WO2018083806A1 - Control apparatus, control system and control method - Google Patents
Control apparatus, control system and control method Download PDFInfo
- Publication number
- WO2018083806A1 WO2018083806A1 PCT/JP2016/083003 JP2016083003W WO2018083806A1 WO 2018083806 A1 WO2018083806 A1 WO 2018083806A1 JP 2016083003 W JP2016083003 W JP 2016083003W WO 2018083806 A1 WO2018083806 A1 WO 2018083806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- time
- date
- control device
- connection
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 46
- 230000007958 sleep Effects 0.000 claims abstract description 105
- 238000004891 communication Methods 0.000 claims abstract description 92
- 238000012545 processing Methods 0.000 claims description 84
- 238000003860 storage Methods 0.000 claims description 62
- 230000007613 environmental effect Effects 0.000 claims description 36
- 238000010248 power generation Methods 0.000 claims description 34
- 230000004913 activation Effects 0.000 claims description 28
- 230000001413 cellular effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 39
- 238000010586 diagram Methods 0.000 description 18
- 238000003306 harvesting Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 230000007717 exclusion Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000010365 information processing Effects 0.000 description 8
- 239000000284 extract Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000006424 Flood reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
- H04W84/22—Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a control device, a control system, and a control method.
- WSNS Wireless Sensor Network System
- nodes sensor nodes
- sensing targets such as cliffs, roads, buildings, etc.
- the observation device in the WSNS collects the state detected by each node, and recognizes the state of the sensing target based on the collection result.
- each node when each node performs environmental power generation using solar cells, the amount of power stored in the secondary battery of each node changes according to the environment such as the weather. For this reason, each node performs the operation
- the secondary battery of the node may become empty due to natural discharge or a leakage current of the power supply circuit.
- Such a node is activated when the power storage environment is ready, and attempts to connect to surrounding nodes. Each node also consumes power during this connection attempt, so the secondary battery of the node runs out at night, and connection attempts cannot be made at night or on bad days.
- An object of one aspect is to provide a control device or the like that can efficiently perform connection setting between nodes.
- the control device includes a communication unit, a determination unit, and a sleep instruction unit.
- the communication unit receives information from the first node using multi-hop communication between a plurality of nodes including a connected first node and an unconnected second node.
- the determination unit includes: a remaining battery level of the first node; a communication quality between the first node and the second node; a power characteristic of the second node; and the second node.
- the sleep instruction unit instructs the first node to place the first node in a sleep state until the acceptance date and time.
- connection settings between nodes can be performed efficiently.
- FIG. 1 is an explanatory diagram illustrating an example of a control system according to this embodiment.
- FIG. 2 is a diagram illustrating an example of a node.
- FIG. 3 is a diagram illustrating an example of the control device.
- FIG. 4 is a block diagram illustrating a functional configuration example of a node.
- FIG. 5 is a block diagram illustrating a functional configuration example of the control device.
- FIG. 6 is a flowchart illustrating an example of a processing operation when the node is activated.
- FIG. 7 is a flowchart illustrating an example of the processing operation in the reception standby state of the node.
- FIG. 8 is a flowchart illustrating an example of a processing operation in a standby state of the control device.
- FIG. 1 is an explanatory diagram illustrating an example of a control system according to this embodiment.
- FIG. 2 is a diagram illustrating an example of a node.
- FIG. 3 is a diagram illustrating an example of the control
- FIG. 9 is a diagram illustrating a configuration example of unconnected node information.
- FIG. 10 is a diagram illustrating a configuration example of connection node information.
- FIG. 11 is a flowchart illustrating an example of the update processing operation of the control device.
- FIG. 12 is a diagram illustrating a configuration example of environment information.
- FIG. 13 is a diagram for explaining an example of a route selection method.
- FIG. 14 is a flowchart illustrating an example of the sleep processing operation of the control device.
- FIG. 15 is a flowchart illustrating an example of a post-acceptance processing operation of the control device.
- FIG. 1 is an explanatory diagram showing an example of the control system 1 of the present embodiment.
- a control system 1 shown in FIG. 1 is a sensor system that collects information measured using a sensor via a network.
- the control system 1 is composed of, for example, a WSNS (Wireless Sensor Network System), and includes a plurality of nodes 2, a gateway (GW) 3, and the Internet 4.
- Node 2 and GW 3 are connected by a multi-hop wireless network using multi-hop communication (also called ad hoc communication).
- the GW 3 of the control system 1 collects information measured by each node 2.
- Node 2 which is a sensor node, is dispersed and arranged on a sensing target such as a cliff, a road, or a structure, and detects the state of the sensing target.
- the node 2 wirelessly communicates with other nodes 2 in the control system 1 using multi-hop communication.
- Each node 2 has, for example, a parent-child connection relationship and wirelessly communicates with other nodes 2 in a predetermined area by multi-hop communication.
- a parent node on the upper side and a child node on the lower side are connected to a tree structure.
- the GW 3 is a communication device that is connected to the node 2 for communication, and is an example of a control device 300 described later.
- the GW 3 connects to the node 2 using multi-hop communication.
- the GW 3 is directly connected to the node 2 in the predetermined area, and is connected to the other nodes 2 via one or more nodes 2.
- the GW 3 is connected to the Internet 4 via a wired or cellular phone network.
- the GW 3 acquires environment information 5 indicating information regarding the environment of the place where the node 2 is located using the Internet 4, and controls the node 2 using the acquired environment information 5.
- the GW 3 controls the operation state of the node 2 using the state and characteristics of the node 2. For example, the GW 3 changes the node 2 to a sleep state or a normal operation state.
- the GW 3 controls the operation state of the node 2 by transmitting the sleep date and time and the start date and time to the node 2.
- the GW 3 collects information acquired by the node 2 using a sensor or the like via multi-hop communication between the nodes 2, and transmits the collected data to a server or the like via the Internet 4.
- node 2 of “E” and “F” when the node 2 of “E” and “F” is a child node, the node 2 of “D” is the parent node of “E” and “F”, and “D” If node 2 is a child node, node 2 of “A” is the parent node of “D”. Further, for example, when “G” and “H” node 2 are child nodes, “C” node 2 is “G” and “H” parent node, and “C” node 2 is a child node. In this case, the node 2 of “A” is set as the parent node of “C”.
- the node 2 of “I” and “J” is a child node
- the node 2 of “B” is the parent node of “I” and “J”.
- the GW 3 is wirelessly connected to the nodes 2 of “A” and “B”. Further, the GW 3 is connected to the Internet 4 for communication.
- the GW 3 may be connected to a communication line other than the Internet 4.
- FIG. 2 is a diagram illustrating an example of the node 2.
- FIG. 2 shows a hardware configuration example of the node 2.
- the node 2 includes an information processing unit 20, an energy harvesting element 21, a power supply control unit 22, and a secondary battery 23.
- the information processing unit 20 includes an MCU (Micro Controller Unit) 24, a RAM (Random Access Memory) 25, a ROM (Read Only Memory) 26, a sensor 27, and a wireless unit 28.
- MCU Micro Controller Unit
- RAM Random Access Memory
- ROM Read Only Memory
- the power supply control unit 22 is connected to the information processing unit 20, the energy harvesting element 21, and the secondary battery 23.
- the MCU 24, the RAM 25, the ROM 26, the sensor 27, and the wireless unit 28 are connected by a bus or the like.
- the environmental power generation element 21 is, for example, a power generation element such as a vibration power generation element, a photovoltaic power generation element, a temperature power generation element, or a radio wave power generation element.
- a power generation element such as a solar battery
- the environmental power generation element 21 generates power using sunlight.
- the environmental power generation element 21 sends the generated power to the power supply control unit 22.
- the energy harvesting element 21 is also called an energy harvesting element.
- the secondary battery 23 is, for example, a battery that stores electric power generated by the energy harvesting element 21.
- the secondary battery 23 may be charged with electric power instead of storing electric power.
- the power supply control unit 22 controls the energy harvesting element 21 and the secondary battery 23.
- the power supply control unit 22 controls the storage and discharge of electric power.
- the power supply control unit 22 sends the power generated by the energy harvesting element 21 to the information processing unit 20 or stores it in the secondary battery 23.
- the power supply control unit 22 sends the power stored in the secondary battery 23 to the information processing unit 20.
- the RAM 25 of the power supply control unit 22 stores data used by the MCU 24.
- the RAM 25 of this embodiment stores information sent from the GW 3 and information acquired by the node 2. Specifically, the RAM 25 stores, as information sent from the GW 3, a standby time or activation time designated by the GW 3. Further, the RAM 25 stores, as information acquired by the node 2, an LQI (radio wave communication quality: Link Quality Indicator) indicating the received radio wave intensity of the received data and a storage amount that is a remaining battery level.
- the RAM 25 stores the LQI of received data for each ID for identifying the node 2 that is the data transmission source.
- the ROM 26 stores a program used by MCU 24.
- the ROM 26 has a parent node table and a child node table.
- the parent node table is an area for storing an ID for identifying a parent node, for example, a MAC address, as a parent node of the own node 2.
- the child node table is an area for storing an ID for identifying a child node, for example, a MAC address, as a child node of the own node 2.
- Sensor 27 is an element that detects the state of the sensing target. For example, the sensor 27 detects landslides and floods. The sensor 27 sends the detected information to the MCU 24.
- the wireless unit 28 is a part that performs wireless communication with another node 2 or GW 3 existing within a predetermined wireless range by multi-hop communication.
- the radio unit 28 performs radio communication with, for example, a parent node on the upstream side of the own node 2 and a child node on the downstream side of the own node 2.
- the MCU 24 operates as a microcontroller, and drives the RAM 25, the ROM 26, the sensor 27, and the wireless unit 28.
- the MCU 24 reads a program stored in the ROM 26 and performs various processes based on the read program.
- the MCU 24 is activated when the remaining battery level, which is the amount of stored electricity, exceeds a predetermined amount. Further, the MCU 24 controls a start process, a standby process, and the like according to an instruction from the GW 3. Further, the MCU 24 measures LQI, the remaining battery level, and the like, and transmits the measurement result from the wireless unit 28 to the other node 2 or GW 3.
- the MCU 24 transmits information detected by the sensor 27 from the wireless unit 28 to the GW 3 side that is the upstream side of communication. As a result, the information detected by the sensor 27 is sent to the GW 3 via one or more nodes 2 or directly.
- the node 2 of this embodiment extends the standby time by waiting outside the time period during which connection processing is performed. In other words, the node 2 of this embodiment is activated when performing the connection process, thereby shortening the activation time.
- FIG. 3 is a diagram illustrating an example of the control device 300.
- a control device 300 such as a sensor control device has the same configuration as a general PC (Personal Computer) except that a wireless unit 35 that is a short-range wireless communication module is mounted.
- the control device 300 includes a CPU (Central Processing Unit) 31, a RAM 32, an HDD (Hard Disk Drive) 33, a communication adapter 34, and a wireless unit 35.
- the CPU 31, RAM 32, HDD 33, communication adapter 34, and wireless unit 35 are connected by a bus or the like. Power is supplied to the control device 300 from the outside by wire.
- the control device 300 is realized by causing the CPU 31 to execute a program prepared in advance.
- the HDD 33 is an example of a computer-readable recording medium.
- Various programs are stored in the HDD 33 in advance.
- the HDD 33 stores a connection processing program, a connection processing program, a determination program, a sleep instruction program, an acceptance processing program, and the like.
- Each program may be recorded in a memory (not shown) which is an example of a computer-readable recording medium instead of the HDD 33.
- the recording medium for example, a portable recording medium such as a CD-ROM, a DVD disk, or a USB memory, or a semiconductor memory such as a flash memory may be used.
- the HDD 33 of this embodiment stores information sent from the node 2 and information acquired by the control device 300. Specifically, the HDD 33 stores unconnected node information 335A, connected node information 335B, which will be described later, and the like.
- the CPU 31 reads out various programs stored in the HDD 33 and performs various processes based on the read out various programs.
- the CPU 31 reads each program from the HDD 33 and functions on the RAM 32 as a process.
- the RAM 32 stores data used by the CPU 31.
- the communication adapter 34 is connected to the Internet 4 and uses the Internet 4 to acquire the environment information 5 of the location where the node 2 is arranged.
- the environment information 5 acquired by the communication adapter 34 is stored in the HDD 33 by the CPU 31. Further, the communication adapter 34 transmits information collected by the node 2 (whether or not landslide or flood has occurred) to an external device such as a server using the Internet 4.
- the wireless unit 35 is a communication interface that collects information from the node 2 using multi-hop communication between the plurality of nodes 2.
- FIG. 4 is a block diagram illustrating a functional configuration example of the node 2.
- the node 2 includes an information processing unit 20, an energy harvesting element 21, a power supply control unit 22, and a secondary battery 23.
- the information processing unit 20 includes a control unit 210, a communication unit 220, a storage unit 230, and a sensor 27.
- the communication unit 220 has the function of the wireless unit 28, the control unit 210 has the function of the MCU 24, and the storage unit 230 has the functions of the RAM 25 and the ROM 26.
- the communication unit 220 is a communication interface that communicates with the node 2 and the control device 300.
- the storage unit 230 includes a parent node table 230A, a child node table 230B, and an LQI table 230C.
- the parent node table 230A is an area for storing, for example, an ID for identifying a parent node viewed from the own node 2 and a MAC address in association with each other.
- the child node table 230B is an area for storing, for example, an ID for identifying a child node viewed from the own node 2 and a MAC address in association with each other.
- the LQI table 230C is an area for storing the LQI of received data for each ID for identifying the node 2 that is the data transmission source.
- the control unit 210 reads a program stored in the storage unit 230 and executes various processes based on the read program.
- the control unit 210 includes a calculation unit 210A, an addition unit 210B, and an instruction unit 210C.
- the instruction unit 210C generates instruction information and sends the generated instruction information to the communication unit 220. Thereby, the instruction unit 210C gives various instructions to the external apparatus connected to the communication unit 220. For example, the instruction unit 210C instructs the communication unit 220 to transmit data to the control device 300. In addition, the instruction unit 210C instructs the communication unit 220 to transmit a connection request to the parent node 2 when the node 2 is activated. When the instruction unit 210C receives a connection request from the child node 2, the instruction unit 210C instructs the communication unit 220 to transmit a response to the child node 2. In addition, when the connection process with the parent node 2 is successful, the instruction unit 210C instructs the communication unit 220 to transmit a connection completion notification. In addition, the instruction unit 210C instructs the components in the node 2 to change to the power failure power mode, to change to the normal operation mode, to stop the wireless module, to start the wireless module, and the like.
- FIG. 5 is a block diagram illustrating a functional configuration example of the control device 300.
- the control device 300 includes a control unit 310, a communication unit 320, and a storage unit 330.
- the communication unit 320 has functions of the wireless unit 35 and the communication adapter 34.
- the control unit 310 has the function of the CPU 31.
- the storage unit 330 has the functions of the RAM 32 and the HDD 33.
- the communication unit 320 is a communication interface that communicates with the node 2 and external devices.
- the storage unit 330 includes an unconnected node information storage unit 330A, a connection node information storage unit 330B, a node state storage unit 330C, and an environment information storage unit 330D.
- the unconnected node information storage unit 330A is an area for storing unconnected node information generated by the control unit 310.
- the connection node information storage unit 330B is an area for storing connection node information generated by the control unit 310.
- the node state storage unit 330C is an area for storing a connection state, an operation state, and the like of the node 2.
- the environment information storage unit 330 ⁇ / b> D stores the environment information 5 acquired by the communication unit 320 using the Internet 4.
- the environmental information 5 includes environmental performance information about the environment so far and environmental prediction information about the future environment.
- the environmental performance information and the environmental prediction information are, for example, the amount of sunlight, the temperature, the humidity, or the wind speed.
- the control unit 310 reads the program stored in the storage unit 330 and performs various processes based on the read program.
- the control unit 310 includes a connection processing unit 310A, a determination unit 310B, a sleep instruction unit 310C, and an acceptance processing unit 310D.
- the connection processing unit 310 ⁇ / b> A controls connection processing with the node 2.
- the determination unit 310 ⁇ / b> B updates information regarding the node 2 in the storage unit 330 and determines an acceptance date and time for accepting a connection from another node 2. For example, the determination unit 310B extracts the LQI and the remaining battery level from the data received from the node 2 through the communication unit 320, and updates the LQI and the remaining battery level stored in the storage unit 330.
- the sleep instruction unit 310C instructs the node 2 to place the node 2 in the sleep state until the reception date and time.
- the sleep instruction unit 310C according to the present embodiment sleeps until the expected start date and time for the node 2 selected as the path when it can be predicted that sufficient power has been accumulated for connection or relay in all the nodes 2 on the path. Let The sleep instruction unit 310C causes each node 2 to sleep again after the node 2 tries to accept the connection.
- the acceptance processing unit 310D sets the node 2 that is a connection acceptance target based on the timing at which the unconnected node 2 is activated.
- the node 2 may execute various processes using a microcomputer such as a CPU or MPU (Micro Processing Unit) instead of the MCU 24 or together with the MCU 24.
- the control device 300 may execute various processes using a microcomputer such as an MCU or MPU instead of the CPU 31 or together with the CPU 31.
- the node 2 starts when a certain amount of power is charged by the solar battery and tries to reconnect to the surrounding nodes 2. For example, in the daytime on a sunny day, the node 2 can try the connection, but the battery runs out at night, and the node 2 runs out at night or in bad weather. It is assumed that a connection attempt cannot be made.
- connection attempt If the connection attempt is started after the secondary battery 23 is fully charged, the connection attempt can be performed for a long time. However, if the capacity of the secondary battery 23 is larger than the power generation amount of the solar battery, it takes a very long time to charge. . Further, in the control system 1, connections are made in order from the node 2 close to the control device 300. For this reason, depending on conditions such as sunlight, when the network extends to the vicinity of the node 2 at the end, the node 2 at the end has exhausted the battery due to the connection attempt and may wait for a long time until the charging is completed again. There is also sex.
- the control device 300 of this embodiment determines the sleep period of the node 2.
- the control device 300 acquires environmental information 5 such as a weather forecast from the Internet 4 and predicts the date and time when the unconnected node 2 performs a connection attempt based on the weather forecast. Then, the control device 300 controls the sleep of the node 2 so that another connected node 2 occurs in accordance with the predicted date and time. Thereby, it can be expected that the unconnected node 2 can be collected while charging the secondary battery 23. It should be noted that the node 2 starts a connection attempt when the power recovers even a little, and immediately after the connection, the node 2 sleeps from the control device 300 so that it can be controlled from the control device 300 while being charged.
- environmental information 5 such as a weather forecast from the Internet 4 and predicts the date and time when the unconnected node 2 performs a connection attempt based on the weather forecast. Then, the control device 300 controls the sleep of the node 2 so that another connected node 2 occurs in accordance with the predicted date and time. Thereby, it can be expected that the unconnected node 2 can be collected while charging the
- the connection setting between the nodes 2 can be performed efficiently.
- the node 2 goes to a sleep state at an appropriate timing not only for the sensing operation but also for the communication relay operation, it is possible to efficiently use power even when a plurality of nodes 2 occur simultaneously. It becomes.
- the node 2 that starts and makes a connection request to the parent node or the control device 300 may be referred to as a node 2X or a child node 2X.
- a parent node that receives a connection request from the node 2X may be referred to as a node 2Y or a parent node 2Y. Therefore, in this embodiment, the node 2X is an unconnected child node, and this node 2X tries to connect to the parent node 2Y.
- the node 2Y is a connected parent node, and the node 2Y tries to accept a connection request from the child node 2X.
- a child node that transmits a connection request to the node 2X may be referred to as a node 2Z or a child node 2Z.
- FIG. 6 is a flowchart showing an example of processing operation when the node 2 is activated.
- the node 2X that is a wireless sensor node
- the power supply control unit 22 of the node 2X starts charging the secondary battery 23.
- the energy harvesting element 21 of the node 2X starts power feeding to the secondary battery 23 using sunlight or the like (step S11).
- the power control unit 22 of the node 2X starts supplying power to the control unit 210 that is the MCU 24 To do.
- the instruction unit 210C of the node 2X activates the communication unit 220, which is a wireless module (step S12), and causes the communication unit 220 to transmit a connection request to the network.
- the node 2X transmits a connection request to the network to the nearby node 2Y (step S13).
- the node 2Y to which the connection request to the network is transmitted is the node 2 arranged higher in the tree structure than the node 2X.
- the instruction unit 210C of the node 2X determines whether or not there is a response from the node 2Y (step S14). When there is no response (No at Step S14), the node 2X waits for a predetermined time (Step S15), and then transmits a connection request to the network to the nearby node 2Y (Step S13). As described above, when there is no response from the node 2Y, the connection request is retransmitted after waiting for a predetermined time.
- the node 2X repeats waiting for a certain period of time, sending a connection request, and determining whether or not there is a response until there is a response.
- the node 2X executes at least transmission of a connection request and determination of presence / absence of a response as processing of one cycle of the connection request.
- the power used for one cycle of the connection request exceeds the amount of energy generated by the environmental power generation, the amount of power stored in the secondary battery 23 gradually decreases.
- the power supply control unit 22 stops supplying power to the MCU 24, thereby stopping the operation of the MCU 24. Thereafter, when the capacity of the secondary battery 23 is restored by charging again, the MCU 24 is restarted by power feeding, whereby the processes of steps S11 to S15 are repeated.
- the instruction unit 210C of the node 2X causes the communication unit 220 to execute a connection process with the node 2Y (Step S16).
- the state in which the connection is accepted refers to a state in which, for example, the wireless module of the node 2Y is in a reception state, and as a result, a connection request from the node 2X can be received.
- the instruction unit 210C of the node 2X causes the communication unit 220 to transmit a connection notification to the GW 3 that is the control device 300 (step S17).
- the connection notification is a notification indicating that the network connection processing between the nodes 2X and 2Y has been established. Thereafter, the node 2X transitions to a reception standby state.
- FIG. 7 is a flowchart showing an example of the processing operation of the node 2 in the reception standby state.
- the node 2Y in the reception standby state receives the sleep instruction from the control device 300
- the node 2Y waits in the sleep state for the time specified by the sleep instruction.
- the instruction unit 210C of the node 2Y stops the communication unit 220 that is a wireless module (step S21).
- the instruction unit 210C of the node 2Y changes the operation mode of the control unit 210, which is the MCU 24, to a power failure power mode that operates with lower power than the normal operation mode (step S22).
- the power failure mode is an operation mode in which the MCU 24 is in a sleep state. In the sleep state, the communication unit 220 does not perform wireless transmission / reception processing, and the MCU 24 also stands by in a low power consumption state. Therefore, power consumption can be greatly reduced, and the secondary battery 23 can be dedicated to the recovery. On the other hand, in the sleep state, since the communication unit 220 of the node 2Y does not perform wireless transmission / reception, even if the nearby node 2X transmits a connection request, it cannot respond.
- the instruction unit 210C of the node 2Y waits until the designated time designated by the sleep instruction (step S23). When waiting for the designated time is completed, the instruction unit 210C of the node 2Y changes the operation mode of the control unit 210, which is the MCU 24, to a normal operation mode that operates with power larger than the power failure power mode (step S24). Further, the instruction unit 210C of the node 2Y activates the communication unit 220, which is a wireless module (step S25), and then enters a reception standby state.
- the instruction unit 210C of the node 2Y causes the communication unit 220 to transmit a connection response to the node 2X (step S26). Thereby, the network connection process between the nodes 2X and 2Y is established. Thereafter, the node 2Y enters a reception standby state.
- the instruction unit 210C of the node 2X causes the communication unit 220 to transmit a connection response to the node 2Z. Thereby, the network connection process between the nodes 2X and 2Z is established. Thereafter, the node 2X enters a reception standby state.
- the node 2Y in the reception standby state receives the state measurement instruction from the control device 300
- the node 2Y measures the data instructed by the state measurement instruction (step S27).
- the state measurement instruction from the control device 300 includes an instruction to measure the LQI of the node 2Y and an instruction to measure the remaining battery level of the node 2Y.
- the calculation unit 210A of the node 2Y calculates the LQI for each nearby node 2 as the state measurement. Further, the calculation unit 210A of the node 2Y calculates the remaining battery level of the node 2Y as the state measurement.
- the communication unit 220 transmits the calculated LQI and the remaining battery level to the control device 300 in accordance with an instruction from the instruction unit 210C.
- the communication unit 220 of the node 2Y transmits the LQI and the remaining battery level to the node 2Y that is the parent node or the control device 300. Thereby, the LQI and the remaining battery level are transmitted to the control device 300 directly or via one to a plurality of nodes 2 (step S28). Thereafter, the node 2Y enters a reception standby state.
- FIG. 8 is a flowchart showing an example of the processing operation of the control device 300 in the standby state.
- the control device 300 in the standby state when the communication unit 320 receives a connection request from the child node 2, the connection processing unit 310A transmits a connection response to the node 2 (step S31). And the control apparatus 300 will be in a standby state.
- control device 300 in the standby state since the control device 300 in the standby state is externally powered, it can always be in a reception state, that is, a state in which a connection request can be accepted. Therefore, the node 2 in the vicinity of the control device 300, that is, a place where direct communication is possible, can be connected to the control device 300 immediately after activation.
- the connection processing unit 310A connects the child node 2X that is the transmission source node. It is recorded as a state node (step S32).
- the control device 300 collects and records the current remaining battery level of the connected node 2 and the like.
- the connection processing unit 310A registers the entry of the child node 2X, the remaining battery level of the child node 2X, and the like in the connected node information 335B in the connection node information storage unit 330B.
- connection processing unit 310A deletes the entry of the child node 2X from the unconnected node information 335A in the unconnected node information storage unit 330A. Furthermore, the control device 300 transmits a sleep instruction up to the next update date and time to the child node 2X that is the transmission source node (step S33). And the control apparatus 300 will be in a standby state. Even when the node 2Z is a child node, the node 2Z performs the same processing as the node 2X.
- the determination unit 310B starts preparation for update processing of the unconnected node information 335A and the connected node information 335B immediately before the update date and time for updating the sleep state setting and the like.
- update processing is performed.
- the determination unit 310B may periodically set the update date and time for executing the update process at an arbitrary time interval such as 12 hours or 24 hours, or in the morning and noon in consideration of the characteristics of energy harvesting. It may be set at an arbitrary timing.
- FIG. 9 is a diagram illustrating a configuration example of the unconnected node information 335A.
- the unconnected node information 335A includes a node ID for identifying the node 2, an LQI, a correlation coefficient ( ⁇ n ), an estimated previous stop date / time (t ′ ne ), an estimated start date / time (t n ), This information is associated with the connection acceptance time.
- LQI is the communication quality with other nodes 2 and is registered in the unconnected node information 335A for each other node 2.
- the correlation coefficient is a coefficient for predicting the power generation amount of the unconnected node 2X, and is a coefficient corresponding to the correlation between the environmental information 5 and the power generation amount.
- the correlation coefficient corresponds to the power characteristic of the node 2X.
- the estimated previous stop date and time is the date and time when the node 2X is estimated to have stopped last time.
- the determination unit 310B calculates the estimated previous stop date and time based on the amount of stored electricity, the operating power, and the like.
- the estimated activation date / time is the date / time when the node 2 is estimated to be activated.
- the unconnected node information 335A the estimated activation date and time of the unconnected node 2X is registered. The node 2 is restarted when the capacity of the secondary battery 23 is recovered by charging. Therefore, the determination unit 310B calculates the estimated startup date and time based on the transition of the amount of stored electricity.
- the connection acceptance time is a processing time for the node 2 to accept a connection from another activated node 2.
- the connection acceptance time is a period set in the node 2 and a period of connection acceptance from the other nodes 2. Therefore, the determination unit 310B calculates the connection acceptance time based on the processing time for one cycle when the connection attempt is made and the number of cycles.
- FIG. 10 is a diagram illustrating a configuration example of the connected node information 335B.
- the connected node information 335B includes a node ID for identifying the GW 3 or the node 2 that is the control device 300, an LQI, a remaining battery level (P n ) [mWh], a correlation coefficient ( ⁇ n ), This is information in which the start date / time (t n ) is associated with the neighborhood exclusion node.
- the LQI and correlation coefficient of the connected node 2Y are registered.
- the control apparatus 300 since electric power is supplied from the outside by wire, the remaining battery level and the correlation coefficient are not registered.
- the node 2 that is the parent node does not exist, so the neighborhood excluded node is not registered.
- the battery remaining amount is the remaining amount of power stored in the secondary battery 23 of the node 2Y.
- the remaining battery level is acquired from the node 2Y and registered in the connected node information 335B.
- the halfway start date and time is the date and time when the control device 300 or the node 2Y starts during the sleep state.
- the mid-starting date and time is an acceptance date and time when the control device 300 or the node 2Y accepts a connection from the child node 2X.
- the determination unit 310B calculates the mid-starting date and time based on the LQI, the remaining battery level, and the like.
- the neighborhood exclusion node is a node 2 that is excluded as a child node 2X among the unconnected nodes 2X arranged in the vicinity of the node 2Y.
- the determination unit 310B registers the node 2X that is the connection acceptance target in the neighborhood exclusion node.
- the determination unit 310B collects the unconnected node information 335A based on the LQI before stopping the node 2 and records it in the storage unit 330. After the connection with the node 2, the determination unit 310B displays the connected node 2 as an unconnected node. Delete from the information 335A. Then, the determination unit 310B creates connected node information 335B from information collected after connection.
- FIG. 11 is a flowchart showing an example of the update processing operation of the control device 300.
- the control device 300 acquires the environment information 5 immediately before the update date (step S41). Specifically, the control device 300 obtains the environmental performance information of the node 2 and the environmental prediction information of the node 2 from the Internet 4 a predetermined time before the update date and time.
- the environmental information 5 is, for example, the amount of sunlight when energy harvesting uses solar cells, and the wind speed when wind power is used.
- the control device 300 waits until the update date and time (step S42).
- the determination unit 310B of the control device 300 communicates with the connected node 2, and causes the node 2 to measure the current storage amount and the communication quality between the control device 300 or the surrounding nodes 2. . Then, the determination unit 310B collects the measurement results from the node 2 and records them in the storage unit 330. Specifically, the determination unit 310B transmits an LQI acquisition request to all connected nodes 2 (step S43). Then, the determination unit 310B registers the LQI acquired from the node 2 in the connected node information 335B, thereby updating the LQI (step S44).
- the determination unit 310B transmits a battery remaining amount acquisition request to all connected nodes 2 (step S45). Then, the determination unit 310B registers the remaining battery level acquired from the node 2 in the connected node information 335B. Note that either the process of step S43 or the process of step S45 may be performed first or simultaneously.
- the determination unit 310B When the determination unit 310B completes the collection of the remaining battery level as the storage amount and the LQI as the communication quality, the correlation coefficient between the environmental information 5 and the generation amount for predicting the generation amount of the connected node 2 And the correlation coefficient in the connected node information 335B is updated (step S46).
- the determination unit 310B obtains the current storage amount (P n1 ) and the storage amount (P n2 ) at the previous measurement from the node 2.
- the determination unit 310B updates the remaining battery level (P n ) of the node 2 that is the current charged amount (P n1 ) in the connected node information 335B (step S47).
- the environment information 5 such as the amount of sunlight and wind speed that can be obtained from the Internet 4 is uniform over a wide range. However, since the sunlight and wind perception vary depending on the installation conditions of the node 2, the determining unit 310B sets the correlation coefficient to the node Set individually.
- the determination unit 310B calculates the correlation coefficient ( ⁇ n ) at the n-th (n is a natural number) node 2 using, for example, the following equation (1). That is, the determination unit 310B determines the ideal power generation amount (E I ), the current power storage amount (P n1 ), the power storage amount at the previous measurement (P n2 ), and the power consumption per unit time during sleep (W s ) And the elapsed time (t) from the previous measurement, the correlation coefficient ( ⁇ n ) is calculated.
- the ideal power generation amount (E I ) in the equation (1) is calculated based on the environmental information 5 and the design information of the environmental power generation element 21.
- the determination unit 310B calculates the correlation coefficient ( ⁇ n ) for all connected nodes 2 and records it in the connected node information 335B.
- FIG. 12 is a diagram illustrating a configuration example of the environment information 5330D.
- the environment information 5330D is configured to include environment performance information and environment prediction information.
- the environment information 5330D is information in which a region, a date, a time, a measured value of the amount of sunlight, and a predicted value of the amount of sunlight are associated with each other.
- the area is a place where the node 2 is arranged, and is a target area for which the environment information 5330D is set.
- the date is the date when the amount of sunshine in the environment information 5330D is acquired, and the time is the time when the amount of sunshine in the environment information 5330D is acquired.
- the actual value of the amount of sunshine is a result of the amount of sunshine actually measured in the area in the environment information 5330D.
- the predicted value of the amount of sunshine is the amount of sunshine predicted in the future in the area of the environment information 5330D.
- the actually measured value of the amount of sunshine is measured using an actual measuring device or the like, and the determination unit 310B acquires the actually measured value using the Internet 4.
- the predicted value of the amount of sunshine is derived from a weather forecast or the like, and the determination unit 310 ⁇ / b> B acquires the predicted value using the Internet 4.
- the environmental performance information is information in which the region, the date, the time, and the measured value of the amount of sunlight are associated with each other in the environmental information 5330D.
- the environment prediction information is information in which the region, the date, the time, and the predicted value of the amount of sunlight are associated with each other in the environment information 5330D.
- the determination unit 310B determines the power generation amount per unit time (W (L i) from the relationship between the illuminance obtained from the design information of the solar panel that is an example of the energy harvesting element 21 and the power generation amount. )) Can be obtained. Therefore, the determination unit 310B can obtain the ideal power generation amount (E I ) by integrating the power generation amount per unit time from the previous measurement date and time to the current date and time. Specifically, the determination unit 310B calculates an ideal power generation amount (E I ) using the following equation (2).
- the determination unit 310B extracts the unconnected node 2 in the vicinity of the connected node 2.
- the determination unit 310B extracts the node 2 in the vicinity of the connected node 2 from the unconnected nodes 2 (Step S48).
- the determination unit 310B acquires the communication quality between the nodes 2 and records it in the connected node information 335B before the node 2 stops because the environmental power generation cannot be performed. deep.
- the determination unit 310B acquires the communication quality from each node 2 before snow begins. Based on this connected node information 335B, the determination unit 310B extracts the unconnected node 2 whose communication quality with the connected node 2 is greater than or equal to the threshold value for both transmission and reception as the unconnected nearby node 2. .
- the determination unit 310B estimates the date and time when each of the extracted unconnected neighboring nodes 2 is activated by energy harvesting and performs a connection trial operation. In other words, the determination unit 310B calculates the estimated activation date / time of the extracted node 2 (step S49). For this calculation, the correlation coefficient of each node 2 is used, but the determination unit 310B uses the above-described method using the equation (1) or the like for the unconnected node 2 before the node 2 stops. Then, the correlation coefficient of the unconnected node 2 is calculated and recorded. Then, the determination unit 310B uses the recorded correlation coefficient of the unconnected node 2.
- the determination unit 310B predicts the storage amount of the node 2 in each time interval from the correlation coefficient, environmental performance information, and environmental prediction information. Then, the determination unit 310B predicts that the date and time when the predicted power storage amount exceeds the power amount necessary for the operation of the node 2 is the date and time when the node 2 can be started and a connection attempt can be started.
- the date and time predicted to start this connection attempt is the expected start date and time at which the node 2 can start and start the connection attempt.
- node 2 When node 2 starts a connection attempt, the power consumption increases greatly, the remaining battery level gradually decreases, and when the storage amount is depleted, node 2 stops its operation and the connection attempt ends. If the period from the estimated start date / time of the connection attempt to the estimated end date / time of the connection attempt is longer than the period required for accepting the connection of the node 2, the determining unit 310B estimates that the node 2 will perform the connection attempt.
- the power generation amount per unit time of each node 2 is a value obtained by multiplying the ideal power generation amount W (L i ) obtained from the environment information 5 and design information of the energy harvesting element 21 by the correlation coefficient ⁇ .
- the date and time when the charged amount (P n ) of Equation (3) exceeds the operable threshold (P t ) is the expected connection start date and time t ns .
- quantity of stored power in the time t (t> t ns) it can be calculated using the following equation (4). Therefore, the determination unit 310B calculates the storage amount P n using the following equation (4).
- the date and time when P n in Equation (4) becomes 0 is the connection trial end date and time t ne . If the determination unit 310B predicts that the unconnected node 2 will perform a connection attempt, the determination unit 310B indicates the connection acceptance start date and time when connection acceptance is performed between the date and time when the connection acceptance is predicted to start and the date and time when the connection acceptance is predicted to end. Estimated start date and time. The period necessary for accepting the connection is, for example, a length of several cycles of the connection trial period. When the period for the connection attempt to the node n and p n, estimated start time (t n) can be calculated from the following equation (5). Therefore, the determination unit 310B calculates the estimated activation date and time (t n ) using the following equation (5).
- the determination unit 310B selects the earliest unselected estimated activation date / time (ti: node i) (step S50). In other words, determination section 310B selects the earliest time ti of the estimated start time t n of the nodes of the plurality of unconnected 2.
- ti node i
- determination section 310B selects the earliest time ti of the estimated start time t n of the nodes of the plurality of unconnected 2.
- a case where the earliest date / time of the estimated activation date / time t n is date / time t 1 will be described.
- the time ti can be selected, and the date and time t 1 is determined whether the next update date and time previously (step S51).
- the control device 300 transitions to a sleep process for the node 2.
- the determining section 310B determines that this time does not perform the acceptance. Then, the process transits to the sleep process for the node 2.
- the determining unit 310B determines the connection acceptance by the node 2 by corresponding to time t 1 selected. Then, the determination unit 310B estimates the power storage amount P n ′ of the connected node 2 at the date and time ti (t1) (step S52).
- the storage amount P n ′ is the current storage amount P n measured at each node 2 as described above, the correlation coefficient ⁇ n calculated from the storage amount P n , and the sunshine amount (L i in the environmental prediction information). ) And the power consumption W s during sleep can be calculated. Therefore, the determination unit 310B calculates the storage amount P n ′ using the following equation (6).
- the current power storage amount P n is calculated using the above-described formula (3) or formula (4).
- the determination unit 310B determines the node 2 that performs relay between the node i that has been determined to accept the connection and the control device 300. At this time, the determination unit 310B determines one to a plurality of nodes 2 corresponding to the route from the node i determined to accept the connection to the control device 300. Thereby, the determination unit 310B searches for all routes from the node i determined to accept the connection to the control device 300. Thus, the determination unit 310B selects a route to the node i determined to accept the connection (step S53).
- the determination unit 310B extracts all the routes that reach the control device 300 by tracing the node 2 that has been connected in the vicinity of the unselected node i determined to accept the connection and whose communication quality exceeds the threshold value with a single stroke. To do. Then, the determination unit 310B determines whether or not the route to the node i can be selected (step S54).
- the determination unit 310B determines that the route to the node i cannot be selected (No at step S54), the determination unit 310B repeats the processing of steps S50 to S54 until it is determined that the route to the node i cannot be selected.
- the determination unit 310B determines that the path is acceptable if the power storage amount of all the nodes 2 on the path exceeds the power necessary for connection acceptance for each path (Yes in step S54). The determination unit 310B selects a route to the node i determined to accept the connection from among the acceptable routes.
- the power consumption amount in the reception standby state may be smaller than the expected power storage amount.
- the determination unit 310B preferentially selects a route with a small number of relays to the control device 300, for example. Further, if the number of relays is the same, the determination unit 310B compares the nodes 2 having the smallest predicted power storage amount among the routes and selects the route having the larger predicted power storage amount. The determination unit 310B selects one route by weighting with the number of relays of the node 2, the expected power storage amount, the correlation coefficient, or the like.
- FIG. 13 is a diagram for explaining an example of a route selection method. For example, there are five nodes 2 from “K” to “O” in the control system 1, and the nodes 2 of “K”, “L”, and “M” are currently connected, and “N”, “O”. Node 2 is not connected. In this case, if the arrows in FIG. 12 represent the proximity relationship between the respective nodes, “O” ⁇ “L” ⁇ control device 300, “O” ⁇ “L” for node 2 of “O”. There are paths of “ ⁇ ” K ” ⁇ control device 300,“ O ” ⁇ “ M ” ⁇ “ L ”,“ O ” ⁇ “ M ” ⁇ “ L ” ⁇ “ K ” ⁇ control device 300.
- the acceptable path is “O” ⁇ “ L ” ⁇ control device 300,“ O ” ⁇ “ L ” ⁇ “ K ” ⁇ control device 300.
- the determination unit 310B selects the route of “O” ⁇ “L” ⁇ the control device 300 having the smallest number of hops among the two routes.
- Determination unit 310B once the route can be selected to record that starts with the time t 1 to the node 2 on the path. Specifically, the determination unit 310B adds the date and time t 1 to the midway activation date and time stored in the node 2 on the route and the GW 3 that is the control device 300 (step S55). Then, the determination unit 310B repeats the processes of steps S50 to S55 until there are no more selectable routes. For example, determination unit 310B After storing the midway start date and time node 2 date t 1, with respect to earlier estimated start time t 2 of the node 2 to the next time t 1 of time t 1 node 2 the same Process.
- determining unit 310B when predicting the charged amount, the power fraction for the consumption Calculate by subtracting. Thereafter, the determination unit 310B performs the same processing for all the unconnected nodes 2 whose estimated activation date and time is earlier than the next update date and time. As a result, the halfway start date and time up to the next update date and time is recorded in the node 2 and the connected node information 335B, so that the sleep instruction unit 310C of the control device 300 allows the halfway start date and time in the connected node information 335B. Based on the above, a sleep instruction is given to the node 2.
- FIG. 14 is a flowchart showing an example of the sleep processing operation of the control device 300. If the sleep instruction unit 310C of the control device 300 records the start date / time in the middle of each node 2, each start date / time is recorded so that the node 2 starts at the earliest date / time. A sleep instruction is transmitted to the node 2. In addition, the sleep instruction unit 310C transmits a sleep instruction to the node 2 for which the activation date / time is not recorded so as to sleep until the next update date / time.
- the sleep instruction unit 310C sequentially selects the unselected connected nodes 2.
- the sleep instruction unit 310C selects one connected unselected node 2 (step S61).
- the sleep instruction unit 310C confirms whether or not the node 2 can be selected (step S62).
- the sleep instruction unit 310C acquires the shortest halfway start date and time of the selected node 2 from the connected node information 335B (Step S63).
- the sleep instruction unit 310C confirms whether or not the shortest start date / time can be acquired (step S64).
- step S64 the sleep instruction unit 310C transmits a sleep instruction instructing to sleep until the acquired halfway start date and time to the selected node 2 (step S65).
- step S65 the sleep instruction unit 310C transmits a sleep instruction instructing to sleep until the next update date / time to the selected node 2 (Step S66). ).
- Step S66 the sleep instruction unit 310C repeats the processes of steps S61 to S66.
- the reception processing unit 310D acquires the shortest halfway start date and time of the GW 3 that is the control device 300 from the connected node information 335B. (Step S67).
- the acceptance processing unit 310 ⁇ / b> D acquires the date and time when the control device 300 is activated.
- the start date and time of the control device 300 is a date and time for the control device 300 to issue a sleep instruction again to the node 2 that has executed the connection acceptance process.
- the acceptance processing unit 310D confirms whether or not the halfway start date and time can be acquired when trying to obtain the halfway start date and time (step S68).
- the acceptance processing unit 310D causes the control device 300 to enter a standby state. On the other hand, if it can be acquired (Yes at Step S68), the reception processing unit 310D sets the unconnected node 2 having the acquired startup date / time as the estimated startup date / time as the reception target (Step S69).
- the acceptance processing unit 310D acquires the connection acceptance time of the node 2 to be accepted (step S70). Then, the acceptance processing unit 310D causes the control device 300 to be in a standby state for the halfway start date / time + connection acceptance time (step S71). Thereafter, control device 300 performs post-acceptance processing.
- Each node 2 sleeps for a time instructed by the control device 300, and then starts up and enters a reception standby state. At this time, if a connection request comes to any one of the nodes 2, the node 2 accepts the connection in response to the connection request. Then, the connected node 2 transmits a connection notification to the control device 300 via the other active node 2. In the control device 300, when the node 2 enters the connection acceptance state, the acceptance processing unit 310D executes post-acceptance processing.
- FIG. 15 is a flowchart showing an example of the post-acceptance processing operation of the control device 300. Of the processes shown in FIG. 15, the same processes as those described in FIG. 14 may be omitted.
- the sleep instruction unit 310C sequentially selects the unselected connected nodes 2.
- the sleep instruction unit 310C selects one connected node 2 that has not been selected (step S81).
- the sleep instruction unit 310C confirms whether the node 2 can be selected (step S82).
- the sleep instruction unit 310C compares the start date / time of the selected node 2 with the estimated start date / time of the node 2 to be accepted based on the connected node information 335B. (Step S83).
- the sleep instruction unit 310C determines whether there is a match between the halfway activation date and time of the selected node 2 and the estimated activation date and time of the node 2 that is the reception target. In other words, the sleep instruction unit 310C determines whether or not the selected node 2 is currently operating (step S84).
- the sleep instruction unit 310C determines that the selected node 2 Judge that it is not working. Since the sleep instruction unit 310C does not need a sleep instruction for the node 2 that is not operating, the sleep instruction unit 310C returns to the process of step S81. On the other hand, if there is a match between the start date / time of the selected node 2 and the estimated start date / time of the node 2 to be accepted (Yes at step S84), the sleep instruction unit 310C An early start date and time is acquired from the connected node information 335B (step S85).
- the sleep instruction unit 310C confirms whether or not it is possible to acquire the next early start date and time after the present (step S86). If it can be acquired (Yes at Step S86), the sleep instruction unit 310C transmits the acquired sleep instruction up to the mid-start-up date and time to the selected node 2 (Step S87). As described above, the sleep instructing unit 310C is the node activated at that time after the standby time p 1 which is the response completion time between the earliest activation date / time t 1 of all the nodes 2 and the child node 2 2 transmits a sleep instruction until the next halfway start date and time.
- the sleep instruction unit 310C transmits the sleep instruction up to the next update date / time to the selected node 2 (Step S88). After transmitting the sleep instruction up to the start date and time or the sleep instruction up to the next update date and time to the node 2, the reception processing unit 310D repeats the processes of steps S81 to S88.
- the reception processing unit 310D may be the node 2 set as the connection reception target (hereinafter referred to as the reception target node 2). It is determined whether or not the connection has been established (step S89). Thereby, the acceptance processing unit 310D confirms whether or not the expected node 2 is connected.
- the acceptance processing unit 310D estimates that the communication state and the power generation environment have changed, and corrects the prediction. Specifically, the acceptance processing unit 310D searches for an active connected node 2 in the vicinity of the acceptance target node 2 (step S90). Then, the acceptance processing unit 310D sets the connected node 2 that has been waiting from the acceptance target node 2 as a neighborhood excluded node, and records it in the connected node information 335B (step S91).
- the neighborhood exclusion node is arranged in the vicinity of the acceptance target node 2 and operates and waits from the acceptance target node 2, but has not been able to successfully connect the acceptance target node 2 and the control device 300. 2. In this way, the acceptance processing unit 310D, for example, marks the node 2 that has waited for the connection of the acceptance target node 2 to be excluded from the neighboring nodes 2 when the prediction is corrected. 2. Try to connect from 2.
- the acceptance processing unit 310D searches for all connected nodes 2 operating in the vicinity of the acceptance target node 2 (step S92). Then, the acceptance processing unit 310D determines whether or not all of the searched connected nodes 2 are set as neighboring exclusion nodes for the acceptance target node 2. In other words, the acceptance processing unit 310D determines whether or not all the searched connected nodes 2 are excluded from the nodes 2 in the vicinity of the acceptance target node 2 (step S93).
- the reception processing unit 310D determines that all the connected nodes that have been searched The node 2 is deleted from the neighborhood exclusion node to increase the connection acceptance time of the acceptance target node 2 (step S94). In other words, the acceptance processing unit 310D cancels the exclusion mark when the node 2 near the acceptance target node 2 disappears as a result of setting the searched connected node 2 as the neighborhood exclusion node, and connects Increase acceptance time by one to several cycles.
- the acceptance processing unit 310D sets a process for increasing the connection acceptance time, a process for newly trying to connect to the acceptance target node 2, and a nearby node 2 that has waited for connection when the connection cannot be established as a neighbor exclusion node. Once set, the process is repeated. As a result, the control device 300 can cope with a case where the power generation amount or the communication environment changes.
- the acceptance processing unit 310D acquires the next halfway start date and time of the GW 3 that is the control device 300 (Step S95). In the case of negative in step S93 or after step S94, if the control device 300 can connect to the reception target node 2, the reception processing unit 310D acquires the next halfway start date and time of the GW 3 that is the control device 300 (step S95).
- the acceptance processing unit 310D confirms whether or not the next halfway start date and time can be acquired (step S96).
- the reception processing unit 310D causes the control device 300 to enter a standby state.
- the reception processing unit 310D sets the unconnected node 2 having the acquired startup date / time as the estimated startup date / time as an acceptance target (step S97).
- the acceptance processing unit 310D acquires the connection acceptance time of the acceptance target node 2 (step S98).
- the acceptance processing unit 310D causes the control device 300 to be in a standby state for the halfway start date / time + connection acceptance time (step S99).
- control device 300 performs post-acceptance processing.
- the determination unit 310B is based on the remaining battery level of the node 2Y, the LQI between the nodes 2X and 2Y, the correlation coefficient of the node 2X, and the environment information 5 at the position where the node 2X is disposed.
- the node 2Y determines a connection acceptance date and time for accepting a connection with the node 2X.
- the sleep instruction unit 310C instructs the node 2Y to set the node 2Y to the sleep state until the connection acceptance date and time.
- control device 300 When the next update date and time is reached, the control device 300 is in a state where all of the devices including the newly connected node 2 are activated. For this reason, the control device 300 repeats the same processing as described above for the active node 2, and increases the number of nodes 2 to be connected while recovering the secondary battery 23 by sleep.
- the node 2 When the node 2 receives the sleep instruction from the control device 300 until the reception date and time, the node 2 enters the sleep state until the reception date and time. As a result, each node 2 can enter the sleep state until the reception date and time in accordance with the sleep instruction from the control device 300.
- each node 2 can be in a sleep state until the date and time of acceptance, the amount of stored electricity can be increased. As a result, the control device 300 can efficiently perform connection setting between the nodes 2.
- the determination unit 310B Determines the connection acceptance time for accepting the connection of the node 2X. As a result, the control device 300 can cause the node 2Y to sleep until the node 2X is activated.
- the sleep instruction unit 310C causes the node 2 that is not connected to the communication path from the control device 300 to the node 2Y to enter a sleep state.
- the control device 300 can increase the amount of power stored in the node 2Y that is not connected to the communication path to the node 2Y.
- the determining unit 310B calculates the estimated activation date / time of the node 2X based on the prediction result of the remaining battery level of the node 2X, and determines the acceptance date / time that is the mid-term activation date / time of the node 2Y using the estimated activation date / time. As a result, the control device 300 can activate the node 2Y at an accurate timing according to the activation of the node 2X.
- the acceptance processing unit 310D sets the node 2X as the acceptance target from which the node 2Y accepts the connection from among the nodes 2 based on the midway activation date and time and the estimated activation date and time. As a result, the control device 300 can set a node 2X with an estimated start date and time as an acceptance target.
- the reception processing unit 310D sets a node 2X that is different from the node 2X that could not be connected to the subsequent connection as a connection reception target. As a result, the control device 300 can improve the connection probability with the node 2X.
- the acceptance processing unit 310D increases the connection acceptance time of the node 2Y that is a connection waiting time for the node 2X that has not been connected for the next and subsequent connections. Let As a result, the control device 300 can improve the connection probability with the node 2X.
- the determination unit 310B calculates the estimated start date / time of the node 2X based on the period from the expected start date / time of the connection attempt of the node 2X to the expected end date / time of the connection attempt and the period required for accepting the connection of the node 2X. As a result, the control device 300 can calculate an appropriate estimated activation date / time according to the operation of the node 2X.
- the communication unit 320 receives the environment information 5 from a wired or mobile phone network. As a result, the control device 300 can appropriately determine the connection acceptance time according to the environment of the node 2.
- the determination unit 310B extracts the node 2 to be the node 2X from the plurality of nodes 2 based on the LQI between the node 2 and the node 2Y. As a result, the control device 300 can try to connect to a nearby node 2X within a predetermined distance from the control device 300.
- the environmental information 5 includes environmental performance information about the environment so far and environmental prediction information about the future environment.
- the control device 300 can appropriately determine the connection acceptance time according to the environment of the node 2X.
- the determination unit 310B calculates a correlation coefficient, which is a power characteristic of the node 2X, using the ideal power generation amount of the node 2X, the current power storage amount of the node 2X, and the previous power storage amount of the node 2X. As a result, the control device 300 can calculate an accurate correlation coefficient.
- the determination unit 310B acquires the correlation coefficient from the node 2X during connection before the node 2X is not connected. As a result, the control device 300 can determine the connection acceptance time using the correlation coefficient of the node 2X even when the node 2X is not connected.
- the communication quality is not limited to, for example, LQI, and may be another index.
- the acceptance processing unit 310D increases the acceptance time of the acceptance target node 2. .
- the acceptance processing unit 310D may increase the acceptance time of the acceptance target node 2 without setting the neighborhood exclusion node.
- the reception processing unit 310D may increase the reception time of the reception target node 2.
- control device 300 controls the node 2 using information on various dates and times such as connection acceptance date and time.
- control device 300 may control the node 2 using information only on time. .
- each component of each part illustrated does not necessarily need to be physically configured as illustrated.
- the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
- processing functions performed in each device are executed on the CPU (or a micro computer such as MPU (Micro Processing Unit), MCU (Micro Controller Unit), etc.) or all of them. Also good. Various processing functions may be executed entirely or arbitrarily on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say.
- MPU Micro Processing Unit
- MCU Micro Controller Unit
- Various processing functions may be executed entirely or arbitrarily on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say.
- Control apparatus 310 Control part 310A Connection process part 310B Determination part 310C Sleep instruction
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A control apparatus comprises a communication unit (320), a determination unit (310B) and a sleep instruction unit (310C). The communication unit uses a multi-hop communication among a plurality of nodes including a connected first node and a un-connected second node, and receives information from the first node. The determination unit determines an acceptance date/time of acceptance by the first node of a connection with the second node, on the basis of the battery level of the first node, communication quality between the first node and the second node, power characteristics of the second node, and first environment information related to the environment of the position where the second node is located. The sleep instruction unit sends an instruction to the first node indicating that the first node should be in sleep state until the acceptance date/time.
Description
本発明は、制御装置、制御システム及び制御方法に関する。
The present invention relates to a control device, a control system, and a control method.
近年、例えば、崖、道路や建築物等のセンシング対象にセンサノード(以下、単にノードと称する)を散布し、各ノードを通じて、センシング対象の状態を無線通信で収集するWSNS(Wireless Sensor Network System)が知られている。WSNS内の観測装置は、各ノードで検知した状態を収集し、その収集結果に基づき、センシング対象の状態を認識する。
In recent years, for example, WSNS (Wireless Sensor Network System) that collects sensor nodes (hereinafter simply referred to as nodes) on sensing targets such as cliffs, roads, buildings, etc., and collects the status of the sensing targets through wireless communication via each node. It has been known. The observation device in the WSNS collects the state detected by each node, and recognizes the state of the sensing target based on the collection result.
例えば、各ノードが、太陽電池を利用した環境発電を行う場合、天気などの環境に応じて、各ノードの2次電池に蓄えられる蓄電量が変化する。このため、各ノードは、蓄電量に応じた動作を実行する。
For example, when each node performs environmental power generation using solar cells, the amount of power stored in the secondary battery of each node changes according to the environment such as the weather. For this reason, each node performs the operation | movement according to the electrical storage amount.
しかしながら、ノードが測定動作を行わない場合であっても、ノードの2次電池は、自然放電や電源回路のリーク電流などによって空の状態になる場合がある。このようなノードは、蓄電環境が整うと起動し、周辺のノードに対して接続試行を行う。そして、この接続試行の際にも各ノードは電力を消費するので、夜にはノードの2次電池が尽きてしまい、夜間や天気の悪い日は接続試行を行えない。
However, even when the node does not perform the measurement operation, the secondary battery of the node may become empty due to natural discharge or a leakage current of the power supply circuit. Such a node is activated when the power storage environment is ready, and attempts to connect to surrounding nodes. Each node also consumes power during this connection attempt, so the secondary battery of the node runs out at night, and connection attempts cannot be made at night or on bad days.
一つの側面では、ノード間の接続設定を効率良く行うことができる制御装置等を提供することを目的とする。
An object of one aspect is to provide a control device or the like that can efficiently perform connection setting between nodes.
一つの案では、制御装置が、通信部と、決定部と、スリープ指示部とを有する。前記通信部は、接続済みの第1のノード及び未接続の第2のノードを含む複数のノード間のマルチホップ通信を用いて前記第1ノードからの情報を受信する。前記決定部は、前記第1のノードの電池残量と、前記第1のノードと前記第2のノードとの間の通信品質と、前記第2のノードの電力特性と、前記第2のノードが配置されている位置の環境に関する第1の環境情報とに基づいて、前記第1のノードが前記第2のノードとの間の接続を受入れる受入日時を決定する。前記スリープ指示部は、前記受入日時まで前記第1のノードをスリープ状態とさせることを前記第1のノードに指示する。
In one plan, the control device includes a communication unit, a determination unit, and a sleep instruction unit. The communication unit receives information from the first node using multi-hop communication between a plurality of nodes including a connected first node and an unconnected second node. The determination unit includes: a remaining battery level of the first node; a communication quality between the first node and the second node; a power characteristic of the second node; and the second node. And the first environment information related to the environment at the position where the node is arranged, the reception date and time at which the first node accepts the connection with the second node is determined. The sleep instruction unit instructs the first node to place the first node in a sleep state until the acceptance date and time.
一つの側面では、ノード間の接続設定を効率良く行うことができる。
In one aspect, connection settings between nodes can be performed efficiently.
以下、図面に基づいて、本願の開示する制御装置、制御システム及び制御方法の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。
Hereinafter, embodiments of a control device, a control system, and a control method disclosed in the present application will be described in detail based on the drawings. The disclosed technology is not limited by the present embodiment. Moreover, you may combine suitably each Example shown below in the range which does not cause contradiction.
図1は、本実施例の制御システム1の一例を示す説明図である。図1に示す制御システム1は、センサを用いて測定された情報を、ネットワークを介して収集するセンサシステムである。制御システム1は、例えば、WSNS(Wireless Sensor Network System)で構成されており、複数のノード2と、ゲートウェイ(GW)3と、インターネット4とを有する。ノード2とGW3とは、マルチホップ通信(アドホック通信ともいう)を用いたマルチホップ無線ネットワークで接続されている。制御システム1のGW3は、各ノード2が測定した情報を収集する。
FIG. 1 is an explanatory diagram showing an example of the control system 1 of the present embodiment. A control system 1 shown in FIG. 1 is a sensor system that collects information measured using a sensor via a network. The control system 1 is composed of, for example, a WSNS (Wireless Sensor Network System), and includes a plurality of nodes 2, a gateway (GW) 3, and the Internet 4. Node 2 and GW 3 are connected by a multi-hop wireless network using multi-hop communication (also called ad hoc communication). The GW 3 of the control system 1 collects information measured by each node 2.
センサノードであるノード2は、例えば、崖、道路や構造物等のセンシング対象に散布配置され、センシング対象の状態を検知するである。ノード2は、マルチホップ通信を用いて、制御システム1内の他のノード2と相互に無線通信する。各ノード2は、例えば、親子の接続関係を有し、所定領域内にある他のノード2との間で、マルチホップ通信で無線通信する。各ノード2は、上位側である親ノードと下位側である子ノードとが、ツリー構造に接続される。
Node 2, which is a sensor node, is dispersed and arranged on a sensing target such as a cliff, a road, or a structure, and detects the state of the sensing target. The node 2 wirelessly communicates with other nodes 2 in the control system 1 using multi-hop communication. Each node 2 has, for example, a parent-child connection relationship and wirelessly communicates with other nodes 2 in a predetermined area by multi-hop communication. In each node 2, a parent node on the upper side and a child node on the lower side are connected to a tree structure.
GW3は、ノード2に通信接続する通信装置であり、後述する制御装置300の一例である。GW3は、マルチホップ通信を用いてノード2に接続する。GW3は、所定領域内のノード2に対しては直接接続し、その他のノード2に対しては、1~複数のノード2を介して接続される。また、GW3は、有線や携帯電話回線網などを経由してインターネット4に接続されている。GW3は、インターネット4を用いて、ノード2の配置されている場所の環境に関する情報を示す環境情報5を取得し、取得した環境情報5を用いてノード2を制御する。GW3は、ノード2の状態や特性を用いて、ノード2の動作状態を制御する。GW3は、例えば、ノード2をスリープ状態又は正常動作状態などに遷移させる。GW3は、スリープ日時及び起動日時などをノード2に送信することによって、ノード2の動作状態を制御する。GW3は、ノード2がセンサなどを用いて取得した情報を、ノード2間のマルチホップ通信を介して収集し、収集したデータを、インターネット4を介してサーバーなどに送信する。
GW 3 is a communication device that is connected to the node 2 for communication, and is an example of a control device 300 described later. The GW 3 connects to the node 2 using multi-hop communication. The GW 3 is directly connected to the node 2 in the predetermined area, and is connected to the other nodes 2 via one or more nodes 2. The GW 3 is connected to the Internet 4 via a wired or cellular phone network. The GW 3 acquires environment information 5 indicating information regarding the environment of the place where the node 2 is located using the Internet 4, and controls the node 2 using the acquired environment information 5. The GW 3 controls the operation state of the node 2 using the state and characteristics of the node 2. For example, the GW 3 changes the node 2 to a sleep state or a normal operation state. The GW 3 controls the operation state of the node 2 by transmitting the sleep date and time and the start date and time to the node 2. The GW 3 collects information acquired by the node 2 using a sensor or the like via multi-hop communication between the nodes 2, and transmits the collected data to a server or the like via the Internet 4.
図1に示す制御システム1では、例えば、“E”及び“F”のノード2を子ノードとした場合、“D”のノード2を“E”及び“F”の親ノードとし、“D”のノード2を子ノードとした場合、“A”のノード2を“D”の親ノードとする。更に、例えば、“G”及び“H”のノード2を子ノードとした場合、“C”のノード2を“G”及び“H”の親ノードとし、“C”のノード2を子ノードとした場合、“A”のノード2を“C”の親ノードとする。更に、“I”及び“J”のノード2を子ノードとした場合、“B”のノード2を“I”及び“J”の親ノードとする。GW3は、“A”及び“B”のノード2と無線接続する。更に、GW3は、インターネット4に通信接続する。尚、GW3は、インターネット4以外の通信線に接続されてもよい。
In the control system 1 shown in FIG. 1, for example, when the node 2 of “E” and “F” is a child node, the node 2 of “D” is the parent node of “E” and “F”, and “D” If node 2 is a child node, node 2 of “A” is the parent node of “D”. Further, for example, when “G” and “H” node 2 are child nodes, “C” node 2 is “G” and “H” parent node, and “C” node 2 is a child node. In this case, the node 2 of “A” is set as the parent node of “C”. Furthermore, when the node 2 of “I” and “J” is a child node, the node 2 of “B” is the parent node of “I” and “J”. The GW 3 is wirelessly connected to the nodes 2 of “A” and “B”. Further, the GW 3 is connected to the Internet 4 for communication. The GW 3 may be connected to a communication line other than the Internet 4.
図2は、ノード2の一例を示す図である。図2では、ノード2のハードウェア構成例を示している。ノード2は、情報処理部20と、環境発電素子21と、電源制御ユニット22と、2次電池23とを有する。そして、情報処理部20が、MCU(Micro Controller Unit)24と、RAM(Random Access Memory)25と、ROM(Read Only Memory)26と、センサ27と、無線部28とを有する。
FIG. 2 is a diagram illustrating an example of the node 2. FIG. 2 shows a hardware configuration example of the node 2. The node 2 includes an information processing unit 20, an energy harvesting element 21, a power supply control unit 22, and a secondary battery 23. The information processing unit 20 includes an MCU (Micro Controller Unit) 24, a RAM (Random Access Memory) 25, a ROM (Read Only Memory) 26, a sensor 27, and a wireless unit 28.
ノード2では、電源制御ユニット22が、情報処理部20と、環境発電素子21と、2次電池23とに接続されている。また、情報処理部20内では、MCU24と、RAM25と、ROM26と、センサ27と、無線部28とが、バスなどで接続されている。
In node 2, the power supply control unit 22 is connected to the information processing unit 20, the energy harvesting element 21, and the secondary battery 23. In the information processing unit 20, the MCU 24, the RAM 25, the ROM 26, the sensor 27, and the wireless unit 28 are connected by a bus or the like.
環境発電素子21は、例えば、振動発電素子、光発電素子、温度発電素子や電波発電素子等の発電素子である。環境発電素子21が太陽電池などの発電素子である場合、環境発電素子21は、太陽光を用いて発電する。環境発電素子21は、発電した電力を電源制御ユニット22に送る。環境発電素子21は、エナジーハーベスト素子とも呼ばれる。2次電池23は、例えば、環境発電素子21で発電した電力を蓄電する電池である。尚、2次電池23は、電力を蓄電する代わりに電力を充電しても良い。
The environmental power generation element 21 is, for example, a power generation element such as a vibration power generation element, a photovoltaic power generation element, a temperature power generation element, or a radio wave power generation element. When the environmental power generation element 21 is a power generation element such as a solar battery, the environmental power generation element 21 generates power using sunlight. The environmental power generation element 21 sends the generated power to the power supply control unit 22. The energy harvesting element 21 is also called an energy harvesting element. The secondary battery 23 is, for example, a battery that stores electric power generated by the energy harvesting element 21. The secondary battery 23 may be charged with electric power instead of storing electric power.
電源制御ユニット22は、環境発電素子21及び2次電池23を制御する。また、電源制御ユニット22は、電力の蓄電及び放電を制御する。電源制御ユニット22は、環境発電素子21が発電した電力を、情報処理部20に送るか又は2次電池23に蓄電する。また、電源制御ユニット22は、2次電池23に蓄電された電力を、情報処理部20に送る。
The power supply control unit 22 controls the energy harvesting element 21 and the secondary battery 23. The power supply control unit 22 controls the storage and discharge of electric power. The power supply control unit 22 sends the power generated by the energy harvesting element 21 to the information processing unit 20 or stores it in the secondary battery 23. In addition, the power supply control unit 22 sends the power stored in the secondary battery 23 to the information processing unit 20.
電源制御ユニット22のRAM25は、MCU24が用いるデータを記憶する。本実施例のRAM25は、GW3から送られてくる情報や、ノード2が取得した情報を記憶する。具体的には、RAM25は、GW3から送られてくる情報として、GW3から指定された待機時間や起動時間などを記憶する。また、RAM25は、ノード2が取得した情報として、受信データの受信電波強度を示すLQI(電波通信品質:Link Quality Indicator)と、電池残量である蓄電量とを記憶する。RAM25は、データの送信元のノード2を識別するID毎に受信データのLQIを記憶する。
The RAM 25 of the power supply control unit 22 stores data used by the MCU 24. The RAM 25 of this embodiment stores information sent from the GW 3 and information acquired by the node 2. Specifically, the RAM 25 stores, as information sent from the GW 3, a standby time or activation time designated by the GW 3. Further, the RAM 25 stores, as information acquired by the node 2, an LQI (radio wave communication quality: Link Quality Indicator) indicating the received radio wave intensity of the received data and a storage amount that is a remaining battery level. The RAM 25 stores the LQI of received data for each ID for identifying the node 2 that is the data transmission source.
ROM26は、MCU24が用いるプログラムを記憶する。また、ROM26は、親ノードテーブルと、子ノードテーブルとを有する。親ノードテーブルは、自ノード2の親ノードとして、親ノードを識別するID、例えば、MACアドレスを記憶する領域である。子ノードテーブルは、自ノード2の子ノードとして、子ノードを識別するID、例えば、MACアドレスを記憶する領域である。
ROM 26 stores a program used by MCU 24. The ROM 26 has a parent node table and a child node table. The parent node table is an area for storing an ID for identifying a parent node, for example, a MAC address, as a parent node of the own node 2. The child node table is an area for storing an ID for identifying a child node, for example, a MAC address, as a child node of the own node 2.
センサ27は、センシング対象の状態を検知する素子である。例えば、センサ27は、土砂崩れや洪水などを検知する。センサ27は、検知した情報をMCU24に送る。無線部28は、所定の無線範囲内に存在する他のノード2又はGW3との間で、マルチホップ通信で無線通信する部位である。無線部28は、例えば、自ノード2より上流側にある親ノードや自ノード2より下流側にある子ノードとの間で無線通信を行なう。
Sensor 27 is an element that detects the state of the sensing target. For example, the sensor 27 detects landslides and floods. The sensor 27 sends the detected information to the MCU 24. The wireless unit 28 is a part that performs wireless communication with another node 2 or GW 3 existing within a predetermined wireless range by multi-hop communication. The radio unit 28 performs radio communication with, for example, a parent node on the upstream side of the own node 2 and a child node on the downstream side of the own node 2.
MCU24は、マイクロコントローラーとして動作し、RAM25、ROM26、センサ27及び無線部28を駆動する。MCU24は、ROM26に記憶されているプログラムを読み出し、読み出したプログラムに基づき種々の処理を行う。MCU24は、蓄電量である電池残量が所定量以上となった場合に起動する。また、MCU24は、GW3からの指示に従って、起動処理や待機処理などを制御する。また、MCU24は、LQIや電池残量などを測定し、測定結果を無線部28から、他のノード2又はGW3に送信する。
The MCU 24 operates as a microcontroller, and drives the RAM 25, the ROM 26, the sensor 27, and the wireless unit 28. The MCU 24 reads a program stored in the ROM 26 and performs various processes based on the read program. The MCU 24 is activated when the remaining battery level, which is the amount of stored electricity, exceeds a predetermined amount. Further, the MCU 24 controls a start process, a standby process, and the like according to an instruction from the GW 3. Further, the MCU 24 measures LQI, the remaining battery level, and the like, and transmits the measurement result from the wireless unit 28 to the other node 2 or GW 3.
また、MCU24は、センサ27が検知した情報を、無線部28から、通信の上流側であるGW3側に送信する。この結果、センサ27によって検知された情報は、1~複数のノード2を介して又は直接GW3に送られる。
Further, the MCU 24 transmits information detected by the sensor 27 from the wireless unit 28 to the GW 3 side that is the upstream side of communication. As a result, the information detected by the sensor 27 is sent to the GW 3 via one or more nodes 2 or directly.
本実施例のノード2は、接続処理を行う時間帯以外は待機することによって、待機時間を長くする。換言すると、本実施例のノード2は、接続処理を行う際に起動することによって、起動している時間を短縮する。
The node 2 of this embodiment extends the standby time by waiting outside the time period during which connection processing is performed. In other words, the node 2 of this embodiment is activated when performing the connection process, thereby shortening the activation time.
図3は、制御装置300の一例を示す図である。図3では、GW3などの制御装置300のハードウェア構成例を示している。センサ制御装置などの制御装置300は、近距離無線通信用モジュールである無線部35を搭載している以外は一般的なPC(Personal Computer)と同様の構成を有する。具体的には、制御装置300は、CPU(Central Processing Unit)31と、RAM32と、HDD(Hard Disk Drive)33と、通信アダプタ34と、無線部35とを有する。制御装置300では、CPU31と、RAM32と、HDD33と、通信アダプタ34と、無線部35とが、バスなどで接続されている。制御装置300へは、有線で外部から電力が供給される。そして、制御装置300は、予め用意されたプログラムをCPU31で実行させることによって実現される。
FIG. 3 is a diagram illustrating an example of the control device 300. In FIG. 3, the hardware structural example of control apparatuses 300, such as GW3, is shown. A control device 300 such as a sensor control device has the same configuration as a general PC (Personal Computer) except that a wireless unit 35 that is a short-range wireless communication module is mounted. Specifically, the control device 300 includes a CPU (Central Processing Unit) 31, a RAM 32, an HDD (Hard Disk Drive) 33, a communication adapter 34, and a wireless unit 35. In the control device 300, the CPU 31, RAM 32, HDD 33, communication adapter 34, and wireless unit 35 are connected by a bus or the like. Power is supplied to the control device 300 from the outside by wire. The control device 300 is realized by causing the CPU 31 to execute a program prepared in advance.
HDD33は、コンピュータ読取可能な記録媒体の一例である。HDD33には、種々のプログラムが予め記憶されている。HDD33には、例えば、接続処理プログラム、接続処理プログラム、決定プログラム、スリープ指示プログラム、受入処理プログラムなどが記憶されている。尚、HDD33ではなく、コンピュータ読取可能な記録媒体の一例である図示せぬメモリに各プログラムが記録されていても良い。記録媒体としては、例えば、CD-ROM、DVDディスク、USBメモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ等でも良い。また、本実施例のHDD33は、ノード2から送られてくる情報や、制御装置300が取得した情報を記憶する。具体的には、HDD33は、後述する未接続ノード情報335Aや接続済みノード情報335Bなどを記憶する。
The HDD 33 is an example of a computer-readable recording medium. Various programs are stored in the HDD 33 in advance. For example, the HDD 33 stores a connection processing program, a connection processing program, a determination program, a sleep instruction program, an acceptance processing program, and the like. Each program may be recorded in a memory (not shown) which is an example of a computer-readable recording medium instead of the HDD 33. As the recording medium, for example, a portable recording medium such as a CD-ROM, a DVD disk, or a USB memory, or a semiconductor memory such as a flash memory may be used. Further, the HDD 33 of this embodiment stores information sent from the node 2 and information acquired by the control device 300. Specifically, the HDD 33 stores unconnected node information 335A, connected node information 335B, which will be described later, and the like.
CPU31は、HDD33に記憶されている種々のプログラムを読み出し、読み出した種々のプログラムに基づき種々の処理を行う。CPU31は、各プログラムをHDD33から読み出してプロセスとしてRAM32上で機能する。RAM32は、CPU31が用いるデータを記憶する。
The CPU 31 reads out various programs stored in the HDD 33 and performs various processes based on the read out various programs. The CPU 31 reads each program from the HDD 33 and functions on the RAM 32 as a process. The RAM 32 stores data used by the CPU 31.
通信アダプタ34は、インターネット4に接続されており、インターネット4を用いて、ノード2の配置されている場所の環境情報5を取得する。通信アダプタ34が取得した環境情報5は、CPU31によってHDD33に記憶される。また、通信アダプタ34は、ノード2が収集した情報(土砂崩れや洪水の発生の有無など)を、インターネット4を用いて、サーバーなどの外部装置などに送信する。
The communication adapter 34 is connected to the Internet 4 and uses the Internet 4 to acquire the environment information 5 of the location where the node 2 is arranged. The environment information 5 acquired by the communication adapter 34 is stored in the HDD 33 by the CPU 31. Further, the communication adapter 34 transmits information collected by the node 2 (whether or not landslide or flood has occurred) to an external device such as a server using the Internet 4.
無線部35は、複数のノード2間のマルチホップ通信を用いて、ノード2から情報を収集する通信インタフェースである。
The wireless unit 35 is a communication interface that collects information from the node 2 using multi-hop communication between the plurality of nodes 2.
つぎに、ノード2の機能構成例について説明する。図4は、ノード2の機能構成例を示すブロック図である。ノード2は、情報処理部20と、環境発電素子21と、電源制御ユニット22と、2次電池23とを有する。そして、情報処理部20が、制御部210と、通信部220と、記憶部230と、センサ27とを有する。通信部220は、無線部28の機能を有し、制御部210は、MCU24の機能を有し、記憶部230は、RAM25及びROM26の機能を有する。
Next, a functional configuration example of the node 2 will be described. FIG. 4 is a block diagram illustrating a functional configuration example of the node 2. The node 2 includes an information processing unit 20, an energy harvesting element 21, a power supply control unit 22, and a secondary battery 23. The information processing unit 20 includes a control unit 210, a communication unit 220, a storage unit 230, and a sensor 27. The communication unit 220 has the function of the wireless unit 28, the control unit 210 has the function of the MCU 24, and the storage unit 230 has the functions of the RAM 25 and the ROM 26.
通信部220は、ノード2や制御装置300と通信する通信インタフェースである。記憶部230は、親ノードテーブル230Aと、子ノードテーブル230Bと、LQIテーブル230Cとを有する。親ノードテーブル230Aは、例えば、自ノード2から見た親ノードを識別するIDとMACアドレスとを対応付けて記憶する領域である。子ノードテーブル230Bは、例えば、自ノード2から見た子ノードを識別するIDとMACアドレスとを対応付けて記憶する領域である。LQIテーブル230Cは、データの送信元のノード2を識別するID毎に受信データのLQIを記憶する領域である。
The communication unit 220 is a communication interface that communicates with the node 2 and the control device 300. The storage unit 230 includes a parent node table 230A, a child node table 230B, and an LQI table 230C. The parent node table 230A is an area for storing, for example, an ID for identifying a parent node viewed from the own node 2 and a MAC address in association with each other. The child node table 230B is an area for storing, for example, an ID for identifying a child node viewed from the own node 2 and a MAC address in association with each other. The LQI table 230C is an area for storing the LQI of received data for each ID for identifying the node 2 that is the data transmission source.
制御部210は、記憶部230に記憶されているプログラムを読み出し、読み出されたプログラムに基づき各種プロセスを実行する。制御部210は、算出部210Aと、付加部210Bと、指示部210Cとを有する。
The control unit 210 reads a program stored in the storage unit 230 and executes various processes based on the read program. The control unit 210 includes a calculation unit 210A, an addition unit 210B, and an instruction unit 210C.
算出部210Aは、子ノード2からのデータを受信した場合、LQIを算出する。算出部210Aは、例えば、電界強度(dBm)をPとした場合、LQI=(20P+1970)/7で算出する。また、算出部210Aは、2次電池23に蓄電されている電力量である蓄電量を算出する。付加部210Bは、算出したLQI及び蓄電量を、制御装置300への送信データに付加する。
When the calculation unit 210A receives data from the child node 2, the calculation unit 210A calculates the LQI. For example, when the electric field strength (dBm) is P, the calculation unit 210A calculates LQI = (20P + 1970) / 7. In addition, the calculation unit 210 </ b> A calculates a storage amount that is the amount of power stored in the secondary battery 23. The adding unit 210B adds the calculated LQI and the charged amount to the transmission data to the control device 300.
指示部210Cは、指示情報などを生成し、生成した指示情報を通信部220に送る。これにより、指示部210Cは、通信部220に接続された外部装置に種々の指示を行う。例えば、指示部210Cは、制御装置300へのデータ送信を通信部220に指示する。また、指示部210Cは、ノード2が起動した際に、親ノード2に対する接続要求の送信を通信部220に指示する。また、指示部210Cは、子ノード2から接続要求を受信した場合には、子ノード2に対する応答の送信を通信部220に指示する。また、指示部210Cは、親ノード2との間の接続処理が成功すると、接続完了通知の送信を通信部220に指示する。また、指示部210Cは、ノード2内の構成要素に、停電電力モードへの変更指示、通常動作モードへの変更指示、無線モジュールの停止指示、無線モジュールの起動指示などを指示する。
The instruction unit 210C generates instruction information and sends the generated instruction information to the communication unit 220. Thereby, the instruction unit 210C gives various instructions to the external apparatus connected to the communication unit 220. For example, the instruction unit 210C instructs the communication unit 220 to transmit data to the control device 300. In addition, the instruction unit 210C instructs the communication unit 220 to transmit a connection request to the parent node 2 when the node 2 is activated. When the instruction unit 210C receives a connection request from the child node 2, the instruction unit 210C instructs the communication unit 220 to transmit a response to the child node 2. In addition, when the connection process with the parent node 2 is successful, the instruction unit 210C instructs the communication unit 220 to transmit a connection completion notification. In addition, the instruction unit 210C instructs the components in the node 2 to change to the power failure power mode, to change to the normal operation mode, to stop the wireless module, to start the wireless module, and the like.
つぎに、GW3などの制御装置300の機能構成例について説明する。図5は、制御装置300の機能構成例を示すブロック図である。制御装置300は、制御部310と、通信部320と、記憶部330とを有する。通信部320は、無線部35及び通信アダプタ34の機能を有する。制御部310は、CPU31の機能を有する。記憶部330は、RAM32及びHDD33の機能を有する。
Next, a functional configuration example of the control device 300 such as the GW 3 will be described. FIG. 5 is a block diagram illustrating a functional configuration example of the control device 300. The control device 300 includes a control unit 310, a communication unit 320, and a storage unit 330. The communication unit 320 has functions of the wireless unit 35 and the communication adapter 34. The control unit 310 has the function of the CPU 31. The storage unit 330 has the functions of the RAM 32 and the HDD 33.
通信部320は、ノード2や外部装置と通信する通信インタフェースである。記憶部330は、未接続ノード情報記憶部330Aと、接続ノード情報記憶部330Bと、ノード状態記憶部330Cと、環境情報記憶部330Dとを有する。未接続ノード情報記憶部330Aは、制御部310が生成した未接続ノード情報を記憶する領域である。接続ノード情報記憶部330Bは、制御部310が生成した接続ノード情報を記憶する領域である。ノード状態記憶部330Cは、ノード2の接続状態や動作状態などを記憶する領域である。環境情報記憶部330Dは、通信部320がインターネット4を用いて取得した環境情報5を記憶する。環境情報5には、これまでの環境に関する環境実績情報と、これからの環境に関する環境予測情報とが含まれている。環境実績情報及び環境予測情報は、例えば、日照量、気温、湿度又は風速などである。
The communication unit 320 is a communication interface that communicates with the node 2 and external devices. The storage unit 330 includes an unconnected node information storage unit 330A, a connection node information storage unit 330B, a node state storage unit 330C, and an environment information storage unit 330D. The unconnected node information storage unit 330A is an area for storing unconnected node information generated by the control unit 310. The connection node information storage unit 330B is an area for storing connection node information generated by the control unit 310. The node state storage unit 330C is an area for storing a connection state, an operation state, and the like of the node 2. The environment information storage unit 330 </ b> D stores the environment information 5 acquired by the communication unit 320 using the Internet 4. The environmental information 5 includes environmental performance information about the environment so far and environmental prediction information about the future environment. The environmental performance information and the environmental prediction information are, for example, the amount of sunlight, the temperature, the humidity, or the wind speed.
制御部310は、記憶部330に記憶されているプログラムを読み出し、読み出されたプログラムに基づき種々の処理を行う。制御部310は、接続処理部310Aと、決定部310Bと、スリープ指示部310Cと、受入処理部310Dとを有する。接続処理部310Aは、ノード2との間の接続処理を制御する。決定部310Bは、記憶部330内のノード2に関する情報を更新するとともに、他のノード2からの接続受入を行う受入日時を決定する。例えば、決定部310Bは、通信部320を通じてノード2から受信したデータからLQIや電池残量を抽出し、記憶部330内で記憶されているLQIや電池残量を更新する。スリープ指示部310Cは、受入日時までノード2をスリープ状態とさせることをノード2に指示する。本実施例のスリープ指示部310Cは、経路上の全ノード2で接続又は中継に十分な電力が蓄積されていると予想できた場合に、経路として選択したノード2に対して予想起動日時までスリープさせる。スリープ指示部310Cは、ノード2が接続の受入れを試みた後は、各ノード2を再度スリープさせる。受入処理部310Dは、未接続のノード2が起動するタイミングに基づいて、接続の受入対象となるノード2を設定する。
The control unit 310 reads the program stored in the storage unit 330 and performs various processes based on the read program. The control unit 310 includes a connection processing unit 310A, a determination unit 310B, a sleep instruction unit 310C, and an acceptance processing unit 310D. The connection processing unit 310 </ b> A controls connection processing with the node 2. The determination unit 310 </ b> B updates information regarding the node 2 in the storage unit 330 and determines an acceptance date and time for accepting a connection from another node 2. For example, the determination unit 310B extracts the LQI and the remaining battery level from the data received from the node 2 through the communication unit 320, and updates the LQI and the remaining battery level stored in the storage unit 330. The sleep instruction unit 310C instructs the node 2 to place the node 2 in the sleep state until the reception date and time. The sleep instruction unit 310C according to the present embodiment sleeps until the expected start date and time for the node 2 selected as the path when it can be predicted that sufficient power has been accumulated for connection or relay in all the nodes 2 on the path. Let The sleep instruction unit 310C causes each node 2 to sleep again after the node 2 tries to accept the connection. The acceptance processing unit 310D sets the node 2 that is a connection acceptance target based on the timing at which the unconnected node 2 is activated.
尚、ノード2は、MCU24の代わりに又はMCU24とともに、CPU又はMPU(Micro Processing Unit)などのマイクロ・コンピュータを用いて各種処理を実行しても良い。また、制御装置300は、CPU31の代わりに又はCPU31とともに、MCU又はMPUなどのマイクロ・コンピュータを用いて各種処理を実行しても良い。
Note that the node 2 may execute various processes using a microcomputer such as a CPU or MPU (Micro Processing Unit) instead of the MCU 24 or together with the MCU 24. The control device 300 may execute various processes using a microcomputer such as an MCU or MPU instead of the CPU 31 or together with the CPU 31.
ところで、例えば、太陽電池を利用した環境発電では、冬期は太陽光パネルへの積雪により発電が停止するが、同時にノード2の周辺も雪に覆われるため、測定の目的によってはこの間は測定動作を行わなくてもよいこともある。例えば、冬期には、洪水による土砂崩れなどの測定は、行われなくてもよい場合がある。
By the way, for example, in the environmental power generation using solar cells, power generation stops due to snow on the solar panel in winter, but at the same time, the periphery of the node 2 is covered with snow, so depending on the purpose of the measurement, the measurement operation may be performed during this period. Sometimes it is not necessary. For example, in winter, it may not be necessary to measure landslides caused by floods.
春になって雪が解けると、太陽パネルからの電力供給がはじまるが、冬の間測定しないとはいえ、自然放電や電源回路のリーク電流などにより2次電池23はほぼ空の状態になっていることが想定される。
When the snow melts in the spring, the power supply from the solar panel begins, but the secondary battery 23 is almost empty due to natural discharge and the leakage current of the power circuit, although it is not measured during the winter. It is assumed that
このため、ノード2は、太陽電池によりある程度の電力が充電されると起動して周辺のノード2に対して再接続を試みる。接続試行にもある程度の電力を消費するため、例えば晴れた日の昼間なら、ノード2は、接続試行を行えるが、夜には電池が尽きてしまい、ノード2は、夜間や天気の悪い日は接続試行を行えないといったことが想定される。
For this reason, the node 2 starts when a certain amount of power is charged by the solar battery and tries to reconnect to the surrounding nodes 2. For example, in the daytime on a sunny day, the node 2 can try the connection, but the battery runs out at night, and the node 2 runs out at night or in bad weather. It is assumed that a connection attempt cannot be made.
2次電池23を十分に充電してから接続試行を始めれば長期間接続試行を行えるが、太陽電池の発電量に比べて2次電池23の容量が多い場合は、充電に非常に時間がかかる。さらに、制御システム1では、制御装置300に近いノード2から順に接続していく。このため、日当たり等の条件によっては、末端のノード2の付近までネットワークが伸びてきたときには末端のノード2は接続試行により電池を使い果たしており、再度充電が完了するまで長期間待つことになる可能性もある。
If the connection attempt is started after the secondary battery 23 is fully charged, the connection attempt can be performed for a long time. However, if the capacity of the secondary battery 23 is larger than the power generation amount of the solar battery, it takes a very long time to charge. . Further, in the control system 1, connections are made in order from the node 2 close to the control device 300. For this reason, depending on conditions such as sunlight, when the network extends to the vicinity of the node 2 at the end, the node 2 at the end has exhausted the battery due to the connection attempt and may wait for a long time until the charging is completed again. There is also sex.
一方で、ノード2を通信動作を行わないスリープ状態にすることで消費電力を小さく抑えることはできるが、スリープ中は周辺のノード2からの接続試行を受入れられない。また、スリープ状態のノード2は、マルチホップ通信の中継動作も行わない。このため、これらも考慮して、本実施例の制御装置300は、ノード2のスリープの期間を決定する。
On the other hand, power consumption can be reduced by putting the node 2 in a sleep state in which no communication operation is performed, but connection attempts from neighboring nodes 2 cannot be accepted during sleep. Further, the node 2 in the sleep state does not perform the relay operation for multi-hop communication. For this reason, taking these into account, the control device 300 of this embodiment determines the sleep period of the node 2.
具体的には、制御装置300は、インターネット4から天気予報などの環境情報5を取得して、天気予報に基づいて未接続のノード2が接続試行を行う日時を予測する。そして、制御装置300は、予測した日時に合わせて他の接続済みのノード2が起きるように、ノード2のスリープを制御する。これにより、2次電池23を充電しつつ未接続のノード2を回収出来るようになることが期待できる。尚、ノード2は、わずかでも電力が回復したら接続試行を開始するようにしておき、接続したら即座に制御装置300からスリープさせることで充電しつつも制御装置300から制御できる状態にしておく。
Specifically, the control device 300 acquires environmental information 5 such as a weather forecast from the Internet 4 and predicts the date and time when the unconnected node 2 performs a connection attempt based on the weather forecast. Then, the control device 300 controls the sleep of the node 2 so that another connected node 2 occurs in accordance with the predicted date and time. Thereby, it can be expected that the unconnected node 2 can be collected while charging the secondary battery 23. It should be noted that the node 2 starts a connection attempt when the power recovers even a little, and immediately after the connection, the node 2 sleeps from the control device 300 so that it can be controlled from the control device 300 while being charged.
これにより、ノード2が十分に充電されておらず、長期間動くことができない場合であっても、ノード2間の接続設定を効率良く行うことができる。また、ノード2は、センシング動作に限らず通信中継動作に関しても適切なタイミングでスリープ状態となるので、複数のノード2が同時に起きるような場合であっても、効率良く電力を使用することが可能となる。
Thereby, even when the node 2 is not sufficiently charged and cannot move for a long time, the connection setting between the nodes 2 can be performed efficiently. In addition, since the node 2 goes to a sleep state at an appropriate timing not only for the sensing operation but also for the communication relay operation, it is possible to efficiently use power even when a plurality of nodes 2 occur simultaneously. It becomes.
つぎに、ノード2及び制御装置300の動作フローについて説明する。まず、ノード2の起動時の動作フローと、ノード2の受信待機時の動作フローについて説明する。その後、制御装置300の動作フローとして、待機状態の動作フロー、更新処理の動作フロー、スリープ処理の動作フロー、受入後処理の動作フローについて説明する。
Next, the operation flow of the node 2 and the control device 300 will be described. First, an operation flow when the node 2 starts up and an operation flow when the node 2 waits for reception will be described. Subsequently, as an operation flow of the control device 300, an operation flow in a standby state, an operation flow of update processing, an operation flow of sleep processing, and an operation flow of post-acceptance processing will be described.
尚、以下の説明では、起動して親ノード又は制御装置300に接続要求を行うノード2を、ノード2X又は子ノード2Xという場合がある。また、ノード2Xから接続要求を受信する親ノードを、ノード2Y又は親ノード2Yという場合がある。したがって、本実施例では、ノード2Xが未接続の子ノードであり、このノード2Xが親ノード2Yに接続を試みようとする。また、本実施例では、ノード2Yが接続済みの親ノードであり、このノード2Yが子ノード2Xからの接続要求を受入れようとする。また、ノード2Xに接続要求を送信する子ノードを、ノード2Z又は子ノード2Zという場合がある。
In the following description, the node 2 that starts and makes a connection request to the parent node or the control device 300 may be referred to as a node 2X or a child node 2X. Further, a parent node that receives a connection request from the node 2X may be referred to as a node 2Y or a parent node 2Y. Therefore, in this embodiment, the node 2X is an unconnected child node, and this node 2X tries to connect to the parent node 2Y. In this embodiment, the node 2Y is a connected parent node, and the node 2Y tries to accept a connection request from the child node 2X. A child node that transmits a connection request to the node 2X may be referred to as a node 2Z or a child node 2Z.
図6は、ノード2の起動時における処理動作の一例を示すフローチャートである。無線センサノードであるノード2Xでは、2次電池23が空又は空に近い状態から環境発電素子21が発電を開始すると、ノード2Xの電源制御ユニット22が2次電池23への充電を開始する。具体的には、ノード2Xの環境発電素子21が太陽光などを利用して2次電池23への給電を開始する(ステップS11)。
FIG. 6 is a flowchart showing an example of processing operation when the node 2 is activated. In the node 2X that is a wireless sensor node, when the environmental power generation element 21 starts generating power from the state where the secondary battery 23 is empty or nearly empty, the power supply control unit 22 of the node 2X starts charging the secondary battery 23. Specifically, the energy harvesting element 21 of the node 2X starts power feeding to the secondary battery 23 using sunlight or the like (step S11).
ノード2Xの2次電池23への充電が進み、2次電池23の端子電圧がMCU24の動作電圧をある程度超えると、ノード2Xの電源制御ユニット22がMCU24である制御部210への電力供給を開始する。ノード2Xの指示部210Cは、電力供給を受けると無線モジュールである通信部220を起動し(ステップS12)、通信部220にネットワークへの接続要求を送信させる。これにより、ノード2Xは、近傍のノード2Yに対してネットワークへの接続要求を送信する(ステップS13)。ネットワークへの接続要求が送信されるノード2Yは、ノード2Xよりもツリー構造の上位に配置されたノード2である。
When the charging of the secondary battery 23 of the node 2X proceeds and the terminal voltage of the secondary battery 23 exceeds the operating voltage of the MCU 24 to some extent, the power control unit 22 of the node 2X starts supplying power to the control unit 210 that is the MCU 24 To do. Upon receiving power supply, the instruction unit 210C of the node 2X activates the communication unit 220, which is a wireless module (step S12), and causes the communication unit 220 to transmit a connection request to the network. Thereby, the node 2X transmits a connection request to the network to the nearby node 2Y (step S13). The node 2Y to which the connection request to the network is transmitted is the node 2 arranged higher in the tree structure than the node 2X.
接続要求が送信された後、ノード2Xの指示部210Cは、ノード2Yからの応答があったか否かを判定する(ステップS14)。応答がない場合(ステップS14否定)、ノード2Xは、一定時間待機し(ステップS15)、その後、近傍のノード2Yに対してネットワークへの接続要求を送信する(ステップS13)。このように、ノード2Yからの応答が無い場合には、一定時間待機した後に、接続要求の再送信が行われる。
After the connection request is transmitted, the instruction unit 210C of the node 2X determines whether or not there is a response from the node 2Y (step S14). When there is no response (No at Step S14), the node 2X waits for a predetermined time (Step S15), and then transmits a connection request to the network to the nearby node 2Y (Step S13). As described above, when there is no response from the node 2Y, the connection request is retransmitted after waiting for a predetermined time.
ノード2Xは、応答があるまで、一定時間待機と、接続要求の送信と、応答の有無の判定とを繰り返す。ノード2Xは、接続要求の1サイクルの処理として、少なくとも、接続要求の送信と応答の有無の判定とを実行する。接続要求の1サイクルに用いられる電力が環境発電の発電量を超える場合は、徐々に2次電池23の蓄電量が減っていく。そして、2次電池23の端子電圧がMCU24の動作電圧を下回ると、電源制御ユニット22がMCU24への給電を止め、これにより、MCU24の動作が停止する。その後、再度充電によって2次電池23の容量が回復すると、MCU24は給電により再起動し、これによりステップS11~S15の処理が繰り返される。
The node 2X repeats waiting for a certain period of time, sending a connection request, and determining whether or not there is a response until there is a response. The node 2X executes at least transmission of a connection request and determination of presence / absence of a response as processing of one cycle of the connection request. When the power used for one cycle of the connection request exceeds the amount of energy generated by the environmental power generation, the amount of power stored in the secondary battery 23 gradually decreases. When the terminal voltage of the secondary battery 23 falls below the operating voltage of the MCU 24, the power supply control unit 22 stops supplying power to the MCU 24, thereby stopping the operation of the MCU 24. Thereafter, when the capacity of the secondary battery 23 is restored by charging again, the MCU 24 is restarted by power feeding, whereby the processes of steps S11 to S15 are repeated.
ノード2Xの近傍に、ノード2Xとの接続を受入れられる状態にネットワーク接続されたノード2Yが存在すれば、ノード2Yが接続要求への応答をノード2Xに返す。したがって、ノード2Yからノード2Xに応答があると(ステップS14肯定)、ノード2Xの指示部210Cは、通信部220にノード2Yとの間の接続処理を実行させる(ステップS16)。これによりノード2X,2Y間でネットワーク接続処理が行われ、この結果、ネットワーク接続が確立される。尚、接続が受入れられる状態とは、例えば、ノード2Yの無線モジュールが受信状態になっており、その結果、ノード2Xからの接続要求を受信できる状態のことをいう。
If there is a node 2Y connected to the network in a state where the connection with the node 2X can be accepted in the vicinity of the node 2X, the node 2Y returns a response to the connection request to the node 2X. Therefore, when there is a response from the node 2Y to the node 2X (Yes at Step S14), the instruction unit 210C of the node 2X causes the communication unit 220 to execute a connection process with the node 2Y (Step S16). As a result, network connection processing is performed between the nodes 2X and 2Y, and as a result, network connection is established. Note that the state in which the connection is accepted refers to a state in which, for example, the wireless module of the node 2Y is in a reception state, and as a result, a connection request from the node 2X can be received.
ノード2X,2Y間のネットワーク接続処理が確立された後、ノード2Xの指示部210Cは、制御装置300であるGW3への接続通知を通信部220に送信させる(ステップS17)。接続通知は、ノード2X,2Y間のネットワーク接続処理が確立されたことを示す通知である。この後、ノード2Xは、受信待機状態に遷移する。
After the network connection process between the nodes 2X and 2Y is established, the instruction unit 210C of the node 2X causes the communication unit 220 to transmit a connection notification to the GW 3 that is the control device 300 (step S17). The connection notification is a notification indicating that the network connection processing between the nodes 2X and 2Y has been established. Thereafter, the node 2X transitions to a reception standby state.
図7は、ノード2の受信待機状態における処理動作の一例を示すフローチャートである。受信待機状態のノード2Yが、制御装置300からのスリープ指示を受信すると、スリープ指示で指定された時間の間、スリープ状態で待機する。具体的には、ノード2Yの指示部210Cは、無線モジュールである通信部220を停止させる(ステップS21)。
FIG. 7 is a flowchart showing an example of the processing operation of the node 2 in the reception standby state. When the node 2Y in the reception standby state receives the sleep instruction from the control device 300, the node 2Y waits in the sleep state for the time specified by the sleep instruction. Specifically, the instruction unit 210C of the node 2Y stops the communication unit 220 that is a wireless module (step S21).
そして、ノード2Yの指示部210Cは、MCU24である制御部210の動作モードを、通常動作モードよりも小さな電力で動作する停電電力モードに変更させる(ステップS22)。停電電力モードは、MCU24がスリープ状態になる動作モードである。スリープ状態では、通信部220が無線の送受信処理を行わず、MCU24も低消費電力状態で待機するため、消費電力を大きく下げることができ、その分、2次電池23の回復に専念できる。一方、スリープ状態では、ノード2Yの通信部220が無線の送受信を行わないため、近傍のノード2Xが接続要求を送信しても応答することはできない。
Then, the instruction unit 210C of the node 2Y changes the operation mode of the control unit 210, which is the MCU 24, to a power failure power mode that operates with lower power than the normal operation mode (step S22). The power failure mode is an operation mode in which the MCU 24 is in a sleep state. In the sleep state, the communication unit 220 does not perform wireless transmission / reception processing, and the MCU 24 also stands by in a low power consumption state. Therefore, power consumption can be greatly reduced, and the secondary battery 23 can be dedicated to the recovery. On the other hand, in the sleep state, since the communication unit 220 of the node 2Y does not perform wireless transmission / reception, even if the nearby node 2X transmits a connection request, it cannot respond.
ノード2Yが停電電力モードに遷移した後、ノード2Yの指示部210Cは、スリープ指示で指定された指定時間まで待機する(ステップS23)。指定時間の待機が完了すると、ノード2Yの指示部210Cは、MCU24である制御部210の動作モードを、停電電力モードよりも大きな電力で動作する通常動作モードに変更させる(ステップS24)。さらに、ノード2Yの指示部210Cは、無線モジュールである通信部220を起動し(ステップS25)、その後、受信待機状態となる。
After the node 2Y transitions to the power failure power mode, the instruction unit 210C of the node 2Y waits until the designated time designated by the sleep instruction (step S23). When waiting for the designated time is completed, the instruction unit 210C of the node 2Y changes the operation mode of the control unit 210, which is the MCU 24, to a normal operation mode that operates with power larger than the power failure power mode (step S24). Further, the instruction unit 210C of the node 2Y activates the communication unit 220, which is a wireless module (step S25), and then enters a reception standby state.
また、受信待機状態のノード2Yが、子ノードであるノード2Xから接続要求を受信すると、ノード2Yの指示部210Cは、通信部220にノード2Xへの接続応答を送信させる(ステップS26)。これにより、ノード2X,2Y間のネットワーク接続処理が確立される。この後、ノード2Yは、受信待機状態となる。
When the node 2Y in the reception standby state receives a connection request from the child node 2X, the instruction unit 210C of the node 2Y causes the communication unit 220 to transmit a connection response to the node 2X (step S26). Thereby, the network connection process between the nodes 2X and 2Y is established. Thereafter, the node 2Y enters a reception standby state.
尚、ノード2Xが、子ノードであるノード2Zから接続要求を受信した場合も、ノード2Xの指示部210Cは、通信部220にノード2Zへの接続応答を送信させる。これにより、ノード2X,2Z間のネットワーク接続処理が確立される。この後、ノード2Xは、受信待機状態となる。
Even when the node 2X receives a connection request from the child node 2Z, the instruction unit 210C of the node 2X causes the communication unit 220 to transmit a connection response to the node 2Z. Thereby, the network connection process between the nodes 2X and 2Z is established. Thereafter, the node 2X enters a reception standby state.
また、受信待機状態のノード2Yが、制御装置300からの状態測定指示を受信すると、ノード2Yは、状態測定指示で指示されたデータを測定する(ステップS27)。制御装置300からの状態測定指示は、ノード2YのLQIを測定する指示と、ノード2Yの電池残量を測定する指示とを含んでいる。ノード2Yの算出部210Aは、状態測定として、近傍のノード2毎にLQIを算出する。また、ノード2Yの算出部210Aは、状態測定として、ノード2Yの電池残量を算出する。通信部220は、算出されたLQI及び電池残量を、指示部210Cからの指示に従って制御装置300に送信する。ノード2Yの通信部220は、LQI及び電池残量を、親ノードであるノード2Y又は制御装置300に送信する。これにより、LQI及び電池残量は、直接的に、又は1~複数のノード2を介して、制御装置300に送信される(ステップS28)。この後、ノード2Yは、受信待機状態となる。
Further, when the node 2Y in the reception standby state receives the state measurement instruction from the control device 300, the node 2Y measures the data instructed by the state measurement instruction (step S27). The state measurement instruction from the control device 300 includes an instruction to measure the LQI of the node 2Y and an instruction to measure the remaining battery level of the node 2Y. The calculation unit 210A of the node 2Y calculates the LQI for each nearby node 2 as the state measurement. Further, the calculation unit 210A of the node 2Y calculates the remaining battery level of the node 2Y as the state measurement. The communication unit 220 transmits the calculated LQI and the remaining battery level to the control device 300 in accordance with an instruction from the instruction unit 210C. The communication unit 220 of the node 2Y transmits the LQI and the remaining battery level to the node 2Y that is the parent node or the control device 300. Thereby, the LQI and the remaining battery level are transmitted to the control device 300 directly or via one to a plurality of nodes 2 (step S28). Thereafter, the node 2Y enters a reception standby state.
図8は、制御装置300の待機状態における処理動作の一例を示すフローチャートである。待機状態の制御装置300では、通信部320が子ノード2から接続要求を受けると、接続処理部310Aが接続応答をノード2に送信する(ステップS31)。そして、制御装置300は、待機状態となる。
FIG. 8 is a flowchart showing an example of the processing operation of the control device 300 in the standby state. In the control device 300 in the standby state, when the communication unit 320 receives a connection request from the child node 2, the connection processing unit 310A transmits a connection response to the node 2 (step S31). And the control apparatus 300 will be in a standby state.
また、待機状態の制御装置300は、外部給電なので、常に受信状態、つまり接続要求を受入れられる状態にすることができる。このため、制御装置300の近傍、つまり直接通信可能な場所にあるノード2は、起動後すぐに制御装置300と接続することができる。
Further, since the control device 300 in the standby state is externally powered, it can always be in a reception state, that is, a state in which a connection request can be accepted. Therefore, the node 2 in the vicinity of the control device 300, that is, a place where direct communication is possible, can be connected to the control device 300 immediately after activation.
また、待機状態の制御装置300では、ノード2X,2Y間の接続完了を示す接続通知を、通信部320がノード2Xから受信すると、接続処理部310Aが、送信元ノードである子ノード2Xを接続状態のノードとして記録する(ステップS32)。この場合において、制御装置300は、新規のノード2が接続すると、接続したノード2の現時点での電池残量などを収集して記録する。具体的には、接続処理部310Aが、接続ノード情報記憶部330B内の接続済みノード情報335Bに子ノード2Xのエントリと子ノード2Xの電池残量などを登録する。また、接続処理部310Aが、未接続ノード情報記憶部330A内の未接続ノード情報335Aから子ノード2Xのエントリを削除する。さらに、制御装置300は、次回更新日時までのスリープ指示を、送信元ノードである子ノード2Xに送信する(ステップS33)。そして、制御装置300は、待機状態となる。尚、ノード2Zが子ノードとなる場合にも、ノード2Zは、ノード2Xと同様の処理を行う。
In the control device 300 in the standby state, when the communication unit 320 receives a connection notification indicating the completion of the connection between the nodes 2X and 2Y from the node 2X, the connection processing unit 310A connects the child node 2X that is the transmission source node. It is recorded as a state node (step S32). In this case, when the new node 2 is connected, the control device 300 collects and records the current remaining battery level of the connected node 2 and the like. Specifically, the connection processing unit 310A registers the entry of the child node 2X, the remaining battery level of the child node 2X, and the like in the connected node information 335B in the connection node information storage unit 330B. Further, the connection processing unit 310A deletes the entry of the child node 2X from the unconnected node information 335A in the unconnected node information storage unit 330A. Furthermore, the control device 300 transmits a sleep instruction up to the next update date and time to the child node 2X that is the transmission source node (step S33). And the control apparatus 300 will be in a standby state. Even when the node 2Z is a child node, the node 2Z performs the same processing as the node 2X.
また、待機状態の制御装置300では、決定部310Bが、スリープ状態の設定などを更新する更新日時の直前になると、未接続ノード情報335Aや接続済みノード情報335Bの更新処理の準備を開始し、準備が完了すると更新処理を行う。決定部310Bは、更新処理を実行する更新日時を、例えば12時間や24時間のように任意の時間間隔で周期的に設定しても良いし、環境発電の特性を考慮して朝と昼など任意のタイミングで設定しても良い。
Further, in the control device 300 in the standby state, the determination unit 310B starts preparation for update processing of the unconnected node information 335A and the connected node information 335B immediately before the update date and time for updating the sleep state setting and the like. When preparation is complete, update processing is performed. The determination unit 310B may periodically set the update date and time for executing the update process at an arbitrary time interval such as 12 hours or 24 hours, or in the morning and noon in consideration of the characteristics of energy harvesting. It may be set at an arbitrary timing.
図9は、未接続ノード情報335Aの構成例を示す図である。未接続ノード情報335Aは、ノード2を識別するためのノードIDと、LQIと、相関係数(αn)と、推定前回停止日時(t'ne)と、推定起動日時(tn)と、接続受入時間とが対応付けされた情報である。
FIG. 9 is a diagram illustrating a configuration example of the unconnected node information 335A. The unconnected node information 335A includes a node ID for identifying the node 2, an LQI, a correlation coefficient (α n ), an estimated previous stop date / time (t ′ ne ), an estimated start date / time (t n ), This information is associated with the connection acceptance time.
LQIは、他のノード2との間の通信品質であり、他のノード2毎に未接続ノード情報335Aに登録される。相関係数は、未接続のノード2Xの発電量を予測するための係数であり、環境情報5と発電量との相関に応じた係数である。相関係数は、ノード2Xの電力特性に対応している。推定前回停止日時は、ノード2Xが前回停止したと推定される日時である。
LQI is the communication quality with other nodes 2 and is registered in the unconnected node information 335A for each other node 2. The correlation coefficient is a coefficient for predicting the power generation amount of the unconnected node 2X, and is a coefficient corresponding to the correlation between the environmental information 5 and the power generation amount. The correlation coefficient corresponds to the power characteristic of the node 2X. The estimated previous stop date and time is the date and time when the node 2X is estimated to have stopped last time.
ノード2Xは、動作することによって蓄電量が減っていくので、蓄電量及び動作中の電力に応じた時間が経過すると停止する。したがって、決定部310Bは、推定前回停止日時を、蓄電量及び動作中の電力などに基づいて算出する。推定起動日時は、ノード2が起動すると推定される日時である。未接続ノード情報335Aには、未接続のノード2Xの推定起動日時が登録される。ノード2は、充電によって2次電池23の容量が回復すると再起動する。したがって、決定部310Bは、推定起動日時を蓄電量の推移などに基づいて算出する。接続受入時間は、ノード2が、起動した他のノード2からの接続を受入れる処理時間である。別言すれば、接続受入時間は、ノード2に設定され期間であり、他のノード2からの接続受入の期間である。したがって、決定部310Bは、接続受入時間を、接続試行を行う際の1サイクル分の処理時間と、サイクル数とに基づいて算出する。
Since the node 2X operates to reduce the amount of stored electricity, the node 2X stops when a time corresponding to the amount of stored power and operating power elapses. Therefore, the determination unit 310B calculates the estimated previous stop date and time based on the amount of stored electricity, the operating power, and the like. The estimated activation date / time is the date / time when the node 2 is estimated to be activated. In the unconnected node information 335A, the estimated activation date and time of the unconnected node 2X is registered. The node 2 is restarted when the capacity of the secondary battery 23 is recovered by charging. Therefore, the determination unit 310B calculates the estimated startup date and time based on the transition of the amount of stored electricity. The connection acceptance time is a processing time for the node 2 to accept a connection from another activated node 2. In other words, the connection acceptance time is a period set in the node 2 and a period of connection acceptance from the other nodes 2. Therefore, the determination unit 310B calculates the connection acceptance time based on the processing time for one cycle when the connection attempt is made and the number of cycles.
図10は、接続済みノード情報335Bの構成例を示す図である。接続済みノード情報335Bは、制御装置300であるGW3又はノード2を識別するためのノードIDと、LQIと、電池残量(Pn)[mWh]と、相関係数(αn)と、途中起動日時(tn)と、近傍除外ノードとが対応付けされた情報である。接続済みノード情報335Bには、接続済みのノード2YのLQI、相関係数が登録される。尚、制御装置300に関しては、有線で外部から電力が供給されるので、電池残量と、相関係数は登録されない。また、制御装置300に関しては、親ノードとなるノード2が存在しないので近傍除外ノードは登録されない。
FIG. 10 is a diagram illustrating a configuration example of the connected node information 335B. The connected node information 335B includes a node ID for identifying the GW 3 or the node 2 that is the control device 300, an LQI, a remaining battery level (P n ) [mWh], a correlation coefficient (α n ), This is information in which the start date / time (t n ) is associated with the neighborhood exclusion node. In the connected node information 335B, the LQI and correlation coefficient of the connected node 2Y are registered. In addition, regarding the control apparatus 300, since electric power is supplied from the outside by wire, the remaining battery level and the correlation coefficient are not registered. Further, regarding the control device 300, the node 2 that is the parent node does not exist, so the neighborhood excluded node is not registered.
電池残量は、ノード2Yの2次電池23に蓄電されている電力の残量である。電池残量は、ノード2Yから取得して、接続済みノード情報335Bに登録される。途中起動日時は、制御装置300又はノード2Yが、スリープ状態の途中で起動する日時である。換言すると、途中起動日時は、制御装置300又はノード2Yが、子ノード2Xからの接続を受入れる受入日時である。決定部310Bは、途中起動日時を、LQIや電池残量などに基づいて算出する。近傍除外ノードは、ノード2Yの近傍に配置されている未接続のノード2Xのうち、子ノード2Xとして除外するノード2である。決定部310Bは、接続の受入対象となるノード2Xと制御装置300との接続が失敗した場合に、接続の受入対象となるノード2Xを近傍除外ノードに登録する。
The battery remaining amount is the remaining amount of power stored in the secondary battery 23 of the node 2Y. The remaining battery level is acquired from the node 2Y and registered in the connected node information 335B. The halfway start date and time is the date and time when the control device 300 or the node 2Y starts during the sleep state. In other words, the mid-starting date and time is an acceptance date and time when the control device 300 or the node 2Y accepts a connection from the child node 2X. The determination unit 310B calculates the mid-starting date and time based on the LQI, the remaining battery level, and the like. The neighborhood exclusion node is a node 2 that is excluded as a child node 2X among the unconnected nodes 2X arranged in the vicinity of the node 2Y. When the connection between the node 2X that is the connection acceptance target and the control device 300 fails, the determination unit 310B registers the node 2X that is the connection acceptance target in the neighborhood exclusion node.
決定部310Bは、未接続ノード情報335Aをノード2の停止前にLQIに基づいて収集して記憶部330内に記録しておき、ノード2との接続後は、接続したノード2を未接続ノード情報335Aから削除する。そして、決定部310Bは、接続後に収集した情報などから接続済みノード情報335Bを作成する。
The determination unit 310B collects the unconnected node information 335A based on the LQI before stopping the node 2 and records it in the storage unit 330. After the connection with the node 2, the determination unit 310B displays the connected node 2 as an unconnected node. Delete from the information 335A. Then, the determination unit 310B creates connected node information 335B from information collected after connection.
図11は、制御装置300の更新処理動作の一例を示すフローチャートである。制御装置300は、更新日時の直前に、環境情報5を取得する(ステップS41)。具体的には、制御装置300は、更新日時となる所定時間前に、ノード2の環境実績情報と、ノード2の環境予想情報と、をインターネット4から入手しておく。環境情報5は、例えば環境発電が太陽電池を用いる場合は日照量などであり、風力を用いる場合は風速などである。制御装置300は、環境情報5を取得した後、更新日時まで待機する(ステップS42)。
FIG. 11 is a flowchart showing an example of the update processing operation of the control device 300. The control device 300 acquires the environment information 5 immediately before the update date (step S41). Specifically, the control device 300 obtains the environmental performance information of the node 2 and the environmental prediction information of the node 2 from the Internet 4 a predetermined time before the update date and time. The environmental information 5 is, for example, the amount of sunlight when energy harvesting uses solar cells, and the wind speed when wind power is used. After acquiring the environment information 5, the control device 300 waits until the update date and time (step S42).
更新日時になると、接続済みの全てのノード2のスリープ状態が解除されるので、制御装置300は、接続済みの全てのノード2と通信可能な状態になる。これにより、制御装置300の決定部310Bは、接続済みのノード2と通信をして、現在の蓄電量と、制御装置300又は周辺のノード2との間の通信品質とをノード2に測定させる。そして、決定部310Bは、ノード2からの測定結果を収集し、記憶部330に記録しておく。具体的には、決定部310Bは、接続済みの全ノード2にLQI取得要求を送信する(ステップS43)。そして、決定部310Bは、ノード2から取得したLQIを接続済みノード情報335Bに登録し、これによりLQIの更新を行う(ステップS44)。また、決定部310Bは、接続済みの全ノード2に電池残量取得要求を送信する(ステップS45)。そして、決定部310Bは、ノード2から取得した電池残量を接続済みノード情報335Bに登録する。尚、ステップS43の処理とステップS45の処理は、何れが先に行われても良いし、同時に行われても良い。
When the update date / time is reached, the sleep state of all the connected nodes 2 is canceled, so that the control device 300 can communicate with all the connected nodes 2. Thereby, the determination unit 310B of the control device 300 communicates with the connected node 2, and causes the node 2 to measure the current storage amount and the communication quality between the control device 300 or the surrounding nodes 2. . Then, the determination unit 310B collects the measurement results from the node 2 and records them in the storage unit 330. Specifically, the determination unit 310B transmits an LQI acquisition request to all connected nodes 2 (step S43). Then, the determination unit 310B registers the LQI acquired from the node 2 in the connected node information 335B, thereby updating the LQI (step S44). Further, the determination unit 310B transmits a battery remaining amount acquisition request to all connected nodes 2 (step S45). Then, the determination unit 310B registers the remaining battery level acquired from the node 2 in the connected node information 335B. Note that either the process of step S43 or the process of step S45 may be performed first or simultaneously.
決定部310Bは、蓄電量である電池残量と、通信品質であるLQIの収集が完了すると、接続済みのノード2の発電量を予測するための、環境情報5と発電量との相関係数を算出し、接続済みノード情報335B内の相関係数を更新する(ステップS46)。決定部310Bは、相関係数を更新する際に、ノード2から、現在の蓄電量(Pn1)と、前回測定時の蓄電量(Pn2)とを取得しておく。決定部310Bは、現在の蓄電量(Pn1)であるノード2の電池残量(Pn)を接続済みノード情報335B内で更新する(ステップS47)。
When the determination unit 310B completes the collection of the remaining battery level as the storage amount and the LQI as the communication quality, the correlation coefficient between the environmental information 5 and the generation amount for predicting the generation amount of the connected node 2 And the correlation coefficient in the connected node information 335B is updated (step S46). When updating the correlation coefficient, the determination unit 310B obtains the current storage amount (P n1 ) and the storage amount (P n2 ) at the previous measurement from the node 2. The determination unit 310B updates the remaining battery level (P n ) of the node 2 that is the current charged amount (P n1 ) in the connected node information 335B (step S47).
インターネット4から入手できる日照量や風速などの環境情報5は、広い範囲で一律であるが、実際にはノード2の設置条件によって日当たりや風当たりが異なるため、決定部310Bは、相関係数をノード個別に設定する。
The environment information 5 such as the amount of sunlight and wind speed that can be obtained from the Internet 4 is uniform over a wide range. However, since the sunlight and wind perception vary depending on the installation conditions of the node 2, the determining unit 310B sets the correlation coefficient to the node Set individually.
決定部310Bは、第n(nは自然数)番目のノード2における相関係数(αn)を、例えば以下の式(1)を用いて算出する。すなわち、決定部310Bは、理想発電量(EI)と、現在の蓄電量(Pn1)と、前回測定時の蓄電量(Pn2)と、スリープ中の単位時間当たりの消費電力(Ws)と、前回測定時からの経過時間(t)とを用いて相関係数(αn)を算出する。式(1)における理想発電量(EI)は、環境情報5と環境発電素子21の設計情報とに基づいて算出されるものである。
The determination unit 310B calculates the correlation coefficient (α n ) at the n-th (n is a natural number) node 2 using, for example, the following equation (1). That is, the determination unit 310B determines the ideal power generation amount (E I ), the current power storage amount (P n1 ), the power storage amount at the previous measurement (P n2 ), and the power consumption per unit time during sleep (W s ) And the elapsed time (t) from the previous measurement, the correlation coefficient (α n ) is calculated. The ideal power generation amount (E I ) in the equation (1) is calculated based on the environmental information 5 and the design information of the environmental power generation element 21.
決定部310Bは、接続中の全てのノード2に対して、相関係数(αn)を算出し、接続済みノード情報335Bに記録する。ここで、環境情報5の構成について説明する。図12は、環境情報5330Dの構成例を示す図である。ここでは、環境情報5330Dが、環境実績情報と環境予測情報とを含んだ構成となっている場合について説明する。環境情報5330Dは、地域と、日付と、時刻と、日照量の実測値と、日照量の予測値とが対応付けされた情報である。
The determination unit 310B calculates the correlation coefficient (α n ) for all connected nodes 2 and records it in the connected node information 335B. Here, the configuration of the environment information 5 will be described. FIG. 12 is a diagram illustrating a configuration example of the environment information 5330D. Here, a case will be described in which the environment information 5330D is configured to include environment performance information and environment prediction information. The environment information 5330D is information in which a region, a date, a time, a measured value of the amount of sunlight, and a predicted value of the amount of sunlight are associated with each other.
地域は、ノード2の配置されている場所であり、環境情報5330Dの設定対象となる対象地区である。日付は、環境情報5330Dの日照量が取得された日付であり、時刻は、環境情報5330Dの日照量が取得された時刻である。また、日照量の実測値は、環境情報5330D内の地域にて実際に測定された日照量の実績である。また、日照量の予測値は、環境情報5330Dの地域にて今後予測される日照量である。日照量の実測値は、実際の計測装置などを用いて測定されるものであり、決定部310Bは、インターネット4を用いて実測値を取得する。また、日照量の予測値は、天気予報などから導出されるものであり、決定部310Bは、インターネット4を用いて予測値を取得する。環境実績情報は、環境情報5330Dにおいて、地域と、日付と、時刻と、日照量の実測値とが対応付けされた情報である。また、環境予測情報は、環境情報5330Dにおいて、地域と、日付と、時刻と、日照量の予測値とが対応付けされた情報である。
The area is a place where the node 2 is arranged, and is a target area for which the environment information 5330D is set. The date is the date when the amount of sunshine in the environment information 5330D is acquired, and the time is the time when the amount of sunshine in the environment information 5330D is acquired. Moreover, the actual value of the amount of sunshine is a result of the amount of sunshine actually measured in the area in the environment information 5330D. Moreover, the predicted value of the amount of sunshine is the amount of sunshine predicted in the future in the area of the environment information 5330D. The actually measured value of the amount of sunshine is measured using an actual measuring device or the like, and the determination unit 310B acquires the actually measured value using the Internet 4. Moreover, the predicted value of the amount of sunshine is derived from a weather forecast or the like, and the determination unit 310 </ b> B acquires the predicted value using the Internet 4. The environmental performance information is information in which the region, the date, the time, and the measured value of the amount of sunlight are associated with each other in the environmental information 5330D. The environment prediction information is information in which the region, the date, the time, and the predicted value of the amount of sunlight are associated with each other in the environment information 5330D.
例えば、環境情報5330Dとして1時間毎の対象地区の日照量(Li)の記録が、インターネット4経由で配信されているとする。この場合、決定部310Bは、環境発電素子21の一例である太陽光パネルの設計情報から得られる照度と、発電量との関係から、各時区間の単位時間当たりの発電量(W(Li))を得ることができる。したがって、決定部310Bは、単位時間当たりの発電量を、前回測定日時から現在日時まで積算すれば、理想発電量(EI)を得ることができる。具体的には、決定部310Bは、以下の式(2)を用いて、理想発電量(EI)を算出する。
For example, it is assumed that a record of the sunshine amount (L i ) of the target district every hour is distributed as the environment information 5330D via the Internet 4. In this case, the determination unit 310B determines the power generation amount per unit time (W (L i) from the relationship between the illuminance obtained from the design information of the solar panel that is an example of the energy harvesting element 21 and the power generation amount. )) Can be obtained. Therefore, the determination unit 310B can obtain the ideal power generation amount (E I ) by integrating the power generation amount per unit time from the previous measurement date and time to the current date and time. Specifically, the determination unit 310B calculates an ideal power generation amount (E I ) using the following equation (2).
決定部310Bは、接続済みのノード2の情報更新が完了すると、接続済みのノード2の近傍にある未接続のノード2を抽出する。換言すると、決定部310Bは、接続済みノード情報335Bや環境情報5330Dの更新が完了すると、未接続のノード2の中から接続済みのノード2の近傍にあるノード2を抽出する(ステップS48)。この場合において、決定部310Bは、ノード2を抽出するために、環境発電が行えなくなってノード2が停止する以前に各ノード2間の通信品質を取得して接続済みノード情報335Bに記録しておく。例えば、決定部310Bは、積雪が始まる前に各ノード2から通信品質を取得しておく。この接続済みノード情報335Bを元に、決定部310Bは、接続済みのノード2との間の通信品質が、送受信共に閾値以上の未接続のノード2を、未接続の近傍のノード2として抽出する。
When the information update of the connected node 2 is completed, the determination unit 310B extracts the unconnected node 2 in the vicinity of the connected node 2. In other words, when the update of the connected node information 335B and the environment information 5330D is completed, the determination unit 310B extracts the node 2 in the vicinity of the connected node 2 from the unconnected nodes 2 (Step S48). In this case, in order to extract the node 2, the determination unit 310B acquires the communication quality between the nodes 2 and records it in the connected node information 335B before the node 2 stops because the environmental power generation cannot be performed. deep. For example, the determination unit 310B acquires the communication quality from each node 2 before snow begins. Based on this connected node information 335B, the determination unit 310B extracts the unconnected node 2 whose communication quality with the connected node 2 is greater than or equal to the threshold value for both transmission and reception as the unconnected nearby node 2. .
次に、決定部310Bは、抽出した未接続の近傍のノード2に対してそれぞれが環境発電により起動して接続試行動作を行う日時を推定する。換言すると、決定部310Bは、抽出したノード2の推定起動日時を算出する(ステップS49)。この算出には、各ノード2の相関係数が用いられるが、決定部310Bは、未接続のノード2に関してはノード2が停止する以前に、式(1)などを用いた上述の方法を利用して、未接続のノード2の相関係数を算出し記録しておく。そして、決定部310Bは、記録しておいた未接続のノード2の相関係数を利用する。決定部310Bは、この相関係数と、環境実績情報と、環境予測情報とから、各時区間でのノード2の蓄電量を予測する。そして、決定部310Bは、予測した蓄電量がノード2の動作に必要な電力量を超える日時が、ノード2が起動して接続試行を開始可能な日時であると予測する。この接続試行を開始すると予測された日時は、ノード2が起動して接続試行を開始可能な開始予想日時である。
Next, the determination unit 310B estimates the date and time when each of the extracted unconnected neighboring nodes 2 is activated by energy harvesting and performs a connection trial operation. In other words, the determination unit 310B calculates the estimated activation date / time of the extracted node 2 (step S49). For this calculation, the correlation coefficient of each node 2 is used, but the determination unit 310B uses the above-described method using the equation (1) or the like for the unconnected node 2 before the node 2 stops. Then, the correlation coefficient of the unconnected node 2 is calculated and recorded. Then, the determination unit 310B uses the recorded correlation coefficient of the unconnected node 2. The determination unit 310B predicts the storage amount of the node 2 in each time interval from the correlation coefficient, environmental performance information, and environmental prediction information. Then, the determination unit 310B predicts that the date and time when the predicted power storage amount exceeds the power amount necessary for the operation of the node 2 is the date and time when the node 2 can be started and a connection attempt can be started. The date and time predicted to start this connection attempt is the expected start date and time at which the node 2 can start and start the connection attempt.
ノード2は、接続試行を開始すると消費電力が大幅に増え、徐々に電池残量は減っていき、蓄電量が枯渇するとノード2は動作を停止し接続試行も終了する。この接続試行の開始予想日時から接続試行の終了予想日時までの期間が、ノード2の接続受入れに要する期間よりも長ければ、決定部310Bは、このノード2は、接続試行を行うと推測する。
When node 2 starts a connection attempt, the power consumption increases greatly, the remaining battery level gradually decreases, and when the storage amount is depleted, node 2 stops its operation and the connection attempt ends. If the period from the estimated start date / time of the connection attempt to the estimated end date / time of the connection attempt is longer than the period required for accepting the connection of the node 2, the determining unit 310B estimates that the node 2 will perform the connection attempt.
各ノード2の単位時間当たりの発電量は、環境発電素子21の環境情報5と設計情報とから得られた理想の発電量W(Li)に相関係数αをかけた値となる。前回の接続試行を終了したときには、2次電池23の残量は尽きているはずなので、前回の接続試行が終了したと予測した日時をt'neとすると、日時t時点でのノードnの蓄電量Pnは、リーク等による放電分である消費電力をWlとして以下の式(3)を用いて算出可能である。したがって、決定部310Bは、以下の式(3)を用いて、蓄電量Pnを算出する。
The power generation amount per unit time of each node 2 is a value obtained by multiplying the ideal power generation amount W (L i ) obtained from the environment information 5 and design information of the energy harvesting element 21 by the correlation coefficient α. When the previous connection attempt is completed, the remaining amount of the secondary battery 23 should be exhausted. Therefore, if the date and time when the previous connection attempt is predicted to be t'ne , the storage of the node n at the time and date t The amount P n can be calculated using the following formula (3), where W l is the power consumption that is the amount of discharge due to leakage or the like. Therefore, the determination unit 310B calculates the storage amount P n using the following equation (3).
この式(3)の蓄電量(Pn)が動作可能な閾値(Pt)を超える日時が、接続開始予想日時tnsとなる。一方、接続試行中は消費電力Wcが増加するため、日時t(t>tns)における蓄電量は、以下の式(4)を用いて算出できる。したがって、決定部310Bは、以下の式(4)を用いて、蓄電量Pnを算出する。
The date and time when the charged amount (P n ) of Equation (3) exceeds the operable threshold (P t ) is the expected connection start date and time t ns . On the other hand, during the connection attempt to increase power consumption W c, quantity of stored power in the time t (t> t ns) it can be calculated using the following equation (4). Therefore, the determination unit 310B calculates the storage amount P n using the following equation (4).
この式(4)のPnが0になる日時が、接続試行終了日時tneとなる。決定部310Bは、未接続のノード2が接続試行を行うと予測すると、接続受入れを開始すると予測する日時と、終了すると予測する日時のちょうど中間に接続受入れを行う場合の接続受入れの開始日時を推定起動日時とする。尚、接続受入れに必要な期間は、例えば、接続試行を行う周期の数サイクル分程度の長さである。ノードnに対して接続試行を行う期間をpnとすると、推定起動日時(tn)は、次の式(5)から算出可能である。したがって、決定部310Bは、以下の式(5)を用いて、推定起動日時(tn)を算出する。
The date and time when P n in Equation (4) becomes 0 is the connection trial end date and time t ne . If the determination unit 310B predicts that the unconnected node 2 will perform a connection attempt, the determination unit 310B indicates the connection acceptance start date and time when connection acceptance is performed between the date and time when the connection acceptance is predicted to start and the date and time when the connection acceptance is predicted to end. Estimated start date and time. The period necessary for accepting the connection is, for example, a length of several cycles of the connection trial period. When the period for the connection attempt to the node n and p n, estimated start time (t n) can be calculated from the following equation (5). Therefore, the determination unit 310B calculates the estimated activation date and time (t n ) using the following equation (5).
決定部310Bは、最も早い未選択の推定起動日時(ti:ノードi)を選択する(ステップS50)。換言すると、決定部310Bは、複数の未接続のノード2の推定起動日時tnのうち最も早い日時tiを選択する。ここでは、推定起動日時tnのうち最も早い日時が、日時t1である場合について説明する。
The determination unit 310B selects the earliest unselected estimated activation date / time (ti: node i) (step S50). In other words, determination section 310B selects the earliest time ti of the estimated start time t n of the nodes of the plurality of unconnected 2. Here, a case where the earliest date / time of the estimated activation date / time t n is date / time t 1 will be described.
決定部310Bは、日時tiが選択可能、かつ日時t1が次回の更新日時以前であるか否かを判定する(ステップS51)。日時tiを選択できない場合(ステップS51否定)、制御装置300は、ノード2へのスリープ処理に遷移する。また、日時t1が次回の更新日時よりも後であれば(ステップS51否定)、決定部310Bは、今回は受入れを行わないと判断する。そして、ノード2へのスリープ処理に遷移する。
Determination unit 310B, the time ti can be selected, and the date and time t 1 is determined whether the next update date and time previously (step S51). When the date and time ti cannot be selected (No at Step S51), the control device 300 transitions to a sleep process for the node 2. In addition, if it is later than the date and time t 1 is the next update date and time (step S51: No), the determining section 310B determines that this time does not perform the acceptance. Then, the process transits to the sleep process for the node 2.
一方、日時t1が次回の更新日時よりも前であれば(ステップS51肯定)、決定部310Bは、選択した日時t1に対応するノード2よる接続受入れを決定する。そして、決定部310Bは、日時ti(t1)における接続済みのノード2の蓄電量Pn'を推定する(ステップS52)。蓄電量Pn'は、前述のように各ノード2で測定した現在の蓄電量Pnと、この蓄電量Pnから算出した相関係数αnと、環境予測情報内の日照量(Li)と、スリープ中の消費電力Wsとを用いて算出可能である。したがって、決定部310Bは、以下の式(6)を用いて、蓄電量Pn'を算出する。尚、現在の蓄電量Pnは、上述した式(3)又は式(4)を用いて算出されるものである。
On the other hand, if it is before time t 1 than the next update date and time (step S51: Yes), the determining unit 310B determines the connection acceptance by the node 2 by corresponding to time t 1 selected. Then, the determination unit 310B estimates the power storage amount P n ′ of the connected node 2 at the date and time ti (t1) (step S52). The storage amount P n ′ is the current storage amount P n measured at each node 2 as described above, the correlation coefficient α n calculated from the storage amount P n , and the sunshine amount (L i in the environmental prediction information). ) And the power consumption W s during sleep can be calculated. Therefore, the determination unit 310B calculates the storage amount P n ′ using the following equation (6). The current power storage amount P n is calculated using the above-described formula (3) or formula (4).
また、決定部310Bは、各ノード2の蓄電量Pn'を算出すると、接続を受入れると決定したノードiと制御装置300との間の中継を行うノード2を決定する。このとき、決定部310Bは、接続を受入れると決定したノードiから制御装置300までの経路に対応する1~複数のノード2を決定する。これにより、決定部310Bは、接続を受入れると決定したノードiから制御装置300までの全経路を探索する。このように、決定部310Bは、接続を受入れると決定したノードiへの経路を選択する(ステップS53)。
In addition, after calculating the storage amount P n ′ of each node 2, the determination unit 310B determines the node 2 that performs relay between the node i that has been determined to accept the connection and the control device 300. At this time, the determination unit 310B determines one to a plurality of nodes 2 corresponding to the route from the node i determined to accept the connection to the control device 300. Thereby, the determination unit 310B searches for all routes from the node i determined to accept the connection to the control device 300. Thus, the determination unit 310B selects a route to the node i determined to accept the connection (step S53).
経路探索の手法には様々な手法があるので、ここではその一例について説明する。決定部310Bは、接続を受入れると決定した未選択のノードiの近傍で接続済み且つ双方の通信品質が閾値を超えるノード2を一筆書きで辿って、制御装置300に辿り着く全ての経路を抽出する。そして、決定部310Bは、ノードiへの経路が選択可能であるか否かを判定する(ステップS54)。
Since there are various methods for route search, an example will be described here. The determination unit 310B extracts all the routes that reach the control device 300 by tracing the node 2 that has been connected in the vicinity of the unselected node i determined to accept the connection and whose communication quality exceeds the threshold value with a single stroke. To do. Then, the determination unit 310B determines whether or not the route to the node i can be selected (step S54).
決定部310Bは、ノードiへの経路が選択不可能であると判定すると(ステップS54否定)、ノードiへの経路が選択不可能と判断されるまで、ステップS50~S54の処理を繰り返す。
If the determination unit 310B determines that the route to the node i cannot be selected (No at step S54), the determination unit 310B repeats the processing of steps S50 to S54 until it is determined that the route to the node i cannot be selected.
決定部310Bは、それぞれの経路に対して経路上の全てのノード2の蓄電量が接続受入れに必要な電力を越えていれば受入れ可能な経路と判定する(ステップS54肯定)。決定部310Bは、受入れ可能な経路の中から、接続を受入れると決定したノードiへの経路を選択する。
The determination unit 310B determines that the path is acceptable if the power storage amount of all the nodes 2 on the path exceeds the power necessary for connection acceptance for each path (Yes in step S54). The determination unit 310B selects a route to the node i determined to accept the connection from among the acceptable routes.
接続の受入れ中は、受入れ中のノード2も中継するノード2も全て受信待機状態になるため、受信待機状態での消費電力WRに受入れ期間pnをかけたものが消費電力量となる。この受信待機状態における消費電力量は、予想蓄電量よりも小さければ良い。
During acceptance of connection to become node 2 also all be node 2 for relaying reception standby state in the receiving, multiplied by acceptance period p n to the power consumption W R in a reception standby state is power consumption. The power consumption amount in the reception standby state may be smaller than the expected power storage amount.
接続済みのノード数が多い場合は複数の経路が受入れ可能になる可能性があるが、その場合、決定部310Bは、例えば制御装置300までの中継数が少ない経路を優先選択する。また、決定部310Bは、中継数が同一であれば経路中で最も予想蓄電量の小さいノード2同士を比較して、予想蓄電量の大きな方の経路を選択する。決定部310Bは、ノード2の中継数、予想蓄電量又は相関係数などで重み付けをして1つの経路を選択する。
When there are a large number of connected nodes, there is a possibility that a plurality of routes may be accepted. In this case, the determination unit 310B preferentially selects a route with a small number of relays to the control device 300, for example. Further, if the number of relays is the same, the determination unit 310B compares the nodes 2 having the smallest predicted power storage amount among the routes and selects the route having the larger predicted power storage amount. The determination unit 310B selects one route by weighting with the number of relays of the node 2, the expected power storage amount, the correlation coefficient, or the like.
図13は、経路選択方法の一例を説明するための図である。例えば、制御システム1内に“K”から“O”までの5つのノード2があり、現在“K”、“L”、“M”のノード2が接続中で、“N”、“O”のノード2が未接続であるとする。この場合において、図12内の矢印が、それぞれのノード間の近傍関係を表すとすると、“O”のノード2については、“O”→“L”→制御装置300、“O”→“L”→“K”→制御装置300、“O”→“M”→“L”、“O”→“M”→“L”→“K”→制御装置300という経路が存在する。
FIG. 13 is a diagram for explaining an example of a route selection method. For example, there are five nodes 2 from “K” to “O” in the control system 1, and the nodes 2 of “K”, “L”, and “M” are currently connected, and “N”, “O”. Node 2 is not connected. In this case, if the arrows in FIG. 12 represent the proximity relationship between the respective nodes, “O” → “L” → control device 300, “O” → “L” for node 2 of “O”. There are paths of “→” K ”→ control device 300,“ O ”→“ M ”→“ L ”,“ O ”→“ M ”→“ L ”→“ K ”→ control device 300.
例えば、“K”と“L”のノード2の予想蓄電量は必要電力量を超えているが、“M”のノード2は越えていない場合は、受入れ可能な経路は、“O”→“L”→制御装置300、“O”→“L”→“K”→制御装置300の2つになる。決定部310Bは、この2つの経路のうち、最もホップ数の少ない“O”→“L”→制御装置300の経路を選択する。
For example, if the predicted power storage amount of the node 2 of “K” and “L” exceeds the required power amount but does not exceed the node 2 of “M”, the acceptable path is “O” → “ L ”→ control device 300,“ O ”→“ L ”→“ K ”→ control device 300. The determination unit 310B selects the route of “O” → “L” → the control device 300 having the smallest number of hops among the two routes.
決定部310Bは、経路が選択できたら、経路上のノード2に対して日時t1で起動することを記録させる。具体的には、決定部310Bは、経路上のノード2および制御装置300であるGW3が記憶している途中起動日時に日時t1を追加させる(ステップS55)。そして、決定部310Bは、選択可能な経路がなくなるまで、ステップS50~S55の処理を繰り返す。例えば、決定部310Bは、日時t1のノード2に途中起動日時を記憶させた後、日時t1の次に早い推定起動日時t2のノード2に対して日時t1のノード2と同様の処理を行う。ただし、日時t1の経路として選択されたノード2に関しては、待ち受けによりWR×pnの電力を消費するため、決定部310Bは、蓄電量を予測する際には、この消費する電力分を差し引いて算出する。以降、推定起動日時が次回の更新日時よりも早い全ての未接続のノード2に対して、決定部310Bは、同様の処理を行っていく。これにより、次回の更新日時までに起動する途中起動日時が、ノード2および接続済みノード情報335Bに記録されるので、制御装置300のスリープ指示部310Cは、接続済みノード情報335B内の途中起動日時に基づいて、ノード2へのスリープ指示を行う。
Determination unit 310B, once the route can be selected to record that starts with the time t 1 to the node 2 on the path. Specifically, the determination unit 310B adds the date and time t 1 to the midway activation date and time stored in the node 2 on the route and the GW 3 that is the control device 300 (step S55). Then, the determination unit 310B repeats the processes of steps S50 to S55 until there are no more selectable routes. For example, determination unit 310B After storing the midway start date and time node 2 date t 1, with respect to earlier estimated start time t 2 of the node 2 to the next time t 1 of time t 1 node 2 the same Process. However, with respect to node 2 selected as the route date t 1, in order to consume the power of W R × p n by waiting, determining unit 310B, when predicting the charged amount, the power fraction for the consumption Calculate by subtracting. Thereafter, the determination unit 310B performs the same processing for all the unconnected nodes 2 whose estimated activation date and time is earlier than the next update date and time. As a result, the halfway start date and time up to the next update date and time is recorded in the node 2 and the connected node information 335B, so that the sleep instruction unit 310C of the control device 300 allows the halfway start date and time in the connected node information 335B. Based on the above, a sleep instruction is given to the node 2.
図14は、制御装置300のスリープ処理動作の一例を示すフローチャートである。制御装置300のスリープ指示部310Cは、各ノード2に対して途中起動日時を記録させていれば、この途中起動日時の中で最も早い日時に起動するよう、途中起動日時を記録している各ノード2にスリープ指示を送信する。また、スリープ指示部310Cは、途中起動日時を記録させていないノード2に対しては、次回の更新日時までスリープするようにスリープ指示を送信する。
FIG. 14 is a flowchart showing an example of the sleep processing operation of the control device 300. If the sleep instruction unit 310C of the control device 300 records the start date / time in the middle of each node 2, each start date / time is recorded so that the node 2 starts at the earliest date / time. A sleep instruction is transmitted to the node 2. In addition, the sleep instruction unit 310C transmits a sleep instruction to the node 2 for which the activation date / time is not recorded so as to sleep until the next update date / time.
以下、スリープ処理の具体的な指示手順について説明する。スリープ指示部310Cは、未選択の接続済みのノード2を順番に選択する。ここでは、スリープ指示部310Cが、未選択の接続済みのノード2を1つ選択する(ステップS61)。そして、スリープ指示部310Cは、ノード2を選択可能であったかを確認する(ステップS62)。選択可能であった場合(ステップS62肯定)、スリープ指示部310Cは、選択したノード2の最短の途中起動日時を接続済みノード情報335Bから取得する(ステップS63)。そして、スリープ指示部310Cは、最短の途中起動日時を取得可能であったかを確認する(ステップS64)。取得可能であった場合(ステップS64肯定)、スリープ指示部310Cは、取得した途中起動日時までスリープすることを指示するスリープ指示を、選択したノード2に送信する(ステップS65)。一方、途中起動日時の取得が不可能であった場合(ステップS64否定)、スリープ指示部310Cは、次回更新日時までスリープすることを指示するスリープ指示を、選択したノード2に送信する(ステップS66)。途中起動日時までのスリープ指示又は次回更新日時までのスリープ指示を、ノード2に送信した後、スリープ指示部310Cは、ステップS61~S66の処理を繰り返す。
Hereinafter, a specific instruction procedure for the sleep process will be described. The sleep instruction unit 310C sequentially selects the unselected connected nodes 2. Here, the sleep instruction unit 310C selects one connected unselected node 2 (step S61). Then, the sleep instruction unit 310C confirms whether or not the node 2 can be selected (step S62). When the selection is possible (Yes at Step S62), the sleep instruction unit 310C acquires the shortest halfway start date and time of the selected node 2 from the connected node information 335B (Step S63). Then, the sleep instruction unit 310C confirms whether or not the shortest start date / time can be acquired (step S64). If acquisition is possible (Yes in step S64), the sleep instruction unit 310C transmits a sleep instruction instructing to sleep until the acquired halfway start date and time to the selected node 2 (step S65). On the other hand, if acquisition of the activation date / time is not possible (No at Step S64), the sleep instruction unit 310C transmits a sleep instruction instructing to sleep until the next update date / time to the selected node 2 (Step S66). ). After transmitting the sleep instruction up to the start date and time or the sleep instruction up to the next update date and time to the node 2, the sleep instruction unit 310C repeats the processes of steps S61 to S66.
ステップS62の処理において、ノード2の選択が不可能であった場合(ステップS62否定)、受入処理部310Dは、制御装置300であるGW3の最短の途中起動日時を接続済みノード情報335Bから取得する(ステップS67)。換言すると、全てのノード2へスリープ指示が完了すると、受入処理部310Dは、制御装置300の途中起動日時を取得する。この制御装置300の途中起動日時は、制御装置300が、接続受入処理を実行したノード2に対しての再度のスリープ指示を行うための日時である。受入処理部310Dは、途中起動日時の取得を試みた際に、途中起動日時を取得可能であったかを確認する(ステップS68)。途中起動日時の取得が不可能であった場合(ステップS68否定)、受入処理部310Dは、制御装置300を待機状態にさせる。一方、取得可能であった場合(ステップS68肯定)、受入処理部310Dは、取得した途中起動日時を推定起動日時とする未接続のノード2を受入対象に設定する(ステップS69)。
When the node 2 cannot be selected in the process of step S62 (No in step S62), the reception processing unit 310D acquires the shortest halfway start date and time of the GW 3 that is the control device 300 from the connected node information 335B. (Step S67). In other words, when the sleep instruction is completed for all the nodes 2, the acceptance processing unit 310 </ b> D acquires the date and time when the control device 300 is activated. The start date and time of the control device 300 is a date and time for the control device 300 to issue a sleep instruction again to the node 2 that has executed the connection acceptance process. The acceptance processing unit 310D confirms whether or not the halfway start date and time can be acquired when trying to obtain the halfway start date and time (step S68). If acquisition of the activation date / time is not possible (No at Step S68), the acceptance processing unit 310D causes the control device 300 to enter a standby state. On the other hand, if it can be acquired (Yes at Step S68), the reception processing unit 310D sets the unconnected node 2 having the acquired startup date / time as the estimated startup date / time as the reception target (Step S69).
さらに、受入処理部310Dは、受入対象のノード2の接続受入時間を取得する(ステップS70)。そして、受入処理部310Dは、制御装置300を、途中起動日時+接続受入時間の間、待機状態にさせる(ステップS71)。この後、制御装置300は、受入後処理を実行する。
Furthermore, the acceptance processing unit 310D acquires the connection acceptance time of the node 2 to be accepted (step S70). Then, the acceptance processing unit 310D causes the control device 300 to be in a standby state for the halfway start date / time + connection acceptance time (step S71). Thereafter, control device 300 performs post-acceptance processing.
各ノード2は、制御装置300から指示された時間だけスリープした後、起動して受信待機状態になる。このとき、何れかのノード2に接続要求が来れば、ノード2は、接続要求に応答して接続を受入れる。そして、接続したノード2は、起動している他のノード2を経由して制御装置300に接続通知を送信する。制御装置300では、ノード2が接続受入の状態になると、受入処理部310Dが、受入後処理を実行する。
Each node 2 sleeps for a time instructed by the control device 300, and then starts up and enters a reception standby state. At this time, if a connection request comes to any one of the nodes 2, the node 2 accepts the connection in response to the connection request. Then, the connected node 2 transmits a connection notification to the control device 300 via the other active node 2. In the control device 300, when the node 2 enters the connection acceptance state, the acceptance processing unit 310D executes post-acceptance processing.
図15は、制御装置300の受入後処理動作の一例を示すフローチャートである。尚、図15に示す処理のうち、図14において説明した処理と同様の処理はその説明を省略する場合がある。
FIG. 15 is a flowchart showing an example of the post-acceptance processing operation of the control device 300. Of the processes shown in FIG. 15, the same processes as those described in FIG. 14 may be omitted.
スリープ指示部310Cは、未選択の接続済みのノード2を順番に選択する。ここでは、スリープ指示部310Cが、未選択の接続済みのノード2を1つ選択する(ステップS81)。そして、スリープ指示部310Cは、ノード2を選択可能であったかを確認する(ステップS82)。選択可能であった場合(ステップS82肯定)、スリープ指示部310Cは、選択したノード2の途中起動日時と、受入対象となったノード2の推定起動日時とを接続済みノード情報335Bに基づいて比較する(ステップS83)。そして、スリープ指示部310Cは、選択したノード2の途中起動日時と、受入対象となったノード2の推定起動日時とで一致するものがあるか否かを判定する。換言すると、スリープ指示部310Cは、選択したノード2が現在動作中であるか否かを判定する(ステップS84)。
The sleep instruction unit 310C sequentially selects the unselected connected nodes 2. Here, the sleep instruction unit 310C selects one connected node 2 that has not been selected (step S81). Then, the sleep instruction unit 310C confirms whether the node 2 can be selected (step S82). When the selection is possible (Yes at Step S82), the sleep instruction unit 310C compares the start date / time of the selected node 2 with the estimated start date / time of the node 2 to be accepted based on the connected node information 335B. (Step S83). Then, the sleep instruction unit 310C determines whether there is a match between the halfway activation date and time of the selected node 2 and the estimated activation date and time of the node 2 that is the reception target. In other words, the sleep instruction unit 310C determines whether or not the selected node 2 is currently operating (step S84).
選択したノード2の途中起動日時と、受入対象となったノード2の推定起動日時とで、一致するものがなかった場合(ステップS84否定)、スリープ指示部310Cは、選択したノード2は、現在動作中でないと判断する。スリープ指示部310Cは、動作中でないノード2に対しては、スリープ指示が不要であるので、スリープ指示部310Cは、ステップS81の処理に戻る。一方、選択したノード2の途中起動日時と、受入対象となったノード2の推定起動日時とで、一致するものがあった場合(ステップS84肯定)、スリープ指示部310Cは、現在以降で次に早い途中起動日時を接続済みノード情報335Bから取得する(ステップS85)。そして、スリープ指示部310Cは、現在以降で次に早い途中起動日時を取得可能であったかを確認する(ステップS86)。取得可能であった場合(ステップS86肯定)、スリープ指示部310Cは、取得した途中起動日時までのスリープ指示を、選択したノード2に送信する(ステップS87)。このように、スリープ指示部310Cは、全ノード2の中で最も早く起動する日時t1+子ノード2との間の応答完了時間である待ち受け時間p1後に、その時点で起動しているノード2に対して、次の途中起動日時までのスリープ指示を送信する。
If there is no match between the start date / time of the selected node 2 and the estimated start date / time of the node 2 to be accepted (No at step S84), the sleep instruction unit 310C determines that the selected node 2 Judge that it is not working. Since the sleep instruction unit 310C does not need a sleep instruction for the node 2 that is not operating, the sleep instruction unit 310C returns to the process of step S81. On the other hand, if there is a match between the start date / time of the selected node 2 and the estimated start date / time of the node 2 to be accepted (Yes at step S84), the sleep instruction unit 310C An early start date and time is acquired from the connected node information 335B (step S85). Then, the sleep instruction unit 310C confirms whether or not it is possible to acquire the next early start date and time after the present (step S86). If it can be acquired (Yes at Step S86), the sleep instruction unit 310C transmits the acquired sleep instruction up to the mid-start-up date and time to the selected node 2 (Step S87). As described above, the sleep instructing unit 310C is the node activated at that time after the standby time p 1 which is the response completion time between the earliest activation date / time t 1 of all the nodes 2 and the child node 2 2 transmits a sleep instruction until the next halfway start date and time.
一方、途中起動日時の取得が不可能であった場合(ステップS86否定)、スリープ指示部310Cは、次回更新日時までのスリープ指示を選択したノード2に送信する(ステップS88)。途中起動日時までのスリープ指示又は次回更新日時までのスリープ指示を、ノード2に送信した後、受入処理部310Dは、ステップS81~S88の処理を繰り返す。
On the other hand, when it is impossible to acquire the start date / time during the process (No at Step S86), the sleep instruction unit 310C transmits the sleep instruction up to the next update date / time to the selected node 2 (Step S88). After transmitting the sleep instruction up to the start date and time or the sleep instruction up to the next update date and time to the node 2, the reception processing unit 310D repeats the processes of steps S81 to S88.
ステップS82の処理において、ノード2の選択が不可能であった場合(ステップS82否定)、受入処理部310Dは、接続の受入対象に設定されたノード2(以下、受入対象ノード2という場合がある)に対して接続できた否かを判定する(ステップS89)。これにより、受入処理部310Dは、期待していたノード2が接続されたか否かを確認する。
When the node 2 cannot be selected in the process of step S82 (No in step S82), the reception processing unit 310D may be the node 2 set as the connection reception target (hereinafter referred to as the reception target node 2). It is determined whether or not the connection has been established (step S89). Thereby, the acceptance processing unit 310D confirms whether or not the expected node 2 is connected.
そして、接続されなかった場合(ステップS89否定)、受入処理部310Dは、通信状態や発電環境が変化したと推測して予測の修正を行う。具体的には、受入処理部310Dは、受入対象ノード2の近傍で、動作中の接続済みのノード2を検索する(ステップS90)。そして、受入処理部310Dは、受入対象ノード2からの待ち受けを行った接続済みのノード2を近傍除外ノードに設定し、接続済みノード情報335Bに記録する(ステップS91)。近傍除外ノードは、受入対象ノード2の近傍に配置されて動作し、受入対象ノード2からの待ち受けを行ったものの、受入対象ノード2と制御装置300との接続を成功させることができなかったノード2である。このように、受入処理部310Dは、予測の修正の際に、例えば、受入対象ノード2の接続待ち受けを行ったノード2を近傍のノード2から除外するようにマークして、他の近傍のノード2からの接続を試みさせる。
If not connected (No at Step S89), the acceptance processing unit 310D estimates that the communication state and the power generation environment have changed, and corrects the prediction. Specifically, the acceptance processing unit 310D searches for an active connected node 2 in the vicinity of the acceptance target node 2 (step S90). Then, the acceptance processing unit 310D sets the connected node 2 that has been waiting from the acceptance target node 2 as a neighborhood excluded node, and records it in the connected node information 335B (step S91). The neighborhood exclusion node is arranged in the vicinity of the acceptance target node 2 and operates and waits from the acceptance target node 2, but has not been able to successfully connect the acceptance target node 2 and the control device 300. 2. In this way, the acceptance processing unit 310D, for example, marks the node 2 that has waited for the connection of the acceptance target node 2 to be excluded from the neighboring nodes 2 when the prediction is corrected. 2. Try to connect from 2.
受入処理部310Dは、受入対象ノード2の近傍で動作中の全ての接続済みのノード2を検索する(ステップS92)。そして、受入処理部310Dは、検索した接続済みのノード2の全てが、受入対象ノード2に対する近傍除外ノードに設定されているか否かを判定する。換言すると、受入処理部310Dは、検索した全ての接続済みのノード2が、受入対象ノード2の近傍のノード2から除外されているか否かを判定する(ステップS93)。
The acceptance processing unit 310D searches for all connected nodes 2 operating in the vicinity of the acceptance target node 2 (step S92). Then, the acceptance processing unit 310D determines whether or not all of the searched connected nodes 2 are set as neighboring exclusion nodes for the acceptance target node 2. In other words, the acceptance processing unit 310D determines whether or not all the searched connected nodes 2 are excluded from the nodes 2 in the vicinity of the acceptance target node 2 (step S93).
受入対象ノード2が、検索した全ての接続済みのノード2が受入対象ノード2の近傍のノード2から除外されている場合(ステップS93肯定)、受入処理部310Dは、検索した全ての接続済みのノード2を近傍除外ノードから削除して受入対象ノード2の接続受入時間を増加させる(ステップS94)。換言すると、受入処理部310Dは、検索した接続済みのノード2を近傍除外ノードに設定した結果、受入対象ノード2の近傍のノード2が無くなった場合には、除外のマークを解除して、接続受入時間を1~数サイクル分増加させる。受入処理部310Dは、接続受入時間を増加させる処理と、新たに受入対象ノード2との接続を試みる処理と、接続できなかった場合に接続の待ち受けを行った近傍のノード2を近傍除外ノードに設定すると処理とを繰り返す。これにより、制御装置300は、発電量や通信環境が変化した場合であっても対応できるようにする。
If all the connected nodes 2 that have been searched for are excluded from the nodes 2 in the vicinity of the reception target node 2 (Yes in step S93), the reception processing unit 310D determines that all the connected nodes that have been searched The node 2 is deleted from the neighborhood exclusion node to increase the connection acceptance time of the acceptance target node 2 (step S94). In other words, the acceptance processing unit 310D cancels the exclusion mark when the node 2 near the acceptance target node 2 disappears as a result of setting the searched connected node 2 as the neighborhood exclusion node, and connects Increase acceptance time by one to several cycles. The acceptance processing unit 310D sets a process for increasing the connection acceptance time, a process for newly trying to connect to the acceptance target node 2, and a nearby node 2 that has waited for connection when the connection cannot be established as a neighbor exclusion node. Once set, the process is repeated. As a result, the control device 300 can cope with a case where the power generation amount or the communication environment changes.
制御装置300が受入対象ノード2に接続できた場合(ステップS89肯定)、受入処理部310Dは、制御装置300であるGW3の次回の途中起動日時を取得する(ステップS95)。また、ステップS93否定の場合、又はステップS94の後に、制御装置300が受入対象ノード2に接続できると、受入処理部310Dは、制御装置300であるGW3の次回の途中起動日時を取得する(ステップS95)。
When the control device 300 is able to connect to the acceptance target node 2 (Yes at Step S89), the acceptance processing unit 310D acquires the next halfway start date and time of the GW 3 that is the control device 300 (Step S95). In the case of negative in step S93 or after step S94, if the control device 300 can connect to the reception target node 2, the reception processing unit 310D acquires the next halfway start date and time of the GW 3 that is the control device 300 (step S95).
そして、受入処理部310Dは、次回の途中起動日時を取得可能であったかを確認する(ステップS96)。取得が不可能であった場合(ステップS96否定)、受入処理部310Dは、制御装置300を待機状態にさせる。一方、取得可能であった場合(ステップS96肯定)、受入処理部310Dは、取得した途中起動日時を推定起動日時とする未接続のノード2を受入れ対象に設定する(ステップS97)。さらに、受入処理部310Dは、受入対象のノード2の接続受入時間を取得する(ステップS98)。そして、受入処理部310Dは、制御装置300を途中起動日時+接続受入時間の間、待機状態にさせる(ステップS99)。この後、制御装置300は、受入後処理を実行する。このように、決定部310Bは、ノード2Yの電池残量と、ノード2X,2Y間のLQIと、ノード2Xの相関係数と、ノード2Xが配置されている位置での環境情報5とに基づいて、ノード2Yがノード2Xとの間の接続を受入れる接続受入日時を決定する。そして、スリープ指示部310Cが、接続受入日時までノード2Yをスリープ状態とさせることをノード2Yに指示する。
Then, the acceptance processing unit 310D confirms whether or not the next halfway start date and time can be acquired (step S96). When acquisition is impossible (No at Step S96), the reception processing unit 310D causes the control device 300 to enter a standby state. On the other hand, if acquisition is possible (Yes at step S96), the reception processing unit 310D sets the unconnected node 2 having the acquired startup date / time as the estimated startup date / time as an acceptance target (step S97). Further, the acceptance processing unit 310D acquires the connection acceptance time of the acceptance target node 2 (step S98). Then, the acceptance processing unit 310D causes the control device 300 to be in a standby state for the halfway start date / time + connection acceptance time (step S99). Thereafter, control device 300 performs post-acceptance processing. As described above, the determination unit 310B is based on the remaining battery level of the node 2Y, the LQI between the nodes 2X and 2Y, the correlation coefficient of the node 2X, and the environment information 5 at the position where the node 2X is disposed. The node 2Y determines a connection acceptance date and time for accepting a connection with the node 2X. Then, the sleep instruction unit 310C instructs the node 2Y to set the node 2Y to the sleep state until the connection acceptance date and time.
制御装置300は、次回の更新日時に到達すると、その間に新規に接続したノード2も含めて全てが起動している状態になっている。このため、制御装置300は、起動しているノード2に対して上述した処理と同様のことを繰り返して、スリープにより2次電池23を回復させつつ接続するノード2を増やしていく。
When the next update date and time is reached, the control device 300 is in a state where all of the devices including the newly connected node 2 are activated. For this reason, the control device 300 repeats the same processing as described above for the active node 2, and increases the number of nodes 2 to be connected while recovering the secondary battery 23 by sleep.
上述した処理により、未接続のノード2Xの接続受入れを行うために起動させる時間又はノード数を抑制できるため、未接続のノード2Xの受入れをしつつスリープによって蓄電量を回復することが可能になる。
With the above-described processing, it is possible to suppress the time or the number of nodes that are activated to accept the connection of the unconnected node 2X. Therefore, it is possible to recover the storage amount by sleeping while accepting the unconnected node 2X. .
ノード2は、制御装置300から受入日時までのスリープ指示を受信すると、受入日時までスリープ状態となる。その結果、各ノード2は、制御装置300からのスリープ指示に従って受入日時までスリープ状態になることができる。
When the node 2 receives the sleep instruction from the control device 300 until the reception date and time, the node 2 enters the sleep state until the reception date and time. As a result, each node 2 can enter the sleep state until the reception date and time in accordance with the sleep instruction from the control device 300.
各ノード2は、受入日時までスリープ状態になることができるので、蓄電量を増加させることができる。その結果、制御装置300は、ノード2間の接続設定を効率良く行うことができる。
Since each node 2 can be in a sleep state until the date and time of acceptance, the amount of stored electricity can be increased. As a result, the control device 300 can efficiently perform connection setting between the nodes 2.
決定部310Bは、接続済みのノード2Yの電池残量と、ノード2X,2Y間のLQIと、ノード2Xの電力特性である相関係数と、ノード2Xの環境情報5とに基づいて、ノード2Yがノード2Xの接続を受入れる接続受入時間を決定する。その結果、制御装置300は、ノード2Yを、ノード2Xが起動するタイミングまでスリープさせることができる。
Based on the remaining battery level of the connected node 2Y, the LQI between the nodes 2X and 2Y, the correlation coefficient that is the power characteristic of the node 2X, and the environment information 5 of the node 2X, the determination unit 310B Determines the connection acceptance time for accepting the connection of the node 2X. As a result, the control device 300 can cause the node 2Y to sleep until the node 2X is activated.
スリープ指示部310Cは、制御装置300からノード2Yまでの通信経路に接続されていないノード2をスリープ状態とさせる。その結果、制御装置300は、ノード2Yまでの通信経路に接続されていないノード2Yの蓄電量を増加させることができる。
The sleep instruction unit 310C causes the node 2 that is not connected to the communication path from the control device 300 to the node 2Y to enter a sleep state. As a result, the control device 300 can increase the amount of power stored in the node 2Y that is not connected to the communication path to the node 2Y.
決定部310Bは、ノード2Xの電池残量の予測結果に基づいて、ノード2Xの推定起動日時を算出し、推定起動日時を用いて、ノード2Yの途中起動日時である受入日時を決定する。その結果、制御装置300は、ノード2Xの起動に応じた正確なタイミングでノード2Yを起動させることができる。
The determining unit 310B calculates the estimated activation date / time of the node 2X based on the prediction result of the remaining battery level of the node 2X, and determines the acceptance date / time that is the mid-term activation date / time of the node 2Y using the estimated activation date / time. As a result, the control device 300 can activate the node 2Y at an accurate timing according to the activation of the node 2X.
受入処理部310Dは、途中起動日時及び推定起動日時に基づいて、ノード2の中からノード2Yが接続を受入れる受入対象としてのノード2Xを設定する。その結果、制御装置300は、推定起動日時の早いノード2Xを受入対象に設定できる。
The acceptance processing unit 310D sets the node 2X as the acceptance target from which the node 2Y accepts the connection from among the nodes 2 based on the midway activation date and time and the estimated activation date and time. As a result, the control device 300 can set a node 2X with an estimated start date and time as an acceptance target.
受入処理部310Dは、子ノードであるノード2Xとの接続が完了しなかった場合、次回以降の接続には接続できなかったノード2Xとは異なるノード2Xを接続の受入対象に設定する。その結果、制御装置300は、ノード2Xとの接続確率を向上することができる。
When the connection with the node 2X that is the child node is not completed, the reception processing unit 310D sets a node 2X that is different from the node 2X that could not be connected to the subsequent connection as a connection reception target. As a result, the control device 300 can improve the connection probability with the node 2X.
受入処理部310Dは、子ノードであるノード2Xとの接続が完了しなかった場合、次回以降の接続には接続が完了しなかったノード2Xに対する接続待ち時間であるノード2Yの接続受入時間を増加させる。その結果、制御装置300は、ノード2Xとの接続確率を向上させることができる。
If the connection with the node 2X that is a child node is not completed, the acceptance processing unit 310D increases the connection acceptance time of the node 2Y that is a connection waiting time for the node 2X that has not been connected for the next and subsequent connections. Let As a result, the control device 300 can improve the connection probability with the node 2X.
決定部310Bは、ノード2Xの接続試行の開始予想日時から接続試行の終了予想日時までの期間と、ノード2Xの接続受入れに要する期間とに基づいて、ノード2Xの推定起動日時を算出する。その結果、制御装置300は、ノード2Xの動作に応じた適切な推定起動日時を算出することができる。
The determination unit 310B calculates the estimated start date / time of the node 2X based on the period from the expected start date / time of the connection attempt of the node 2X to the expected end date / time of the connection attempt and the period required for accepting the connection of the node 2X. As a result, the control device 300 can calculate an appropriate estimated activation date / time according to the operation of the node 2X.
環境情報5が天気予報である場合、通信部320は、有線又は携帯電話回線網から環境情報5を受信する。その結果、制御装置300は、ノード2の環境に応じた接続受入時間を適切に決定することができる。
If the environment information 5 is a weather forecast, the communication unit 320 receives the environment information 5 from a wired or mobile phone network. As a result, the control device 300 can appropriately determine the connection acceptance time according to the environment of the node 2.
決定部310Bは、ノード2とノード2Yとの間のLQIに基づいて、複数のノード2の中からノード2Xとなるノード2を抽出する。その結果、制御装置300は、制御装置300から所定距離内の近傍のノード2Xとの接続を試みることができる。
The determination unit 310B extracts the node 2 to be the node 2X from the plurality of nodes 2 based on the LQI between the node 2 and the node 2Y. As a result, the control device 300 can try to connect to a nearby node 2X within a predetermined distance from the control device 300.
環境情報5は、これまでの環境に関する環境実績情報と、これからの環境に関する環境予測情報とを含んでいる。その結果、制御装置300は、ノード2Xの環境に応じた接続受入時間を適切に決定することができる。
The environmental information 5 includes environmental performance information about the environment so far and environmental prediction information about the future environment. As a result, the control device 300 can appropriately determine the connection acceptance time according to the environment of the node 2X.
決定部310Bは、ノード2Xの理想発電量と、ノード2Xの現在の蓄電量と、ノード2Xの前回の蓄電量とを用いて、ノード2Xの電力特性である相関係数を算出する。その結果、制御装置300は、正確な相関係数を算出できる。
The determination unit 310B calculates a correlation coefficient, which is a power characteristic of the node 2X, using the ideal power generation amount of the node 2X, the current power storage amount of the node 2X, and the previous power storage amount of the node 2X. As a result, the control device 300 can calculate an accurate correlation coefficient.
決定部310Bは、ノード2Xが未接続となる前の接続中の間に、ノード2Xから相関係数を取得しておく。その結果、制御装置300は、ノード2Xが未接続となった場合であっても、ノード2Xの相関係数を用いて接続受入時間を決定することができる。
The determination unit 310B acquires the correlation coefficient from the node 2X during connection before the node 2X is not connected. As a result, the control device 300 can determine the connection acceptance time using the correlation coefficient of the node 2X even when the node 2X is not connected.
尚、通信品質は、例えば、LQIに限定されるものではなく、その他の指標であっても良い。また、上記実施例では、検索した全ての接続済みのノード2が受入対象ノード2の近傍のノード2から除外されている場合に、受入処理部310Dが受入対象ノード2の受入時間を増加させた。しかしながら、受入処理部310Dは、近傍除外ノードの設定を行うことなく、受入対象ノード2の受入時間を増加させても良い。また、検索した一部の接続済みのノード2が近傍除外ノードに設定されている場合に、受入処理部310Dが受入対象ノード2の受入時間を増加させても良い。
Note that the communication quality is not limited to, for example, LQI, and may be another index. Further, in the above embodiment, when all the connected nodes 2 searched are excluded from the nodes 2 in the vicinity of the acceptance target node 2, the acceptance processing unit 310D increases the acceptance time of the acceptance target node 2. . However, the acceptance processing unit 310D may increase the acceptance time of the acceptance target node 2 without setting the neighborhood exclusion node. In addition, when a part of the searched nodes 2 that have been searched are set as the neighbor exclusion nodes, the reception processing unit 310D may increase the reception time of the reception target node 2.
また、本実施例では、制御装置300が、接続受入日時などの種々の日時の情報を用いてノード2を制御したが、制御装置300は、時刻のみの情報でノード2を制御してもよい。
In the present embodiment, the control device 300 controls the node 2 using information on various dates and times such as connection acceptance date and time. However, the control device 300 may control the node 2 using information only on time. .
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
In addition, each component of each part illustrated does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
更に、各装置で行われる各種処理機能は、CPU(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
Furthermore, various processing functions performed in each device are executed on the CPU (or a micro computer such as MPU (Micro Processing Unit), MCU (Micro Controller Unit), etc.) or all of them. Also good. Various processing functions may be executed entirely or arbitrarily on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say.
1 制御システム
2 ノード
5 環境情報
300 制御装置
310 制御部
310A 接続処理部
310B 決定部
310C スリープ指示部
310D 受入処理部
320 通信部
330 記憶部
330A 未接続ノード情報記憶部
330B 接続ノード情報記憶部
330C ノード状態記憶部
330D 環境情報記憶部 DESCRIPTION OFSYMBOLS 1 Control system 2 Node 5 Environment information 300 Control apparatus 310 Control part 310A Connection process part 310B Determination part 310C Sleep instruction | indication part 310D Acceptance process part 320 Communication part 330 Storage part 330A Unconnected node information storage part 330B Connection node information storage part 330C Node State storage unit 330D Environmental information storage unit
2 ノード
5 環境情報
300 制御装置
310 制御部
310A 接続処理部
310B 決定部
310C スリープ指示部
310D 受入処理部
320 通信部
330 記憶部
330A 未接続ノード情報記憶部
330B 接続ノード情報記憶部
330C ノード状態記憶部
330D 環境情報記憶部 DESCRIPTION OF
Claims (14)
- 接続済みの第1のノード及び未接続の第2のノードを含む複数のノード間のマルチホップ通信を用いて前記第1ノードからの情報を受信する通信部と、
前記第1のノードの電池残量と、前記第1のノードと前記第2のノードとの間の通信品質と、前記第2のノードの電力特性と、前記第2のノードが配置されている位置の環境に関する第1の環境情報とに基づいて、前記第1のノードが前記第2のノードとの間の接続を受入れる受入日時を決定する決定部と、
前記受入日時まで前記第1のノードをスリープ状態とさせることを前記第1のノードに指示するスリープ指示部と、
を有することを特徴とする制御装置。 A communication unit that receives information from the first node using multi-hop communication between a plurality of nodes including a connected first node and an unconnected second node;
The remaining battery level of the first node, the communication quality between the first node and the second node, the power characteristic of the second node, and the second node are arranged. A determination unit configured to determine an acceptance date and time when the first node accepts a connection with the second node based on first environment information regarding a location environment;
A sleep instruction unit for instructing the first node to put the first node in a sleep state until the acceptance date and time;
A control device comprising: - 前記スリープ指示部は、
前記制御装置から前記第2のノードまでの通信経路に配置されていない第3のノードをスリープ状態とさせることを前記第3のノードに指示することを特徴とする請求項1に記載の制御装置。 The sleep instruction unit
2. The control device according to claim 1, wherein the control device instructs the third node to put a third node not arranged in a communication path from the control device to the second node into a sleep state. . - 前記決定部は、
前記第2のノードの電力特性と、前記第2のノードが配置されている位置の環境に関する第2の環境情報とに基づいて、前記第2のノードの電池残量を予測し、予測結果に基づいて、前記第2のノードの推定起動日時を算出し、前記推定起動日時を用いて前記受入日時を決定することを特徴とする請求項1に記載の制御装置。 The determination unit is
Based on the power characteristics of the second node and the second environment information related to the environment at the location where the second node is located, the remaining battery level of the second node is predicted, and the prediction result 2. The control device according to claim 1, wherein an estimated activation date and time of the second node is calculated based on the estimated activation date and time, and the reception date and time is determined using the estimated activation date and time. - 前記受入日時及び前記推定起動日時に基づいて、前記第2のノードの中から前記第1のノードが接続を受入れる第1の受入対象を設定する受入処理部をさらに有することを特徴とする請求項3に記載の制御装置。 The system further comprises an acceptance processing unit that sets a first acceptance target for the first node to accept a connection from the second nodes based on the acceptance date and the estimated activation date and time. 3. The control device according to 3.
- 前記受入処理部は、
前記受入日時に前記第2のノードとの間の接続が完了しなかった場合、次回以降の接続には前記第1の受入対象とは異なる第2の受入対象を設定することを特徴とする請求項4に記載の制御装置。 The acceptance processing unit
When the connection with the second node is not completed at the reception date and time, a second reception target different from the first reception target is set for the subsequent connection. Item 5. The control device according to Item 4. - 前記受入処理部は、
前記受入日時に前記第2のノードとの間の接続が完了しなかった場合、次回以降の接続には接続が完了しなかった前記第2のノードに対する前記第1のノードの接続受入の期間を増加させることを特徴とする請求項4に記載の制御装置。 The acceptance processing unit
If the connection with the second node is not completed at the reception date and time, the connection acceptance period of the first node with respect to the second node for which connection has not been completed for the subsequent connection The control device according to claim 4, wherein the control device is increased. - 前記決定部は、
前記予測結果及び前記第2のノードが動作していない状態での第1の消費電力に基づいて、前記第2のノードが接続試行を開始可能な開始予想日時を推定し、
前記予測結果及び前記第2のノードが接続試行している状態での第2の消費電力に基づいて、前記第2のノードが接続試行を終了する終了予想日時を推定し、
前記開始予想日時と、前記終了予想日時と、前記第1のノードが前記第2のノードの接続受入に要する時間とに基づいて、前記推定起動日時を算出することを特徴とする請求項3に記載の制御装置。 The determination unit is
Based on the prediction result and the first power consumption in a state where the second node is not operating, the estimated start date and time when the second node can start a connection attempt is estimated,
Based on the prediction result and second power consumption in a state where the second node is trying to connect, an estimated end date and time when the second node ends the connection attempt,
4. The estimated start date / time is calculated based on the expected start date / time, the expected end date / time, and a time required for the first node to accept a connection of the second node. The control device described. - 前記第1の環境情報は、天気予報であり、
前記通信部は、有線又は携帯電話回線網から前記天気予報を受信することを特徴とする請求項1に記載の制御装置。 The first environmental information is a weather forecast;
The control device according to claim 1, wherein the communication unit receives the weather forecast from a wired or cellular phone network. - 前記決定部は、
前記複数のノードと前記第1のノードとの間の通信品質に基づいて、前記複数のノードの中から前記第2のノードを抽出することを特徴とする請求項1に記載の制御装置。 The determination unit is
The control device according to claim 1, wherein the second node is extracted from the plurality of nodes based on communication quality between the plurality of nodes and the first node. - 前記第2の環境情報は、
これまでの環境に関する環境実績情報と、これからの環境に関する環境予測情報とを含むことを特徴とする請求項3に記載の制御装置。 The second environmental information is
The control apparatus according to claim 3, comprising environmental performance information related to the environment so far and environmental prediction information related to the future environment. - 前記決定部は、
前記環境実績情報に基づいて、前記第1のノードの発電量を算出し、
前記第1のノードの発電量と、前記第1のノードの現在の蓄電量と、前記第1のノードの発電量の前回の蓄電量とを用いて、前記第1のノードの電力特性を算出することを特徴とする請求項10に記載の制御装置。 The determination unit is
Based on the environmental performance information, the power generation amount of the first node is calculated,
The power characteristic of the first node is calculated using the power generation amount of the first node, the current power storage amount of the first node, and the previous power storage amount of the first node. The control device according to claim 10. - 前記決定部は、前記第2のノードが未接続となる前の接続中の間に、前記第2のノードから前記第2のノードの電力特性を取得しておくことを特徴とする請求項1から11のいずれか1つに記載の制御装置。 12. The determining unit acquires power characteristics of the second node from the second node during connection before the second node is not connected. The control apparatus as described in any one of these.
- 第1のノード及び第2のノードを含む複数のノードと、
前記複数のノードを制御する制御装置と、を有し、
前記制御装置は、
前記複数のノードの間のマルチホップ通信を用いて前記第1ノードからの情報を受信する通信部と、
前記第1のノードの電池残量と、前記第1のノードと前記第2のノードとの間の通信品質と、前記第2のノードの電力特性と、前記第2のノードが配置されている位置の環境に関する第1の環境情報とに基づいて、前記第1のノードが前記第2のノードとの間の接続を受入れる受入日時を決定する決定部と、
前記受入日時まで前記第1のノードをスリープ状態とさせることを前記第1のノードに指示するスリープ指示部と、
を有することを特徴とする制御システム。 A plurality of nodes including a first node and a second node;
A control device for controlling the plurality of nodes,
The control device includes:
A communication unit that receives information from the first node using multi-hop communication between the plurality of nodes;
The remaining battery level of the first node, the communication quality between the first node and the second node, the power characteristic of the second node, and the second node are arranged. A determination unit configured to determine an acceptance date and time when the first node accepts a connection with the second node based on first environment information regarding a location environment;
A sleep instruction unit for instructing the first node to put the first node in a sleep state until the acceptance date and time;
A control system comprising: - 接続済みの第1のノード及び未接続の第2のノードを含む複数のノード間のマルチホップ通信を用いて前記第1ノードからの情報を受信し、
前記第1のノードの電池残量と、前記第1のノードと前記第2のノードとの間の通信品質と、前記第2のノードの電力特性と、前記第2のノードが配置されている位置の環境に関する第1の環境情報とに基づいて、前記第1のノードが前記第2のノードとの間の接続を受入れる受入日時を決定し、
前記受入日時まで前記第1のノードをスリープ状態とさせることを前記第1のノードに指示する、
処理を実行することを特徴とする制御方法。 Receiving information from the first node using multi-hop communication between a plurality of nodes including a connected first node and an unconnected second node;
The remaining battery level of the first node, the communication quality between the first node and the second node, the power characteristic of the second node, and the second node are arranged. Based on the first environment information about the environment of the location, the first node determines an acceptance date and time for accepting a connection with the second node;
Instructing the first node to put the first node in a sleep state until the acceptance date and time;
A control method characterized by executing processing.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018548538A JP6673495B2 (en) | 2016-11-07 | 2016-11-07 | Control device, control system and control method |
PCT/JP2016/083003 WO2018083806A1 (en) | 2016-11-07 | 2016-11-07 | Control apparatus, control system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/083003 WO2018083806A1 (en) | 2016-11-07 | 2016-11-07 | Control apparatus, control system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018083806A1 true WO2018083806A1 (en) | 2018-05-11 |
Family
ID=62075918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083003 WO2018083806A1 (en) | 2016-11-07 | 2016-11-07 | Control apparatus, control system and control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6673495B2 (en) |
WO (1) | WO2018083806A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003346271A (en) * | 2002-05-28 | 2003-12-05 | Toshiba Corp | Measurement communication device with power generation |
JP2008257601A (en) * | 2007-04-06 | 2008-10-23 | Oki Joho Systems:Kk | Monitoring system |
US20080291855A1 (en) * | 2006-11-14 | 2008-11-27 | Phase Iv Engineering, Inc. | Wireless Data Networking |
JP2013179468A (en) * | 2012-02-28 | 2013-09-09 | Fujitsu Telecom Networks Ltd | Radio management system and transmission management method |
WO2015107689A1 (en) * | 2014-01-20 | 2015-07-23 | 富士通株式会社 | Communication node, system and synchronization method |
JP2016158074A (en) * | 2015-02-24 | 2016-09-01 | 沖電気工業株式会社 | Communication system and communication device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012080622A (en) * | 2010-09-30 | 2012-04-19 | Nec Embedded Products Ltd | Sensor node power predictive control device, sensor node power predictive control method, and program |
JP2018207551A (en) * | 2015-09-17 | 2018-12-27 | 株式会社日立製作所 | Energy harvesting type radio device and system |
-
2016
- 2016-11-07 JP JP2018548538A patent/JP6673495B2/en active Active
- 2016-11-07 WO PCT/JP2016/083003 patent/WO2018083806A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003346271A (en) * | 2002-05-28 | 2003-12-05 | Toshiba Corp | Measurement communication device with power generation |
US20080291855A1 (en) * | 2006-11-14 | 2008-11-27 | Phase Iv Engineering, Inc. | Wireless Data Networking |
JP2008257601A (en) * | 2007-04-06 | 2008-10-23 | Oki Joho Systems:Kk | Monitoring system |
JP2013179468A (en) * | 2012-02-28 | 2013-09-09 | Fujitsu Telecom Networks Ltd | Radio management system and transmission management method |
WO2015107689A1 (en) * | 2014-01-20 | 2015-07-23 | 富士通株式会社 | Communication node, system and synchronization method |
JP2016158074A (en) * | 2015-02-24 | 2016-09-01 | 沖電気工業株式会社 | Communication system and communication device |
Also Published As
Publication number | Publication date |
---|---|
JP6673495B2 (en) | 2020-03-25 |
JPWO2018083806A1 (en) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8825216B2 (en) | Apparatus for controlling power of sensor nodes based on estimation of power acquisition and method thereof | |
JP6024569B2 (en) | Wireless communication network system, wireless communication station, wireless communication apparatus, and battery consumption smoothing method | |
Fraternali et al. | Aces: Automatic configuration of energy harvesting sensors with reinforcement learning | |
Benedetti et al. | GreenCastalia: An energy-harvesting-enabled framework for the Castalia simulator | |
WO2011107856A1 (en) | System and methods for wireless sensor networks | |
JP5816545B2 (en) | Wireless sensor system | |
Yuksel et al. | Energy-aware system design for batteryless LPWAN devices in IoT applications | |
JP6358332B2 (en) | Sensor network system | |
US20150018025A1 (en) | Power management device and method of wireless sensor network | |
JP2017049896A (en) | Radio communication system, radio communication method, and sensor node | |
WO2016098205A1 (en) | Collection system, collection device, and power control method | |
JP6658881B2 (en) | Server device, control method, and control program | |
CN106968715B (en) | Coal mine down-hole fire monitoring based on wireless sensor network | |
CN109390921A (en) | A kind of distributed feed line automatization system for power distribution network monitoring | |
JP6852792B2 (en) | Wireless network control device, wireless network control method, and communication system | |
KR101142904B1 (en) | Information Gathering System For Research Of Wildlife Behavioral Ecology | |
JP2012080622A (en) | Sensor node power predictive control device, sensor node power predictive control method, and program | |
WO2018083806A1 (en) | Control apparatus, control system and control method | |
CN103237364B (en) | A kind of integrated wireless sensor network data collection mechanism | |
US20180225128A1 (en) | Control system and control method | |
JP6690725B2 (en) | Communication device, communication system, and communication control method | |
WO2017047480A1 (en) | Energy-harvesting wireless device and system | |
JP6808973B2 (en) | Call device, call method, and program | |
KR20150074526A (en) | Weather intelligence measurement and gathering method and system | |
CN111770464A (en) | Intelligent transformer substation environment monitoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018548538 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16920681 Country of ref document: EP Kind code of ref document: A1 |