WO2018086016A1 - 传输上行数据的方法、终端设备和网络设备 - Google Patents
传输上行数据的方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2018086016A1 WO2018086016A1 PCT/CN2016/105241 CN2016105241W WO2018086016A1 WO 2018086016 A1 WO2018086016 A1 WO 2018086016A1 CN 2016105241 W CN2016105241 W CN 2016105241W WO 2018086016 A1 WO2018086016 A1 WO 2018086016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal device
- multiple access
- information
- access mode
- uplink
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 247
- 238000000034 method Methods 0.000 title claims abstract description 99
- 239000011159 matrix material Substances 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 16
- 125000004122 cyclic group Chemical group 0.000 claims description 14
- 238000001228 spectrum Methods 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 109
- 239000002356 single layer Substances 0.000 abstract description 11
- 238000013468 resource allocation Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0486—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- Embodiments of the present invention relate to the field of wireless communications, and, more particularly, to a method, terminal device, and network device for transmitting uplink data.
- multiple uplink multiple access methods are introduced in the uplink transmission process of a 5G system, such as Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing (DFT-S). - OFDM”) multiple access technology and Cyclic Prefix Orthogonal Frequency Division Multiplexing (“CP-OFDM").
- DFT-S Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
- the former can only be used for uplink single layer transmission, and the latter can be used for uplink single layer or uplink multilayer transmission.
- Which type of multiple access method is used by the terminal device can be configured by the network side device according to the uplink channel quality of the terminal device. Therefore, how to notify the terminal device of the uplink multiple access mode used by the network device is an urgent problem to be solved.
- the embodiment of the invention provides a method for transmitting uplink data, a terminal device and a network device, and the terminal device can learn the uplink multiple access mode used by the terminal device when performing uplink transmission.
- the first aspect provides a method for transmitting uplink data, where the method includes: receiving, by the terminal device, parameter indication information that is sent by the network device and being carried in the downlink control information DCI; the terminal device according to the parameter indication information, Determining the transmission information of the terminal device, where the transmission information includes a transmission layer number of the terminal device and/or a physical resource configuration manner; the terminal device determines, according to the transmission information, an uplink multiple access connection of the terminal device And the terminal device transmits the uplink data according to the uplink multiple access mode.
- the terminal device determines the number of transmission layers and/or the physical resource configuration manner of the terminal device by using the parameter indication information in the DCI, and determines the uplink multiple access mode according to the number of the transmission layer and/or the physical resource configuration manner, thereby
- the network device can flexibly adjust the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: a transmission layer number indication information, a physical resource configuration mode indication information, and a demodulation parameter.
- the network device directly indicates the transmission information of the terminal device to the terminal device by using the parameter indication information.
- the parameter indication information may be the transmission layer number indication information or the physical resource configuration mode indication information.
- the terminal device After receiving the indication of the number of layers of the transmission layer, the terminal device can directly determine the number of its own transmission layer, or after receiving the indication information of the physical resource configuration mode, directly determine the configuration mode of the physical resource.
- the network device may indirectly indicate the transmission information of the terminal device to the terminal device by using the parameter indication information, for example, the parameter indication information may be a demodulation reference signal DMRS port indication information, a precoding matrix PMI indication information, or Code word indication information.
- the parameter indication information may be a demodulation reference signal DMRS port indication information, a precoding matrix PMI indication information, or Code word indication information.
- the transmission information includes a number of transmission layers of the terminal device, where the terminal device determines uplink multiple access of the terminal device according to the transmission information.
- the access mode includes: if the terminal device determines that the number of the transport layer is 1, the terminal device determines an uplink multiple access mode of the terminal device according to information carried in the DCI.
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device. And determining, by the DMRS configuration indication information in the DCI, the uplink multiple access mode, where the DMRS configuration indication information is jointly encoded by the information of the DMRS configuration and the information of the uplink multiple access mode.
- the DMRS configuration information includes, for example, a cyclic shift configuration and/or an Orthogonal Cover Code ("OCC") configuration.
- OCC Orthogonal Cover Code
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device.
- the new data of the closed codeword in the DCI indicates the value of the NDI bit, and the uplink multiple access mode is determined.
- the NDI bit may be used to indicate whether the data transmitted by the closed codeword is retransmitted data when the number of transport layers is greater than one or the closed codeword is enabled.
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device.
- the MCS indication information of the codeword of the closed codeword in the DCI determines the uplink multiple access mode.
- the MCS indication information may be used to indicate a modulation and coding scheme of data transmitted by the closed codeword when the number of transmission layers is greater than one or the closed codeword is enabled.
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device.
- the rank indication RI indication information in the DCI is used to determine the uplink multiple access mode, and the RI indication information is obtained by jointly coding the value of the RI and the information of the uplink multiple access mode.
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device.
- the uplink multiple access mode is determined by the value of the padding bit in the DCI.
- the padding bit is to maintain the same length as other DCI formats, and redundant bits added in the DCI.
- the terminal device determines an uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device is configured according to the bearer device.
- the physical resource configuration mode indication information in the DCI determines the uplink multiple access mode.
- the foregoing method is used to indicate the uplink multiple access mode of the terminal device, and no dedicated bit is added to the DCI to indicate the uplink multiple access mode, thereby not increasing the DCI payload. (Payload), which improves the detection performance of DCI.
- the terminal device determines the correspondence between the parameters used in the process of the number of the transmission layer, the physical resource configuration mode, and the uplink multiple access mode, for example, the correspondence between the number of DMRS ports and the number of transmission layers, and the DMRS configuration information.
- the corresponding relationship between the value and the DMRS configuration and the multiple access method, etc. may be pre-arranged by the network device and the terminal device, for example, according to the provisions of the protocol, or may be determined by the network device and notified to the terminal device, which is not limited by the embodiment of the present invention. .
- the transmission information includes a number of transmission layers of the terminal device, where the terminal device determines uplink multiple access of the terminal device according to the transmission information.
- the access mode includes: if the terminal device determines that the number of the transmission layers is greater than 1, the terminal device determines that the uplink multiple access mode is an uplink multiple access mode that is pre-agreed with the network device.
- the terminal device may adopt any one of the foregoing multiple multiple access methods; when the number of transmission layers of the terminal device is greater than 1, the terminal device adopts Use the uplink multiple access method pre-agreed with the network equipment.
- the following describes specifically how the terminal device carries the information in the DCI, and determines the uplink multiple access mode of the terminal device.
- the transmission information includes a physical resource configuration manner of the terminal device, where the terminal device determines, according to the transmission information, that the terminal device is uplinked.
- the access mode includes: determining, by the terminal device, the uplink multiple access mode according to the physical resource configuration mode and the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode.
- the terminal device adopts the uplink multiple access mode 1; when the physical resource configuration mode indicated by the DCI is Type 1, the terminal device adopts the uplink multiple access mode 2.
- the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode may be agreed in advance by the network device and the terminal device, for example, according to the protocol, or may be determined by the network device and notified to the terminal device, which is not limited herein.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM Cyclic prefix orthogonal frequency division multiplexing (CP-OFDM), single carrier frequency division multiple access (SC-FDMA), and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM Cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the transmitting, by the terminal device, the uplink data according to the uplink multiple access mode if the terminal device determines the uplink multiple access
- the mode is DFT-S-OFDM or SC-FDMA, and the terminal device performs a discrete Fourier transform DFT on the uplink data, and transmits the uplink data passing through the DFT in an uplink data channel.
- the transmitting, by the terminal device, the uplink data according to the uplink multiple access mode if the terminal device determines the uplink multiple access If the mode is CP-OFDM or OFDMA, the terminal device prohibits DFT on the uplink data, and transmits the uplink data that does not pass the DFT in the uplink data channel.
- the terminal device transmits the uplink data according to the uplink multiple access mode, where the terminal device is configured according to the uplink multiple access mode. And determining, by the corresponding relationship between the uplink multiple access mode and the uplink data channel structure, determining a target uplink data channel structure; the terminal device adopting the target uplink data channel structure to transmit the uplink data.
- the uplink data channel structure includes at least one of: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, and an uplink.
- the uplink data channel structure may include a DMRS resource location of the uplink data channel, for example, whether the DMRS occupies the entire Orthogonal Frequency Division Multiplexing ("OFDM") symbol or a portion of the OFDM symbol.
- the uplink data channel structure may further include a precoding matrix used by the uplink data, for example, whether the uplink data uses a wideband precoding matrix or a subband precoding matrix; and the uplink data channel structure may further include the uplink data channel. The number of OFDM symbols occupied, and the like.
- a terminal device which can be used to perform various processes performed by the terminal device in the method for transmitting uplink data in the foregoing first aspect and various implementation manners.
- the terminal device includes: a receiving unit, configured to receive parameter indication information that is sent by the network device and is carried in the downlink control information DCI; and a determining unit, configured to determine the terminal device according to the parameter indication information received by the receiving unit Transmission information, the transmission information includes a transmission layer number of the terminal device and/or a physical resource configuration manner; the determining unit is further configured to determine the terminal device according to the transmission information determined by the determining unit The uplink multiple access mode; the sending unit is configured to transmit the uplink data according to the uplink multiple access mode determined by the determining unit.
- a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting uplink data in the foregoing first aspect and various implementation manners.
- the terminal device includes a processor, a receiver, and a transmitter.
- the receiver is configured to receive parameter indication information that is sent by the network device and is carried in the downlink control information DCI, where the processor is configured to determine, according to the parameter indication information received by the receiving unit, the terminal device Transmitting information, the transmission information includes a transmission layer number of the terminal device and/or a physical resource configuration manner; the processor is further configured to: determine, according to the transmission information determined by the determining unit, the terminal device An uplink multiple access mode, where the transmitter is configured to transmit the uplink data according to the uplink multiple access mode determined by the determining unit.
- a computer readable storage medium storing a program, the program causing the terminal device to perform the above first aspect, and any of the various implementation manners of transmitting the uplink The method of data.
- a fifth aspect provides a method for transmitting uplink data, including: a network The device determines the parameter indication information that is carried in the downlink control information DCI; the network device sends the parameter indication information to the terminal device, where the parameter indication information is used by the terminal device to determine the transmission information of the terminal device, The determining, by the terminal device, the uplink multiple access mode of the terminal device according to the transmission information, where the transmission information includes a number of transmission layers and/or a physical resource configuration manner of the terminal device; The uplink data that is transmitted by the terminal device according to the uplink multiple access mode.
- the network device sends the parameter indication information in the DCI to the terminal device, so that the terminal device can determine the transmission layer number and/or the physical resource configuration manner of the terminal device by using the parameter indication information, and according to the number of the transmission layer and/or the
- the physical resource configuration mode is used to determine the uplink multiple access mode, so that the network device flexibly adjusts the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: transmission layer number indication information, physical resource configuration mode indication information, demodulation reference signal DMRS port indication information, precoding matrix PMI indication information, and codeword indication. information.
- the transmission information includes a number of transmission layers of the terminal device, so that when determining that the number of transmission layers is 1, the terminal device determines, according to information carried in the DCI, the uplink Address access method.
- the information carried in the DCI includes DMRS configuration indication information
- the method further includes: the network The information about the DMRS configuration of the device is jointly encoded with the information of the uplink multiple access mode, and the DMRS configuration indication information is obtained.
- the information carried in the DCI includes new data of the closed codeword indicating the value of the NDI bit.
- the information carried in the DCI includes modulation coding mode MCS indication information of the closed codeword.
- the information carried in the DCI includes rank indication RI indication information
- the method further includes: The network device jointly encodes the value of the RI and the information of the uplink multiple access mode to obtain RI indication information.
- the information carried in the DCI includes a value of a value of a padding bit.
- the information carried in the DCI includes physical resource configuration manner indication information.
- the transmission information includes a number of transmission layers of the terminal device, so that the terminal device determines that the uplink multiple access mode is the network device when determining that the number of transmission layers is greater than 1. Pre-agreed uplink multiple access method.
- the transmission information includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-) OFDM, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP- cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the receiving, by the network device, the uplink data that is sent by the terminal device according to the uplink multiple access mode, that the network device receives the terminal device according to DFT-S-OFDM or SC-FDMA The uplink data transmitted by the multiple access method, wherein the uplink data is the uplink data after performing discrete Fourier transform DFT by the terminal device.
- the network device receiving, by the network device, the uplink data that is sent by the terminal device according to the uplink multiple access mode, the network device receiving, by the network device, the terminal device to transmit by using a target uplink data channel structure
- Uplink data the target uplink data channel structure is determined by the terminal device according to the uplink multiple access mode, and the corresponding relationship between the uplink multiple access mode and the uplink data channel structure.
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink.
- a resource location of a demodulation reference signal DMRS of an uplink data channel a DMRS sequence of an uplink data channel
- a transmission mode of uplink data carried by an uplink data channel and an uplink.
- a network device which can be used to perform the processes performed by the terminal device in the method for transmitting uplink data in the foregoing fifth aspect and various implementation manners.
- the network device includes:
- a network device which can be used to perform the processes performed by the terminal device in the method for transmitting uplink data in the foregoing fifth aspect and various implementation manners.
- the network device includes a processor, a receiver, and a transmitter.
- a computer readable storage medium storing a program, the program causing a network device to perform the above fifth aspect, and any one of its various implementations to transmit uplink The method of data.
- FIG. 1 is a schematic structural diagram of an application scenario according to an embodiment of the present invention.
- FIG. 2 is a flow diagram of a process for transmitting uplink data according to an embodiment of the present invention.
- FIG. 3 is a structural block diagram of a terminal device according to an embodiment of the present invention.
- FIG. 4 is a structural block diagram of a terminal device according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
- FIG. 6 is a structural block diagram of a network device according to an embodiment of the present invention.
- FIG. 7 is a structural block diagram of a network device according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- a terminal device may also be referred to as a User Equipment ("UE"), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
- UE User Equipment
- the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP”) phone, or a wireless local loop (Wireless Local) Loop, referred to as "WLL” station, Personal Digital Assistant (“PDA”), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, Terminal devices in future 5G networks or terminal devices in future evolved PLMN networks.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- the present invention describes various embodiments in connection with a network device.
- the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, abbreviated as "BTS") in the GSM system or CDMA, or may be a base station (NodeB, referred to as "NB” in the WCDMA system. ”), may also be an evolved base station (Evolutional Node B, “eNB” or “eNodeB”) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future 5G network.
- a network side device in a network device or a network device in a future evolved PLMN network.
- the uplink multiple access mode is also referred to as an uplink waveform in the 5G system.
- the communication system in FIG. 1 may include a network device 10 and a terminal device 20.
- the network device 10 is configured to provide communication services for the terminal device 20 and access the core network.
- the terminal device 20 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 10, thereby performing communication with the network.
- the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 20 and the network device 10.
- the network in the embodiment of the present invention may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine (Machine to Machine). /Man, referred to as "M2M” network or other network
- PLMN Public Land Mobile Network
- D2D Device to Device
- Machine to Machine Machine to Machine
- FIG. 1 is only a simplified schematic diagram of the example, and the network may also include other terminal devices, which are not shown in FIG.
- 2 is a flow interaction diagram of a method of transmitting uplink data according to an embodiment of the present invention.
- 2 shows a network device and a terminal device, which may be, for example, the network device 10 shown in FIG. 1, which may be, for example, the terminal device 20 shown in FIG. 1.
- the terminal device may determine the number of transmission layers and/or the physical resource configuration manner of the terminal device according to the parameter indication information in the download control information (DCI), and according to the number of the transmission layers.
- the physical resource configuration mode is used to determine the uplink multiple access mode, so that the network device flexibly adjusts the uplink multiple access mode used by the terminal device during single layer transmission.
- the specific process for transmitting uplink data includes:
- the network device determines parameter indication information.
- the parameter indication information can be carried in the DCI.
- the network device sends the parameter indication information to the terminal device.
- the network device may indicate the transmission to the terminal device by using the parameter indication information carried in the DCI when transmitting the DCI to the terminal device.
- the terminal device receives the parameter indication information sent by the network device.
- the parameter indication information may include at least one of the following: a transmission layer number indication information, a physical resource configuration mode indication information, a DeModulation Reference Signal (DMRS) port indication information, and a precoding.
- DMRS DeModulation Reference Signal
- a Precoding Matrix Indicator (“PMI”) indicates information and codeword indication information.
- the terminal device determines, according to the parameter indication information, the transmission information of the terminal device.
- the transmission information includes a transmission layer number of the terminal device and/or a physical resource configuration manner.
- the terminal device determines, according to the parameter indication information, the transmission information of the terminal device, for example, the transmission layer number of the terminal device or the physical resource configuration manner.
- the network device directly indicates the transmission information of the terminal device to the terminal device by using the parameter indication information.
- the parameter indication information may be the transmission layer number indication information or the physical resource configuration mode indication information.
- the terminal device After receiving the indication of the number of layers of the transmission layer, the terminal device can directly determine the number of its own transmission layer, or after receiving the indication information of the physical resource configuration mode, directly determine the configuration mode of the physical resource.
- the DCI sent by the network device to the terminal device there may be 2 bits for indicating the number of transmission layers.
- the value of the 2-bit indicates that the number of transmission layers is 1, and the value of the 2-bit indicates that the number of transmission layers is 2, and the value of the 2-bit indicates that the number of transmission layers is 3, and the value of the 2-bit indicates that the transmission is 11.
- the number of layers is 4.
- the DCI sent by the network device to the terminal device there may be 1 bit for indicating the physical resource configuration mode.
- the value of 1 bit is 0 to indicate the physical resource configuration mode 1
- the value of 1 bit is 1 to indicate the physical resource configuration mode 2.
- the network device may indirectly indicate the transmission information of the terminal device to the terminal device by using the parameter indication information, for example, the parameter indication information may be a demodulation reference signal DMRS.
- the parameter indication information may be a demodulation reference signal DMRS.
- Port indication information, precoding matrix PMI indication information, or codeword indication information may be used.
- the DMRS port indication information is used to indicate the number of DMRS ports.
- the terminal device can know the number of corresponding DMRS ports, and determine the number of transmission layers according to the number of the DMRS ports. For example, the terminal device determines the number of transmission layers of the terminal device according to the number of the DMRS ports and the correspondence between the number of DMRS ports and the number of transmission layers.
- the network device may also jointly indicate the number of DMRS ports and the number of transmission layers in the DCI through the DMRS port indication information.
- the network device may jointly encode the PMI and the number of transmission layers of the terminal device in the DCI, so that after receiving the PMI indication information, the terminal device may obtain information about the number of transmission layers from the PMI indication information.
- the codeword indication information is used to indicate the number of transmission codewords.
- the terminal device can know the number of corresponding transmission codewords, and determine the number of transmission layers according to the number of transmission codewords. For example, the terminal device determines the number of transmission layers of the terminal device according to the number of the transmission code words and the correspondence between the number of transmission code words and the number of transmission layers.
- the terminal device determines, according to the transmission information, an uplink multiple access mode of the terminal device.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) Single-carrier Frequency-Division Multiple Access (“SC-FDMA”) and Orthogonal Frequency Division Multiple Access (OFDMA).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP-OFDM cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA Single-carrier Frequency-Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- the transmission information may include a number of transmission layers and/or a physical resource configuration manner.
- the following describes in detail the transmission information including the number of transmission layers, and the transmission information including the physical resource configuration manner.
- the transmission information includes the number of transmission layers
- the terminal device determines, according to the transmission information, the uplink multiple access mode of the terminal device, including: if the terminal device determines that the number of the transmission layer is greater than 1, the terminal device determines that the uplink multiple access mode is in advance with the network device.
- the agreed uplink multiple access method is: if the terminal device determines that the number of the transmission layer is greater than 1, the terminal device determines that the uplink multiple access mode is in advance with the network device. The agreed uplink multiple access method.
- the terminal device determines, according to the transmission information, the uplink multiple access mode of the terminal device, including: if the terminal device determines that the number of the transmission layer is 1, the terminal device determines, according to the information carried in the DCI, the uplink of the terminal device. Multiple access method.
- the terminal device may adopt any one of the foregoing multiple multiple access methods; when the number of transmission layers of the terminal device is greater than 1, the terminal device adopts Use the uplink multiple access method pre-agreed with the network equipment.
- the following describes specifically how the terminal device determines the uplink multiple access mode of the terminal device according to the information carried in the DCI.
- the terminal device may determine the uplink multiple access mode by itself when determining that the number of transmission layers meets certain requirements, for example, when the condition that the number of transmission layers is less than n, according to the bearer in the DCI.
- the information determines the uplink multiple access mode of the terminal device; and when determining that the number of transmission layers is greater than n, the uplink multiple access mode agreed with the network device is adopted, where n is a positive integer greater than 1.
- the terminal device determines the uplink multiple access mode of the terminal device according to the information carried in the DCI, where the terminal device determines the uplink multiple access mode according to the DMRS configuration indication information that is carried in the DCI.
- the DMRS configuration indication information is obtained by jointly coding the information of the DMRS configuration and the information of the uplink multiple access mode.
- the method further includes: the network device jointly coding the information about the DMRS configuration and the uplink multiple access mode to obtain the RI indication information. .
- the content indicated by the different DMRS configuration indication information may be, for example, shown in Table 1.
- the DMRS configuration 1 and the DMRS configuration 2 are respectively DMRS configurations when the number of transmission layers is 1, and the DMRS configuration 3 to the DMRS configuration 6 respectively correspond to the DMRS configuration when the number of transmission layers is greater than 1.
- DMRS configuration instructions Content indicated by the DMRS configuration indication information 0 DMRS configuration 1, multiple access mode 1 1 DMRS configuration 1, multiple access mode 2 2 DMRS configuration 2, multiple access mode 1 3 DMRS configuration 2, multiple access mode 2 4 DMRS configuration 3 5 DMRS configuration 4 6 DMRS configuration 5 7 DMRS configuration 6
- the terminal device when the DMRS configuration indication information is 0, the terminal device is instructed to adopt the DMRS configuration 1 and the multiple access method 1 is used, and when the DMRS configuration indication information is 1, the terminal device is instructed to adopt the DMRS configuration 1 and use the multiple access method. 2.
- the terminal device When the DMRS configuration indication information is 2, the terminal device is instructed to use the DMRS configuration 2 and the multiple access method 1 is used.
- the DMRS configuration indication information is 3, the terminal device is instructed to adopt the DMRS configuration 2 and use the multiple access method 2.
- DMRS configuration When the indication information is 4, the terminal device is instructed to use the DMRS configuration 3.
- the terminal device is instructed to use the DMRS configuration 4.
- the terminal device is instructed to adopt the DMRS configuration 5, and the DMRS configuration indication information is used.
- the terminal device At 7 o'clock, the terminal device is instructed to adopt DMRS configuration 6.
- the DMRS configuration includes, for example, a cyclic shift configuration and/or an Orthogonal Cover Code (“OCC”) configuration.
- OCC Orthogonal Cover Code
- the terminal device determines, according to the information carried in the DCI, the uplink multiple access mode of the terminal device, including: the terminal device indicates a new data indicator according to the closed codeword carried in the DCI.
- the value of the "NDI" bit determines the uplink multiple access mode.
- the NDI bit may be used to indicate whether the data transmitted by the closed codeword is retransmitted data when the number of transport layers is greater than one or the closed codeword is enabled.
- the meaning of the NDI bit can be determined by way of Table 2.
- the terminal device determines, according to the information carried in the DCI, the uplink multiple access mode of the terminal device, where the terminal device determines, according to the MCS indication information of the coded mode of the closed codeword carried in the DCI, Uplink multiple access mode.
- the MCS indication information may be used to indicate a modulation and coding scheme of data transmitted by the closed codeword when the number of transmission layers is greater than one or the closed codeword is enabled.
- the uplink multiple access mode of the terminal device may be indicated as uplink multiple access mode 1, if the codeword is closed. If the MCS indication information is B, the uplink multiple access mode of the terminal device may be indicated as uplink multiple access mode 2.
- the terminal device determines the uplink multiple access mode of the terminal device according to the information carried in the DCI, where the terminal device determines the uplink multiple access mode according to the rank indication RI indication information that is carried in the DCI.
- the RI indication information is a value of the RI and the uplink multiple access
- the information of the incoming mode is jointly encoded.
- the network device before the network device sends the RI indication information that is carried in the DCI, the network device further includes: the network device jointly coding the value of the RI and the uplink multiple access mode to obtain the RI indication information.
- the RI indication information supported by the terminal device occupies 2 bits.
- the content indicated by the different RI indication information may be, for example, shown in Table 3.
- the terminal device determines the uplink multiple access mode of the terminal device according to the information carried in the DCI, where the terminal device determines the uplink multiple access according to the value of the padding bit carried in the DCI. Access method.
- the padding bit is to maintain the same length as other DCI formats, and redundant bits added in the DCI.
- the terminal device determines the uplink multiple access mode of the terminal device according to the information that is carried in the DCI, where the terminal device determines the uplink multiple access according to the physical resource configuration mode indication information that is carried in the DCI. Into the way.
- the foregoing method is used to indicate the uplink multiple access mode of the terminal device, and no dedicated bit is added to the DCI to indicate the uplink multiple access mode, thereby not increasing the DCI payload. (Payload), which improves the detection performance of DCI.
- the foregoing Tables 1 to 3 and the correspondence between the parameters used by the terminal device to determine the number of transmission layers, the physical resource configuration manner, and the uplink multiple access method, for example, the correspondence between the number of DMRS ports and the number of transmission layers
- the relationship between the relationship between the DMRS configuration information and the DMRS configuration and the multiple access method may be agreed in advance by the network device and the terminal device, for example, according to the protocol, or the network device may determine and notify the terminal device by itself.
- the embodiment of the invention is not limited thereto.
- Case 2 The transmission information includes the physical resource configuration method.
- the terminal device determines, according to the physical resource configuration manner, the uplink multiple access of the terminal device.
- the inbound mode includes: determining, by the terminal device, the uplink multiple access mode according to the physical resource configuration manner and the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode.
- the terminal device adopts the uplink multiple access mode 1; when the physical resource configuration mode indicated by the DCI is Type 1, the terminal device adopts the uplink multiple access mode 2.
- the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode may be agreed in advance by the network device and the terminal device, for example, according to the protocol, or may be determined by the network device and notified to the terminal device, which is not limited herein.
- Case 3 The transmission information includes the number of transmission layers and the configuration of physical resources.
- the terminal device determines an uplink multiple access mode of the terminal device according to the physical resource configuration manner indicated in the DCI. Specifically, the terminal device may determine the uplink multiple access mode according to the physical resource configuration manner and the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode.
- the terminal device when the physical resource configuration mode indicated by the DCI is type Type 0, the terminal device adopts the uplink multiple access mode 1; when the physical resource configuration mode indicated by the DCI is Type 1, the terminal device adopts the uplink multiple access mode 2.
- the terminal device after determining that the number of transmission layers is greater than 1, the terminal device adopts an uplink multiple access mode that is pre-agreed with the network device as an uplink multiple access mode for transmitting an uplink signal.
- the terminal device transmits the uplink data according to the uplink multiple access mode.
- the terminal device after determining the uplink multiple access mode of the terminal device, the terminal device sends the uplink data to the network device according to the uplink multiple access mode.
- the uplink multiple access mode includes, for example, DFT-S-OFDM, CP-OFDM, SC-FDMA, or OFDMA.
- the terminal device transmits the uplink data according to the uplink multiple access mode, including: if the terminal device determines that the uplink multiple access mode is DFT-S-OFDM or SC-FDMA, the terminal device Discrete Fourier Transformation ("DFT") is performed on the uplink data, and uplink data passing through the DFT is transmitted in the uplink data channel.
- DFT Discrete Fourier Transformation
- the terminal device transmits the uplink data according to the uplink multiple access mode, including: if the terminal device determines that the uplink multiple access mode is CP-OFDM or OFDMA, the terminal device prohibits the uplink The data is DFT and the uplink data that has not passed the DFT is transmitted in the uplink data channel.
- the terminal device transmits the uplink data according to the uplink multiple access mode, including: The terminal device determines a target uplink data channel structure according to the uplink multiple access mode and the corresponding relationship between the uplink multiple access mode and the uplink data channel structure; the terminal device uses the target uplink data channel structure to transmit the uplink data. .
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink data channel occupation. Time domain resources and frequency domain resources occupied by uplink data channels.
- the terminal device and the network device may pre-determine the correspondence between the uplink multiple access mode and the uplink data channel structure, and use the uplink data channel structure corresponding to the uplink multiple access mode of the terminal device to transmit the uplink data.
- the uplink data channel structure may include a DMRS resource location of the uplink data channel, for example, whether the DMRS occupies the entire Orthogonal Frequency Division Multiplexing ("OFDM") symbol or a portion of the OFDM symbol. a sub-carrier; the uplink data channel structure may include a DMRS sequence of the uplink data channel, and different uplink data channel structures may adopt different DMRS sequences; the uplink data channel structure may further include a precoding matrix used by the uplink data, for example, Whether the uplink data uses a wideband precoding matrix or a subband precoding matrix; the uplink data channel structure may further include the number of OFDM symbols occupied by the uplink data channel.
- OFDM Orthogonal Frequency Division Multiplexing
- the network device receiving terminal device transmits the uplink data according to the uplink multiple access mode.
- the terminal device determines the number of transmission layers and/or the physical resource configuration manner of the terminal device by using the parameter indication information in the DCI, and determines the uplink multiple access according to the number of the transmission layer and/or the physical resource configuration manner.
- the inbound mode enables the network device to flexibly adjust the uplink multiple access mode used by the terminal device during single layer transmission.
- FIG. 3 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present invention.
- the terminal device 300 includes a receiving unit 310, a determining unit 320, and a transmitting unit 330.
- the receiving unit 310 is configured to receive parameter indication information that is sent by the network device and is carried in the downlink control information DCI.
- a determining unit 320 configured to determine transmission information of the terminal device according to the parameter indication information received by the receiving unit 310, where the transmission information includes a transmission layer number and/or a physical resource configuration manner of the terminal device;
- the determining unit 320 is further configured to: according to the transmission information determined by the determining unit 320, Determining an uplink multiple access mode of the terminal device;
- the sending unit 330 is configured to transmit the uplink data according to the uplink multiple access mode determined by the determining unit 320.
- the terminal device determines the number of transmission layers and/or the physical resource configuration manner of the terminal device by using the parameter indication information in the DCI, and determines the uplink multiple access according to the number of the transmission layer and/or the physical resource configuration manner.
- the inbound mode enables the network device to flexibly adjust the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: transmission layer number indication information, physical resource configuration mode indication information, demodulation reference signal DMRS port indication information, precoding matrix PMI indication information, and codeword indication. information.
- the transmission information includes a number of transmission layers of the terminal device, where the determining unit 320 is specifically configured to: if it is determined that the number of transmission layers is 1, according to information carried in the DCI, Determining an uplink multiple access mode of the terminal device.
- the determining unit 320 is specifically configured to: determine, according to the DMRS configuration indication information that is carried in the DCI, the uplink multiple access mode, where the DMRS configuration indication information is information and a configuration of the DMRS The information of the uplink multiple access method is jointly coded.
- the determining unit 320 is specifically configured to determine the uplink multiple access mode according to the value of the NDI bit indicated by the new data of the closed codeword carried in the DCI.
- the determining unit 320 is specifically configured to: determine, according to the modulation and coding mode MCS indication information of the closed codeword that is carried in the DCI, the uplink multiple access mode.
- the determining unit 320 is specifically configured to: determine the uplink multiple access mode according to the rank indication RI indication information carried in the DCI, where the RI indication information is a value of the RI and the The information of the uplink multiple access mode is jointly encoded.
- the determining unit 320 is specifically configured to: determine, according to a value of a padding bit carried in the DCI, the uplink multiple access mode.
- the determining unit 320 is specifically configured to determine the uplink multiple access mode according to the physical resource configuration manner indication information that is carried in the DCI.
- the transmission information includes a number of transmission layers of the terminal device, where the determining unit 320 is specifically configured to: if it is determined that the number of transmission layers is greater than 1, determine that the uplink multiple access mode is An uplink multiple access mode pre-agreed with the network device.
- the transmission information includes a physical resource configuration manner of the terminal device, where The determining unit 320 is specifically configured to determine the uplink multiple access mode according to the physical resource configuration manner and the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-) OFDM, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP- cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the sending unit 330 is specifically configured to: if the uplink multiple access mode is determined to be DFT-S-OFDM or SC-FDMA, perform a discrete Fourier transform DFT on the uplink data, and The uplink data passing through the DFT is transmitted in an uplink data channel.
- the sending unit 330 is specifically configured to: if the uplink multiple access mode is determined to be CP-OFDM or OFDMA, perform DFT on the uplink data, and transmit in the uplink data channel without performing the The uplink data of the DFT.
- the sending unit 330 is specifically configured to: determine, according to the uplink multiple access mode, and the corresponding relationship between the uplink multiple access mode and the uplink data channel structure, determine a target uplink data channel structure;
- the uplink data channel structure transmits the uplink data.
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink.
- a resource location of a demodulation reference signal DMRS of an uplink data channel a DMRS sequence of an uplink data channel
- a transmission mode of uplink data carried by an uplink data channel and an uplink.
- the receiving unit 310 may be implemented by a receiver
- the sending unit 330 may be implemented by a transmitter
- the determining unit 320 may be implemented by a processor.
- the terminal device 400 can include a processor 410, a transceiver 420, and a memory 430.
- the transceiver 420 may include a receiver 421 and a transmitter 422.
- the memory 430 may be used for related information such as parameter information, transmission information, and multiple access mode, and may also be used to store code executed by the processor 410 and the like.
- the various components in network device 400 are coupled together by a bus system 440, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
- the receiver 421 is configured to receive parameter indication information that is sent by the network device and is carried in the downlink control information DCI.
- the processor 410 is configured to: determine the transmission information of the terminal device according to the parameter indication information received by the receiver 421, where the transmission information includes a transmission layer number and/or a physical resource configuration manner of the terminal device; Determining the transmission information determined by the processor 410, determining the terminal setting Prepared uplink multiple access mode;
- the transmitter 422 is configured to transmit the uplink data according to the uplink multiple access mode determined by the processor 410.
- the terminal device determines the number of transmission layers and/or the physical resource configuration manner of the terminal device by using the parameter indication information in the DCI, and determines the uplink multiple access mode according to the number of the transmission layer and/or the physical resource configuration manner, thereby
- the network device can flexibly adjust the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: transmission layer number indication information, physical resource configuration mode indication information, demodulation reference signal DMRS port indication information, precoding matrix PMI indication information, and codeword indication. information.
- the transmission information includes a number of transmission layers of the terminal device, where the processor 410 is specifically configured to: if it is determined that the number of transmission layers is 1, according to information carried in the DCI, Determining an uplink multiple access mode of the terminal device.
- the processor 410 is specifically configured to determine, according to the DMRS configuration indication information that is carried in the DCI, the uplink multiple access mode, where the DMRS configuration indication information is information and a configuration of the DMRS.
- the information of the uplink multiple access method is jointly coded.
- the processor 410 is specifically configured to determine the uplink multiple access mode according to the value of the NDI bit indicated by the new data of the closed codeword carried in the DCI.
- the processor 410 is specifically configured to determine the uplink multiple access mode according to the MCS indication information of the coded mode of the closed codeword that is carried in the DCI.
- the processor 410 is specifically configured to determine the uplink multiple access mode according to the rank indication RI indication information carried in the DCI, where the RI indication information is a value of the RI and the The information of the uplink multiple access mode is jointly encoded.
- the processor 410 is specifically configured to: determine, according to a value of a padding bit carried in the DCI, the uplink multiple access mode.
- the processor 410 is specifically configured to determine the uplink multiple access mode according to the physical resource configuration manner indication information that is carried in the DCI.
- the transmission information includes a number of transmission layers of the terminal device, where the processor 410 is specifically configured to: if it is determined that the number of transmission layers is greater than 1, determine that the uplink multiple access mode is An uplink multiple access mode pre-agreed with the network device.
- the transmission information includes a physical resource configuration manner of the terminal device, where The processor 410 is specifically configured to determine the uplink multiple access mode according to the physical resource configuration manner and the corresponding relationship between the physical resource configuration mode and the uplink multiple access mode.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-) OFDM, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP- cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the transmitter 422 is specifically configured to: if it is determined that the uplink multiple access mode is DFT-S-OFDM or SC-FDMA, perform a discrete Fourier transform DFT on the uplink data, and The uplink data passing through the DFT is transmitted in an uplink data channel.
- the uplink multiple access mode is DFT-S-OFDM or SC-FDMA
- the transmitter 422 is specifically configured to: if the uplink multiple access mode is determined to be CP-OFDM or OFDMA, perform DFT on the uplink data, and transmit in the uplink data channel without performing the The uplink data of the DFT.
- the transmitter 422 is specifically configured to: determine, according to the uplink multiple access mode, and the corresponding relationship between the uplink multiple access mode and the uplink data channel structure, determine a target uplink data channel structure;
- the uplink data channel structure transmits the uplink data.
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink.
- a resource location of a demodulation reference signal DMRS of an uplink data channel a DMRS sequence of an uplink data channel
- a transmission mode of uplink data carried by an uplink data channel and an uplink.
- FIG. 5 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
- the system chip 500 of FIG. 5 includes an input interface 501, an output interface 502, at least one processor 503, and a memory 504.
- the input interface 501, the output interface 502, the processor 503, and the memory 504 are connected by a bus 505.
- the processor 503 is configured to execute code in the memory 504, and when the code is executed, the processor 503 can implement the method performed by the terminal device in FIG. 2.
- the bus 505 is only an example of the connection mode.
- the input interface 501, the output interface 502, the processor 503, and the memory 504 may be connected by other means, which is not limited herein. .
- FIG. 6 shows a schematic block diagram of a network device 600 in accordance with an embodiment of the present invention.
- the network device 600 includes a determining unit 610, a transmitting unit 620, and a receiving unit 630.
- a determining unit 610 configured to determine parameter indication information carried in the downlink control information DCI;
- the sending unit 620 is configured to send, to the terminal device, the parameter indication information that is determined by the determining unit 610, where the parameter indication information is used by the terminal device to determine the transmission of the terminal device Transmitting information, so that the terminal device determines an uplink multiple access mode of the terminal device according to the transmission information, where the transmission information includes a transmission layer number and/or a physical resource configuration manner of the terminal device;
- the receiving unit 630 is configured to receive the uplink data that is sent by the terminal device according to the uplink multiple access mode.
- the network device sends the parameter indication information in the DCI to the terminal device, so that the terminal device can determine the number of transmission layers and/or the physical resource configuration manner of the terminal device by using the parameter indication information, and according to the number of the transmission layers. And/or the physical resource configuration manner is used to determine the uplink multiple access mode, so that the network device flexibly adjusts the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: transmission layer number indication information, physical resource configuration mode indication information, demodulation reference signal DMRS port indication information, precoding matrix PMI indication information, and codeword indication. information.
- the transmission information includes a number of transmission layers of the terminal device, so that when determining that the number of transmission layers is 1, the terminal device determines, according to information carried in the DCI, the uplink Address access method.
- the information carried in the DCI includes DMRS configuration indication information
- the network device further includes a processing unit, where before the sending unit 620 sends the information carried in the DCI to the terminal device
- the processing unit is configured to jointly encode the information of the DMRS configuration and the information of the uplink multiple access mode to obtain the DMRS configuration indication information.
- the information carried in the DCI includes new data of the closed codeword indicating the value of the NDI bit.
- the information carried in the DCI includes modulation coding mode MCS indication information of the closed codeword.
- the information carried in the DCI includes rank indication RI indication information
- the network device further includes a processing unit, where the sending unit 620 sends the information carried in the DCI to the terminal device.
- the processing unit is configured to: jointly encode the value of the RI and the information of the uplink multiple access mode to obtain the RI indication information.
- the information carried in the DCI includes a value of a value of a padding bit.
- the information carried in the DCI includes physical resource configuration manner indication information.
- the transmission information includes a number of transmission layers of the terminal device, so that the terminal device determines that the uplink multiple access mode is the network device when determining that the number of transmission layers is greater than 1. Pre-agreed uplink multiple access method.
- the transmission information includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-) OFDM, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP- cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the receiving unit 630 is specifically configured to: receive the uplink data that is sent by the terminal device according to a DFT-S-OFDM or SC-FDMA multiple access mode, where the uplink data is that the terminal device is The uplink data after the discrete Fourier transform DFT is performed.
- the receiving unit 630 is specifically configured to: receive the uplink data that is sent by the terminal device according to a CP-OFDM or an OFDMA multiple access mode, where the uplink data is a discrete The upper row converts the uplink data after the DFT.
- the receiving unit 630 is specifically configured to: receive the uplink data that is sent by the terminal device by using a target uplink data channel structure, where the target uplink data channel structure is that the terminal device is connected according to the uplink multiple access The entry mode and the correspondence between the uplink multiple access mode and the uplink data channel structure are determined.
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink.
- a resource location of a demodulation reference signal DMRS of an uplink data channel a DMRS sequence of an uplink data channel
- a transmission mode of uplink data carried by an uplink data channel and an uplink.
- network device 700 can include a processor 710, a transceiver 720, and a memory 730.
- the transceiver 720 can include a receiver 721 and a transmitter 722.
- the memory 730 can be used for related information such as parameter information, transmission information, and multiple access mode, and can also be used to store codes and the like executed by the processor 710.
- the various components in network device 700 are coupled together by a bus system 740, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
- the processor 710 is configured to determine parameter indication information that is carried in the downlink control information DCI.
- the transmitter 722 is configured to send, to the terminal device, the parameter indication information that is determined by the processor 710, where the parameter indication information is used by the terminal device to determine transmission information of the terminal device, so that the terminal The device determines an uplink multiple access mode of the terminal device according to the transmission information, where the transmission information includes a transmission layer number and/or a physical resource configuration manner of the terminal device;
- the receiver 721 is configured to receive the uplink data that is sent by the terminal device according to the uplink multiple access mode.
- the network device sends the parameter indication information in the DCI to the terminal device, so that the terminal device can determine the transmission layer number and/or the physical resource configuration manner of the terminal device by using the parameter indication information, and according to the number of the transmission layer and/or the
- the physical resource configuration mode is used to determine the uplink multiple access mode, so that the network device flexibly adjusts the uplink multiple access mode used by the terminal device during single layer transmission.
- the parameter indication information includes at least one of the following information: transmission layer number indication information, physical resource configuration mode indication information, demodulation reference signal DMRS port indication information, precoding matrix PMI indication information, and codeword indication. information.
- the transmission information includes a number of transmission layers of the terminal device, so that when determining that the number of transmission layers is 1, the terminal device determines, according to information carried in the DCI, the uplink Address access method.
- the information carried in the DCI includes DMRS configuration indication information
- the network device further includes a processing unit, wherein before the transmitter 722 sends the information carried in the DCI to the terminal device
- the processing unit is configured to jointly encode the information of the DMRS configuration and the information of the uplink multiple access mode to obtain the DMRS configuration indication information.
- the information carried in the DCI includes new data of the closed codeword indicating the value of the NDI bit.
- the information carried in the DCI includes modulation coding mode MCS indication information of the closed codeword.
- the information carried in the DCI includes rank indication RI indication information
- the network device further includes a processing unit, wherein the transmitter 722 transmits information carried in the DCI to the terminal device.
- the processing unit is configured to: jointly encode the value of the RI and the information of the uplink multiple access mode to obtain the RI indication information.
- the information carried in the DCI includes a value of a value of a padding bit.
- the information carried in the DCI includes physical resource configuration manner indication information.
- the transmission information includes a number of transmission layers of the terminal device, so that the terminal device determines that the uplink multiple access mode is the network device when determining that the number of transmission layers is greater than 1. Pre-agreed uplink multiple access method.
- the transmission information includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes a physical resource configuration manner of the terminal device, so that the terminal device determines, according to the physical resource configuration information, and a corresponding relationship between a physical resource configuration mode and an uplink multiple access mode.
- the uplink multiple access mode includes any one of the following: discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-S-OFDM, cyclic prefix orthogonal frequency division multiplexing (CP-) OFDM, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDM).
- DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
- CP- cyclic prefix orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- OFDM orthogonal frequency division multiple access
- the receiver 721 is specifically configured to: receive the uplink data that is sent by the terminal device according to a DFT-S-OFDM or SC-FDMA multiple access mode, where the uplink data is that the terminal device is The uplink data after the discrete Fourier transform DFT is performed.
- the receiver 721 is specifically configured to: receive the uplink data that is sent by the terminal device according to a CP-OFDM or an OFDMA multiple access manner, where the uplink data is a discrete
- the upper row converts the uplink data after the DFT.
- the receiver 721 is specifically configured to: receive the uplink data that is transmitted by the terminal device by using a target uplink data channel structure, where the target uplink data channel structure is that the terminal device is connected according to the uplink multiple access The entry mode and the correspondence between the uplink multiple access mode and the uplink data channel structure are determined.
- the uplink data channel structure includes at least one of the following: a resource location of a demodulation reference signal DMRS of an uplink data channel, a DMRS sequence of an uplink data channel, a transmission mode of uplink data carried by an uplink data channel, and an uplink.
- a resource location of a demodulation reference signal DMRS of an uplink data channel a DMRS sequence of an uplink data channel
- a transmission mode of uplink data carried by an uplink data channel and an uplink.
- FIG. 8 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
- the system chip 800 of FIG. 8 includes an input interface 801, an output interface 802, at least one processor 803, and a memory 804.
- the input interface 801, the output interface 802, the processor 803, and the memory 804 are connected by a bus 805.
- the processor 803 is configured to execute code in the memory 804, and when the code is executed, the processor 803 can implement the method performed by the network device in FIG. 2.
- the bus 805 is only an example of a connection mode.
- the input interface 801, the output interface 802, the processor 803, and the memory 804 can also be connected by other means, which is not limited herein.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention is essentially or a part contributing to the prior art or a part of the technical solution.
- the points may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention All or part of the steps of the method.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory ROM, a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
Abstract
本发明公开了一种传输上行数据的方法、终端设备和网络设备。该方法包括:终端设备接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;所述终端设备根据所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式;所述终端设备根据所述上行多址接入方式,传输所述上行数据。这样,终端设备通过DCI中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
Description
本发明实施例涉及无线通信领域,并且更具体地,涉及一种传输上行数据的方法、终端设备和网络设备。
目前在5G系统的上行传输过程中引入了多种上行多址接入方式,例如离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transformation Spread Orthogonal Frequency Division Multiplexing,简称“DFT-S-OFDM”)多址接入技术和循环前缀正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,简称“CP-OFDM”)等。前者只能用于上行单层传输,后者可以用于上行单层或者上行多层传输。终端设备使用哪一种多址方式可以由网络侧设备根据终端设备的上行信道质量进行配置,因此网络侧设备如何通知终端设备其使用的上行多址接入方式是急需解决的问题。
发明内容
本发明实施例提供了一种传输上行数据的方法、终端设备和网络设备,终端设备能够在进行上行传输时获知自己使用的上行多址接入方式。
第一方面,提供了一种传输上行数据的方法,其特征在于,包括:终端设备接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;所述终端设备根据所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式;所述终端设备根据所述上行多址接入方式,传输所述上行数据。
这样,终端设备通过DCI中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,在第一方面的一种实现方式中,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参
考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
一种方式为,网络设备通过该参数指示信息直接向终端设备指示该终端设备的传输信息,例如该参数指示信息可以为传输层数指示信息或者物理资源配置方式指示信息。则终端设备接收到该传输层数指示信息后,就可以直接确定自己的传输层数,或者在接收到该物理资源配置方式指示信息后,就可以直接确定自己的物理资源配置方式。
另一种方式为,网络设备可以通过该参数指示信息间接地向终端设备指示该终端设备的传输信息,例如该参数指示信息可以为解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息或码字指示信息。
可选地,在第一方面的一种实现方式中,所述传输信息包括所述终端设备的传输层数,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:若所述终端设备确定所述传输层数为1,则所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的DMRS配置指示信息,确定所述上行多址接入方式,所述DMRS配置指示信息是对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码得到的。
其中,该DMRS配置信息例如包括循环移位配置和/或正交覆盖码(Orthogonal Cover Code,简称“OCC”)配置。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的被关闭码字的新数据指示NDI比特的值,确定所述上行多址接入方式。
该NDI比特在传输层数大于1或该被关闭码字被使能时,可以用于指示该被关闭码字所传输的数据是否为重传数据。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的被关闭码字的调制编码方式MCS指示信息,确定所述上行多址接入方式。
该MCS指示信息在传输层数大于1或该被关闭码字被使能时,可以用于指示该被关闭码字所传输的数据的调制编码方式。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的秩指示RI指示信息,确定所述上行多址接入方式,所述RI指示信息是对RI的值与所述上行多址接入方式的信息进行联合编码得到的。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的填充比特的值,确定所述上行多址接入方式。
其中,该padding比特是为了保持与其他DCI格式的长度相同,而在该DCI中加入的冗余比特。
可选地,在第一方面的一种实现方式中,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的物理资源配置方式指示信息,确定所述上行多址接入方式。
本发明实施例中,采用上述几种方式来指示终端设备的上行多址接入方式,不需要在DCI中添加专用的比特用于指示上行多址接入方式,从而不会增加DCI的净负荷(Payload),从而提高了DCI的检测性能。
应理解,终端设备确定传输层数、物理资源配置方式和上行多址接入方式的过程中所用到的参数之间的对应关系例如DMRS端口数与传输层数的对应关系、DMRS配置信息的取值与DMRS配置和多址接入方式的对应关系等,可以由网络设备和终端设备事先约定例如按照协议的规定,也可以由网络设备自行确定并通知终端设备,本发明实施例对此不作限定。
可选地,在第一方面的一种实现方式中,所述传输信息包括所述终端设备的传输层数,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:若所述终端设备确定所述传输层数大于1,则所述终端设备确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
也就是说,当终端设备的传输层数为1时,终端设备可以采用上述多种多址接入方式中的任意一种;当终端设备的传输层数大于1时,终端设备采
用与网络设备预先约定好的上行多址方式。下面具体说明终端设备如何承载在DCI中的信息,确定终端设备的上行多址接入方式。
可选地,在第一方面的一种实现方式中,所述传输信息包括所述终端设备的物理资源配置方式,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据所述物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
例如,当DCI中指示的物理资源配置方式为类型Type0时,终端设备采用上行多址方式1;当DCI中指示的物理资源配置方式为Type1时,终端设备采用上行多址方式2。
其中,物理资源配置方式与上行多址接入方式的对应关系,可以由网络设备和终端设备事先约定例如按照协议的规定,也可以由网络设备自行确定并通知终端设备,这里不作限定。
可选地,在第一方面的一种实现方式中,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:若所述终端设备确定所述上行多址接入方式为DFT-S-OFDM或SC-FDMA,则所述终端设备对所述上行数据进行离散傅里叶变换DFT,并在上行数据信道中传输经过所述DFT的所述上行数据。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:若所述终端设备确定所述上行多址接入方式为CP-OFDM或OFDMA,则所述终端设备禁止对所述上行数据进行DFT,并在上行数据信道中传输未经过所述DFT的所述上行数据。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;所述终端设备采用所述目标上行数据信道结构,传输所述上行数据。
可选地,在第一方面的一种实现方式中,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
举例来说,该上行数据信道结构可以包括该上行数据信道的DMRS资源位置,例如DMRS是占用整个正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号还是占用OFDM符号上的部分子载波;该上行数据信道结构还可以包括该上行数据采用的预编码矩阵,例如该上行数据是采用宽带预编码矩阵还是采用子带预编码矩阵;该上行数据信道结构还可以包括该上行数据信道所占用的OFDM符号数等。
第二方面,提供了一种终端设备,该终端设备可以用于执行前述第一方面及各种实现方式中的传输上行数据的方法中由终端设备执行的各个过程。该终端设备包括:接收单元,用于接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;确定单元,用于根据所述接收单元接收的所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述确定单元还用于,根据所述确定单元确定的所述传输信息,确定所述终端设备的上行多址接入方式;发送单元,用于根据所述确定单元确定的所述上行多址接入方式,传输所述上行数据。
第三方面,提供了一种终端设备,该终端设备可以用于执行前述第一方面及各种实现方式中的传输上行数据的方法中由终端设备执行的各个过程。该终端设备包括处理器、接收器和发送器。所述接收器,用于接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;所述处理器,用于根据所述接收单元接收的所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述处理器还用于,根据所述确定单元确定的所述传输信息,确定所述终端设备的上行多址接入方式;所述发送器,用于根据所述确定单元确定的所述上行多址接入方式,传输所述上行数据。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种传输上行数据的方法。
第五方面,提供了一种传输上行数据的方法,其特征在于,包括:网络
设备确定承载在下行控制信息DCI中的参数指示信息;所述网络设备向所述终端设备发送所述参数指示信息,所述参数指示信息用于所述终端设备确定所述终端设备的传输信息,以使得所述终端设备根据所述传输信息确定所述终端设备的上行多址接入方式,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据。
这样,网络设备通过向终端设备发送DCI中的参数指示信息,使得终端设备能够通过该参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数为1时,根据承载在所述DCI中的信息,确定所述上行多址接入方式。
可选地,承载在所述DCI中的信息包括DMRS配置指示信息,其中,在所述网络设备向所述终端设备发送承载在所述DCI中的信息之前,所述方法还包括:所述网络设备对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码,得到所述DMRS配置指示信息。
可选地,承载在所述DCI中的信息包括被关闭码字的新数据指示NDI比特的值。
可选地,承载在所述DCI中的信息包括被关闭码字的调制编码方式MCS指示信息。
可选地,承载在所述DCI中的信息包括秩指示RI指示信息,其中,在所述网络设备向所述终端设备发送承载在所述DCI中的信息之前,所述方法还包括:所述网络设备对RI的值与所述上行多址接入方式的信息进行联合编码,得到RI指示信息。
可选地,承载在所述DCI中的信息包括填充比特的值的值。
可选地,承载在所述DCI中的信息包括物理资源配置方式指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数大于1时,确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
可选地,所述传输信息包括所述终端设备的物理资源配置方式,以使得所述终端设备根据所述物理资源配置信息,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
可选地,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据,包括:所述网络设备接收所述终端设备根据DFT-S-OFDM或SC-FDMA多址接入方式传输的所述上行数据,所述上行数据为经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据,包括:所述网络设备接收所述终端设备根据CP-OFDM或OFDMA多址接入方式传输的所述上行数据,所述上行数据为未经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据,包括:所述网络设备接收所述终端设备采用目标上行数据信道结构传输的所述上行数据,所述目标上行数据信道结构为所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系确定的。
可选地,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
第六方面,提供了一种网络设备,该网络设备可以用于执行前述第五方面及各种实现方式中的传输上行数据的方法中由终端设备执行的各个过程。该网络设备包括:
第七方面,提供了一种网络设备,该网络设备可以用于执行前述第五方面及各种实现方式中的传输上行数据的方法中由终端设备执行的各个过程。
该网络设备包括处理器、接收器和发送器。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第五方面,及其各种实现方式中的任一种传输上行数据的方法。
图1是本发明实施例的一种应用场景的示意性架构图。
图2是本发明实施例的传输上行数据的方法的流程交互图。
图3是本发明实施例的终端设备的结构框图。
图4是本发明实施例的终端设备的结构框图。
图5是本发明实施例的系统芯片的示意性结构图。
图6是本发明实施例的网络设备的结构框图。
图7是本发明实施例的网络设备的结构框图。
图8是本发明实施例的系统芯片的示意性结构图。
下面将结合附图,对本发明实施例中的技术方案进行描述。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、长期演进(Long Term Evolution,简称“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称“FDD”)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、以及未来的5G通信系统等。
本发明结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local
Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本发明结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本发明实施例中,上行多址接入方式在5G系统中也被称为上行波形(waveform)。
图1是本发明一个应用场景的示意图。图1中的通信系统可以包括网络设备10和终端设备20。网络设备10用于为终端设备20提供通信服务并接入核心网,终端设备20通过搜索网络设备10发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备20与网络设备10之间的蜂窝链路进行的上/下行传输。
本发明实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,简称“PLMN”)或者设备对设备(Device to Device,简称“D2D”)网络或者机器对机器/人(Machine to Machine/Man,简称“M2M”)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他终端设备,图1中未予以画出。
图2是根据本发明实施例的传输上行数据的方法的流程交互图。图2示出了网络设备和终端设备,该网络设备例如可以为图1中所示的网络设备10,该终端设备例如可以为图1中所示的终端设备20。本发明实施例中,终端设备可以根据下行控制信息(Download Control Information,简称“DCI”)中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
如图2所示,该传输上行数据的具体流程包括:
210,网络设备确定参数指示信息。
其中,该参数指示信息可以承载在DCI中。
220,网络设备向终端设备发送该参数指示信息。
具体地说,网络设备为终端设备配置好了该终端设备使用的上行多址接入方式后,可以在向终端设备发送DCI时,通过承载在DCI中的参数指示信息,向终端设备指示该传输层数和/或该物理资源配置方式。
230,终端设备接收网络设备发送的该参数指示信息。
可选地,该参数指示信息可以包括以下中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号(DeModulation Reference Signal,简称“DMRS”)端口指示信息、预编码矩阵(Precoding Matrix Indicator,简称“PMI”)指示信息和码字指示信息。
240,终端设备根据该参数指示信息,确定终端设备的传输信息。
其中,该传输信息包括终端设备的传输层数和/或物理资源配置方式。
具体地说,终端设备接收到网络设备发送的该参数指示信息后,根据该参数指示信息,确定该终端设备的传输信息,例如该终端设备传输层数/或物理资源配置方式。
一种方式为,网络设备通过该参数指示信息直接向终端设备指示该终端设备的传输信息,例如该参数指示信息可以为传输层数指示信息或者物理资源配置方式指示信息。则终端设备接收到该传输层数指示信息后,就可以直接确定自己的传输层数,或者在接收到该物理资源配置方式指示信息后,就可以直接确定自己的物理资源配置方式。
例如,网络设备向终端设备发送的DCI中,可以有2比特用于指示传输层数。比如该2比特的值为00指示传输层数1,该2比特的值为01指示传输层数为2,该2比特的值为10指示传输层数3,该2比特的值为11指示传输层数为4。
又例如,网络设备向终端设备发送的DCI中,可以有1比特用于指示物理资源配置方式。比如该1比特的值为0指示物理资源配置方式1,该1比特的值为1指示物理资源配置方式2。
另一种方式为,网络设备可以通过该参数指示信息间接地向终端设备指示该终端设备的传输信息,例如该参数指示信息可以为解调参考信号DMRS
端口指示信息、预编码矩阵PMI指示信息或码字指示信息。
例如,该DMRS端口指示信息用于指示DMRS端口数,终端设备接收到DMRS端口指示信息后,可以知道对应的DMRS端口数,并根据该DMRS端口数与来确定自己的传输层数。比如终端设备根据该DMRS端口数,以及DMRS端口数与传输层数的对应关系,确定该终端设备的传输层数。或者,网络设备也可以在DCI中通过DMRS端口指示信息将DMRS端口数和传输层数联合指示。
又例如,网络设备可以在DCI中将PMI和终端设备的传输层数联合编码,从而终端设备接收到PMI指示信息后,可以从该PMI指示信息至获取自己的传输层数的信息。
又例如,该码字指示信息用于指示传输码字数,终端设备接收到码字指示信息后,可以知道对应的传输码字数,并根据传输码字数来确定自己的传输层数。比如终端设备根据该传输码字数,以及传输码字数与传输层数的对应关系,确定该终端设备的传输层数。
250,终端设备根据该传输信息,确定终端设备的上行多址接入方式。
可选地,该上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入(Single-carrier Frequency-Division Multiple Access,简称“SC-FDMA”)和正交频分多址接入(Orthogonal Frequency Division Multiple Access,简称“OFDMA”)。
该传输信息可以包括传输层数和/或物理资源配置方式。下面分别对传输信息包括传输层数,和传输信息包括物理资源配置方式进行详细描述。
情况1该传输信息包括传输层数
可选地,终端设备根据传输信息,确定终端设备的上行多址接入方式,包括:若终端设备确定该传输层数大于1,则终端设备确定该上行多址接入方式为与网络设备预先约定好的上行多址方式。
可选地,终端设备根据传输信息,确定终端设备的上行多址接入方式,包括:若终端设备确定该传输层数为1,则终端设备根据承载在DCI中的信息,确定终端设备的上行多址接入方式。
也就是说,当终端设备的传输层数为1时,终端设备可以采用上述多种多址接入方式中的任意一种;当终端设备的传输层数大于1时,终端设备采
用与网络设备预先约定好的上行多址方式。下面具体说明终端设备如何根据承载在DCI中的信息,确定终端设备的上行多址接入方式。
但是,应理解,本发明实施例中,终端设备也可以在确定该传输层数满足一定要求时自行确定上行多址接入方式,例如满足传输层数小于n的条件时,根据承载在DCI中的信息,确定终端设备的上行多址接入方式;而确定该传输层数大于n时,采用与网络设备预先约定好的上行多址方式,其中n为大于1的正整数。
可选地,终端设备根据承载在DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在该DCI中的DMRS配置指示信息,确定该上行多址接入方式,该DMRS配置指示信息是对DMRS配置的信息与该上行多址接入方式的信息进行联合编码得到的。
也就是说,网络设备在向终端设备发送承载在DCI中的DMRS配置指示信息之前,还包括:网络设备对DMRS配置的信息和该上行多址接入方式进行联合编码,以得到该RI指示信息。
假设该DMRS配置信息为3比特,则不同DMRS配置指示信息所指示的内容例如可以为表一所示。其中,DMRS配置1和DMRS配置2分别为传输层数为1时的DMRS配置,并且,DMRS配置3至DMRS配置6分别对应传输层数大于1时的DMRS配置。
表一
DMRS配置指示信息 | DMRS配置指示信息所指示的内容 |
0 | DMRS配置1,多址接入方式1 |
1 | DMRS配置1,多址接入方式2 |
2 | DMRS配置2,多址接入方式1 |
3 | DMRS配置2,多址接入方式2 |
4 | DMRS配置3 |
5 | DMRS配置4 |
6 | DMRS配置5 |
7 | DMRS配置6 |
可以看出,DMRS配置指示信息为0时,指示终端设备采用DMRS配置1且使用多址接入方式1,DMRS配置指示信息为1时,指示终端设备采用DMRS配置1且使用多址接入方式2,DMRS配置指示信息为2时,指示终端设备采用DMRS配置2且使用多址接入方式1,DMRS配置指示信息为3时,指示终端设备采用DMRS配置2且使用多址接入方式2。DMRS配置
指示信息为4时,指示终端设备采用DMRS配置3,DMRS配置指示信息为5时,指示终端设备采用DMRS配置4,DMRS配置指示信息为6时,指示终端设备采用DMRS配置5,DMRS配置指示信息为7时,指示终端设备采用DMRS配置6。
其中,该DMRS配置例如包括循环移位配置和/或正交覆盖码(Orthogonal Cover Code,简称“OCC”)配置。
可选地,终端设备根据承载在DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在该DCI中的被关闭码字的新数据指示(New Data indicator,简称“NDI”)比特的值,确定该上行多址接入方式。
该NDI比特在传输层数大于1或该被关闭码字被使能时,可以用于指示该被关闭码字所传输的数据是否为重传数据。
例如,可以通过表二的方式来确定该NDI比特的含义。
表二
可选地,终端设备根据承载在DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在该DCI中的被关闭码字的调制编码方式MCS指示信息,确定该上行多址接入方式。
该MCS指示信息在传输层数大于1或该被关闭码字被使能时,可以用于指示该被关闭码字所传输的数据的调制编码方式。
例如,当传输层数为1时,如果被关闭码字的调制编码方式MCS指示信息为A,则可以指示终端设备的该上行多址接入方式为上行多址方式1,如果被关闭码字的调制编码方式MCS指示信息为B,则可以指示终端设备的该上行多址接入方式为上行多址方式2。
可选地,终端设备根据承载在所述DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在DCI中的秩指示RI指示信息,确定上行多址接入方式,其中,该RI指示信息是对RI的值与该上行多址接
入方式的信息进行联合编码得到的。
也就是说,网络设备在向终端设备发送承载在DCI中的RI指示信息之前,还包括:网络设备对RI的值和该上行多址接入方式进行联合编码,以得到该RI指示信息。
假设承载在DCI中的RI的值为2比特,且终端设备最高支持的RI指示信息占用2比特,则不同的RI指示信息所指示的内容例如可以为表三所示。
表三
RI指示信息 | RI指示信息所指示的内容 |
0 | RI=1,指示多址接入方式1 |
1 | RI=1,指示多址接入方式2 |
2 | RI=2 |
3 | Reserved |
可选地,终端设备根据承载在所述DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在DCI中的填充(padding)比特的值,确定该上行多址接入方式。
其中,该padding比特是为了保持与其他DCI格式的长度相同,而在该DCI中加入的冗余比特。
可选地,终端设备根据承载在所述DCI中的信息,确定终端设备的上行多址接入方式,包括:终端设备根据承载在DCI中的物理资源配置方式指示信息,确定该上行多址接入方式。
本发明实施例中,采用上述几种方式来指示终端设备的上行多址接入方式,不需要在DCI中添加专用的比特用于指示上行多址接入方式,从而不会增加DCI的净负荷(Payload),从而提高了DCI的检测性能。
应理解,上述的表一至表三,以及终端设备确定传输层数、物理资源配置方式和上行多址接入方式过程中所用到的参数之间的对应关系例如DMRS端口数与传输层数的对应关系、DMRS配置信息的取值与DMRS配置和多址接入方式的对应关系等,可以由网络设备和终端设备事先约定例如按照协议的规定,也可以由网络设备自行确定并通知终端设备,本发明实施例对此不作限定。
情况2该传输信息包括物理资源配置方式
可选地,终端设备根据物理资源配置方式,确定终端设备的上行多址接
入方式,包括:终端设备根据该物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定该上行多址接入方式。
例如,当DCI中指示的物理资源配置方式为类型Type0时,终端设备采用上行多址方式1;当DCI中指示的物理资源配置方式为Type1时,终端设备采用上行多址方式2。
其中,物理资源配置方式与上行多址接入方式的对应关系,可以由网络设备和终端设备事先约定例如按照协议的规定,也可以由网络设备自行确定并通知终端设备,这里不作限定。
情况3该传输信息包括传输层数和物理资源配置方式
可选地,终端设备在确定传输层数为1后,根据DCI中指示的物理资源配置方式,确定终端设备的上行多址接入方式。具体的,终端设备可以根据该物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定该上行多址接入方式。
例如,当DCI中指示的物理资源配置方式为类型Type0时,终端设备采用上行多址方式1;当DCI中指示的物理资源配置方式为Type1时,终端设备采用上行多址方式2。可选的,终端设备在确定传输层数大于1后,采用与网络设备预先约定好的上行多址方式做为传输上行信号的上行多址方式。
260,终端设备根据该上行多址接入方式,传输该上行数据。
具体地说,终端设备确定了终端设备的上行多址接入方式后,根据该上行多址接入方式,向网络设备发送该上行数据。该上行多址接入方式例如包括DFT-S-OFDM、CP-OFDM、SC-FDMA或OFDMA。
可选地,该终端设备根据该上行多址接入方式,传输该上行数据,包括:若该终端设备确定该上行多址接入方式为DFT-S-OFDM或SC-FDMA,则该终端设备对该上行数据进行离散傅里叶变换(Discrete Fourier Transformation,简称“DFT”),并在上行数据信道中传输经过该DFT的上行数据。
可选地,该终端设备根据该上行多址接入方式,传输该上行数据,包括:若该终端设备确定该上行多址接入方式为CP-OFDM或OFDMA,则该终端设备禁止对该上行数据进行DFT,并在上行数据信道中传输未经过DFT的该上行数据。
可选地,终端设备根据该上行多址接入方式,传输该上行数据,包括:
该终端设备根据该上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;该终端设备采用该目标上行数据信道结构,传输该上行数据。
其中,该上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
具体地说,终端设备与网络设备可以预先约定好上行多址方式与上行数据信道结构的对应关系,并采用该终端设备的上行多址方式对应的上行数据信道结构,来传输该上行数据。
举例来说,该上行数据信道结构可以包括该上行数据信道的DMRS资源位置,例如DMRS是占用整个正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)符号还是占用OFDM符号上的部分子载波;该上行数据信道结构可以包括该上行数据信道的DMRS序列,不同的上行数据信道结构可以采用不同的DMRS序列;该上行数据信道结构还可以包括该上行数据采用的预编码矩阵,例如该上行数据是采用宽带预编码矩阵还是采用子带预编码矩阵;该上行数据信道结构还可以包括该上行数据信道所占用的OFDM符号数等。
270,网络设备接收终端设备根据该上行多址接入方式传输该上行数据。
本发明实施例中,终端设备通过DCI中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
图3示出了本发明实施例的终端设备300的示意性框图。如图3所示,该终端设备300包括接收单元310、确定单元320和发送单元330。
接收单元310,用于用于接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;
确定单元320,用于根据所述接收单元310接收的所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;
所述确定单元320还用于,根据所述确定单元320确定的所述传输信息,
确定所述终端设备的上行多址接入方式;
发送单元330,用于根据所述确定单元320确定的所述上行多址接入方式,传输所述上行数据。
本发明实施例中,终端设备通过DCI中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,其中,所述确定单元320具体用于:若确定所述传输层数为1,则根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的DMRS配置指示信息,确定所述上行多址接入方式,所述DMRS配置指示信息是对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码得到的。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的被关闭码字的新数据指示NDI比特的值,确定所述上行多址接入方式。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的被关闭码字的调制编码方式MCS指示信息,确定所述上行多址接入方式。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的秩指示RI指示信息,确定所述上行多址接入方式,所述RI指示信息是对RI的值与所述上行多址接入方式的信息进行联合编码得到的。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的填充比特的值,确定所述上行多址接入方式。
可选地,所述确定单元320具体用于:根据承载在所述DCI中的物理资源配置方式指示信息,确定所述上行多址接入方式。
可选地,所述传输信息包括所述终端设备的传输层数,其中,所述确定单元320具体用于:若确定所述传输层数大于1,则确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
可选地,所述传输信息包括所述终端设备的物理资源配置方式,其中,
所述确定单元320具体用于:根据所述物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
可选地,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,所述发送单元330具体用于:若确定所述上行多址接入方式为DFT-S-OFDM或SC-FDMA,则对所述上行数据进行离散傅里叶变换DFT,并在上行数据信道中传输经过所述DFT的所述上行数据。
可选地,所述发送单元330具体用于:若确定所述上行多址接入方式为CP-OFDM或OFDMA,则对所述上行数据进行DFT,并在上行数据信道中传输未经过所述DFT的所述上行数据。
可选地,所述发送单元330具体用于:根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;采用所述目标上行数据信道结构,传输所述上行数据。
可选地,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
应注意,本发明实施例中,接收单元310可以由接收器实现,发送单元330可以有发送器实现,确定单元320可以由处理器实现。如图4所示,终端设备400可以包括处理器410、收发信机420和存储器430。其中,收发信机420可以包括接收器421和发送器422,存储器430可以用于参数信息、传输信息和多址接入方式等的相关信息,还可以用于存储处理器410执行的代码等。网络设备400中的各个组件通过总线系统440耦合在一起,其中总线系统440除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,接收器421用于,接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;
处理器410用于:根据接收器421接收的所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;根据所述处理器410确定的所述传输信息,确定所述终端设
备的上行多址接入方式;
发送器422用于,根据处理器410确定的所述上行多址接入方式,传输所述上行数据。
这样,终端设备通过DCI中的参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,其中,所述处理器410具体用于:若确定所述传输层数为1,则根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式。
可选地,所述处理器410具体用于:根据承载在所述DCI中的DMRS配置指示信息,确定所述上行多址接入方式,所述DMRS配置指示信息是对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码得到的。
可选地,所述处理器410具体用于:根据承载在所述DCI中的被关闭码字的新数据指示NDI比特的值,确定所述上行多址接入方式。
可选地,所述处理器410具体用于:根据承载在所述DCI中的被关闭码字的调制编码方式MCS指示信息,确定所述上行多址接入方式。
可选地,所述处理器410具体用于:根据承载在所述DCI中的秩指示RI指示信息,确定所述上行多址接入方式,所述RI指示信息是对RI的值与所述上行多址接入方式的信息进行联合编码得到的。
可选地,所述处理器410具体用于:根据承载在所述DCI中的填充比特的值,确定所述上行多址接入方式。
可选地,所述处理器410具体用于:根据承载在所述DCI中的物理资源配置方式指示信息,确定所述上行多址接入方式。
可选地,所述传输信息包括所述终端设备的传输层数,其中,所述处理器410具体用于:若确定所述传输层数大于1,则确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
可选地,所述传输信息包括所述终端设备的物理资源配置方式,其中,
所述处理器410具体用于:根据所述物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
可选地,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,所述发送器422具体用于:若确定所述上行多址接入方式为DFT-S-OFDM或SC-FDMA,则对所述上行数据进行离散傅里叶变换DFT,并在上行数据信道中传输经过所述DFT的所述上行数据。
可选地,所述发送器422具体用于:若确定所述上行多址接入方式为CP-OFDM或OFDMA,则对所述上行数据进行DFT,并在上行数据信道中传输未经过所述DFT的所述上行数据。
可选地,所述发送器422具体用于:根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;采用所述目标上行数据信道结构,传输所述上行数据。
可选地,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
图5是本发明实施例的系统芯片的一个示意性结构图。图5的系统芯片500包括输入接口501、输出接口502、至少一个处理器503、存储器504,所述输入接口501、输出接口502、所述处理器503以及存储器504之间通过总线505相连,所述处理器503用于执行所述存储器504中的代码,当所述代码被执行时,所述处理器503可以实现图2中的终端设备执行的方法。所述总线505仅为连接方式的一个示例,本发明实施例中,所述输入接口501、输出接口502、所述处理器503以及存储器504之间还可以通过其他方式进行连接,这里不做限定。
图6示出了本发明实施例的网络设备600的示意性框图。如图6所示,该网络设备600包括确定单元610、发送单元620和接收单元630。
确定单元610,用于确定承载在下行控制信息DCI中的参数指示信息;
发送单元620,用于向所述终端设备发送所述确定单元610确定的所述参数指示信息,所述参数指示信息用于所述终端设备确定所述终端设备的传
输信息,以使得所述终端设备根据所述传输信息确定所述终端设备的上行多址接入方式,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;
接收单元630,用于接收所述终端设备根据所述上行多址接入方式传输的所述上行数据。
本发明实施例中,网络设备通过向终端设备发送DCI中的参数指示信息,使得终端设备能够通过该参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数为1时,根据承载在所述DCI中的信息,确定所述上行多址接入方式。
可选地,承载在所述DCI中的信息包括DMRS配置指示信息,所述网络设备还包括处理单元,其中,在所述发送单元620向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码,得到所述DMRS配置指示信息。
可选地,承载在所述DCI中的信息包括被关闭码字的新数据指示NDI比特的值。
可选地,承载在所述DCI中的信息包括被关闭码字的调制编码方式MCS指示信息。
可选地,承载在所述DCI中的信息包括秩指示RI指示信息,所述网络设备还包括处理单元,其中,在所述发送单元620向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对RI的值与所述上行多址接入方式的信息进行联合编码,得到所述RI指示信息。
可选地,承载在所述DCI中的信息包括填充比特的值的值。
可选地,承载在所述DCI中的信息包括物理资源配置方式指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数大于1时,确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
可选地,所述传输信息包括所述终端设备的物理资源配置方式,以使得所述终端设备根据所述物理资源配置信息,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
可选地,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,所述接收单元630具体用于:接收所述终端设备根据DFT-S-OFDM或SC-FDMA多址接入方式传输的所述上行数据,所述上行数据为经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述接收单元630具体用于:接收所述终端设备根据CP-OFDM或OFDMA多址接入方式传输的所述上行数据,所述上行数据为未经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述接收单元630具体用于:接收所述终端设备采用目标上行数据信道结构传输的所述上行数据,所述目标上行数据信道结构为所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系确定的。
可选地,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
应注意,本发明实施例中,接收单元630可以由接收器实现,发送单元620可以有发送器实现,确定单元610可以由处理器实现。如图7所示,网络设备700可以包括处理器710、收发信机720和存储器730。其中,收发信机720可以包括接收器721和发送器722,存储器730可以用于参数信息、传输信息和多址接入方式等的相关信息,还可以用于存储处理器710执行的代码等。网络设备700中的各个组件通过总线系统740耦合在一起,其中总线系统740除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器710用于确定承载在下行控制信息DCI中的参数指示信息;
发送器722,用于向所述终端设备发送所述处理器710确定的所述参数指示信息,所述参数指示信息用于所述终端设备确定所述终端设备的传输信息,以使得所述终端设备根据所述传输信息确定所述终端设备的上行多址接入方式,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;
接收器721,用于接收所述终端设备根据所述上行多址接入方式传输的所述上行数据。
这样,网络设备通过向终端设备发送DCI中的参数指示信息,使得终端设备能够通过该参数指示信息确定终端设备的传输层数和/或物理资源配置方式,并根据该传输层数和/或该物理资源配置方式来确定上行多址接入方式,从而实现了网络设备在单层传输时灵活调整终端设备所使用的上行多址接入方式。
可选地,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数为1时,根据承载在所述DCI中的信息,确定所述上行多址接入方式。
可选地,承载在所述DCI中的信息包括DMRS配置指示信息,所述网络设备还包括处理单元,其中,在所述发送器722向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码,得到所述DMRS配置指示信息。
可选地,承载在所述DCI中的信息包括被关闭码字的新数据指示NDI比特的值。
可选地,承载在所述DCI中的信息包括被关闭码字的调制编码方式MCS指示信息。
可选地,承载在所述DCI中的信息包括秩指示RI指示信息,所述网络设备还包括处理单元,其中,在所述发送器722向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对RI的值与所述上行多址接入方式的信息进行联合编码,得到所述RI指示信息。
可选地,承载在所述DCI中的信息包括填充比特的值的值。
可选地,承载在所述DCI中的信息包括物理资源配置方式指示信息。
可选地,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数大于1时,确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
可选地,所述传输信息包括所述终端设备的物理资源配置方式,以使得所述终端设备根据所述物理资源配置信息,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
可选地,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
可选地,所述接收器721具体用于:接收所述终端设备根据DFT-S-OFDM或SC-FDMA多址接入方式传输的所述上行数据,所述上行数据为经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述接收器721具体用于:接收所述终端设备根据CP-OFDM或OFDMA多址接入方式传输的所述上行数据,所述上行数据为未经过所述终端设备进行离散傅里叶变换DFT后的所述上行数据。
可选地,所述接收器721具体用于:接收所述终端设备采用目标上行数据信道结构传输的所述上行数据,所述目标上行数据信道结构为所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系确定的。
可选地,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
图8是本发明实施例的系统芯片的一个示意性结构图。图8的系统芯片800包括输入接口801、输出接口802、至少一个处理器803、存储器804,所述输入接口801、输出接口802、所述处理器803以及存储器804之间通过总线805相连,所述处理器803用于执行所述存储器804中的代码,当所述代码被执行时,所述处理器803可以实现图2中的网络设备执行的方法。所述总线805仅为连接方式的一个示例,本发明实施例中,所述输入接口
801、输出接口802、所述处理器803以及存储器804之间还可以通过其他方式进行连接,这里不做限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部
分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (60)
- 一种传输上行数据的方法,其特征在于,所述方法包括:终端设备接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;所述终端设备根据所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式;所述终端设备根据所述上行多址接入方式,传输所述上行数据。
- 根据权利要求1所述的方法,其特征在于,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
- 根据权利要求1或2所述的方法,其特征在于,所述传输信息包括所述终端设备的传输层数,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:若所述终端设备确定所述传输层数为1,则所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的DMRS配置指示信息,确定所述上行多址接入方式,所述DMRS配置指示信息是对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码得到的。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的被关闭码字的新数据指示NDI比特的值,确定所述上行多址接入方式。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的被关闭码字的调制编码方式 MCS指示信息,确定所述上行多址接入方式。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的秩指示RI指示信息,确定所述上行多址接入方式,所述RI指示信息是对RI的值与所述上行多址接入方式的信息进行联合编码得到的。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的填充比特的值,确定所述上行多址接入方式。
- 根据权利要求3所述的方法,其特征在于,所述终端设备根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据承载在所述DCI中的物理资源配置方式指示信息,确定所述上行多址接入方式。
- 根据权利要求1或2所述的方法,其特征在于,所述传输信息包括所述终端设备的传输层数,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:若所述终端设备确定所述传输层数大于1,则所述终端设备确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
- 根据权利要求1或2所述的方法,其特征在于,所述传输信息包括所述终端设备的物理资源配置方式,其中,所述终端设备根据所述传输信息,确定所述终端设备的上行多址接入方式,包括:所述终端设备根据所述物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
- 根据权利要求1至11中任一项所述的方法,其特征在于,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
- 根据权利要求1至12中任一项所述的方法,其特征在于,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:若所述终端设备确定所述上行多址接入方式为DFT-S-OFDM或SC-FDMA,则所述终端设备对所述上行数据进行离散傅里叶变换DFT,并在上行数据信道中传输经过所述DFT的所述上行数据。
- 根据权利要求1至12中任一项所述的方法,其特征在于,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:若所述终端设备确定所述上行多址接入方式为CP-OFDM或OFDMA,则所述终端设备禁止对所述上行数据进行DFT,并在上行数据信道中传输未经过所述DFT的所述上行数据。
- 根据权利要求1至14中任一项所述的方法,其特征在于,所述终端设备根据所述上行多址接入方式,传输所述上行数据,包括:所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;所述终端设备采用所述目标上行数据信道结构,传输所述上行数据。
- 根据权利要求15所述的方法,其特征在于,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
- 一种传输上行数据的方法,其特征在于,所述方法包括:网络设备确定承载在下行控制信息DCI中的参数指示信息;所述网络设备向所述终端设备发送所述参数指示信息,所述参数指示信息用于所述终端设备确定所述终端设备的传输信息,以使得所述终端设备根据所述传输信息确定所述终端设备的上行多址接入方式,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据。
- 根据权利要求17所述的方法,其特征在于,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS 端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
- 根据权利要求17或18所述的方法,其特征在于,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数为1时,根据承载在所述DCI中的信息,确定所述上行多址接入方式。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括DMRS配置指示信息,其中,在所述网络设备向所述终端设备发送承载在所述DCI中的信息之前,所述方法还包括:所述网络设备对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码,得到所述DMRS配置指示信息。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括被关闭码字的新数据指示NDI比特的值。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括被关闭码字的调制编码方式MCS指示信息。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括秩指示RI指示信息,其中,在所述网络设备向所述终端设备发送承载在所述DCI中的信息之前,所述方法还包括:所述网络设备对RI的值与所述上行多址接入方式的信息进行联合编码,得到所述RI指示信息。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括填充比特的值的值。
- 根据权利要求19所述的方法,其特征在于,承载在所述DCI中的信息包括物理资源配置方式指示信息。
- 根据权利要求17或18所述的方法,其特征在于,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数大于1时,确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
- 根据权利要求17或18所述的方法,其特征在于,所述传输信息包括所述终端设备的物理资源配置方式,以使得所述终端设备根据所述物理资源配置信息,以及物理资源配置方式与上行多址接入方式的对应关系,确定 所述上行多址接入方式。
- 根据权利要求17至27中任一项所述的方法,其特征在于,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
- 根据权利要求17至28中任一项所述的方法,其特征在于,所述网络设备接收所述终端设备根据所述上行多址接入方式传输的所述上行数据,包括:所述网络设备接收所述终端设备采用目标上行数据信道结构传输的所述上行数据,所述目标上行数据信道结构为所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系确定的。
- 根据权利要求29所述的方法,其特征在于,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
- 一种终端设备,其特征在于,所述终端设备包括:接收单元,用于接收网络设备发送的承载在下行控制信息DCI中的参数指示信息;确定单元,用于根据所述接收单元接收的所述参数指示信息,确定所述终端设备的传输信息,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;所述确定单元还用于,根据所述确定单元确定的所述传输信息,确定所述终端设备的上行多址接入方式;发送单元,用于根据所述确定单元确定的所述上行多址接入方式,传输所述上行数据。
- 根据权利要求31所述的终端设备,其特征在于,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
- 根据权利要求31或32所述的终端设备,其特征在于,所述传输信息包括所述终端设备的传输层数,其中,所述确定单元具体用于:若确定所述传输层数为1,则根据承载在所述DCI中的信息,确定所述终端设备的上行多址接入方式。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的DMRS配置指示信息,确定所述上行多址接入方式,所述DMRS配置指示信息是对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码得到的。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的被关闭码字的新数据指示NDI比特的值,确定所述上行多址接入方式。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的被关闭码字的调制编码方式MCS指示信息,确定所述上行多址接入方式。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的秩指示RI指示信息,确定所述上行多址接入方式,所述RI指示信息是对RI的值与所述上行多址接入方式的信息进行联合编码得到的。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的填充比特的值,确定所述上行多址接入方式。
- 根据权利要求33所述的终端设备,其特征在于,所述确定单元具体用于:根据承载在所述DCI中的物理资源配置方式指示信息,确定所述上行多址接入方式。
- 根据权利要求31或32所述的终端设备,其特征在于,所述传输信息包括所述终端设备的传输层数,其中,所述确定单元具体用于:若确定所述传输层数大于1,则确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
- 根据权利要求31或32所述的终端设备,其特征在于,所述传输信息包括所述终端设备的物理资源配置方式,其中,所述确定单元具体用于:根据所述物理资源配置方式,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
- 根据权利要求31至41中任一项所述的终端设备,其特征在于,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
- 根据权利要求31至42中任一项所述的终端设备,其特征在于,所述发送单元具体用于:若确定所述上行多址接入方式为DFT-S-OFDM或SC-FDMA,则对所述上行数据进行离散傅里叶变换DFT,并在上行数据信道中传输经过所述DFT的所述上行数据。
- 根据权利要求31至42中任一项所述的终端设备,其特征在于,所述发送单元具体用于:若确定所述上行多址接入方式为CP-OFDM或OFDMA,则对所述上行数据进行DFT,并在上行数据信道中传输未经过所述DFT的所述上行数据。
- 根据权利要求31至44中任一项所述的终端设备,其特征在于,所述发送单元具体用于:根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系,确定目标上行数据信道结构;采用所述目标上行数据信道结构,传输所述上行数据。
- 根据权利要求45所述的终端设备,其特征在于,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
- 一种网络设备,其特征在于,包括:确定单元,用于确定承载在下行控制信息DCI中的参数指示信息;发送单元,用于向所述终端设备发送所述确定单元确定的所述参数指示信息,所述参数指示信息用于所述终端设备确定所述终端设备的传输信息,以使得所述终端设备根据所述传输信息确定所述终端设备的上行多址接入方式,所述传输信息包括所述终端设备的传输层数和/或物理资源配置方式;接收单元,用于接收所述终端设备根据所述上行多址接入方式传输的所述上行数据。
- 根据权利要求47所述的网络设备,其特征在于,所述参数指示信息包括以下信息中的至少一种:传输层数指示信息、物理资源配置方式指示信息、解调参考信号DMRS端口指示信息、预编码矩阵PMI指示信息和码字指示信息。
- 根据权利要求47或48所述的网络设备,其特征在于,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数为1时,根据承载在所述DCI中的信息,确定所述上行多址接入方式。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括DMRS配置指示信息,所述网络设备还包括处理单元,其中,在所述发送单元向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对DMRS配置的信息与所述上行多址接入方式的信息进行联合编码,得到所述DMRS配置指示信息。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括被关闭码字的新数据指示NDI比特的值。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括被关闭码字的调制编码方式MCS指示信息。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括秩指示RI指示信息,所述网络设备还包括处理单元,其中,在所述发送单元向所述终端设备发送承载在所述DCI中的信息之前,所述处理单元用于:对RI的值与所述上行多址接入方式的信息进行联合编码,得到所述RI指示信息。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括填充比特的值的值。
- 根据权利要求49所述的网络设备,其特征在于,承载在所述DCI中的信息包括物理资源配置方式指示信息。
- 根据权利要求47或48所述的网络设备,其特征在于,所述传输信息包括所述终端设备的传输层数,以使得所述终端设备在确定所述传输层数大于1时,确定所述上行多址接入方式为与所述网络设备预先约定好的上行多址方式。
- 根据权利要求47或48所述的网络设备,其特征在于,所述传输信息包括所述终端设备的物理资源配置方式,以使得所述终端设备根据所述物理资源配置信息,以及物理资源配置方式与上行多址接入方式的对应关系,确定所述上行多址接入方式。
- 根据权利要求47至57中任一项所述的网络设备,其特征在于,所述上行多址接入方式包括以下中的任意一种:离散傅里叶变换扩频的正交频分复用DFT-S-OFDM、循环前缀正交频分复用CP-OFDM、单载波频分多址接入SC-FDMA和正交频分多址接入OFDMA。
- 根据权利要求47至58中任一项所述的网络设备,其特征在于,所述接收单元具体用于:接收所述终端设备采用目标上行数据信道结构传输的所述上行数据,所述目标上行数据信道结构为所述终端设备根据所述上行多址接入方式,以及上行多址接入方式与上行数据信道结构的对应关系确定的。
- 根据权利要求59所述的网络设备,其特征在于,所述上行数据信道结构包括以下中的至少一种:上行数据信道的解调参考信号DMRS的资源位置、上行数据信道的DMRS序列、上行数据信道携带的上行数据的传输方式、上行数据信道占用的时域资源和上行数据信道占用的频域资源。
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680088935.7A CN109644172A (zh) | 2016-11-09 | 2016-11-09 | 传输上行数据的方法、终端设备和网络设备 |
PCT/CN2016/105241 WO2018086016A1 (zh) | 2016-11-09 | 2016-11-09 | 传输上行数据的方法、终端设备和网络设备 |
AU2016429280A AU2016429280B2 (en) | 2016-11-09 | 2016-11-16 | Uplink data transmission method, terminal device, and network device |
KR1020197014451A KR20190073458A (ko) | 2016-11-09 | 2016-11-16 | 업링크 데이터 전송 방법, 단말 기기 및 네트워크 기기 |
RU2019117954A RU2727173C1 (ru) | 2016-11-09 | 2016-11-16 | Способ передачи данных восходящего канала, оконечное устройство и сетевое устройство |
MX2019005424A MX2019005424A (es) | 2016-11-09 | 2016-11-16 | Metodo de transmision de datos de enlace ascendente, dispositivo terminal y dispositivo de red. |
CN201680090705.4A CN109923907B (zh) | 2016-11-09 | 2016-11-16 | 传输上行数据的方法、终端设备和网络设备 |
US16/348,760 US20200059905A1 (en) | 2016-11-09 | 2016-11-16 | Uplink data transmission method, terminal device, and network device |
PCT/CN2016/106155 WO2018086147A1 (zh) | 2016-11-09 | 2016-11-16 | 传输上行数据的方法、终端设备和网络设备 |
JP2019522781A JP6932776B2 (ja) | 2016-11-09 | 2016-11-16 | アップリンクデータを伝送するための方法、端末装置とネットワーク装置 |
EP16921148.9A EP3531755B1 (en) | 2016-11-09 | 2016-11-16 | Uplink data transmission method, terminal device, and network device |
BR112019009100-9A BR112019009100B1 (pt) | 2016-11-09 | 2016-11-16 | Método de transmissão de dados de link superior, dispositivo terminal e dispositivo de rede |
CA3043119A CA3043119C (en) | 2016-11-09 | 2016-11-16 | Uplink data transmission method, terminal device, and network device |
TW106138054A TWI769186B (zh) | 2016-11-09 | 2017-11-03 | 傳輸上行資料的方法、終端設備和網路設備 |
IL266341A IL266341B (en) | 2016-11-09 | 2019-04-30 | A method of transmitting data to a satellite, terminal device and network device |
PH12019501020A PH12019501020A1 (en) | 2016-11-09 | 2019-05-08 | Uplink data transmission method, terminal device, and network device |
CL2019001281A CL2019001281A1 (es) | 2016-11-09 | 2019-05-09 | Método de transmisión de datos de enlace ascendente, dispositivo terminal y dispositivo de red. |
ZA2019/03276A ZA201903276B (en) | 2016-11-09 | 2019-05-23 | Uplink data transmission method, terminal device, and network device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/105241 WO2018086016A1 (zh) | 2016-11-09 | 2016-11-09 | 传输上行数据的方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018086016A1 true WO2018086016A1 (zh) | 2018-05-17 |
Family
ID=62109073
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/105241 WO2018086016A1 (zh) | 2016-11-09 | 2016-11-09 | 传输上行数据的方法、终端设备和网络设备 |
PCT/CN2016/106155 WO2018086147A1 (zh) | 2016-11-09 | 2016-11-16 | 传输上行数据的方法、终端设备和网络设备 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106155 WO2018086147A1 (zh) | 2016-11-09 | 2016-11-16 | 传输上行数据的方法、终端设备和网络设备 |
Country Status (16)
Country | Link |
---|---|
US (1) | US20200059905A1 (zh) |
EP (1) | EP3531755B1 (zh) |
JP (1) | JP6932776B2 (zh) |
KR (1) | KR20190073458A (zh) |
CN (2) | CN109644172A (zh) |
AU (1) | AU2016429280B2 (zh) |
BR (1) | BR112019009100B1 (zh) |
CA (1) | CA3043119C (zh) |
CL (1) | CL2019001281A1 (zh) |
IL (1) | IL266341B (zh) |
MX (1) | MX2019005424A (zh) |
PH (1) | PH12019501020A1 (zh) |
RU (1) | RU2727173C1 (zh) |
TW (1) | TWI769186B (zh) |
WO (2) | WO2018086016A1 (zh) |
ZA (1) | ZA201903276B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024026859A1 (zh) * | 2022-08-05 | 2024-02-08 | 富士通株式会社 | 上行数据发送、上行数据接收装置以及方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6961691B2 (ja) | 2016-11-03 | 2021-11-05 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | アップリンク信号の伝送方法及び装置 |
CN108631923B (zh) * | 2017-03-24 | 2020-11-17 | 华为技术有限公司 | 传输信息的方法、网络设备和终端设备 |
CN108811107B (zh) * | 2017-05-04 | 2024-09-20 | 华为技术有限公司 | 通信方法、终端设备和网络设备 |
CN108811149B (zh) * | 2017-05-05 | 2023-02-03 | 华为技术有限公司 | 一种获取控制信息的方法及装置 |
CN111465110B (zh) * | 2017-08-10 | 2021-09-21 | Oppo广东移动通信有限公司 | 传输数据的方法和终端设备 |
US11218350B2 (en) * | 2017-10-09 | 2022-01-04 | Qualcomm Incorporated | Downlink demodulation reference signal sharing for short transmission time intervals |
KR20220028060A (ko) | 2019-07-04 | 2022-03-08 | 지티이 코포레이션 | 무선 통신의 업링크 송신 |
JP7388538B2 (ja) * | 2019-07-25 | 2023-11-29 | 日本電気株式会社 | 通信方法、端末装置及びネットワーク装置 |
KR20210092593A (ko) | 2020-01-16 | 2021-07-26 | 삼성전자주식회사 | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 장치 |
US11088741B1 (en) * | 2020-05-13 | 2021-08-10 | Charter Communicatons Operating, LLC | Apparatus and methods for uplink MIMO enhancement in wireless systems |
CN117675478A (zh) * | 2022-08-30 | 2024-03-08 | 北京紫光展锐通信技术有限公司 | 一种波形配置方法、芯片和电子设备 |
WO2024071785A1 (ko) * | 2022-09-26 | 2024-04-04 | 엘지전자 주식회사 | 무선 통신 시스템에서 동적인 웨이브폼 스위칭을 수행하기 위한 장치 및 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101820406A (zh) * | 2009-02-27 | 2010-09-01 | 中兴通讯股份有限公司 | 上行链路信息的发送、接收方法及发送、接收端 |
WO2010124252A2 (en) * | 2009-04-23 | 2010-10-28 | Qualcomm Incorporated | Rank and precoding indication for mimo operation |
CN102859896A (zh) * | 2010-02-23 | 2013-01-02 | Lg电子株式会社 | 在支持上行链路多天线传输的无线通信系统中提供用于上行链路传输的控制信息的方法和设备 |
CN102239733B (zh) * | 2008-12-08 | 2016-04-20 | 夏普株式会社 | 用于上行链路功率控制的系统和方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8811353B2 (en) * | 2008-04-22 | 2014-08-19 | Texas Instruments Incorporated | Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO) |
WO2010008180A2 (ko) * | 2008-07-14 | 2010-01-21 | 엘지전자 주식회사 | 상향링크 다중 접속 전송 모드를 지원하는 시스템에서 상향링크 전송 제어 방법 |
US8509161B2 (en) * | 2008-08-11 | 2013-08-13 | Sharp Kabushiki Kaisha | Systems and methods for OFDMA and SC-FDMA switching |
JP5556820B2 (ja) * | 2008-12-22 | 2014-07-23 | 日本電気株式会社 | 通信システム、端末、基地局、送信電力決定方法、及びプログラム |
US8379536B2 (en) * | 2009-10-08 | 2013-02-19 | Qualcomm Incorporated | Downlink control information for efficient decoding |
KR101829838B1 (ko) * | 2010-05-26 | 2018-02-19 | 엘지전자 주식회사 | 상향링크 다중 안테나 전송을 위한 제어 정보 송수신 방법 및 장치 |
WO2012049804A1 (ja) * | 2010-10-12 | 2012-04-19 | パナソニック株式会社 | 通信装置及び通信方法 |
US9544892B2 (en) * | 2013-09-27 | 2017-01-10 | Apple Inc. | System and method for searching for a control channel |
CN107852319B (zh) * | 2015-04-22 | 2020-12-29 | 苹果公司 | 用于无线接入技术的传输设计 |
TW201737650A (zh) * | 2016-02-03 | 2017-10-16 | 內數位專利控股公司 | 副框及混合自動重複請求(harq)反饋排程方法、系統及裝置 |
US10517078B2 (en) * | 2016-07-01 | 2019-12-24 | Lg Electronics Inc. | Method for transmitting/receiving uplink signal between base station and terminal in wireless communication system, and device for supporting same |
-
2016
- 2016-11-09 WO PCT/CN2016/105241 patent/WO2018086016A1/zh active Application Filing
- 2016-11-09 CN CN201680088935.7A patent/CN109644172A/zh active Pending
- 2016-11-16 CN CN201680090705.4A patent/CN109923907B/zh active Active
- 2016-11-16 BR BR112019009100-9A patent/BR112019009100B1/pt active IP Right Grant
- 2016-11-16 JP JP2019522781A patent/JP6932776B2/ja active Active
- 2016-11-16 AU AU2016429280A patent/AU2016429280B2/en active Active
- 2016-11-16 RU RU2019117954A patent/RU2727173C1/ru active
- 2016-11-16 KR KR1020197014451A patent/KR20190073458A/ko not_active Application Discontinuation
- 2016-11-16 CA CA3043119A patent/CA3043119C/en active Active
- 2016-11-16 US US16/348,760 patent/US20200059905A1/en not_active Abandoned
- 2016-11-16 EP EP16921148.9A patent/EP3531755B1/en active Active
- 2016-11-16 MX MX2019005424A patent/MX2019005424A/es unknown
- 2016-11-16 WO PCT/CN2016/106155 patent/WO2018086147A1/zh active Application Filing
-
2017
- 2017-11-03 TW TW106138054A patent/TWI769186B/zh active
-
2019
- 2019-04-30 IL IL266341A patent/IL266341B/en unknown
- 2019-05-08 PH PH12019501020A patent/PH12019501020A1/en unknown
- 2019-05-09 CL CL2019001281A patent/CL2019001281A1/es unknown
- 2019-05-23 ZA ZA2019/03276A patent/ZA201903276B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102239733B (zh) * | 2008-12-08 | 2016-04-20 | 夏普株式会社 | 用于上行链路功率控制的系统和方法 |
CN101820406A (zh) * | 2009-02-27 | 2010-09-01 | 中兴通讯股份有限公司 | 上行链路信息的发送、接收方法及发送、接收端 |
WO2010124252A2 (en) * | 2009-04-23 | 2010-10-28 | Qualcomm Incorporated | Rank and precoding indication for mimo operation |
CN102859896A (zh) * | 2010-02-23 | 2013-01-02 | Lg电子株式会社 | 在支持上行链路多天线传输的无线通信系统中提供用于上行链路传输的控制信息的方法和设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024026859A1 (zh) * | 2022-08-05 | 2024-02-08 | 富士通株式会社 | 上行数据发送、上行数据接收装置以及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109923907B (zh) | 2022-09-06 |
TWI769186B (zh) | 2022-07-01 |
JP2020502875A (ja) | 2020-01-23 |
PH12019501020A1 (en) | 2020-01-20 |
MX2019005424A (es) | 2019-07-10 |
RU2727173C1 (ru) | 2020-07-21 |
ZA201903276B (en) | 2020-02-26 |
CN109923907A (zh) | 2019-06-21 |
CN109644172A (zh) | 2019-04-16 |
CA3043119A1 (en) | 2018-05-17 |
IL266341B (en) | 2022-04-01 |
IL266341A (en) | 2019-06-30 |
BR112019009100B1 (pt) | 2024-01-02 |
CL2019001281A1 (es) | 2019-07-26 |
EP3531755B1 (en) | 2021-09-01 |
JP6932776B2 (ja) | 2021-09-08 |
AU2016429280B2 (en) | 2022-01-27 |
KR20190073458A (ko) | 2019-06-26 |
EP3531755A4 (en) | 2019-09-18 |
CA3043119C (en) | 2022-07-12 |
AU2016429280A1 (en) | 2019-05-30 |
WO2018086147A1 (zh) | 2018-05-17 |
US20200059905A1 (en) | 2020-02-20 |
TW201818753A (zh) | 2018-05-16 |
BR112019009100A2 (pt) | 2019-07-16 |
EP3531755A1 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018086016A1 (zh) | 传输上行数据的方法、终端设备和网络设备 | |
US10764884B2 (en) | Method for sending or receiving physical downlink control channel and device | |
EP3934356B1 (en) | Data transmission method, terminal device, and network device | |
AU2016414454B2 (en) | Method and terminal device for transmitting data | |
TWI775790B (zh) | 傳輸數據的方法、終端設備和網絡設備 | |
WO2018126872A1 (zh) | 请求资源的方法和装置 | |
WO2019080107A1 (zh) | 传输物理上行控制信道pucch的方法、终端设备和网络设备 | |
WO2018081989A1 (zh) | 传输上行控制信息的方法、终端设备和网络设备 | |
TWI734805B (zh) | 傳輸數據的方法和設備 | |
EP3637892B1 (en) | Data transmission method, terminal device, and network device | |
WO2019084733A1 (zh) | 用于传输信号的方法、网络设备和终端设备 | |
CN111525991B (zh) | 无线通信方法和设备 | |
WO2016138633A1 (zh) | 用于调度终端设备的方法和网络设备 | |
EP3595224B1 (en) | Information transmission method, terminal device and network device | |
US20190261334A1 (en) | Transmission control method, apparatus, and system, and storage medium | |
CN111556529A (zh) | 一种被用于无线通信的用户设备、基站中的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16921064 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16921064 Country of ref document: EP Kind code of ref document: A1 |