离式天线结构、采用交错式结构进行精确的下行信道估计以及用移相器进行近似下行信道估计的方案分别进行了仿真。其中,采用天线个数M=8,信噪比SNR=20dB。可以看到,根据本发明的一个或多个实施例的采用交错式结构进行精确的下行信道估计以及用移相器进行近似下行信道估计的方案的下行频谱效率更高。但是若采用移相器对下行信道进行估计时,所带来的下行波束赋型向量偏差会增大用户间干扰,降低系统性能。
图21为NLOS信道场景、不同信噪比环境下的小区下行平均频谱效率性能的示图。这里,采用天线个数M=8。随着信噪比增加,本发明提供的方案的频谱效率将更加高于传统方案的频谱效率。
图22所示为NLOS信道场景、不同天线个数下的小区下行平均频谱效率性能对比。这里,采用信噪比SNR=20dB。增大天线个数将提升所有方案的性能,这是因为将产生更窄的下行波束。同时本发明提供的方案性能将会更快地提升,与传统方案性能间距也会扩大。但是由于移相器带来的偏差所产生的性能降低仍然存在,并且不会随着天线增多而降低。ii.LOS信道场景仿真
图23、图24、图25分别给出了与上述NLOS信道场景下对应仿真参数的LOS信道场景的仿真对比。结果表明本发明在LOS信道下性能仍然优于传统方案,并且用移相器估计下行信道的方案并不会带来性能损失。这是因为在LOS信道下,视距信道占据主要能量,移相器估计较为精确。
<6.应用示例>
例如,装置4100可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,装置4100可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。装置4100可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为装置4100工作。
例如,装置4210可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。装置4210还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,装置4210可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[4-2.关于装置4100的应用示例]
(第一应用示例)
图26是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图26所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图26示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如
下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图26所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图26所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图26示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图27是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线
840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图27所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图27示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图26描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图26描述的BB处理器826相同。如图27所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图27示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图27所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图27示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以
包括单个RF电路864。
在图26和图27所示的eNB 800和eNB 830中,通过使用电子设备4130和15100可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。
[4-3.关于装置4210的应用示例]
(第一应用示例)
图28是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成
有BB处理器913和RF电路914的一个芯片模块。如图28所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图28示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图28所示,智能电话900可以包括多个天线916。虽然图28示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图28所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图28所示的智能电话900中,电子设备4130和15100可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。
(第二应用示例)
图29是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图29所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图29示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图29所示,汽车导航设备920可以包括多个天线937。虽然图29示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图29所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图29示出的汽车导航设备920中,电子设备4130和15100可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
<7.结论>
以上描述了根据本发明的一个或多个实施例的通信系统中的装置以及相应的通信处理方法。
虽然在本文中将电子设备4130和15100描述了执行各种操作,但是实际上可以由电子设备4130和15100中的电路来执行这些操作。此外,在本文中描述为其它部件执行的操作也可以由电子设备4130和15100来执行,或者在设备4130和15100的控制下执行。例如,由发送射频链路4150和接收射频链路4140所执行的一个或多个操作可以由电子设备4130和15100来执行,或者在设备4130和15100的控制下执行。
电子设备4130和15100可以被实现为芯片或者完整的装置,例如装置4100和4210本身。此外,电子设备4130和15100除了包括电路之外,也可以包括与其它部件或装置交换信号的接口。
此外,本文中描述的处理流程和方法流程的顺序不限于说明书和附图中描述的顺序。一些步骤和流程的顺序可以交换,或者被并行执行。
以上结合附图所阐述的详细说明书描述了示例,并不代表仅有的可以实现的例子,也不代表仅有的在权利要求范围内的例子。词语“示例”和“示例性的”在使用在本说明书中时意味着“用作示例、例子或说明”,并不意味着“优选的”或“比其他示例有益的”。详细说明书包括了特定细节以提供所述技术的理解。然而,可以在没有这些特定细节的情况下实践这些技术。在一些例子中,公知的结构和装置以框图形式显示,以避免模糊所述示例的概念。
可以使用各种不同科技和技术中的任何一个来代表信息和信号。例如,可能在以上说明书通篇被引用的数据、指令、命令、信息、信号、比特、符号和芯片可以由电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或它们的任意组合代表。
结合本公开所述的各种示意性的块和部件可以用被设计来执行本文所述的功能的通用处理器、数字信号处理器(DSP)、ASIC、FPGA或其他可编程逻辑设备、离散门或晶体管逻辑、离散硬件部件或它们的任意组合来实现或执行。通用处理器可以是微处理器,但是可替代地,处理器可以是任何传统的处理器、控制器、微控制器和/或状态机。处理器也可以被实现为计算设备的组合,例如DSP与微处理器、多个微处理器、结合DSP核的一个或多个微处理器和/或任何其他这样的配置的组合。
本文所述的功能可以在硬件、由处理器执行的软件、固件或它们的任意组合中实现。如果在由处理器执行的软件中实现,则功能可以被存储在计算机可读介质上或者被传输作为计算机可读介质上的一个或多个指令或代码。其他示例和实现在本公开和所附权利要求的范围和精神内。例如,鉴于软件的本质,以上所述的功能可以使用由处理器执行的软件、硬件、固件、硬连线或这些中的任意的组合来执行。实现功能的特征也可以被物理地置于各种位置处,包括被分布使得功能的部分在不同物理位置处实现。
此外,包含于其他部件内的或者与其他部件分离的部件的公开应当被认为是示例性的,因为潜在地可以实现多种其他架构以达成同样的功能,包括并入全部的、大部分的、和/或一些的元件作为一个或多个单一结构或分离结构的一部分。
计算机可读介质包括计算机存储介质和通信介质两者,通信介质包括便于从一个地方到另一个地方传送计算机程序的任何介质。存储介质可以是能够被通用计算机或专用计算机存取的任何可用的介质。举例而言而非限制地,计算机可读介质可以包括RAM、ROM、EEPROM、闪速存储器、CD-ROM、DVD或其他光盘存储、磁盘存储或其他磁存储设备、或能够被用来承载或存储指令或数据结构形式的期望的程序代码部件和能够被通用或专用计算机或者通用或专用处理器存取的任何其他介质。此外,任何连接被适当地称为计算机可读介质。例如,如果软件是使用同轴缆线、光缆、双绞线、数字用户线(DSL)或诸如红外线、无线电和微波的无线技术从网站、服务器或其他远程源传输的,那么同轴缆线、光缆、双绞线、DSL或诸如红外线、无线电和微波的无线技术包括在介质的定义中。本文所使用的盘与碟片包括压缩碟片(CD)、激光碟
片、光学碟片、数字多功能碟片(DVD)、软盘和蓝光碟片,其中盘通常磁性地复制数据而碟片使用激光光学地复制数据。以上内容的组合也包括在计算机可读介质的范围内。
本公开的先前描述被提供来使本领域技术人员能够制作或使用本公开。对本公开的各种修改对本领域技术人员而言是明显的,本文定义的通用原理可以在不脱离本公开的范围的情况下应用到其他变形。因此,本公开并不限于本文所述的示例和设计,而是对应于与所公开的原理和新特征一致的最宽范围。
Claims (27)
- 一种电子设备,其特征在于包括:电路,被配置为获得第一信道状态,第一信道状态至少包括从第一装置到与所述电子设备关联的第一天线的信道的信道状态,第一装置与所述电子设备进行无线通信;基于第一信道状态获得第二信道状态,第二信道状态包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
- 如权利要求1所述的电子设备,其中,第一信道状态还包括从第一装置到与所述电子设备关联的第二天线的信道的信道状态。
- 如权利要求2所述的电子设备,其中,第一信道状态是基于第一天线和第二天线从第一装置接收的第一导频信号进行联合信道估计来获得的。
- 如权利要求3所述的电子设备,其中,第一信道状态是通过所述联合信道估计获得的联合信道矩阵,所述电路被配置为对联合信道矩阵的行或列进行置换,从而获得第二信道状态。
- 如权利要求1所述的电子设备,其中,所述电路被配置为还基于来自第一装置的反馈信号获得第二信号状态,第一信道状态是基于第一天线从第一装置接收的第一导频信号获得的,第二信道状态是由第一装置基于从第二天线接收的第二导频信号获得的,并且被包括在所述反馈信号中。
- 如权利要求5所述的电子设备,其中,所述电路执行控制以使得在经由第一天线接收第一导频信号时经由第二天线发送第二导频信号。
- 如权利要求6所述的电子设备,其中,所述电路执行控制以使得在当前时段中 获得第二信道状态之前:第二天线处于空闲状态,或者利用先前时段中获得的第二信道状态经由第二天线向第一装置发送数据信号。
- 如权利要求1所述的电子设备,其中,所述电路被配置为:利用从第一装置到第一天线的信道与从第二天线到第一装置的信道之间的空间相关性,基于第一信道状态估计第二信道状态。
- 如权利要求8所述的电子设备,其中,所述电路被配置为:通过对第一信道状态进行移相来获得第二信道状态。
- 如权利要求9所述的电子设备,其中,所述电路包括执行所述移相的移相器。
- 如权利要求8所述的电子设备,其中,所述电路执行控制以使得:在经由第一天线接收第一导频信号时,利用先前时段中获得的第二信道状态经由第二天线向第一装置发送数据信号。
- 如权利要求1所述的电子设备,其中,所述电路被配置为:利用第一信道状态对第二导频信号进行波束赋形,经由第二天线将波束赋形后的第二导频信号发送给第一装置,从第一装置接收第二信道状态,其中第二信道状态是由第一装置基于波束赋形后的第二导频信号获得的。
- 如权利要求12所述的电子设备,其中,所述电路被配置为:利用基于第一信道状态获得的第三信道状态对第二导频信号进行波束赋形,其中第三信道状态是利用从第一装置到第一天线的信道与从第二天线到第一装置的信道之间的空间相关性获得的,并且包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
- 如权利要求12所述的电子设备,所述电路执行控制以使得执行以下操作中的至少一个操作:在经由第一天线接收来自第一装置的第一导频信号或第二信道状态时,经由第二天线向第二装置发送信号,在经由第二天线向第一装置发送信号时,经由第一天线接收来自第二装置的第三导频信号或从第二天线到第二装置的信道的信道状态。
- 如权利要求1所述的电子设备,其中,第一天线与第二天线在相同频率并且在相同时间发送信号或者接收信号。
- 如权利要求1所述的电子设备,其中,第一天线与第二天线具有空间相关性。
- 如权利要求16所述的电子设备,其中,第一天线和第二天线分别包括多个天线元件,第一天线的多个天线元件和第二天线的多个天线元件交错排列或者是线性阵列的两个相邻子阵列。
- 如权利要求1所述的电子设备,其中,所述电子设备被实现为基站,第一天线和第二天线被包括在所述电子设备中,并且所述电子设备还包括分别与第一天线和第二天线耦接的第一射频链路和第二射频链路。
- 如权利要求18所述的电子设备,其中,第一射频链路还与第二天线耦接。
- 一种用于进行无线通信的方法,其特征在于包括:获得第一信道状态,第一信道状态至少包括从第一装置到与电子设备关联的第一天线的信道的信道状态,第一装置与所述电子设备进行无线通信;基于第一信道状态获得第二信道状态,第二信道状态包括从与所述电子设备关联的第二天线到第一装置的信道的信道状态。
- 一种电子设备,其特征在于包括:电路,被配置为:向另一电子设备发送第一导频信号,以使得所述另一电子设备能够获得第一信道状态以及基于第一信道状态获得第二信道状态,其中,第一信道状态至少包括从与所述电子设备关联的天线到与所述另一电子设备关联的第一天线的信道的信道状态,第二信道状态包括从与所述另一电子设备关联的第二天线到与所述电子设备关联的天线的信道的信道状态,所述电子设备与所述另一电子设备进行无线通信;接收从所述另一电子设备利用第二信道状态发送的数据信号。
- 如权利要求21所述的电子设备,其中,第一信道状态还指示从与所述电子设备关联的天线到与所述另一电子设备关联的第二天线的信道的信道状态。
- 如权利要求21所述的电子设备,其中,所述电路被配置为:从第二天线接收第二导频信号;基于第二导频信号获得第二信道状态;向所述另一电子设备发送第二信道状态。
- 如权利要求21所述的电子设备,其中,第二信道状态是由所述另一电子设备利用从与所述电子设备关联的天线到第一天线的信道与从第二天线到与所述电子设备关联的天线的信道之间的空间相关性基于第一信道状态估计得到的。
- 如权利要求21所述的电子设备,其中,所述电路被配置为:接收利用第一信道状态对第二导频信号进行波束赋形后的第二导频信号,基于波束赋形后的第二导频信号获得第二信道状态,向所述另一电子设备发送第二信道状态。
- 一种用于进行无线通信的方法,其特征在于包括:从第一电子设备向第二电子设备发送第一导频信号,以使得第二电子设备能够获得第一信道状态以及基于第一信道状态获得第二信道状态,其中,第一信道状态至少指示从第 一电子设备到与第二电子设备关联的第一天线的信道的信道状态,第二信道状态指示从与第二电子设备关联的第二天线到第一电子设备的信道的信道状态,第一电子设备与第二电子设备进行无线通信;接收从第二电子设备利用第二信道状态发送的数据信号。
- 一种计算机可读存储介质,其上存储有指令,所述指令在由处理器执行时使得处理器执行如权利要求20或26所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780067617.7A CN109906574A (zh) | 2016-11-08 | 2017-11-03 | 电子设备、无线通信方法以及介质 |
US16/341,073 US10797841B2 (en) | 2016-11-08 | 2017-11-03 | Electronic device, wireless communication method and medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610976414.7A CN108063660A (zh) | 2016-11-08 | 2016-11-08 | 电子设备、无线通信方法以及介质 |
CN201610976414.7 | 2016-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018086486A1 true WO2018086486A1 (zh) | 2018-05-17 |
Family
ID=62110193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/109353 WO2018086486A1 (zh) | 2016-11-08 | 2017-11-03 | 电子设备、无线通信方法以及介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10797841B2 (zh) |
CN (2) | CN108063660A (zh) |
WO (1) | WO2018086486A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019067294A1 (en) * | 2017-09-26 | 2019-04-04 | Photonic Systems, Inc | SINGLE CHANNEL INTEGRAL DUPLEX FULL WIRELESS SIGNAL TRANSMISSION SYSTEM |
US11296840B1 (en) * | 2018-10-31 | 2022-04-05 | Marvell Asia Pte Ltd | Media access control for frequency division full duplex in WLAN |
CN109819507B (zh) * | 2019-03-07 | 2021-08-31 | 重庆金美通信有限责任公司 | 一种无线局域网中同频全双工媒体接入控制方法 |
US10756786B1 (en) * | 2019-04-30 | 2020-08-25 | Corning Research & Development Corporation | Systems and methods for providing isolation for antennas in a wireless communication system |
US11411641B2 (en) | 2019-05-31 | 2022-08-09 | Qualcomm Incorporated | Radio frequency domain beamforming router |
US10608678B1 (en) * | 2019-05-31 | 2020-03-31 | Qualcomm Incorporated | Bidirectional repeaters for time division duplexed millimeter wave systems |
EP4248576A1 (en) * | 2020-11-19 | 2023-09-27 | Telefonaktiebolaget LM Ericsson (publ) | Pre-equalization using beamforming functionality |
CN117376511B (zh) * | 2023-12-07 | 2024-02-27 | 汉华易美视觉科技有限公司 | 一种基于无线通信技术的图片处理设备及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101154975A (zh) * | 2006-09-30 | 2008-04-02 | 大唐移动通信设备有限公司 | 一种在tdd系统中获取信道状态信息的方法和切换控制装置 |
CN101877884A (zh) * | 2009-04-30 | 2010-11-03 | 华为技术有限公司 | 信息传输方法及通信装置 |
CN104539335A (zh) * | 2014-12-24 | 2015-04-22 | 无锡北邮感知技术产业研究院有限公司 | 一种大规模天线系统的有限反馈方法及装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5280991B2 (ja) * | 2009-11-30 | 2013-09-04 | 株式会社エヌ・ティ・ティ・ドコモ | 移動局装置、基地局装置、mimoシステム及びデータ伝送方法 |
US9154988B2 (en) * | 2010-12-06 | 2015-10-06 | Lg Electronics Inc. | Method for reporting channel state information in wireless communication system, and device therefor |
WO2012130313A1 (en) * | 2011-03-31 | 2012-10-04 | Telefonaktiebolaget L M Ericsson (Publ) | Method and network node for determining channel state information in an upcoming time slot |
EP2557839A1 (en) * | 2011-08-12 | 2013-02-13 | Panasonic Corporation | Channel quality information reporting in protected subframes |
WO2013162233A1 (ko) * | 2012-04-22 | 2013-10-31 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태를 측정하는 방법 및 이를 위한 장치 |
JP6290863B2 (ja) * | 2012-05-10 | 2018-03-07 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Csiレポーティングのための方法及び装置 |
US9681425B2 (en) * | 2012-05-11 | 2017-06-13 | Qualcomm Incorporated | Rank-specific feedback for improved MIMO support |
US9491654B2 (en) * | 2012-06-24 | 2016-11-08 | Lg Electronics Inc. | Method and apparatus for reporting channel state information in wireless communication system |
KR102011995B1 (ko) * | 2012-11-23 | 2019-08-19 | 삼성전자주식회사 | 빔포밍 기반 무선통신 시스템에서 송수신 빔 패턴 변경에 따른 빔 이득 보상 운용을 위한 방법 및 장치 |
US10187135B2 (en) * | 2014-11-07 | 2019-01-22 | Electronics And Telecommunications Research Institute | Method and apparatus for generating CSI report |
KR102520403B1 (ko) * | 2015-06-12 | 2023-04-11 | 삼성전자 주식회사 | 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치 |
EP3370357A4 (en) * | 2015-11-20 | 2018-11-07 | Huawei Technologies Co., Ltd. | Method for sending or receiving channel state information (csi), and terminal and base station |
US9485009B1 (en) * | 2016-04-13 | 2016-11-01 | Panasonic Avionics Corporation | Antenna system with high dynamic range amplifier for receive antenna elements |
-
2016
- 2016-11-08 CN CN201610976414.7A patent/CN108063660A/zh active Pending
-
2017
- 2017-11-03 WO PCT/CN2017/109353 patent/WO2018086486A1/zh active Application Filing
- 2017-11-03 CN CN201780067617.7A patent/CN109906574A/zh active Pending
- 2017-11-03 US US16/341,073 patent/US10797841B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101154975A (zh) * | 2006-09-30 | 2008-04-02 | 大唐移动通信设备有限公司 | 一种在tdd系统中获取信道状态信息的方法和切换控制装置 |
CN101877884A (zh) * | 2009-04-30 | 2010-11-03 | 华为技术有限公司 | 信息传输方法及通信装置 |
CN104539335A (zh) * | 2014-12-24 | 2015-04-22 | 无锡北邮感知技术产业研究院有限公司 | 一种大规模天线系统的有限反馈方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190238283A1 (en) | 2019-08-01 |
CN108063660A (zh) | 2018-05-22 |
US10797841B2 (en) | 2020-10-06 |
CN109906574A (zh) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12136972B2 (en) | Wireless communication system, and device and method in wireless communication system | |
WO2018086486A1 (zh) | 电子设备、无线通信方法以及介质 | |
US10790894B2 (en) | Electronic device, communication apparatus and signal processing method | |
US20200235875A1 (en) | Electronic device, method and apparatus for wireless communication system, and storage medium | |
US10194333B2 (en) | Terminal apparatus, base station, and program | |
US11528647B2 (en) | Device and method for measuring a channel state | |
CN114257475A (zh) | 电子设备、无线通信方法以及计算机可读存储介质 | |
US11251852B2 (en) | Device for calculating a received quality of reference signal | |
US11082275B2 (en) | Electrical apparatus and wireless communication method for communication device with multiple antennas | |
CN112868188A (zh) | 电子设备、通信方法以及介质 | |
WO2021227932A1 (zh) | 用于无线通信的电子设备和方法、计算机可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870363 Country of ref document: EP Kind code of ref document: A1 |